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Abstract

Stochastic di�erential equations have shown useful to describe random continuous
time processes. Biomedical experiments often imply repeated measurements on a series of
experimental units and di�erences between units can be represented by incorporating ran-
dom e�ects into the model. When both system noise and random e�ects are considered,
stochastic di�erential mixed-e�ects models ensue. This class of models enables the simul-
taneous representation of randomness in the dynamics of the phenomena being considered
and variability between experimental units, thus providing a powerful modeling tool with
immediate applications in biomedicine and pharmacokinetic/pharmacodynamic studies.
In most cases the likelihood function is not available, and thus maximum likelihood esti-
mation of the unknown parameters is not possible. Here we propose a computationally
fast approximated maximum likelihood procedure for the estimation of the non-random
parameters and the random e�ects. The method is evaluated on simulations from some
famous di�usion processes and on real datasets.

Keywords: biomedical applications; Brownian motion with drift; CIR process; closed-form
transition density expansion; Gaussian quadrature; geometric Brownian motion; maximum
likelihood estimation; Ornstein-Uhlenbeck process; random parameters; stochastic di�erential
equations.

1 Introduction

Studies in which repeated measurements are taken on a series of individuals or experimental
animals play an important role in biomedical research. It is often reasonable to assume that
responses follow the same model form for all experimental subjects, but model parameters
vary randomly among individuals. The increasing popularity of Mixed-E�ects models lies
in their ability to model total variation, splitting it into its within- and between-individual
components. This often leads to more precise estimation of population parameters, which is
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especially useful in pharmacokinetic/pharmacodynamic (PK/PD) modeling, where enhanced
precision of estimation translates into considerable savings both in resources and in human or
animal discomfort.

Dynamical biological processes are usually modeled by means of systems of deterministic
di�erential equations (ordinary (ODE), partial (PDE), or delay (DDE)). These however do
not account for the noisy components of the system dynamics often present in biological
systems. System noise represents the cumulative e�ect on the actual state of the system of
a host of mechanisms which cannot be individually included in the model description (like
hormonal oscillations, variations of the stress level, variable muscular activity etc.). Noise in
the di�erential equations describing the behavior of the system requires an extension to the
class of stochastic di�erential equation (SDE) models.

The theory for Mixed-E�ects models is well developed for deterministic models (without
system noise), both linear and non-linear (Lindstrom and Bates (1990), Breslow and Clayton
(1993), Davidian and Giltinan (1995), Vonesh and Chinchilli (1997), McCulloch and Searle
(2001), Diggle et al. (2002), Kuhn and Lavielle (2005), Guedj et al. (2007), Wang (2007)), and
standard software for model �tting is available, e.g. Beal et al. (1999), Pinheiro and Bates
(2002), the R package by Pinheiro et al. (2007), Lavielle et al. (2007) and the SAS NLMIXED

procedure. Early and important references in the pharmacokinetic �eld are Sheiner and Beal
(1980, 1981). On the other hand, to our knowledge there is practically no theory at present
for SDE models with random e�ects, except for the references discussed below. The problem
is that estimating parameters in SDE models is not straightforward, except for few simple
cases. A natural approach would be likelihood inference, but the transition densities of the
process are rarely known, and thus it is usually not possible to write the likelihood function
explicitly. In Jelli�e et al. (2000) methods for PK/PD population modeling are reviewed, but
these authors regret that system noise is not considered since it is di�cult to estimate. In
Overgaard et al. (2005) and Tornøe et al. (2005) an SDE model with log-normally distributed
random e�ects and a constant di�usion term is treated. In Ditlevsen and De Gaetano (2005a)
the likelihood function for a simple SDE model with normally distributed random e�ects is
calculated explicitly, but generally the likelihood function is unavailable. Recently Donnet
and Samson (2008) developed an estimation method based on a stochastic EM algorithm for
�tting SDE with mixed-e�ects. However, from a computational point of view, the proposed
methods are time-consuming. Eventually, as SDE models are more commonly applied to
biomedical data (e.g. Lansky et al. (2004); Andersen and Højbjerre (2005); Picchini et al.
(2006); Ditlevsen and De Gaetano (2005b); Ditlevsen et al. (2007); Overgaard et al. (2007)),
there will be an increasing need for developing a general theory for parameter estimation
including mixed-e�ects.

In the present work a computationally e�cient estimation method for the parameters of
an SDE model incorporating random parameters is proposed: these models may be called
stochastic di�erential mixed-e�ects models (SDMEMs). By using the proposed methodology
on repeated measurements from di�erent units (e.g. subjects) it is not necessary to �t the
individual data separately, but a single estimation procedure is used to �t the overall data
simultaneously. We consider SDMEMs whose drift and di�usion terms can depend linearly
or nonlinearly on state variables and random e�ects following any su�ciently well-behaved
continuous distribution (although discrete distributions can also be considered), and an ap-
proximation to the likelihood function is computed. The likelihood can seldom be obtained in
closed form since it involves explicit knowledge of the transition density. Various ways have
been proposed to approximate the transition density: (i) solving numerically the Kolmogorov
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partial di�erential equations satis�ed by the transition density (Lo (1988)); (ii) deriving a
closed-form Hermite expansion to the transition density (Aït-Sahalia (2008, 2002b)); (iii) or
simulating the process in order to Monte-Carlo-integrate the transition density (e.g. Peder-
sen (1995); Brandt and Santa-Clara (2002); Durham and Gallant (2002); Hurn et al. (2003);
Nicolau (2002)), and this is known as �simulated maximum likelihood� (SML). More recently
a method using exact simulation has been proposed by Beskos et al. (2006). Each of these
techniques have been successfully implemented by the aforementioned authors, but they also
have limitations. Aït-Sahalia (2002a) notes that methods (i) and (iii) above are computa-
tionally intense and poorly accurate. Conversely, Durham and Gallant (2002) build on their
importance sampling ideas in order to improve the performance of Pedersen's (1995) (or equiv-
alently Brandt and Santa-Clara's (2002)) method, and point out that method (ii) above, while
accurate and fast, may be di�cult to apply.

We choose to employ the transition density approximation method suggested in Aït-Sahalia
(2002b, 2008) for time-homogeneous SDEs, since it is fast and accurate among the available
methods (Durham and Gallant (2002), Jensen and Poulsen (2002)). Attention is restricted to
time-homogeneous SDEs and the generalization to time-inhomogeneous SDEs can be obtained
according to Egorov et al. (2003), see Picchini, Ditlevsen and De Gaetano (2008) for an appli-
cation of the time-inhomogeneous case. The likelihood function is calculated by numerically
integrating the approximated conditional likelihood with respect to the random parameters
using Gaussian quadrature rules and the parameters of the SDMEM are estimated by (ap-
proximated) maximum likelihood.

The method is evaluated by simulations of a Brownian motion with drift (or equivalently
a log-transformed Geometric Brownian Motion), of the Ornstein-Uhlenbeck (OU) and the
Cox-Ingersoll-Ross (CIR) process. The estimates are close to the true parameter values,
only using moderate values of M (the number of experimental units) and n (the number of
observations for a given experimental unit), relevant for most biomedical applications. Finally,
two applications with real data are presented. In one of these the parameters of the SDMEM
were estimated in a few minutes using simultaneously nearly two million observations from
a neuronal experiment, by means of a single common PC. In conclusion, the method is an
e�cient computational method for �tting SDMEMs.

