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Abbreviations 

ADM Adrenomedullin 

AIC Akaike information criterion 

ANS Autonomic nervous system 

BMI Body mass index 

CABG Coronary artery bypass graft 

CAD Coronary artery disease 

CHD Coronary heart disease 

CRP C-reactive protein

CVD Cardiovascular disease

CXCL1 C-X-C motif chemokine 1

Caspase-8 Cysteinyl aspartic acid-protease-8 

DNA Deoxyribonucleic acid 

Fas Tumour necrosis factor receptor superfamily member 6 

HDL High-density lipoprotein 

HSP27 Heat shock 27 kDa protein 

IHD Ischemic heart disease 

JPHC Japan Public Health Center-based  

KIM Kidney injury molecule 

KMCC Korean Multi-Center Cancer Cohort Study 

ICD International classification of diseases 

IL-6 Interleukin-6 

LDL Low-density lipoprotein 

MMP-7 Matrix metalloproteinase-7 

MMP-9 Matrix metalloproteinase-9 
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MMP-10 Matrix metalloproteinase-10 

MDC Malmö Diet and Cancer 

MDC-CC Malmö Diet and Cancer Cardiovascular Cohort 

MI Myocardial infarction 

NREM Non-rapid eye movement 

OECD Organisation for Economic Co-operation and Development 

OSA  Obstructive sleep apnoea 

PCI Percutaneous coronary intervention 

PCR Polymerase chain reaction 

PEA Proximity extension assay 

PSG Polysomnography 

RANKL Receptor activator of nuclear factor-kb ligand 

REM Rapid eye movement 

SCHS  Singapore Chinese Health Study  

SD  Standard deviation  

SMHS Shanghai Men’s Health Study 

SWHS Shanghai Women’s Health Study 

TG Triglycerides 

TNF-α Tumour necrosis factor-α 

TNFR1 Tumour necrosis factor receptor 1 

t-PA Tissue-type plasminogen activator 

TRAIL Tumour necrosis factor-related apoptosis-inducing ligand 

TRAIL-R2 Tumour necrosis factor-related apoptosis-inducing ligand receptor 2 

TRANCE Tumour necrosis factor-related activation-induced cytokine 

TST Total sleep time 

UPAR Urokinase receptor 
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Introduction 

Burden of major noncommunicable diseases  
Noncommunicable diseases constitute a major cause of morbidity and mortality in 
the world. In 2019, ischemic heart disease (IHD), stroke, and diabetes ranked 
second, third, and eight among the leading global causes of disability-adjusted life 
years for all ages(1). Notably, in the age group 50-74, these three causes ranked 
first, second, and third, respectively(1). In 2021, the number of global deaths 
attributed to IHD, stroke and diabetes was 8.99 million(2), 7.25 million(3), and 1.66 
million(4), respectively. The corresponding numbers for global incident cases of 
IHD, stroke, and diabetes was 31.9 million(2), 11.9 million(3), and 24.4 million(4), 
respectively. 

IHD and stroke are the two leading causes of the total global burden of 
cardiovascular disease (CVD)(5). Since the 1960s, the improvement of life 
expectancy in western Europe, North America, and Japan has predominantly been 
attributed to reductions in CVD mortality(6). Recent findings, however, show that 
the declining trends in CVD mortality in high-income countries have slowed down 
with a possibility of CVD-related mortality rates increasing in the years to come(7). 
One possible explanation for this reversal are the rising levels of disease-related risk 
factors. Indeed, this would very well match the disproportionately large increase in 
the global burden of diabetes between 1990 to 2019(1).  

Cardiometabolic disease 
A major reason for CVD and diabetes to be grouped together in rankings as well as 
co-occurring in patients is their sharing of many underlying risk factors. The term 
“cardiometabolic disease” can therefore be used as a comprehensive term to include 
coronary artery disease (CAD) (one of the underlying causes of IHD(8)), stroke, and 
diabetes. 

CAD refers to the process of atherosclerotic formation in the coronary arteries 
involving lesions to the inner lining of the arterial wall, inflammation, accumulation 
of lipoproteins, oxidation, haemodynamic alterations, and subsequent formation of 
plaques(9, 10). Atherosclerotic plaques may undergo erosion or subsequent rupture 
which in turn may lead to fatal or non-fatal myocardial infarction (MI) or stroke. 
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Major risk factors for CAD include obesity(11), hypertension(12), 
dyslipidaemia(13), and insulin resistance(14). 

Type 2 diabetes mellitus constitutes approximately 96% of prevalent diabetes cases 
in the world(15). It is a progressive disease characterised by hyperglycaemia in 
which the early stages are marked by insulin resistance during which insulin-
producing beta cells maintain glucose homeostasis by compensating for the 
increased insulin demand through increased insulin secretion(16). Later stages of 
the process involve reduced insulin secretion from the beta cells which results in 
impaired glucose tolerance and subsequently leads to diabetes(16). Major risk 
factors for diabetes include obesity(11) and physical inactivity(17). 

Prevention of cardiometabolic disease 
Lifestyle-related factors, including limited physical activity, and poor dietary habits 
account for a large proportion of the underlying risk factors of cardiometabolic 
disease. A suboptimal diet may be attributed to 70.3% of new cases of type 2 
diabetes(18), whereas the population attributable risks of regular physical activity 
and daily consumption of fruits and vegetables on acute MI may be in the region of 
12.2% and 13,7%, respectively(19). Moreover, physical activity has a positive effect 
on reducing blood pressure(20), is associated with favourable changes in 
triglycerides (TG) and high-density lipoprotein (HDL) cholesterol(21), and exercise 
interventions reduce weight, body mass index (BMI) and visceral fat(22), all of 
which are risk-factors in the context of cardiometabolic disease. 

As mentioned in the previous section, the outlook for the next couple of years with 
regards to CVD mortality in high-income countries is one of increasing trends. 
Many countries that have decelerated the reduction of CVD-related mortality have 
done so without reaching the low levels observed in Japan(7) thereby indicating that 
additional reduction may be possible.  

The last couple of decades have seen a global increase in mean BMI and prevalent 
obesity(23), and diabetes(15). It is projected that by 2035 the number of adults with 
a BMI≥30 kg/m2 in the world will reach 1.53 billion(24), and that by 2050 the 
number of diabetes cases in the world will reach 1.31 billion(15). 

Considering the detrimental implications of a continuation of the trends of the 
trajectories of cardiometabolic disease and its related risk factors over the next 
years, it is imperative to identify additional lifestyle-related factors that may be 
associated with cardiometabolic disease, and to attempt to identify and propose 
biological mechanisms for such associations.  
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Sleep 
Sleep is a fundamental physiological requirement in all mammals. The amount of 
required sleep during a 24-hour period differs between mammalian species, but lies 
in the range between 2 – 20 hours and depends on specific characteristics, for 
example body weight(25). In humans, total sleep time (TST), i.e., the time spent 
asleep during a sleep episode can be considered in the context of age where children 
generally require more sleep than adults, who in turn sleep longer than the elderly 
(Figure 1)(26). Other age-related differences are also noted for specific sleep 
parameters as detailed below.  The adult human sleep requirement is between 6-9 
hours per 24-hour period and over the course of a lifetime the time spent asleep 
amounts to approximately one third of a human’s life. Although the exact function 
of sleep remains to be fully elucidated, the biological purpose of sleep may be 
related to neocortical maintenance, neurogenesis, energy conservation, and 
thermoregulation(25, 27). 

 

Figure 1. Age-related trends for total sleep time (minutes). Reproduced from Maurice M. Ohayon et al. Meta-Analysis 
of Quantitative Sleep Parameters From Childhood to Old Age in Healthy Individuals: Developing Normative Sleep 
Values Across the Human Lifespan. Sleep. 2004;27(7):1255-73 by permission of Oxford University Press on behalf of 
the Sleep Research Society. 

Human sleep is characterised by two distinct phases, non-rapid eye movement 
(NREM) comprised of sleep stages N1, N2, and N3, and rapid eye movement 
(REM) sleep comprised of Stage R. The characteristics of the different sleep stages 
are determined by electroencephalographic, electrooculographic and submental 
electromyographic activity obtained during polysomnography (PSG). PSG is the 
collective term for the study and assessment of multiple physiological signals 
related to sleep, additionally including electrocardiogram (ECG), as well as the 
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monitoring of airflow, respiratory effort, and oxygen saturation(28). In summary, 
NREM consists of stages N1, N2, and N3 which can be equated to the depth of sleep 
(where N1 represents the lightest and N3 the deepest sleep). REM (or R) sleep is 
characterised by muscle atonia, increased parasympathetic activity and increased 
temperature compared to NREM sleep. During the course of the typical night, 
healthy sleepers cycle through the four sleep stages (N1-N3 and R) with each cycle 
lasting approximately 90 minutes. Although NREM sleep constitutes the largest 
phase of the night-time sleep episode, the time spent in each of the sleep stages 
differs between different cycles over the course of the night. Sleep cycles at the start 
of a sleep episode consist of more sleep in Stage N3 than sleep cycles closer to 
wake-up, whereas the opposite is true for the time spent in Stage R(29). The 
proportion of time spent in Stage N3 and Stage R decreases with age, whereas he 
proportion of time spent in Stage N1 and N2 increases with age (Figure 2)(26). Age-
related differences in sleep patterns may be explained by moderating variables such 
as study methodology (data collection method), physical or mental illness, or 
external factors such as timing of data collection (e.g., school day vs non-school day 
in adolescents)(26). 

 
Figure 2. Age-related trends for stage 1 sleep, stage 2 sleep, slow wave sleep (SWS) equivalent to stage 3 sleep, 
rapid eye movement (REM) sleep, wake after sleep onset (WASO), and sleep latency in minutes. Reproduced from 
Maurice M. Ohayon et al. Meta-Analysis of Quantitative Sleep Parameters From Childhood to Old Age in Healthy 
Individuals: Developing Normative Sleep Values Across the Human Lifespan. Sleep. 2004;27(7):1255-73 by 
permission of Oxford University Press on behalf of the Sleep Research Society. 
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Measuring sleep time in epidemiological studies 
Polysomnography 
Based on PSG studies, the indicator for time spent asleep is TST which is the 
quantification of time spent in any of the sleep stages (N1-N3 and R) during the 
course of the sleep period. TST differs from sleep period time (SPT) which is the 
time counted from falling asleep to waking up, i.e., TST plus any periods of wake 
that occurred during the sleep episode. Although the value of PSG studies to 
diagnose sleep-related conditions such as obstructive sleep apnoea (OSA) in the 
clinical setting cannot be overstated, the use of PSG in population-based 
epidemiological research is limited for several reasons; PSG requires the 
involvement of specialists to set up equipment and interpret the results, is performed 
in settings that may not represent the participant’s usual sleep environment, is often 
performed for a single night, and may even impact sleep and thus not be 
representative of a participant’s habitual sleep. 

Actigraphy 
In settings where objectively measured sleep parameters over several days are of 
interest, the method of choice would be actigraphy(30).  Actigraphs are wrist-born 
devices that rely on accelerometers to register movement during sleep which can be 
used to quantify sleep and wake time. Validation studies comparing actigraphy with 
PSG have found that actigraphy has a high sensitivity but lower specificity, i.e., they 
perform better at detecting sleep than they do at detecting periods of wake(31). 
Despite the benefits of actigraphy, for example their cost-effectiveness when 
compared to PSG, their ability to register sleep over several days, and the possibility 
for study participants to measure sleep in a natural environment, the use of 
actigraphs in large-scale population-based epidemiological studies that include tens-
of thousands of participants is limited. Such large-scale acquisition, technical 
setting, participant equipment, and data processing would be too resource 
demanding. 

Self-report questionnaires and interviews 
Contrary to the detailed sleep/wake parameters that can be measured using PSG or 
actigraphy, self-reported sleep time is often denoted as sleep duration. The majority 
of large population-based cohorts have acquired information about participants’ 
sleep duration using self-report questionnaires or through interviews that often ask 
for habitual sleep time at night or over a 24-hour period. This question prompts a 
response that considers the duration between a participant’s falling asleep-time and 
waking up-time, and therefore, when compared to the parameters that can be 
obtained using objective measures, most closely equates to SPT. Self-reported sleep 
duration may result in an overestimation, in particular among those who sleep very 
little(32). Nevertheless, the exposure is suitable for epidemiological research, in 
particular in very large longitudinal population-based studies that aim to explore the 
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associations between sleep duration and health outcomes over time. Indeed, sleep 
duration is emerging as a novel risk factor for a number of health outcomes, 
including mortality and incident cardiometabolic disease. 

Sleep and physiology 
Sleep has a profound impact on several systems in the body, including the 
autonomic nervous system (ANS) and the endocrine system. The resulting 
physiological changes of sleep vary during different sleep states, i.e., during NREM 
sleep and REM sleep, respectively.  For example, during NREM sleep there is an 
increase in parasympathetic tone and a decrease in sympathetic nervous system 
activity resulting in reduced heart rate, blood pressure, and respiratory rate(33). 
Conversely, during REM sleep, the physiological responses to changes in ANS 
activity owing to periodic activation of the sympathetic nervous system may be 
noted as fluctuating heart rate, blood pressure, and respiratory rate(33). 

The function of the endocrine system is more complicated as neuroendocrine 
secretion is not only dependent on sleep but also involves the circadian clock(33). 
The secretion of certain hormones, e.g., growth hormone and prolactin peaks during 
sleep whereas the secretion of other hormones, e.g., thyroid-stimulating hormone is 
inhibited during sleep(33). An example of a hormone with circadian rhythmicity 
includes cortisol with peak secretion around 7am - 8am(34). Disruption of circadian 
rhythms, for example through circadian misalignment under experimental 
conditions, is associated with a reduction in leptin, a hormone secreted during 
nutritional sufficiency(35), as well as increased levels of plasma glucose and insulin 
suggesting decreased insulin sensitivity(36). In addition to effects on insulin 
sensitivity, sleep restriction and circadian misalignment results in increased levels 
of C-reactive protein (CRP), a marker of inflammation and cardiovascular risk(37).  

