
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Design of Flexible Code Block Comparisons to Improve Code Review of Refactored
Code

Heander, Lo; Söderberg, Emma; Rydenfält, Christofer

Published in:
Programming '24: Companion Proceedings of the 8th International Conference on the Art, Science, and
Engineering of Programming

DOI:
10.1145/3660829.3660842

2024

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Heander, L., Söderberg, E., & Rydenfält, C. (2024). Design of Flexible Code Block Comparisons to Improve
Code Review of Refactored Code. In E. Söderberg, & L. Church (Eds.), Programming '24: Companion
Proceedings of the 8th International Conference on the Art, Science, and Engineering of Programming (pp. 57-
67). Association for Computing Machinery (ACM). https://doi.org/10.1145/3660829.3660842

Total number of authors:
3

Creative Commons License:
CC BY

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 10. Sep. 2024

https://doi.org/10.1145/3660829.3660842
https://portal.research.lu.se/en/publications/c4242615-809f-40f8-9c6d-6690bc98dd11
https://doi.org/10.1145/3660829.3660842

Design of Flexible Code Block Comparisons to Improve Code
Review of Refactored Code

Lo Heander
lo.heander@cs.lth.se
Lund University

Sweden

Emma Söderberg
emma.soderberg@cs.lth.se

Lund University
Sweden

Christofer Rydenfält
christofer.rydenfalt@design.lth.se

Lund University
Sweden

ABSTRACT
Code review occupies a significant amount of developers’ work
time and is an established practice in modern software development.
Despite misaligments between users’ goals and the code review
tools and processes pointed out by recent research, the code review
tooling has largely stayed the same since the early 90s. Improving
these tools, even slightly, has the potential for a large impact spread
out over time and the large developer community.

In this paper, we use the Double Diamond design process to
work together with a team of industry practitioners to find, refine,
prototype, and evaluate ways to make it easier to compare refac-
tored code blocks and find previously hard-to-see changes in them.
The results show that a flexible comparison modal integrated into
Gerrit could reduce the mental load of code review on refactored
code. Potentially, it could also have effects on how code is written
by no longer discouraging refactoring due to it complicating the
review. The user interface created in this collaborative manner was
also intuitive enough for all of the participants to be able to use it
without any hints or instructions.

CCS CONCEPTS
• Human-centered computing → HCI design and evaluation
methods; Empirical studies in HCI; Interaction design pro-
cess and methods; • Software and its engineering→ Software
verification and validation.

KEYWORDS
code review, human-computer interaction, interaction design, soft-
ware engineering
ACM Reference Format:
Lo Heander, Emma Söderberg, and Christofer Rydenfält. 2024. Design of
Flexible Code Block Comparisons to Improve Code Review of Refactored
Code. In Companion Proceedings of the 8th International Conference on the
Art, Science, and Engineering of Programming (‹Programming›Companion
’24), March 11–15, 2024, Lund, Sweden. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3660829.3660842

1 INTRODUCTION
Software developers today spend between 10-20%[9, 21] of their
working time doing code reviews.With the total number of software

This work is licensed under a Creative Commons Attribution International
4.0 License.

‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0634-9/24/03
https://doi.org/10.1145/3660829.3660842

developers expected to reach 28 million people by 2024 [1], this
could mean between 22-44 million hours spent doing code reviews
every day! When usage is on this scale, even small improvements
in code review tools and processes can have a significant effect.

Yet, the tools used have not changed in their approach since they
were first introduced with ICICLE in 1990 [10]. Research has shown
that there are misalignments [23] between the tools used and the
desired goals, such as code quality and knowledge sharing [4].

There are not very many studies published that explore how
changes or new features in the code review tools can affect the
review experience or quality. Bagirov et. al.[5] investigates if the
ordering of the files in the review could be improved. Baum 2019 [6]
studies how code review tools could be improved using cognitive
support techniques to reduce the cognitive load of the task and im-
prove code review quality. Baum et al.[7] study the (mis)alignment
between the code review task and requirements and the tools in use
today. They believe that there is room for improvement and that a
new generation of more specialized tools could lead to “increased
review efficiency and effectiveness”.

In this paper, we explore ways to improve the code review de-
veloper experience by applying a double diamond design process
(Section 2) to the code review tooling. Our research questions are:

• RQ1 What developer experiences during code review can
cause frustration?

• RQ2 How can code review tools be modified to improve the
developer experience?

• RQ3 How can developers be involved in the design process
to better discover, understand and design tooling improve-
ments?

