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Popular summary in English

Magnetism is a ubiquitous phenomenon in everyday existence. The study of
magnetism has spanned thousands of years. As a branch of natural science,
it has developed with discoveries of new phenomena, empirical or theoretical
descriptions, and applications. Early recognition of magnetism included the ob-
servation that magnets could attract ferrous metals from a distance, and interact
with each other either attractively or repulsively. In later centuries, people real-
ized that Earth itself is a huge magnet, and that artificial magnets could be
created. This primitive knowledge led to the invention of compass, a great pro-
gress in navigation. Around the 1800s, a significant step in the fundamental
description of magnetism occurred when it was discovered that magnetism and
electricity are connected. These connections were demonstrated by phenomena
such as electromagnetic induction and the Faraday effect, and were summarized
by Maxwell’s equations, a cornerstone of modern classical electromagnetism. A
revolutionary application of classical electromagnetism is the electric generator.
In the early 1900s, with the development of quantum mechanics, the investig-
ation on magnetism continued at a more fundamental and microscopic level.
The concept of spin was proposed to explain the magnetic moment of electrons.
Along with progress in theories for solids, magnetic orders were understood on
a quantum mechanical basis. Improved understanding of magnetism led to vari-
ous applications, including radio-wave-based communications, magnetic storage,
magnetic resonance imaging and advanced probing techniques of magnetic prop-
erties. In turn, novel phenomena were observed, including quantum spin liquids,
where ordinary magnetic order is absent, and magnetic skyrmions, where the
noncollinear spin alignments are related to topological properties. As a fact, not
all of these new discoveries are fully understood theoretically.

In this thesis, we focus on aspects related to our theoretical understanding
of magnetism. A natural difficulty encountered in theoretical treatments is
that magnetic materials consist of an enormous number of atoms and electrons.
First-principles calculations partially solve this problem and succeed in many
materials. However, there remains systems where current treatments perform
less satisfactorily. Therefore, we work with effective models in one- and two-
dimensions, which have lower complexity than real materials, but still capture
the essential physics, and even exhibit unique properties of surface/interface
systems. Using these models, we propose theoretical frameworks and calculate
some quantities which can be compared with experiments. Our long-term goal
is to utilize the model results to develop new methods for systems which are
beyond the scope of current treatments.
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Chapter 1

Introduction

The study of magnetism can be traced back to ancient history, and has contin-
ued into contemporary times [1]. Despite the extensive history of research in
this field, magnetism still maintains an air of mystery. Moreover, the field of
low-dimensional (low-D) magnetism has attracted significant research interest
for several reasons: i) Several models of low-D magnetism, in contrast to their
3D counterparts, are exactly solvable. These models provide theoretical insights
into phase transitions and the interplay of quantum and thermal fluctuations.
ii) There are real materials relevant to low-D models. Magnetic materials that
display similar properties in their bulk form may exhibit distinct magnetic be-
haviors when approaching the monolayer limit [2, 3]. This indicates that low-D
magnetism is not merely a theoretical playground but a compelling subject in
its own right. iii) High-temperature superconductors with coherence lengths
smaller than the interplanar distance have been discovered. The superconduct-
ivity in these materials is related to the strong magnetic fluctuations which exist
in low-D systems [4, 5]. Consequently, low-D magnetism offers connections to
other profound fields of science and cutting-edge technologies.

In this thesis, we will discuss our theoretical studies concerning magnetic sys-
tems in low dimensions. An important theorem from the 1960s about low-D
magnetism, the Mermin-Wagner theorem [6], states that no one-dimensional or
two-dimensional (1D/2D) isotropic Heisenberg spin system can exhibit magnetic
order at any non-zero temperature. However, magnetic anisotropy and other
mechanisms beyond the isotropic Heisenberg model can lift this restriction. Ac-
cording to the Bohr–van Leeuwen theorem, magnetism is a purely quantum
mechanical effect [7]. Therefore, we focus on studying the quantum fluctuations
in low-D magnetic systems. In the investigation of magnetism in solid materials,
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one approach involves solving the many-body Schrödinger equation

i
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉, (1.1)

where |Ψ(t)〉 is the many-body wavefunction and atomic units (a.u.) are used
such that me = e = ~ = 4πε0 = 1. We will use atomic units through
this thesis. The SI values of other observables can be derived, e.g., length
x = 1 a.u. = ~2(4πε0)/(mee

2) = 5.292 × 10−11 m and time t = 1 a.u. =
(4πε0)2~3/(mee

4) = 2.419 × 10−17 s. The Hamiltonian contains in principle
both ionic and electronic degrees of freedom. However, in this thesis we focus
on the electron properties. Therefore, we apply the Born-Oppenheimer approx-
imation such that the following simplified Hamiltonian can be used:

Ĥ =− 1

2

∑

i

∇2
i +

1

2

∑

i 6=j

1

|ri − rj |
+
∑

i

V ext(ri) (1.2)

where ri = (σi, ri) are the spin-position variables of the electrons, and V ext is
the external potential experienced by each electron. The other two terms con-
tained in Ĥ represent the electron kinetic energy and the Coulomb interaction,
respectively.

Solving the Schrödinger equation to obtain the wavefunctions Ψ(r1, r2, · · · , rN ),
which depend on the positions and spins of all N electrons, is generally a very
difficult task due to the large number of the electrons, their fermionic nature,
and the Coulomb interaction. The challenge is particularly pronounced for mag-
netic materials, especially where the electrons of 3d transition metals or 4f rare-
earth elements are highly correlated or where time-dependent electromagnetic
fields drive the system out of equilibrium. For low-D magnetic systems, the
usual perturbative approaches work in only limited cases. Extensive theoretical
methods have been developed in order to overcome these difficulties. Some of
them map the real system onto models with lower complexity that still capture
the physical essence, while others are based on first-principles. In this thesis,
we follow the former path and discuss several model-based developments, some
of which are motivated by the goal of improving first-principles calculations of
real materials. Our research primarily investigates low-D systems at zero tem-
perature, utilizing both isotropic and anisotropic models. Although we do not
perform first-principles calculations with real materials, we anticipate that our
work will provide insights into the physics of low-D magnetism and contribute
to the improvement of the current theoretical framework. In the sections below,
we will first give a brief review of density functional theory, a standard tool for
first-principles calculations in condensed matter physics and chemistry [8, 9].
Here, our purpose is to review some fundamental ideas which are connected to
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our model-based approaches. Then we will discuss the Green’s function, a basic
building block in many-body theory [10], and its relation to several experimental
techniques which measure magnetic properties. Also, we will introduce the con-
cepts of quasiparticles and magnetic impurities, which are of high relevance to
the papers on which this thesis is based.

1 Density functional theory

Hohenberg and Kohn [11] derived theorems which state that the ground state
total density of electrons

ρ(r) = N

∫
dr2 · · · drN |Ψ(r, r2, · · · , rN )|2 (1.3)

determines the external potential V ext(r) up to a constant. Such one-to-one
relationship between V ext(r) and ρ(r) means that given ρ(r), one can in prin-
ciple determine all the ground state magnetic properties and even excited state
ones. Using the electron density instead of the full wavefunction as the central
quantity reduces the difficulty in calculating solid state properties. Furthermore,
by building an auxiliary noninteracting system which produces the exact real
system electron density [12], one can map the many-body problem to a set of
single-particle equations, namely the Kohn-Sham equation

[
− 1

2
∇2

r + V ext(r) + V H(r) + V xc(r)
]
ψi(r) = εiψi(r) (1.4)

where ψi(r) produces the same electron density as that of the original system.
The exchange-correlation (xc) potential V xc in the Kohn-Sham scheme is the
functional derivative of the xc energy Exc with respective to the electron density

V xc(r) =
δExc[ρ]

δρ(r)
. (1.5)

Exc can be formally expressed in terms of the xc hole ρxc:

Exc[ρ] =
1

2

∫
drdr′ρ(r)v(r − r′)ρxc(r, r′)

=
1

2

∫
drρ(r)

∫ ∞

0
dRRρ̄xc(r,R) (1.6)

where ρ̄xc(r,R) =
∫
dΩRρ

xc
σ (r, r + R) is the spherical average of ρxc. Note

that r = (σ, r) is the spin-position variable but R = |R|. The definition of
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ρxc involves density operators, which can be found in e.g. Ref. [13]. Here, we
focus on the physical picture. ρxc can be interpreted as a depletion of electron
distribution around a given electron at r due to the Pauli principle. This electron
depletion fulfills a sum rule in that it integrates to -1 (hence a hole). In practice,
the Kohn-Sham V xc is unknown but can be approximated by the local-density
approximation (LDA), where the xc energy is calculated from the homogeneous
electron gas. Despite its simplicity, the LDA yields rather accurate results for
many materials when used to calculate the electronic structure [14]. This success
can be attributed to several factors: i) LDA fulfills the sum rule of the xc hole;
ii) LDA yields a good approximation of the spherical average of ρxc, which is
the relevant quantity, as shown in Eq. (1.6).

The LDA is generalized to spin-polarized systems as the local-spin-density ap-
proximation (LSDA) [15, 13]. Furthermore, DFT has been extended to study dy-
namical properties through time-dependent density functional theory (TDDFT)
[16, 17, 18, 19]. The foundation of TDDFT is the Runge-Gross theorem [20],
which proves a one-to-one correspondence between the time-dependent external
potential V ext(r, t) and the time-dependent electronic density ρ(r, t) for many-
body systems evolving from an initial state. As in ground-state DFT, a time-
dependent Kohn-Sham scheme can be constructed for TDDFT, where the time-
dependent xc potential needs to be approximated.

Here, we focus on ground-state DFT. Despite its success in very many situations,
L(S)DA does not perform well in strongly correlated systems. One approach to
improving the performance of DFT on model lattice systems is through the xc
term. Recently, a framework has been proposed, based on a dynamical xc field
which is the Coulomb potential of its corresponding dynamical xc hole ρxc(t)
[21]. The dynamical xc field, distinct from the time-dependent xc potential
in TDDFT, couples to the Green’s function locally in space and time. We
will expand the detailed discussion of the formalism in magnetic systems with
derivations in chapter 2 and some results in chapters 3 and 4.

2 Green’s function and probing the magnetic struc-
ture

Apart from the electron density, the Green’s function is another key quantity in
many-body frameworks. The single-particle Green’s function is an expectation
value of field operators. The ground-state energy, the ground-state expectation
values of single-particle operators, and the excitation spectrum of the system
can be calculated given the single-particle Green’s function. For system out of
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equilibrium, the nonequilibrium Green’s function (NEGF) framework is the tool
of choice for quantum transport problems. We will introduce several theoretical
approaches based on the Green’s function in chapter 2. Here we discuss the
relation between the Green’s function and a widely used experimental techniques
in probing the magnetic structure, namely magnetic neutron scattering.

The neutron, which carries zero charge and nonzero magnetic dipole moment,
is an ideal probe for studying magnetic structures [22]. Spin-polarized neutron
beams can penetrate into the material and interact with unpaired electrons of
the atoms which form a lattice. Effectively, the magnetic scattering process is
determined by the intrinsic magnetic properties of the material. Measuring the
neutron scattering cross-section gives the dynamical magnetic structure factor
S(Q, ω), where Q is the momentum transfer and ω is the energy transfer. Es-
sentially, S(Q, ω) is related to the spin-polarized Green’s function.

The Green’s function also provides a theoretical basis for other experimental
techniques, such as the spin-resolved angle-resolved photoemission spectroscopy
[23]. The relationship between the Green’s function and probing techniques
provides part of the motivations of this thesis: by developing approaches that
calculate the Green’s function with better accuracy and that improve DFT,
we aim at explaining experimental results (e.g. from the European Spallation
Source [24] when its construction is completed).

3 Quasiparticles

For interacting many-body systems at low temperature, despite the enormous
number of degrees of freedom, the physical properties are greatly determined by
collective excitations [25], as if the many-body problem could be treated as a
one-particle problem. Such excitations are called quasiparticles (QPs). We note
that there exist conventions that restrict QPs to be fermionic and refer to the
bosonic excitations as “collective excitations” [26]. However, in this thesis, we
use QP for all those particle-like excitations.

The categories of QPs are very broad, from the widely-studied ones, such as the
QP in solids which may be thought of a screened particle and phonons which
are associated with lattice vibration, to new species such as composite fermions
and magnetic solitons. Different kinds of QPs may interact with each other and
thus create new QPs. Here we introduce the QPs that are related to this thesis.
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3.1 Magnons

The local spins in a ferromagnetic (FM) material align parallel to each other
(this direction is chosen as the z-axis) in the ground state. An elementary
excitation will lead to a decrease in the total z-component spin Sztotal of the
system, which is distributed collectively among all the spins, namely the spin
waves. Magnons are the units of quantization of spin waves. A single magnon
carries spin one, corresponding to the deviation of Sztotal. The energy cost of
creating a single magnon is much lower than the cost of flipping a spin on a
site. In absence of external field, thermal energy is sufficient to excite magnons.
Magnons and their interaction with other QPs are of high importance in many
magnetic phenomena [27, 28]. We will introduce a magnon self-energy-based
approach in chapter 2.

3.2 Spinons

Spinons are the low-lying excitations in spin-1
2 antiferromagnetic (AFM) chain

[29]. Spinons, each of them carrying spin-1
2 , are excited in pairs and correspond

to magnetic domain walls. We will study the two-spinon excitation spectrum
of an AFM spin-1

2 chain with the xc field-based formalism, with the results
presented in chapter 3.

3.3 Magnetic skyrmions

Figure 1.1: A sketch of a skyrmion, adapted from [30].

Magnetic skyrmions (referred to as skyrmions in the text below) are topolo-
gically protected spin textures, where the spin moments form non-collinear and
vortex-like structure [31, 32, 33, 34, 35, 36] (see a sketch of a Neel type skyrmion
in Fig. 1.1). Skyrmions can be found in 2D materials, and they are QPs with
long life-time and can be manipulated by ultralow currents. Recently, consid-
erable research interests have been devoted to quantum skyrmions [37, 38, 39]
and itinerant-electron-skyrmion systems [40, 41, 42]. We will study quantum
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skyrmions in contact to itinerant electrons by combining Tensor Networks and
NEGF methods.

4 Magnetic impurities

The study of magnetic impurities can be traced back to the observation that the
resistance of gold as a function of temperature (T ) exhibited a minimum. This
non-monotonic behavior of resistance was later explained by the Kondo model
[43], where the conducting electrons are coupled to the localized spin on the
impurity via an AFM spin-exchange interaction. During the scattering process
of a conducting electron by the impurity, both the electrons and the impurity
can undergo a spin flip. The scattering rate given by perturbation theory scales
logarithmically with inverse temperature, and thus resistance can increase with
decreasing T . However, the divergence of the scattering rate as T approaches
zero suggests that the Kondo model requires a nonperturbative treatment [44,
45]. It is now known, from methods such as the numerical renormalization group
[46], that the localized spin is screened by conducting electrons at temperatures
below the so-called Kondo temperature [47]. A spin-singlet is formed which
scatters electrons as a nonmagnetic impurity [48]. Consequently, the scattering
process is changed and the scattering rate converges to a constant in the limit
T → 0.

Although the Kondo model has been extensively studied, quantum impurity
models receive extended research interest due to their connections to quantum
transport in nanoscale devices [49, 50, 51], many-body entanglement [52], and
dynamical mean-field theory [53, 54, 55]. We will investigate magnetic impurities
using models where localized spins are coupled to itinerant electrons via the
Kondo exchange. In chapter 4, we present the results for i) a skyrmion-itinerant-
electron system as mentioned in section 3.3, and ii) a calculation of the Anderson
model [56] spectral function within a dynamical xc field scheme.

5 Plan of the thesis

The thesis is organized as follows: In chapter 2, we give an introduction to the
theoretical methods used in the papers, including our new developments. The
physical systems concerned in the papers, which involves only localized spins or
spins + itinerant electrons, are discussed in chapter 3 and 4, respectively. In
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chapter 5 we summarize the results and give an outlook of the possible future
studies.
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Chapter 2

Methods

We start this chapter with a brief review of the theoretical frameworks which
are used in the papers. In 1.1 and 1.2, we discuss two wavefunction-based
methods, namely exact diagonalization and Tensor Networks. In 1.3 and 1.4,
we introduce Green’s function methods in and out of equilibrium. The the-
oretical developments during this thesis work are delineated in the following
sections. In section 2, we explain in detail the self-energy approach for magnon
systems in equilibrium. In section 3, we present a novel exchange-correlation
field formalism for a spin Hamiltonian. In section 4, we provide the key equa-
tion of the exchange-correlation field formalism applied to the single-impurity
Anderson model. We hope this chapter serves as a general description of our
developments, and provides the theoretical background for the numerical results
in chapters 3 and 4.

1 Review

1.1 Exact diagonalization

For a many-body problem, we expand the Hamiltonian in the basis written in the
occupation number representation. Considering a N -electron system described
by L single-particle orbitals, a basis vector takes the form

|n1↑, n1↓, · · · , nL↑, nL↓〉 (2.1)

where niσ can be one or zero. N of the 2L niσ numbers are equal to one and
the rest are zero. The possible ways of arranging such series of niσ give the
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configuration number

Nconfig =

(
2L
N

)
, (2.2)

where the parentheses denote the binomial coefficient. If we fix the number
of electrons with spin up N↑ (and N↓ = N − N↑), the configuration number

becomes Nconfig =

(
L
N↑

)(
L
N↓

)
. For the nonmagnetic half-filled case, N↑ =

N↓ = L/2, and Nconfig ∼ 4L/L when L is large [57].