It is important to note that circadian misalignment is not equivalent to aberrant sleep 
durations; circadian misalignment can occur with no changes in TST, whereas short 
and long sleep durations can occur in individuals/groups that are not under 
environmental influences (e.g., shift work or jet lag) leading to circadian 
misalignment. 

Global sleep duration surveys and sleep duration trends over time 
The Organisation for Economic Co-operation and Development (OECD)’s time-use 
survey of participants aged 15-64 years indicates marked differences in reported 
sleep durations between nationals of different countries(38); respondents from 
Japan reported the shortest sleep duration with 7.4 hours whereas South Africa 
respondents reported the longest sleep duration at 9.2 hours. Indeed, sleep practices 
can be said to occur in a cultural context(39) within specific norms and expectations. 
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One example of such a culture-specific sleep practice is the afternoon “siesta” which 
is part of the sleep culture in the Mediterranean and in Central and South America, 
or the “inemuri” which is the unintentional daytime nap in Japan that often occurs 
in public settings(40). Another example of culture-specific sleep practices 
highlights the opinions among many Japanese families that high-school students 
have to give up sleep in order to study(40), which is not the prevailing opinion in 
many other industrialised societies. Indeed, in a study comparing Japanese and 
Canadian university students, Japanese students recorded shorter sleep durations, 
idealised a shorter personal sleep duration, while recognising a shorter ideal sleep 
duration from a cultural perspective(41).  

Human night-time sleep patterns may have changed over time. Although one study 
on pre-industrialized equatorial societies showed that nocturnal sleep occurred 
unsegmented(42), there are other indications suggesting that pre-industrialised 
societies, including pre-industrial Europe, relied on bimodal sleep(43). Moreover, it 
has been argued that the aspirations towards one consolidated nightly sleep episode 
are the consequences of technological advancements, including artificial lights(43, 
44) and may even be “unnatural”(44). Although such discussions are beyond the 
scope of the present thesis, it would be of interest to review if habitual sleep 
durations have changed over recent years or decades. Indeed, a recent systematic 
review(45), based predominantly on time-use surveys, found that trends in sleep 
duration differ by country; over a period of several decades some countries (e.g., 
Austria, Belgium, Finland, Germany, Japan and Russia) have decreased sleep 
durations, whereas other countries (e.g., Britain, Bulgaria, Canada, France, Korea, 
Netherlands, and Poland) have increased sleep durations. The largest decrease was 
noted in Japan with approximately 24 minutes per day whereas the largest increase 
was noted in Bulgaria with approximately 7.8 hours per week. If sleep is instead 
categorised into short (≤6 hours) and long (>9 hours) sleep durations, one study 
focusing on secular changes of time-use surveys in 10 countries indicated that the 
prevalence of short sleep had increased in two countries (Italy and Norway), and 
decreased in three countries (Sweden, the United Kingdom and the United 
States)(46). Conversely, long sleep durations had increased in 5 countries 
(Australia, Finland, Sweden, the United Kingdom, and the United States) and 
decreased in two countries (Canada and Italy)(46). 

Two recent longitudinal studies indicate trends of decreasing sleep duration over 
time in China, where sleep duration decreased from 8.2 hours to 7.8 hours over a 
period of 11 years(47), and in Finland, where only slight decreases in sleep duration 
among men (from 7.57 hours to 7.39 hours) and women (from 7.69 hours to 7.37 
hours) were noted between the years 1975 and 2011(48). A large study of US adults 
found decreasing mean sleep durations between 1985 (7.4 hours) and 2012 (7.2 
hours) with no significant change between 2004 and 2012(49). However, the 
questions asking about habitual sleep duration in these studies may be more relevant 
than time-use surveys given that they are more similar to the exposures used in the 
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studies investigating associations between sleep duration and health outcomes(50), 
as further detailed below. The underlying causes for any trends indicating shorter 
habitual sleep durations over time could be due to changes in employment, including 
longer working hours, caffeine intake, or the use of technology (e.g., television or 
artificial lighting) before bedtime(50). It could also be due to ageing populations 
(where older individuals report shorter sleep durations), or even cohort effects. 

Sleep duration and health outcomes 

Sleep duration and mortality 
In 1964, E Cuyler Hammond published the pioneer article showing that there is an 
association between sleep duration and all-cause mortality(51). The analyses were 
based on a prospective study that included over 1,000,000 participants who had 
answered questionnaires about lifestyle factors. The study was thereby not only the 
first to investigate sleep duration and its association with mortality, but it remains 
to date one of the largest studies to investigate this association. Considering the large 
study sample, Hammond was able to categorise sleep into eight hourly sleep 
duration categories ranging from less than 4 hours of sleep to more than 10 hours of 
sleep per night, and to calculate the mortality rates for each of the categories. The 
overall conclusion was that individuals with approximately 7 hours of sleep per 
night presented with the lowest mortality rates. Moreover, those with 10 or more 
hours of sleep per night had above-average mortality rates and those with less than 
5 hours of sleep had the highest mortality rates.  

The study by Hammond, despite its many strengths, was limited by its univariable 
analyses. Although the study considered stratification by age, it did not consider 
other important factors as confounders for the association, for example sex, past 
medical history, physical activity, or other lifestyle factors. A number of studies 
have been published since Hammond’s pioneer study that do take into account many 
of the factors that are relevant for the association between sleep duration and 
mortality outcomes. 

Sleep duration and all-cause mortality 
Subsequent prospective studies indicate that both short and long sleep durations are 
overall significantly and positively associated with all-cause mortality. In particular, 
short sleep duration, i.e., sleep duration shorter than a referent value, shows a wide 
range of effect sizes depending on the study with hazard ratios ranging between 
1.11–2.62(52-70) when compared to the referent sleep duration category. 

Similar significant and positive associations exist also for long sleep duration when 
compared to a referent sleep duration, with hazard ratios ranging between 1.13–
2.88(52-55, 58-65, 67-84). 
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Notably, although there are studies that report no significant associations between 
short(71-76, 78-87) or long(57, 66, 85-87) sleep durations with all-cause mortality, 
the results of several meta-analyses indicate that both short(88-93) and long(88, 90-
94) sleep durations should be considered as lifestyle risk factors with regards to all-
cause mortality outcomes. 

Sleep duration and mortality from cardiovascular disease 
Research on associations between sleep duration and mortality has included also 
cause-specific mortality outcomes, including CVD. Short sleep duration is 
associated with increased risk of mortality from IHD(75, 85), CHD(68, 95, 96), 
heart disease(54), stroke (64, 75, 97) and CVD (53, 58, 60, 64, 70). Long sleep 
duration is also associated with increased risk of mortality from CHD(95, 96), heart 
disease (54), stroke(68, 70, 97), cerebrovascular disease(59), and CVD (58, 60, 68, 
69, 76, 80, 81, 83). 

There are also prospective studies that find no associations between short sleep 
duration and mortality from stroke (68), cerebrovascular disease(59), or CVD (57, 
69, 76, 80, 81, 83, 84). Similarly, there are studies that report no association between 
long sleep duration and mortality from IHD (85), CHD (68) or CVD (53, 57, 64, 
84). 

Irrespectively, meta-analyses show that both short and long sleep durations(91) or 
that long but not short sleep duration(88, 93) are associated with CVD mortality. 
For CVD-specific causes, both short and long sleep durations are associated with 
mortality from stroke and CHD (91). 

Limitations of existing studies investigating sleep duration and 
mortality outcomes 
Prospective studies investigating the associations between sleep duration and all-
cause, or cause-specific mortality outcomes have considered similar referent sleep 
duration categories. Most studies consider 7 hours(51-53, 55, 56, 58, 59, 61, 63-69, 
72, 73, 75, 79, 81, 83, 86, 87, 95, 97),  7-8 hours(54, 57, 60, 70, 71, 76, 82, 84), or 
7-9 hours(74) as the referent sleep duration to which other sleep duration categories 
are compared. However, alternative referent categories have also been used, e.g., 6-
7 hours(85) or  <10 hours(77). Despite the overall consistency between studies, 
several limitations remain to be considered.  

Varying definitions of short and long sleep durations 
One limitation are the inter-study differences in what constitutes short and long 
sleep durations, respectively. The definitions of short sleep duration vary from <4 
hours(96), ≤4 hours(84), ≤5 hours(52, 62, 67, 69, 81, 95, 97), <6 hours(53, 55, 78, 
80, 83, 85, 86),≤6 hours(60, 75, 87), <7 hours(56, 57, 61, 65, 68, 71, 74), and ≤7 
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hours(70) whereas the definitions of long sleep duration vary from >7 hours(56, 65, 
68), ≥8 hours(69, 78), >8 hours(53, 57, 80, 86, 96), ≥9 hours(52, 55, 64, 67, 70, 71, 
83, 84, 87, 95, 97), >9 hours(74, 85), and ≥10 hours(62, 81). Some studies use the 
terms short sleep duration(63, 79) or long sleep duration(63, 75, 79) without prior 
definition whereas other studies consider separate definitions for men and 
women(76) and yet other studies use different definitions of long sleep duration 
even within the same study(61). Consequently, the term short sleep duration in one 
study is equivalent to a referent sleep duration in another study with the same 
limitation being true for definitions of long sleep duration. This heterogeneity 
between studies constitutes a problem when aiming to consolidate findings with the 
purpose of defining sleep duration recommendation guidelines.  

Variations in follow-up time and sample size 
Another limitation is the large variations in follow-up time. Of the prospective 
studies mentioned above, follow-up ranges from 3 years(62) to 35 years(60). A very 
short follow-up time does not allow for a sufficient number of outcome events 
unless the sample size is very large. For example, of the prospective studies above, 
sample sizes range from 724 participants(56) to over 1,000,000 participants(51, 59) 
which is the third limitation of consideration. Indeed, approximately 50% of the 
above studies have sample sizes smaller than 15,000 participants(54-57, 61, 62, 64, 
66, 67, 71-74, 76-78, 80-83, 85, 86) and only 20% of the above studies analysed 
samples that were larger than 100,000 participants(51, 52, 58, 59, 65, 70, 87, 96).  

Reverse causation bias 
A fourth limitation is the high probability of reverse causation bias; whereas certain 
studies have adjusted for prevalent disease at baseline or consider analyses stratified 
by prevalent disease(55, 56, 59, 61, 64, 65, 67, 69, 71-78, 80, 81, 86, 87, 96, 98), 
this approach may question certain statistical assumptions including the one of 
proportional hazards given the high risk of mortality with past history of CVD, 
cancer or diabetes. It would therefore be more prudent to exclude participants with 
prevalent disease at baseline either in the main analysis or in sensitivity analyses(52-
54, 58, 60, 63, 66, 68, 79, 83-85, 95).  

Moreover, many studies do not consider the exclusion of participants who died 
within a certain pre-determined follow-up period(56, 57, 59, 60, 63, 64, 67, 70, 71, 
74, 75, 78, 80, 83-87) which increases the risk of reverse causation bias. 

Effect modification 
A fifth limitation is that the association between sleep duration and mortality 
outcomes seems to differ between men and women(52) and between younger and 
older age groups(69). However, of the studies that performed analyses stratified by 
sex(52, 54, 56, 57, 59-61, 64-68, 76, 77, 81, 83, 84) or age(60, 61, 64, 67, 69, 84, 
98), only four studies(61, 67, 69, 84) considered all the necessary statistical tests to 
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confirm if indeed such stratified analyses were justified. Some results suggest that 
the association between sleep duration and all-cause mortality does not differ by 
sex(58, 61, 63, 71, 72, 84, 86) or age(61, 71, 84). However, the results of meta-
analytic studies suggests a possibly stronger effect of long sleep duration on all-
cause mortality among older participants(92). Finally, there appear to be differences 
in results from East Asian populations when compared to results obtained from 
European or North American populations(92). 

Taken together, the combination of limitations of the population-based studies 
investigating the association between sleep duration and mortality outcomes 
preclude the investigation of effect modification by important characteristics 
without the risk of reverse causation bias. 

Sleep duration and cardiometabolic risk factors 
Sleep duration is associated with several cardiometabolic risk factors, including 
BMI and obesity(99), hypertension(100), and impaired glucose tolerance(101). 
Indeed, results from one meta-analysis, albeit on cross-sectional studies, indicate 
that sleep durations <5 hours are positively associated with obesity and where 
incremental hourly increases of sleep duration are inversely associated with 
BMI(99). Similarly, a meta-analysis on the association between sleep duration and 
hypertension in prospective studies found that sleep durations <5 hours and <6 
hours, respectively, (when compared to 7 hours) are associated with 
hypertension(100). The same study also reported that incremental hourly increases 
of sleep duration were inversely associated with hypertension(100). Although the 
association between sleep duration and impaired glucose tolerance is yet to be 
quantified in a meta-analysis, independent studies show that sleep duration <6 hours 
(when compared to 6-7 hours)(101), sleep durations of 6 hours and ≥9 hours (when 
compared to 7-8 hours)(102) are associated with impaired glucose tolerance. Sleep 
duration <6 hours (when compared to 6-8 hours) is also associated with impaired 
fasting glucose(103). The combination of associations between sleep duration and 
cardiometabolic risk factors prompts the further question if indeed sleep duration is 
associated with incident diabetes and incident CHD. 

