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“The world is indeed full of peril, and in it there are many dark places; 
but still there is much that is fair, and though in all lands love is now 

mingled with grief, it grows perhaps the greater.” 

J. R. R. Tolkien, The Fellowship of the Ring 
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Abstract 

Over the past couple of decades, considerable advances in automation and high-
throughput omics technologies have contributed to the generation of unprecedented 
amounts of molecular data, challenging the traditional “one size fits all” approach in 
favour of personalised medicine, where the individual needs of patients are addressed. 

However, the speed at which such molecular data is being acquired does not translate 
in a proportional number of clinical implementations. One way in which the molecular 
data can contribute to individualised treatment is by the discovery of novel and more 
robust biomarkers. 

Proteins are interesting biomarker candidates, as they mediate most processes in living 
organisms, and are by far the most utilised molecules in clinical use. For these reasons, 
global analysis of proteins could contribute to the development of better biomarkers. 

By combining mass spectrometry-based proteomics with automation solutions, 
workflows that can potentially improve biomarker discovery are discussed and 
showcased in this thesis. Such workflows are exemplified in (i) the multiplexed 
enrichment of blood plasma, allowing higher throughput and a unique platform for 
automation of affinity enrichment, (ii) the acquisition of matching multiomics data 
from a large number of breast cancer patient samples, allowing the optimisation of data 
acquisition strategies and utilisation of such data for functional analyses of the intrinsic 
subtypes, (iii) and the multiomics data analysis of patient samples, contributing to the 
most comprehensive molecular profile of metastatic processes in oestrogen receptor-
positive breast cancer utilising transcriptomics, proteomics, phosphoproteomics and 
immune infiltration data acquired from the same tumour samples. 

In summary, the work presented in this thesis highlights strategies incorporating mass 
spectrometry-based proteomics and automation, allowing a greater number of samples 
to be analysed, more data to be extracted from samples and making better use of this 
data, which would hopefully improve biomarkers discovery, contributing to the field 
of personalised medicine. 
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Popular Science Summary 

Since the second half of the 20th century, we have experienced a transition period 
marked by the increasing health impact of noncommunicable diseases (NCDs), such 
as cardiovascular disease, diabetes, and cancer. According to estimates from the World 
Health Organization (WHO), these diseases account for the vast majority of premature 
deaths worldwide.  

Cancer, for instance, ranks amongst the main culprits. The WHO projects that over 
28 million new cases will arise in 2040, representing an overall increase of 47% 
compared to current estimates. These estimates are the result of a population increase, 
aging, and increased prevalence of risk factors, but it also accounts for earlier and better 
detection of the disease. In connection with incidence, cancer mortality rates are also 
projected to increase, which highlights the need for new and better treatment options, 
and biomarkers are essential for this process. 

A biomarker can be defined as a characteristic which, once measured, can serve as an 
indicator of a process, normal, pathogenic or in response to treatment. Different 
measurements can work as biomarkers, including, for instance, molecules or images 
such as features in X-ray radiographs. 

In the recent past, the field of molecular medicine has advanced dramatically to a point 
where we have unprecedented amounts of data collected. Historically, the classification 
of diseases was done based on signs and symptoms, often resulting in a therapeutic 
approach commonly known as “one size fits all”.  

The abundance of data, together with recent developments, allows for a different 
approach, one that addresses the individual needs of patients, also known as 
personalised medicine. 

In the context of molecular medicine, a biomarker can be, for example, a gene or a 
protein. Proteins make interesting biomarkers because most functions are mediated by 
proteins. They are also amply used in the medical field for various purposes. The 
simplest example is a routine blood test, which results in the measure of several proteins 
found in blood that give an overall indication of an individual’s health status. 

The characterisation of the entire protein fraction of a sample at a given time point, 
including proteins, their isoforms, modifications, and interactions defines the 
proteome, and the field responsible for its study, proteomics. 

Amongst the different methods available in the proteomics toolkit, the use of mass 
spectrometry has become the method of choice in the analysis of complex samples. 
Essentially, mass spectrometers are capable of measuring the presence and abundance 
of molecules based on two main physical properties, mass and charge. 
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In this thesis, I describe how mass spectrometry can be used with different sample 
materials in a reproducible way in order to discover cancer biomarkers which can be 
used in personalised medicine. 

We used two sample materials commonly found in the clinical setting, tissue biopsies 
and blood. The challenges associated with each are different, requiring different 
strategies. 

Starting with blood, it is a very attractive source of potential biomarkers due to the 
minimally invasive and highly standardised procedure used to collect it. It contains a 
variety of proteins originated in blood and in other tissues, making it the most 
comprehensive proteome of human nature. However, the protein abundance also 
represents the main challenge associated with proteomic preparation of blood samples. 

A few proteins, for example albumin, make the bulk of the blood proteome. In 
biomarker discovery efforts via mass spectrometry-based proteomics, this typically 
translates into most of the signal originating from these high-abundance protein 
species, ultimately limiting the utility of this sample material.  

Despite this scenario, different tools are available to tackle this problem. In paper II, 
we use an approach based on the enrichment of low-abundance proteins. By using small 
antibody fragments, the concentration of low-abundance proteins in relation to the 
high abundance ones is increased, resulting in higher chances of detecting and 
quantifying these proteins. These antibody fragments had been previously developed 
and demonstrated to work in tissue samples. However, given the potential benefit of 
using blood for these analyses, an automated protocol was created to test a panel of 29 
of these antibodies, both independently and in combination.  

As a result, we were able to demonstrate not only the benefits of automation, which 
allows for a more robust sample preparation strategy, but also the use of a small number 
of antibody fragments for enrichment of low-abundance proteins, a small step which 
could be easily introduced in a workflow for improved proteome coverage. 

The other material we worked with was based on tissue biopsies from breast cancer 
patients. 

Breast cancer (BC) is the leading cause of incidence and mortality among women. 
Molecular medicine and the mammography screening program have contributed to 
considerable developments in the field. Nevertheless, a significant number of patients 
end up being undertreated or overtreated, either receiving insufficient treatment, 
ultimately leading to relapse, or undergoing procedures which could have been avoided, 
resulting in unnecessary pain, side effects and associated costs. 

Since most of the developments in BC molecular medicine have been reported at the 
genome or the transcriptome levels, we were interested in investigating whether the 
proteome could provide additional information. For that, we used samples belonging 
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to a clinical cohort. Since these samples had plenty of clinical and molecular data 
(transcriptomics) linked to them, they were ideal for exploring the potential benefits of 
including proteome data. 

In paper I, we developed a workflow for the preparation of BC samples for proteomic 
analysis. Samples representing different subtypes of BC were used. One of the first 
objectives in developing the workflow was investigating the impact of different mass 
spectrometry data acquisition strategies.  

Data dependent acquisition (DDA) is the most common approach. However, the way 
it works makes it inherently biased towards higher abundance molecules. To address 
this bias, a different approach, namely data independent acquisition (DIA), has become 
increasingly popular in the past few years. By comparing these two strategies in the BC 
samples, we were able to demonstrate that DIA is better suited for this sample type, 
allowing for overall increase in the number of detected and quantified proteins. 

Given the abundance of clinical and molecular data available from these samples, we 
were also able to demonstrate that our proteome analysis could contribute to additional 
information not captured by other data. However, given the small number of samples 
per subtype and the fact that the samples were selected without a clinical question in 
mind, we were limited in what clinical conclusions we could draw from this study. 

For that reason, paper IV was devised. Consulting with experts in the field, a relevant 
clinical question was proposed on the effects of lymph node metastasis and distant 
metastasis in BC, more specifically oestrogen receptor-positive BC. We built on the 
previously developed workflow and included protein phosphorylation data 
(phosphoproteomics) in a dataset that is the most comprehensive of its kind. The 
addition of phosphorylation data may provide additional information to the analysis, 
as protein phosphorylation is considered an important feature, responsible for 
activation of proteins and cellular communication. By integrating the already available 
transcriptome data with proteomics and phosphoproteomics, we were able to find, both 
at the pathway and single marker level, changes associated with metastasis to lymph 
nodes or distant sites. 

The quality of the data and the clinical question behind it also permitted us to explore 
the immune component in these samples. The presence of immune cells in a tumour 
and their importance are not new. In fact, it has important prognostic implications. In 
the era where an abundance of omics data is available, it has been demonstrated that 
immune cell infiltration can be estimated based on various transcriptomics data. Until 
recently, proteomics data has not been used for this purpose.  

Building on the knowledge that proteins make ideal biomarkers because they mediate 
most of an organism’s functions, the estimation of immune cells based on proteomics 
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data could also benefit from a similar rationale, where the actual effector molecules and 
markers are being used for improved accuracy. 

In paper III, we explore various approaches to perform this estimation based on 
proteomics data and demonstrate, in one of the first efforts of its kind, that the choice 
of method and reference play a fundamental role in the accuracy of the estimations. 
Although transcriptomics has been typically used for such purposes, our results show 
promising applications of proteomics data. 

In the context of paper IV, the immune infiltration data also contributed towards 
exploring potential subtypes associated with the presence of inflammation and immune 
cells, enabling a discussion of alternative therapeutic strategies in such cases. 

In summary, in this thesis, the need for better and improved biomarkers is evidenced 
by shedding a light on the increasing burden of cancer in the coming decades. The 
discussion then moves towards the use of proteins as biomarkers, given they are more 
closely linked to functions compared to other molecular entities such as genes and 
transcripts as well as more amply used in the clinical setting. We then proceed to 
develop and optimise workflows for the analysis of different clinical samples, 
culminating in a project where data from multiple sources are combined to aid in 
answering clinically relevant questions.  

Overall, the workflows presented here can contribute to the more ample use and 
implementation of proteomics as a biomarker discovery tool. Finally, by linking these 
workflows with a clinical need, we are able to suggest targets worth further exploring, 
hopefully leading to better patient stratification, and contributing to the field of 
precision medicine. 
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Introduction 

The 21st century is marked by the ever-increasing socioeconomical impact of 
noncommunicable diseases such as cardiovascular disease and cancer. It is also marked 
by advances in molecular medicine, which has contributed to unprecedented amounts 
of omics data available for a multitude of different conditions, including cancer. 

Such developments have also paved the way to a different approach when it comes to 
medical care, one that is not based on shared signs and symptoms, but rather addresses 
individual needs of patients, known as personalised medicine. 

However, the capacity to translate these data and findings into clinical applications has 
been limited. For instance, very few biomarkers end up being approved for clinical use 
compared to the number of candidates published. This highlights a need for bridging 
the gap between laboratory research and clinical research, hopefully leading to the 
discovery and translation of better biomarkers for use in personalised medicine 
applications. 

In the present thesis, different approaches are utilised and discussed with the aim of 
enabling better biomarker discovery in precision oncology.  

First, although proteins are by far the most utilised class of molecules in clinical use, 
proteomics has not been amply utilised for biomarker discovery. This is partially due 
to most developments being focused on genomic and transcriptomic approaches, 
historically. In this context, a first focus is put on optimising and automating workflows 
for proteomic (and multiomics) data acquisition, allowing larger cohorts to be analysed, 
thereby increasing the chances of discovering more robust biomarkers. These aspects 
are discussed in Papers I and II, in the context of a large breast cancer clinical cohort 
and blood plasma, respectively. 

A second focus, enabled by the developments achieved in the first part, is the 
integration of omics data for improved biomarker discovery. The rationale behind it is 
that multiple omics can potentially allow for a more complete molecular profile to be 
drawn, which would be beneficial for understanding and addressing complex issues 
such as cancer. Having established that proteomics can add a layer of information 
complementary to transcriptomics (Paper I), in Paper IV, data integration is 
implemented with the goal of profiling oestrogen receptor-positive breast cancer patient 
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samples utilising transcriptomics, proteomics, phosphoproteomics and immune 
infiltration data. 

The immune component has been shown to be important for patient classification and 
prognosis. Among different techniques available, deconvolution of immune cell types 
using bulk transcriptomics data has been shown to be successful. However, considering 
that these cells are usually characterised by the presence of cell surface proteins, the use 
of proteomics data for deconvolution could be beneficial. This approach is discussed 
and implemented in Paper III, and the resulting immune infiltration estimates are 
further used in Paper IV for the identification of subtypes. 

In summary, this thesis is divided into four parts: (i) bringing attention to the need for 
better biomarkers for personalised medicine and the potential burden of cancer; (ii) 
reviewing and discussing implementations of mass spectrometry-based proteomics for 
biomarker discovery; (iii) reviewing and discussing the use of multiomics data; (iv) and 
discussing the applications adopted across the different papers in the context of breast 
cancer. 
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The Biomarker Problem 

The term “biomarker” is very commonly used today. However, the concept of a 
biochemical or biological marker is much older (1). Over the decades, several 
definitions were proposed. For instance, in 2001, the Biomarkers Definitions Working 
Group defined a biomarker as “a characteristic that is objectively measured and 
evaluated as an indicator of normal biological processes, pathogenic processes, or 
pharmacologic responses to a therapeutic intervention” (2). This definition is 
somewhat problematic in that it does not encompass non-pharmacological 
interventions nor observations which are not completely objective, such as imaging (1, 
2). 

In 2016, in a joint effort between the U.S. Food and Drug Administration (FDA) and 
the National Institute of Health (NIH), the term was further refined in the Biomarkers, 
EndpointS and other Tools (BEST) resource, a publicly available and continuously 
updated document aimed at standardising common definitions (3, 4). 

Despite the broad definition, the BEST resource explicitly states that a biomarker is 
different from a measure of how a patient feels, functions, or survives (3, 4). Such 
measures are known as Clinical Outcome Assessment (COA) (4). It is important to 
distinguish between these two terms given that COAs are measures that are directly 
important to the patient, while biomarkers can have different purposes. An added layer 
of complexity is introduced in the context of defining endpoints. Both biomarkers and 
COAs may be used to for such purpose, and the distinction lies in the level of precision 
and scientific rigor required. This is necessary to guarantee reliability and 
reproducibility in a clinical study (4). 

Compared to clinical endpoints, biomarkers have the advantage of being more easily 
and quickly measured, ultimately allowing clinical trials to be performed for shorter 
periods of time and with fewer patients. For example, a hypothetical trial designed to 
assess the effect of a certain intervention would require fewer patients and less time if 
using measures such as a patient’s blood pressure and echocardiography compared to 
waiting for a clinical endpoint such as deaths from strokes (1). 

They are routinely used in acute care settings and have been successfully implemented 
in other clinical applications such as risk stratification, population screening, disease 
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subtyping and monitoring response to treatment. By functioning as surrogate markers, 
they also allow for the development of new drugs (5). 

With the advent of molecular medicine and the rapid technological advances, the 
medical field is drastically changing given the number of measurements, computations 
and analyses that are being produced (4, 6). The increase in the amount of molecular 
data routinely collected has directly contributed to a better understanding of complex 
systems such as disease states. As a consequence of such development, it is unusual for 
a single biomarker to be able to recapitulate all required information for monitoring an 
intervention (1, 4, 6). Although that is perceived as a negative factor, given that, 
historically, the field has been built on single biomarker measures, e.g., high systolic 
blood pressure associated with increased risk of stroke, the use of complex biomarkers, 
or biomarker panels may indeed enable better predictions, as each biomarker would 
contribute to the outcome of interest (4). 