The paper is organized as follows. Section 2 introduces the SDMEMs, the observation
scheme and the necessary notation. Section 3 includes the main tools for the parameter
estimation of SDMEMs, i.e. introduces the likelihood function for a SDMEM and some ap-
proximations when the expression of the exact likelihood function cannot be obtained. Section
4 is devoted to the application of the estimation method presented in Section 3 to simulated
datasets; implementation issues are also discussed. Section 5 presents two applications of
the estimation method to real datasets. Section 6 summarizes the results of the paper and
discusses the advantages and limitations of the method that is introduced. An appendix
containing technical results closes the paper.

2 Formulation of Stochastic Di�erential Mixed-E�ects Models

Consider a one-dimensional continuous process Xt evolving in M di�erent experimental units
(e.g. subjects) randomly chosen from a theoretical population: a SDMEM is de�ned as

dXi
t = µ(Xi

t , θ, b
i)dt+ σ(Xi

t , θ, b
i) dW i

t , Xi
0 = xi0 i = 1, . . . ,M (1)
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where Xi
t is the value of the process at time t ≥ ti0 in the ith unit and Xi

0 = Xi
ti0
; θ ∈ Θ ⊆ Rp is

a p-dimensional �xed e�ects parameter (the same for the entire population) and bi ∈ B ⊆ Rq

is a q-dimensional random e�ects parameter (subject speci�c) with components (bi1, ..., b
i
q);

each component bil may follow a di�erent distribution (l = 1, ..., q). The joint density function
of the vector bi is denoted pB(bi | Ψ), which is parametrized by an r-dimensional parameter
Ψ ∈ Υ ⊆ Rr, and thus Ψ collects all the parameters specifying the marginal distributions
of the components {bil} of bi as well as the covariance structure between the bil's. The W i

t

are standard Brownian motions. The W i
t and bj are assumed mutually independent for all

1 ≤ i, j ≤M . Finally, Xi
0 is assumed deterministic and equal to a known real constant xi0. The

drift and the di�usion coe�cient functions µ(·) : E×Θ×B → R and σ(·) : E×Θ×B → R+ are
assumed known up to the parameters, and are assumed su�ciently regular to ensure a unique
weak solution (Øksendal (2007)), where E ⊆ R denotes the state space of Xi

t . Model (1)
assumes that in each of the M subjects the evolution of X follows a common functional form,
and di�erences between subjects are due to di�erent realizations of the Brownian motion paths
{W i

t }t≥ti0 and of the random parameters bi. Thus, in (1) the dynamics within a generic subject

i are expressed via an (Itô) SDE model driven by Brownian motion, and the introduction of
a parameter randomly varying among subjects allows for the explanation of the variability
between the M subjects.

Assume that the distribution of Xi
t given (bi, θ) and Xi

s = xs, s < t, has a strictly positive
density w.r.t. the Lebesgue measure on E, which we denote by

x→ pX(x, t− s|xs, bi, θ) > 0, x ∈ E. (2)

Assume that subject i is observed at ni + 1 discrete time points {ti0, ti1, . . . , tini}, i = 1, ...,M .
Let xi be the vector of responses for subject i, xi = (xi0, . . . , x

i
ni), where x

i(tij) = xij , and

let x = (x1, ..., xM ) be the N -dimensional total response vector, N =
∑M

i=1(ni + 1). Write
∆i
j = tij − tij−1 for the time-distance between the observations xij−1 and xij .
We wish to estimate (θ,Ψ) using simultaneously all the data in x, i.e. the individual data

xi are not �tted separately. Thus, for the moment, the speci�c values of the bi's are not of
interest, but only the identi�cation of the vector-parameter Ψ characterizing their distribution.
The problem of estimating the random e�ects bi's will be considered in Section 3.2.

Note that it is straightforward to extend this setting to a multidimensional process Xt.

3 Maximum likelihood estimation in SDMEMs

The marginal density of xi is obtained by integrating the conditional density of the data
given the non-observable random e�ects bi with respect to the marginal density of the random
e�ects, using that W i

t and b
j are independent. This yields the likelihood function

L(θ,Ψ) =
M∏
i=1

p(xi|θ,Ψ) =
M∏
i=1

∫
B
pX(xi|bi, θ) pB(bi|Ψ) dbi (3)

where p(·), pX(·) and pB(·) are density functions. Notice that p(xi|·) and pX(xi|·) are di�erent:
the former being the density of xi given (θ,Ψ), and the latter being the product of the
transition densities for a given realization of the random e�ects and for a given θ:

pX(xi|bi, θ) =
ni∏
j=1

pX(xij ,∆
i
j |xij−1, b

i, θ), (4)
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where the transition densities pX(·) are as in (2). The distribution of the random e�ects
is often assumed to be (multi)normal, but pB(·) could be any density function subject to
mild regularity conditions. Solving the integral in (3) yields the marginal likelihood of the
parameters, independent of the random e�ects bi; by maximizing (3) with respect to θ and Ψ
the corresponding maximum likelihood estimators (MLE) θ̂ and Ψ̂ are obtained. Notice that
it is possible to consider random e�ects having discrete distributions: in that case the integral
becomes a sum and can be easily computed when the transition density pX is known.

In simple cases the integral (3) can be solved, and explicit estimating equations for the
MLE can be found, see Example 1. However, in general it is not possible to explicitly solve the
integral, i.e. when: (i) pX(xij , ·|xij−1, ·) is known but the integral cannot be solved analytically,

and (ii) pX(xij , ·|xij−1, ·) is unknown. In (i) the integral has to be numerically evaluated. In (ii)

�rst pX(xij , ·|xij−1, ·) is approximated, then the integral is numerically solved. In situation (ii)
we propose to approximate the transition density in closed-form, using a Hermite expansion
as suggested in Aït-Sahalia (2002b, 2008), see Section 3.3.

3.1 Likelihood approximation

The MLE obtained by maximizing (4) has in most cases the usual good properties (see e.g.
Dacunha-Castelle and Florens-Zmirou (1986)), but requires the transition densities, which are
usually unknown. In particular, we assume that the MLE is a unique maximum of the contin-
uous likelihood function. Assume an approximation QK(xi|bi, θ) =

∏ni
j=1 qK(xij ,∆

i
j |xij−1, b

i, θ)
to (4), and substitute it for the unknown conditional likelihood in (3), obtaining a sequence
of approximations to the likelihood function

L(K)(θ,Ψ) =
M∏
i=1

∫
B
QK(xi|bi, θ) pB(bi|Ψ) dbi. (5)

By maximizing (5) with respect to (θ,Ψ) approximated MLE θ̂(K) and Ψ̂(K) are obtained.
In general, the integral in (5) does not have a closed form solution, and therefore e�cient
numerical integration methods are needed. General purpose approximation methods for one-
or multi-dimensional integrals, irrespective of the random e�ects distribution, are available
(e.g. Fröberg (1985), Krommer and Ueberhuber (1998)) within several software packages,
though the complexity of the problem grows fast when increasing the dimension of B.

The literature devoted to nonlinear mixed-e�ects models (NLME) contains di�erent ap-
proximate methods, with varying degrees of accuracy and computational complexity: e.g. in
Lindstrom and Bates (1990) the likelihood of a NLME is approximated with the likelihood of
a linear mixed-e�ects model; further approaches approximate the likelihood of a NLME using
Laplacian and Gaussian quadrature approximation (see Pinheiro and Bates (1995, 2002), Mc-
Culloch and Searle (2001) and references therein); recent advances are considered in Pinheiro
and Chao (2006) in the framework of generalized linear mixed models. In Section 3.1.1 the
special case of a normally distributed random e�ect is treated; in Section 3.1.2 the general case
of a random e�ect following any su�ciently well-behaved continuous distribution is considered.