For local spin models, e.g. the Heisenberg model, we assume ni↑+ni↓ = 1, such
that each orbital accommodates one electron. The complete Hilbert space thus
has a dimension of Nconfig = 2L and has a tensor product structure

H =
⊗∏

i

Hi, (2.3)

where Hi is spanned by the local spin basis {| ↑〉i, | ↓〉i}.

The Hamiltonian Ĥ expressed in the many-body basis is a Hermitian matrix,
which can be diagonalized to provide the solutions to the Schrödinger equation.
For the time-dependent case, within the infinitesimal time interval [t, t+ τ ], we
approximate Ĥ with its middle time value H̄(t) = Ĥ(t+τ/2), and the evolution
from t to t+ τ is

|Ψ(t+ τ)〉 = T e−i
∫ t+τ
t Ĥ(t̄)dt̄|Ψ(t)〉 ≈ e−iH̄(t)τ |Ψ(t)〉 =

∑

λ

e−iEλτ |λ〉〈λ|Ψ(t)〉,

(2.4)

where the complete set of eigenstates H̄(t)|λ〉 = Eλ|λ〉 is required.

In the numerical implementation, the memory required for storing a single wave
function has the order O(Nconfig) and a direct diagonalization takes O(N2

config)
memory to store the matrix [58]. For L > 20 at half-filling, O(Nconfig) cor-
responds to a memory exceeding hundreds of GB. Such rapid increase of the
computational resource is referred to as the “exponential wall” [59]. Moreover,
for the time-dependent case, one needs to diagonalize H̄(t) many times to evolve
the system with the time-dependent |λ〉. As a result, the direct application of
exact diagonalization is restricted to system with small size.
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Lanczos method

The Hamiltonian matrix size can be reduced by considering symmetry and con-
versation laws. For instance, to calculate the ground state of a one-dimensional
isotropic Heisenberg model, one can exploit the inversion symmetry of the sys-
tem and the conservation of the z-component spin. However, if the same model
is time-evolved with an inhomogeneous external magnetic field, one has to apply
a distinct treatment because of the changes in the symmetry. To circumvent
this, we introduce a more general approach to improve the efficiency of diagon-
alization, namely the Lanczos method [60]. The Lanczos algorithm was initially
an iterative method to find the extreme eigenvalues and corresponding eigen-
states of a sparse Hermitian matrix. We deal with many-body problems where
the interactions are usually short-range and between two particles. Hence the
Hamiltonian matrix is sparse and the Lanczos method can be used.

Below we outline the Lanczos algorithm. Starting from a chosen state |Φ0〉, a
series of states |Φk〉 = Ĥk|Φ0〉 can be constructed by applying the Hamiltonian
iteratively. The Gram-Schmidt orthogonalization of |Φk〉 gives a orthonormal
set {|ϕk〉}, k = 0, 1, · · · , dK, such that

Ĥ|ϕk〉 = βk|ϕk−1〉+ αk|ϕk〉+ βk+1|ϕk+1〉 (2.5)

{|ϕk〉} span the so-called Krylov space [61] with a dimension (dK + 1). The
Hamiltonian on this (dK + 1)-dimensional space is tridiagonal. dK is a conver-
gence parameter and is usually much smaller than the size of the original Hilbert
space. Thus the memory required to store and diagonalize the matrix is greatly
reduced. The Lanczos method can be used for the ground state and the spectral
function calculation, and for the time-evolution [57, 58].

1.2 Tensor Networks

As shown in the previous subsection, for a many-body problem, the Hilbert
space has a tensor product structure. Accordingly, the size of the Hilbert space
grows exponentially with the system size. However, not all of the exponentially
large Hilbert space is necessary, e.g., for obtaining a reasonably approximate
ground state. Consider a system with non-interacting fermions, we know the
many-body system can be expressed by Slater determinants. The class of Slater
determinants can be seen a variational class of wave functions, which has a much
lower dimension than the actual many-body wave function. In the weak interac-
tion regime, the Hartree-Fock method, as a variational approach, can be applied
such that one tries to find an optimal Slater determinant |Φ〉 which minimizes
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〈Φ|Ĥ|Φ〉. The Tensor Networks (TNs) method is based on a similar concept: In
strongly correlated systems, a low-dimensional manifold in the Hilbert space is
used as a variational class of wavefunctions to approximate the actual state of
interest [62]. TNs method is now among the standard numerical methods in the
study of strongly correlated systems in low dimensions [63]. TNs method can
deal with much larger system compared with ED and does not have the sign
problem which restricts the quantum Monte Carlo method. Hence there are
plenty of successful applications of TNs in quantum information and condensed
matter physics [64]. Here we focus on discrete quantum spin systems in one-
and two-dimensions, and introduce methods based on the simplest form of TN
states, the matrix-product state (MPS). We list Ref.[65, 62, 63] for the historical
developments of TNs and more advanced TN methods.

The fundamental objects of MPS are tensors, which are multidimensional arrays
of complex numbers. A tensor T s1s2···sR has many indices si. Within our usage of
MPS, the raising and lowering of indices are trivial , i.e., T s1s2 = T s1s2 = Ts1s2 .
For each index, si = 1, 2, · · · , di with di the dimension of the index. The number
of indices R is the rank of the tensor. A general wavefunction of a discrete spin-
1/2 system can be written in the many-body basis,

|ψ〉 =
∑

σ1σ2···σL
c(σ1, σ2, · · · , σL)|σ1, σ2, · · · , σL〉 (2.6)

where L is the site number and σi stands for the spin orientation on the i-th
orbital. In the MPS context, |ψ〉 can be written as a product of L tensors,

|ψ〉 =
∑

σ1σ2···σL
b1b2···bL−1

[T1]σ1
b1

[T2]σ2
b1,b2
· · · [TL−1]

σL−1

bL−2,bL−1
[TL]σLbL−1

|σ1, σ2, · · · , σL〉, (2.7)

where tensors on the “boundary” of the MPS “chain” (T1 and TL) have rank 2,
and other tensors have rank 3, as shown schematically in Fig. 2.1. MPSs have a
one-dimensional structure: each tensor, with a physical index and two internal
indices, represents a spatial site of the physical system, and neighboring tensors
along the MPS chain are contracted by a summation over an internal index. The
dimensions of the internal indices are commonly referred to as bond dimensions.
With large bond dimensions, the product of tensors completely reproduces |ψ〉.
In practice, a MPS |ψ′〉 with small bond dimensions is desired which has large
overlap with |ψ〉. Similar to wave functions, an operator

Ô =
∑

σ1σ2···σL
σ′1σ
′
2···σ′L

c(σ1, σ2, · · · , σL;σ′1, σ
′
2, · · · , σ′L)|σ1, σ2, · · · , σL〉〈σ′1, σ′2, · · · , σ′L|

(2.8)
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Figure 2.1: A sketch of a matrix-product state. The tensor in the dashed box has three indices: a physical index σ2

represented by a vertical line, two internal indices b1, b2 which are horizontal lines.

can be expressed by a product of rank-4 (or 3) tensors. The structure of such

a matrix-product operator (MPO) is shown in Fig. 2.2. Each tensor [Mi]
σiσ
′
i

bi−1bi
acts on the local Hilbert space at site i.

Figure 2.2: A sketch of a matrix-product operator. Each tensor not on the boundaries has two physical indices and two
internal indices.

Ground state algorithm: Density matrix renormalization group

With a set of MPSs |ψD〉 with maximal bond dimension D, the variational
method can be used to find an optimal MPS

|ΦD〉 = argmin|ψD〉
〈ψD|Ĥ|ψD〉
〈ψD|ψD〉

, (2.9)

which is an approximation to the ground state. A successful example of such
variational method is the density matrix renormalization group (DMRG) al-
gorithm [66, 67, 68, 69, 70]. The algorithm flow is as follows. One makes
one tensor at site i as variable and keeps all others constant. One extremizes
〈ψD|Ĥ|ψD〉 − λ〈ψD|ψD〉 where λ is the Langrangian multiplier, by solving an
eigenvalue problem. Then one moves to another site i′ and thus |ψD〉 and λ are
updated iteratively. When λ does not change larger than a convergence para-
meter, the corresponding |ψD〉 is seen as the ground state. The computational
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cost of the algorithm depends on many details such as the order in updating the
tensors [70], and here we focus on why DMRG can work from the perspective of
entanglement. For the quantum spin systems without long-range interactions,
the Hamiltonians are local and strong quantum correlations happen between
neighboring sites. If we consider a bipartite system with parts A and B, the
entanglement between A and B is proportional to the surface between them, as
stated by the area law [71, 72, 73, 74, 75]. In one dimension, the entanglement
is finite for a gapped system [76] and scales with the system size as O(log(L))
for a gapless system. Accordingly, the low-energy eigenstates are restricted in
a limited region of the Hilbert space. For a MPS, the bipartition is done on a
bond along the MPS chain, and the bond dimension D is related to the entan-
glement between A and B. In this respect, MPS is also called the entanglement
representation of quantum states [65]. Consequently, it is possible to find a good
approximation of the ground state |Φ0〉, which actually contains limited entan-
glement and occupies a small portion of the Hilbert space, with a MPS with
affordable bond dimensions. Moreover, if one time-evolves an initial state |Φ0〉
with a local Hamiltonian to a time O(poly(L)), the reachable states are also
restricted and cannot fully occupy the Hilbert space [77, 78]. In other words,
the evolved state |Φ(t)〉 can still be approximated by a MPS with not too large
bond dimensions.

Time-evolution algorithm: Time-evolving block decimation

There are many time-evolution methods for MPSs and here we introduce one
which is suitable for short-ranged Hamiltonians, namely the time-evolving block
decimation (TEBD) algorithm. TEBD uses a Trotter-Suzuki decomposition
[79, 80] of the evolution operator Û(t + τ, t) = e−iH̄τ , where τ is the time step
and H̄ = Ĥ(t+τ/2). Assuming that the Hamiltonian contains interactions only
between neighboring sites along the MPS chain,

Ĥ =

L−1∑

i

hi,i+1, (2.10)

the evolution operator can be written with the second order Trotter decompos-
ition

Û(t+ τ, t) = e−ih̄1,2τ/2e−ih̄2,3τ/2 · · · e−ih̄L−1,Lτ/2e−ih̄L−1,Lτ/2 · · · e−ih̄1,2τ/2 +O(τ3).
(2.11)

Given the evolution interval [t0, tf ], the number of time steps is (tf − t0)/τ , thus
the accumulated error is of order O(τ3)(tf − t0)/τ = O(τ2). For each time step,
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applying the evolution operator on the MPS will increase the bond dimensions,
which is consistent with the growth of entanglement as the system is driven out of
equilibrium. However, to fully capture the increase of entanglement after a long
time-evolution, the required computational source should increase exponentially
[70, 81, 82].

We summarize the features and limitations of MPS method. For ground state
calculations, DMRG performs well with 1D systems with short-range interac-
tions and open-end boundary conditions. DMRG can be applied to 2D systems
by mapping the 2D sites to a MPS chain. However, for large 2D system which
may contain long-range entanglement, the accuracy of DMRG decreases. For
the time-evolution, both the error from the Trotter decomposition and the in-
crease of the required computational resource restrict the application of TEBD
to moderate system size and evolution-time. Finally we mention the extension
of MPS to 1D infinite-size system, namely iDMRG and iTEBD [83, 84, 85] al-
gorithms, and continuous MPS methods [86, 87]. They can be used to study
systems in the thermodynamic limit or in the continuum limit.

1.3 Equilibrium Green’s function

As introduced in section 2 of chapter 1, the one-particle Green’s function can be
the key factor for solving many-body problems. The Green’s function, obtained
by solving its equation of motion, can be used to provide the expectation values
of observables corresponding to one-particle operators and the spectral function
of the system. Due to the interaction term, the equation of motion of the one-
particle Green’s function involves a two-particle Green’s function, which gives
rise to a hierarchy problem. To solve the hierarchy problem, there are two
approaches based on two different core dynamical quantities: the self-energy
and the exchange-correlation field (Vxc). The former is widely used, and the
latter was recently developed. Below we consider a system at equilibrium and
briefly introduce the forms of the two approaches at zero temperature, followed
by a comparison. The general equilibrium Green’s function theory can be found
in Ref. [88].

For a system with a one-body term h0(r) = −1
2∇2 + V ext(r) and two-body

interactions v(r, r′), the Hamiltonian can be written as

Ĥ =
∫
drψ̂†(r)h0(r)ψ̂(r) + 1

2

∫
drdr′ψ̂†(r)ψ̂†(r′)v(r, r′)ψ̂(r′)ψ̂(r), (2.12)

where ψ̂(r) is the fermion field operator and r = (r, σ) is a combined space and
spin variable. The time-ordered Green’s function is defined in the Heisenberg
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picture as
iG(1, 2) := 〈T ψ̂(1)ψ̂†(2)〉, (2.13)

where the argument numbers label the space-time 1 := (r1, t1), 〈.〉 denotes the
zero-temperature ground-state expectation value, and T is the time-ordering
symbol. The equation of motion reads

[i∂t1 − h(1)]G(1, 2) + iF (1, 2) = δ(1− 2), (2.14)

where the single-particle term h(r) = h0(r)+V H(r) contains the Hartree poten-
tial V H(r) =

∫
dr′v(r, r′)ρ(r′), with ρ(r) the ground-state electron density, and

F is the interaction term,

F (1, 2) :=

∫
dr′v(r1, r

′)〈T ρ̂(r′t1)ψ̂(r1t1)ψ̂†(r2t2)〉 − V H(r1)iG(1, 2), (2.15)

and with ρ̂(rt) = ψ̂†(rt)ψ̂(rt) the density operator.

Self-energy and Hedin equations

In the self-energy approach, F is written as a spacetime convolution between
the self-energy Σ and G,

F (1, 2) = i

∫
d3Σ(1, 3)G(3, 2). (2.16)

This form also follows naturally from many-body perturbation theory based on
Wick’s theorem [89]. For non-interacting case, F = 0, and the solution of the
equation of motion is a non-interacting Green’s function G0,

[i∂t1 − h(1)]G0(1, 2) = δ(1− 2). (2.17)

It follows from Eqs. (2.14) and (2.17) thatG fulfills the following Dyson equation:

G(1, 2) = G0(1, 2) +

∫
d3d4G0(1, 3)Σ(3, 4)G(4, 2), (2.18)

Eq. (2.18) can be written in an iterative form and in the Feynman diagram
representation [88]. Eq. (2.18) has the same convolution structure as Eq. (2.16),
which leads to a simple form in the frequency domain

G(ω) = G0(ω) +G0(ω)Σ(ω)G(ω). (2.19)

In numerical implementations, the self-energy needs to be approximated by, e.g.,
expanding F using Wick’s theorem, or using the Schwinger functional derivative
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technique [90, 91]. For the latter one, Σ can be expressed as a functional of G,
which means Eq. (2.18) can be solved self-consistently. There is a set of self-
consistent equations, known as Hedin equations, which couple G, Σ and three
quantities, the screening W , the polarisation Π and vertex function Γ [92, 93].
We start with the screening effect.

In the linear response regime, an arbitrary external perturbative potential V ext(1)
leads to an induced charge density

ρind(1) = −
∫
d2R(1, 2)V ext(2), (2.20)

where R(1, 2) is the response function. The induced charge density generates a
potential via the Coulomb interaction

V ind(1) =

∫
d2v(1− 2)ρind(2), (2.21)

and effectively screens the original perturbation,

Ṽ ext(1) = V ext(1) + V ind(1)

= V ext(1)−
∫
d2d3v(1− 2)R(2, 3)V ext(3). (2.22)

The screening plays an important role for a many-body system and lies be-
hind the success of the GW approximation [94, 95, 96]. In the same spirit as
Eq. (2.22), the screened Coulomb interaction is

W (1, 2) = v(1− 2)−
∫
d3d4v(1− 3)R(3, 4)v(4− 2), (2.23)

where the response is defined as the variation of the density with respective to
a probing field φ,

R(1, 2) :=
δρ(1)

δφ(2)
, (2.24)

where ρ(1) = −iG(1, 1+). φ leads to a time-dependent term on top of the
original Hamiltonian (Eq. (2.12)). Hence one can formulate G and its equation
of motion in the interaction picture and use the Schwinger functional derivative
to get exact relations between quantities like G, Σ and W . In section 2.1,
we apply the functional derivative approach to a magnon system. To make
comparison, here we outline the original Hedin equations. The derivation can
be found in e.g. Refs. [97, 94]. With the probing field, the total field is

V (1) = V H(1) + φ(1). (2.25)
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The polarisation is defined as

Π(1, 2) :=
δρ(1)

δV (2)
. (2.26)

The vertex function is defined as

Γ(1, 2, 3) := −δG
−1(1, 2)

δV (3)
(2.27)

where G−1 is the inverse Green’s function. With the Dyson equation of G
(Eq. (2.18)) being the first Hedin equation, other four equations are

Σ(1, 2) = i

∫
d3d4W (4, 1)G(1, 3)Γ(3, 2, 4) (2.28)

W (1, 2) = v(1− 2) +

∫
d3d4v(1− 3)Π(3, 4)W (4, 2) (2.29)

Π(1, 2) = −i
∫
d3d4G(1, 3)Γ(3, 4, 2)G(4, 1+) (2.30)

Γ(1, 2, 3) = δ(1− 2)δ(1− 3) +

∫
d4d5d6d7

δΣ(1, 2)

δG(4, 5)
G(4, 6)Γ(6, 7, 3)G(7, 5).