Sleep duration and incident diabetes and coronary heart disease 
Sleep duration and incident diabetes 
The number of prospective studies that have investigated the association between 
sleep duration and incident diabetes using time-to-event analyses are few, but those 
results indicate a significant and positive association between short (<6 hours when 
compared to 7 hours)(104) and long (≥8 hours when compared to 7-7.9 hours)(105) 
sleep durations with incident diabetes albeit in different populations. Remaining 
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prospective studies have investigated the association between sleep duration and 
incident diabetes without using time-to-event analyses(106-114). Despite 
methodological differences, the results of these studies confirm positive 
associations between short sleep durations of <5 hours (when compared to 7 
hours)(106), ≤5 hours (when compared to 7 hours)(114), ≤5 hours (referent sleep 
duration not specified)(108), ≤5 hours (when compared to 7 hours)(112), ≤5 hours 
(when compared to >7 hours)(110), <6 hours (when compared to 7 hours)(111), ≤6 
hours (when compared to 7-8 hours)(113), ≤7 hours (when compared to 8 
hours)(109) as well as long sleep durations of ≥7.5 hours (when compared to 7 
hours)(106), >8 hours (when compared to 7 hours)(111),  ≥9 hours (when compared 
to 8 hours)(107), ≥9 hours (when compared to 7 hours)(112), ≥9 hours (when 
compared to 7-8 hours)(113) with incident DM. One prospective study on Swedish 
women with 32 years of follow-up time found no association between sleep duration 
and incident diabetes(115). Overall, meta-analyses support a J-shaped or U-shaped 
association between sleep duration and incident type 2 diabetes(116-118). 

Sleep duration and incident coronary heart disease and myocardial infarction 
Similarly to the studies on sleep duration and incident diabetes mellitus, the number 
of prospective studies that have investigated the association between sleep duration 
and incident CHD using time-to-event analyses are few. The results from these 
studies indicate that sleep durations of <6 hours (when compared with 7-8 
hours)(119), ≤6 hours (when compared with 7 hours)(120) and ≥8 hours (when 
compared to 7 hours) are associated with incident MI(121).  

Sex-stratified analyses found associations between sleep duration ≤5 hours (when 
compared to 8 hours) and incident MI in women but not in men(122). The same 
study reported no associations with incident MI for sleep durations ≥9 hours(122).  

Two of these studies did not find an association between sleep durations of ≥9 hours 
(when compared to 7-8 hours)(119) or >8 hours (when compared to 7 hours) and 
incident CHD(120). One study did not find any association between sleep duration 
and incident MI(63), albeit with a relatively short follow-up period of approximately 
4 years.   

One study that did not use time-to-event analyses reported that sleep durations ≤5 
hours and ≥9 hours (when compared to 8 hours) were associated with total CHD 
(including fatal MI and non-fatal CHD) in women(123).  

Limitations of existing studies 
A major strength of the above studies is that they have all adjusted for prevalent 
diabetes at baseline. However, given the importance of diabetes as a major risk 
factor for CHD(124), it is inevitable that those who are diagnosed with diabetes 
during follow-up most certainly have a change in their baseline hazard of future 
CHD events. For this reason, it is necessary to consider incident cases of diabetes to 
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better understand if indeed incident diabetes is on the pathway between sleep 
duration and incident CHD. 

Putative mechanisms for the association between sleep duration and 
cardiometabolic disease 
The exact mechanisms and biological pathways through which sleep duration is 
associated with cardiometabolic disease is not fully elucidated.  Studies have 
identified associations between sleep duration and leptin and ghrelin (a hormone 
related to energy insufficiency(35)) in which sleep duration is positively associated 
with serum concentrations of leptin and inversely associated with serum 
concentrations of ghrelin(125). Similarly, studies implementing experimental 
conditions found that sleep restriction resulted in reduced levels of leptin(126, 127) 
and increased levels of ghrelin(127). This would suggest a pathway whereby short 
sleep duration leads to increased hunger and appetite(127), resulting in increased 
energy intake and subsequent weight gain. Indeed, this would be consistent with the 
observed increased risks of weight gain and obesity in short sleepers (≤6 hours) as 
compared to average sleepers (7-8 hours)(128). However, weight gain is also seen 
over time in long sleepers (≥9 hours) when compared to average sleepers(128), 
thereby raising valid questions about possible differential mechanisms, including 
reverse causation, between short and long sleep durations and metabolic and 
cardiometabolic outcomes. 

The suggestion of systemic inflammatory markers (e.g., CRP, interleukin-6 (IL-6), 
and tumour necrosis factor-α (TNF-α)) as possible mechanisms of the association 
between sleep duration and cardiometabolic outcomes are not unfounded 
considering the known associations between CRP(129), IL-6(130), respectively, 
and CHD. However, additional research is warranted as the results of individual 
studies on the association between sleep duration and markers of inflammation seem 
inconclusive; one study reported on a positive association between habitual sleep 
duration and levels of CRP and IL-6, and an inverse association between PSG sleep 
duration and TNF-α (131), whereas another study found that sleep duration was 
inversely associated with CRP and IL-6(132). The results of a meta-analysis do not 
support such findings of linear associations(133). Instead, the meta-analysis 
recognised, when comparing long sleep duration (>8 hours) with referent 7-8 hours, 
a positive association between long sleep duration and CRP and IL-6, respectively 
and no association between sleep duration and TNF-α. It should be noted that any 
interpretation of the results of the meta-analysis must be considered in the context 
of time of blood sampling; although the time of blood collection does not appear to 
influence variability of CRP and IL-6(134), TNF-α, on the other hand exhibits a 
diurnal rhythm(135).  
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Overall, markers of systemic inflammation are nonspecific to sleep duration or to 
the underlying cause of inflammation and may therefore not provide a 
comprehensive picture of the pathways that possibly link sleep duration with 
cardiometabolic outcomes. Moreover, there is a high probability of reverse 
causation when, for example, considering the somnogenic actions of TNF-α and its 
implication in the regulation of time spent in NREM sleep(135).  

The next step in the investigation of an association between sleep duration and 
markers of inflammation would be to consider proteomic markers that may serve to 
elucidate possible biological pathways for the association between sleep duration 
and cardiometabolic outcomes. Sleep duration is independently associated with five 
proteomic markers of cardiovascular risk, follistatin, matrix metalloproteinase 9 
(MMP-9), kidney injury molecule (KIM), adrenomedullin (ADM), and urokinase 
receptor (UPAR)(136). One further step will be to investigate the association 
between sleep duration-specific markers and cardiometabolic outcomes. Moreover, 
the suggestion that sleep deprivation may play a regulatory role in TNF-α 
production(135) and function(137) combined with the implication of activated 
enzymes specific to the tumour necrosis factor receptor 1 (TNFR1) pathway, e.g., 
Cysteinyl aspartic acid-protease-8 (Caspase-8)(138, 139) in beta cell apoptosis(140) 
warrants further targeted investigation of this enzyme in the context of sleep 
duration and incident diabetes.   
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Aims 

The overall aim of this thesis is to investigate the associations between sleep 
duration and incident cardiometabolic disease; to investigate incident diabetes as a 
risk factor on the pathway between sleep duration and incident CHD; and to identify 
proteomic markers that may help elucidate the biological pathways responsible for 
the found associations. The aim is also to quantify the specific associations of sleep 
duration categories with mortality outcomes in a very large cohort of East Asians 
with the consideration of possible effect modification through important 
characteristics.  

Specific aims 
Paper I: To investigate, in sex-specific analyses, the role of incident diabetes as the 
possible biological mechanism for the reported association between short/long sleep 
duration and incident CHD. 

Paper II: To elucidate if sleep duration is associated with plasma concentrations of 
Caspase-8 and whether measured plasma concentrations of Caspase-8 are associated 
with incident diabetes. The secondary aim of paper II was to investigate if plasma 
concentrations of Caspase-8 modify the known association between sleep duration 
and incident diabetes. 

Paper III: To conduct a large individual-level analysis on the sex-specific 
association between sleep duration and all-cause- and major-cause mortality in a 
pooled longitudinal cohort. A secondary objective of paper III was to investigate 
sex-stratified effect modification of age and BMI on mortality outcomes. 

Paper IV: To identify proteomic markers associated with specific sleep duration 
quintiles. Secondary aims of paper IV were to create weighted proteomic sleep 
scores based on any proteomic markers predictive of each sleep duration category 
and to further investigate associations between proteomic sleep scores and incident 
diabetes and incident CHD, respectively. 
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Methods 

Study populations 

Malmö Diet and Cancer Study 
The Malmö Diet and Cancer (MDC) Study is a population-based, prospective study 
in the city of Malmö, Sweden. Between the years 1991-1996, men and women 
between the ages 45-73 years were randomly selected and recruited for examination. 
The baseline examination collected anthropometric data (including weight, height, 
and blood pressure), blood samples, and a detailed questionnaire with items related 
to heredity, socioeconomic variables, social network, occupation, physical activity, 
smoking, alcohol consumption, past and current diseases, and medication. Details 
of the study have been described elsewhere(141). 

The baseline study population consisted of 30,447 participants. For the purpose of 
analyses in paper I, participants were excluded if they, at baseline, had prevalent 
occurrence of the outcomes of interest (diabetes and/or CHD) (Figure 3). 
Participants were also excluded if they had not provided information about the main 
exposure of interest (sleep duration), or if their reported information represented 
outlier values. A total of 16,344 participants (6966 men and 9378 women) were 
included in the analysis of paper I. Participants were followed from starting point 
until December 31, 2010, with person-years calculated from starting point to the 
date of incident event, loss to follow-up, or end of follow-up period, whichever came 
first. Data from MDC was used in paper I. 
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Malmö Diet and Cancer Study – Cardiovascular Cohort 
The Malmö Diet and Cancer Study – Cardiovascular Cohort (MDC-CC) is a sub-
cohort of the MDC Study with the purpose to investigate the epidemiology of 
carotid artery disease(142). The MDC-CC is comprised of 6103 participants that 
were randomly selected from the MDC Study between 1991-1994. MDC-CC 
participants underwent detailed examinations, including ultrasonography of the 
carotid artery, and provided plasma for the measure of novel proteomic markers. 
Fasting plasma specimens obtained from MDC-CC participants were frozen to -
80°C immediately following blood sampling. Data from MDC-CC was used in 
paper II and paper IV. 

For the purpose of analyses in paper II, baseline MDC-CC participants were 
included if they had measured plasma levels of the first main exposure (Caspase-8), 
had complete information on the second main exposure (sleep duration) as well as 
data on kidney function. From these, participants were excluded if they had 
prevalent occurrence of the outcome of interest (diabetes) at baseline or if their data 
on the two main exposures represented outlier values. A total of 4023 MDC-CC 
participants were included in the analysis of paper II. 

For the purpose of analyses in paper IV, baseline MDC-CC participants were 
excluded they if they prevalent diabetes or CHD at baseline, incomplete information 
on the first main exposure (sleep duration) or where the main exposure constituted 
an outlier value, had incomplete information on covariates used in analyses, had 
missing data on the second main exposure (proteomic markers) or where the plasma 
concentrations of proteomic markers constituted outlier values. Additionally, 
participants with an outcome event of interest (incident diabetes or incident CHD) 
occurring in the first three years of follow-up were also excluded. A total of 3336 
MDC-CC participants were included in the analysis of paper IV.

Asia Cohort Consortium 
The Asia Cohort Consortium (ACC)(143) is a consortium of more than 30 cohorts 
from Asia, including Bangladesh, China, India, Iran, Japan, Korea, Malaysia, 
Mongolia, Singapore, and Taiwan. The purpose of the ACC is to investigate 
associations between environmental exposures, genetics, including their 
interactions, and the aetiology/mortality of diseases. The establishment of the ACC 
was done to allow for sufficient sample size and power for these investigations.  
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Figure 4. Flowchart of participant inclusion and exclusion for paper III using data from the Asia Cohort Consortium. 
From Thomas Svensson et al. Association of Sleep Duration With All- and Major-Cause Mortality Among Adults in 
Japan, China, Singapore, and Korea, JAMA Network Open, 4(9):e2122837 (2021). Reproduced under the Creative 
Commons Attribution License (CC-BY). 
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Paper III included data from nine ACC cohorts with a total of 450,532 eligible 
participants from four countries: five cohorts from Japan (Japan Public Health Center-
based prospective (JPHC) Study 1 and JPHC Study 2, Miyagi Cohort Study, Ohsaki 
National Health Insurance Cohort Study, and the Takayama Study), two cohorts from 
China (Shanghai Men’s Health Study (SMHS), and Shanghai Women’s Health Study 
(SWHS)), one cohort from Singapore (the Singapore Chinese Health Study (SCHS)), 
and one cohort from Korea (the Korean Multi-Center Cancer Cohort Study (KMCC)). 
Cohorts were included based on the availability of information about the main 
exposure (sleep duration). For the purpose of paper III, participants were excluded if 
they had prevalent CVD or cancer at baseline, had missing information on the main 
exposure (sleep duration) or where the main exposure constituted an outlier value in 
cohorts with continuous measurements, had missing or unreasonable information on 
covariates or follow-up time, or if participants were younger than 18 years of age 
(Figure 4). Participants were also excluded if they died within five years of follow-
up. A total of 322,721 ACC participants (144,179 men and 178,542 women) were 
included in the analysis of paper III. 

Sleep duration definitions 
The main exposure in papers I to IV was self-reported habitual sleep duration. 
Information on sleep duration was obtained through self-report questionnaires.  