3.1.1 A normally distributed random e�ect

Consider the following integral ∫ +∞

−∞
h(u)e−u

2
du, (6)
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where h(·) ∈ C2R(R), i.e. h(·) is 2R times continuously di�erentiable, for R a positive integer.
It can be solved using Gaussian-Hermite quadrature (e.g. Fröberg (1985), Krommer and
Ueberhuber (1998)), which is a Gaussian interpolatory quadrature formula approximating (6)
as: ∫ +∞

−∞
h(u)e−u

2
du '

R∑
r=1

h(zr)wr

using R evaluation points zr (nodes) and weights wr de�ned by

zr = rth zero of HR(u) (7)

wr =
2R−1R!

√
π

R2[HR−1(zr)]2
(8)

with an approximation error

ER =
R!
√
π

2R(2R)!
d2R

du2R
h(u)

∣∣
u=c

for some c ∈ R. (9)

Here HR(·) is the Hermite polynomial of degree R. If h(·) is polynomial of degree at most
2R − 1, the Gauss-Hermite quadrature gives the exact value of the integral (Krommer and
Ueberhuber (1998)).

Consider a one-dimensional (q = 1) normally distributed random e�ect bi ∼ N (0, η2), so
that (5) is the product of M one-dimensional integrals and Ψ = η2. De�ne ui = bi/(

√
2η),

then (5) becomes

L(K)(θ, η2) =
M∏
i=1

∫ +∞

−∞

ni∏
j=1

qK(xij ,∆
i
j |xij−1,

√
2ηui, θ)

e−u
i2

√
π
dui

=
M∏
i=1

∫ +∞

−∞
hiK(ui)e−u

i2

dui

where

hiK(ui) =
ni∏
j=1

qK(xij ,∆
i
j |xij−1,

√
2ηui, θ)/

√
π. (10)

Thus, assuming hiK(·) ∈ C2R(R) for all i = 1, . . . ,M and using Gaussian-Hermite quadrature,

L(K)(θ, η2) ' L(K,R)(θ, η2) =
M∏
i=1

R∑
r=1

hiK(zr)wr (11)

where zr and wr are given by (7) and (8). An approximated MLE of (θ, η2) is then given by
(θ̂(K,R), (η̂(K,R))2) = arg minθ,η2(− logL(K,R)(θ, η2)).

Notice that using a Gaussian interpolatory quadrature formula (e.g. Gauss-Legendre,
Gauss-Laguerre, Gauss-Hermite, Gauss-Jacobi) the approximation of an integral on the inter-
val [a, b] converges to the exact value when R → ∞, h(·) ∈ C([a, b]) and [a, b] is a bounded
interval, see Krommer and Ueberhuber (1998, p. 139).

6



3.1.2 A random e�ect following a continuous distribution

In this Section we consider the general case of a random e�ect bi having density pB (not
necessarily Gaussian), with certain conditions on existence of moments. In Golub and Welsch
(1969) a Gaussian quadrature integration method for any non-negative measure is suggested:
in particular, Fernandes and Atchley (2006) report explicit formulae for the cases of Normal,
Gamma, log-Normal, Student's t, inverse Gamma, Beta and Fisher's F distributions, covering
a large class of problems commonly encountered in e.g. biomathematics/biostatistics.

Consider the following integral ∫
B
h(u)ω(u)du

where h(·) ∈ C2R(B) for some chosen R and ω(·) is a density function with support B ful�lling

E(U2R) <∞ (12)

for U ∼ ω(u). Then ∫
B
h(u)ω(u)du '

R∑
r=1

h(zr)wr (13)

with an approximation error ER given by (Fröberg (1985) p. 290)

ER =
1

(2R)!
d2R

du2R
h(u)

∣∣
u=c
·
∫
B
ω(y)[π(y)]2dy (14)

for some c ∈ B, where π(y) =
∏R
r=1(y − zr). The integral in (14) is �nite under (12) and

ER → 0 when R → ∞ if B is bounded. The zr's are the eigenvalues of a tridiagonal matrix
J , de�ned by

J =



α0
√
β1 0√

β1 α1
√
β2

√
β2

. . .
. . .

. . .
. . .

√
βR−2√

βR−2 αR−2

√
βR−1

0
√
βR−1 αR−1


where the αr's and the βr's are speci�c to the distribution ω(·), and wr = q2

r,1, where qr,1 is the
�rst component of the normalized eigenvector qr of J . In Fernandes and Atchley (2006) the
αr's and βr's are explicitly given for some important distributions ω(·). The approximation
(13) is exact whenever h is a polynomial of degree 2R − 1 or less. See Example 3 for an
exponentially distributed random e�ect and Section 5.1 for a lognormally distributed e�ect.

De�ne ω(bi) = pB(bi|Ψ) and

hiK(bi) =
ni∏
j=1

q(K)(xij ,∆
i
j |xij−1, b

i, θ). (15)

Assuming that

hiK(bi) ∈ C2R(B) and E
(
bi

2R
)
<∞ (16)
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the likelihood (5) is approximated by

L(K,R)(θ,Ψ) =
M∏
i=1

R∑
r=1

hiK(zr)wr, (17)

and (θ̂(K,R), Ψ̂(K,R)) = arg minθ,Ψ(− logL(K,R)(θ,Ψ)) is an approximated MLE of (θ,Ψ).

3.2 Random e�ects estimation

The random parameters bi are estimated in the standard way from mixed-e�ects theory by

bi
(K,R) = arg min

bi

(
−

ni∑
j=1

log q(K)(xij ,∆
i
j |xij−1, b

i, θ̂(K,R))
)
, i = 1, ...,M (18)

where the estimate of θ has been plugged in. See Section 5.2 for an application.

3.3 Closed-form transition density expansion

Here we review the transition density expansion of a one-dimensional time-homogeneous SDE
as suggested in Aït-Sahalia (2002b) and adapt to the case of a SDMEM. An extension to time-
inhomogeneous SDEs is given in Egorov et al. (2003). A generalization to multidimensional
SDEs and references for additional extensions are given in Aït-Sahalia (2008). Consider the
following one-dimensional time-homogeneous SDMEM for a generic subject i:

dXi
t = µ(Xi

t , θ, b
i)dt+ σ(Xi

t , θ, b
i)dW i

t , Xi
0 = xi0. (19)

To approximate pX(xij ,∆
i
j |xij−1, b

i, θ) we assume µ(·) and σ(·) in�nitely di�erentiable in Xi
t

and three times continuously di�erentiable in θ and bi for all Xi
t ∈ E and (θ, bi) ∈ Θ×B; we

also assume the existence of a constant c such that σ(Xi
t , θ, b

i) > c > 0 for all Xi
t ∈ E and

(θ, bi) ∈ Θ × B. Weaker conditions on the di�usion coe�cient close to the boundary of the
state space can be considered, e.g. at 0 for positive di�usions so that also the Cox-Ingersoll-
Ross model is covered; see Aït-Sahalia (2002b) for further details. For a generic SDE the
Lamperti transform γ(·) is de�ned by

Yt ≡ γ(Xt) =
∫ Xt du

σ(u; θ)
(20)

where the lower bound of integration is an arbitrary point in the interior of E, and the resulting
process Yt is the solution of an SDE with di�usion term constantly equal to one and drift term
given by

µY (Yt) =
µ(γ−1(Yt))
σ(γ−1(Yt))

− 1
2
∂σ

∂x
(γ−1(Yt)).