(2.31)

Dynamical exchange-correlation field formalism

In comparison to the self-energy approach, the interaction term F (Eq. (2.15))
is interpreted as a direct coupling between the dynamical exchange-correlation
field V xc and G [21],

F (1, 2) = V xc(1, 2)iG(1, 2). (2.32)

An advantage of such form is that with the Vxc given, the Green’s function can
be solved by a time integral

G(r1r2, t) =θ(t)G(r1r2, 0
+)e−i

[
V ext(r1)+V H(r1)

]
te−i

∫ t
0

[
T (r1r2,t̄)+V xc(r1r2,t̄)

]
dt̄

− θ(−t)G(r1r2, 0
−)ei

[
V ext(r1)+V H(r1)

]
tei

∫ 0
t

[
T (r1r2,t̄)+V xc(r1r2,t̄)

]
dt̄.

(2.33)

Here, we consider the equilibrium case and thus set t2 = 0 and t = t1 − t2.

T (r1r2, t) :=
− 1

2
∇2G(r1r2,t)

G(r1r2,t)
stands for the kinetic energy. The Vxc can be inter-

preted as the Coulomb potential of the exchange-correlation hole

V xc(r1r2, t) =

∫
dr′′v(r1 − r′′)ρxc(r1, r2, r

′′; t). (2.34)
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Considering a photoemission experiment, for instance, the added hole or elec-
tron disturbs the many-body system which is initially in the ground state and
induces a temporal density fluctuation ρxc. Such fluctuation is spread via the
Coulomb interaction and consequently the Vxc determines the Green’s function.
ρxc fulfills a sum rule

∫
dr′′ρxc(r, r′, r′′; t) = −θ(−t)δσσ′′ , (2.35)

and an exact constraint

ρxc(r, r′, r′′ = r; t) = −ρ(r), (2.36)

where ρ(r) is the electron density. Moreover, as shown in Eq. (2.34), due to the
fact that the Coulomb interaction only depends on the inter-charge distance,
the Vxc is the first radial moment of the spherical average of the exchange-
correlation hole [98]. In other words, one can use a correct estimation of the
first radial moment, instead of the complete knowledge of ρxc(r, r′, r′′; t), to
obtain the exact Green’s function. As mentioned in chapter 1, the local density
approximation in density functional theory provides a good estimate of the first
radial moment of the xc hole, which is relevant in determining the xc potential.
In the dynamical xc field formalism, a dynamical xc hole exists. If we can find a
good approximation of the spherical average of ρxc(r, r′, r′′; t), the xc field, and
thus the Green’s function, can be calculated. We expect ρxc(r, r′, r′′; t) from
solvable systems can be used to provide such approximations. In section 3, we
will extend the xc field formalism to spin systems and derive the sum rule for
the spin dynamical xc hole.

1.4 Nonequilibrium Green’s function

The nonequilibrium Green’s function (NEGF) method is a very general, powerful
and versatile approach to deal with systems in and out of equilibrium [99]. In
this thesis, we focus on the fermionic one-particle NEGF at zero temperature.
The general NEGF approach, including bosonic NEGF and finite temperature
formalism, can be found in, e.g., Refs. [99, 100, 101, 102, 103, 104, 105].

To give an idea of how the method works, we consider a time-dependent problem,
the Heisenberg picture field operators are

ψ̂H(rt) = Û †(t, t0)ψ̂(r)Û(t, t0), (2.37)

where Û(t, t0) is the time-evolution operator

Û(t, t0) = T e−i
∫ t
t0
Ĥ(t̄)dt̄

, (2.38)
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and Û †(t, t0) = Û(t, t0). The expectation value of an operator Â is time-
dependent

A(t) = 〈Ψ(t0)|Û(t0, t)ÂÛ(t, t0)|Ψ(t0)〉. (2.39)

One can define the time arguments on the Schwinger-Keldysh contour γ [106,
107] which is oriented and consists of a forward path γ− : t0 → t1 and a backward
path γ+ : t1 → t0, γ = γ− ⊕ γ+ as illustrated in Fig. 2.3. A time-ordering on

Figure 2.3: The Schwinger-Keldysh contour, figure adapted from Ref. [100]. For any real time t, t− is on the forward
branch γ− and t+ is on the backward branch γ+. The dashed lines represent that the contour can be
extended from minus infinity to t0 corresponding to an adiabatic switch-on, and from t1 to infinity, since
Û(t0, t)ÂÛ(t, t0) = Û(t0,∞)Û(∞, t)ÂÛ(t, t0). On the contour, t0+ > t1+ > t1− > t0−.

the contour, Tγ , can be defined to put operators with earlier time arguments on
γ to the right. Accordingly, the operator expectation value can be written as

A(t) = 〈Ψ(t0)|Tγ
[
e−i

∫
γ Ĥ(t̄)dt̄Â

]
|Ψ(t0)〉. (2.40)

The fermionic one-particle NEGF is defined with time arguments on the contour,

G(1, 2) := θγ(t1 − t2)G>(1, 2) + θγ(t2 − t1)G<(1, 2), (2.41)

where θγ is the contour step function and G>, G< are the greater and lesser
components with real time arguments (i.e., not on the contour)

G>(1, 2) =
1

i
〈ψ̂H(1)ψ̂†H(2)〉, (2.42)

G<(1, 2) =
−1

i
〈ψ̂†H(2)ψ̂H(1)〉. (2.43)

The retarded (R) and advanced (A) components are defined as

GR(1, 2) = θγ(t1 − t2)
[
G>(1, 2)−G<(1, 2)

]
, (2.44)

GA(1, 2) = −θγ(t2 − t1)
[
G>(1, 2)−G<(1, 2)

]
. (2.45)
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With those components, the NEGF can be written in matrix form

G =

(
GR G<

0 GA

)
, (2.46)

where the arguments are implicit. The equation of motion of the one-particle
NEGF is not closed since a two-particle NEGF

G2(1, 2; 3, 4) = (−i)2〈Tγψ̂H(1)ψ̂H(2)ψ̂†H(4)ψ̂†H(3)〉 (2.47)

is involved. The self-energy Σ is defined as

∫

γ
d3Σ(1, 3)G(3, 2) = −i

∫

γ
d3v(1, 3)G2(1, 2; 3, 3+), (2.48)

such that the equation of motion becomes closed,

[
i
∂

∂t1
− h(1)

]
G(1, 2) = δ(1− 2) +

∫

γ
d3Σ(1, 3)G(3, 2). (2.49)

On the RHS of Eq. (2.49), there is a convolution of two contour-ordered func-
tions, which is called the collision integral

C(t, t′) =

∫

γ
dt̄A(t, t̄)B(t̄, t′). (2.50)

The components of C are determined by the components of A and B, following
the so-called Langreth rules [108, 99, 100, 101], which translate the propagators
from Keldysh-contour time arguments to real time. Eq. (2.49) can be converted
into a set of component equations, which are known as the Kadanoff-Baym
equations (KBEs) [109]. The KBEs can be written in the form of a Dyson’s
equation, which reads in the matrix form

G = G0 + G0ΣG, (2.51)

where the non-interacting NEGF matrix G0 and the self-energy matrix Σ have
the same components as G.

The NEGF formalism can be applied for transport problems. We consider a
general Hamiltonian which describes a small central region connected to several
electronic reservoirs,

Ĥ = Ĥc + Ĥr + Ĥt (2.52)
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where Ĥc describes the central region with one-electron term hij and Coulomb
interaction vijmn,

Ĥc =
∑

ij,σ

hij ĉ
†
iσ ĉjσ +

1

2

∑

ijmn
σσ′

vijmnĉ
†
iσ ĉ
†
jσ′ ĉmσ′ ĉnσ, (2.53)

Ĥr represents the non-interacting reservoirs where the α-th reservoir has eigen-
states εαk,

Ĥr =
∑

αkσ

εαkd̂
†
αkσd̂αkσ, (2.54)

and Ĥt stands for the tunneling between the central region and the reservoirs,

Ĥt =
∑

αk;iσ

(Tαk,id̂
†
αkσ ĉiσ + h.c.) (2.55)

where the tunneling amplitude between the central region state i and the α-th
reservoir state k is given by Tαk,i. The KBEs of NEGF defined in the central
region take the same form as Eq. (2.49) and the total self-energy is the sum of
the correlation self-energy Σc, which results from the Coulomb interaction, and
the embedding self-energy Σemb, which is due to the contact to the reservoirs,

Σij(t, t
′) = Σc

ij(t, t
′) + Σemb

ij (t, t′). (2.56)

Σemb brings the degree of freedom of the reservoirs to the central region NEGF.
The reservoirs are non-interacting, thus Σemb can be calculated analytically, and
the equations closed. However, Σc needs to be approximated with e.g., many-
body perturbation theory, and popular approximation methods are Hartree-
Fock, second-Born, and GW . With the self-energy given and the Langreth rules
applied, the real-time equation of motion of G< reads (orbital indices omitted)

[
i
∂

∂t
− hHF(t)

]
G<(t, t′) =

∫
dt̄
[
Σ<(t, t̄)GA(t̄, t′) + ΣR(t, t̄)G<(t̄, t′)

]
, (2.57)

where hHF combines hij with the Hartree-Fock term of the Coulomb interaction.
The self-energy can be seen as a kernel in the integro-differential Eq. (2.57)
and represents the memory effect. As a result, the numerical effort of solving
Eq. (2.57) scales as O(N3

t ) with Nt the number of time steps [110]. To reduce the
computational time, an approximation scheme called the generalized Kadanoff-
Baym ansatz (GKBA) was proposed [111]. The basic idea is to solve the density
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matrix ρ(t) = −iG<(t, t) since it can be used to calculate the expectation values
of one-body observables. The equation of motion of ρ(t),

∂

∂t
ρ(t) + i[hHF(t), ρ(t)] = −

∫
dt̄
{[

Σ<(t, t̄)GA(t̄, t) + ΣR(t, t̄)G<(t̄, t)
]

+ h.c.
}
.

(2.58)

is not closed because of G<(t, t′) and GR(t, t′) =
[
GA(t′, t)

]†
. G< can be written

in terms of ρ and GR as a Dyson’s equation, and the GKBA is the lowest order
expansion of G<,

G<(t, t′) = −GR(t, t′)ρ(t′) + ρ(t)GA(t, t′). (2.59)

Finally with a choice of GR, Eq. (2.58) can be closed. For electronic system,
the GKBA reduces the time scale to O(N2

t ) and preserves the causal structure
and conservation laws [112]. The performance of the GKBA depends on, e.g.,
the quality of the choice of GR. Also, we mention further approximations such
as the G1-G2 scheme and the time-linear approach based on the GKBA which
reduce the time scale to O(Nt) for quantum transport simulations [112].

In this section, we surveyed NEGF methods and the GKBA with an open fer-
monic system where electrons are exchanged between the central region and the
electric reservoirs. This is the type of methods needed to study the systems in
this thesis. The applications of NEGFs have been extended to include bosonic
degrees of freedom [102, 113], and together with dynamical mean-field theory.
For a recent review of NEGF methods, see Ref. [114].

2 Magnon self-energy

We study magnons with the spin-1
2 Heisenberg model [115], an effective model

defined on a discrete lattice with local spin-1
2 :s. The lattice contains in total

N sites, which are labeled with p = 1, 2, 3, · · · , N . At each site, a localized
electron orbital gives rise to a local spin. Our focus here is the derivation of the
magnon self-energy formalism using the model. The numerical results and a brief
justification of the model will be provided in chapter 3. The time-independent
model Hamiltonian is

Ĥ = −
∑

p<q

JpqŜp · Ŝq −
∑

p

Bp · Ŝp, (2.60)
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where J is the symmetric exchange interaction and B is the external magnetic
field. The spin field operators are

Ŝαp =
∑

ξξ′
ĉ†p,ξσ

α
ξξ′ ĉp,ξ′ , (2.61)

where the superscripts in Greek letters α = x, y, z refer to the spin orientation,
ĉ†p,ξ, ĉp,ξ are the creation (annihilation) operators of an electron with spin ξ =↑
, ↓ at site p, and σx,y,z denote for the Pauli spin matrices. The creation and
annihilation of a magnon can be related to the spin ladder operators: Ŝ±p := Ŝxp±
iŜyp . Following the general formalism (2.12)-(2.15), the spin Green’s function is
defined as

iGαβpq (t, t′) = θ(t− t′)〈Ŝαp (t)Ŝβq (t′)〉+ θ(t′ − t)〈Ŝβq (t′)Ŝαp (t)〉, (2.62)

where θ is the Heaviside step function and Ŝαp (t) = eiĤtŜαp e
−iĤt is the Heisenberg

picture spin field operator. The equation of motion of the magnon Green’s
function is

i∂tG
αβ
pq (t, t′) = 〈T

[
i[Ĥ, Ŝαp (t)]Ŝβq (t′)

]
〉+ δ(t− t′)δpq〈[Ŝαp , Ŝβq ]〉 (2.63)

where the first commutator is

[Ĥ, Ŝαp (t)] = eiĤt[Ĥ, Ŝαp ]e−iĤt. (2.64)

For different spin channels α and β, the equation of motion of Gαβ can be
derived using the commutation relation of spin operators. In general, a different
spin channel Gα

′β can be included and the equation of motion is therefore not
closed. In that case, all related G:s can be treated as matrix element, and the
equation of motion in matrix form is closed. Now we consider the external field
in the z-direction, Bp = Bz

p ẑ. The total z-component spin is thus conserved.
We focus on one matrix element G+−, which can be related to the spin structure
factor. It has a closed equation of motion,
[
i∂t −Bz

p

]
G+−
pq (t, t′) + i

∑

l

Jpl
[
〈lp, t; q, t′〉 − 〈pl, t; q, t′〉

]
= 2δ(t− t′)δpq〈Ŝzp(t)〉,

(2.65)

where the three-site correlation

〈lp, t; q, t′〉 := 〈T [Ŝzl (t+)Ŝ+
p (t)Ŝ−q (t′)]〉 (2.66)

can be seen as a higher order Green’s function. We define the core part as the
three-site correlation minus its approximate factorization,

〈lp, t; q, t′〉c := 〈T [Ŝzl (t+)Ŝ+
p (t)Ŝ−q (t′)]〉 − 〈Ŝzl (t)〉iG+−

pq (t, t′). (2.67)
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The magnon self-energy Σ is defined such that the core interaction is represented
by a convolution between Σ and G:

∑

l

∫
dt′′Σpl(t, t

′′)iG+−
lq (t′′, t′) =

∑

l

Jpl
[
〈lp, t; q, t′〉c − 〈pl, t; q, t′〉c

]
. (2.68)

Accordingly, the equation of motion Eq. (2.65) is rewritten as

[
i∂t −Bz

p − V H
p

]
G+−
pq (t, t′) =

∑

l

∫
dt′′Σpl(t, t

′′)G+−
lq (t′′, t′)

+
∑

l

V F
plG

+−
lq (t, t′) + 2δ(t− t′)δpq〈Ŝzp(t)〉, (2.69)

where

V H
p :=

∑

l

Jpl〈Ŝzl (t)〉 (2.70)

V F
pl := −Jpl〈Ŝzp(t)〉 (2.71)

can be understood as the time-independent Hartree- and Fock-like terms, re-
spectively, since the system is at equilibrium. Next we show that Σ can be
expressed as the response of G to a variation in B.

2.1 Schwinger functional derivative technique

Following Hedin’s derivation of his well-known equations [92], we consider a
time-dependent local probing field w, such that the total Hamiltonian Ĥ(t)
contains the time-independent term Ĥ0 (Eq. (2.60)) and the probing term Ĥ1 =
−∑p wp(t) · Sp. Below we derive the response of G to w and show that the
magnon self-energy Σ can be written as a functional of G when w is set to zero,
such that the equation of motion of G can be solved self-consistently. In the
interaction picture,

|ΨI(t)〉 = eiĤ0t|Ψ(t)〉 (2.72)

where i∂t|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉. We use a simplified notation 1 ≡ (p1, t1), which
carries lattice site label and time variable.

∫
d1 refers to an integration over time

and a summation over sites. The one-particle Green’s function can be expressed
as a functional of w in the interaction picture as

iGαβ(1, 2) :=
〈Ψ0|T [Û ŜαI (1)ŜβI (2)]|Ψ0〉

〈Ψ0|Û |Ψ0〉
, (2.73)
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where the interaction picture ground state |Ψ0〉 := |ΨI(0)〉 is the same as the
Heisenberg picture ground state in Eq. (2.13) and (2.62), the operators, with
subscripts I denoting the interaction picture, are also independent of w, and Û
is the evolution operator,

Û = T exp
[
i

∫ ∞

−∞
d1
∑

γ

wγ(1)ŜγI (1)
]
. (2.74)

A variation in the probing field affects G only through Û , which gives

δGαβ(1, 2)

δwγ(3)
=
〈Ψ0|T Û ŜγI (3)ŜαI (1)ŜβI (2)|Ψ0〉

〈Ψ0|Û |Ψ0〉
− iGαβ(1, 2)

〈Ψ0|T Û ŜγI (3)|Ψ0〉
〈Ψ0|Û |Ψ0〉

.