Malmö Diet and Cancer Study 
For papers I, II, and IV, habitual sleep duration was assessed through two open 
questions: “How many hours do you usually sleep per night during a typical week 
(Monday-Friday)?” and “How many hours do you usually sleep per night during a 
typical weekend (Saturday-Sunday)?” The questions thus asked participants how 
long they slept on weekdays and weekends. The information on weekday and 
weekend sleep, respectively, was used to calculate a weighted average sleep 
duration: 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 5 +  𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 2
7

 

The weighted average sleep duration was a continuous variable. Any self-reported 
sleep duration that represented an outlier value of more than 3 interquartile ranges 
below or above the first and fourth quartiles respectively, was excluded from 
analyses. 

In paper I and paper II, continuous weighted average sleep duration was categorised 
into five sleep duration groups (<6 hours, 6 – 7 hours, 7 – 8 hours, 8 – 9 hours, and 
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≥9 hours). The referent sleep duration was set at 7 – 8 hours, and short and long 
sleep durations were defined as <6 hours and ≥9 hours, respectively. 

In paper IV, continuous weighted average sleep duration was categorised into 
quintiles: Quintile 1: 4.00 – 6.57 hours; Quintile 2: 6.64 – 7.14 hours; Quintile 3: 
7.21 – 7.57 hours; Quintile 4; 7.64 – 8.00 hours; Quintile 5: 8.14 – 11.00 hours. The 
reason for this categorization was based on limited sample size; the categorisation 
of sleep duration into discrete hourly categories (as in paper I and paper II) would 
in paper IV result in groups that were unbalanced with regards to number of 
participants and number of outcome measures. This, in turn would preclude the 
relevant statistical analyses. Quintile 3 was chosen as the reference category to allow 
comparisons with other studies that often use 7 – 8 hours as the referent group, and 
to allow for the investigation of J-shaped or U-shaped associations that are often 
reported between sleep duration and the respective outcomes e.g.,(117, 144). Short 
and long sleep durations were defined as quintile 1 and quintile 5, respectively. 

Asia Cohort Consortium 
For paper III, habitual sleep duration was assessed on a cohort-by-cohort basis 
where three cohorts (KMCC, SCHS, and the Takayama Study) asked about sleep 
duration as a categorical variable, and six cohorts (JPHC Study 1 and JPHC Study 
2, Miyagi Cohort Study, Ohsaki National Health Insurance Cohort Study, SMHS, 
and SWHS) asked about sleep duration as a discrete value (in hours). The questions 
for each cohort were as follows: JPHC Study 1 and JPHC Study 2: “How many 
hours do you usually sleep?”; Miyagi Cohort Study: “How many hours on average 
do you sleep per day?”; Ohsaki National Health Insurance Cohort Study: “How 
many hours on average do you sleep per day?”; Takayama Study: “How long did 
you sleep on average during the past year? (including naptime)?”; SMHS: “In the 
past year, how many hours did you sleep each day (including sleeping at day and 
night, but not including the time you woke up between two periods of sleep)?” 
SWHS: “In the past 2 years, how many hours did you sleep each day (including 
sleeping during the day and night, but not including time if you woke up between 
two periods of sleep)?; SCHS: “On the average, during the last year, how many 
hours did you sleep in a day, including naps?”; KMCC: “During the past year, on 
average per day, how many hours of sleep have you had (including nap time)?”  

For sleep duration as a discrete value, outlier values of more than 3 interquartile 
ranges below or above the first and fourth quartiles respectively, were excluded 
from analyses. The information obtained from the cohort-specific questionnaires 
was subsequently harmonized into one categorical sleep duration variable that was 
used in analyses. The harmonized variable consisted of six groups: ≤5 hours, 6 
hours, 7 hours, 8 hours, 9 hours, and ≥10 hours. The referent category was set at 7 
hours. 
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Sleep duration was assessed at the time of the baseline survey for all cohorts with 
the exception of SWHS, where sleep duration was assessed at the third follow-up 
survey. 

Outcome definitions 

Incident diabetes 
Incident diabetes was an outcome measure in paper I, paper II, and paper IV. New 
onset diabetes in participants without prevalent diabetes at baseline was identified 
either through linkage of the Swedish 10-digit personal identification number with 
local and national registers(145-149) or if participants had fasting plasma glucose 
concentration ≥7 mmol/l or a 120-min plasma glucose value of >11.0 mmol/l during 
study follow-up(150, 151). 

Incident coronary heart disease 
Incident CHD was an outcome measure in paper I, and paper IV. Incident events 
were defined as a first fatal or non-fatal MI, coronary artery bypass graft (CABG) 
or percutaneous coronary intervention (PCI) and identified through linkage of the 
Swedish personal identification number with three registries(152, 153). Fatal or 
non-fatal MI or death due to CHD was defined according to the International 
Classification of Diseases, ninth (ICD-9) and tenth (ICD-10) revisions 
corresponding to codes 410, 412, and 414 (ICD-9), and I21-I23 and, I25 (ICD-10). 
CABG was classified using the national classification of surgical procedures 
operation codes (KKÅ or Op6): 3065, 3066, 3068, 3080, 3092, 3105, 3127, 3158, 
and PCI was classified using codes FNG02 and FNG05. 

Additional outcomes of interest 
The investigation of incident diabetes as an event occurring on the temporal pathway 
between sleep duration and incident CHD required the consideration of additional 
endpoints.  

Incident coronary heart disease preceded by incident diabetes 
The first related outcome was any incident CHD that was preceded by incident 
diabetes (Figure 5a). ‘non-diabetes CHD’ defined as an incident CHD event 
occurring in participants without incident diabetes or in those where incident 
diabetes occurred after incident CHD, and 2) ‘diabetes-CHD’ defined as incident 
CHD diagnosed on the same day, or following a diagnosis of incident diabetes. 
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Incident coronary heart disease without preceding incident diabetes 
The second related outcome was incident CHD that occurred in individuals without 
any incident diabetes diagnosed during the follow-up period leading to incident 
CHD (Figure 5b) 

Figure 5. The temporal consideration of incident diabetes (DM) in relation to incident coronary heart disease (CHD) 
for the definition of additional outcome variables of interest in paper I. 

Mortality 
Mortality was an outcome measure in paper III and was determined using death 
certificates and categorised according to ICD-9 and ICD-10 classifications. Causes 
of death were attributed to all-cause mortality (ICD-9: 001-999, ICD-10: A00-G99, 
I00-N99, Q00-T98, V00-Y99) or to cause-specific mortality from CVD (ICD-9: 
410-414 and 430-438, ICD-10: I20-I25 and I60-I69), cancer (ICD-9: 140-208, ICD-
10: C00-C96), other causes (mortality other than CVD or cancer). For the purpose
of this thesis, only results related to mortality from all-causes and CVD are
presented in the result section.
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Proteomic markers 
Paper IV used 92 proteomic markers from the Olink Proseek Multiplex CVD 1 
panel. Paper II focused on one marker (Caspase-8) from the same CVD 1 panel. 
Plasma concentrations of the proteomic markers were quantified using a validated 
high-specificity immunoassay, the Proximity Extension Assay (PEA). PEA is a 
method that simultaneously binds matched pairs of deoxyribonucleic acid (DNA)-
labelled antibodies to a target protein(154). The simultaneous binding to the target 
protein allows for proximal positioning of the matched antibodies with resulting 
hybridization and polymerase-dependent extension of their DNA labels(155). The 
resulting DNA ligation is amplified through polymerase chain reaction (PCR) with 
the amount of ligated DNA proportional to the target protein’s concentration(155). 

All proteomic markers were measured in stored fasting plasma specimens from the 
MDC-CC baseline examination frozen to -80°C following collection.

Concentrations of proteomic markers were provided on a logarithmic (log2) scale. 
Any markers that were below the limit of detection were provided a missing value. 

Study-specific considerations 
In paper IV, 14 proteomic markers that were below the limit of detection for 413 
study participants (≥10% of the study population) were excluded from analyses, 
leaving 78 markers for analysis. In both paper II and paper IV, markers were 
standardized, where the standard score represents the number of standard deviations 
(SD) above or below the proteomic marker’s mean concentration.  

Candidate proteomic markers for the construction of a proteomic score were 
selected based on four separate cross-fit partialing out lasso logistic regressions 
(described under “Statistical analysis” below, and in detail in paper IV). One cross-
fit partialing-out lasso logistic regression was performed for each sleep duration 
quintile as it was compared with the referent quintile 3. The resulting p-values and 
ß coefficients of each analysis provided information on which markers to retain 
(p<0.05) and their corresponding weight (ß coefficients) in the proteomic score. The 
ß coefficient was multiplied with the standardized concentration (denoted as 
‘standconc’ in the equation below) of the significant markers e.g.: 

𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1 × 𝑠𝑠𝑠𝑠𝑤𝑤𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠𝑤𝑤𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1 + 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2 × standconc𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2
+ 𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚3 × 𝑠𝑠tandconc𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚3 …

The proteomic scores can be considered as potential predictors of habitual sleep 
duration. This was tested by comparing 15 independent linear regression models 
with continuous sleep duration as the dependent variable and with all possible 
combinations of the four proteomic scores as the independent variables (four models 
including one score each; six models combining variations of two scores; four 
models combining variations of three scores; and one model including all scores). 
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The Akaike Information Criterion (AIC) was used to identify the best predictors of 
habitual sleep duration by taking into consideration the goodness of fit and model 
complexity. The proteomic scores from the model with the lowest AIC were 
retained for the semi-parametric survival analyses. 

In Paper II, the distribution of log2 Caspase-8 was positively skewed and 
transformed with the square root throughout. Square root-transformed standardised 
Caspase-8 was used both as a continuous variable (incremental increases per 1 SD) 
and as a binary variable in analyses. The binary variable was constructed in several 
steps: step 1 was to divide the transformed Caspase-8 into quartiles. Step 2 was to 
calculate incidence rates of diabetes mellitus for each quartile. Step 3 was to select 
a suitable cut-off based on diabetes mellitus incidence rates of each quartile. The 
incidence rates of diabetes were similar in quartiles 1, 2, and 3, thus allowing for a 
binary variable with the cut-off determined at quartile 4. 

Statistical analysis 

Cross-sectional analyses 
Paper II and paper IV considered cross-sectional analyses to investigate possible 
predictors involving habitual sleep duration and proteomic markers. Multilinear 
regression with backward elimination (retention: p<0.05) was used in paper II to 
identify predictors of Caspase-8. The variables age, sex, cystatin C, education, 
physical activity, smoking, alcohol intake, shift work, waist circumference, low-
density lipoprotein (LDL) cholesterol, HDL cholesterol, TG, fasting blood glucose, 
hypertension, sleep quality and sleep duration were entered into the initial model. 
The variable with the largest p-value was removed first with the new model tested 
against the preceding model. 

In paper IV, least absolute shrinkage and selection operator (lasso) was used to 
account for the multicollinearity of the 78 available proteomic markers when 
selecting suitable markers predictive of habitual sleep duration quintiles. 
Specifically, ten-fold cross-fit partialing-out lasso logistic regression(156) 
controlling for age and sex was used to identify proteomic markers for the 
association between the respective sleep duration quintiles Q1, Q2, Q4, and Q5 with 
Q3 (retention: p<0.05). This lasso method shrinks the coefficients of certain 
proteomic markers to ‘0’ thereby producing sparse models that are more easily 
interpretable(157, 158) while also producing ß coefficients and standard errors that 
allow testing of significance(159). 
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Survival analysis 
The primary analyses of the papers included in this thesis are time-to-event analyses 
allowing for the estimation of hazard ratios (HR) and their 95% confidence intervals 
for the association between the main exposure(s) and the main outcome(s). Paper I, 
paper II, and paper IV used Cox proportional hazards regression; Paper III used Cox 
proportional hazards regression with shared frailty models to account for any 
unobserved between-study heterogeneity(160) at the cohort level.  

Paper IV also determined mediating effects of the proteomic score by fitting a 
flexible parametric survival model that included only the main exposure (the 
relevant sleep duration quintile) and the probable mediator (proteomic score). 
Stata’s “standsurv” post-estimation command was used on the fitted model. The 
fitted models used three degrees of freedom for the baseline hazard and considered 
the sleep duration quintile as a time varying effect with three degrees of freedom. 

In papers I-IV, follow-up time was defined as the number of person-years from the 
start of follow-up until the end of the follow-up period. Statistical models were 
performed in multivariable models that considered adjustment for important 
covariates of the associations between the main exposure(s) and main outcome(s). 

Table 1. Details of studies included in the thesis 

Characteristic Paper I Paper II Paper III Paper IV 

Study cohort Malmö Diet and 
Cancer Study 

Malmö Diet and Cancer Study – 
Cardiovascular Cohort 

Asia Cohort 
Consortium 

Malmö Diet and Cancer 
Study – Cardiovascular 

Cohort 
Study design Prospective 

cohort 
Prospective cohort Prospective 

cohort 
Prospective cohort 

Sample size for 
analysis 

16,344 
(6966 men; 
9378 women) 

4023 322,721 
(144,179 men: 
178,542 women) 

3336 

Main 
exposure(s) 

Sleep duration Sleep duration, plasma 
concentrations of Caspase-8 

Sleep duration Sleep duration,  
proteomic sleep scores 

Main outcome(s) Incident 
diabetes, 
Incident 
coronary heart 
disease 

Incident diabetes Mortality Incident diabetes, Incident 
coronary heart disease 

Primary 
statistical 
method 

Cox 
proportional 
hazards 
regression 

Cox proportional hazards 
regression 

Cox proportional 
hazards 
regression with 
shared frailty 
models 

Cox proportional hazards 
regression 

Secondary 
statistical 
method 

- 
Multilinear regression with 
backward elimination - 

10-fold cross-fit partialing 
out lasso logistic 
regression
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Results 

Paper I 
The main aim of this study was to investigate the sex-specific associations between 
habitual sleep duration with incident diabetes and incident CHD, respectively. The 
secondary aim of the study was to investigate if incident diabetes could be 
considered an explanatory variable (i.e., that incident diabetes occurs on the 
pathway) for the association between sleep duration and incident CHD. 