Using such transformation the transition density of Xi
t is approximated by

p
(S)
X (xij ,∆

i
j |xij−1, b

i, θ) = σ(zij , θ, b
i)−1∆i

j
−1/2

φ(zij)
S∑
s=0

η
(s)
Z (∆i

j , γ(xij−1); θ, bi)Hs(zij)

8



where φ(·) is the standard normal density function, zij = (γ(xij) − γ(xij−1))/
√

∆i
j , and Hs is

the s'th Hermite polynomial. The coe�cients η
(s)
Z are given by the moments

η
(s)
Z (∆i

j , γ(xij−1); θ, bi) =
1
s!

∫ ∞
−∞

Hs(zij)pZ(∆i
j , z

i
j |γ(xij−1), bi, θ)dzij (21)

where pZ(·) is the transition density of the transformed variable Zt+∆ = (γ(Xt+∆)−γ(Xt))/
√

∆.

Following Theorem 1 in Aït-Sahalia (2002b) the p
(S)
X converges uniformly in (θ, bi) to the true

transition density pX when S →∞.
If the conditional moments (21) cannot be calculated explicitly (which is often the case),

a Taylor series expansion in the time steps ∆i
j can be used. The logarithm of the transition

density can then be expanded in closed form using an order S = ∞ Hermite series, and
approximated by a Taylor expansion up to order K, obtaining the explicit sequence:

ln p(K)
X (xij ,∆

i
j |xij−1, b

i, θ) = −1
2

ln(2π∆i
j)−

1
2

ln(σ2(xij , θ, b
i)) +

C
(−1)
Y (γ(xij)|γ(xij−1))

∆i
j

+
K∑
k=0

C
(k)
Y (γ(xij)|γ(xij−1))

∆i
j
k

k!
(22)

where ∆i
j
k
is ∆i

j raised to the power of k. The coe�cients C
(k)
Y are given in Appendix A.

4 Implementation issues and numerical applications

Trajectories of the Geometric Brownian Motion, the OU and the CIR process perturbed with
random e�ects were simulated. Data points from the trajectories were retrieved and on the
obtained datasets the parameters were estimated. The main goals were to check the feasibility
and e�ectiveness of the estimation procedure, and that acceptable results can be obtained for
small sample sizes (say M = 10, ..., 50 subjects and n = 10, ..., 50 observations collected on
each subject). Applications with real data are given in Section 5.

It has been shown that K = 1 or 2 is often su�cient to obtain a good approximation to the
transition density (Aït-Sahalia (2008, 2002b), Egorov et al. (2003)). We use either K = 1 or 2
order density expansion depending on the model. In particular, for the Geometric Brownian
Motion, K = 1 gives the exact density. All the integrals are numerically evaluated using
Gaussian quadrature with R = 40: though R = 20 is usually considered enough for a good

degree of approximation (McCulloch and Searle, 2001, p. 272). The coe�cients C
(k)
Y are given

in Appendix A (in general, the C
(k)
Y can be calculated using a symbolic calculus software).

Parametric bootstrap was performed to obtain means and 95% con�dence intervals (CI)
of the parameter estimates. For each SDMEM one thousand data sets of dimensions n ×M
each were generated using di�erent sets of parameters and di�erent values of M and n, and
the corresponding (exact and/or approximated) MLE were obtained. For each parameter,
the sample mean and the empirical 95% CI (from the 2.5th to the 97.5th percentile) from
the 1000 obtained estimates are reported in Tables 1�5 together with measures of symmetry
(skewness and kurtosis). To overcome numerical problems in the optimization procedure,
due to very large or very small values returned by the product of densities (e.g. (10)) for
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the current parameter values, it might be necessary to use a package for arbitrary/variable
precision computation. We used the package by Barrowes (2007) in our Matlab program.

Finally, we want to stress the usefulness of the closed-form density expansion to approxi-
mate pX . Using simulated maximum likelihood approaches (see the Introduction) the numer-
ical simulation of thousands of trajectories of the process may be required in each step of an
optimization algorithm, which is computationally expensive. Using the closed-form density
expansion, simulating process trajectories is not required, e.g. in our examples the parameter
estimates were all obtained within one minute (depending on the size (M,n) of the problem)
using a Matlab program on a 3.0 GHz Intel Pentium IV with 512 MB of RAM.

Example 1 : Brownian Motion with drift and Geometric Brownian Motion

with one random e�ect

Consider a SDMEM of the Geometric Brownian motion

dXi
t = (β + βi)Xi

tdt+ σXi
tdW

i
t , Xi

0 = xi0, i = 1, ...,M (23)

which is relevant e.g. in pharmacokinetics for the metabolism of a compound in plasma
following �rst order kinetics where β < 0, or as a growth model, e.g. the initial growth of
bacterial or tumor cell populations, where β > 0. The transformed process Zit = log(Xi

t) gives
the SDMEM:

dZit = (β + βi − σ2/2)dt+ σdW i
t , Zi0 = zi0, i = 1, ...,M (24)

and we assume βi ∼ N (0, η2). In this simple example bi = βi, θ = (β, σ2) and Ψ = η2. We
wish to estimate (β, σ2, η2) given the observations z = (z1, ..., zM ) from model (24). Note that
no stationary solution exists.

The log-likelihood function is (Ditlevsen and De Gaetano (2005a))

logL(θ,Ψ) =
M

2
log
(
σ2

η2

)
− N −M

2
log(2πσ2)− 1

2

M∑
i=1

log
(

∆ini

(
T i +

σ2

η2

))

−

∑
i,j

1
∆i
j
(zij − zij−1 − α∆i

j)
2 −

∑
i(z

i
ni − z

i
0 − αT i)2

(
T i + σ2

η2

)−1

2σ2
(25)

where, for ease of notation, we de�ne α = β − σ2/2, ∆i =
(∏ni

j=1 ∆i
j

) 1
ni and T i =

∑ni
j=1 ∆i

j .

Assume equidistant observations and the same number of observations per subject, i.e.
∆i
j = ∆ and ni = n for all 1 ≤ i ≤ M , 1 ≤ j ≤ ni. The MLE are then given by (Ditlevsen

and De Gaetano (2005a)):

σ̂2 =
1
M

∑M
i=1

∑n
j=1(zij − zij−1 − α̂∆)2 − ∆

MT

∑M
i=1(zin − zi0 − α̂T )2

T −∆
(26)

η̂2 =
1
MT

[∑M
i=1(zin − zi0 − α̂T )2 −

∑M
i=1

∑n
j=1(zij − zij−1 − α̂∆)2

]
T −∆

(27)

β̂ = α̂+
σ̂2

2
(28)

where α̂ =
∑M

i=1(zin − zi0)/(MT ) and T = T i = n∆.
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Table 1: Example 1, exact MLE and 95% empirical CI from simulations of model (23).
Parameter values

β σ2 η2 β̂ σ̂2 η̂2

M = 10, n = 50
-0.2 0.2 0.02 Mean [95% CI] -0.132 [-0.199, -0.061] 0.199 [0.176, 0.224] 0.008 [0.001, 0.020]

Skewness 0.142 0.271 0.887
Kurtosis 2.686 2.942 3.975

M = 50, n = 10
-0.2 0.2 0.02 Mean [95% CI] -0.200 [-0.249, -0.154] 0.200 [0.174, 0.227] 0.019 [0.012, 0.028]

Skewness -0.059 0.143 0.337
Kurtosis 3.095 3.238 3.182

M = 10, n = 50
-0.02 0.02 0.02 Mean [95% CI] -0.032 [-0.105, 0.040] 0.020 [0.018, 0.023] 0.014 [0.005, 0.026]

Skewness -0.104 0.315 0.491
Kurtosis 2.764 3.408 3.165

M = 50, n = 10
-0.02 0.02 0.02 Mean [95% CI] -0.020 [-0.062, 0.024] 0.020 [0.017, 0.023] 0.020 [0.012, 0.028]

Skewness -0.011 0.143 0.393
Kurtosis 3.051 3.238 3.218

Table 2: Example 1, MLE and 95% empirical CI, from simulations of model (23), solving the integral
numerically.