(2.75)

When w is set to zero, the RHS of Eq. (2.75) returns to the core three-site
correlation (Eq. (2.67)). We then relate the self-energy defined in Eq. (2.68) to
the functional derivative δG+−/δwz,

∫
d3Σ(1, 3)G+−(3, 2) = −i

∫
d3J(1− 3)

[δG+−(1, 2)

δwz(3)
− δG+−(3, 2)

δwz(1)

]
w→0

,

(2.76)

where J(1 − 3) = Jp1p3δ(t1 − t3) returns to the exchange coupling on lattice.
We stress that the self-energy coupled to other spin channels αβ can in general
be expressed as a different functional derivative δGα

′β/δwγ , which makes the
matrix form for the equation of motion necessary. Again, we consider the closed
equation of G+− by setting w and B in z-direction. Below we keep spin label
+− implicit, and the equation of motion with the probing field reads

[
i∂t1 − B̃(1)− V H(1)

]
G(1, 2) =

∫
d3
[
V F(1, 3) + Σ(1, 3)

]
G(3, 2)

+2δ(1− 2)〈Ŝz(1)〉, (2.77)

where B̃ contains the probing field,

B̃(1) = Bz(1) + wz(1), (2.78)

and V H(1) =
∫
d2J(1− 2)〈Ŝz(2)〉, V F(1, 2) = −J(1− 2)〈Ŝz(1)〉 can go back to

lattice case when w is switched off. The equation of motion can be written with
G and δG/δwz:

[
i∂t1 − B̃(1)− V H(1)

]
G(1, 2) =

∫
d3V F(1, 3)G(3, 2) + 2δ(1− 2)〈Ŝz(1)〉

−i
∫
d3J(1− 3)

[δG(1, 2)

δwz(3)
− δG(3, 2)

δwz(1)

]
,

(2.79)
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since 〈Ŝz(1)〉 can be written as

〈Ŝz(1)〉 =
1

2

[
iG(1+, 1)− iG(1, 1+)

]
, (2.80)

where the superscript + refers to an infinitesimal increment in time variable.
The inverse of G is defined as

∫
d3G(1, 3)G−1(3, 2) =

∫
d3G−1(1, 3)G(3, 2) = δ(1− 2). (2.81)

The explicit form of G−1 can be obtained by multiplying G−1 from right on
both sides of Eq. (2.77) and integrating over spacetime,

G−1(1, 2) =
1

2〈Ŝz(1)〉

{[
i∂t1 − V H(1)− B̃(1)

]
δ(1− 2)− Σ(1, 2)

}
+

1

2
J(1− 2) ,

(2.82)
where V F(1, 2)/〈Ŝz(1)〉 = −J(1, 2) is used. Here and below, we highlight the
key equations of this chapter in boxes. They are related to our numerical results
in the next two chapters. With the identity δG

δwzG
−1+G δG−1

δwz = 0, the self-energy
can be re-cast from Eq. (2.76) as

Σ(1, 2) = i

∫
d3d4J(1− 3)

[
G(1, 4)

δG−1(4, 2)

δwz(3)
−G(3, 4)

δG−1(4, 2)

δwz(1)

]
w→0

.

(2.83)
We define a “non-interacting” Green’s function G0 which is the solution to

[
i∂t1 − B̃(1)− V H(1)

]
G0(1, 2) =

∫
d3V F(1, 3)G0(3, 2) + 2δ(1− 2)〈Ŝz(1)〉,

(2.84)

and has an inverse similar to Eq. (2.81). Then the inverse of G0 can be written
as

G−1
0 (1, 2) =

1

2〈Ŝz(1)〉

{[
i∂t1 − V H(1)− B̃(1)

]
δ(1− 2)

}
+

1

2
J(1− 2). (2.85)

Accordingly, Eq. (2.82) can be expressed with G−1
0 :

G−1(1, 2) = G−1
0 (1, 2)− Σ(1, 2)

2〈Ŝz(1)〉
, (2.86)

and a Dyson-like equation for G reads

G(1, 2) = G0(1, 2) +

∫
d3d4G0(1, 3)

Σ(3, 4)

2〈Ŝz(3)〉
G(4, 2) (2.87)
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which takes the same form as the original Hedin equation

G(1, 2) = G0(1, 2) +

∫
d3d4G0(1, 3)Σ̃(3, 4)G(4, 2) (2.88)

with

Σ̃(3, 4) :=
Σ(3, 4)

2〈Ŝz(3)〉
. (2.89)

In principle, one can follow Hedin’s original approach and define a total field as
the sum of the Hartree term and the probing field,

V (1) = V H(1) + wz(1) (2.90)

and try to construct quantities with δ/δV . With the polarisation

Π(1, 2) :=
δ〈Ŝz(1)〉
δV (2)

, (2.91)

the vertex function is

Γ(1, 2, 3) :=
δG−1(1, 2)

δV (3)

=
−δ(1− 3)δ(1− 2)

2〈Ŝz(1)〉
−
[
G−1

0 (1, 2)− 1

2
J(1− 2)

]Π(1, 3)

〈Ŝz(1)〉
− δΣ̃(1, 2)

δV (3)
.

(2.92)

And Σ̃ can be written as

Σ̃(1, 2) =
i

2〈Ŝz(1)〉

∫
d3d4d5J(1− 3)

[
G(1, 4)Γ(4, 2, 5)

δV (5)

δwz(3)

−G(3, 4)Γ(4, 2, 5)
δV (5)

δwz(1)

]
. (2.93)

The first term on the RHS of Eq. (2.93) allows a natural definition of magnon
screening

W̃ (1, 5) :=
1

2〈Ŝz(1)〉

∫
d3J(1− 3)

δV (5)

δwz(3)
, (2.94)

however, the second term is Fock-like and suggests a term

W̃F(1, 3, 5) :=
1

2〈Ŝz(1)〉
J(1− 3)

δV (5)

δwz(1)
. (2.95)
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Hence we can express Σ̃ with G, Γ, W̃ and W̃F,

Σ̃(1, 2) = i

∫
d4d5

[
W̃ (1, 5)G(1, 4)−

∫
d3W̃F(1, 3, 5)G(3, 4)

]
Γ(4, 2, 5). (2.96)

From Eq. (2.92) and Eq. (2.96) we notice that the total field formalism produces
rather complicated relations between quantities as Σ̃ and Γ. The reason may be
the Fock-like term and 〈Ŝz〉 in the equation of motion, which come from the fact
that G is defined with spin field operators. We continue to derive the equations
for W̃ :

W̃ (1, 5) =
1

2〈Ŝz(1)〉

∫
d3J(1− 3)

[
δ(5− 3) +

δV H(5)

δwz(3)

]

=
J(1− 5)

2〈Ŝz(1)〉
+

1

2〈Ŝz(1)〉

∫
d2d3d4J(1− 3)J(5− 2)

δ〈Ŝz(2)〉
δV (4)

δV (4)

δwz(3)

=
J(1− 5)

2〈Ŝz(1)〉
+

∫
d2J(5− 2)Π(2, 4)W̃ (1, 4). (2.97)

Similarly,

W̃F(1, 3, 5) =
J(1− 3)δ(1− 5)

2〈Ŝz(1)〉
+
J(1− 3)

2〈Ŝz(1)〉

∫
d2d4J(5− 2)

δ〈Ŝz(2)〉
δV (4)

δV (4)

δwz(1)

=
J(1− 3)δ(1− 5)

2〈Ŝz(1)〉
+

∫
d2J(5− 2)Π(2, 4)W̃F(1, 3, 4). (2.98)

And Π is given by

Π(1, 2) =
1

2

δ[iG(1+, 1)− iG(1, 1+)]

δV (2)

= − i
2

∫
d3d4

[
G(1+, 3)Γ(3, 4, 2)G(4, 1)−G(1, 3)Γ(3, 4, 2)G(4, 1+)

]
,

(2.99)

Finally we close the equations by an approximation of the vertex function

Γ(1, 2, 3) ≈ −δ(1− 3)δ(1− 2)

2〈Ŝz(1)〉
− δΣ̃(1, 2)

δV (3)

=
−δ(1− 3)δ(1− 2)

2〈Ŝz(1)〉
−
∫
d4d5

δΣ̃(1, 2)

δG(4, 5)

δG(4, 5)

δV (3)

=
−δ(1− 3)δ(1− 2)

2〈Ŝz(1)〉
+

∫
d4d5d6d7

δΣ̃(1, 2)

δG(4, 5)
G(4, 6)Γ(6, 7, 3)G(7, 5)

(2.100)
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which is based on the assumption that Π(1, 3)/〈Ŝz(1)〉, the relative change of
〈Ŝz(1)〉 due to the variation at another space time, is small. We compare the
original Hedin equations and magnon Hedin equations schematically in Fig. 2.4.
Alternatively, we can define the vertex function with the probing field

Figure 2.4: A comparison between origin Hedin equations (left) and magnon Hedin equations (right). For the magnon
case, the Green’s function is defined with spin field operators. Consequently, Fock-like terms are involved in
the equations. An approximation is made to simplify the vertex function.

Λ(1, 2, 3) :=
δG−1(1, 2)

δwz(3)
(2.101)

To obtain Λ, we take functional derivative δ/δwz(3) to Eq. (2.82), and get

Λ(1, 2, 3) =
1

2〈Ŝz(1)〉

{
−
[δV H(1)

δwz(3)
+ δ(1− 3)

]
δ(1− 2)

−δV
F(1, 2)

δwz(3)
− δΣ(1, 2)

δwz(3)
− 2R(1, 3)G−1(1, 2)

}
(2.102)

where the response function

R(1, 2) :=
δ〈Ŝz(1)〉
δwz(2)

(2.103)

is also contained in δV H/δwz and δV F/δwz. The vertex function Λ and the
variation of G are related, following the definition of G−1,

δG(1, 2)

δwz(3)
= −

∫
d4d5G(1, 4)Λ(4, 5, 3)G(5, 2). (2.104)
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Finally we express R in terms of G to close the equations. In the functional
derivative form,

R(1, 2) = i
〈Ψ0|T Û ŜzI (1)ŜzI (2)|Ψ0〉

〈Ψ0|Û |Ψ0〉
− i〈Ψ0|T Û ŜzI (1)|Ψ0〉

〈Ψ0|Û |Ψ0〉
〈Ψ0|T Û ŜzI (2)|Ψ0〉
〈Ψ0|Û |Ψ0〉

.

(2.105)

The equation of motion for 〈Ŝz(1)〉 can be written with G:

∂t1〈Ŝz(1)〉 = −
∫
d3J(1− 3)

[
G(1, 3)−G(3, 1)

]
. (2.106)

Applying functional derivative with Eq. (2.106) gives

∂t1R(1, 2) = −
∫
d3J(1− 3)

δ

δwz(2)
[G(1, 3)−G(3, 1)]

=

∫
d3d4d5J(1− 3)

[
G(1, 4)Λ(4, 5, 2)G(5, 3)−G(3, 4)Λ(4, 5, 2)G(5, 1)

]
.

(2.107)

Eq. (2.82), (2.83), give a set of exact equations which can be solved by iteration.
Next we perform approximations to get more explicit forms. Λ can be estimated
by considering only the first term on the RHS of Eq. (2.102)

Λ0(1, 2, 3) = − 1

2〈Ŝz(1)〉
[J(1− 4) ∗R(4, 3) + δ(1− 3)]δ(1− 2) (2.108)

where ∗ denotes an integral over the underlined spacetime variable. δG/δwz can
be approximated by taking functional derivative of Eq. (2.77) and neglecting the
second derivative term δ2G/δw2,

i∂t1
δG(1, 2)

δwz(3)
= G(1, 2)δ(1− 3) + 2R(1, 3)δ(1− 2)

+J(1− 4) ∗
{
R(4, 3)G(1, 2) + 〈Ŝz(4)〉δG(1, 2)

δwz(3)

−R(1, 3)G(4, 2)− 〈Ŝz(1)〉δG(4, 2)

δwz(3)

}
. (2.109)

Starting with g computed at the mean-field level, we can get corresponding
〈Ŝz〉, V H, V F (the constants and spacetime variables are not shown for simplicity
of the text)

〈Ŝz〉 = (g − g), (2.110)

V H = J ∗ (g − g), (2.111)

V F = −J(g − g), (2.112)
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and Λ0, R,

Λ0 = −(J ∗R+ δ)δ/〈Ŝz〉, (2.113)

∂tR = J ∗ (g ∗ Λ0 ∗ g − g ∗ Λ0 ∗ g), (2.114)

and thus δG/δwz,Σ, G

∂t
δG

δwz
= gδ +Rδ + J ∗Rg + J ∗ 〈Ŝz〉 δG

δwz
−RJ ∗ g − 〈Ŝz〉J ∗ δG

δwz
,

Σ = J ∗ (g ∗ Λ0 − g ∗ Λ0),

G = g + g ∗ Σ ∗ g.

(2.115)

(2.116)

(2.117)

In conclusion, we get a set of approximate magnon Hedin equations which can
be solved self-consistently.

3 Spin exchange-correlation field formalism

The Vxc formalism introduced in section 1.3 can be extended to local spin sys-
tems. In the charge case, the Vxc couples to Green’s functions defined with
fermionic field operators. For local spin systems, Green’s function is naturally
defined with local spin operators, and the interaction term effectively originates
from spin-spin interactions (e.g. the Heisenberg exchange). The spin exchange-
correlation hole can be defined accordingly. Here, we derive the sum rule and the
exact constraint for the spin exchange-correlation hole with the isotropic Heis-
enberg model with spin-1/2. Some essential terms and definitions introduced in
section 2 are repeated here to ensure readability. The equation of motion of the
Green’s function Gpq(t) := 〈T Ŝ+

p (t)Ŝ−q (0)〉 reads

i∂tGpq(t) + iFpq(t) = 2δpqδ(t)〈Ŝzp〉, (2.118)

where we set t′ = 0 as the system is at equilibrium and the interaction term is

Fpq(t) = −J
∑

l

[〈pl, t; q〉 − 〈lp, t; q〉], (2.119)

where for each site p the Heisenberg exchange is nonzero only for its nearest
neighbor sites l and

〈lp, t; q〉 := 〈T Ŝzl (t+)Ŝ+
p (t)Ŝ−q (0)〉 (2.120)
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is the three-site correlation. The correlator glpq(t) and the spin exchange-
correlation hole ρxc

lpq(t) are defined to fulfill:

〈lp, t; q〉 = iGpq(t)glpq(t)〈Ŝzl (t)〉 (2.121)

ρxc
lpq(t)iGpq(t) = −〈lp, t; q〉+ 〈Ŝzl 〉iGpq(t) (2.122)

ρxc
lpq(t) = −

[
glpq(t)− 1

]
〈Ŝzl 〉. (2.123)

Note that both glpq(t) and ρxc
lpq(t) can be fully determined given G. Next, we

derive a sum rule and an exact constraint of ρxc
lpq(t) for system with conserved

total z-spin. The sum rule and the exact constraint hold for arbitrary G. For
t > 0,

∑

l

〈lp, t; q〉 = 〈eiĤt
∑

l

Ŝzl Ŝ
+
p e
−iĤtŜ−q 〉 = SziGpq(t), (2.124)

where we consider that the total z-spin operator
∑

l Ŝ
z
l commutes with the

Heisenberg Hamiltonian and thus
∑

l Ŝ
z
l |Ψ0〉 = Sz|Ψ0〉. For t < 0,

∑

l

〈lp, t; q〉 =
∑

l

[
〈Ŝ−q (0)Ŝ+

p (t)Ŝzl (t)〉+ 〈Ŝ−q (0)Ŝ+
p (t)〉δpl

]

= (1 + Sz)iGpq(t). (2.125)

Eqs. (2.124) and (2.125) can be written in a compact form as

∑

l

〈lp, t; q〉 =
[
θ(−t) + Sz

]
iGpq(t). (2.126)

Therefore the correlator fulfills

∑

l

iGpq(t)
[
glpq(t)− 1

]
〈Ŝzl 〉 =

∑

l

〈lp, t; q〉 −
∑

l

〈Ŝzl 〉

= θ(−t)iGpq(t), (2.127)

from which the sum rule can be retrieved:

∑

l

ρxc
lpq(t) = −θ(−t). (2.128)

Consider a special case l = p and for local spins,

Ŝzp Ŝ
+
p =

1

2
Ŝ+
p , (2.129)
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the three-site correlation reduces to

〈pp, t; q〉 = 〈T Ŝzp(t+)Ŝ+
p (t)Ŝ−q (0)〉 =

1

2
〈T Ŝ+

p (t)Ŝ−q (0)〉 (2.130)

and from the definition of the spin exchange-correlation hole we get the exact
constraint

ρxc
ppq(t) = −1

2
+ 〈Ŝzp〉. (2.131)

Next, we derive the low-order approximation of the spin Vxc. We define the
vertex function as the core part of the three-site correlation

Λlpq(t) := 〈T Ŝzl (t+)Ŝ+
p (t)Ŝ−q (0)〉 − 〈Ŝzl 〉iGpq(t). (2.132)

According to the definition of the Vxc, we have:

V xc
pp,qq(t)iGpq(t) = −J

[
Λpp̄q(t)− Λp̄pq(t)

]
. (2.133)

where for simplicity, we write p̄ = p + δ as the neighboring sites of p and drop
the summation symbol

∑
δ. Using the fact that for local spins, Ŝzp = Ŝ+

p Ŝ
−
p − 1

2 ,
we rewrite the vertex function as

Λlpq(t) = 〈T Ŝ+
l (t+)Ŝ−l (t+)Ŝ+

p (t)Ŝ−q (0)〉 − [
1

2
+ 〈Ŝzl (t+)〉]iGpq(t),(2.134)

and approximate the correlation with four spin operators as

〈T Ŝ+
l (t+)Ŝ−l (t+)Ŝ+

p (t)Ŝ−q (0)〉
≈ 〈Ŝ+

l (t+)Ŝ−l (t+)〉〈T Ŝ+
p (t)Ŝ−q (0)〉

+〈Ŝ+
p (t+)Ŝ−l (t+)〉〈T Ŝ+

l (t)Ŝ−q (0)〉, (2.135)

which is a factorization with an exchange of the site indices.