Incident diabetes 
The results of the multivariable adjusted models for men show that, when excluding 
the first three years of follow-up, sleep durations <6 hours (HR=1.35, 95% CI: 1.01, 
1.80) and sleep durations ≥9 hours (HR=1.37, 95% CI: 1.03, 1.83) were 
significantly and positively associated with incident diabetes when compared to the 
referent sleep duration (7 – 8 hours) (Figure 6). For women, the corresponding 
models showed that only sleep duration <6 hours (HR=1.53, 95% CI: 1.16, 2.01) 
was significantly associated with incident diabetes (Figure 7). 

Incident coronary heart disease 
The results of the multivariable adjusted models for men show that, when excluding 
the first three years of follow-up, sleep durations <6 hours (HR=1.41, 95% CI: 1.06, 
1.89) and sleep durations ≥9 hours (HR=1.33, 95% CI: 1.01, 1.75) were 
significantly and positively associated with incident CHD when compared to the 
referent sleep duration (7 – 8 hours) (Figure 6). For women, the corresponding 
models showed that only sleep duration <6 hours (HR=1.46, 95% CI: 1.03, 2.07) 
was significantly associated with incident CHD (Figure 7). 
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Figure 6. The association between sleep duration and incident diabetes and incident coronary heart disease in men. 

 
Figure 7. The association between sleep duration and incident diabetes and incident coronary heart disease in men. 

Incident coronary heart disease with preceding incident diabetes 
In the multivariable adjusted model for men excluding the first three years of follow-
up, sleep durations <6 hours (HR=2.34, 95% CI: 1.20, 4.55) and sleep durations ≥9 
hours (HR=2.10, 95% CI: 1.11, 4.00) were significantly and positively associated with 
incident CHD that was preceded by incident diabetes. For women, the corresponding 
models showed that only sleep duration <6 hours (HR=2.88, 95% CI:1.37, 6.08) was 
significantly associated with incident CHD preceded by incident diabetes. 
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Incident coronary heart disease without preceding incident diabetes 
Sleep duration was not associated with incident coronary heart disease without 
preceding diabetes mellitus. 

Paper II 
The main aim of this study was to investigate the associations and interactions 
between sleep duration and Caspase-8 with incident diabetes. The results of this 
study can be broken down into three steps: the first step was to investigate if sleep 
duration was associated with plasma concentrations of Caspase-8. The second step 
was to investigate if plasma concentrations of Caspase-8 were associated with 
incident diabetes. The third step was to investigate if Caspase-8 modifies the 
association between sleep duration and incident DM. 

First step:  the stepwise backward elimination showed that sleep duration <6 hours 
was significantly and positively associated with Caspase-8 in a multilinear logistic 
regression model that also included age, male sex, Cystatin C, waist circumference, 
LDL cholesterol, and fasting blood glucose. 

Second step: Plasma concentrations of Caspase-8 were significantly and positively 
associated with incident diabetes in two separate models; one model investigated 
per 1 SD incremental increases of concentrations of Caspase-8 (HR per 1 SD 
incremental increase=1.24, 95% CI: 1.13–1.36, whereas the other model 
investigated a binary variable comparing high plasma concentrations (quartile 4; 
HR=1.44, 95% CI: 1.19–1.74) compared to low plasma concentrations (quartiles 1-
3; reference). 

Third step: The interaction between dichotomised plasma concentrations of 
Caspase-8 and sleep duration was significant for the association with incident 
diabetes (P for interaction=0.007) thus indicating effect modification by Caspase-8 
on the association between sleep duration and incident diabetes.   

Paper III 
The main aim of this study was to investigate, in a pooled analysis of individual-
level data, the association between self-reported sleep duration with all-cause 
mortality and cause-specific mortality outcomes in a sufficiently large sample of 
East Asian participants to allow for further investigation of possible effect modifiers 
of these associations.  
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Men 
The results of the multivariable models in men show that, when compared with the 
referent 7 hours, sleep durations were associated with all-cause mortality (≤5 hours 
(HR=1.15, 95% CI: 1.07, 1.23), 8 hours (HR=1.06, 95% CI: 1.03, 1.10), 9 hours 
(HR=1.13, 95% CI: 1.07, 1.20), and ≥10 hours (HR=1.34, 95% CI: 1.26, 1.44)), and 
CVD mortality (≤5 hours (HR=1.32, 95% CI: 1.14, 1.52) and ≥10 hours (HR=1.48, 
95% CI: 1.27, 1.71).  

Women 
The results of the multivariable models in women show that, when compared with 
the referent 7 hours, sleep durations were associated with all-cause mortality (≤5 
hours (HR=1.07, 95% CI: 1.00, 1.15), 6 hours (HR=1.06, 95% CI: 1.01, 1.11), 8 
hours (HR=1.07, 95% CI: 1.02, 1.12), 9 hours (HR=1.17, 95% CI: 1.09, 1.25), and 
≥10 hours (HR=1.48, 95% CI: 1.36, 1.61)), and CVD mortality (≤5 hours (HR=1.21, 
95% CI: 1.05, 1.40), 8 hours (HR=1.18, 95% CI: 1.07, 1.30), 9 hours (HR=1.37, 
95% CI: 1.18, 1.60),and ≥10 hours (HR=1.41, 95% CI: 1.16, 1.71)). 

Effect modification 
All-cause mortality 
In sex-stratified analyses, age was a significant effect modifier among men only 
(p<0.001). Compared to the referent category of 7 hours, all sleep duration 
categories were significantly and positively associated with all-cause mortality in 
men younger than 65 years, whereas among men older than 65 years only sleep 
durations of 9 hours and ≥10 hours were positively associated with the outcome. 
BMI was not an effect modifier of all-cause mortality in men or women. 

Cardiovascular disease mortality 
Sex was a statistically significant effect modifier of the association between sleep 
duration and CVD mortality (p=0.02). In sex-stratified analyses, neither age nor 
BMI were effect modifiers for the association between sleep duration and CVD 
mortality. 

Paper IV 
The main aim of this study was to investigate if proteomic scores based on sleep 
duration quintiles were associated with incident diabetes and incident CHD, 
respectively, independently of sleep duration. The results of the study are therefore 
broken down into four main steps: the first step was to identify specific proteomic 
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markers that are associated with specific sleep durations quintiles. The second step 
was to construct sleep quintile-specific proteomic scores and investigate if a 
combination of these scores could be predictive of habitual sleep duration. The third 
step was to investigate the association between sleep duration quintiles and incident 
diabetes and incident CHD, respectively. The fourth step was to investigate if 
proteomic scores were associated with incident diabetes and incident CHD, 
respectively, independently of the original sleep duration quintiles.  

First step: the study identified 16 unique proteomic markers that were significantly 
associated with sleep duration quintile 1, quintile 2, quintile 4, and quintile 5 when 
compared to the referent sleep quintile 3 (Table 2). Of these proteomic markers, 
tumour necrosis factor-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) 
was associated with sleep duration quintiles 1 and 2, matrix metalloproteinase-7 
(MMP-7) was associated with sleep duration quintiles 1, 4, and 5, and tumour 
necrosis factor receptor superfamily member 6 (Fas) was associated with sleep 
duration quintiles 2, 4, and 5. The remaining 13 proteomic markers were each 
associated with only one sleep duration quintile. 

Second step: the combination of proteomic scores for sleep duration quintile 1 and 
quintile 5 resulted in the model with the lowest AIC for the prediction of habitual 
sleep duration using linear regression models. 

Third step: For diabetes, the final multivariable model showed that, when compared 
to sleep duration quintile 3, sleep duration quintile 1 (HR= 1.32, 95% CI: 1.00–
1.74), Q2 (HR=1.33, 95% CI: 1.00–1.76), and quintile 5 (HR=1.48, 95% CI: 1.09–
2.00) were significantly and positively associated with incident diabetes. For 
incident CHD, the final multivariable model showed that only sleep duration 
quintile 1 (HR= 1.37, 95% CI: 1.01–1.86) was significantly and positively 
associated with the outcome. 

Fourth step: Inclusion of the proteomic scores for sleep duration quintile 1 and 
quintile 5 for mutual adjustment with sleep duration for incident diabetes as the 
outcome, resulted in a final multivariable model in which all sleep duration quintiles 
but one (quintile 5) were attenuated, and in which the proteomic score for sleep 
duration quintile 1 (HR=1.27, 95% CI: 1.06–1.53) was significantly and positively 
associated with incident diabetes.  

For incident CHD as the outcome, the inclusion of proteomic scores for sleep 
duration quintile 1 and quintile 5 resulted in a final multivariable model in which 
sleep duration quintile 1 remained significantly and positively associated with the 
outcome and where neither proteomic score for sleep duration quintile 1 nor quintile 
5 were associated with incident CHD.  
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Table 2. Proteomic markers significantly associated with specific sleep duration quintiles when compared to referent 
sleep duration (quintile 3) using 10-fold cross-fit partialing out lasso logistic regression analyses 

Sleep duration quintile  Proteomic 
marker 

Beta 
coefficient 

SE z P-value 95% confidence 
interval 

Quintile 1 vs Quintile 3 TRANCE -0.199 0.084 -2.37 0.018 -0.363 – -0.035
MMP-7 0.193 0.082 2.37 0.018 0.033 – 0.353 
MMP-10 -0.160 0.069 -2.32 0.020 -0.295 – -0.025
Follistatin 0.206 0.091 2.25 0.024 0.027 – 0.385 
E-selectin 0.201 0.091 2.22 0.027 0.023 – 0.378 
TRAIL-R2 0.266 0.133 2.00 0.046 0.005 – 0.528 

Quintile 2 vs Quintile 3 TRAIL-R2 0.431 0.143 3.02 0.0026 0.151 – 0.711 
Fas -0.457 0.156 -2.92 0.0035 -0.763 – -0.150
Kallikrein-6 -0.284 0.111 -2.57 0.010 -0.500 – -0.067
U-PAR -0.302 0.140 -2.16 0.031 -0.576 – -0.0280

Quintile 4 vs Quintile 3 Fas -0.452 0.135 -3.34 0.00084 -0.717 – -0.187
Renin 0.186 0.070 2.64 0.0082 0.048 – 0.324 
HB-EGF -0.329 0.135 -2.44 0.015 -0.594 – -0.064
MMP-7 0.189 0.081 2.34 0.019 0.031 – 0.348 
CXCL6 0.210 0.097 2.16 0.031 0.019 – 0.400 

Quintile 5 vs Quintile 3 Prolactin 0.261 0.081 3.22 0.0013 0.102 – 0.420 
MMP-7 0.296 0.097 3.05 0.0023 0.106 – 0.486 
CXCL1 0.245 0.100 2.44 0.015 0.0483 – 0.441 
Fas -0.402 0.170 -2.37 0.018 -0.735 – -0.070
t-PA 0.256 0.110 2.32 0.020 0.0395 – 0.472 
HSP27 -0.284 0.130 -2.19 0.029 -0.538 – -0.030

Abbreviations: TRANCE: tumour necrosis factor-related activation-induced cytokine, MMP-7: Matrix 
metalloproteinase-7, MMP-10: Matrix metalloproteinase-10, TRAIL-R2: tumour necrosis factor-related apoptosis-
inducing ligand receptor 2, Fas: tumour necrosis factor receptor superfamily member 6, U-PAR: urokinase 
plasminogen activator surface receptor, HB-EGF: proheparin-binding epidermal growth factor-like growth facto, 
CXCL6: C-X-C motif chemokine 6, CXCL1: C-X-C motif chemokine 1, t-PA: tissue-type plasminogen activator, 
HSP27: heat shock 27 kDa protein. 

From Thomas Svensson et al. Very short sleep duration reveals a proteomic fingerprint that is selectively 
associated with incident diabetes mellitus but not with incident coronary heart disease: a cohort study, BMC Med 22, 
173 (2024). Reproduced under the Creative Commons Attribution License (CC-BY). 
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Discussion 

Summary 
This thesis identifies an association between sleep duration and incident diabetes 
and incident CHD, respectively, and confirms that incident diabetes is a primary 
risk factor that explains the association between sleep duration and incident CHD. 
Moreover, this thesis identifies proteomic markers that are associated with sleep 
duration and further suggests a biological pathway that links short sleep duration 
(defined as sleep durations shorter than a referent category) with incident diabetes. 
One paper in this thesis quantified, in a large-scale analysis on East Asian 
populations, the sex-specific associations between sleep duration and CVD 
mortality, and the age-specific associations between sleep duration and all-cause 
mortality thereby contributing to the understanding of how to consider effect 
modification in population-based studies on sleep duration and mortality.  

Sleep duration and mortality 
The findings from paper III show that, in a very large population of East Asian 
participants, there is a clear association between sleep duration and mortality from 
all-causes, CVD, cancer, and other causes. The study findings further show that 
these associations exist in both men and women for all outcomes of interest. For the 
purpose of this thesis, only the results related to all-cause mortality and CVD 
mortality will be discussed in detail.  

Sleep duration and all-cause mortality 
The association between sleep duration and all-cause mortality was not modified by 
sex in a large cohort of East Asian participants. This finding is in accord with two 
previous studies(61, 84) and one study published after paper III(161). We have 
similarly confirmed that sex is not an effect modifier in a Japanese cohort(162). 
Contrary to these findings, two recently published studies did confirm a modifying 
effect of sex on the association between sleep duration and all-cause mortality(163, 
164); the results of one study predominantly identified that sleep durations ≤5 hours 
and 6 hours (when compared to 7 hours) are positively associated with all-cause 
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mortality among men but not women(163) whereas the other identified a higher risk 
with sleep duration ≤5 hours among women but not among men(164).  