Parameter values

β σ2 η2 β̂(40) (σ̂(40))2 (η̂(40))2

M = 10, n = 50
-0.2 0.2 0.02 Mean [95% CI] -0.133 [-0.200, -0.061] 0.198 [0.176, 0.224] 0.008 [0.001, 0.020]

Skewness 0.136 0.272 0.850
Kurtosis 2.693 2.944 3.810

M = 50, n = 10
-0.2 0.2 0.02 Mean [95% CI] -0.200 [-0.248, -0.155] 0.200 [0.174, 0.227] 0.020 [0.012, 0.028]

Skewness -0.056 0.142 0.438
Kurtosis 3.088 3.233 3.737

M = 10, n = 50
-0.02 0.02 0.02 Mean [95% CI] -0.021 [-0.042, -0.001] 0.020 [0.018, 0.022] 0.014 [0.006, 0.026]

Skewness -1.681 0.299 0.702
Kurtosis 21.419 3.419 3.569

M = 50, n = 10
-0.02 0.02 0.02 Mean [95% CI] -0.021 [-0.045, 0.002] 0.021 [0.018, 0.023] 0.015 [0.010, 0.022]

Skewness -0.041 0.135 0.717
Kurtosis 3.678 3.223 3.397

The exact estimators (26)�(28) can be used as a test of the estimation method. Here

C
(k)
Y (·) = 0 for all k ≥ 2, and the order K = 1 density expansion results in the exact

transition density, see Appendix A for details. Thus, the exact MLE are compared with the
approximated estimators, the only di�erence being that the integral in (3) is solved analytically
or numerically. For di�erent sets of parameter values and for di�erent choices of M and n,
1000 data sets were generated from (23) and the parameters were estimated using (26)�(28)
(see Table 1), and using (11) (see Table 2).

In all simulations Xi
0 = 100 for all i and T = 100. Comparing Table 1 and 2 shows that the

numerical integration of the integral is accurate. The true parameter values are well identi�ed
when M is larger than 10, though σ results well identi�ed also in the case M = 10: these
results were expected, since M is the sample size of draws from the distribution of βi. From
the empirical distribution of the approximated estimates (Figure 1) it seems reasonable to
assume an asymptotic normal distribution of the estimates.

Example 2 : Ornstein-Uhlenbeck process with one random e�ect

Consider a SDMEM of the OU process:

dXi
t =

(
−X

i
t

τ
+ µ+ µi

)
dt+ σdW i

t ; Xi
0 = xi0 = 0, i = 1, ...,M (29)
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Figure 1: Geometric Brownian Motion, histograms of β̂(40), (σ̂(40))2 and (η̂(40))2 for the case (β, σ2, η2) =
(−0.2, 0.2, 0.02) with (M,n) = (50, 10).

where µ ∈ R, τ > 0 and σ > 0. The OU process is the simplest mean-reverting SDE, and has
been widely used e.g. in neuronal modeling, biology, physics, engineering and �nance. The
parametrization is chosen as is customary in neuronal modeling. Assume µi ∼ N (0, η2). Here
bi = µi and we want to estimate θ = (µ, τ, σ) and Ψ = η2 given a set of observations x from
(29). The conditional mean and variance of Xi

t are

E(Xi
t |Xi

0 = xi0, µ
i) = xi0e

−t/τ + (µ+ µi)τ(1− e−t/τ )

Var(Xi
t |Xi

0 = xi0, µ
i) =

σ2τ

2
(1− e−2t/τ )

and the transition density is normal and given by

pX(xij ,∆
i
j |xij−1, µ

i, θ) =
{
πσ2τ

(
1− e(−2∆i

j/τ))}−1/2

× exp
(
−
(
xij − xij−1e

−∆i
j/τ − (µ+ µi)τ(1− e−∆i

j/τ )
)2

σ2τ(1− e−2∆i
j/τ )

)
.

Thus, the likelihood of (θ,Ψ) is given by

L(θ,Ψ) =
M∏
i=1

{
(πσ2τ)−ni/2

 ni∏
j=1

(1− e−2∆i
j/τ )−1/2

 (2πη2)−1/2 (30)

×
∫

R
exp
{ ni∑
j=1

[
−
(
xij − xij−1e

−∆i
j/τ − (µ+ µi)τ(1− e−∆i

j/τ )
)2

σ2τ(1− e−2∆i
j/τ )

]
− µi

2

2η2

}
dµi
}
.

We have no closed-form solution to this integral, so exact estimators of θ and Ψ are unavail-
able. We �rst consider a Gauss-Hermite integration approach with R = 40, the resulting
estimators are denoted with (θ̂(R), Ψ̂(R)). Secondly, we ignore that the exact transition den-
sity expression is available, and we compute the approximated estimator (θ̂(K,R), Ψ̂(K,R)) by
approximating in closed-form the transition density with K = 2. The estimation results, ob-
tained on 1000 simulated data sets generated by (29) using the Euler-Maruyama scheme with
integration stepsize of 0.01 (Kloeden and Platen (1992)), are reported in Table 3 and Table
4 for (θ̂(R), Ψ̂(R)) and (θ̂(K,R), Ψ̂(K,R)), respectively. For both strategies ni = n for all i and
T = 100.
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Table 3: Example 2, approximated MLE and 95% empirical CI from simulations of model (29), using the
exact transition density.

Parameter values

µ τ σ η2 µ̂(40) τ̂(40) σ̂(40) (η̂(40))2

M = 10, n = 50
1 10 1 1 Mean [95% CI] 1.023 [0.831, 1.209] 9.846 [8.423, 11.687] 0.989 [0.925, 1.050] 1.266 [0.374, 2.711]

Skewness 0.307 0.332 -0.062 0.856
Kurtosis 4.827 3.957 3.008 3.885

M = 50, n = 10
1 10 1 1 Mean [95% CI] 1.010 [0.838, 1.191] 9.824 [8.700, 11.061] 0.955 [0.893, 1.021] 1.097 [0.676, 1.654]

Skewness 0.071 0.149 0.089 0.487
Kurtosis 2.462 3.104 3.051 3.465

M = 10, n = 50
2 12 0.1 0.25 Mean [95% CI] 2.033 [1.844, 2.237] 11.902 [11.101, 12.761] 0.147 [0.124, 0.166] 0.330 [0.104, 0.692]

Skewness 0.101 0.219 -0.303 0.856
Kurtosis 2.410 3.139 2.830 4.006

M = 50, n = 10
2 12 0.1 0.25 Mean [95% CI] 2.045 [1.858, 2.223] 11.770 [11.192, 12.353] 0.283 [0.257, 0.305] 0.290 [0.177, 0.422]

Skewness -0.014 -0.004 -0.353 0.390
Kurtosis 2.323 2.760 3.566 3.435

Table 4: Example 2, approximated MLE (95% empirical CI), from simulations of model (29), using an order
K = 2 density expansion.