The classification of diseases such as cancer is still heavily based on signs and symptoms. 
This results in dissonance with molecular medicine, as diseases with different molecular 
subtypes may be classified as a single entity (6). This more traditional approach is often 
referred to as “one size fits all”, and its consequences lead to a paradoxical scenario of 
both undertreatment and overtreatment (7). 

The emergence of a field that is accelerating rapidly emphasises the need for a different 
approach, one in which treatments target the needs of individual patients on the basis 
of genetic, biomarker, phenotypic, or psychosocial characteristics that distinguish such 
patient from others with similar clinical manifestations. This approach is known as 
precision medicine (7, 8). Compared to the more traditional approach, precision 
medicine could contribute not only to more efficient treatments with fewer side effect, 
but also reduce the associated costs (7). 

In an era defined by the abundance of omics, informatics and imaging data, the 
necessity of precision medicine for better disease classification, prognostic and 
treatment implications becomes evident (8). The complexity associated with this system 
is, however, its biggest challenge, and for that, better biomarkers are needed to further 
aid in clinical decisions (8). 

The number of biomarker candidates published has never been higher, with hundreds-
to-thousands of them being routinely identified (1, 5). However, the problem is that 
there is a tremendous gap between the number of candidates and the number of 
approved biomarkers, with most of the successes in precision medicine being in the 
field of oncology (5, 9, 10). The challenges found in the progression of precision 
medicine are both scientific and non-scientific. Notably, the lack of clearly defined and 
relevant clinical questions, failure to understand the relationship between the 
pathophysiology of the disease and the mechanism of action behind the intervention, 
and failure to meet the high bar of clinical validation all contribute to this scenario (1, 
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5, 9, 10). In this thesis, some of the scientific aspects are addressed in terms of 
automation, study design and data analysis for the discovery new biomarkers for 
applications in precision medicine. 
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The Burden of Cancer 

Based on recent estimates from the World Health Organization (WHO), 
noncommunicable diseases (NCDs) are responsible for more than three quarters of 
premature deaths, i.e., occurring between the ages of 30 and 70 years (11, 12). The two 
main culprits are cardiovascular disease and cancer. Out of the 183 surveyed countries, 
cancer was the first or second leading cause of death in 127 (12). This takes place during 
a period of epidemiologic transition which initiated in the second half of the 20th 
century, progressively asserting the dominance of NCDs over infectious diseases (12). 
The burden of NCDs varies according to the Human Development Index (HDI), 
where countries with high HDI are characterised by having cancer as the main NCD, 
while low-HDI countries have a double burden from NCDs and infectious diseases 
(12). 

According to the GLOBOCAN 2020, there were estimated 19.1 million cases of cancer 
worldwide and 10 million cancer deaths (11). In comparison, the GLOBOCAN 2022 
estimated 19.9 million new cancer cases and 9.7 million cancer deaths (13). Based on 
estimates of incidence and mortality, the top 10 cancer types, in both sexes combined, 
account for over 60% of all newly diagnosed cancer cases and more than 70% of the 
associated deaths. In terms of incidence, female breast cancer (11.7% of total cases), 
lung (11.4%), colorectal (10.0%), prostate (7.3%) and stomach (5.6%) are the most 
commonly diagnosed types (11). Ranking the cases based on mortality, however, results 
in lung being the leading cause of cancer-related deaths (18.0% of all cancer deaths), 
followed by colorectal (9.4%), liver (8.3%), stomach (7.7%) and female breast (6.9%) 
(11). 

When further stratified based on sex, the 2020 estimates show around 10.1 million 
cancer cases and 5.5 million cancer deaths in men; in women, those numbers are 9.2 
million and 4.4 million, respectively. In terms of incidence in men, lung (14.3% of all 
cases) is closely followed by prostate (14.1%), and although lung remains the leading 
cause of cancer death in men, prostate ranks 5th (11). For women, breast is the leading 
cause of incidence and mortality, corresponding to 24.5% of all diagnosed cases and 
15.5% of cancer deaths, followed by colorectal and lung for incidence, and the opposite 
for mortality (11). 

For 2022, the estimates changed slightly. Lung cancer ranked first in terms of incidence 
for both sexes (12.4%), followed by female breast cancer (11.6%), colorectal, prostate 
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and stomach. In number of deaths, lung continues to be the leading cause of cancer-
related deaths (18.7%), followed by colorectal, liver, female breast and stomach (13). 
For numbers in incidence and mortality by sex, the trends remained the same for men, 
while for women, breast continues to rank first, although lung and colorectal now rank 
second and third both in the number of new cases and deaths (13). 

Cancer incidence and death rates also have different profiles globally. The report 
demonstrated that if incidence and mortality rates are split based on a 4-tier Human 
Development Index (HDI) level, an increase in HDI leads to an increase in both 
metrics. More specifically, the difference in incidence was 2- to 3-fold higher in very 
high HID countries compared to low HDI ones. In terms of mortality, the difference 
is 2-fold in the same direction (11). When further subdividing based on sex, the overall 
cancer incidence in men was 19% higher compared to women. Among men, however, 
this number varied drastically, with incidence rates ranging almost 5-fold when 
comparing Australia/New Zealand (494.2 per 100,000) to Western Africa (100.6 per 
100,000). Among women, the differences were up to 4-fold comparing Australia/New 
Zealand to South Central Asia (11).  

These numbers reflect not only differences in exposure to risk factors, but also increased 
detection rates for the disease (11). For instance, in female breast cancer, incidence rates 
are 88% higher in transitioned countries compared to transitioning ones. However, the 
mortality rate in transitioning countries is 17% higher compared to that of transitioned 
countries (11). 

Projecting these numbers to 2040, the GLOBOCAN 2020 estimates that 28.4 million 
new cases will arise in 2040, representing an increase of 47% compared to the current 
estimates. This is a result of population growth and aging, as well as increased 
prevalence of risk factors, and the projections are even more striking for low and 
medium HDI countries, 95% and 64%, respectively. The period of epidemiologic 
transition mentioned previously results in countries with emerging HDI levels to be 
the most affected, as the prevalence of risk factors often associated with high-income 
western countries increases together with a paradigm shift from infection-related and 
poverty-related cancers to cancers that are more common in developed countries. 
Ultimately, this requires a change in priorities in national cancer control strategies (11). 

The increase in incidence will also lead to an increase in mortality rates. For that reason, 
resources must be allocated for both treatment and management of the disease. Even if 
prevention is a very effective way of controlling cancer, the implementation of effective 
interventions into health plans as well as the development of new interventions are 
necessary (11). 
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Proteomics 

By now, it is clear that the burden of cancer will continue to increase in the coming 
years with an aging population and change in exposure patterns to risk factors. It is also 
clear that despite the considerable number of candidate biomarkers published, those 
that get implemented into clinical practice are very few (5, 9, 14). 

In the realm of molecular medicine, a biomarker can take many forms. For example, 
they can be DNA, mRNA, proteins, metabolites, or pathways. Proteins are much more 
closely related to the phenotype than DNA and mRNA, as they represent the endpoint 
of gene expression and are responsible for most catalytic and structural functions in 
living organisms, as well as signalling and even gene expression (15, 16). They are also 
the most affected domain during the processes of disease, response, and recovery, and 
are well established in different clinical applications, including diagnosis, prediction of 
risk and detection of disease recurrence (14, 16). Therefore, the global analysis of 
proteins should be ideal for the discovery of new and better biomarkers. 

The term proteome was first used in 1995 to describe a set of proteins originating from 
a genome (17, 18). Proteomics, on the other hand, corresponds to the study of the 
proteome. It englobes not only the proteins, but also their isoforms, modifications, 
interactions and almost everything “post-genomic” (17), and is aimed at characterising 
the entire protein fraction of a given sample at a given time point (19). 

In broad terms, proteomics can be divided in three distinct types, namely expression 
proteomics, functional proteomics and structural proteomics (20). Expression 
proteomics is aimed at the study of the expression of proteins, both quantitatively and 
qualitatively. It includes techniques such as two-dimensional gel electrophoresis (2D-
GE) and mass spectrometry (MS)-based technologies. Structural proteomics has the 
objective of understanding protein interaction and function through a structural basis; 
techniques such as X-ray crystallography and nuclear magnetic resonance (NMR) are 
utilised at the protein level together with electron microscopy and electron tomography 
for visualisation of complexes and cellular context (17, 20). Finally, the goal of 
functional proteomics is the study of protein function and molecular mechanisms (20). 

The work presented in this thesis focuses on applications of MS-based proteomics. For 
the sake of simplicity, unless otherwise specified, the term proteomics will be used as 
synonym for MS-based proteomics. 
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Mass Spectrometry-based Proteomics 

Mass spectrometers originated in 1912 and have undergone continuous development 
ever since (21). Their application in the field of proteomics has become the method of 
choice in the analysis of complex proteins samples, and it is due to the developments 
achieved through other omics, i.e., availability of sequence databases for genes and 
genomes, as well as technological advances in other areas, especially the development 
of protein ionisation methods, which awarded John B. Fenn and Koichi Tanaka the 
Nobel Prize in chemistry in 2002 (17, 21, 22). 

Essentially, all mass spectrometers work by measuring the presence and abundance of 
molecules based on mass and net charge, more specifically the mass-to-charge (m/z) 
ratio, two fundamental properties of molecules (21, 22).  

A mass spectrometer essentially consists of a source, responsible for the ionisation, a 
mass analyser that measures the m/z ratios of the resulting ions, and a detector, 
responsible for registering the number of ions at each m/z value (22).  

Ionisation Methods 

Starting at the source, because measurements take place in gas phase, ionisation is an 
essential step in converting proteins or peptides into ions (21, 22). 

Two techniques are most commonly used for ionising proteins and peptides for mass 
spectrometry analysis, namely Electrospray Ionisation (ESI) and Matrix-Assisted Laser 
Desorption/Ionisation (MALDI) (22). They are referred to as soft ionisation 
techniques in that analyte fragmentation is prevented or minimised (23). 

In ESI, the ionisation takes place directly from a liquid sample, allowing the system to 
be readily coupled to liquid-based separation tools such as liquid chromatography (22, 
23). In principle, the method works by having a liquid sample containing the molecule 
of interest pumped at low flow rates through a hypodermic needle with high voltage 
applied to it. The high voltage results in the dispersion of the sample into small droplets, 
an electrospray, which occurs at atmospheric pressure. The droplets quickly evaporate, 
imparting charge onto the molecules present (24). 

In MALDI, the sample is sublimated and ionised out of a matrix via laser pulses (22). 
More specifically, the analyte is coprecipitated with an excess of the matrix and allowed 
to dry onto a metal substrate. Nanosecond laser pulses, often nitrogen lasers at 
wavelength 337nm, irradiate the resulting solid (24). It also tends to produce singly 
charged ions, making the resulting spectra easy to interpret. However, the ability to 
couple ESI-MS with on-line liquid chromatography, thereby enabling simultaneous 



33 

sample cleanup, concentration, and separation, has made this choice popular in the 
analysis of complex protein samples (23, 24). 

Mass analysers and instrument configurations 

The second component in the system is the mass analyser, and it is central to the 
technology. In the field of proteomics-based MS, sensitivity, resolution, mass accuracy 
and the ability to generate tandem mass spectra or MS/MS spectra, necessary for 
peptide sequencing, are key parameters (22, 24). As mentioned previously, all mass 
spectrometers measure m/z ratios of analytes. Based on the principle, three different 
approaches can be used to achieve mass separation: separation on the basis of time-of-
flight (TOF MS); separation by quadrupole electric fields generated by metal rods 
(quadrupole MS); separation by selective ejection of ions from a three-dimensional 
trapping field, e.g., ion trap MS or Fourier transform ion cyclotron MS (FTMS) (22, 
24). It is important to note that each has their own set of advantages and disadvantages, 
but they can also be used in combination in order to harness the strengths of each type 
(22). A representation of different ion sources and instrument configurations is given 
in Figure 1. 

 

Figure 1: The upper panels showcase sample ionisation and introduction in ESI and MALDI. Different instrument 
configurations are illustrated in panels (a-f). From (22) with permission from the publisher. 

The principle behind TOF analysers is quite simple. It measures the m/z ratio of ions 
by determining the time required for them to traverse a flight tube, which then reflects 
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the ions back through the tube and into a detector. Small ions have higher velocity and 
as a result are detected earlier than heavier ions, generating a TOF spectrum (24, 25). 
TOF analysers are normally coupled to MALDI for the analysis of intact peptides, while 
ESI is often used in conjunction with quadrupoles and ion traps in the analysis of 
fragment ions. However, instruments such as the TOF-TOF in which a collision cell 
is introduced between two TOF analysers, and the qTOF in which the quadrupole acts 
as a filter to select ions for fragmentation and then TOF analysis are also available (22), 
see Figure 1. 

Quadrupole mass analysers are one of the most common mass analysers. Basically, the 
quadrupole, an array of four parallel metal rods, creates an electric field which can either 
be used to transmit all ions or act as a filter to only allow the transmission of ions of a 
certain m/z ratio (24, 25). Most commonly, quadrupoles are coupled to ESI 
instruments, for instance in a triple quadrupole mass spectrometer, where two 
quadrupoles act as filters, while a central one contains ions during fragmentation. A 
different configuration also involves replacing the third quadrupole by a TOF analyser 
(qTOF), allowing for high accuracy and resolution typically found in TOF instruments 
(24). 

Ion trap analysers trap analytes in a three-dimensional field. The ions are first captured 
and then subjected to single or tandem MS analysis. The number of ions that can be 
trapped is determined by the ion trap space charge, and it corresponds to the maximum 
number of ions that can be introduced without a distortion in the applied field (22, 24, 
25). Ion traps are compact, robust, sensitive, and relatively inexpensive, and so a 
considerable amount of the reported proteomics data in the literature comes from this 
type of instrument (22, 24, 25). 

Fourier transform ion cyclotron MS (FTMS) is a variation of ion trapping, in which 
the ions are captured in a combination of electric fields and a strong magnetic field. 
Sensitivity, mass accuracy, resolution and dynamic range can be outstanding, but the 
complexity of the instrument together with low peptide fragmentation efficiency has 
limited their use (22, 24, 26).  

The high complexity and running costs of FT instruments, together with the relatively 
low space charge capacity made evident the need for other ion trapping approaches of 
comparable performance, but more compatible with a typical laboratory environment 
(26, 27). With that in mind, the orbitrap mass analyser made its debut as a proof-of-
concept device in the year 2000 (27). This analyser is based on the principle of orbital 
trapping, first implemented in 1923, and consists of two electrodes shaped to create a 
quadro-logarithmic electrostatic potential. The outer electrode is barrel shaped, while 
the inner one has a spindle-like shape. Injected ions rotate around the inner electrode 
and oscillate harmonically along its axis with a frequency characteristic of their m/z 
ratios. These oscillations are then converted into frequency spectra using a Fourier 
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transform similar to the one used in FTMS instruments (26, 27). Compared to other 
electrostatic traps such as linear and segmented ring, the orbitrap offers the best 
performance with the smallest dimensions, making it the most suitable alternative to 
traditional FTMS instruments (26, 27). 