The results of our study must be put into a wider perspective. First, the results 
signify that stratification by sex alone may be insufficient for all-cause mortality. 
Indeed, the association between sleep duration and all-cause mortality may be so 
robust that it does not show any sex-specific associations unless considered in the 
context of other characteristics. In paper III, age was an effect modifier of the sex-
specific associations between sleep duration and all-cause mortality in men only. 
Men younger than 65 years maintained a J-shaped association between sleep 
duration and all-cause mortality whereas older men were at increased risk only with 
sleep durations of 9 hours or ≥10 hours (when compared to 7 hours). Our findings 
confirm those reported in one previous study(69) which found increased risks of all-
cause mortality among those younger than 65 years with sleep durations ≤5 hours 
and ≥8 hours (when compared to 7 hours). The results also differ from those 
reported in one previous study(67) in which a U-shaped association was maintained 
only among the older participants. However, those analyses were not concomitantly 
stratified by sex, they considered different age strata, and with markedly smaller 
samples. The second point that is important to consider when aiming to explain the 
found associations between sleep duration and all-cause mortality is that the term 
all-cause mortality includes not only deaths from lifestyle-related 
noncommunicable diseases, but also includes self-harm, accidents, and causes 
attributed to communicable diseases. This heterogeneity of causes of death further 
necessitates a focus on more homogeneous groupings to allow for more in-depth 
interpretations. The increase in mortality risk with “short” sleep duration may be 
explained by an increased CVD risk(137). For this reason, and considering the 
overall purpose of the thesis, attention will therefore centre on CVD mortality before 
continuing with cardiometabolic disease.  

Sex-specific associations between sleep duration and cardiovascular 
disease mortality 
Taken together, the findings of paper III indicate that sex is a significant effect 
modifier of the associations between sleep duration and mortality from CVD. 
Indeed, our findings related to CVD mortality indicate slightly higher risks for men 
compared to women at both extremes of sleep duration (i.e., ≤5 hours and ≥10 hours, 
respectively), whereas women, on the other hand, seem to have a dose-dependent 
association with steadily increasing, and statistically significant, risks with sleep 
durations of 8 hours and 9 hours, respectively, when compared to the referent 7 
hours. These dose-dependent associations for sleep durations exceeding the referent 
7 hours do not appear for men.  
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The approach of stratifying CVD-related outcomes according to sex is a well-
accepted practice in cardiovascular research. Of the studies published prior to paper 
III that included also CVD-related mortality outcomes in sex-stratified analyses, our 
results confirm the findings of a large Japanese cohort that reported a significantly 
increased risk of CVD mortality for men who slept ≥10 hours and a dose-response 
for women with sleep durations of 8 hours, 9 hours, and ≥10 hours (when compared 
to 7 hours)(68). It is noteworthy that this cohort is not part of the ACC which further 
strengthens the validity of our findings. Another publication using data from the 
large Shanghai Women’s and Men’s Health Studies(52), both of which are included 
in the pooled analyses of paper III, found that, among women, only sleep duration 
≥10 hours (when compared to 7 hours) was significantly associated with CVD 
mortality. However, the same study also confirmed a linear trend for the association 
between sleep duration and CVD mortality among women, but not among men, thus 
indicating the possibility of a dose-dependent association. It is possible that even 
larger samples are required to find associations between specific sleep duration 
categories and CVD mortality outcomes among women. Indeed, our own study 
using the JPHC cohorts, which are also part of the ACC, found no association 
between any sleep duration categories and CVD mortality outcomes among women, 
but a significant and positive association with 9 hours and ≥10 hours of sleep (when 
compared to 7 hours) among men in the fully adjusted model(162). However, when 
excluding deaths occurring within the first 5 years of follow-up, those associations 
were abrogated thereby indicating either reverse causation or a loss of statistical 
power as the reason for the loss of significance. Another study(54) found, albeit 
with very wide confidence intervals, an increased risk of mortality from heart 
diseases for men with sleep durations <6 hours and for women with sleep durations 
of ≥9 hours when compared to 7.0-7.9 hours. That study also reported a significantly 
decreased risk of stroke mortality for men with sleep durations of 8.0-8.9 hours and 
a significantly increased risk of stroke mortality for women with sleep durations of 
6.0-6.9 hours. Although the results of that study confirm the positive associations 
with the most extreme sleep durations, the study did not test if sex was an effect 
modifier, which may have been important given their very wide confidence 
intervals. Moreover, this study as well as other studies(60, 65) have further 
considered CAD and stroke-related outcomes separately. This approach was not 
considered in paper III as it would necessitate further classification of stroke into 
haemorrhagic and non-haemorrhagic causes. Despite the very large sample size in 
paper III, the consideration of CVD mortality from three separate outcome 
perspectives, i.e., CAD, haemorrhagic and ischemic strokes, respectively, would not 
allow for sufficient statistical power to conduct analyses stratified on two 
characteristics. Other studies with sex-stratified analyses found that sleep durations 
≥9 hours when compared to 7 hours were positively associated with CVD mortality 
only in men(83) or only women with sleep durations ≤5 hours or ≥9 hours (when 
compared to 7-8 hours)(60). Yet additional studies have reported no associations 
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between sleep duration and CVD mortality in men or women(57, 64, 84), or reported 
ambiguous results(59). 

Four recent studies (i.e., those published after paper III) on US and UK populations 
have confirmed the overall non-linear association between sleep durations ≤5 
hours(161, 163, 165), 6 hours(163), 8 hours(161, 165) and ≥9 hours(161, 163, 165) 
when compared to 7 hours and CVD mortality. Two additional recent studies further 
confirmed that extremes of sleep duration, 5.5 hours and ≥8.5 hours, respectively, 
when compared to 6.5-7.5 hours(166) and <5 hours and ≥9 hours, respectively, 
when compared to 6 hours(164) are associated with CVD mortality. It should be 
noted, however, that three of these studies found no effect modification by sex for 
the association between sleep duration and CVD mortality(161, 163, 164) which is 
contrary to our own results. This may be due to differences in population 
characteristics, ethnicity, or study methodology. 

Age and sex-specific associations between sleep duration and 
cardiovascular disease mortality 
The sex- and age-stratified associations (i.e., above 65 years of age) found in paper 
III are similar to those reported in one study of elderly Taiwanese community 
residents(76): sleep durations of 8 hours, 9 hours, and ≥10 hours among older 
women were positively associated with CVD mortality whereas only the extreme 
sleep duration of ≥10 hours was associated with CVD mortality among older men. 
Our study further reported significant and positive associations for older women 
with sleep durations of ≤5 hours and 6 hours, respectively, and for older men with 
sleep durations ≤5 hours. One reason for the discrepant results related to short sleep 
duration between paper III and the study by Lan et al(76), could be their small 
sample size and consolidation of the shortest sleep duration category to include all 
sleep durations <7 hours. Our results also partially confirm the findings from a study 
on elderly (aged 65-85 years) Japanese where a sleep duration ≥10 hours (compared 
to 7 hours) among men was positively associated with CVD mortality(81). Our 
publication using data only from the JPHC cohorts found no effect modification of 
age in men or women, albeit with an age cut-off at the median age of 50 years to 
allow for a sufficient number of cases in the respective age strata(162). 
Consequently, this cut-off may not be aligned with corresponding changes related 
to age that may impact sleep duration, whether they be physiological or 
environmental (e.g., retirement). 

One study published after paper III did not find any effect modification by age of 
the association between sleep duration and CVD mortality(163). However, this 
study, despite its very large study sample, did not additionally test for effect 
modification by age in sex-stratified analyses. One argument speaking in favour of 
conducting multi-layered stratification are the results in paper III that relate to sleep 
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duration and cancer mortality. Granted, this outcome is not the main focus of this 
thesis, however, the results highlight the importance of stratification according to 
both sex and age when considering mortality as the primary outcome. Although, at 
first glance, the sex-specific analyses on sleep duration and cancer mortality do not 
reveal any significant associations among men, further stratification by age-group 
(i.e., younger and older than 65 years of age) reveals not only a significant effect 
modification by age, but also that the risks of cancer mortality among men younger 
than 65 years are higher for all but one (6 hours) of the sleep duration categories 
when compared to the referent 7 hours of sleep. This particularly emphasizes the 
need to conduct analyses stratified by specific characteristics of interest and 
strengthens the overall purpose of the paper. 

Overall, the impact of both short and long sleep durations on CVD-related events 
cannot be understated; population attributable fractions estimate that in the USA 
alone, the number of CVD events related to sleep durations shorter or longer than 7 
hours are expected to exceed 1,000,000 cases over a 10-year period(161). However, 
these analyses do not consider participants free from diabetes or heart disease at 
baseline which may explain why the majority of these events would be due to sleep 
durations exceeding 7 hours.   

Cardiovascular disease mortality driving all-cause mortality? 
CVD mortality may in fact be the driver for the association between sleep duration 
and all-cause mortality. Although the number of CVD-related deaths in paper III are 
notably smaller than the corresponding numbers for cancer mortality and other-
cause mortality, the obtained hazard ratios for the association between sleep 
duration and CVD mortality closely reflect those for the association between sleep 
duration and all-cause mortality. Indeed, the results of recent publications show 
comparable similarities(161, 163, 165, 166) even when analyses are stratified by 
sex(163). 

A link between sleep duration and increased risk of cardiovascular disease and 
all-cause mortality 
Despite the very large dataset available in paper III, the study itself did not allow 
for further conclusions about the mechanisms or pathways that may be responsible 
for the observed associations between sleep duration and CVD mortality on the one 
hand, and for the sex- and age-specific differences on the other hand. Excess risk of 
both all-cause mortality and CVD mortality is significantly increased in men with 
new onset diabetes and/or incident non-fatal CVD(167) which implicates incident 
disease as intermediate steps in a suggested pathway between sleep duration and 
mortality outcomes. Paper I and paper II aimed, using the MDC and MDC-CC 
studies, to further investigate if indeed a pathway including incident diabetes can be 
considered for the association between short sleep duration and incident CHD. 
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Sleep duration and incident diabetes and incident 
coronary heart disease 

Incident diabetes emerges as the link between sleep duration and 
incident coronary heart disease 
The reasons for the findings between sleep duration and risk of mortality, in 
particular from CVD, and any suggestion of underlying pathways that may help 
understand such associations are further investigated in paper I, paper II, and paper 
IV. Paper I was the first study of its kind to investigate if incident diabetes is on the 
path between sleep duration and incident CHD. The study findings must be taken 
into consideration in the context of its three main findings: first, that sleep duration 
is independently associated with incident diabetes; second, that sleep duration is 
independently associated with incident CHD; and third, that sleep duration is 
associated specifically with incident CHD preceded by incident diabetes (diabetes-
CHD) but not with incident CHD occurring before incident diabetes. Moreover, 
these patterns were consistent in both men and women. Indeed, among men, sleep 
durations <6 hours and ≥9 hours were positively associated with diabetes-CHD 
whereas among women a sleep duration <6 hours was positively associated with the 
outcome. The hazard ratios for sleep durations <6 hours were comparable for men 
and women with more than a twofold increase in risk of diabetes-CHD for men and 
a nearly threefold increase in risk for women. Although no formal statistical test was 
conducted to confirm the sex-specific differences of our results, the decision to 
conduct sex-stratified analyses was done not only because it is an established 
approach in cardiovascular research, but also due reported sex-specific differences 
involving diabetes outcomes(124, 168) and related risk factors(169, 170), including 
sleep duration(171). Notwithstanding the above effect sizes, the main difference 
between men and women in paper I was that sleep duration ≥9 hours was associated 
with incident diabetes-CHD in men, but not women. Although the study itself does 
not allow to further detail the mechanisms behind this difference, the context of 
diabetes risk must be considered both in terms of biological (e.g., BMI and 
metabolic syndrome) and psychosocial factors (e.g., socioeconomic status, 
psychological stress and health behaviours)(172). Paper I was well-adjusted for 
many of these important confounders, yet sleep duration emerged as an independent 
risk factor of incident diabetes and incident diabetes-CHD.  

The finding of incident diabetes as part of the pathway between sleep duration and 
incident CHD was further confirmed in paper IV despite its methodological 
differences when compared to paper I. For example, due to a primary focus on the 
exploration of biomarkers associated with sleep duration, paper IV utilised a subset 
of the study population in paper I. Consequently, the sample size was smaller which 
necessitated combined analyses for men and women as well as consideration of 
statistical cut-offs for the definition of sleep duration categories. Notwithstanding 
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these differences, when compared to the referent quintile 3, one extreme of sleep 
duration (quintile 1) was positively associated with both incident diabetes and 
incident CHD. However, when considering incident diabetes as a time-varying 
covariate in the same models, the association between sleep duration quintile 1 and 
incident CHD was entirely abrogated. The combined results of paper I and paper IV 
thus point toward an overall picture in which incident diabetes is an important 
intermediate step that may explain the association between short sleep duration 
(whether defined as <6 hours or as 4.00 – 6.57 hours) when compared to a referent 
category. Paper II further confirms an increased risk of incident diabetes with sleep 
durations of 6-7 hours and 8-9 hours (when compared to 7-8 hours). 

Paper I and paper IV, however, have certain differences with respect to the found 
associations between their respective definitions of the extremes of long sleep 
duration with both incident diabetes and incident CHD. Whereas paper I identified 
a positive association between ≥9 hours of sleep with both incident diabetes and 
incident CHD, paper IV substantiated only the association between sleep duration 
quintile 5 (8.14 hours – 11.00 hours) and incident diabetes. These discrepant 
findings could be due to the methodological differences discussed in the previous 
paragraph. 