We call such approximation the exchange term of the vertex function, which is
labeled as Λx:

Λx
lpq(t) := −Gpl(0+)Glq(t). (2.136)

The derivation above is not restricted to the dimensionality of the model or the
sign of the exchange coupling. Next we consider specifically a one-dimensional
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antiferromagnetic Heisenberg lattice. We note that 〈Ŝzp〉 = 0, and thus the
exchange part of the interaction term takes the explicit form

F x
pq(t) = −J

[
Λx
pp̄q(t)− Λx

p̄pq(t)
]

= −J
[
Gp,p+1(0+)Gp+1,q(t) +Gp,p−1(0+)Gp−1,q(t)

−Gp+1,p(0
+)Gpq(t)−Gp−1,p(0

+)Gpq(t)
]
. (2.137)

This reads in the momentum domain as

F x(k, t) =
−J
N

∑

k′
G(k′, 0+)G(k, t)

[
e−ik

′
eik + eik

′
e−ik − eik′ − e−ik

]

=
−2J

N

∑

k′
G(k′, 0+)G(k, t)

[
cos(k − k′)− cos(k′)

]

=
−4J

N

∑

k′
iG(k′, 0+)iG(k, t) sin

k

2
sin(

k

2
− k′). (2.138)

One can notice that the exchange part of the Vxc is time-independent:

V s(k) :=
F x(k, t)

iG(k, t)

=
−4J

N

∑

k′
iG(k′, 0+) sin

k

2
sin(

k

2
− k′), (2.139)

which is of even parity for k ∈ [−π, π], and with iG(k, 0+) = 〈S+
k S
−
−k〉 the

ground state correlation.

We want to obtain a reference Vxc with F x. Therefore, we do not calculate
the analytic form of iG(k, 0+) via the Bethe Ansatz, but use the symmetry of
iG(k, 0+) to get an approximate result. We write iG(k, 0+) as an expansion of
even order polynomials

iG(k, 0+) =
∑

ξ=0

gξk
2ξ. (2.140)

For the infinite lattice, the finite sum can be replaced with an integral:

1

N

∑

k′
iG(k′, 0+) sin(

k

2
− k′)→ 1

2π

∑

ξ

gξ

∫ π

−π
dk′(k′)2ξ sin(

k

2
− k′). (2.141)

In turn, the integral

Iξ(k) :=

∫ π

−π
dk′(k′)2ξ sin(

k

2
− k′) (2.142)
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can be written as sin(k2 ) multiplied with a factor only depending on ξ. Absorbing
all the k−independent factors in the expansion coefficient gξ, we get

V s(k) = −J sin2 k

2
[
1

π

∑

ξ

gξ]. (2.143)

4 Anderson model at low temperatures within the
dynamical exchange-correlation field formalism

In this section, we apply the dynamical xc field formalism to the single-impurity
Anderson model (SIAM) [56] at finite temperatures. Our purpose is to provide
some analytic insights into the dynamical xc potential (referred to as Vxc) of
a system with hybridization effect and thermal fluctuations. Some equations in
this section will be related to the numerical results in chapter 4.

We first extend the Vxc formalism to finite-temperature systems where the
number of electrons is conserved. Compared with the zero-temperature case,
the Green’s function is defined with thermal ensemble averages [88]:

iḠ(rt, r′t′;β) := 〈〈ψ̂(rt); ψ̂†(r′t′)〉〉 = Tr{ρ̂GT [ψ̂(rt)ψ̂†(r′t′)]}. (2.144)

Here, the 〈〈..〉〉 symbol denotes the thermal ensemble average of the time-ordered

operators, ρ̂G = Z−1e−βĤ the statistical operator, β = 1/T the reverse tem-

perature, and Z = Tr[e−βĤ ] the canonical partition function. The equation
of motion of this finite-temperature Green’s function can be written with the
finite-temperature Vxc, which has the same form as the T = 0 case, except that
all ground-state expectation values are replaced by thermal averages. The Vxc
can still be interpreted as the Coulomb potential of the dynamical xc hole ρxc.
The sum rule and the exact constraint fulfilled by ρxc also take the same form
(see Eqs. (2.35) and (2.36)).

Next, we consider the SIAM. The Hamiltonian can be written as

ĤSIAM = εf (n̂f↑+ n̂f↓)+Un̂f↑n̂f↓+
∑

kσ

[
εk ĉ
†
kσ ĉkσ +(vkf̂

†
σ ĉkσ +H.c.)

]
. (2.145)

Here f̂ †σ (f̂σ) creates (annihilates) an electron with spin σ on the impurity site,

n̂σ = f̂ †σf̂σ is the corresponding number operator, ĉ†kσ (ĉkσ) creates (annihilates)
a bath electron with energy εk. vk is the hybridization amplitude between the
impurity and the bath modes, and εf and U are the impurity on-site energy
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and Coulomb interaction, respectively. We use a 1D tight-binding system to
model the SIAM (see a sketch in Fig. 2.5). The impurity site is coupled to
one noninteracting (bath) site with hybridization V , and the hopping strength
between the Nc noninteracting sites is th. When periodic boundary conditions
are used for the noninteracting sites, we have the effective SIAM parameters
εk = 2th cos(k) and vk = V√

Nc
, where k = 2π

Nc
× 0, 1, 2, · · · , Nc − 1.

Figure 2.5: A sketch of the 1D tight-binding system used to model an impurity coupled to a continuous bath. When
periodic boundary conditions are used for the Nc noninteracting sites (t̃h = th), we have the effective SIAM
parameters εk = 2th cos(k) and vk = V√

Nc
. When U = 0, we have the noninteracting case. The dimer

case corresponds to Nc = 1.

Note that we work at finite temperatures but fix the SIAM at half-filling. For
the equilibrium SIAM local Green’s function

iḠff,σ(t, β) = 〈〈f̂σ(t); f̂ †σ(0)〉〉, (2.146)

the equation of motion reads

[
i∂t − εf − V H − V xc

σ (t, β)
]
Ḡff,σ(t, β) = δ(t), (2.147)

where the Hartree term V H = Unfσ̄ = UTr{ρ̂Gn̂fσ̄} is proportional to the
density of impurity electron with opposite spin σ̄ 6= σ. Moreover, we consider
U + 2εf = 0 and the number of fermionic sites (impurity + bath) L = Nc + 1
even in order to have the particle-hole symmetry. Consequently, the thermal
average nfσ = 0.5 and εf + V H = 0. Here, we emphasis that similar to the
zero-temperature case, the finite-temperature Vxc is the Coulomb potential of
the dynamical xc hole. However, for the SIAM, the hybridization between the
impurity and the bath should be considered. A dynamical hybridization field,
also directly coupled to the Green’s function in the equation of motion, can be
defined within the Vxc-Framework. We incorporate the hybridization field into
the Vxc so that the equation of motion has a simpler form, and with the given
Vxc, the Green’s function can be directly solved.

Since we choose model parameters to ensure the particle-hole symmetry, we can
focus on the Green’s function and the Vxc with positive time, namely the particle
part. The hole part (t < 0) can be obtained using the particle-hole symmetry.
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From the equation of motion, the particle part of Vxc can be written as

V xc
p,σ(t, β) =

i∂tḠ
p
ff,σ(t, β)

Ḡpff,σ(t, β)
. (2.148)

Here, the particle part Green’s function can be expressed with eigenstates of the
Hamiltonian as

iḠpff,σ(t, β) = θ(t)

∑
mn+

e−βEme−i(En+−Em)t
∣∣〈n+|f̂ †σ|m〉

∣∣2
∑

m e
−βEm , (2.149)

where θ is the Heaviside step function, m,n+ label eigenstates with L,L + 1
electrons, respectively, and we set L-electron ground-state energy Em=1 = 0.
At low temperatures, the factor e−βEm is negligible except for the lowest two
eigenstates m = 1, 2. Thus, the Vxc can be expanded to the order of eβ(E2−E1):

V xc
p,σ(t, β) = V xc

p,σ(t, T = 0) + Ṽ (t)e−β(E2−E1), (2.150)

which is the zero temperature V xc
p,σ(t, T = 0) plus a correction from a time-

oscillating term Ṽp,σ(t) and an exponentially small factor.

By now, we have introduced the key equations of the Vxc formalism applied to
the symmetric SIAM at low temperatures. The definition of finite-temperature
Vxc is a natural extension from the zero-temperature formalism, with ground-
state expectation values replaced by thermal ensemble averages. The sum rule
and the exact constraint which the dynamical xc hole fulfills take the same form
as in the T = 0 case. For the SIAM, the Vxc also incorporates the hybridization
effect. To calculate the Green’s function, however, we must find a good approx-
imation of the Vxc (Eq. (2.150)). This can be achieved by using a noninteracting
case (U = 0) and a dimer case (Nc = 1) as references. From these two reference
systems, we propose an ansatz of the SIAM Vxc. In chapter 4, we will interpret
the physical meanings of the ansatz parameters using the analytic results from
the reference systems, and present the Kondo spectral function calculated using
the ansatz.

5 Summary of this chapter

In this chapter, we reviewed several widely used theoretical methods and in-
troduced the approaches developed during this thesis work. In the next two
chapters, we apply these methods to low-dimensional magnetic systems and
present the numerical results. The purpose of chapters 3 and 4 is to provide
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a concise description of the magnetic systems studied in the papers, our the-
oretical treatments and their corresponding outcomes. For further details, we
refer to the actual papers. In chapter 3, we study a frustrated 2D system and
a homogeneous 1D system using localized spin models. For the former, the
magnon self-energy approach is applied, and for the latter, we calculate the dy-
namical spin structure factor using the spin dynamical xc potential formalism.
In chapter 4, we consider models with localized spin and itinerant electrons. We
employ an approach combining MPS and NEGF methods to study the dynamics
of quantum skyrmions in presence of electric currents, and investigate the low-
temperature Kondo spectral functions from the perspective of the dynamical xc
field.

Developing a single theoretical method which is universally suitable for distinct
magnetic systems is challenging, due to the various and competing magnetic
mechanisms. Therefore, we expect that our diverse frameworks may effectively
improve the current theoretical descriptions and provide new insights into the
physics of different magnetic systems.
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Chapter 3

Pure spin exchange:
Frustrated and isotropic
Heisenberg system

In this chapter we apply the magnon self-energy approach and the spin Vxc
approach to localized spin systems. Local spin models correspond to materials
where the unpaired d or f shell electrons are localized in real space. Examples
include magnetic insulators and some rare-earth metals where magnetism and
conduction originate from different groups of electrons [27, 116]. We use the
Heisenberg model [115], which is defined on a discrete lattice with the Hamilto-
nian:

Ĥ = −
∑

ij

JijŜi · Ŝi (3.1)

where i, j are lattice site labels. The exchange interaction strength J is typically
short-ranged, meaning Jij is nonzero only between nearest neighbours (NN) and
next nearest neighbours (NNN):

Jij =
{ J1, NN,
J2, NNN.

(3.2)

We study a 2D system with J1-J2 couplings which may lead to so-called magnetic
frustration and a 1D AFM system with only J1. The results are from Paper I
and II. The purpose of this chapter is to present our theoretical developments
for localized spin system. We highlight key equations in boxes.
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1 Ground state of frustrated 2D Heisenberg clusters
via the magnon self-energy approach

Magnetic frustration originates from different and competing magnetic coup-
lings or from specific spin lattice geometries [117, 118, 119]. To study magnetic
frustration in a system with quantum fluctuations, the quantum Heisenberg
model, which has a simple form and is exactly solvable in 1D, is a suitable
testground. When the Heisenberg model is defined on a triangular lattice with
J1 < 0, J2 = 0, the spins in the ground state can align in a way which is neither
FM nor AFM, and thus frustrated. Magnetic frustration can also occur when
the model is defined on a square lattice, e.g., with J1 < 0, J2 < 0. The 2D
Heisenberg model is generally unsolved, although quantum Monte Carlo and
DMRG algorithms perform well on finite clusters. Hence, we develop a Green’s
function technique, which is beyond Tyablikov’s [120] and Kondo’s [121] decoup-
ling methods within the random phase approximation (RPA), to investigate the
ground-state properties of the 2D Heisenberg model on finite clusters.

In this section, the magnon self-energy approach introduced in chapter 2 is
applied to 2D Heisenberg systems with square and hexagonal lattices, and with
different types of exchange coupling. Compared with the RPA approach, the
magnon self-energy approach includes the response of the self-energy to the
probing field, δΣ/δwz. Note that we use some notations in this section differently
from that in Paper I to ensure consistent notations through this thesis. To assess
the performance of the method, the Green’s function results are compared with
numerical benchmarks from the ED method.

1.1 2D square-lattice cluster

We begin by examining a 5 × 5 square lattice with open boundary conditions.
We discuss both FM and AFM regimes in few selected subspaces with total spin
projection Sztotal. In comparison to the FM limit (25 ↑, 0 ↓) or the AFM limit
(13 ↑, 12 ↓), an intermediate value of Sztotal shows most clearly the competition
of NN and NNN exchange couplings. Therefore, we start the discussion with
the subspace Sztotal = 17/2 (21↑, 4↓) (our finite system is not fully compensated
in this case). We use the parameters J1 = 1, J2 = −0.5. The results, shown in
Fig. 3.1, compare RPA, ED and self-energy results. The color palette is used to
represent the expectation value of the z-component spin 〈Szi 〉, and the numbers
show the z-z spin correlation between lattice sites 〈Szi Szj 〉.

Compared to the RPA decoupling method, including the self-energy improves
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the accuracy for both 〈Szi 〉 and 〈Szi Szī 〉, where site ī is the symmetric site of i
under space inversion. The reason behind the improvement is that the direct
response δG/δwz, which is treated as a constant (possibly with value 0) in the
RPA method, gives a nonzero dynamical contribution to the self-energy. We
emphasis that the magnon Hedin equations are the key step forward compared
to the bare decoupling. Including higher-order responses δnG/δ(wz)n can in
principle improve the accuracy, but at the cost of increased converging difficulties
and heavier computational burden.

Figure 3.1: Adapted from Paper I. Comparison of 〈Sz
i 〉 (denoted by color) and 〈Sz

i S
z
j 〉 (denoted by numbers) between

RPA (left panel), ED (middle panel) and magnon self-energy (right panel) results for a 5 × 5 lattice with
open boundary conditions. The results are for the Sz

total = 17/2 subspace, with FM exchange parameters:
J1 = 1, J2 = −0.5. The color coding in the vertical bar applies to all panels.

The self-energy approach shows good accuracy also for J1 = −1, J2 = 0.5,
Sztotal = 17/2. Such parameters lead to pure AFM interaction (i.e. no frustra-
tion) on the square lattice. In the Sztotal = 17/2 subspace, where the majority of
the configurations is with spin up, the ground state due to the AFM couplings
is relatively homogeneous. This is detailed in Fig. 3.2, where −0.45 ≤ 〈Szi 〉 ≤
−0.27 and 〈Szi Szj 〉 > 0 for all lattice sites.

With the same couplings, but for the Sztotal = 1/2 subspace, the self-energy
method describes well the Neel-type ground state: the distribution of 〈Szi 〉 is
bipartite, sites on the same/different sublattices are positively/negatively cor-
related.

Remaining in the Sztotal = 1/2 subspace, but with J1 = 1, J2 = −0.5, we observe
that the ground state obtained via the magnon self-energy method exhibits a
small total spin value. The magnitudes of 〈Szi 〉 are close to zero, and the NN
correlations are weak compared to the case with Sztotal = 1/2, J1 = −1, J2 = 0.5.
This behavior is reminiscent of what occurs for systems with an even number
of sites, where Lieb’s theorem states that Stotal = 0 in the ground state. In the
three cases discussed, the ground states are either relatively homogeneous (the
signs of the exchange couplings and the net value of Sztotal in the given subspace
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are chosen so that they impose conflicting constraints on the spin alignment) or
bipartite. This suggests that, for these cases, quantum fluctuations introduced
by higher-order response terms have a minor influence in the determination of
the Green’s function.

Figure 3.2: Adapted from Paper I. 〈Sz
i 〉 (denoted by color) and 〈Sz

i S
z
j 〉 (denoted by numbers) for a 5× 5 square lattice

system with open boundary conditions. The color coding in the vertical bar applies to all cases, and results
in each panel fulfill the C4v square symmetry. Bottom panel: AFM, Sz

total = 17/2; Middle panel: AFM,
Sz
total = 1/2; Top panel: FM, Sz

total = 1/2. The AFM coupling parameters are J1 = −1, J2 = 0.5 and
the FM ones are J1 = 1, J2 = −0.5.

1.2 Single- and double-impurity configurations

In realistic cases, one often encounters impurities in the system under investig-
ation. Here, we incorporate impurity atoms by introducing an additional term
in the Hamiltonian,

Himp = −
∑

ij

∆JijŜi · Ŝj . (3.3)

where either i or j denote the impurity site(s). We focus on the cases of single
and double impurities in a 19-site hexagonal lattice, working within the subspace
Sztotal = 9/2, which, as for the square lattice illustrate the interplay of FM and
AFM couplings. In the no-impurity case, the coupling parameters are J1 =
1, J2 = −0.5; in the presence of impurities, we have the additional coupling
strengths ∆Jij,NN = 0.5J1,∆Jij,NNN = 0.5J2. The magnon self-energy result
is shown in Fig. 3.3. It is convenient for the discussion to organize the lattice
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sites in shells, where sites in a given shell are equally distant from central site,
and different shells correspond to different distances (Fig. 3.3).

For the non-impurity case (Fig. 3.3a), due to the FM NN couplings and the C6v

lattice symmetry, the central spin assumes the spin-down ↓ configuration. With
〈Szi 〉 < 0 and 〈Szi Szj 〉 > 0 at all sites, we conclude that the non-impurity system
is dominated by FM interactions.