The orbitrap was demonstrated to have high resolving power, internal mass accuracy 
and high space charge capacity when using pulsed ion sources. This, in turn, created a 
problem with sources which produced continuous ion beams such as ESI, which was 
later resolved by introducing a linear rf-only quadrupole that acted as ion storage (26). 
Initially, the injection of ions into the orbitrap was performed axially, which ultimately 
limited the mass range, transmission, dynamic range and mass accuracy over a wide 
mass range (26). The orthogonal injection of the ions using short pulses alleviated these 
issues and paved the way to an instrument configuration which combined the tandem 
MS capabilities of a linear ion trap (LTQ) instrument with the high resolution and 
mass accuracy of the orbitrap (26). 

Despite the improved sensitivity of Orbitrap mass analysers, such instruments are often 
limited by the speed at which MS/MS spectra can be acquired, limiting ultra-high-
throughput applications. TOF analysers, on the other hand, routinely generate spectra 
at much higher rates, but they have historically suffered from poor sensitivity (28). 
During the writing of this thesis, the new Astral mass analyser was introduced, 
addressing the limitations of both other approaches and combining features from 
quadrupole, ion trap and orbitrap into a hybrid instrumentation, the Thermo 
Scientific™ Orbitrap Astral Mass Spectrometer (Figure 2). It could potentially offer 
improved resolution and acquisition rate, thereby allowing higher throughput and less 
variation caused by instrument stability over time. These factors would, in theory, 
benefit biomarker discovery efforts. 

Figure 2 Schematic of ion path on Orbitrap Astral Mass Spectrometer. Image courtesy of Thermo Fisher Scientific. 
Reproduced from (29). 
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The data presented in Papers I-IV were acquired on a Thermo Scientific™ Q Exactive 
HF-X Hybrid Quadrupole-Orbitrap Mass Spectrometer instrument (Figure 3), a 
further development from the hybrid configuration initiated with the LTQ Orbitrap 
instrument and includes a quadrupole but no linear ion trap. 

Figure 3 Schematic of the Q Exactive HF-X Mass Spectrometer. Image courtesy of Thermo Fisher Scientific. 
Reproduced from (30). 

Top-down versus bottom-up MS/MS 

As the field developed, mass-spectrometry-based proteomics became the method of 
choice for identifying and quantifying not only proteins, but also their interactions and 
post-translational modifications (PTMs) (31, 32). There are three approaches used in 
the analysis of MS-based proteomics data, namely top-down, middle-down and 
bottom-up (31-33), illustrated in Figure 4. 



37 

Figure 4 Schematic representation of the most common MS-based proteomics workflows. Created with 
BioRender.com. 

In top-down proteomics, the analysis of intact proteins is performed. This approach 
combines ESI with high-performance MS, e.g., FTMS, given that ESI impairs more 
charge on the molecule compared to MALDI and FTMS instruments have high 
resolution (31, 34-36). This method is typically applied to samples of lower-
complexity, in that a protein target or complex has already been predetermined and 
isolated, and it can be used for detecting modifications, investigating functional 
relationships between different PTMs on the same protein, identifying and quantifying 
different isoforms that would have been convoluted from endoproteinase digestion, and 
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characterising drug-target interactions (34, 37). Moreover, in terms of sample 
preparation, it is also subjected to fewer artifacts compared to the bottom-up approach 
(34). 

Middle-down refers to a workflow which makes use of a partial digestion step for the 
generation of large peptides (33). However, the most commonly used approach in 
protein analysis is the bottom-up approach, also known as shotgun proteomics (32). 
This method is based on a peptide-to-protein logic similar to that of the middle-down 
approach, i.e., proteins from a complex mixture first undergo proteolytic digestion 
prior to analysis by liquid chromatography (LC) tandem mass spectrometry (MS/MS) 
(19, 32). A process of protein inference is then performed in order to match the 
fragment peptide sequence with the protein from which it originated. Although the 
method is less direct than the top-down approach, it was largely adopted by the 
community (19). 

Despite widespread adoption, the use of bottom-up proteomics is not met without 
challenges. In the biomarker discovery phase, it is not uncommon for the goal to be the 
identification of as many differentially abundant candidates as possible while only using 
a limited number of samples, which results is challenges relating to the variability of 
protein concentrations amongst the different samples and their complexity. A second 
challenge appears in the analysis of samples from very heterogenous populations, as 
mutations, polymorphisms, RNA processing and PTMs can give rise to different 
proteoforms (19, 34). The term “proteoform” was suggested in 2013 by Smith, 
Kelleher and The Consortium for Top Down Proteomics to refer to all possible 
molecular forms that proteins can possess, originating from genetic variations, 
alternatively spliced RNA transcripts and post-translational modifications (38, 39). 

On a more technical side, the proteolytic digestion of proteins results in large amounts 
of data that need to be processed in order to match spectra to the original peptides. 
Moreover, the goal is often to retrieve the information from the original proteins and 
be able to quantify them. Because individual peptides might be present in different 
proteins, the process of assembling peptide sequences to infer the protein content of a 
sample becomes complex, and this is referred to as the protein inference problem. A 
similar logic applies when attempting to quantify a protein in a sample. As peptides 
might be present in different proteins, the correct assigning of a peptide to a protein 
directly influences the quantification estimates of said protein (40, 41). Top-down 
proteomic approaches could ameliorate the situation, as the analysis of whole proteins 
would improve PTM identification which could be lost in other approaches. However, 
protein separation, solubility and complexity are still challenges that resulted in this 
approach not being more popular (20, 34, 39). 
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Data acquisition strategies 

As mentioned previously, bottom-up proteomics is the most widespread proteomic 
workflow. It is also the one used in all articles presented in this thesis, and for that 
reason it will be the main focus. 

When moving into the realm of data acquisition strategies for bottom-up workflows, 
three distinct approaches are available, namely data-dependent acquisition (DDA), 
data-independent acquisition (DIA) and targeted acquisition (19, 42). 

In targeted proteomics, as the name implies, the targets are predetermined and known. 
Selected Reaction Monitoring (SRM) is the most used targeted acquisition method. It 
requires prior knowledge about the peptide and the resulting fragment ions 
(transitions), which are included in a list and passed onto the acquisition method. 
Rather than discovering peptides and proteins in a sample, the goal of targeted 
approaches is to quantify and validate the presence of the target peptides (19, 42). 
Advances in instrumentation led to the development of a different targeted acquisition 
strategy, namely Parallel Reaction Monitoring (PRM). PRM takes advantage of the 
orbitrap (or TOF) higher mass accuracy and resolution to codetect all fragments from 
a peptide ion, thereby eliminating the need for extensive selection and optimisation of 
the method to the same extent as in SRM (19, 42-44). 

The most widely used strategy to query the proteome in a discovery manner is DDA. 
In it, the instrument operates in cycles of MS1 and MS2 scans. All precursor ions at a 
given chromatographic time point are simultaneously scanned at the MS1 level. The 
instrument then selects the “Top N” most abundant precursor ions and sends them for 
fragmentation followed by MS2 scan (19, 32, 42, 45). MS1 and MS2 spectra are then 
used to query a database in order to identify the corresponding proteins, and 
quantification can be performed for instance by taking the area under the MS1 peak of 
precursor intensities by a process called label-free quantification (LFQ) (45). In the 
analysis of complex samples, many precursor ions will be injected at the same time, 
often surpassing the instrument sequencing capacity. For that reason, a selection 
criterion needs to be imposed. The most abundant precursors are selected as a way of 
increasing the likelihood of successful identifications (19, 32). Due to the imposed 
selection of precursors for fragmentation, variations in chromatographic performance 
result in a stochastic selection of precursors, ultimately resulting in poor run-to-run 
reproducibility even if the same sample is reinjected (19, 45). 

Data-independent acquisition (DIA) was an alternative strategy created to address these 
limitations and combine the strengths of both DDA and targeted approaches. The 
instrument operates continuously acquiring MS2 spectra, similarly to what happens in 
targeted acquisition. Differently from these other two approaches, it does not assume 
the detection of a precursor (MS1 scan in DDA) for triggering MS2 acquisition. In 
that way, the acquisition is said to be independent of prior knowledge (19, 45, 46). 
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This can be accomplished by either fragmenting all ions injected at a given 
chromatographic timepoint, called broadband DIA, or by dividing the m/z range into 
smaller separate m/z isolation windows that are analysed consecutively (46). Within 
broadband DIA, several methods are available. A few examples include Shotgun 
Collision-Induced Dissociation (47), MSE (48), parallel collision-induced dissociation 
(p2CID) (49), and All-Ion Fragmentation (AIF) (50). On the other hand, methods 
which utilise a select m/z window for fragmentation include, for instance, the original 
DIA (51), Precursor Acquisition Independent From Ion Count (PAcIFIC) (52), 
extended DIA (XDIA) (53), Sequential Windowed Acquisition of all Theoretical Mass 
Spectra (SWATH) (54) and FT-All Reaction Monitoring (FT-ARM) (55). Even 
though DIA strategies were developed in the early 2000s, the work by Gillet et. al. (54, 
56) was crucial to its popularisation (45). 

Analysis of Posttranslational Modifications 

As it was mentioned in the introduction of this chapter, proteins are responsible for 
most catalytic and structural functions in any living organism. They are also the class 
of molecules most affected in the process of disease or other interventions. The close 
relation to the phenotype is the main reason behind the application of proteomics (14-
16). 

Behind the functionality of proteins lies the complexity of the proteome. Compared to 
the genome, the proteome is orders of magnitude more complex. This complexity is 
the result of two processes. The first process takes place at the transcriptional level and 
is the result of mRNA splicing and tissue-specific alternative splicing. The second, 
however, takes place after mRNA is translated into proteins (57). 

Posttranslational modifications (PTMs) are covalent modifications that change the 
properties of a protein either by addition of a chemical group or cleavage of the peptide 
backbone (57, 58). Many were discovered serendipitously, and it was thanks to the 
developments in MS that it is now the method of choice for detection and identification 
of said modifications (23, 58). 

Although the same principles behind MS also apply to the identification of PTMs, the 
task is increasingly more complex. Besides the low stoichiometry of some PTMs, the 
peptide containing the modification must remain stable during sample preparation and 
ionisation (23). The most common PTMs that occur by addition are phosphorylation, 
acylation, alkylation, glycosylation, and oxidation (57).  

There are over 200 different types of protein modifications. Out of these, 
phosphorylation is probably the most well characterised and understood, both in terms 
of processes regulating it, but also its functional consequences (23). As the 
phosphoproteome is studied in Paper IV, it will be the focus of this section. 
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In humans, as with other mammals, the phosphoproteome consists of three residues, 
phospho-serine (pSer), threonine (pThr) and tyrosine (pTyr) at a ratio of roughly 99% 
for pSer and pThr in comparison to 1% for pTyr. Other residues, such as phospho-
histidine (pHis) and phospho-aspartic acid (pAsp), also occur in bacterial and fungal 
phosphoproteomes (24, 57). In terms of stability, pTyr is the most stable, followed by 
pThr and pSer (58).  

Phosphorylation is a process that involves the transport of a phosphate group from ATP 
to one of the residues by means of protein kinase activity. Once the target is 
phosphorylated, activation of signalling pathways occurs, and these can be involved in 
different human diseases (59). Phosphatases, on the other hand, are enzymes 
responsible for dephosphorylation and therefore deactivation of such pathways. 
Together with kinases, they modulate signal transduction (23, 57). 

Considering that, in humans, phosphorylation primarily occurs in serine, threonine 
and tyrosine residues, and that, on average, the content of these amino acids in proteins 
is about 17%, this gives rise to nearly 700,000 potential phosphorylation sites, and the 
size of the human phosphoproteome is an active area of research (60, 61). Given the 
biological relevance of protein phosphorylation, that a signalling cascade can be 
initiated by a single phosphorylation event, and that sample preparation conditions 
might alter phosphorylation, the relevance of studying the phosphoproteome as well as 
potential challenges are highlighted, as well as the importance of resources such as 
PhosphoSitePlus for aggregation and annotation of relevant data (23, 62). 

More traditional approaches for analysing the phosphoproteome involve two-
dimensional gel electrophoresis (2D-GE), western blot, autoradiography, and protein 
sequencing via Edman degradation. These approaches, however, suffer from a few 
shortcomings, including poor reproducibility, low throughput, low dynamic range, and 
use of hazardous reagents such as radioisotopes (59). In this context, mass spectrometry 
is a very powerful technique for identification of phosphorylation sites, given its high 
efficiency, sensitivity, and selectivity (23, 59). 

As mentioned previously, one of the challenges behind PTM analysis via MS is the low 
stoichiometry. In practice, this means that an enrichment or purification step is 
required to increase the likelihood of detection (23, 24, 59). This is more important in 
DDA analyses, as the precursors selected for fragmentation are the most abundant ones 
(23). 

The first way of achieving detection levels is through enrichment. Here, there are several 
protocols available, including metal oxide affinity chromatography (MOAC), 
immobilised metal ion affinity chromatography (IMAC), immunoprecipitation-based 
enrichment and domain-based enrichment (59). In the context of the present work, in 
Paper IV, high performance paramagnetic zirconium (Zr) IMAC beads (MagReSyn® 
Zr-IMAC HP, ReSyn Biosciences, Edenvale, Gauteng, South Africa) were utilised.  
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IMAC is a widely used technique based on the electrostatic interaction between the 
phosphate groups of phosphopeptides and the positively charged metal ions on the 
beads. A common downside of MOAC and IMAC methods is that peptides containing 
acidic amino acid groups also show affinity for the metal ions and co-purify with the 
phosphopeptide (23, 24, 59, 63). However, it has been demonstrated that using acidic 
loading conditions in the presence of organic compounds – 0.1M glycolic acid, 80% 
acetonitrile (ACN) and 5% trifluoroacetic acid (TFA) – leads to more acidic peptides 
being neutralised while phosphopeptides maintain their negative charge and affinity for 
the metal ions, allowing for reduced nonspecific binding. After washing, alkaline 
buffers can be used to elute the peptides (63). From this step, the protocol is the same 
as the standard sample preparation. 

Affinity Proteomics 

The potential of MS-based proteomics has been demonstrated not only in the 
identification of proteins, but also in their quantification. The combination of modern 
instrumentation with data processing and analysis workflows enabled the use of such 
technology in global efforts (64). However, limitations associated with sensitivity, 
dynamic range, resolution, and reproducibility are always part of the discussion, and 
they are directly linked to available instrumentation, with newer equipment being 
capable of going deeper into the proteome in a more sensitive manner (65, 66). 

As mentioned in the first chapter, despite research efforts and heavy investments in 
biomarker discovery, the field remains plagued by very few passing the scrutiny of 
clinical validation (1, 5, 9, 10, 67). The limitations previously mentioned aggravate this 
scenario even further. For comparison purposes, the typical concentration ranges 
detected by MS-based proteomics lies around 4 orders of magnitude greater than that 
typically detected by immunoassays in the clinical setting (67). 

Two main approaches are available to tackle this problem. The first is based on 
increasing the analytical sensitivity, but often requires extensive optimisation and may 
result in a decrease in the signal-to-noise ratio in the context of MS, ultimately resulting 
in decreased resolution (67). These approaches will not be discussed in the context of 
the present work. The second, on the other hand, involves enrichment, and will be 
further developed (67). 

The primary objective of enrichment strategies is to compress of the relative 
concentration between low and high abundance species (68). Two main classes of 
molecules can be used for such purpose.  

The first concerns molecules without a specific affinity, where they bind general classes 
of proteins (67). That is the case of metal ions such as the ones used for IMAC-based 
enrichment of phosphopeptides described in the previous section. One of the main 
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advantages of this approach is that, by using promiscuous affinity baits, the loss of 
potentially interesting low-abundance molecules is minimised. Additionally, this 
unspecificity also allows for new classes of molecules to be captured (67). 