Short sleep duration and proteomic markers  
Paper II focused on a targeted investigation of the association between sleep 
duration and Caspase-8. Paper IV, on the other hand, focused on exploratory 
analyses using a double machine learning technique to identify markers that were 
associated with specific sleep duration quintiles when compared to a referent sleep 
duration quintile. The analyses in paper IV identified six proteomic markers that 
were significantly associated with sleep duration quintile 1 when compared to sleep 
duration quintile 3.  

Caspase-8 
Caspase-8 is an initiator of apoptosis activated through the extrinsic (or receptor-
mediated apoptosis) with upstream binding of TNF to TNFR1, Fas ligand to Fas, or 
tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) to the receptors 
TRAIL-R1 and TRAIL-R2(173) with further recruitment of proteins which leads to 
activation of Caspase-8(174, 175). To our knowledge, the finding in paper II of a 
direct association between sleep duration and plasma concentrations of Caspase-8 
has not been previously identified. Indeed, the association was confirmed in two 
models: 1) when using a categorical definition of sleep duration where specifically 
<6 hours (when compared to 7-8 hours) was significantly and positively associated 
with plasma concentrations of Caspase-8, and 2) when considering sleep duration 
as a continuous variable where there was a significant inverse association with 
plasma concentrations of Caspase-8. These findings indicate that plasma 
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concentrations of Caspase-8 are upregulated with shorter sleep durations. This 
requires further interpretation in the context of the pathway in which Caspase-8 is 
involved. Consequently, Caspase-8 may serve as a proxy marker for the extrinsic 
apoptotic pathway that is activated by TNF-α; TNF-α in turn is implicated in 
bidirectional associations with sleep(135).  

Follistatin 
Follistatin is a modulator of the transforming growth factor-beta (TGF-ß) signalling 
pathway(176). Paper IV found that plasma concentrations of follistatin were 
upregulated with sleep duration quintile 1 when compared to sleep duration quintile 
3. This finding partially supports one previous study that found an L-shaped 
association between sleep duration and follistatin levels(136), indicating up-
regulation predominantly with short sleep duration. Few other studies have linked 
follistatin to sleep-related outcomes or exposures, but the findings of one study 
suggests that concentrations of circulating follistatin follow a circadian rhythm 
(177). Although follistatin’s overall function is largely unknown, it is suggested to 
be involved in the regulation of energy metabolism(178) with plasma concentrations 
of follistatin increased during exercise(179). Follistatin has also been implicated in 
the role of a stress-response protein(180) which, although without any specific 
studies on sleep deprivation, may allow for speculation as to the reason for its up-
regulation with sleep duration quintile 1.  

E-selectin 
E-selectin is a cellular adhesion molecule(181) mediating cell-to-cell adhesion with 
particular involvement in rolling and adhesion of leucocytes to endothelial 
cells(182). Paper IV found that plasma concentrations of E-selectin were 
upregulated with sleep duration quintile 1 when compared to sleep duration quintile 
3. This finding supports one previous study where sleep deprivation was associated 
with increased concentrations of soluble E-selectin(183). Other studies with sleep-
related outcomes or exposures have reported increased concentrations in OSA(184). 
There are, however, also studies that have found no significant associations between 
sleep duration and E-selectin (185, 186). Concentrations of E-selectin may adjust 
rapidly to alterations in sleep dynamics given that treatment with positive airway 
pressure results in lower concentrations of E-selectin(184, 187). 

Tumour necrosis factor-related activation-induced cytokine  
Tumour necrosis factor-related activation-induced cytokine (TRANCE) is also known 
as receptor activator of nuclear factor-kb ligand (RANKL). RANKL has been 
implicated in vascular inflammation, vascular calcification, and angiogenesis(188). 
Paper IV found that plasma concentrations of TRANCE were downregulated with 
sleep quintile 1 when compared to sleep quintile 3. No previous studies have linked 
TRANCE with sleep duration or other sleep-related outcomes or exposures.  
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Matrix metalloproteinase-10 
Matrix metalloproteinase (MMP)-10 is involved in the resolution of acute 
inflammation(189). Paper IV found that plasma concentrations of MMP-10 were 
downregulated in sleep duration quintile 1 when compared to sleep duration quintile 
3. To our knowledge no other studies have linked MMP-10 with sleep duration or 
other sleep-related outcomes or exposures. 

Matrix metalloproteinase 7 
MMP-7 has been linked with both proapoptotic and cell proliferative pathways 
through cleavage of the ligand FasL and its involvement in the Fas/FasL 
pathway(190). Moreover, it is possibly implicated in TNF-α release through the pre-
processing of the TNF-α precursor(191). Paper IV found that plasma concentrations 
of MMP-7 were upregulated in sleep duration quintile 1 when compared to sleep 
duration quintile 3. Although no other studies have reported links between sleep 
duration and MMP-7, a recent study found a U-shaped association between sleep 
duration and MMP-9(136), a matrix metalloproteinase that has also been mentioned 
in the context of TNF-α precursor pre-processing and TNF-α release(191).  

Tumour necrosis factor-related apoptosis-inducing ligand receptor 2 
As mentioned under Caspase-8, above, TRAIL-R2 triggers caspase-dependent 
apoptosis through the binding of TRAIL(173), and soluble TRAIL-R2 is released 
with apoptosis activated through the Fas/FasL pathway(192). Paper IV found that 
plasma concentrations of TRAIL-R2 were upregulated in sleep duration quintile 1 
when compared to sleep duration quintile 3. This result partially supports the 
findings from paper II and further links short sleep duration with Caspase-dependent 
apoptosis. 

Taken together, the findings from paper II and paper IV implicate an up-regulation 
of proteomic markers involved in the extrinsic apoptotic pathway, including 
Caspase-8, TRAIL-R2, and MMP-7 given its role as a pre-processor of the TNF-α 
precursor.  

Long sleep duration and proteomic markers  
The analyses in paper IV identified six proteomic markers that were significantly 
associated with sleep duration quintile 5 when compared to sleep duration quintile 3. 

Prolactin 
Prolactin is involved in lactation, reproduction, immune response and 
angiogenesis(193). Paper IV found that plasma concentrations of Prolactin were 
upregulated in sleep duration quintile 5 when compared to sleep duration quintile 3. 
These results are in line with previous studies that have shown an increased release 
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of Prolactin during sleep(194-197) and that partial sleep deprivation is inversely 
associated with prolactin levels(198). Moreover, increased serum Prolactin levels 
have been mentioned in the context of excessive daytime sleepiness(199) which is 
also in line with the directions of our results. 

Matrix metalloproteinase-7 
Paper IV found that plasma concentrations of MMP-7 were upregulated in sleep 
duration quintile 5 when compared to sleep duration quintile 3. It is therefore the 
only one of the proteomic markers discussed in detail in this thesis that was 
upregulated with both quintile 1 and quintile 5. No previous studies have linked 
sleep duration outcomes or exposures with MMP-7 for which reason it is not 
possible to discuss this seemingly contradictory finding in relation to sleep duration. 
One possibility, however, is that MMP-7 fulfils dual roles or functions which cannot 
be understood through the measurement of only plasma concentrations. Future 
studies with additional knowledge of the specific pathways involved are required to 
elucidate the roles of MMP-7 with relation to short and long sleep durations.  

C-X-C motif chemokine 1
C-X-C motif chemokine 1 (CXCL1) is a chemoattractant cytokine involved in
neutrophile recruitment in inflammation and the promotion of angiogenesis(200).
Paper IV found that plasma concentrations of CXCL1 were upregulated in sleep
duration quintile 5 when compared to sleep duration quintile 3. No previous studies
have linked CXCL1 to sleep duration or sleep-related exposures or outcomes.

Tissue-type plasminogen activator 
Tissue-type plasminogen activator (t-PA) plays a role in endogenous 
fibrinolysis(201). Paper IV found that plasma concentrations of t-PA were 
upregulated in sleep duration quintile 5 when compared to sleep duration quintile 3. 
Overall, our findings are in line with those of previous studies reporting reduced 
acute release of t-PA in men who habitually sleep shorter than 7 hours (when 
compared to men who sleep between 7.0 – 8.1 hours)(202). Although our results 
may seem contrary to studies reporting that t-PA is positively associated with 
desaturation events during sleep(203) as well as with moderate to severe OSA(184, 
203), our finding of an upregulation of t-PA with the longest sleep quintile may 
suggest a link between OSA and long self-reported sleep duration. 

Tumour necrosis factor receptor superfamily member 6 
Tumour necrosis factor receptor superfamily member 6 (Fas) is a cell-surface 
receptor involved in caspase-dependent apoptosis(138). Paper IV found that plasma 
concentrations of Fas were downregulated in sleep duration quintile 5 when 
compared to sleep duration quintile 3. No previous studies have directly linked Fas 
with sleep exposures or outcomes, however, this result lends additional credence to 
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the findings of paper II; the inverse associations between sleep duration and plasma 
concentrations of Caspase-8 may, by extension be a consequence of downregulation 
of Fas with long sleep duration. 

Heat shock 27 kDa protein 
Heat shock 27 kDa protein (HSP27) functions as an antioxidant and an anti-
apoptotic agent during oxidative- and chemical stress, respectively(204). Paper IV 
found that plasma concentrations of HSP27 were downregulated in sleep duration 
quintile 5 when compared to sleep duration quintile 3. Although no other studies 
have linked HSP27 with sleep duration or sleep-related exposures or outcomes, the 
findings that long sleep duration is associated with an antiapoptotic process would 
be in line with the findings in paper II.  

Proteomic markers and cardiometabolic disease 
Caspase-8 
Paper II found that plasma concentrations of Caspase-8 were positively associated 
with incident diabetes. This association held both when Caspase-8 was considered 
as a continuous variable and when dichotomised into high vs low concentrations. It 
is noteworthy that these associations were independent of conventional risk factors 
of diabetes, including but not limited to age, physical activity, waist circumference, 
and fasting blood glucose levels. These results indicate a possibility of the 
involvement of Caspase-8 or the extrinsic apoptotic pathway in the pathogenesis of 
diabetes. Caspase-8 is associated with coronary events(205), with the combined 
findings of paper II and paper IV further implicating incident diabetes as the 
explanatory pathway for downstream associations with incident coronary outcomes. 
The exact mechanisms through which Caspase-8 and/or the extrinsic apoptotic 
pathway are linked with diabetes remain to be elucidated. However, Caspase-8 has 
been discussed in beta cell apoptosis, in the maintenance of beta cell mass, and in 
the regulation of insulin secretion, albeit in experimental models only(206). 
Moreover, a more recent study has reported that Caspase-8 protein is increased in 
cultured human adipocytes from type 2 diabetics as compared to non-diabetics and 
suggested a role of Caspase-8 in adipose tissue inflammation and glucose 
intolerance(207). It is, however, difficult to make direct comparisons between 
experimental studies and the results obtained in paper II and paper IV given that 
such comparisons would be between tissue-specific expressions and non-specific 
plasma concentrations of Caspase-8.  

The other main finding of paper II was that plasma concentrations of Caspase-8 
were an effect modifier of the association between sleep duration and incident 
diabetes. Indeed, it was only among participants with a high (quartile 4) plasma 
concentration of Caspase-8 where sleep duration was associated with incident 
diabetes. It would be of interest for future studies to not only replicate these findings, 
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but to further investigate if sleep-specific interventions impact and thus are causally 
linked with plasma concentrations of Caspase-8.  

Proteomic scores and cardiometabolic disease 
Paper IV further combined the respective markers of quintiles 1 and 5 into quintile-
specific proteomic scores and tested their associations with incident diabetes and 
incident CHD, respectively. These models were mutually adjusted for the original 
phenotype (sleep duration quintiles) and their respective proteomic scores to 
investigate any possibility of a mediating effect of the proteomic scores on the 
respective outcomes of interest.  

Proteomic score for sleep quintile 1 
The proteomic score for sleep duration quintile 1 remained significantly associated 
with incident diabetes in the final multivariable model. Paper IV did not investigate 
the association between the individual markers comprising the proteomic score for 
sleep duration quintile 1 and incident diabetes. However, previous research has 
found that follistatin(208), E-selectin(209), MMP-7(210), and TRAIL-R2(192) are 
associated with the risk of diabetes whereas RANKL is inversely associated with 
prevalent diabetes(211). Our findings thus support known associations while taking 
one additional step by combining proteomic markers to a composite score specific 
for the phenotype of interest. Indeed, the inclusion of proteomic scores abrogated 
the association between the sleep duration quintiles 1 and 2 and incident diabetes. 
Moreover, when further investigating the possibilities of this proteomic score 
mediating the association between the original phenotype (sleep duration quintile 1) 
and incident diabetes, the phenotype-specific score was found to mediate 
approximately 40% of the association. Given the observational nature of the study, 
it is not possible to make any inferences of causality between the proteomic score 
and incident diabetes. However, the overall results speak in favour of the phenotype-
specific score providing information about a probable explanatory mechanism 
linking short sleep duration with incident diabetes. 

The proteomic score for sleep duration quintile 1 was not associated with incident 
CHD in paper IV. Previous studies focusing on individual markers have reported 
that follistatin and TRAIL-R2, but not MMP-7, MMP-10 or TRANCE, are 
associated with incident CHD in those without prevalent diabetes(212), and that 
there is no association between E-selectin and incident CHD(213, 214) or incident 
MI(215). Moreover, the proteomic score for sleep duration quintile 1 did not 
attenuate the association between its phenotype and incident CHD which indicates 
the that such associations may need to be considered through proteomic markers 
other than those available in the assay used in paper IV. Indeed, the proteomic assays 
available today allow for the quantification of thousands of proteomic markers, 
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some of which may provide suggestions of specific pathways that are relevant for 
this association. 