Introducing an impurity in the system amplifies both NN and NNN couplings.
Locating the impurity at the center (Fig. 3.3b) effectively increases the FM
strength around the impurity, which can be seen from the increased correlation
between the impurity site and its NN. When the impurity moves away from
the cluster center, the C6v symmetry is broken. If the impurity is in shell 1
(Fig. 3.3c), the number of its FM NN sites remains 6, while the number of its
AFM NNN sites decreases. Accordingly, the couplings between the impurity
and its NN are FM dominated, and thus the spins maintain the ↓ configura-
tion. However, when the impurity atom moves to the boundary of the lattice
(Fig. 3.3d,e), the value of spin-z projection at the impurity, 〈SzI 〉, approaches to
zero. This change in 〈SzI 〉 as the impurity moves from the center towards the
cluster boundary (where there are fewer NN and NNN sites), can be ascribed
to the finite size effect and the cluster geometry. Finally, we also show results
for one geometry with two impurities, where the latter are both located in shell
1 and NN to each other (Fig. 3.3f). In this case, the impurities and their NN
spins are strongly FM coupled, and form a small FM sub-cluster.

As an overall remark to this section, the magnon self-energy approach appears
to be able to capture all the effects due to the J1-J2 competition, also in the
presence of significant finite size effects. However, it should also be noted that
the type of spin-spin interactions considered in this section are symmetric (i.e,
expressed in terms of scalar products between spins). In many materials, the
spin-orbit interaction can mediate anti-symmetric exchange couplings among
spins. For these systems, the magnon self-energy approach is less successful
(we refer to Paper I for more results and discussions). Moreover, although
the magnon self-energy approach produces satisfactory ground-state expectation
values and spin correlations, its application to dynamical properties is quite
limited. We believe that the spin dynamical xc potential formalism performs
better in calculating the dynamical structure factor of the Heisenberg model, as
shown by the results in the next section.
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Figure 3.3: Adapted from Paper I. 〈Sz
i 〉 (denoted by color) and 〈Sz

i S
z
j 〉 (denoted by numbers) in an open-boundary 19-site

hexagonal lattice system with and without impurity. The non-impurity coupling parameters are J1 = 1, J2 =
−0.5. The additional impurity coupling strengths are ∆JNN = 0.5J1,∆JNNN = 0.5J2. Sz

total = 9/2
(14 ↑ 5 ↓). The top panel illustrates different shells of atoms (see main text). The color coding in the
horizontal bar applies to all cases. (a) No impurity case. (b)-(f) The circles with a black outline are impurity
sites.

2 Spin dynamical structure factor of the 1D spin-1/2
AFM Heisenberg lattice via the spin Vxc approach

As mentioned in chapter 1, the spin dynamical structure factor,

Sαβ(k, ω) =
1

N

∫
eiωt

∑

pq

e−ik·(rp−rq)〈Ŝαp (t)Ŝβq 〉 (3.4)

can be seen as the Fourier transform of the spin Green’s functionGαβ(t) (Eq. (2.62)).
Here, we present the results of the spin xc field scheme, which has been derived
in chapter 2, on the 1D AFM spin-1/2 Heisenberg model. The key quantity
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in the xc field formalism is the dynamical xc field (henceforth referred to as
Vxc). Given the Vxc, the corresponding Green’s function can be solved by a
time-integral. We will first calculate the exact Vxc on small clusters. Based on
the features of cluster Vxc, we propose an ansatz for the infinite lattice Vxc,
with which G+−(t) and thus S+−(k, ω) can be obtained. Finally, we compare
the ground-state energy of the 1D AFM Heisenberg model with that calculated
from the half-filled 1D Hubbard model [122, 123, 124] and show that, the xc field
formalism accounts a clear and transparent way for the well-known equivalence
between the two models in the large interaction limit. In this section, we keep
the spin flipping indices implicit: G = G+−. Also, since the AFM ground state
is symmetric over spin flipping, we always consider positive time t > 0 unless
otherwise stated.

2.1 The exact spin Vxc of small clusters

As shown in chapter 2, for the homogeneous Heisenberg lattice, the low-order
term of the dynamical Vxc in momentum domain is independent of time. To
make use of this property, we consider a) periodic boundary conditions where
the Bloch basis can be used; or b) open end boundary conditions with a basis
similar to the bonding/anti-bonding basis for a dimer (transformed from the
orbital site basis with a real symmetric transformation matrix M). For the
latter (namely the bonding basis), an analogy can be established to the Bloch
basis for periodic cases (see details in Paper II).

We start from a four-site chain. Our aim is to obtain a compact analytic solution
to illustrate several features of the Vxc which are present also in larger clusters.
Here, we do not repeat the algebra which can be found in Paper II. Instead, we
list several equations which are necessary to understand the results. For t > 0,
the equation of motion of the Green’s function reads

[i∂t − V xc
µµ,µµ]Gµµ(t)−

∑

γ 6=µ
V xc
µγ,γµ(t)Gγγ(t)−

∑

γ 6=δ
V xc
µγ,δµ(t)Gγδ(t) = 0. (3.5)

Here, Greek subscripts µ, ν, γ, δ are the bonding basis labels taking values from
the four states A,B,C,D. The Green’s function Gµµ maps to G(k) for the
periodic case. As shown in Fig. 3.4, the real part of the four-site Vxc oscillates
periodically in time. Moreover, with high-energy excitation ignored, the Vxc
can be written as

V xc
BB,BB(t > 0) ∝ −J

V xc
BC,CB(t > 0) ∝ −J exp[

iJt√
2

], (3.6)
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whereas V xc
BD,DB(t > 0) ≈ 0, V xc

BA,AB(t > 0) ≈ 0. Consequently, V xc
BB,BB sim-

plifies to a constant whereas V xc
BC,CB oscillates with a single frequency and a

constant magnitude, and all other components are negligible.

Figure 3.4: Adapted from Paper II. Real part of Vxc of four-site spin- 1
2 AFM Heisenberg chain, in the unit of |J|. Top:

exact result. Bottom: only low-energy excitation considered.

Next, we perform ED calculations on eight- and twelve-site rings. The equation
of motion of the Green’s function can be written in the Bloch basis

i∂tG(k, t > 0) =
∑

k′
V xc(k − k′, t > 0)G(k′, t > 0). (3.7)

Here, we consider two facts: i) The spin Vxc contains a static part as shown
in chapter 2; ii) The elementary excitation in the 1D AFM system are related
to the two-spinon excitation process [125]: for a given k, only ω in the range[
(−J)π2 | sin k|, (−J)π| sin k

2 |
]

gives nonzero dynamical structure factor S(k, ω).
Accordingly, we separate the Vxc into a k-dependent static part and a dynamical
part,

∑

k′
V xc(k − k′, t)G(k′, t) = V s(k)G(k, t) + Zsp(k, t)G(k, t), (3.8)

with which the Green’s function can be written as

G(k, t) = G(k, 0+)e−iV
s(k)te−i

∫ t
0 Z

sp(k,t′)dt. (3.9)
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In this expression, the k-dependent static term V s determines the main peak of
the dynamical structure factor S(k, ω), and the dynamical term Zsp(k, t) pro-
duces the satellite structure. The separation of the Vxc is in principal arbitrary,
thus we choose

V s = (−J)π| sin k|/2, (3.10)

such that we have a reference solution (with Zsp(k, t) set to zero) containing the
lower boundary of the two-spinon energy dispersion [125]

Gref(k, ω) =
−i

ω − (−J)π| sin k|/2 . (3.11)

Figure 3.5: Adapted from Paper II. Real part of Zsp from a spin- 1
2 AFM Heisenberg ring. Left (right) panel: results for a

ring with 8 (12) sites.

The dynamical part Zsp(k, t) contains the information determining the details
of the dynamical structure factor, including the position of the satellite peaks
and the relative weight between the satellite peak and the main peak. We show
ReZsp(k, t) calculated from eight- and twelve-site rings in Fig. 3.5. For each k,
ReZsp(k, t) oscillates in time, and the oscillation is nearly periodic which can
be described by a cosine function. This behavior, similar to that of the four-site
case, can be understood as due to a single quasiparticle-like main excitation.

2.2 Determining the dynamical structure factor with an ansatz
for the Vxc

Building on the results in last section, we propose the following ansatz for Zsp

in the infinite-chain case:

Zsp(k, t) = A(k)e−iω
sp(k)t + B(k), (3.12)
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where the amplitude A, the excitation energy ωsp, and the shift term B all
increase monotonically as k increases from 0 to π. We can have an approximate
expression of the Green’s function

G(k, ω) = G(k, 0+)
[ 1− A(k)

ωsp(k)

ω − [V s(k) + B(k)]
+

A(k)
ωsp(k)

ω − [V s(k) + B(k) + ωsp(k)]

]
.

(3.13)

From Eq. (3.13), it can be seen that the main peak position of the dynamical
structure factor is given by V s + B. The excitation energy ωsp transfers weight
from the main peak to higher-energy region resulting in satellite peaks at V s+B+
ωsp. The relative weight between the main peak and the satellite is determined
by the amplitude term A and the excitation energy ωsp.

Next, we introduce the extrapolation procedure of the Vxc. The twelve-site
cluster ED result provides Zsp(K, t) and G(K, 0+) for K = 2π

12 × 0, 1, 2, · · · , 6
(we only need to consider 0 ≤ K ≤ π). For each K, we extract A(K) as half the
difference between the maximum and minimum of ReZsp(K, t). We approximate
ωsp(K) = 2π/T̄ , where T̄ is the average time difference between neighbouring
peaks of ReZsp(K, t). To reduce the gap-opening due to the finite size, we set
B(π) = 0.2 to be comparable with the broadening factor. For other k values,
we estimate A(k),B(k) and G(k, 0+) by linear interpolation, and estimate the
excitation energy by fitting to the two-spinon spectrum boundary,

ωsp → (−J)π
[

sin
k

2
− 1

2
| sin k|

]
. (3.14)

We show the dynamical structure factor in Fig. 3.6 and compare with a TEBD
result with a 100-site chain. Both the peak locations and the relative weights
provided by the Vxc approach are qualitatively good. On the other hand, some
limitations are present. The main peak frequency ω = V s(k) + B is slightly
overestimated, compared with the two-spinon spectrum, which we attribute to
the finite size effects due to a parameter B(π) originating from a twelve-site
cluster. Although the extrapolation procedure is not perfect, we stress that
the Vxc approach captures most of the qualitative features of the 1D AFM
Heisenberg model with a very low computational load. Moreover, the formalism
applies in any dimensions and for any range of interactions. Thus, we expect that
the method can be applied in more challenging situations, where e.g. rigorous
references like the Bethe ansatz are not available.
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Figure 3.6: Adapted from Paper II. Dynamical structure factor of 1D spin- 1
2 AFM Heisenberg lattice, with broadening

0.1. Left: calculated with the Vxc approach. The blue dashed curves are the boundaries for two-spinon
processes. Right: Calculated with TEBD on a 100-site AFM Heisenberg chain with J = −1. The weights are
renormalized to be in the range zero to one.

2.3 Comparing the ground state energy of the Heisenberg model
and the Hubbard model

It is well known that the 1D spin−1
2 AFM Heisenberg model becomes equivalent

to the 1D half-filled Hubbard model in the large U regime [126, 27]. Here, we
compare the lattice ground state energies for the two models. In the large U
limit [27],

lim
U→∞

EHub
0

N
=

1

U
(4
EHeis

0

N
− 1) (3.15)

where EHub
0 is the ground state energy of a N -site Hubbard ring with hopping

parameter th = 1, and EHeis
0 is the ground state energy of a N -site AFM Heisen-

berg ring with J = −1. Both energies can be calculated from the corresponding
Green’s function. To perform a comparison, we compute the ground state en-
ergy of the Hubbard lattice in two ways: i) by directly using the electron Vxc at
different U values, and ii) by calculating EHeis

0 for a J = −1 Heisenberg lattice
with the spinon Vxc, to be then used in the effective EHub

0 of Eq. (3.15). The
differences between the results from these two prescriptions and the exact Bethe
ansatz solution are shown in Fig. 3.7. The E0 results from ED for a six-site ring
are also shown as a reference.

We notice that the effective Vxc-based Heisenberg result is rather accurate, with
absolute error less than 10−4 for U > 30: this can be understood as a result
of using the two-spinon upper and lower boundaries in the extrapolation, and
adjusting the B parameter from the cluster within the zero spin gap picture. In
contrast, the Vxc-based Hubbard result is extrapolated without a good reference
(see the detailed treatment in Paper II). Thus, the difference with the Bethe
ansatz result is larger. It may suggest that the Vxc for the AFM Heisenberg
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Figure 3.7: Adapted from Paper II. The ground state energies calculated with different methods, with the exact Bethe
ansatz result for the 1D Hubbard model, EBA

0 , as a reference. The Vxc-based results for the 1D Hubbard model
and the 1D AFM Heisenberg model are indicated with red dots and blue crosses, respectively. The ED results
for a six-site Hubbard cluster and a six-site Heisenberg cluster are indicated by red and blue curve, respectively.
For both models, Vxc is extrapolated from a six-site kernel. For the Heisenberg model results, Eq. (3.15) is
used. The inset shows that for U < 4, there is an obvious discrepancy between the ground state energy from
the two models. For U > 30, the results for the two models converge, meaning that the large repulsion limit
is reached

model as an effective model with no charge flow is simpler than that for the
Hubbard model.

We finally summarize the Vxc approach applied to the 1D AFM Heisenberg lat-
tice. The Vxc formalism produces the dynamical structure factor in favourable
agreement with TEBD and with experimental results and captures the equi-
valence of the Heisenberg model and the Hubbard model in the large U limit.
A single-energy quasiparticle picture can be used to explain the dynamics of
the spin Vxc for the 1D AFM Heisenberg model. Overall, the Vxc formalism
provides a good trade-off between accuracy and computation cost in calculating
the Green’s function. In practice, the extrapolation strategy can affect the ac-
curacy. Therefore, it is important to stress that good-reference constraints such
as the two-spinon spectrum for the 1D AFM model, or the sum rule of the spin
xc hole, can essentially improve the performance of the Vxc approach.
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Chapter 4

Local spins and itinerant
electrons: Skyrmions and
Kondo systems

The models in chapter 3 are based on the local moment picture, where the
interatomic hopping of electrons in unfilled d- or f -shells is neglected; that is,
such electrons are essentially treated as localized on the atoms. This is often
a reasonable zeroth-order approximation. Yet, in many real materials such as
the magnetic transition metals or heavy-fermion systems, f - (and especially d-)
electrons actually contribute to electric conduction and are not fully localized.
Therefore, to improve the level of description, the itinerant behavior of electrons
must be considered. In this chapter, the itinerant character of the electrons is
considered as follows: we start from high-level models, such as the Hubbard
model, where electrons carrying spin degrees of freedom can move between sites.
The Hamiltonian of s- and d-orbital electrons is given by

H = −ts
∑

<ij>,σ

[
ĉ†s,iσ ĉs,jσ + H.c.

]
+ Us

∑

i

n̂s,i↑n̂s,i↓

−td
∑

<ij>,σ

[
ĉ†d,iσ ĉd,jσ + H.c.

]
+ Ud

∑

i

n̂d,i↑n̂d,i↓

ts−d
∑

iσ

[
ĉ†d,iσ ĉs,iσ + H.c.

]
+ Us−d

∑

i,σσ′
n̂s,iσn̂d,iσ′ , (4.1)

where ĉ†α,iσ creates an electron of orbital α = s, d at site i with spin σ. Here,
tα denotes the hopping strength between neighboring sites < ij > and Uα
represents the local Coulomb interaction, ts−d is the hybridization strength and
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Us−d is the interaction strength between s- and d-electrons. We then make
further assumptions: the s-electrons exhibit more itinerant behavior, implying
Us ∼ 0; the d-electrons are strongly correlated, characterized by a large Ud;
and both s- and d-orbitals are half-filled. Under these assumptions, a Schrieffer-
Wolff transformation [127] can be applied to project the system into a low-energy
subspace (a similar treatment has been applied in Refs. [128, 41])) such that:

• The d-electrons are accounted for via local spin moments.

• The itinerant-electron contribution is only from noninteracting s-electrons.

• The interaction between s- and d-electrons is via the Kondo exchange.

In the following, we employ this localized spins + itinerant free electrons mod-
elisation to address very different physical properties in two rather dissimilar
systems. Specifically, we consider i) the dynamics of quantum skyrmion tex-
tures in the presence of electron currents, and ii) the contribution of thermal
fluctuations to the shape of the spectral function of the single impurity Ander-
son model. For the former situation, we combine the Tensor Networks method
and NEGF, and our scope is to study within a novel approach a physical setup
which currently is of basic and technological interest. For the second case, we
focus on a long-established and well characterised topic (namely, the spectral
function of the Anderson model at either zero or finite temperatures), and we
provide a novel perspective on the subject, based on a description in terms of
the dynamical xc field. We highlight key equations in boxes.

1 Quantum skyrmions on a Kondo lattice

As motivated in chapter 1, skyrmions have attracted significant research interest
due their topological properties and potential applications in areas such as data
storage and spintronics. Early theoretical treatments of skyrmions are based on
models where each atom is regarded as a localized classical spin with a finite
magnitude S. When the size of skyrmions is large (hundreds of nanometers)
and the spin magnitude is substantial (S & 2), quantum fluctuations can be
neglected, which justifies the classical treatment. However, for skyrmions with
sizes on the order of tens of nanometers and a spin magnitude of S = 1

2 at
low temperatures, a quantum treatment is more appropriate. Moreover, the
inclusion of itinerant electrons is crucial, as they play an important role in
manipulating the skyrmions [40, 41, 42]. Itinerant electrons, which can be tuned
by an external bias, interact with the localized spins, influencing the stability,
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dynamics, and control of skyrmions. To investigate quantum skyrmions with
itinerant electrons at half-filling, we consider the Hamiltonian

Ĥ = Ĥs + Ĥd + Ĥs−d, (4.2)

with

Ĥs = −th
∑

〈ij〉∈LE ;σ

(
ĉ†iσ ĉjσ + H.c.