The second class of molecules is the opposite of the first in that the affinity agents have 
a specific target. Antibodies, aptamers, enzyme substrates and other proteins or nucleic 
acids compose this class. The use of such affinity agents for enrichment of specific 
probes defines the concept of affinity proteomics (69). The main advantage of their use 
is the efficiency of enrichment, i.e., the efficiency with which a specific target is 
enriched. On the other hand, reusable devices suffer from loss of efficiency over time 
and may result in carry over, imposing a severe bias (67). Of note, the use of different 
affinity agents has been successfully implemented and used for direct detection by 
technologies such as Olink proximity extension assay (PEA) (70) as well as the nucleic 
acid Slow Off-rate Modified Aptamers (SOMAmers) used as part of the SomaScan 
assay (71). However, mass spectrometric detection offers advantages in terms of 
specificity and versatility in discovery efforts (72). 

An additional problem with the use of highly specific affinity probes is directly linked 
to the specificity (67). Take antibody microarrays for instance, which offer a platform 
for direct detection of proteins using immobilised antibodies on a solid surface. In terms 
of throughput cost and amount of sample used, they represent an advance compared 
to performing analysis with more traditional immunoassays such as via enzyme-linked 
immunosorbent assays (ELISA) (73). The technology has been successfully applied in 
the clinical applications for diagnosis, prognosis, and classification (65, 74, 75). 

Scalability may be an issue due to the resolution of such implementation being directly 
correlated with the number of antibodies used and their specificity. Moreover, in most 
cases, only antibodies of known specificities are used, requiring a preselection step, 
resulting in a hypothesis-driven approach which excludes the possibility of discovering 
new targets (65, 69, 76). MS-based proteomics, on the other hand, allows for a 
hypothesis-generating approach, one which is not limited by existing knowledge (69).  

To advance the field and harness the benefits of both approaches, affinity and MS-
based proteomics can be combined (65, 76). The concept is not new, and it has already 
been described both at the protein and peptide level using different approaches such as 
ProteoMiner or Equalizer beads (77, 78), Stable Isotope Standards and Capture by 
Anti-peptide Antibodies (SISCAPA) (79), Affinity SRM (AFFIRM) (80) and Mass 
Spectrometry ImmunoAssays (MSIA) (81, 82). 

A conceptually new method, called Global Proteome Survey (GPS), was described by 
Olsson et. al. (2011) (65), and it is the basis of Paper II in this thesis. The method 
addresses some of the limitations of previously described approaches by allowing the 
probing of the proteome in a hypothesis-generating manner using a limited number of 
affinity agents (65). 
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The affinity agent described consists of single chain variable fragment (scFv) antibodies 
termed Context Independent Motif Specific (CIMS). These CIMS antibodies target 
short peptide motifs, 4 to 6 amino acids long, and they were designed to be found in 
up to a hundred human proteins, taking into consideration the protease used for 
digestion, i.e., presence of lysine or arginine in the C-terminal in the case of tryptic 
digests (65, 83). 

A human recombinant scFv library composed of 2 x 1010 members was used for 
selecting the binders, simplifying the generation of new probes and allowing for 
scalability of the platform (83). Of interest, as the name suggests, these antibodies can 
be used for probing any proteome, irrespective of species of origin. Moreover, the ample 
range of specificities theoretically allows for coverage of approximately 50% of the 
nonredundant proteome with one-hundred antibodies (65, 76, 83). 

The workflow with the CIMS antibodies essentially consists of sample digestion 
followed by incubation with the antibodies at the peptide level, resulting in an enriched 
fraction which is then analysed by MS (65). The protocol has been successfully applied 
in breast cancer tissues, using a combination of affinity and MS-based proteomics to 
define proteins associated with histological grade (84). 

Although the study reported over 800 peptides which had not been previously reported 
in the PeptideAtlas and demonstrated the coverage of both high and low-abundance 
proteins (84), since it was conducted, different generations of instruments became 
available, each allowing increased sensitivity and deeper coverage of the proteome. 

Aware of the fact that the study had been conducted using tissue samples, on older 
instrument with data acquired in DDA mode, and that the affinity captures had been 
performed manually, in Paper II, we proposed the creation of an automated workflow 
for the multiplexed affinity enrichment of plasma samples. 

After reduction, alkylation and tryptic digestion, a total of 29 CIMS antibodies were 
tested. A protocol describing the use of magnetic beads for such binders had already 
been described (65, 76, 84). In our case, instead of carboxylic acid beads, paramagnetic 
pre charged nickel particles (MagneHis™, Promega Corporation, Madison, Wisconsin, 
United States) were used. A protocol was developed and optimised on the KingFisher 
Flex robotic system (Thermo Fisher Scientific, Waltham, Massachusetts, United States) 
for peptide-level affinity enrichment. Out of the 29 antibodies used in the first 
experiment, a second experiment was performed, this time using an equivolumetric 
ratio of different binders in order to maximise enrichment events in a single reaction. 

Instead of tissue samples or cell cultures, as was described in previous publications (65, 
76, 84), in Paper II we utilised blood plasma. There are different challenges and 
opportunities associated with this sample material, which will be elaborated more in 
depth in the subsequent chapters. 
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Data Collection and Data Analysis 

Irrespective of the specific omics used, a common scenario is the analysis of only a few 
samples, and subsequent collection of many features (e.g., genes or proteins) due to the 
associated financial and temporal costs. This results in what is referred to as the “curse 
of dimensionality”, i.e., the low number of samples compared to the number of features 
results in data sparsity in high-dimensional space (85). Taking into consideration the 
number of biomarker candidates that make it into clinical implementation, this 
demonstrates that special considerations need to be taken in sample selection, 
preparation, and data analysis (9, 85). 

In this chapter, different aspects concerning the sample selection, preparation and 
subsequent data analysis will be addressed. 

Sample Selection 

Clinical biomarker discovery is a highly translational field, requiring interdisciplinary 
collaborations. Consequently, clinical design and experimental design are highly 
intertwined (85). In clinical research, two important aspects must be considered, the 
anatomy and the physiology of research. The anatomy concerns tangible elements such 
as the research question, subjects, measurements, and analyses. The physiology, on the 
other hand, relates to the usability of the study, i.e., how generalisable the findings in 
the study are to the great majority of the population not analysed by it (86). 

Before selecting samples, the first step in the anatomy of a study is defining the research 
question (85, 86). The research question defines the aim of the study. The process of 
scholarly analysis is fundamental to establish a good research question, as flexible studies 
– where hypotheses are generated after the data collection or where biomarker discovery 
is a secondary aim – would increase the probability of obtaining significant findings, 
although those would often be false (85, 86). 

According to Chapter 2 of Designing Clinical Research, a good research question 
should follow the FINER criteria, i.e., it should be Feasible, Interesting, Novel, Ethical 
and Relevant. Essentially, it should not only be intriguing to those working on it, but 
also be performed in an ethical way and have a significant impact on the field of 
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knowledge, clinical practice, or health policy, while also being manageable, affordable, 
and fundable (86). 

A common goal for biomarker discovery efforts or omics efforts is the translation of the 
findings into the “real world”. This either involves applying the findings from 
laboratory research to clinical studies or applying the findings from such clinical studies 
into clinical practice. However, the skillsets required in laboratory research and 
population research do not overlap. Clinical research acts as a bridge between these two, 
but in practice good collaborations are essential for successful translation opportunities 
(86). 

After establishing a good research question based on the FINER characteristics, the next 
step is the study design. When it comes to clinical research, this can take different 
shapes and forms, based on whether an intervention is to be applied or not. These 
designs are known as clinical trial designs and observational designs, respectively (86). 

Observational designs refer to passive studies where the goal is to make measurements. 
Depending on how these measurements are taken, different designs can arise. They can 
be divided into cohort studies, where a group of subjects is followed over time, cross 
sectional studies, where a single observation is made at a single defined time point, and 
case-control studies, characterised by the comparison of two groups, one with the 
outcome of interest, and one without (86). 

Clinical trial designs, on the other hand, refers to study designs in which an intervention 
is applied, and the effects of such intervention are evaluated. In this category, 
randomised blinded clinical trials, where groups are selected at random and the 
intervention in blinded, is the most recommended design, although nonrandomised 
and unblinded clinical trials can also be used (86). 

Translating these concepts to the context of this thesis, Papers II and III are purely 
methodological. They do not make use of clinical samples, and therefore fall into the 
category of laboratory research. Paper I also has a methodological aspect to its aim. 
However, a second aim was investigating the potential use of proteomics data for 
biomarker discovery. For that purpose, if the work presented here is put on a spectrum 
ranging from laboratory research to clinical research, Paper I would be further ahead 
compared to II and III. Finally, Paper IV builds on the results from Paper I and 
advances it further by having a clinical rationale behind the research question. Here, 
knowing that the method developed in Paper I could be used for biomarker discovery, 
the research question is then focused on discovering potential candidates, setting this 
paper apart from the rest and making it more similar to an observational study of case-
control design. 

For the selection of samples, or study subjects, two aspects must be defined, the 
inclusion and exclusion criteria (86). Ideally, sample selection would be performed 
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completely at random. The number of samples selected is also important, as both 
aspects would contribute to a more representative cohort in comparison to the actual 
population, leading to more generalisable results (85, 86). However, when it comes to 
omics studies, that is not always possible (85). Therefore, well defined inclusion and 
exclusion criteria are critical. 

The selection criteria are used to define a study population in the context of the research 
question. Inclusion criteria can be any set of characteristics used to specify subjects that 
would be relevant to answer the research question and make the study more efficient, 
such as demographic, clinical, geographic, or temporal (86).  

Exclusion criteria, on the other hand, refers to criteria used to define a set of samples 
that would meet the inclusion criteria, but which could interfere with the study, for 
instance by lacking a clinical outcome of interest (86). Extreme values or samples which 
might have confounding information should also be excluded in order to avoid bias 
(85). 

When translating research from the laboratory to the clinic and ultimately achieving 
clinical implementation, the goal is to draw the right inferences. The first level concerns 
internal validity, which refers to inferring the right information from the study, i.e., 
drawing the correct conclusions based on the research question. The next step is 
external validity, which concerns the degree with which the findings translate to the 
population outside the study (generalisability). The right research question and 
appropriate selection of samples increase the chances of achieving generalisability while 
also increasing the likelihood of performing the study with a high degree of internal 
validity (86). 

To achieve these goals, one must be aware of causal inference. In biomarker discovery 
studies, the aim is to find biomarkers which have a causal relationship to the outcome 
of interest. However, in the presence of confounding factors, it becomes impossible to 
separate causal effect due to the marker or a secondary cause (85, 86).  

Dealing with sources of variability also requires special attention, as it is likely to 
introduce bias, as approaches are often not a completely random process (85). 
Specification and Matching are two common approaches in which a specific level of a 
confounder is stipulated and other values are excluded, and where groups have the same 
distribution of confounders, respectively (86).  

Besides confounders, it is also important to be aware of mediators and colliders. 
Mediators are defined as factors that are naturally occurring as consequence of the 
outcome, while colliders provide noncausal effects. Differently from confounders, one 
should not control mediators and colliders at the risk of introducing bias and making 
cases and controls unnecessarily homogenous, undermining the discovery process (85, 
86). 
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In the framework of this thesis, clinical samples were used in Papers I and IV. As the 
goal in Paper I was more methodological and the work falls more into laboratory 
research, the only special consideration taken for sample selection was having 
representation for all different subtypes, without a clinical outcome in mind. In Paper 
IV, on the other hand, results from Paper I led to the use of RNA concentration as a 
selection criterium for methodological purposes associated with the feasibility of 
proteomics analysis in the sample material. Other selection criteria were associated with 
the research question at hand, for instance receptor statuses and availability of clinical 
data. 

Sample Preparation 

From an intervention perspective, the best sample preparation method would be 
minimal or non-existent. However, the complexity of the proteome, especially that of 
higher animals and plants, and instrument limitations result in only a small portion of 
the proteome being actually acquired on a routine high-throughput basis (87). The 
usual steps in the analytical method include sampling, specimen preservation, 
appropriate sample preparation and data analysis (87). 

In principle, any sample material may be used for MS-based proteomic analysis. 
However, the sample preparation process can be challenging. Due to the different 
nature of the samples as well as the intended analysis, there is no universally agreed 
method for sample preparation in proteomics, requiring a case-by-case development 
(21, 87). 

The first step in sample preparation is the extraction and solubilisation of proteins. The 
main goal of this step is to obtain the highest possible yield, minimising losses. There 
are different protocols available for different sample types, but normally a combination 
of physical and/or reagent-based methods is used (33).  

In the context of the work presented in this thesis, different sample materials were used, 
namely blood plasma in Paper II, tissue biopsies in Papers I and IV, and sorted cells in 
Paper III. 

The blood plasma samples corresponded to raw pooled plasma from different 
individuals. Sodium dodecyl sulphate (SDS) was used as an ionic detergent to dilute, 
solubilise, and denature the proteins. A dilution step is critical in raw plasma, given the 
viscosity of the material. Heat was applied to the samples after addition of a reducing 
agent – Dithiothreitol (DTT) – in order to reduce the disulfide bonds, thus promoting 
protein unfolding (87). Given the instability of the sulfhydryl after reduction, an 
alkylating agent is required to stabilise it. In this case, iodoacetamide (IAA) was used. 
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The tissue biopsies samples used in Papers I and IV underwent a different preparation. 
The detailed protocol is described in Saal et. al. (88). Briefly, after routine assessment 
of the sample by a pathologist, the sample is placed in a collection tube with RNAlater 
solution. Part of this material is used for simultaneous isolation of DNA, RNA and 
proteins using the AllPrep method automated in a QIAcube machine (Qiagen). The 
flowthrough from such isolation, which contains the protein fraction as well as short 
nucleic acids was then further reduced and alkylated (88, 89). 

Sample clean-up and digestion 

Once proteins are in solution, the next step is removal of contaminants such as the 
detergents used for extraction and solubilisation, followed by digestion into peptides. 
Historically, three main approaches have been used for this purpose, in-gel digestion, 
in-solution digestion, and membrane-assisted protocols (33). 

Gel-based protocols, through the use of sodium dodecyl sulphate-polyacrylamide gel 
electrophoresis (SDS-PAGE), allow for efficient removal of different contaminants 
before LC-MS analysis. Depending on the duration of the gel run, it is also possible to 
fractionate the sample, which is cut into one or more gel slices. However, compared to 
other methods, there is an element of stochasticity with the digestion efficiency in gels. 
Another downside is scalability, given the fact that each sample needs to be excised from 
a gel lane (33).  

In-solution digestion offers an alternative to the gel-based protocols. It requires fewer 
steps, and it is more compatible with automation compared to gel-based alternatives. A 
limitation with this method is that contaminants must be removed prior to digestion, 
and it can suffer from poor recovery if detergents are not used (33, 90). 