Parameter values

µ τ σ η2 µ̂(2,40) τ̂(2,40) σ̂(2,40) (η̂(2,40))2

M = 10, n = 50
1 10 1 1 Mean [95% CI] 1.019 [0.804, 1.257] 10.043 [8.307, 11.954] 1.000 [0.934, 1.063] 0.853 [0.417, 1.421]

Skewness 0.239 0.285 -0.060 0.740
Kurtosis 3.498 3.439 2.928 4.459

M = 50, n = 10
1 10 1 1 Mean [95% CI] 0.926 [0.739, 1.112] 11.930 [11.029, 12.972] 0.999 [0.932, 1.064] 0.578 [0.382, 0.839]

Skewness 0.028 0.281 0.006 0.734
Kurtosis 2.736 2.993 3.057 3.947

M = 50, n = 50
1 10 1 1 Mean [95% CI] 1.000 [0.820, 1.185] 10.306 [9.531, 11.182] 1.000 [0.971, 1.029] 0.718 [0.477, 1.025]

Skewness 0.164 0.194 0.062 0.574
Kurtosis 2.851 2.892 3.106 3.329

M = 10, n = 50
2 12 0.1 0.25 Mean [95% CI] 1.999 [1.889, 2.106] 12.082 [11.914, 12.249] 0.111 [0.103, 0.120] 0.072 [0.029, 0.162]

Skewness -0.054 -0.007 0.418 1.631
Kurtosis 2.740 2.934 3.445 6.908

M = 50, n = 10
2 12 0.1 0.25 Mean [95% CI] 1.936 [1.772, 2.122] 13.411 [13.322, 13.517] 0.386 [0.360, 0.413] 0.142 [0.085, 0.227]

Skewness 0.142 0.289 -0.022 1.006
Kurtosis 3.091 3.000 2.827 5.116

M = 50, n = 50
2 12 0.1 0.25 Mean [95% CI] 2.005 [1.920, 2.093] 12.087 [12.008, 12.170] 0.111 [0.107, 0.116] 0.045 [0.030, 0.070]

Skewness 0.062 0.191 0.326 1.055
Kurtosis 2.987 3.042 3.388 4.806

Tables 3 and 4 show that except for η2 the true parameter values seem correctly identi�ed
using both the likelihood (31) and the corresponding order K = 2 approximation, though
n should be larger than 10 to get satisfactory results. Therefore also (M,n) = (50, 50) is
considered in Table 4. The empirical distribution of the approximated estimates (Figure 2)
seems to be reasonably close to a normal distribution.

Example 3 : The CIR process with one random e�ect

Consider a SDMEM of the Cox-Ingersoll-Ross process (CIR) given by

dXi
t = (−Xi

t + µ+ µi)dt+
σ
√
Xi
t√

µ+ µi
dW i

t , Xi
0 = xi0 > 0, i = 1, ...,M (31)

with µ + µi > 0, σ > 0 and 2((µ + µi)/σ)2 ≥ 1. For �xed i, the process is ergodic and its
stationary distribution is a Gamma distribution with shape parameter 2((µ + µi)/σ)2 and
scale parameter σ2/(2(µ + µi)). Feller (1951) proposed it as a model for population growth,
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Figure 2: OU process, histograms of µ̂(2,40), τ̂ (2,40), σ̂(2,40) and (η̂(2,40))2 for the case (µ, τ, σ, η2) = (1, 10, 1, 1)
with (M,n) = (10, 50).

and it has been commonly applied in neuronal modeling under the name of a Feller process
(e.g. Ditlevsen and Lansky (2006) and references therein). It was introduced in mathematical
�nance as a model of the short-term interest rate by Cox et al. (1985).

Assume µi exponentially distributed with mean λ > 0, so θ = (µ, σ), bi = µi, Ψ = λ. Thus∫
B
p

(K)
X (xi|bi, θ)pB(bi|Ψ)dbi =

∫ +∞

0
p

(K)
X (xi|µ, σ, µi)p(µi|λ)dµi,

where

p(µi|λ) =
1
λ
e−

µi

λ , µi > 0.

The integral is solved using (13) with R abscisses and coe�cients αi1 = λ(1+2i1), βi2 = λ2i22,
i1 = 0, 1, ..., R − 1, i2 = 1, 2, ..., R − 1 (Fernandes and Atchley (2006)). The estimation
results, obtained on 1000 simulated data sets generated by (31) using the Milstein scheme
with integration stepsize of 0.01 (Kloeden and Platen (1992)) are reported in Table 5 for
K = 2 and R = 40. In all simulations ni = n, Xi

0 = 1 for all i and T = 100.
Here µ seems correctly identi�ed, σ is overestimated and λ underestimated. The di�usion

part of the SDMEM depends on the random e�ect, and this is a likely complication for the
parameter estimation. However, the empirical distribution of the approximated estimates
(Figure 3) seems to be reasonably close to a normal distribution.

5 Applications

In this Section we consider two applications to real data: a small data set (M = 5 experiments
with n = 7 observations each) and a large data set (M = 312 experiments with n of the order of
thousands for each experiment, see also Picchini, Ditlevsen, De Gaetano and Lansky (2008)).

14



Table 5: Example 3, approximated MLE (95% empirical CI) from simulations of model (31), using an order
K = 2 density expansion.

Parameter values

µ σ λ µ̂(2,40) σ̂(2,40) λ̂(2,40)

M = 10, n = 50
3 0.5 0.1 Mean [95% CI] 2.990 [2.919, 3.063] 0.582 [0.548, 0.615] 0.086 [0, 0.195]

Skewness 0.148 -0.029 0.736
Kurtosis 2.868 2.886 5.083

M = 50, n = 50
3 0.5 0.1 Mean [95% CI] 2.980 [2.948, 3.014] 0.581 [0.567, 0.596] 0.095 [0.061, 0.136]

Skewness 0.065 0.111 0.265
Kurtosis 3.253 2.861 3.328

M = 10, n = 50
1 0.1 0.2 Mean [95% CI] 0.989 [0.825, 1.066] 0.110 [0.103, 0.119] 0.129 [0.071, 0.220]

Skewness -2.492 0.744 0.901
Kurtosis 12.470 5.515 3.674

M = 50, n = 50
1 0.1 0.2 Mean [95% CI] 1.008 [0.968, 1.034] 0.111 [0.107, 0.115] 0.110 [0.075, 0.180]

Skewness -3.601 0.148 1.605
Kurtosis 31.676 2.815 6.968
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Figure 3: CIR process, histograms of µ̂(2,40), σ̂(2,40) and λ̂(2,40) for the case (µ, σ, λ) = (3, 0.5, 0.1) with
(M,n) = (50, 50).
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5.1 Orange trees growth

In Pinheiro and Bates (2002, Sections 8.1.1 and 8.2.1), data from a study on the growth of
orange trees are analyzed by means of deterministic nonlinear mixed-e�ects models using the
method proposed in Lindstrom and Bates (1990). The data are available in the Orange dataset
provided in the nlme R package (Pinheiro et al. (2007); R Development Core Team (2007)).
This is a balanced design consisting of seven measurements of the circumference of �ve orange
trees. The following logistic model was proposed in Pinheiro and Bates (2002) to study the
relationship between the circumference Xi,j [mm], measured on the i-th tree at age tij [days],
and the age (i = 1, ..., 5 and j = 1, ..., 7):

Xi,j =
φ1

1 + exp(−(tij − φ2)/φ3)
+ εij (32)

with φ1 [mm], φ2 [days] and φ3 [days] all positive, and i.i.d. measurement errors εij ∼ N (0, σ2
ε).

The parameter φ1 represents the asymptotic circumference, φ2 is the time at which X = φ1/2
(the in�ection point of the logistic model) and φ3 is the time-distance between the in�ection
point and the point where X = φ1/(1 + e−1).