)
, Ĥs−d = −g

∑

i∈C
ŝi · Ŝi

Ĥd =
∑

〈ij〉∈C

[
Dij · Ŝi × Ŝj − JijŜi · Ŝj

]
−
∑

i∈C
Bi · Ŝi. (4.3)

Here, th is the (nearest neighbour) hopping strength of itinerant electrons,

ŝi = (1/2)
∑

ττ ′ ĉ
†
iτσττ ′ ĉiτ ′ the spin operator of itinerant electrons with σ ≡

(σx, σy, σz) the vector of Pauli matrices, Si the local spin operators, g the
Kondo exchange strength, and J , B and D respectively denote the Heisenberg
exchange, the external magnetic field, and a Dzyaloshinskii–Moriya interaction
(DMI) [129, 130] of Neel type, where D is perpendicular to the position vector
rij between sites i and j, and C (LE) is the 2D region where the local spins
(itinerant electrons) reside. We consider three setups (see a sketch in Fig. 4.1a):

1. Both local spins and itinerant electrons are in the same finite lattice C ≡
LE . This will be referred to as the isolated case.

2. Local spins are in region C, and itinerant electrons are in an enlarged finite
lattice LE = L+C +R, where region L (R) is coupled to C from the left
(right). This will be referred to as the enlarged case.

3. Itinerant electron region enlarged LE = L+C +R, but with semi-infinite
L and R regions. This will be referred to as the open case.

The quantum spin-electron system consists of a large number of degrees of free-
dom. In order to study quantum skyrmions with reasonable size, we make
one approximation: we treat Ĥs−d at the mean-field level. By defining V̂ s =∑

i∈C〈Ŝi〉 · ŝi and V̂ d =
∑

i∈C〈ŝi〉 · Ŝi, the Hamiltonian can be separated into

two parts, Ĥ → (Ĥs
MF , Ĥ

d
MF ), with

Ĥ
s/d
MF = Ĥs/d − gV̂ s/d. (4.4)

Ĥs
MF and Ĥd

MF depend on the expectation values from each other. Therefore,
by solving s-part and d-part by different approaches, the whole spin-electron sys-
tem can be treated in a self-consistent way. We first consider setup 1, namely the
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isolated case, and calculate the ground state properties. Starting with 〈si〉 = 0,
we use a MPS algorithm from the ITensor library [131, 132] to find the ground
state of Ĥd

MF and update the averages 〈Si〉. These then enter as parameters

when solving via ED for Ĥs
MF , while reproducing 〈si〉. As the iterations con-

verge, the mean-field ground state is reached.

1.1 Benchmark calculations: Exact vs mean field Kondo ex-
change, and quantum vs classical spins

Before presenting the ground state profile for a large cluster, we perform bench-
mark calculations. To see if a quantum treatment of local spins together with
itinerant electrons (albeit within a mean-field account of Kondo exchange) is
beneficial, we consider a square plaquette with 4 spins and 4 electrons and, via
Eq. (4.2) and the Lanczos method, we determine for reference its full quantum
ground state. Then, we move around the plaquette while increasing the number
ncl of classical local spins from 0 to 4 (Fig. 4.1c). This results in a mean-field,
semiclassical (SC) coupling scheme between local spins and s electrons, and
between classical and quantum local spins. To characterize the SC treatment,
we use

ηncl =
1

N

∑

i∈C

|〈ŜEx.
i 〉 − 〈ŜSC

i (ncl)〉|
|〈ŜEx.

i 〉|
, (4.5)

Figure 4.1: Adapted from Paper III. a) Sketch of the three setups considered. b) Difference between exact and mean-field
ground-state expectation values when D=0.2, J=0.1, Bz =0.1, th =1, g=2. c) The benchmark clusters,
from full-quantum to full-classical localized spins.
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which depends on the number ncl of local spins treated classically. In Fig. 4.1b,
η grows as a function of ncl but gets smaller when the spin value S increases
from 1

2 to 5
2 , a sign that the classical regime is being approached. It can be

seen from the benchmark calculation that even with a mean-field treatment of
the Kondo exchange, using quantum local spins is beneficial over classical ones
when S = 1

2 .

1.2 Ground state of an isolated case

Now we consider the mean-field level ground state of an isolated spin-electron
system in a rhombus-shaped 21 × 21 finite triangular lattice. Besides the spin
expectation values 〈Ŝi〉 and 〈ŝi〉, we identify the quantum skyrmions with the
quantum scalar chirality [38]

Qsp =
1

π

∑

<ijk>∈C
〈Ŝi · [Ŝj × Ŝk]〉, (4.6)

Qel =
1

π

∑

<ijk>∈C
〈ŝi · [ŝj × ŝk]〉, (4.7)

where the sum runs over all non overlapping triangles formed by neighboring
sites i, j, k. For S = 1/2 local spins, |Q| ∼ 1 signals the presence of a skyrmion.

The ground state profile of such spin+electron system with parameters D =
0.2, J = 0.1, Bz = 0.1, th = 1, g = 2 is shown in Fig. 4.2a, where the skyrmions
exhibit an approximate periodic alignment. Since the local spins are described
quantum mechanically, we study the entanglement between spin pairs at sites
i 6= j via the concurrence [133, 134, 39] Cij = C[ρ̂ij ], and where ρ̂ij is the
reduced density matrix. As shown in Fig. 4.2a, the concurrence shows a lack of
long-range entanglement for the skyrmion (crystal) texture.

To discuss the role of the itinerant electrons, we compare a spin-electron (sp-el)
with and a spin-only (sp) system. We define a relative difference

η′ =
1

N

∑

i∈C

∣∣〈Ŝsp-el
i 〉 − 〈Ŝsp

i 〉
∣∣

∣∣〈Ŝsp
i 〉
∣∣ , (4.8)

to quantify how much the local spin expectation values will be changed due to
the itinerant electrons. For the 21 × 21 cluster, η′21 = 10%. Moreover, for an
11 × 11 rhombus cluster with D=0.2, J=0.15, Bz=0.06, th=1, g=2 where both
sp-el and sp systems exhibit a single-skyrmion texture, the relative difference
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Figure 4.2: Adapted from Paper III. Ground state results for D = 0.2, J = 0.1, Bz = 0.1, th = 1, g = 2. a) Spin
expectation-value (left) and concurrences C (right) heatmaps in a 21 × 21 isolated rhombus cluster, with
localized-spins (itinerant-electrons) chiralities Qsp = −6.37 (Qel = −0.030). In the spin map, the top
(bottom) half shows the expectation value 〈Sx,y,z〉 (〈sx,y,z〉) of the localized-spins (the itinerant-electrons).
The values of the z- and xy spin-components are indicated by colours and arrows, respectively. In the
concurrence map, the value of C for n.n. (upper half) and next nearest neighbour (2nn, lower half) sites is
represented by the bond colour. The missing half of each map is recovered using rhombus symmetry. b) LDOS
for the electrons at the sites marked in the electron spin heatmap in a). In each of the six panels, the spin
resolved LDOS is shown, together with the reference g = 0 result. c) Logarithm of the static structure factors

lnSzz (left) and lnS+− (right) of the localized-spins. d) 〈Sx,y,z〉 (left half) and 〈sx,y,z〉 for a 6×6 square
cluster connected to leads.

is η′11 = 14%. The noticeable difference between sp-el and sp ground states
confirms that itinerant electrons markedly affect the quantum nanoskyrmion.

In turn, the s-electrons are affected by the skyrmion texture, as shown by the
spin-resolved local density of states (LDOS) in Fig. 4.2b. The LDOS is defined
as

Diσ(E) = 〈φiσ|δ(E − Ĥs
MF)|φiσ〉, (4.9)

where φiσ is the s-electron orbital at site i with spin σ. The colored dots in the
six LDOS panels match the colors of the sites in the sequence encircled by the
red curve in Fig. 4.2a to indicate the correspondence. We see that, along the
chosen direction, the imbalance between Di↑ and Di↓ is maximal at the sites of
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the skyrmions core (i.e., site 1), but much smaller away from these points. Also,
for site 5 with the smallest |〈ŝi〉|, Diσ becomes almost independent of σ, and is
rather similar to the unperturbed (g = 0) LDOS.

Furthermore, the spin structure factor Szz(k) and S+−(k) exhibit sixfold in-
tensity patterns, consistent with neutron scattering results (from e.g. the B20
compound MnSi [34]).

To conclude this subsection, we briefly summarize the ground-state calculation
for an isolated case. Our approach captured the skyrmion-crystal-like phase
and verified the importance of itinerant electrons. The concurrence between
local spin sites indicates a lack of long-range entanglement, which explains why
the MPS method can work for this 2D system: according to the area law,
the computational resources required by the MPS method are related to the
amount of entanglement in the system. For the skyrmion phase, entanglement
is relatively short-ranged, making the MPS algorithm affordable.

1.3 Ground state of an open case

We obtain the ground state (see the spin expectation values in Fig. 4.2d) of a
6 × 6 open square cluster as follows. Starting with the mean-field level ground
state of the isolated region C, the tunneling matrix elements between C and
the leads R, L are switched on in time adiabatically between 0 and th with a
function

sTsw(t) = 1− θ(Tsw − t) cos2
( πt

2Tsw

)
, (4.10)

where θ is the Heaviside step function and Tsw is the time when the switch-on
is finished. Starting from t = 0, the quantum local spins are evolved with time-
evolution block-decimation (TEBD). The evolution of the s-electrons in presence
of leads is solved with the one-particle NEGF method using the embedding self-
energy technique, as introduced in chapter 2. After the switch-on is finished (we
choose Tsw = 50), the time-evolution continues until the central region reaches
a steady state, which we define as the ground state of the open system.

With model parameters D = 1, J = 0.2, Bz = 0.5, th = 1, g = 1, we obtain the
open case ground state and compare again with spin-only system. A moderate
average influence of the electrons on the spin-texture is exhibited, since η′ = 6%
in this case. Here, we do not further time-evolve the open case ground state with
a bias. The reason is that when the system is time-evolved to reach a steady
state, the numerical errors are accumulated by the TEBD method. Further
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time-evolution requires more advanced numerical algorithm. We notice the time-
dependent variational principle algorithm [135, 136] can be a potential choice.

1.4 Dynamics of an enlarged case

We now discuss the dynamics of the spin-electron system using the enlarged
setup. This setup includes a region C consisting of a 4 × 10 rhombus cluster,
and an enlarged electron region L+C+R containing 4× (100 + 10 + 100) sites.
Spin-polarized bias can be applied to L and R regions as follows:

Ĥs → Ĥs(t) ≡ Ĥs + ŵL(t) + ŵR(t), (4.11)

where ŵL(t) =
∑

i∈L εL(t)ĉ†i↑ĉi↑ and similar for ŵR(t). The L and R regions
are chosen to be much longer than C to delay the reflection of the currents
by the boundaries, ensuring that steady, stable currents are established within
the time of interest (t < 125). We first obtain the ground state with no bias
in the electron region. Then, starting from |Ψel(0)〉, we introduce for t > 0
a bias εL(t) = 0.5[1 − θ(10 − t) cos2(πt/20)] with εR(t) = −εL(t). Combining
TEBD for local spins and ED for s-electrons, we simulate the time-evolution
with parameters D = 0.2, J = 0.05, Bz = 0.06, th = 1, g = 2. In this case, the
mean-field level ground state shown in Fig. 4.3a corresponds to a spin texture
with multiple meron-like structures. Classical merons have topological charge
|Q| = 1/2 and are usually found on the material boundaries. To better qualify
the existence of individual quantum merons, we consider a modified description
of the scalar chirality:

Qi =
1

π

∑

<lmn>∈Ri
〈Ŝl · [Ŝm × Ŝn]〉, (4.12)

where the sum in Q is restricted to neighboring site triangles which cover up to
the third nearest neighboring sites of i (namely, in region Ri).

In Fig. 4.3b and 4.3c we present four colored semi-hexagonal regions defined by
their central sites A,B,A′ and B′ where the local scalar chirality is calculated.
These regions are also referred to as regions A,B,A′ and B′. At t = 0, the
local chiralities are QA = QB = −0.164, consistent with the spatial symmetry
of the sp-el system. The values of QA and QB indicate the nontrivial spin
topology in regions A and B, respectively. As a comparison, QA′ = −0.028 and
QB′ = −0.016. In addition, the spin maps (Fig. 4.3a, d) show that sites A and
B have negative z-spin components, while all their second and third neighboring
sites have positive z-spin components. Accordingly, we regard the ground state
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Figure 4.3: Adapted from Paper III. a), d) Local spin expectation values 〈Sx,y,z(t)〉 at t = 0 and t = 125 on a
4× 10 C region with an enlarged electron region L+ C +R of 4× (100 + 10 + 100) sites, for parameters
D = 0.2, J = 0.05, Bz = 0.06, th = 1, g = 2. z- and xy-spin components indicated by colors and
arrows, respectively. The dynamics is induced by a spin-up polarized bias εL = −εR in the enlarged region,
switched-on at t = 0 and ramped to maximum strength 0.5 at t = 10. b), c) Sketch of four semi-hexagonal
regions where the local quantum scalar chirality is calculated. The changes in the values of QA,B,A′,B′ and
in the spin map indicate the motion of merons.

as with two merons with centers at sites A and B, respectively. At t = 125, the
local chiralities change to QA = −0.101 and QB = −0.050, but QA′ = −0.150
and QB′ = −0.141, which means the spin texture is driven. |QA| (|QB|) reduces
while |QA′ | (|QB′ |) increases. Again, site A′ (B′) has opposite z-component with
all its second and third neighboring sites. We can thus conclude that the meron
centers are moved from sites A and B to A′ and B′, respectively. As a conclusive
remark, we note that the spin alignment in regions A′ and B′ at t = 125 is not
merely a translational shift from the spin alignment in regions A and B at
t = 0, and QA′(t = 125) 6= QA(t = 0). This is because the merons, due to their
small sizes, can be significantly affected by nonequilibrium quantum fluctuations
during the time-evolution. Similarly, the non-negligible value of QA = −0.101
at t = 125 is not necessarily indicative of the presence of meron at A. In fact,
looking at the spins configuration, such value appears to result from a rather
complex interplay of the adjacent spins, and in particular from the change of
magnitude and/or sign of the spins close-to or at-the interface between the C
and R regions.

It can be instructive to also look at the time-evolution of selected spin-up bond
currents I〈ij〉 = −2thIm〈ĉ†j↑ĉi↑〉, in Fig. 4.4a, and time snapshots of the spin
expectation values 〈Sx,y,z(t)〉 in Fig. 4.4b. After the transient regime (t . 10),
the currents at/near the edges (IAF,AE,AB) remain relatively stable till t ≈ 80;
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Figure 4.4: Adapted from Paper III. Nonequilibrium dynamics of a rhombus cluster C of 4 × 10 sites with an enlarged
electron region L+C+R of 4× (100 + 10 + 100) sites, for parameters D=0.2, J=0.05, Bz =0.06, th =
1, g=2. The dynamics is induced by a spin-up polarized bias εL = −εR in the enlarged region, switched-on
at t = 0 and ramped to maximum strength 0.5 at t = 10. a) Spin-up current I〈ij〉 along the bonds 〈ij〉
labeled by A-F (sketch on the right). b) Time snapshots of the spin expectation values 〈Sx,y,z(t)〉 in C,
z- and xy-spin components indicated by colours and arrows, respectively. The current-driven motion of one
meron is highlighted by the green semicircle.

Beyond this point, they start to be reflected at the outer boundaries of the L,R
regions. The merons are driven in a direction opposite (see the shaded area in
the time snapshots) to the average flow of the spin-up electrons. We also notice
that the merons slightly change their shape in time, which may be due to their
small sizes and nonequilibrium quantum fluctuation. The itinerant electrons, in
turn, conform their flow to the presence of the moving merons, which results in
the observed behavior of the bond spin-up currents.

Lastly, we wish to to provide some general remarks about the dynamics of the
spin-electron system as well as about all the other results in this section. The
enlarged setup provides a reasonable ground for the simulation of the dynamical
behaviors of spin textures. The merons are driven by the spin-polarized current.
Again, the itinerant electrons have a significant effect on the motion of the spin
textures. Overall, the new MPS + ED/NEGF approach proposed in Paper III is
computationally viable to study in- and out-of-equilibrium quantum skyrmions
(or merons and other topological magnetic structures as well) with itinerant
electrons, with a scope and capabilities beyond those of classical-spin+quantum-
electron treatments.
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2 The Kondo spectral function of the singe-impurity
Anderson model via the Vxc approach

As already mentioned in chapter 1, quantum impurity models have received ex-
tended and renewed interest in condensed matter research. Among the quantum
impurity models, one of the basic variants, the single-impurity Anderson model
(SIAM) [56] is the topic of this section. The SIAM exhibits Kondo physics, and
importantly, is used as an auxiliary problem for dynamical mean-field theory
(DMFT) [53], which is a tool in first-principles studies of strongly correlated
systems in- and out-of equilibrium [137, 54, 55]. To make the first-principles
calculations of systems with large size more affordable, we would like to have
a theoretical treatment of the SIAM which can capture spectral weights and
energy scales of the Kondo peak and the Hubbard bands, and has moderate
computational cost.