Methods which rely on a filtering membrane were developed as a way of combining 
the other two methods, where detergents could be used for increased solubilisation and 
the clean-up step would be efficient, thus avoiding the gel format. With that in mind, 
the filter-aided sample preparation (FASP) method was established (90). The method 
consists in using a molecular weight cutoff (MWCO) filter as a reactor, i.e., a scaffold 
where all necessary steps take place. This method is compatible with a variety of sample 
materials, but it required several centrifugation steps, ultimately restricting the 
throughput (33, 90). Since its creation, other methods were developed with the idea of 
being faster, simpler, and more reproducible. One such example is the suspension 
trapping (S-Trap) method, which traps a protein particulate created from and SDS-
solubilised protein solution in a bedding material consisted of quartz or borosilicate 
glass depth filter and reverse phase membrane compartments (91). 

A fourth alternative was envisioned inspired by methods developed for high-
throughput transcriptomics, given the rapid expansion of next-generation sequencing 
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efforts. These methods utilised paramagnetic beads in both manual and roboticised 
workflows (92). The SP3 method, described by Hughes et. al., builds on principles of 
solid-phase reversible immobilisation and nanodiamond technologies to enhance and 
simplify the sample preparation workflow for proteomics (92). A different method, 
named Protein Aggregation Capture (PAC) was described by Batth et. al. in which 
proteins are non-specifically immobilised, precipitated and aggregated on any type of 
sub-micron particles, irrespective of their chemistry (93). This method was developed 
with the goal of creating a universal sample preparation method that could be easily 
scaled to different amounts of input material while maintaining compatibility with 
different reagents and buffer compositions, robustness, reproducibility, cost 
effectiveness and practicality (93). 

To put the different methods in the context of this thesis, in Paper I and II, a solid 
phase extraction protocol based on paramagnetic beads with hydrophilic interaction 
chromatography chemistry (MagReSyn® HILIC, ReSyn Biosciences, Edenvale, 
Gauteng, South Africa) was used. In Paper IV, the PAC protocol was used with 
hydroxyl terminated beads (MagReSyn® Hydroxyl, ReSyn Biosciences, Edenvale, 
Gauteng, South Africa). Since sample preparation can be complicated and a source of 
variability, a major consideration in the choice of protocols described here is possibility 
for automation. In this context, it was the main motivation behind the use of 
paramagnetic beads, given that all protocols were automated on a Kingfisher Flex 
purification system (Thermo Fisher Scientific, Waltham, Massachusetts, United 
States). 

Design of Experiments  
When first testing the HILIC solid phase extraction (SPE) protocol, a few questions 
arose regarding its optimisation and potential interaction between different factors. For 
this optimisation, the concept of Design Of Experiments (DOE) was applied, which is 
the process of planning an experiment so that appropriate data is collected and analysed, 
leading to objective conclusions (94). 

Basically, an experiment consists of an input and output, and the input is affected by 
both controllable and uncontrollable factors. The goal of an experimenter is to 
determine the influence of such factors through a process called strategy of 
experimentation (94).  

There are several strategies which can be used. One such approach is the best-guess 
approach, in which arbitrary combinations of factor levels are used over the course of 
the experiment, making adjustments and informed guesses along the way. This 
approach is quite frequently used in practice by engineers and scientists, and it works 
reasonably well due to the experimenter’s background knowledge and experience. The 
main disadvantages of this approach are the stochasticity of the factor levels, and the 
difficulty in finding the optimal point for the different factors (94). 
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A second common approach is called one-factor-at-a-time. In this approach, one factor 
varies while the others remain constant. Over time, this allows for assessing how the 
different factors affect the outcome. A major advantage of this method is the ease of 
interpretation, as factors are tested independently, and compared to the first approach, 
it allows for an optimal solution to be found. However, it disregards the potential 
interaction between factors, ultimately leading to poor results if interactions are present 
(94). 

A more correct approach would be the use of a factorial experiment, in which the factors 
and levels are determined and simultaneously varied. This allows for assessing the 
interaction between different factors as well as their effect size. Because of this, factorial 
experiments make the most use of the data produced (94). 

For the HILIC SPE protocol, potential factors of interest were the starting amount of 
material, the bead-to-protein ratio, the binding time, the trypsin-to-protein ratio, and 
the digestion time. If a factorial experiment were to be adopted for such factors, a total 
of 2k experiments would be required, which in this case would result in 32 runs. In 
order to minimise the number of runs due to costs and time, a fractional factorial design 
was chosen. These designs are useful in screening situations, where the goal is to identify 
which factors would be responsible for large effects (94). 

Based on the results of this experiment, the main factors were determined to be the 
starting amount of material, the bead-to-protein ratio, and the trypsin-to-protein ratio. 
These factors also appeared to interact, which then required a more in-depth analysis. 
To achieve this, a response surface method was chosen. 

Response Surface Methodology (RSM) corresponds to a collection of methods used for 
modelling a response, especially one which is influenced by multiple factors. This 
methodology allows the experimenter to optimise such response (94). 

For determining the response surface, the method chosen was a Central Composite 
Design (CCD). This is a second-order model very commonly used for determining a 
saddle point in the response surface. It consists of a 2k factorial design with added centre 
points and star points. The star runs are included in the design in order to allow the 
calculation of a quadratic model (94). 

The results from the CCD suggested that for the intended application, i.e., with the 
amount of starting material planned to be used, a lower ratio of beads and trypsin could 
theoretically be used to reduce costs while still maintaining maximum response (Figure 
5). 
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Figure 5 Contour plot mapping PSMs across different concentrations of starting material, bead-to-protein ratio, and 
protein-to-trypsin ratio. 

Protein Depletion or Enrichment 

Depending on the type of sample and the goal of the analysis, the proteomic dynamic 
range, i.e., the difference in concentration between the most abundant protein and the 
lowest, might prove to be problematic (33). The most obvious example is when 
working with blood serum or plasma, where the dynamic range has over 10 orders of 
magnitude, and a single protein, albumin, represents over 50% of the protein content 
(33). 

Biofluids represent a simple resource for biomarker discovery, with ample use in the 
healthcare sector. In fact, many biomarkers in clinical practice are found in biological 
fluids (87). It constitutes a desirable resource, as it offers a non-invasive or minimally 
invasive alternative to biopsies or other surgical procedures (95). Blood plasma, for 
instance, is the most comprehensive proteome of human origin, containing proteins 
from other tissues and potentially elements of all proteins in the body, with several 
proteins found in blood already in clinical use (16, 87, 96). It is collected via a highly 
standardised procedure, involving the addition of anticoagulants to blood followed by 
a centrifugation step (87, 97). 
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Despite the great potential, there are caveats when working with blood-based 
proteomics. The presence of proteins from different tissues translates in a material of 
large complexity (72, 96, 97). Added to this complexity is the fact that, even though 
plasma proteins and peptides are required for several biological functions, those that 
could potentially act as markers of disease-related processes are likely to be low-
abundance proteins (LAP), given that they would results from processes such as tissue 
leakage, cell death or destruction, or abnormal secretion (98). 

In order to reach consistent detection levels for these proteins, separation strategies are 
usually required prior to LC-MS/MS analysis, including, for instance, enrichment, 
depletion of high-abundance proteins (HAP) or extensive fractionation, even with 
modern instrumentation (66, 97). 

As the name suggests, depletion usually refers to the removal of HAPs from the sample, 
given that they might mask the signal from proteins of interest. Enrichment strategies, 
on the other hand, target dilute species, and the goal is to increase their signal for 
detection or quantification purposes. The same principles can be applied and 
performed both at the protein and peptide level, depending on the intended application 
(87, 97, 98).  

There are different approaches available for both depletion and enrichment, but they 
can be broadly divided in physicochemical methods – which make use of properties 
such as molecular weight, charge, hydrophobicity, and isoelectric point – and affinity-
based methods (97). 

Within the different affinity-based methods, two main classes of molecules are routinely 
used. The first relies on specific binding to the target protein or peptide, and is 
represented by antibodies, aptamers, enzyme substrates or natural ligands. The second 
class has general affinity for classes of proteins, and is represented by dyes, metals, drugs, 
and other molecules which recognise an affinity tag (67). 

From the perspective of the work presented in this thesis, the focus will be on affinity 
enrichment methods, and both classes of molecules are represented. In Paper II, single 
chain variable fragment (scFv) antibodies are used in blood for compression of the 
dynamic range. In Paper IV, on the other hand, ion metal affinity chromatography 
(IMAC) is used for the enrichment of phosphopeptides and subsequent 
phophoproteome data acquisition. 

Data Acquisition 

As mentioned in the previous chapter, different data acquisition strategies can be used 
in bottom-up proteomics workflows, including both targeted and untargeted 
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approaches (19, 42). For biomarker discovery efforts, targeted approaches are not ideal, 
considering that an inclusion list of fragment ions must be provided. For that reason, 
these are not covered in the context of this thesis. Instead, data-dependent acquisition 
(DDA) and data-independent acquisition (DIA) are covered. 

Data-dependent acquisition (DDA) has been the most common approach used in 
discovery efforts, where MS1 scans are performed, and the most abundant precursors 
are selected and sent for fragmentation and MS2 acquisition (19, 32, 42, 45). Due to 
the stochastic nature of this process, run-to-run reproducibility is a known concern in 
DDA (19, 45). Moreover, the same precursor selection process can also have a direct 
impact on proteome depth depending on the complexity of samples, potentially 
requiring processes such as fractionation to mitigate it. 

Data-independent acquisition (DIA), on the other hand, is not based on precursor 
detection for fragmentation and MS2 acquisition, as MS2 spectra are continuously 
acquired. In that way, no prior knowledge is required, and it addresses limitations 
found in DDA (19, 45, 46). There are several methods available that allow for DIA, 
either via broadband DIA or by splitting the scan range into smaller segments that are 
consecutively analysed (46). The DIA methods used in this thesis belong in the second 
category, being derived from the SWATH method (54). 

In comparison to DDA, DIA offers a more reproducible and complete proteomic map, 
achieving higher proteomic depth (45, 99-101). In a clinical context, a lot of research 
relies of differential expression analysis, making consistent and reproducible measures 
of analytes crucial (100). When comparing different samples, a common approach has 
been the introduction of labels, either metabolic or chemical, which offers excellent 
quantification accuracy (19). However, considering that such studies often use a large 
number of samples, this typically exceeds the number of labels which can be added and 
measured in a single run (19), thus making label-free approaches for identification and 
quantification the preferred choice (19, 100). Although more versatile, label-free 
approaches are more challenging compared to using labelled references, requiring more 
sophisticated normalisation and chromatographic alignment procedures to avoid 
erroneous identification. In turn, this makes the choice of strategy for data acquisition 
and querying essential in order to achieve consistent identifications across several 
samples (19). 

A representation of different workflows commonly used in MS-based proteomics for 
the identification and quantification of peptides is given in Figure 6. 
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Figure 6 Representation of different quantitative workflows in mass spectrometry. Coloured boxes indicate different 
samples, while dashed lines and empty boxes indicate sources of experimental variation. Based on (102). 

In terms of peptide identification, bottom-up proteomics approaches all use MS2 
spectra originated from fragmented precursor ions. The different acquisition methods 
acquire such data at different intervals, being continuous for DIA and discontinuous in 
DDA (19). This makes DIA data amenable to more data querying strategies (19). 
However, the more complex data structure requires significantly more computational 
efforts compared to DDA (19, 45, 99-101, 103). 

When it comes to quantification, traditional approaches involved the use of elements 
such as dyes, fluorophores or radioactivity (102). These methods have good sensitivity 
and dynamic range, but they often require gel-based protein separation, which limits 
the analysis in throughput and to soluble and high abundant proteins, and the identity 
of the quantified proteins is not revealed (102). MS overcomes these limitations but 
imposes a different challenge. Peptides have different physicochemical characteristics, 
resulting in different mass spectrometric responses. For that reason, MS is inherently 
not quantitative (102), although it shows quantitative response for individual peptides. 
That being said, a number of different techniques have been employed in acquiring 
quantitative information from MS data. 
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Typically, quantitative strategies are divided in two groups, those employing isotopic 
labels and those that do not (label-free quantification) (64, 66, 102). The use of isotopic 
labels has been considered the gold standard in quantification, but their use adds 
additional preparation steps, costs and offers an inherent limitation in the type or 
number of samples that can be utilised (64, 66). Label-free quantification, on the other 
hand, besides not being limited by the type or number of samples used in a study, 
typically offers improved proteome coverage and dynamic range compared to labelling 
strategies (64, 66). 

Taking into consideration the different approaches mentioned, label-free acquisition 
was used throughout the work presented in this thesis, and in Papers II, III and IV it 
was performed exclusively via library-free DIA-NN (101). 

Data Preprocessing 

Starting from the data collected in the mass spectrometer, several analytical 
considerations and preprocessing steps are involved until translational questions can be 
answered. These steps involve peptide identification and quantification, data 
normalisation and downstream data analysis.  

In the previous section, DDA and DIA approaches were highlighted as the most 
common techniques used in biomarker discovery efforts given that they do not require 
a list of targets to be provided, as is the case with targeted approaches. Additionally, 
since a large number of samples is typically used in clinical studies, label-free approaches 
for identification and quantification of proteins are the preferred choice (19, 100). 

A well-established goal of proteomics is the identification and quantification of all 
proteins present in a sample at a given time point (40). From a workflow perspective, 
after data acquisition, bottom-up proteomics data must undergo essential steps, 
including, for instance, peptide identification, peptide quantification, protein assembly 
and protein quantification. 

Starting with peptide identification, two different strategies have been devised, namely 
spectrum-centric and peptide-centric (19, 45, 104). Essentially, the difference between 
the two lies in the querying unit, i.e., whether spectra or peptides are queried for scoring 
and identification (19, 104). 

There are different tools available for spectrum-centric analysis. As mentioned 
previously, in this approach, the MS2 spectra are considered the querying unit, and 
peptide identification can be performed via database searching, where experimental 
spectra are compared and scored against in silico generated theoretical spectra from a 
sequence database; via spectral library matching, where the obtained spectra are 
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compared against a previously generated spectral library; or via de novo sequencing, 
where the identification of experimental fragments is performed without the use of a 
library or database (19, 104). 

Most DDA studies make use of database searching as a spectrum-centric approach to 
peptide identification (19, 104). There are different software available to achieve this, 
including, for instance SEQUEST, Mascot, X!Tandem, MaxQuant, Comet, MS-GF+ 
and OMSSA (104-111).  

Because the querying unit in spectrum-centric analysis is the MS2 spectra, a spectrum 
must first be matched to at least one peptide sequence to yield a peptide-spectrum 
match (PSM). These are then scored and an estimation of the degree of confidence is 
generated. A confidence estimate at the peptide level can then be generated based on 
aggregation of the best suited PSMs. However, because only the matched peptides are 
scored, those that were not assigned a PSM are automatically considered missing (104). 
Added to this complexity is the stochastic nature of DDA acquisition, ultimately 
making it impossible to confidently state that a certain peptide is missing from the 
sample, considering it may have never been selected for fragmentation by the survey 
scans (104). 

In turn, the missing peptides are assigned very low confidence estimates. Because of 
this imputation of confidence estimate, this approach can lead to biases when inferring 
protein identity (104). The “protein inference problem” is a common challenge in 
bottom-up proteomics (40). It refers to the loss of information which happens due to 
the digestion of proteins into peptides, making it difficult to trace back the protein that 
originated a certain peptide, as the same peptide may be present across different 
proteins (40). 

Despite the potential bias of the confidence estimate imputation, an advantage of 
spectrum-centric analysis is the direct estimation of the false discovery rate (FDR) (19). 
Because the search tools deployed are agnostic, decoy sequences can be introduced, and 
the number of decoy sequences identified can be directly used to estimate the FDR of 
a dataset (19).  