Then model (32) was enlarged by adding a zero mean normally distributed random e�ect
with constant variance to each structural parameter (φ1, φ2, φ3). The authors showed that the
enlarged model lead to over-parametrization and they concluded that only the random e�ect
φi1 ∼ N (0, η2) for φ1 was necessary. Thus, the model is

Xi,j =
φ1 + φi1

1 + exp(−(tij − φ2)/φ3)
+ εij (33)

and they obtained the estimates φ̂1 = 191.1 [159.4, 222.7], φ̂2 = 722.6 [653.7, 791.4], φ̂3 = 344.2
[291.0, 397.3], η̂ = 31.5 [16.7, 59.4], and the residual standard deviation is estimated to σ̂ε = 7.8
[6.1, 10.1]. The dynamical model corresponding to (33) for the ith tree and ignoring the error
is given by the ODE

dXi
t

dt
=

1
φ3(φ1 + φi1)

Xi
t(φ1 + φi1 −Xi

t), Xi
0 = xi0, t ≥ ti0

with φ2 appearing only in the deterministic initial condition Xi
0 = Xi

ti0
= φ1/(1 + exp[(φ2 −

ti0)/φ3]), where ti0 = 118 days for all the trees. Since Xi
t and φ1 are strictly positive we

considered a lognormally distributed random e�ect and a state dependent di�usion coe�cient,
leading to the SDMEM

dXi
t =

1
φ3(φ1 + φi1)

Xi
t(φ1 + φi1 −Xi

t)dt+ σ
√
Xi
tdW

i
t , Xi

0 = xi0, (34)

φi1 ∼ LN(µ, η2), µ ∈ R, η ∈ R+ (35)

where σ has units [(mm/days)1/2]. Thus M = 5, ni = n = 7, θ = (φ1, φ3, σ), bi = φi1 and
Ψ = (µ, η). We used an order K = 2 approximation to the likelihood and the integral was
solved using the quadrature rule (13) with R = 40 abscisses and coe�cients αi1 = exp{µ +
η2(2i1 − 1)/2}[exp(η2(i1 + 1)) + exp(i1η2) − 1], βi2 = exp{2µ + (3i2 − 2)η2}[exp(i2η2) − 1],
i1 = 0, 1, ..., R− 1, i2 = 1, 2, ..., R− 1, see Fernandes and Atchley (2006).
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Figure 4: (a): Measured circumferences (`o'; points corresponding to the same tree are connected by lines)
and �t of the SDMEM (34)-(35) (lognormally distributed random e�ects): empirical mean curve of the SDMEM
(bold solid line), 95% empirical con�dence curves (dashed lines) and ten simulated trajectories (grey). (b):
The same as in panel (a) but using normally distributed random e�ects.

The estimates were φ
(2,40)
1 = 108.9 [54.1, 163.7], φ(2,40)

3 = 342.2 [269.9, 414.4], σ(2,40) =
0.084 [0.062, 0.106], µ(2,40) = 4.267 [3.154, 5.379], η(2,40) = 0.586 [0.415, 0.758]. For ease of
comparison with the deterministic model results, it may be of interest to obtain an estimate
for φ2 also. By plugging the estimates into the expression Xi

0 = (φ1 + E(φi1))/(1 + exp[(φ2 −
ti0)/φ3]) we obtain φ

(2,40)
2 = 700.0 (using e.g. Xi

0 = 30). The estimates cannot be directly
compared, because in (34)-(35) lognormally distributed random e�ects are considered instead
of the normal ones. Moreover, (33) models the measurement error but does not allow for
stochastic �uctuations in the dynamical process, whereas no measurement error is considered
in model (34)-(35). In (34)-(35) the estimated mean and standard deviation of φi1 are given

by exp(µ(2,40) + η(2,40)2
/2) = 84.66 and [(exp(η(2,40)2

)− 1) exp(2 ·µ(2,40) + η(2,40)2
)]1/2 = 54.2,

respectively. In model (33) the random variable φ1+φi1 has estimated mean 191.1 and standard
deviation 31.5, whereas for the SDMEM φ1 + φi1 has estimated mean 194.5 and standard
deviation 54.2.

The �t of the estimated SDMEM is given in Figure 4(a), which reports the data, the
empirical mean of 5000 simulated trajectories from (34)-(35), generated with the Milstein
scheme (Kloeden and Platen (1992)) using a stepsize of 0.4, the empirical 95% con�dence
bands and ten example trajectories. For each simulated trajectory a di�erent realization of
φi1 was drawn from the lognormal distribution LN(µ, η2) with µ = 4.267 and η = 0.586.

To compare with the results obtained by Lindstrom and Bates, now assume φi1 ∼ N (0, η2).
Under this model estimates are φ

(2,40)
1 = 194.8 [158.5, 231.1], φ(2,40)

3 = 356.0 [270.2, 441.8],
σ(2,40) = 0.088 [0.064, 0.113], η(2,40) = 28.17 [0.29, 56.04] and φ

(2,40)
2 = 724.46 (determined

using Xi
0 = 30 as in the previous case), which are close to the estimates obtained with the

deterministic model. The model �t is given in Figure 4(b).

17



5.2 Stochastic leaky integrate-and-�re neuronal model

The stochastic leaky integrate-and-�re (LIF) neuronal models are common theoretical tools
for studying properties of real neuronal systems. In Picchini, Ditlevsen, De Gaetano and
Lansky (2008) the stochastic LIF model is extended allowing for a noise source determining
slow �uctuations in the neuronal signal. This is achieved by adding a random variable to
one of the parameters characterizing the neuronal input. The data consist of a 500 seconds
recording of the membrane potential of a single auditory neuron from a guinea pig measured
every 0.15 ms. When the membrane potential crosses a certain threshold the neuron �res,
i.e. it produces a rapid electrical signal whereafter the potential resets to the resting value.
Only the membrane potential values recorded between �rings (inter-spike intervals, ISIs) are
considered, and thus the data consist of M = 312 ISIs, which can be regarded as independent
realizations of the same stochastic process, where ni, the number of observations in the ith
ISI, varies from few hundreds to several thousands, with a total number of observations equal
to N =

∑M
i=1 ni ' 1.8 · 106. The OU SDMEM (29) is considered for the dynamics of the

membrane potential Xi
t (see Picchini, Ditlevsen, De Gaetano and Lansky (2008) for details)

with units volt [V ] for Xi
t , seconds [s] for τ , [V/

√
s] for σ, and [V/s] for µ, µi and η. Now xi0

can be di�erent from zero.
The estimates (95% CI) obtained with (K,R) = (2, 40) are µ̂(2,40) = 0.494 [0.483, 0.506],

τ̂ (2,40) = 0.0210 [0.0206, 0.0215], σ̂(2,40) = 0.0135 [0.0135, 0.0135], η̂(2,40) = 0.072 [0.069, 0.075],
which are within physiological plausible values. However, the data �t was not completely
satisfactory, probably caused by not considering changes in τ depending on the time elicited
since last spike. We repeated the maximum likelihood estimation after having �xed the value
of τ to 0.039 s, as obtained in Lansky et al. (2006) by their regression method based on the �rst
moment of the stochastic LIF model, which may be more robust to model misspeci�cation.
The estimates with τ �xed are µ̂(2,40) = 0.278 [0.273, 0.282], σ̂(2,40) = 0.0135 [0.0135, 0.0135]
and η̂(2,40) = 0.041 [0.038, 0.045]. These last results are in agreement with the regression
estimates obtained in Lansky et al. (2006), where individual analyses were performed on each
ISI. Their medians of the estimates were 0.285 V/s for µ and 0.0135 V/

√
s for σ.

The �t obtained by �xing τ is given in Figure 5(a), reporting only �ve observed trajectories
from the 312 ISIs, the empirical mean of 2000 trajectories simulated from model (29) according
to the Euler-Maruyama scheme using the estimated parameters, the empirical 95% con�dence
bands of the 2000 trajectories and �ve simulated trajectories. For each simulated trajectory
a di�erent realization of µi was drawn from N (0, η2), with η = 0.0414.