The dynamical exchange-correlation (xc) field formalism has shown its advant-
age in calculating the dynamical structure factor of the Heisenberg model (see
chapter 3). Using a quasi-particle picture, the spectral weights of the main peak
and the satellite structures can well be captured by the static and dynamical
parts of the xc field. Hence, we expect that the dynamical xc field formalism
can be used to calculate the local spectral function of the SIAM. In chapter 2,
we have introduced the general xc field formalism and its application to the
symmetric half-filled SIAM at low temperatures. Here, we illustrate how the
dynamical xc field can be approximated for the SIAM. The notations, equation
of motion, and the tight-binding system used to model the SIAM are the same
as in chapter 2. We use a dimer template system (Nc = 0, no continuous bath)
and a noninteracting case (U = 0, only hybridization) to perform analytic cal-
culations, with which we propose an ansatz for the Vxc. The ansatz parameters
are determined by comparing to Fermi-liquid theory [48] and finite cluster res-
ults. From the ansatz of the Vxc, we calculate the local spectral functions and
compare with the numerical renormalization group (NRG) [46] results.

2.1 Dimer case at low temperatures

For the dimer case, the Hamiltonian includes only two parameters U and V .
We consider the T = 0 case first. In the Kondo regime (U � V ), the particle
part of Vxc has an approximate form

V xc
p,σ(t, T = 0) ≈ ωp − λΩeiΩt, (4.13)
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where ωp =
√

U2

16 + 4V 2+
√

U2

16 + V 2, λ ≈ 36V 2

U2 , and Ω =
√

U2

4 + 4V 2. Eq. (4.13)

indicates that the dimer Vxc can be seen as a sum of a constant term and a
quasiparticle-like exponential term, which is similar to the spin Vxc of the Heis-
enberg model. Furthermore, the zero-temperature (zero-T ) spectral function
is

Adimer(ω, T = 0) =
1− λ

2
δ(ω + ωp) +

λ

2
δ(ω + ω0)

+
λ

2
δ(ω − ω0) +

1− λ
2

δ(ω − ωp). (4.14)

It can be seen from the analytic expression of the dimer Vxc that, for large U ,
two peaks (ω = ±ωp) of the spectral function are present, which correspond to
impurity levels εf , εf+U . The excitation with energy Ω creates two central peaks
at ω = ±ω0 ≈ 0. However, for the dimer, the spectral weights of the central
peaks, λ

2 ∼ (VU )2, vanish as U increases. The lack of Kondo resonance can be
naturally understood as the impurity site is coupled to a single site instead of
a continuous bath. This is directly reflected by the Vxc: as U increases, the
exponential term (with amplitude λΩ ∼ V 2

U ) becomes negligible.

As shown in chapter 2, the Vxc at low temperatures can be written as its zero-T
value plus a temperature-correction (see Eq. (2.150)). For the dimer, that is,

Ṽ (t)

V xc
p,σ(t, T = 0)

≈ λ′eiΩ′t − λ′′eiΩ′′t, (4.15)

where λ′, λ′′ ∼ V 2

U2 , Ω′ ∼ U and Ω′′ ∼ V 2

U (the full expressions are in the appendix
of Paper IV). The Vxc is then

V xc
p,σ(t, β) ≈ ωp − λΩeiΩt + e−β∆0ωp(λ

′eiΩ
′t − λ′′eiΩ′′t), (4.16)

where ∆0 ∼ V 2

U . Note that we require low-temperature condition e−β∆0 � 1.
The particle part spectral function is

Adimer(ω > 0, β) ∼=
1− λ− e−β∆0ωp(

λ′′
Ω′′ − λ′

Ω′ )

2
δ(ω − ωp) +

λ

2
δ(ω − ω0)

+
e−β∆0ωp

λ′′
Ω′′

2
δ(ω − ω̃p)−

e−β∆0ωp
λ′
Ω′

2
δ(ω − ω̃0), (4.17)

where ω̃0 = ωp − Ω′ and ω̃p = ωp − Ω′′. The first two terms on the RHS of
Eq. (4.17) correspond to the zero-T peaks, while the last two terms, with weights
proportional to e−β∆0 , are two small peaks (referred to as thermal peaks in the
text below) close to the zero-T peaks, respectively. The mixture of a zero-T peak
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and a thermal peak with close frequencies can be seen as a broadening of the
zero-T peak. Thus the temperature-induced broadening of the SIAM spectral
peaks may be explained in the Vxc picture: at low-temperatures, thermal fluc-
tuations induce peaks close to the zero-T peaks. The energy difference between
the zero-T peak and the thermal peak effectively leads to a broadening of the
spectral peaks at low temperatures.

2.2 Noninteracting case at zero temperature

The contribution of the continuous bath cannot be modeled by the dimer. Hence,
we consider a noninteracting case in the limit Nc → ∞ to investigate how the
hybridization to the bath affects the Vxc. At zero-T , the impurity Green’s
function Gff,σ can be analytically solved as

Gnonint
ff,σ (ω) =

1

ω − εf −∆(ω)
, (4.18)

where

∆(ω) =
∑

k

|vk|2
ω+ − εk

(4.19)

is the hybridization function [138]. When |εf |, V � 2|th|, we approach the so-
called wide-band limit (WBL), and the hybridization function can be treated as
a constant for |ω| � 2|th|,

∆(ω) = iΓ = i
πV 2

4th
. (4.20)

Accordingly, we can calculate the Vxc (which only contains the hybridization
field since U = 0):

V xc
nonint,WBL(t) = iΓθ(−t). (4.21)

That is, the Vxc is a purely imaginary constant. The physical picture is as
follows: the infinitely wide bath band leads to a broadening of the impurity
level εf , which is represented by a purely imaginary hybridization field. This
hybridization effect exists also for non-WBL or interacting cases. Using the
evidence gathered from the WBL in the noninteracting case, we assume that,
for U 6= 0, the SIAM Vxc (with the hybridization effect included) has a complex
constant term, whose imaginary part is related to the width of the Hubbard
side-band.
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2.3 Ansatz of the symmetric SIAM Vxc and the spectral func-
tion

Based on the analytic and numerical results above, we propose an ansatz for
the particle part Vxc of the symmetric SIAM at low-temperatures (low-T ):

V xc(t, β) = λωpe
−iωpt + C, (4.22)

where the parameters are generally temperature-dependent. λ is real, and ωp
and C are complex. The local Green’s function is then approximately (the
derivation can be found in the appendix of Paper IV)

Ḡpff,σ(t, β) = − i
2

[
(1− λ)e−iCt + λe−i(C+ωp)t

]
, (4.23)

and the particle part spectral function is

A(ω > 0, β) =
1− λ

2π

∣∣Im[C]
∣∣

(ω − Re[C])2 + (Im[C])2

+
λ

2π

∣∣Im[C + ωp]
∣∣

(ω − Re[C + ωp])2 + (Im[C + ωp])2
. (4.24)

Before determining the ansatz parameters numerically, we use the ansatz to
interpret the Kondo spectral function. The two peaks in the spectral function
can be recognized as a Hubbard side-band located at ω = Re[C] with broadening
Im[C], and a Kondo peak located at ω = Re[C+ωp] with width Im[C+ωp]. The
spectral weights of the two peaks are determined by λ. The two peaks have
distinct origins. The peak location and the width of the Hubbard side-band are
controlled by the constant term of the Vxc, which accounts for the fact that the
impurity level is affected by the interaction and broadened by the continuous
bath. On the other hand, at low-T , quasiparticle-like energy ωp creates a sharp
resonance peak close to ω = 0, whose width and height can be described by the
Fermi-liquid treatment [48].

Keeping in mind the physical meaning of the parameters, we discuss the extra-
polation procedure, which involves calculating the ansatz quantities (λ, ωp, C)
for a given symmetric SIAM with model parameters (U, V, th, β). Here, to com-
pare with NRG results in the literature (e.g., from Refs. [139] and [45]), we
also apply the WBL. We begin with the T = 0 limit, and assume that the first
(second) term on the RHS of Eq. (4.24) contributes to the Hubbard (Kondo)
peak. In this case, λ can be determined from the height of the Kondo peak:

λ

πTK
=

1

πΓ
. (4.25)
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The peak location of the Hubbard side-band can be directly calculated, which
means

Re[C] ≈ U

2
. (4.26)

The Kondo resonance peak is at ω = 0 and its width is given by the Kondo
temperature (TK) [45]. Thus,

C + ωp ≈ −iTK = −i
√
UΓ

2
e−

πU
8Γ

+ πΓ
2U . (4.27)

The last unknown parameter is the imaginary part of C, which corresponds
to the width of the Hubbard side-band. We use the Anderson-type finite-size
chain (using open boundary conditions in the tight-bonding model, see Fig. 2.5)
spectral function to estimate Im[C]. Note that a finite chain cannot reproduce
the proper broadening caused by an infinitely wide band. However, the relative
weight between the Hubbard peak and the Kondo peak,

R =
1− λ

2λ

Tk∣∣Im[C]
∣∣ , (4.28)

can provide information of Im[C]. We extrapolate the value of R by increasing
the number of sites in the chain (see Paper IV for more details of the extrapol-
ation procedure).

In Fig. 4.5, we show the local spectral function of a symmetric SIAM in the
WBL with U = 3, th = 50, T = 0. We choose the parameters (Γ = 0.2, 0.5, and
0.9) to compare with NRG results in the WBL (see Fig. 3 in Ref. [139]). The
spectral function shows satisfactory agreements to the NRG results. A complex
excitation ωp dominates the temporal behavior of the Vxc. Specifically, Re[ωp] =
−U

2 creates the Kondo resonance peak which requires no energy transfer, and
Im[ωp] contains the Kondo temperature. At zero-T and in the WBL, most of
the ansatz parameters can naturally be determined based on some well-known
results of the SIAM. Only one parameter requires a numerical extrapolation.
Moreover, the cluster spectral function used in the extrapolation is actually
distinct from the SIAM spectral function: for the cluster results, the Kondo
peak position is not at ω = 0, and the Hubbard band is too sharp. This
discrepancy can be attributed to the essential differences between a finite cluster
with tens of sites and a continuous bath. However, the Vxc scheme produces
favourable spectral functions using these finite cluster results. This indicates
that the Vxc formalism, originating from very fundamental physics and using
established knowledge of the target system as a reference, is able to capture the
key features of the impurity problem.

69



Figure 4.5: Adapted from Paper IV. The zero-T spectral function of a symmetric SIAM. We use U = 3, th = 50
to approach the WBL, and different V values to realize desired Γ values. From the extrapolation, we get
Im[C] = −0.6,−1.3 and −1.7, respectively, for Γ = 0.2, 0.5 and 0.9.

Lastly, we discuss the spectral function at low temperatures and below the
Kondo temperature. In the Vxc formalism, as observed from the dimer res-
ult, thermal excitation leads to the broadening of both the Kondo peak and
the Hubbard side-band peak. In the WBL, this thermal broadening can be ef-
fectively described by the temperature-dependence of the imaginary part of the
excitation energy ωp, while other parameters remain temperature-independent:

ωp(T ) = ωp(T = 0) + iΩT , (4.29)

where ΩT is much smaller than Im[C]. Effectively, the Hubbard side-band stays
almost unchanged with the increasing temperature. We perform ED on an eight-
site cluster with th = 500, U = 1 and Γ = 0.04 to calculate the spectral function
at T/TK = 0.01, 0.1, 1. The value of ΩT is estimated using the position of the
thermal peak nearest to the Kondo peak. Other parameters are estimated using
the zero-T approach. The low-temperature spectral function results are shown
in Fig 4.6. Compared with NRG results (see page 3.15 of Ref. [45]), the Vxc
result captures the correct trend of the Kondo peak width: at T � TK, the
contribution of ΩT is negligible, leading to a width dominated by the Kondo
temperature. As T approaches TK, |ΩT | increases.

3 Summary of this section and the general Vxc form-
alism

In this section, we presented the result of applying the dynamical xc field form-
alism to the SIAM at low temperatures. The formalism introduces a dynamical
xc field (Vxc), which can be interpreted as the Coulomb potential of the xc hole.
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Figure 4.6: Adapted from Paper IV. The spectral function of a symmetric SIAM with th = 500, U = 2 and Γ = 0.04, at
T = 0.01TK, 0.1TK and TK. Left: The frequency is in unit of U . Right: The frequency is in unit of TK and
in logarithmic scale to highlight the width of the Kondo resonance peak.

For the SIAM, the Vxc also incorporates the hybridization effect between the im-
purity and the bath. We proposed an ansatz for the SIAM Vxc, which includes a
complex constant term, C, and a complex quasiparticle-like excitation, ωp. The
real and imaginary parts of C correspond to the peak location and the width
of the Hubbard side-band, respectively. More importantly, Im[ωp] accounts for
the Kondo temperature. At zero-T in the WBL, most parameters of the an-
satz can be calculated from the model parameters using Fermi-liquid theory.
The only unknown parameter can be estimated by an extrapolation procedure.
For low temperatures, the temperature-dependence of the ansatz parameters is
primarily through Im[ωp], which again needs to be approximated numerically,
guided by the insights from the auxiliary analytically dimer Vxc. Overall, the
spectral function calculated from the Vxc shows satisfactory agreement with the
NRG results. The extrapolation procedures involved are of low computational
cost. We understand the favourable performance of the xc field formalism as
follows: the screening effect underlying the SIAM is essential for the Kondo
effect, and the xc field provides a suitable description for quasiparticle-like ex-
citations. Hence, the parameters in the ansatz have clear physical meaning and
can be related in a novel perspective to key well-understood features of the spec-
tral function. The fact that only a few parameters require numerical treatment
leads to a good trade-off between accuracy and computational effort.

Finally, we stress a significant feature of the xc field formalism: it manages to
reduce a complicated many-body problem to an extrapolation procedure. The
extrapolation is usually done with a (numerically) solvable finite cluster or a
homogeneous system as a reference. When the target system and the reference
system exhibit explicit similarities, the extrapolation can be done straightfor-
wardly (as the Heisenberg model in chapter 3). In practice, the connection
between the reference system and the complex target is often less obvious. An
example is the SIAM, where the finite cluster spectral function differs qualitat-
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ively from the SIAM. Despite this, the xc field formalism successfully captures
the implicit correspondence, specifically the relative weight between the Hub-
bard peak and the Kondo peak at T = 0. Hence, we believe that the xc field
formalism, based on the quasiparticle picture, is a viable and powerful approach
for modeling correlated many-body system and holds great potential for first-
principles calculations.
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Chapter 5

Summary and outlook

In this thesis, we introduced several newly developed theoretical approaches
and presented the results of applying them, in combination with other numer-
ical methods, to low-dimensional magnetic systems. We hope that by listing
key equations and highlighting results from the papers, this thesis provides the
theoretical background for the papers and serves as a condensed summary of
our research outcomes.

In Paper I, we applied the magnon self-energy approach to 2D Heisenberg mod-
els. The ground-state properties, including spin expectation values and spin
correlations, were calculated in good accuracy using this approach. However,
the results were less satisfactory for dynamical properties (such as the spectral
functions) and when anti-symmetric spin couplings (e.g. Dzyaloshinskii-Moriya
interaction) were included. These systems were then studied using different
methods in the following papers.

In Paper II and IV, the spectral functions of a 1D Heisenberg model and the
single-impurity Anderson model were calculated using the dynamical exchange-
correlation (xc) field formalism. The results showed a good trade-off between
accuracy and computational cost. A common feature in these papers is that
the xc field can be seen as the sum of a constant term and a quasiparticle-like
excitation term, which can be determined from reference systems via analytical
theory or numerical extrapolation. Also, by working in real time domain, the
formalism avoids the analytical continuation issues.

In Paper III, we proposed a MPS+NEGF/ED framework to study a magnetic
skyrmion system involving itinerant electrons. The interaction between local
spins and itinerant electrons was described as the Kondo exchange coupling and
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was treated at the mean-field level. The results showed that the itinerant elec-
trons significantly affect the local quantum spins. Hence, our approach provides
a different scope compared with quantum/classical spin-only and classical-spin
+ quantum-electron treatments.

Overall, by working with localized spin models and spin+electron models, we
expect that our frameworks can improve the treatments to low-dimensional mag-
netic systems. A long-term goal is to make first-principles calculations more
feasible, as mentioned in chapters 1 and 2. Below, we conclude this thesis by
proposing several future research directions:

• Investigate impurity models with higher complexity, such as the Kondo
lattice or the nonsymmetric SIAM (e.g., not at half-filling or under an
external magnetic field). For the Kondo lattice where the Coulomb inter-
action is not only on a single site, we can study the spatial features of the
xc hole and the xc field. For the nonsymmetric SIAM, we want to see how
symmetry breaking can be reflected by the xc field.

• Incorporate time-dependent electromagnetic fields. One advantage of the
dynamical xc field formalism is its natural extension to nonequilibrium
systems. The sum rule and the exact constraint fulfilled by the dynamic
xc hole take the same form as in the equilibrium case. Additionally, the
NEGF can be directly calculated from the nonequilibrium xc field, without
using contour notations. In practice, however, the xc field may have a more
complicated form. We should start with systems where exact benchmarks
are available and compare our results with conventional NEGF methods.

• Include bosonic contributions using models such as the Hubbard-Holstein
model and the Jaynes-Cummings model. The system will then be de-
scribed by both fermionic and bosonic Green’s functions. We are interested
in developing a scheme for such mixed-type Green’s functions. Further-
more, we can explore a quantum skyrmion system which interacts with
photons. Recent literature on light-induced skyrmions [41] and quantum
skyrmion operators [140] has provided preliminary valuable insights in this
respect.
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