For DIA data, despite the added complexity, most of the initial studies using this 
acquisition mode relied on using the same spectrum-centric tools originally designed 
for DDA data (19, 54). DIA solves the random sampling problem found in DDA, but 
it also introduces new challenges. Most notably, in order to cover the same m/z range 
as in DDA, wider precursor isolation windows must be employed, reducing precursor 
selectivity (104). Because traditional spectrum-centric analysis assumes that fragments 
originate from a single isolated precursor, these tools perform poorly when directly used 
for DIA data analysis (104). 
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Since DIA MS2 spectra are essentially all mixed, applying spectrum-centric analysis in 
such data would require allowances for contribution of multiple precursors, allocating 
intensities to contributing peptides and performing adjustments in confidence 
estimation. Some solutions involve deconvolving mixed spectra or matching mixed 
spectra to combinations of candidate peptides. A downside of these approaches is 
suppression of the dynamic range, in which signal from low-abundance peptides is 
overwhelmed by that of high abundance ones (104). 

A new approach was introduced in 2012 by Gillet et. al. (54) that uses a chromatogram-
based approach for analysis of DIA data (19, 54, 104). In it, ion chromatograms are 
used to identify and quantify query peptides (19, 104). This approach allows for a 
change in paradigm in which instead of relying on querying MS2 spectra, a peptide can 
be assessed as present or absent, generating a list of hypotheses (“Is this peptide present 
in the data?”) (19, 104). This approach is known as “peptide-centric”. The presence of 
a peptide is evaluated in a method akin to what is done in SRM, allowing a more 
biologically oriented way of querying LC-MS/MS data, thereby making it suitable to 
answer a variety of biological questions (19, 104). 

Peptide-centric analysis is more suitable to answer biological questions because peptides 
can be directly queried and scored based on their presence or absence, differently from 
only identified peptides with a PSM (104). This also contributes to alleviating the 
protein inference problem, as no imputation of confidence estimate is performed for 
“missing” peptides, therefore making protein inference more transparent (104). 

By not using individual spectra as querying units, peptide-centric analysis tolerates the 
mixed spectra generated in DIA, making it more suitable for this data type. However, 
that also imposes a complication, where the mixed spectra allow for the same spectrum 
to be assigned to multiple peptides (104). For estimation of the FDR, a similar use of 
decoys can be adopted. However, because the number of decoys increases with the 
number of peptides queried, the FDR cannot be estimated by simply counting decoys 
as it can be done in spectrum-centric analysis (19, 104). 

There are different software solutions available for DIA data analysis. A popular 
commercial option for DIA data processing in the past few years has been Spectronaut 
(99, 112). Other alternative software, including open-access options include Skyline, 
OpenSWATH (113), DIA-Umpire (114), EncyclopeDIA (103), MaxDIA (115) and 
DIA-NN (45, 99, 101).  

Traditionally, DIA data analysis has relied on project-specific libraries built either by 
fractionation or repeated injections (99). However, the use of such libraries has been 
questioned recently (45, 116, 117). Other approaches, such as publicly available 
libraries, gas-phase fractionation, and especially in silico generated libraries have been 
gaining popularity (45, 99, 118, 119). 
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Different studies have compared the different approaches to DIA data analysis (45, 99, 
100). Gotti and colleagues (45) demonstrated that the choice of software for DIA data 
processing is fundamental for the quality of downstream analyses, as well as the size and 
number of isolation windows, and the use or not of a library. Lou and colleagues (99) 
further extended other benchmarks by evaluating application of different software both 
in global proteomics and phosphoproteomics applications, with mixed results. Of note, 
they highlight the use of DIA-NN in library-free mode as having overall best 
performance for global proteomics efforts, considering it had better false discovery rate 
(FDR) control, quantification accuracy and precision, as well as sensitivity and 
specificity in the detection of differentially expressed proteins (99). In 
phosphoproteomics efforts, the FDR control performed by DIA-NN was also the best, 
although Spectronaut analysis yielded higher sensitivity, suggesting that a combination 
of different software could be desirable for such applications (99). 

In the work presented in this thesis, a benchmark of different tools was performed as 
part of the research question for Paper I. In it, DDA was compared to two different 
DIA approaches, one using chromatographic libraries (EncyclopeDIA), and one with 
in silico generated library (DIA-NN in library-free mode). According to our results, 
DIA-NN stood out both in terms of the overall number of features and in the number 
of features present across all samples analysed, even with match between runs enabled 
in all three approaches. Of note, even though the use of a library via EncyclopeDIA 
resulted in greater data completeness compared to DDA, as is expected, the overall 
number of features was lower, highlighting the importance of library generation when 
such approach is used, since only analytes present in the library will possibly be detected 
(103). 

DDA data was analysed in MaxQuant, while DIA data was analysed using both 
EncyclopeDIA and DIA-NN (Paper I). While MaxQuant analysis is considered 
spectrum-centric, the other two methods incorporate aspects of both spectrum- and 
peptide-centric analysis. 

For EncyclopeDIA, in addition to collecting DIA data from all samples analysed, a 
chromatogram library is built. In Paper I, a UniProt human FASTA file and the 
corresponding Prosit (120) spectral library from ProteomicsDB were used to create a 
spectrum library. A pool of different samples was used to collect narrow-window DIA 
data via gas-phase fractionation, which was then utilised to search the spectrum library 
and correct it, keeping only peptides detected in the pool and removing low-scoring 
matches to limit the search space, followed by inclusion of chromatographic and 
fragmentation data to create a corrected chromatogram library which is then used for 
searching the wide-window DIA data from individual samples (89, 103, 121). 

DIA-NN, on the other hand, was used in library-free mode in Papers I through IV. In 
library-free mode, the DIA-NN workflow first involves in silico generation of a 
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collection of precursor ions annotated with different fragment ions. Decoys are then 
generated, followed by extraction of chromatographic data, which includes retention 
time information and elution profiles of both precursor and fragments. Along the 
workflow, 73 peak scores are calculated, and a linear classifier is trained to select the 
best peak per precursor (101). 

To avoid the complication of having a peak contributing to the identification of 
multiple precursors, a single, best, precursor is chosen per spectrum, thereby improving 
identification, and enforcing strict FDR control (101).  

In label-free quantification, two types of information can be used to compare different 
samples, namely MS (or MS/MS) signal intensity or the number of MS/MS spectra 
(known as spectrum counting) (64, 66, 102). 

Spectral counting approaches are based on the observation that the higher the amount 
of a protein in a sample, the more spectra will be collected. Because it uses fragment 
spectra, it benefits from extensive MS2 acquisition (102). There is some scepticism 
regarding spectral counting approaches in that no physicochemical property of peptides 
is actually measured, and it assumes that the linearity of response is the same for every 
protein at the same time that the number and length of peptides differ for different 
proteins, making smaller proteins suffer from more variability in quantification 
compared to larger ones (66, 102, 122). 

Label-free quantification using MS signal intensity, called intensity-based 
quantification or precursor-based quantification is typically achieved by associating ion 
intensities to the elution profile (122). Compared to spectrum counting, it offers better 
accuracy and deeper coverage (66, 122). This process usually involves feature detection 
and chromatographic alignment (66). The alignment process allows for corrections in 
retention time across samples, ultimately allowing for more features to be detected by 
propagation of identifications across runs (64, 66). Important to note, quantification 
benefits from more scans across the chromatographic peak (MS1), while confidence in 
detection benefits from additional MS2 scans, ultimately introducing a conundrum 
especially when the instrument is operated in DDA mode where confidence in 
identification comes at the sacrifice of precision of quantification (102, 122). Operating 
the instrument in DIA mode, in turn, enables identification and quantification at the 
same time, evidenced by the robust quantification measures from DIA studies (19, 45, 
100, 122). 

One crucial requirement in label-free quantification experiments is reproducibility, and 
this comes in instrument stability over time, simplification of sample preparation steps 
and introduction of automation (64, 66). In this context, data normalisation is essential 
(66, 123, 124). Steps in sample handling and data processing can all introduce biases 
that, if left unchecked, could lead to misleading conclusions. Since the sources of bias 
can be several and unknown, this makes it challenging to determine a best 
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normalisation method (123, 124). For that purpose, when preprocessing MS data in 
the different projects in this thesis, NormalyzerDE (123) was used for comparing 
different normalisation methods prior to selecting the best performing one.  

Data Analysis 

The resulting data, after these preprocessing steps are often presented in tabular format 
representing peptide or protein intensities across samples. The goal in biomarker 
discovery is often exploratory, aiming at identifying features and patterns which 
hopefully assist in answering the research question of interest. The first step is usually 
to find which proteins are differentially abundant when comparing groups of samples, 
as these could be potential biomarkers of interest. Because NormalyzerDE has that 
functionality built in, this step was also included across all projects presented in this 
thesis using LIMMA empirical Bayes statistics, since it was proven to perform well for 
this use case. 

Differential analysis can be conducted using statistical tests and may lead to long lists 
of analytes to explore further. There are different tools available to aid in these efforts, 
such as enrichment analysis and different clustering methods. More recently, the ability 
to routinely collect data from different omics sources have made integrative analysis 
more common. Some of these methods are discussed in the next few sections. 

Enrichment Analysis 

With the increase in popularity of high-throughput omics technologies, the traditional 
approach of investigating biological questions with one or a limited number of features 
at a time has been challenged (125). Typically, such technologies produce long lists of 
features, and although differential expression analysis is a common and easy step to 
take, interpretation of results may prove challenging (125-127). 

Starting with the assumption that if a given biological process is disrupted in a given 
group, features associated with that process will covary, the information given by 
individual features can be summarised in higher level biological elements such as 
pathways or processes, making the basis of enrichment analysis (125, 127).  

The popularity of these methods promoted the development of several tools (125). 
Huang et. al. (125) classified different tools in three distinct categories, namely singular 
enrichment analysis, gene set enrichment analysis (GSEA) (128) and modular 
enrichment analysis (125). 
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Singular enrichment analysis is the most traditional approach in which preselected 
features are used to test biological terms on a one-by-one basis. The significance of the 
enrichment is then calculated by means of methods such as Chi-square, Fisher’s exact 
test, binomial probability and hypergeometric distribution (125). Overrepresentation 
analysis (ORA) is an example of such approach (129). 

Gene set enrichment analysis, on the other hand, differs from ORA in that all features 
are used for calculation of enrichment, instead of a preselected list, thereby eliminating 
the need of determining a threshold for feature selection. A maximum enrichment score 
is calculated based on a ranked list of all features and significance is assessed by means 
of Kolmogorov-Smirnov-like statistics (125, 128). 

Since these enrichment tools depend on annotation, their usefulness is directly linked 
to availability of curated databases (126, 127, 130). In Papers I and IV, GSEA is 
performed utilising the “Hallmark” gene set, part of the Molecular Signature Database 
(MSigDB), a curated set of genes that portray well-defined biological processes while 
also reducing variation and redundancy (126). The analysis in both occasions is 
performed using an implementation available via the ClusterProfiler library (131). 

Of note, the databases mentioned previously are gene centric. Although it is relatively 
trivial to map proteins to genes and perform analyses such as GSEA, in the event of 
PTM analysis, this information would be lost (132). Considering the importance of 
PTMs in the regulation, localisation and interaction of proteins, a PTM-centric 
database with data for similar enrichment analysis could provide an additional layer of 
information not seen at the gene or protein levels (132). In Paper IV, one such database, 
PTMsigDB (132) is used for the enrichment analysis of phosphosite data. 

Consensus Clustering 

In addition to the enrichment analysis tools mentioned previously, the widespread use 
and availability of omics data also incentivised the development of tools aimed at the 
discovery of new taxonomies, or classes based on intrinsic information from the 
analysed features (133, 134). 

Cluster analysis is one way to achieve this, in which two main questions are addressed, 
namely the determination of the right number of clusters, and how to assign confidence 
measurements to such groups (133, 134). 

As mentioned in the first chapter, the classification of diseases is still heavily based on 
signs and symptoms (6). The abundance of omics data highlights the potential for 
improved disease and patient classification, with prognostic and diagnostic implications 
that can be harnessed by precision medicine (7, 8). Among the different tools available, 
consensus clustering is commonly used in molecular cancer research (135-137), 
offering the benefit of class discovery based directly on intrinsic molecular features. 
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For this purpose, in Paper IV, the ConsensusClusterPlus (133) package is used to 
determine potential new subtypes utilising transcriptomics, proteomics and 
phosphoproteomics data. The package builds on the original consensus clustering 
method by Monti et. al. (134) which utilises a resampling-based method for class 
discovery and extends it further providing additional data visualisation and possibility 
of utilising custom clustering functions (133). 

Integrative Omics Analysis 

The advances of molecular medicine and decreasing costs of high-throughput 
technologies have led to an ever-increasing amount of collected biological data which, 
in turn, challenges traditional approaches of single biomarker measures and “one size 
fits all” interventions in favour of biomarker panels and precision medicine for better 
prediction and understanding of complex systems such as disease (1, 4, 6-8, 138-141). 

However, our ability to translate these data for clinical implementation has been 
limited, as evidenced by the large gap between the number of biomarker candidate 
published and those that get approved (1, 5, 9, 10, 138). Integration of such data 
(multiomics analysis) could potentially address this issue by enabling the generation of 
a more complete molecular profile of diseases or patients compared to what individual 
omics allows (141, 142). 

Traditionally, precision medicine would normally refer to the use of genomics data 
given early technological advances and availability of data. Early efforts in profiling 
mutations and/or chromosomal rearrangements in cancer have contributed to the 
identification of features associated with increased cancer risk, such as BRCA1 and 
BRCA2 mutations in breast and ovarian cancers (138, 143). 

The advance of sequencing technologies shifted the analysis towards the transcriptome, 
and, since then, transcriptomics has directly contributed to the understanding of 
different processes (138, 144). Moreover, transcriptomics data has been used for 
predicting patient out come and treatment response, and several gene expression-based 
tests are on the market aimed at predicting prognosis and risk of recurrence (138, 144-
148). 

More recently, more and more studies have investigated the proteome, as proteins are 
not only the main mediators of cellular function, but also well established in terms of 
clinical application (14-16, 138). Added to this complexity is the fact that PTMs can 
directly affect function, localisation and turn-over rate of most proteins, highlighting 
their potential (15, 39). 

With these examples and given the fact that many different omics are available besides 
genomics, transcriptomics and proteomics (e.g., metabolomics, epigenomics, 
interactomics and lipidomics), it is now possible to see that the analysis of single omics 
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can be overly simplistic (15, 138, 140, 141). Therefore, multiomics efforts are required 
in order to integrate these data and acquire a more complete understanding of these 
complex biological processes (140, 142, 149). 

Argelaguet et. al. (149) defines the first step in data integration as the definition of 
anchors. The authors define three integration approaches (horizontal, vertical and 
diagonal) based on the use of either features or samples as anchors, or the absence 
thereof (149).  

Horizontal integration is defined by study designs aimed at using features as anchors 
and integrating data across different samples (139, 140, 149). These approaches are 
commonly seen as batch correction problems, with the goal of addressing external 
sources of variation. One example of such approach is single cell RNA sequencing, 
where genes are the anchors, and the data is integrated across different samples (149). 