The estimates of the M random e�ects µi were obtained for each ISI from (18); the
histogram of the estimates is given in Figure 5(b) with sample mean and standard deviation
given by 0.0036 V/s and 0.0467 V/s, respectively. The empirical distribution seems to be close
to normal, and the empirical mean and standard deviation are close to zero and to η = 0.0414
respectively, as they should be. Finally, to evaluate if the random e�ect on µ is statistically
signi�cant, the hypothesis H0 : η = 0 was tested against H1 : η > 0 in a likelihood ratio test.
H0 was rejected with p < 0.001, and thus we conclude that the SDMEM (29) describes the
data better than the corresponding SDE model.

6 Conclusions

An approximated maximum likelihood estimation method for the parameters of mixed-e�ects
models de�ned by stochastic di�erential equations has been proposed. The estimation method
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Figure 5: (a): Observations from �ve of the 312 ISIs (grey), empirical mean curve of 2000 trajectories of the
stochastic process de�ned by model (29) (bold line) with their 95% con�dence bands (dashed lines) and �ve
simulated trajectories. (b): Histogram of the random e�ects (µ̂i)(2) when τ is �xed to 0.039 s.

can be applied to models having random e�ects following any well-behaved distribution and

can be extended to multidimensional SDMEMs. A sequence of approximations p
(K)
X of the

transition densities is constructed in closed-form, then the (approximated) likelihood can be
calculated using suitable order R Gaussian quadrature schemes, available for many distribu-
tions of practical interest. For SDMEMs more complex than the ones considered here, the
likelihood approximation can be obtained by taking advantage of any software with symbolic
calculus capabilities.

Simulation results with K = 1 or 2 and R = 40 are promising, and can be achieved using
moderate values of M (the number of experimental units, e.g. the number of subjects) and n
(the number of observations for a given experimental unit). Satisfactory results are obtained
even when the time-distance between observations ∆ is not small, but see Stramer and Yan
(2007) for possible drawbacks in the approximation provided by the transition density closed-
form expansion method when ∆ is �not small enough�. This is relevant for applications where
large data sets are unavailable, e.g. in biomedical applications, where Mixed-E�ects theory is
broadly applied.

When considering previously published estimation methods for SDEs with random pa-
rameters, a major drawback for their practical application is the requirement for a substantial
amount of computational resources. Instead the proposed method is fast and it is possible
to handle large datasets, as in Section 5.2, where few minutes are required using a Matlab
program on a single common PC (3.0 GHz Intel Pentium IV with 512 MB of RAM), therefore
enabling practitioners to �t a SDMEM on their data rapidly.

In the examples we considered a simple additive relationship between a population param-
eter α and a random e�ect αi: i.e. α and αi entered the SDMEM as α + αi. However, also
nonlinear relations between α and αi can be handled.

The method su�ers some limitations, e.g. it may be di�cult (though theoretically possible,
see Aït-Sahalia (2008)) to obtain the transition density expansion for some multidimensional
SDMEM systems with irreducible or non-commutative noise (Kloeden and Platen (1992, p.
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348)). Moreover, it may be di�cult to numerically evaluate the integral in (3) and (5) with
multiple random e�ects, i.e. when bi ∈ B ⊆ Rq with q larger than 2, and e�cient numerical
algorithms are needed. Some references are the review paper by Cools (2002), Krommer and
Ueberhuber (1998) and references therein, or one of the several monographies on Monte Carlo
methods (e.g. Ripley (2006)). In the mixed-e�ects framework the amount of literature devoted
to the evaluation of q-dimensional integrals is large, e.g. the review by Davidian and Giltinan
(2003), Pinheiro and Bates (1995), McCulloch and Searle (2001), Pinheiro and Chao (2006).

In conclusion, we propose a parameter estimation method for SDE models incorporating
random e�ects, which at least for the models considered here is reliable, e�ective, and can be
easily applied using commonly available computational resources. We believe that such class
of models will undergo increasing popularity, since it combines the nice features of the Mixed-
E�ects theory with the possibility of including system noise in the within-subject dynamics,
thus providing a �exible and powerful modeling approach.
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A Appendix

Here we report the explicit expressions for the coe�cients of the log-density expansion as
suggested in Aït-Sahalia (2008). The coe�cients for the Geometric Brownian Motion, the
OU, the CIR and the orange trees growth SDMEMs are given.

Density expansion coe�cients

For given values yj and yj−1 of the Y process (20) the coe�cients of the log-density expansion
(22) are given by

C
(−1)
Y (yj |yj−1) = −1

2
(yj − yj−1)2

C
(0)
Y (yj |yj−1) = (yj − yj−1)

∫ 1

0
µY (yj−1 + u(yj − yj−1))du

and, for k ≥ 1,

C
(k)
Y (yj |yj−1) = k

∫ 1

0
G

(k)
Y (yj−1 + u(yj − yj−1)|yj−1)uk−1du.

The functions G
(k)
Y are given by

G
(1)
Y (yj |yj−1) = −∂µY (yj)

∂yj
−µY (yj)

∂C
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Y (yj |yj−1)
∂yj

+
1
2
∂2C
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Y (yj |yj−1)
∂y2

j

+
1
2

(
∂C

(0)
Y (yj |yj−1)
∂yj

)2

and for k ≥ 2

G
(k)
Y (yj |yj−1) = −µY (yj)

∂C
(k−1)
Y (yj |yj−1)

∂yj
+

1
2
∂2C
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∂yj
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Geometric Brownian Motion: order K = 1 density expansion coe�cients

In model (23) is Y i
t = γ(Xi

t) = log(Xi
t)/σ, so µY (Y i

t ) = (β + βi)/σ− σ/2 and for given values
yij and y

i
j−1 of Y i

t , we have

C
(0)
Y (yij |yij−1) = (yij − yij−1)

(
β + βi

σ
− σ

2

)
=

log(xij)− log(xij−1)
σ2

(
β + βi − σ2

2

)
C

(1)
Y (yij |yij−1) = − 1

2σ2

(
β + βi − σ2

2

)2

C
(k)
Y (yij |yij−1) = 0, k ≥ 2
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which yields the exact transition density

p
(1)
X (xij ,∆

i
j |xij−1) =

1

xij

√
2πσ2∆i

j

exp
(
−
(
log(xij)− log(xij−1)− (β + βi − σ2

2 )∆i
j

)2
2σ2∆i

j

)
= pX(xij ,∆

i
j |xij−1).

OU process with one random e�ect: order K = 2 density expansion coe�-

cients

In model (29) is Y i
t = γ(Xi

t) = Xi
t/σ so µY (Y i

t ) = −Y i
t /τ + ρ, where ρ = (µ+ µi)/σ, and for

given values yij and y
i
j−1 of Y i

t , we have

C
(0)
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)
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σ ), k = 0, 1, 2.

CIR process with one random e�ect: order K = 2 density expansion coe�-

cients

In model (31) is Y i
t = γ(Xi

t) = 2
√

(µ+ µi)Xi
t/σ so µY (Y i

t ) = (−Y i
t

2 + 4ρ2 − 1)/(2Y i
t ), where

ρ = (µ+ µi)/σ, and for given values yij and y
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t , we have
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and
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Orange trees growth: order K = 2 density expansion coe�cients

In model (34) is Y i
t = γ(Xi

t) = 2
√
Xi
t/σ so µY (Y i

t ) = Y i
t (φ1 +φi1−σ2Y i

t
2
/4)/(2φ3(φ1 +φi1))−

1/(2Y i
t ), and for given values yij and y
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t , we have
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and

p
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