Proteomic score for sleep quintile 5 
The proteomic score for sleep duration quintile 5 was not associated with incident 
diabetes or incident CHD. Moreover, this proteomic score did not markedly 
attenuate the association between its phenotype (sleep duration quintile 5) and 
incident diabetes. This may be explained through residual confounding whereby 
long sleep duration is a proxy for other unadjusted comorbidities or lifestyle-related 
variables. Alternatively, and similar to the discussion in the previous paragraph, 
there may be proteomic markers available in large-scale proteomic datasets that 
could provide suggestions of relevant proteomic pathways. 

Overall summary 
The results from papers I-IV provide, in the context of existing research, a suggested 
pathway between short sleep duration (defined as sleeping less than an appropriate 
referent category) and increased risk of mortality. Although far from being 
complete, one suggested pathway for the association between short sleep duration 
and incident CHD can thus be described as increased hunger and appetite(127) 
through decreased leptin and increased ghrelin(125), with subsequent weight 
gain(128) or obesity(216), metabolic syndrome(167), upregulation of proteomic 
markers related to predominantly apoptosis and inflammation (paper IV), incident 
diabetes (papers I, II, and IV) increasing the risk of incident CHD (paper I and IV), 
with further downstream implications of significantly increased sex- and age-
specific risks of CVD mortality (paper III) with all-cause mortality (paper III). This 
pathway is far from complete and requires additional mechanistic studies to 
elucidate the missing components that may help connect the dots. 

Major limitations 
The papers included in the thesis share many limitations that deserve to be discussed 
in detail. Some of these limitations can be considered in the context of future 
research. 

A single measure of sleep duration  
As mentioned in the introduction to this thesis, there are several methodological 
approaches that allow researchers to obtain information about an individual’s sleep 
duration, including PSG, accelerometers, and through self-report questionnaires. 
The subjective nature of the definition of sleep duration that has been used 



62 

throughout papers I-IV is, although limited, not the primary concern of this 
exposure. The main consideration that should be discussed is instead the single 
measure of sleep duration upon which the study results rely. Sleep duration, or total 
sleep time, represents a dynamic measure that changes not only with age(26) but 
also with external influence, including occupational expectations or life 
circumstance such as child rearing. Consequently, papers I-IV work under the 
assumption that habitual sleep duration remains consistent throughout the defined 
follow-up times of each study. Indeed, one may question if this is indeed possible 
given that follow-up times of the individual papers vary from an average of 13.4 – 
14.0 years (paper III) to 21.8 – 22.4 years (paper IV). 

Sex-specific expressions of proteomic markers 
The results of paper III identify both age and sex as important modifiers of the 
associations between sleep duration and CVD mortality. Indeed, although paper IV 
investigated and found the interaction between sleep duration and sex non-
significant with regards to the outcomes, it is possible that this is a result of the 
limited sample size. There may be differences between men and women with 
regards to diabetes risk factors(217) with diabetes, in turn, appearing as a stronger 
risk factor for incident CHD in women compared to men(124).  Moreover, there is 
a possibility of sex-specific associations between proteomic markers and beta-cell 
function and insulin sensitivity, respectively(218). Based on proteomic profiles, one 
study has suggested that men and women may respond differently to CVD risk 
factors(219). It is therefore not inconceivable that sleep duration may result in sex-
specific expressions of proteomic markers which could not be investigated in paper 
II or paper IV.   

Additional sleep parameters of interest 
This thesis has focused on one sleep-related parameter: sleep duration. This is not a 
limitation in itself given that it is a valid measure that has shown robust associations 
with health-related outcomes across many different study populations. However, it 
may be of interest to consider additional sleep parameters that may add additional 
dimensions to the understanding of sleep in the context of health. Such measures 
would include sleep quality which takes into account the subjective experience of 
sleep. A recent consensus statement of the National Sleep Foundation(220) 
discussed the importance of two sleep-related parameters: catch-up sleep to 
compensate for nights with insufficient sleep, and sleep regularity which focuses on 
the variability of sleep duration and sleep timing. Variability in sleep duration and 
sleep timing is significantly and positively associated with metabolic 
syndrome(221) and CVD (222) independently of sleep duration. Sleep regularity is 
also associated with risk of all-cause mortality and cardiometabolic mortality 
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independently of sleep duration(223). In order to accurately assess sleep regularity, 
objective measures of sleep duration are required, which is the focal point of future 
perspectives. 

Future perspectives 
Future research on the association between sleep and outcomes related to 
cardiometabolic disease and mortality, respectively, is suggested to focus on aspects 
that have not been considered in this thesis.  

It is recommended that future research focuses on objectively measured sleep 
parameters, including but not limited to TST. Indeed, several studies have been 
published using accelerometer data to define sleep duration, sleep timing, or sleep 
regularity in the context of cardiometabolic disease and mortality.  The number of 
prospective studies with large sample sizes are, however, limited. Given the advent 
of consumer wearable technologies and the emergence of wearable devices, it is 
recommended that sleep research aims to incorporate these new technologies under 
the condition that the devices meet the required standards set out by sleep 
researchers. Wearable technologies have been discussed for the development of 
sleep-related biomarkers(224). One very important standard that must be 
considered, and which was discussed at the Sleep Research Society’s 
workshop(224), is the validation of wearable technologies. Indeed, part of our work 
has been to validate two different consumer wearables that have been used in our  
related research, one wrist-worn device(225) and one ring-type device(226), the 
latter of which was compared to PSG. Overall, validation studies point towards an 
improvement in the sensitivity, and specificity in wearable devices’ detection of 
sleep. Although several question marks remain to be answered with regards to data 
privacy, the proprietary algorithms of said devices, the possibility to conduct studies 
in naturalistic settings with validated repeat measurements over weeks, or even 
months of sleep parameters, including TST, time in bed, sleep onset latency, sleep 
efficiency, and minutes spent in different sleep stages has never been more readily 
available.  

Another consideration for future studies is to not only utilise objectively derived 
repeated measures of sleep parameters, but to also consider repeated measures of 
proteomic markers. Such data would allow for a better understanding of any changes 
that occur with regards to the expression of proteomic markers based on 
concomitant changes in sleep parameters.  

Taken together, the focus of future studies should be on repeated measures of both 
digital markers and biomarkers over extended periods of time. This approach will 
guide our understanding of individual-level differences in both phenotype and 
proteomic expression. 
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Conclusion 
The work in this thesis has identified noteworthy associations between short sleep 
duration and proteomic markers, which in turn are significantly associated with 
incident diabetes. The work thus suggests a pathway in which short sleep duration 
through inflammation and apoptotic activity is associated with incident diabetes 
which in turn increases the risk of future CHD. The work has also quantified the 
risk of mortality in a population of East Asians and through this highlighted sex and 
age as effect modifiers of such associations. The work thus adds to the 
understanding of how future risks of mortality may differ according to sex and age, 
and that sleep duration recommendations ought to consider these characteristics 
when formulating sleep duration recommendation guidelines. 
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Populärvetenskaplig sammanfattning 

Sömn är en fysiologisk nödvändighet för människan. Sömnbehovet är individuellt, 
men studier har visat att en vuxen människa i genomsnitt bör sova mellan 6 och 9 
timmar under en 24-timmarsperiod. Trots detta sover många av oss kortare eller längre 
än vad som är rekommenderat. Sådana avvikelser kan bero på ålder, där yngre sover 
längre än äldre, eller på yttre faktorer som till exempel livsstilsval och arbetstid. 
Kortare perioder med sömnbrist kan leda till märkbara, om än tillfälliga, konsekvenser 
som exempelvis uttalad trötthet eller försämrad prestationsnivå vilka snabbt kan 
återställas efter återställd sömnängd. Konsekvenserna av uttalade perioder med 
avvikande sömnmängd är betydligt allvarligare. Forskning har visat att för kort eller 
för lång sömn kan kopplas till inte bara diabetes och hjärtkärlsjukdom, men också till 
förtidig död.  

År 2021 uppgick antalet nya fall av diabetes i världen till närmare 24 miljoner. 
Trender visar att antalet diabetesfall ökar och det uppskattas att antalet individer med 
diabetes kommer att uppgå till närmare 1.3 miljarder år 2050. Diabetes är en sjukdom 
i sig, men konsekvenserna sträcker sig längre än så. Diabetes är också en mycket 
viktig riskfaktor för framtida hjärtkärlsjukdom och förtidig död. 
Sjukdomsförebyggande åtgärder är således det viktigaste steget för att förbättra 
folkhälsan och på sikt minska antalet nya sjukdomsfall.  

Diabetes- och hjärtkärlsjukdomsförebyggande åtgärder har fokuserat mycket på 
livsstilsförändringar med huvudsaklig inriktning mot kost och motion. Viktnedgång, 
förbättrade kolesterol- och blodsockernivåer har i sin tur varit mätbara resultat på 
framgångsrika livsstilsförändringar. Under senare år har forskning emellertid visat att 
avvikande sömnmängd, i synnerhet för kort sömn, också kan räknas till gruppen 
modifierbara livsstilsfaktorer för framtida sjukdomsrisk. Till exempel är för kort sömn 
kopplad till två hormoner som är kan öka hunger och aptit vilket i sin tur kan innebära 
att för kort sömn potentiellt kan leda till ökat energiintag med viktökning och 
efterföljande sjukdom som följd.  

De exakta mekanismerna genom vilka avvikande sömnnivåer är kopplade till framtida 
diabetes- och hjärtkärlsjukdom är emellertid inte helt klarlagda. En tänkbar mekanism 
är ökad inflammation; studier har visat att kort sömn är kopplad till ett flertal markörer 
som talar för systemisk inflammation. Dessa inflammationsparametrar har även visat 
sig vara riskfaktorer för hjärtkärlsjukdom. Problemet med dessa parametrar är de är 
förhöjda också vid inflammatoriska tillstånd samt vid infektioner; de är med andra ord 
inte specifika för sömn. 
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Under senare år har ny teknologi gett forskare möjligheten att mäta proteinmarkörer i 
blodprover. Dessa proteinmarkörer erbjuder nya infallsvinklar för studier som bättre 
vill förstå sambandet mellan livsstilsfaktorer och sjukdom då de kan ge en inblick i 
möjliga biologiska signalvägar. Få forskare har fokuserat på sömnmängd och 
proteinmarkörer, och ännu färre har vidare kunnat undersöka hur dessa sömnspecifika 
proteinmarkörer är kopplade till nyinsjuknande i diabetes- och kranskärlssjukdom. 
Nyinsjuknande kan mätas i studier som följer deltagare under flera år och där 
insamlade data om livsstilsfaktorer (t.ex. sömn) och blodmarkörer (t.ex. 
proteinmarkörer) kopplas till information om sjukdom som hämtas från nationella 
registerdatabaser. Sådan forskning är unik för Sverige och de nordiska länderna. 

Denna avhandling baseras på fyra studier som har två huvudsakliga mål. Det första 
målet är att öka förståelsen för vilken roll kön och ålder spelar i sambandet mellan 
sedvanlig sömnmängd och risken att dö. Det andra målet är att öka förståelsen för 
sambandet mellan sömn och nyinsjuknande i diabetes respektive kranskärlsjukdom. 
Ett viktigt delmål i det sistnämnda målet är att undersöka om antalet timmar sömn kan 
kopplas till specifika proteinmarkörer samt om det är möjligt, baserat på uppmätta 
proteinmarkörer, att föreslå signalvägar för sambandet mellan sömnmängd och 
nyinsjuknande i diabetes respektive kranskärlssjukdom. 

Resultaten av en i avhandlingen ingående studie visar att kön inte spelar roll för 
sambandet mellan sömnmängd och död i de fall där dödsorsaken inte utgör 
huvudfokus. Däremot spelar ålder en viktig roll för detta samband: män yngre än 65 
år har ökad risk för död när antalet timmar sömn är färre eller fler än 7 timmar. Hos 
män som är äldre än 65 år ökar risken för död endast om sömnmängden är lika med 
eller större än 9 timmar. Vidare visar samma studie att kön spelar en viktig roll för 
sambandet mellan antalet timmar sömn och död från kardiovaskulära sjukdomar. 

Resultatet i avhandlingen visar också att sambandet mellan sömnmängd och 
nyinsjuknande i kranskärlssjukdom föregås av insjuknande i diabetes. Antalet timmar 
sömn är också kopplat till flera proteinmarkörer vilka tillsammans talar för att de 
tänkbara och föreslagna signalvägarna som kan koppla för lite sömn till nyinsjuknade 
i diabetes i huvudsak representerar signalvägar relaterade till inflammation och 
programmerad celldöd. Samma proteinmarkörer är i våra studier inte direkt kopplade 
till kranskärlssjukdom. Detta styrker ytterligare hypotesen att för lite sömn kan 
kopplas till diabetesinsjuknande vilket i sin tur ökar risken för insjuknande i 
kranskärlssjukdom. 

Fynden i denna avhandling talar för att sömnmängd är en viktig livsstilsfaktor som 
direkt kan kopplas till diabetes och indirekt till kranskärlssjukdom. Upptäckten av 
föreslagna signalvägar möjliggör för fortsatta studier som förhoppningsvis kommer 
att kunna besvara frågan om orsakssamband. Ur ett folkhälsoperspektiv talar 
resultaten i denna avhandling för vikten att bibehålla en rekommenderad sömnmängd 
runt ca 7 timmar. 
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