Vertical integration, on the other hand, uses samples as anchors, i.e., multiple data types 
are collected for the same set of samples (139, 140, 149). Depending on the research 
question, vertical integration approaches can be further divided into global, when the 
aim is to identify overall patterns of covariation across omics, or local, when the aim is 
to investigate a specific question, for instance the mapping of a pathway, using data 
from different omics (149). 

Finally, diagonal integration, as the name suggests, concerns those study designs where 
no anchors are used, i.e., data is integrated across different modalities and samples 
(149). 

Based on when in the analysis process the integration takes place, these integrative 
approaches can be further divided into early, intermediate and late integration (139, 
141).  

In early integration methods, all data is combined as part of the first step, creating a 
single matrix or graph, which is then used as input for modelling. It represents the 
simplest form of integration, and it has the advantage of allowing for the model to 
consider any type of association, although this comes at the cost of potentially working 
with very large data structures containing highly correlated features, outliers and noise 
(139, 141, 142). 

In late integration, each data modality is first modelled independently, and these results 
are then used as features in a second-order model, which is used for prediction or 
majority voting. It is a good approach when the different data modalities are known to 
have distinct predictive power, and ensemble machine learning models are a good 
example of late integration. However, as a downside, there is the possibility to miss 
potential associations across different omics, since no direct integration step is involved 
(139, 141, 142). 
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Intermediate integration sits between the other two approaches, i.e., the integration 
does not rely on combining input data, nor does it involve modelling the data 
separately. Instead, it aims at keeping the structure of the original data while 
introducing preprocessing steps to address issues such as redundancy. This approach 
can have better performance compared to the other two, but it is often considered more 
demanding from a development standpoint (139, 141, 142). 

By collecting publications between 2018 and 2021 with the term “multiomics” in the 
title or abstract, as well as “integration” and “disease” as general terms in the text, 
Athieniti et. al. (141) were able to get an overview of the types of data that are most 
commonly integrated, and which integration approach and method are commonly 
employed (141).  

The authors identified transcriptomics as the most commonly used data modality, both 
in cancer and non-cancer studies. Epigenomics and genomics are next in the context of 
cancer-related studies, while proteomics and metabolomics are more common in 
diseases other than cancer. In addition, they also investigate which omics are more often 
combined, and show that, in cancer, transcriptomics and epigenomics are often 
combined, while in other diseases transcriptomics is usually used alongside proteomics 
(141). 

As far as integration approaches go, intermediate integration models are more 
commonly adopted, aimed at detecting molecular patterns, identifying subtypes or 
understand regulatory processes. Within these categories, the authors highlight 
different types of models which can be used, including joint dimensionality reduction, 
kernel-based methods, network-based methods and deep learning (141). 

In the scope of the present thesis, although transcriptomics and proteomics data were 
analysed as part of Paper I, a more integrative approach was adopted particularly in 
Paper IV, where the aim was to combine transcriptomics, proteomics, 
phosphoproteomics and immune infiltration data generated based on Paper III to gain 
insight into metastatic processes in oestrogen-receptor positive breast cancer, evaluate 
the occurrence of different unknown subtypes and identify biomarker candidates 
associated with such processes. 

A common approach when analysing single omics is to perform dimensionality 
reduction. Principal Component Analysis (PCA) is very commonly applied in this 
context, where high-dimensional data is projected into a low-dimensional space by 
means of orthogonal components that maximise variance. Given the relative simplicity 
and interpretability of the method, different generalisations of PCA have been 
developed considering the integration of multiple data, including methods based on 
matrix factorisation such as Canonical Correlation Analysis (CCA) (150), Joint and 
Individual Variation Explained (JIVE) (151), Multi-Omics Factor Analysis (MOFA) 
(152, 153), Projection to Latent Structures (PLS) (154), among others (149). 
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Specifically, in Paper IV, MOFA was adopted. Despite the various models mentioned 
previously, a common downside is interpretability (153). The model uses a 
probabilistic Bayesian framework to decompose the data into factor and weight 
matrices (141). Sparsity is also adopted in order to remove features and factors, keeping 
the most important information, and the model can handle missing values (141, 153). 

Although the model is linear, which may result in it missing non-linear associations in 
the data, it provides a framework that allows for interpretation of the factors in terms 
of features and contribution of different data modalities, as well as correlation with 
clinical covariates (153). 
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Applications in Breast Cancer 

Breast Cancer Epidemiology and Risk Factors 

As mentioned in the third chapter, according to recent estimates from the World 
Health Organization (WHO), NCDs are responsible for over 75% of premature deaths 
(11, 12), with cardiovascular disease and cancer being the two mainly responsible for 
these numbers. To put in perspective, cancer is responsible for one in six deaths 
(16.8%) and one in four deaths (22.8%) from NCDs, being among the two leading 
causes of death in 127 out of 183 surveyed countries (12, 155). 

According to the latest GLOBOCAN estimates from 2022, 20 million new cases and 
9.7 million deaths occurred across the world due to cancer (155). Among different 
cancer types, female breast cancer was responsible for over 2.3 million new cases and 
666,000 deaths worldwide, representing 11.6% of all cancer cases and 6.9% of all 
cancer deaths (13, 155). Although lung ranks higher both in terms of incidence and 
mortality, breast cancer ranks first for women in both aspects (11, 13, 155). These 
numbers represent an important aspect to consider in terms of life expectancy, but it is 
also important to highlight the disproportional cancer mortality in women, with over 
one million children becoming orphans in 2020 due to their mothers dying of cancer, 
half of which were attributable to female breast and cervical cancers (155, 156). 

Assuming that cancer rates remain the same, the GLOBOCAN estimates that 28.4 
million new cases will occur in 2040, and 35 million new cases in 2050. This is the 
result of changes in population growth and aging, with the global population estimated 
to reach 9.7 billion by 2050, but also increased prevalence of risk factors (11, 155). 
These aspects highlight the need for better treatment and management options (11). 

As with other cancers, breast cancer is also highly correlated to HDI, with higher HDI 
being associated with an increase in both incidence and mortality (11, 155, 157). This 
is illustrated by the highest incidence rates being found in France, Australia/New 
Zealand, North America and Northern Europe, with a 4-fold increase in incidence 
when compared to South-Central Asia and Middle Africa (11, 155). This same trend, 
however, is not observed in terms mortality, where transitioning countries have 
significantly higher mortality rates compared to transitioned countries (11, 155, 157, 
158). Of note, despite the higher incidence in high-HDI regions, when considering 
population density, most of the global population is found in less developed regions, 
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translating into over 50% of breast cancer cases occurring in these regions, resulting in 
a significant burden of the disease (157). 

In order to understand these different trends in incidence and mortality, one must 
consider the associated risk factors for developing breast cancer. In general, risk factors 
can be divided between modifiable and non-modifiable (159). The two most important 
risk factors are being female and increased age (157, 159). Other non-modifiable factors 
which have a high relative risk include increased breast density, presence of 
precancerous breast lesions, previous chest wall irradiation and genetic predisposition 
(159). 

Modifiable risk factors are both reproductive and non-reproductive but are often 
associated with a so-called Western lifestyle (157, 160). They include early age at 
menarche, later age at menopause, older age at first childbirth, nulliparity (or lower 
parity), decreased duration of lactation, exogenous hormone administration (oral 
contraceptive, postmenopausal hormone replacement therapy), as well as alcohol 
consumption, smoking, obesity and physical inactivity (155, 157, 159, 160). 

When considering the risk factors in conjunction with the HDI, it becomes easier to 
understand the trends observed in transitioned and transitioning countries. In 
transitioned countries, an initial increase in incidence between the 1980s and 2000s 
was then met by recommendations against hormone replacement therapy. In terms of 
mortality, however, the trend is not the same, and that is a reflection of early detection, 
e.g., via mammographic screening, as well as better access to effective treatment options 
(155, 157). In less developed regions, however, where over two thirds of the breast 
cancer deaths in 2020 were recorded, delayed presentation is more common, ultimately 
contributing to increased mortality due to the disease being detected in advanced (stage 
III) or metastatic (stage IV) stages (155, 157, 161). 

Due to the increasing burden of breast cancer, in 2021 the WHO launched the Global 
Breast Cancer Initiative (161). High-quality and accessible cancer programmes are 
lacking in low- and middle-income countries, contributing to the cancer burden and 
representing a threat to public health, economic growth and the achievement of the 
United Nations (UN) Sustainable Development Goals (161). Considering that the risk 
factors with highest relative risk are non-modifiable, risk factor reduction alone is 
insufficient for breast cancer control, requiring systematic changes to be implemented 
(159, 161). 

With the goal of reducing breast cancer mortality at an yearly rate of 2.5%, the program 
is based on the implementation of three pillars: (i) health promotion and early diagnosis 
through education about risk-reduction strategies and basic breast health, and 
education of healthcare providers on signs and symptoms of early presentation of breast 
cancer to improve early detection; (ii) timely diagnosis, focused on establishing 
accessible and rapid-diagnosis systems; and (iii) comprehensive breast cancer 
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management, through improving access to high-quality treatment options and 
implementing a personalised treatment and rehabilitation plan, minimising financial 
toxicity (155, 161). 

Diagnosis and Clinical Management 

Breast cancer is an incredibly heterogeneous disease, and this heterogeneity is seen 
etiologically, histopathologically and molecularly (148, 160, 162, 163). For instance, 
in the context of epithelial tumours of the breast, a total of 43 different morphology 
codes are defined by the International Classification of Diseases for Oncology (ICD-
O-3.2), spread across different types of adenosis and benign sclerosis lesions, adenomas, 
epithelial-mesenchymal tumours, papillary neoplasms, non-invasive lobular neoplasia, 
ductal carcinoma in situ, invasive breast carcinoma, rare and salivary gland-type 
tumours and neuroendocrine neoplasms (160). 

In terms of diagnosis, most procedures fall into three categories, namely screening tests, 
diagnostic tests and monitoring tests (162). Screening tests include self-performed 
manual palpation of breast (BSE) and are performed routinely in individuals without 
suspected breast cancer. A palpable mass is the most common clinical sign of invasive 
breast cancer (IBC), though other signs may include skin retraction, nipple inversion, 
nipple discharge and changes in the size or shape of the breast, or changes in skin texture 
or colour (160, 162). Upon presence of one or more of these signs, a diagnostic test is 
required to establish a definitive diagnosis, given that common symptoms of breast 
cancer can also occur in benign breast disease (160). 

Diagnostic tests include different forms of imaging techniques, such as 
ultrasonography, mammography, Magnetic Resonance Imaging (MRI), different forms 
of biopsies such as Core Needle Biopsy (CNB), Fine Needle Aspiration (FNA) or 
surgical diagnostic biopsy, and determination of a histopathological phenotype, which 
has been the main diagnostic method used (160, 162). 

In terms of imaging techniques, although population-wide mammographic screening 
has been the standard, it is not necessary for sustained reduction in breast cancer 
mortality (161). While ultrasonography has a higher false-positive rate, it is the 
recommended imaging procedure for women under the age of 40 years, and it can also 
be used to improve sensitivity for mammographically dense breasts (159, 160). Of note, 
combined mammography and ultrasonography results in very low false negative rates, 
in the range of 0% to 3% (160). MRI is considered the most sensitive method, but it 
suffers from lack of specificity, and when associated costs are factored in, it results in 
MRI being recommended mostly in very high-risk cases (160, 164). 
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In the histomorphological classification of breast cancer, a variety of features are taken 
into consideration, including the histological subtype, Nottingham grade, tumour 
spread in angiolymphatic spaces, and associated in situ component. Additionally, 
tumour size, distance to margins, stromal changes and the presence of Tumour-
Infiltrating Lymphocytes (TILs) are also considered important features for tumour 
classification (160). Based on different histological features, histological subtypes are 
defined. Essentially, a special histological type is assigned if ≥ 90% is considered to be 
of that special type, e.g., invasive lobular carcinoma (ILC); otherwise, the invasive breast 
cancer of no special type (IBC-NST/ NST) is used (160). 

Other classifications, such as tumour staging, offer crucial prognostic information. For 
instance, the 10-year survival rate of patients diagnosed with early-stage breast cancer 
is over 90%. On the other hand, advanced stages such as metastatic breast cancer have 
an associated 5-year relative survival rate of approximately 25% (165). However, the 
histopathological classification performed by pathologists constitutes the basis for all 
other classification systems (165). 

Clinically, all IBCs are classified in terms of biomarker-defined subgroups based on 
oestrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) status. 
Based on this analysis, four subtypes are defined, namely ER+/HER2-, ER+/HER2+, 
ER-/HER2- and ER-/HER2+. These groups do overlap in terms of morphological 
features, but they provide diagnostic and prognostic information (160, 165, 166). 

The main role of the ER status lies in the predictive utility in identifying a group of 
patients that would potentially benefit from endocrine therapy (160, 165, 166). The 
ER is predominantly nuclear and exists in two forms, ER-𝛼 and ER-𝛽 (167). They are 
both associated with proliferation, albeit in opposite ways, i.e., ER-𝛼 is said to enhance 
proliferation, while ER-𝛽 inhibits it (167). That being said, current 
immunohistochemistry (IHC) guidelines only stain for ER-𝛼 (167). ER is also 
considered prognostic, given that, in general, ER+ tumours have better prognosis over 
short term compared to negative cases (160). 

When it comes to IHC staining of ER, there’s an ongoing discussion regarding the 
cutoff due to the potential benefit in endocrine treatment. More specifically, ER 
staining between 1% and 10% constitutes a heterogeneous group which may have more 
similarities to ER-negative cases instead of ER-positive, requiring special attention 
(160, 167). Current recommendations consider ER-positive when ≥1% cells stain, and 
ER-negative when <1% or 0% (160). However, in the case of the percentage of stained 
cells being 1-10%, ER positivity should be reported as “low positive”, and for negative 
cases, it should be noted whether results were <1% or 0% (160). 

In conjunction with ER staining, staining for the progesterone receptor (PR) is also 
typically done (160, 167). Specifically in ER+ cases, PR is considered a prognostic 
marker, with higher PR levels associated with a better outcome. Similarly to ER 
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staining, an optimum cutoff needs to be determined for PR measurement via IHC 
(160, 167). Although there is evidence that ER+/PR- tumours have a worse response 
to endocrine therapy compared to ER+/PR+ tumours, it is not well validated for that 
purpose, and so patients still typically receive endocrine therapy (160, 165). 

Besides ER and PR, HER2 status is also investigated. As the name suggests, HER2 is 
part of the family of growth factor receptors, and is involved in the regulation of cell 
proliferation, development and survival. The protein is located on the cell surface, and 
10% to 20% of breast cancer cases are characterised by overexpression of HER2, which 
happens as a result of the amplification of its gene (ERBB2). This overexpression is 
linked to a more aggressive phenotype, characterised by increased proliferation, cell 
motility and angiogenesis (160). 

Since HER2 is characterised both as protein overexpression and gene amplification, its 
status can be determined via IHC at the protein level or utilising In Situ Hybridisation 
(ISH) to detect the gene amplification, although the lower costs and availability of IHC 
makes it the preferred method of choice for determining HER2 status (160, 165, 167). 
HER2 is also considered both prognostic and predictive due to the more aggressive 
phenotype. However, the main application of HER2 is predictive, as it is used to 
identify a group of patients which would benefit from anti-HER2 targeted therapies 
such as trastuzumab (160, 165, 167). 

Molecular Classification 

Considering the large number of morphological codes available for breast cancer 
classification and the overlap found in the phenotypes determined by ER and HER2 
status, it becomes clear that breast cancer is a very heterogeneous disease, and that 
heterogeneity extends to the molecular level (148, 160, 162-165, 168-171). 

To give a historical overview of breast cancer classification, the first diagnoses would 
only consider visible signs and symptoms of the disease, and it was only in the 18th 
century that it was understood as a local disease that would eventually spread to become 
systemic. As a consequence, mastectomy was the standard of care until the second half 
of the 20th century (165). 

The second half of the 20th century brought many advances to breast cancer 
classification and therapeutic approaches. The 1960s were marked by the approval of 
Tamoxifen as an anti-oestrogen drug, the 1980s by the introduction of mammographic 
screening programs, and the 1990s by the introduction of novel chemotherapeutic 
options, implementation of sentinel lymph node biopsy, identification of the role of 
BRCA1 and BRCA2 mutations in breast cancer pathophysiology, and the introduction 
of the first anti-HER2 targeted therapy drug, Trastuzumab (165). The changes 



72 

implemented during this period were crucial for a reduction in the incidence and 
mortality trends seen in the early 2000s (155). 

Based on the assumption that the phenotypic diversity seen in breast cancer would be 
met by a corresponding diversity at the molecular level, in the early 2000s, Perou et. al. 
(172) proposed the molecular classification of breast cancer using gene expression 
patterns of 1753 genes captured via cDNA microarrays in conjunction with a 
hierarchical clustering algorithm (172). This work defined five distinct molecular 
subtypes, known as the “intrinsic” subtypes, namely Luminal A, Luminal B, HER2-
enriched, Basal-like and Normal-like (171, 172). These intrinsic subtypes show 
correlation with overall survival, prognosis and therapy response, and have dominated 
breast cancer research in the last two decades (148, 162, 165, 168, 173, 174). 

A more modern definition of such subtypes was developed in 2009 by Parker et. al. 
(171) in the form of a quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) 
test comprised of 50 genes plus a classification algorithm called Prediction Analysis for 
Microarrays, receiving the name of PAM50 (171). In addition to the subtype 
prediction, Parker et. al. (171) investigated the utility of this multigene signature in the 
prediction of risk of recurrence (ROR) (171). Both are now available and part of the 
Prosigna assay (166, 170, 171). 

These subtypes were shown to correlate to different clinical subtypes (165, 166, 170), 
illustrated in Figure 7. Specifically, ER positivity is a proxy for luminal subtypes 
(luminal A and luminal B), HER2 overexpression/amplification is a proxy for the 
HER2-enriched subtype, and negative ER, PR and HER2 status, known as triple 
negative breast cancer (TNBC), is a proxy for the basal-like subtype (165, 166, 170). 
This resulted in IHC staining of ER, PR, HER2 and the proliferation marker KI67 
being used for classification of tumours in these subtypes (160, 166). 
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Figure 7 Correlation of clinicopathological features across the molecular subtypes. Based on (160). 

In addition to the information provided by the Prosigna assay (ROR + PAM50 
subtype), a number of different multigene signatures have been developed either for 
defining subtypes via gene expression profile, or for prognostic or predictive risk 
predictors (148, 162, 166, 167, 170). Rather than relying on single genes such as the 
IHC-based classification, these tools use a combination of different number of genes to 
reflect more complex tumour biology (165). A few examples include Oncotype DX 
(175), MammaPrint (176), the Breast Cancer Index (177), EndoPredict (178, 179), 
and the Genomic Grade Index (180). 

Vallon-Christersson et. al. (170) evaluated 19 different multigene signatures using a 
consecutive observational cohort of 3520 resectable primary breast cancer samples from 
the south of Sweden (170). The main aims were to investigate the association of such 
signatures to overall survival and assess the classification consensus based on this cohort. 
The authors conclude that the use of multigene signatures can support clinical decisions 
but emphasise the need for further development to reach higher consensus (170). 

Figure 8 gives an overview of different classifications typically used for BC. 
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Figure 8 Overview of different classifications of breast cancer. Based on (160). 

Of note, despite the number of assays available, there is a gap in the clinical validation 
of such signatures in prospective cohorts (170). From the examples given above, i.e., 
MammaPrint, Oncotype DX, Prosigna, EndoPredict, Breast Cancer Index and 
Genomic Grade Index, in the context of assisting in decision-making for chemotherapy 
use in ERpHER2n patients, only the MammaPrint and Oncotype DX assays have 
concluded prospective validation in the MINDACT and TAILORx trials, respectively 
(160). Another prospective trial, RxPONDER is ongoing, investigating the use of 
Oncotype DC, as well as the OPTIMA and ASTER70 trials for the use of the Prosigna 
assay and Genomic Grade Index, respectively (160). 

Proteomics and Multiomics in Breast Cancer 

As discussed in the previous sections, breast cancer is an incredibly heterogeneous 
disease, and the heterogeneity observed at the histopathological level is also seen at the 
molecular level (162). Despite the progress made, there are still unresolved questions 
concerning drug resistance and relapse, and the overall burden of the disease is still a 
considerable challenge (162, 164). 

Historically, most studies performing a molecular investigation in breast cancer have 
utilised of genomics and transcriptomics (163). That is a consequence of the evolution 
of omics technologies, with an initial focus being set on genomics after the completion 
of the “Human Genome Project”, followed by transcriptomics and proteomics (164). 

Initial efforts focused generating molecular profiles of somatic mutations of human 
tumours, such as the The Cancer Genome Atlas (TCGA) (163, 181-183). Such efforts 
have contributed immensely to the understanding of molecular mechanisms in cancer 
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biology (183). However, the resulting list of significantly mutated genes is relatively 
short, and most mutations occur either in regulatory or non-coding space rather than 
in protein-coding sequences (183). 

One of the issues arising from these strategies is that available databases tend to focus 
on signalling networks and interactomes derived from genomic data. As a result, 
biochemistry is often inferred rather than observed, which translates in a knowledge 
deficiency on how these genomic changes result in phenotypic phenomena, i.e., what 
drives proteins and phosphoproteins to execute said phenotype (183, 184). Therefore, 
a clear link between the genotype and phenotype must be established in order to 
improve the translational potential of these molecular information (183). 

The technology used to acquire proteome data in the TCGA efforts was Reverse-Phase 
Protein Arrays (RPPA), but this approach is limited by the availability of antibodies 
(184). It also makes it a hypothesis-driven approach given that the specificity of the 
different antibodies is known, compared to MS-based proteomics, which allows for a 
hypothesis-generating approach (65, 69, 76). With this in mind, the National Cancer 
Institute (NCI) launched the Clinical Proteomic Tumor Analysis Consortium 
(CPTAC) to use MS-based proteomics to analyse the TCGA samples (183). 

The field of proteomics has already made meaningful contributions to the use of 
biomarkers in breast cancer, with the clearest example being the utilisation of IHC in 
the investigation of ER, PR and HER2 status for subtyping, being an advantageous 
strategy considering the availability, reduced costs and familiarity (160, 165, 168). 

It was discussed in previous chapters that one of the main advantages of performing 
proteomic studies lies in the close proximity of proteins and the observed phenotype 
(14-16), with proteomics being placed downstream from genomics and offering a 
platform that explains how changes in the genome can affect functions and phenotypes 
(183). However, considering the complexity and heterogeneity of diseases such as breast 
cancer, enormous potential is present in harnessing the synergies that the different 
platforms can provide, allowing for a more complete molecular profile of diseases and 
patients and facilitating biomarker discovery (141, 142, 183). 

The potential benefits of LC-MS/MS and multiomics analysis have been discussed in 
previous chapters. In the context of breast cancer, this has been successfully 
demonstrated in different publications, e.g., (135, 184-186) and in Papers I and IV 
presented in this thesis.  

Besides the use of LC-MS/MS for proteomic profiling of different diseases or patients, 
MS-based workflows can be used for a myriad of different applications, for instance in 
Mass Spectrometric Imaging (MSI) (164, 187, 188) – through MALDI-MSI, and 
Desorption Electrospray Ionisation Mass Spectrometric Imaging (DESI-MSI) – which 
could be utilised in place of techniques such as IHC, as well as in establishing surgical 
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margins, and applications such as drug discovery and development and drug 
repurposing (164, 189). 

In the context of this thesis, besides demonstrating that proteomics adds 
complementary information to transcriptomics data (Paper I), a multiomics approach 
incorporating transcriptomics, proteomics, phosphoproteomics and immune 
infiltration estimates is utilised for profiling metastatic processes in IBC-NST and ILC 
(Paper IV). 

From a disease perspective, Paper IV represents, to the best of our knowledge, the most 
comprehensive multiomics dataset of metastatic processes in ER-positive breast cancer. 
The efforts presented in this paper highlight possible subtypes with distinct survival 
and markers of both lymph node involvement and distant metastasis. Although the 
findings need to be further investigated, they also underscore the potential to classify 
tumours for possible usage of immunotherapy and adjuvant therapy. 
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Concluding Remarks and Future 
Outlook 

This thesis begins by bringing to the forefront two very crucial and complementary 
problems, namely “The Biomarker Problem” and “The Burden of Cancer”.  

On one hand, technological advances have allowed insurmountable amounts of 
molecular and imaging data to be generated, but the lack of clearly defined and relevant 
clinical questions, and failure to meet rigorous clinical validation have resulted in 
limited approval of new biomarkers, posing an obstacle for the field of precision 
medicine. 

On the other hand, an ever-growing and aging population, together with increased 
prevalence of risk factors have contributed to cancer ranking among the two leading 
causes of death worldwide. These factors also contribute to an increase in disease 
burden, and highlight the need for improved diagnosis and better, more efficient 
treatment options. 

With these two aspects in mind, it becomes clear that progress in one front is necessary 
to also progress in the other. Therefore, the aim of this thesis focuses on MS-based 
proteomics and multiomics efforts for advancing biomarker discovery with the goal of 
contributing to precision medicine and oncology. 

In Paper I, we start with 116 breast cancer samples, representing different molecular 
subtypes of the disease. We further demonstrate the use of this sample material, which 
corresponds to flowthroughs after DNA and RNA extraction, for acquiring matching 
proteomics data. Focusing on biomarker-discovery efforts, label-free proteomics was 
selected, and different data acquisition strategies were tested, concluding that DIA 
acquisition with library-free processing via DIA-NN resulted in better coverage and 
reproducibility. The resulting data was also evaluated in terms of contribution to 
already available transcriptome data. In this context, we demonstrate the added value 
in terms of GSEA and a decision tree model for distinguishing the different molecular 
subtypes. Despite not having a clear clinical question as part of the study, the markers 
highlighted recapitulated important aspects of the different subtypes, showcasing the 
importance of proteomics data. 
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In Paper II, we focus on blood plasma as a source of protein biomarkers. The blood 
plasma contains a multitude of proteins and is collected via a highly standardised yet 
minimally invasive procedure, making it a very interesting sample material. These 
aspects also result in added complexity when analysing such material via standard 
proteomics workflows, especially due to the high dynamic range. Among the different 
strategies available for addressing this challenge, we focus on the GPS platform and 
propose a semi-automated protocol for multiplexed enrichment of plasma peptides, 
harnessing the complementarity of different affinity binders. We also highlight the 
potential use of the workflow with other affinity binders, enabling matching 
complementary enrichments, e.g., enrichment of different PTMs from the same sample 
material. 

In Paper III, we bring forward the prognostic and predictive value of immune 
infiltration in cancer. Although direct methods for estimation of immune infiltration 
exist, e.g., IHC, the use of omics data pose an interesting alternative. Most commonly, 
transcriptomics is used for this purpose, although proteomics data could potentially be 
more accurate, given its closer association with the phenotype. With that in mind, we 
compared different deconvolution algorithms and propose preprocessing steps 
concerning biological ID handling, normalisation and handling of missing 
data/imputation, culminating in the development of the proteoDeconv R package with 
the goal of streamlining the use of proteomics data for immune deconvolution. Factors 
such as signature matrix used and protein content of different immune cells are also 
important to consider, and although these were not investigated in depth in this 
context, developments in single-cell proteomics would directly contribute to better 
tailoring immune deconvolution algorithms to be used with proteomics data. 

In Paper IV, we adopt a multiomics approach for the profiling of metastatic processes 
in ER-positive breast cancer, combining LC-MS-based proteomics and 
phosphoproteomics with immune infiltration estimates and transcriptome data. 
Through consensus clustering, we identified six potential subtypes with different 
expression patterns, immune infiltration and survival. In terms of the immune 
component, we discuss a potential role of interferon signalling in promoting an 
exhausted phenotype, one which could potentially benefit from immunotherapy. 
MOFA was used in combination with differential expression analysis to identify 
markers of lymph node and distant metastasis, and we discuss the potential role of some 
markers as well as possible therapeutic interventions. Further investigation of the 
reported markers is important to establish a causal relationship to the metastatic 
processes and potential prognostic and predictive roles, but they show promising leads 
to further develop precision oncology in ER-positive breast cancer. 

In many ways, the work presented in this thesis is the summation of all the parts 
developed in the other papers. It draws from the experience in developing robust 
automated protocols for reproducible sample processing, highlighted in Papers I and 
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II, with more advanced data analysis pipelines implemented in Papers III and IV. The 
findings in this thesis underscore the importance of robust sample processing and the 
potential of multiomics efforts for precision medicine. 

Considering the advances achieved in high-throughput molecular technologies and 
decreasing associated costs, it has never been easier to implement an integrative 
approach to biomarker discovery and validation. Diseases such as cancer make evident 
the molecular complexity behind such pathological processes, rendering it not only 
more difficult, but, to certain extent, unlikely to be fully understood from a single-
omics perspective. 

Historically, omics technologies have made use of genomics and transcriptomics. 
Consequently, the vast majority of databases are annotated in terms of genes and 
transcripts, often inferring function, despite proteins and their proteoforms being 
responsible for most functions in a living organism. Considering different mechanisms 
of transcriptional regulation, post-transcriptional and post-translational modifications, 
mapping genes to proteins is a lot more complex than mapping proteins to genes. For 
that reason, and since proteoforms can serve as direct measures of function, it would be 
beneficial to adopt a proteoform-centric base for functional annotation. 

Finally, in order to alleviate the issues posed by the biomarker problem and the burden 
of cancer, special consideration must be put into study designs. Since laboratory 
research and population research do not overlap, it is essential to have strong 
collaborations in order to be able to translate knowledge from laboratory to clinical 
research and from research to clinical implementation. 
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Towards Precision Oncology  

With cancer incidence and mortality rising, the 
need for individualised treatment has never been 
greater. Recent advances in omics technologies 
have supported a paradigm shift from traditional 
classification of diseases to personalised medicine. 
To achieve this, however, novel biomarkers are 
needed.

Given the extensive clinical use of proteins and 
their close proximity to disease phenotypes, 
their holistic analysis could contribute to the 
development of better biomarkers. Moreover, as 

cancer is a highly complex disease, combining multiple omics could help create 
a more complete map of the disease.

This thesis explores different strategies incorporating mass spectrometry-
based proteomics and automation for biomarker discovery in blood plasma 
and breast cancer biopsies. A multiomics approach to data analysis is adopted, 
yielding promising results for breast cancer by identifying potential subtypes 
with differential immune infiltration and markers associated with metastatic 
processes.
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