To answer these questions, we study the code review experience
of software developers, with an established code review process
in Gerrit, working at a company developing embedded systems.
Through a focus group session with the developers, we identify
several problems that could be addressed by improved tooling. We
select one of these problems and organize a co-design workshop
with the participants, focusing on coming up with a range of pos-
sible solutions. One solution, a flexible code comparison modal to
compare moved and refactored code blocks, is chosen. After devel-
oping this solution into a high-fidelity prototype, we bring it back
to the software developers for evaluation and feedback.

The feedback from the participants (Section 3), during both the
workshops and the evaluation, suggests that this feature could sim-
plify code reviews of moved and refactored code. It could potentially
also have effects on how code is written, by no longer discouraging
change and refactoring in moved code to avoid complicating the
review.

1

https://orcid.org/0000-0002-0695-4580
https://orcid.org/0000-0001-7966-4560
https://orcid.org/0000-0003-1495-8263
https://doi.org/10.1145/3660829.3660842
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3660829.3660842

‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden Heander, Söderberg, and Rydenfält

2 METHOD

Figure 1: The Double Diamond design process.
From https://www.designcouncil.org.uk/

Towork towards answeringRQ3, we wanted to choose a method
that involved the developers using code review tools in the design
process. The purpose of this is both to increase the chance of de-
signing something that would be genuinely useful to the developers
and also to invite their experience and expertise into the project.

For these reasons, we have used the Double Diamond design
process [13] (Figure 1) to structure the work. The double diamond
consists of two consecutive steps both consisting of one exploratory,
i.e., divergent, and one converging phase. These phases live inside
a context of Engagement and Leadership which makes the impor-
tance of involving the community explicit. These two steps form
two “diamonds”. The steps in the project and how they relate to
the phases in the process can be seen in Table 1.

In the first diamond, the process starts with the challenge. The
design project’s purpose and starting point. From here, through
the “Discover” phase, the purpose is to deepen the understanding
of the challenge. This is a divergent phase, expanding outwards to
discover more and more about the challenge, its characteristics, the
people affected, the limitations, and use cases to work with. In this
process, it is important to refrain from self-censoring or jumping
to conclusions based on your prejudices about the problem.

The second half of the first diamond, the “Define” phase, uses
the understanding of the challenge obtained in the Discover phase,
narrowing it down to a clear problem definition. The definition
needs to be a real and urgent problem for the intended users and
manageable to tackle within the scope of the project.

The first phase of the second diamond, the expansive “Develop”
phase, is an exploration of the solution space for the previously de-
fined problem. In practice, this means developing as many different
solutions to the problem as possible. Rough prototyping can take
place in this phase to describe the ideas more visually.

In the second half of the second diamond, the “Deliver” phase, the
purpose is to reduce the scope down to a single final design. Here the
team can iterate through a variety of methods. Creating prototypes,

evaluating prototypes, and finally refining the prototype to arrive
at a final design choice.

Table 1: Design process steps and participants.

Discover phase
Sep 2023 Literature review 1st author
Sep 2023 Developer meeting 5 developers
Oct 2023 Focus group 5 developers
Define phase
Nov 2023 Definition workshop 3 faculty members
Nov 2023 Problem statement 1st author
Develop phase
Nov 2023 Co-design workshop 5 developers
Dec 2023 Conceptual design 3 faculty members
Deliver phase
Dec 2023 Prototype development 1st author
Dec 2023 Prototype persona verification 3 faculty members
Jan 2024 Prototype evaluations 7 developers
Jan 2024 Prototype refinement 1st author

2.1 Discover phase
In the Discover phase, we performed a literature review, a developer
meeting, and a focus group (Table 1). The literature review was
intended to orient the study about problems in code review as found
by current research [17, 19, 23, 24] and give us an idea of what and
where to explore for RQ1. After this, we held a first developer
meeting to introduce the project to five professional developers
participating in the study. During the meeting we got to know
their backgrounds, the teams’ code review processes, and collected
informed consent for participating in the study.

The participating developers work at a medium-sized embedded
software development company. Their prior experience ranges from
over 20 years for one system architect, to 2-3 years for some of
the software developers. They work in 4 different teams, which all
have established code review practices. All new code in the teams
undergoes code review by usually two other developers, who both
need to approve the change before it is merged.

Figure 2: Post-it notes from the focus group.

2

https://www.designcouncil.org.uk/

Design of Flexible Code Block Comparisons to Improve Code Review of Refactored Code ‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden

In the next step, we arranged a focus group [18] with the same
five developers. The output from the literature review and the
developer meeting were used as input to create a design brief and
an interview protocol for the focus group (Appendix A). The topics
for the interview questions were aiming to explore RQ1 and RQ2.
We first explored the practices the developers used when reviewing
code (i.e., “Do you read the files in a code review one time ormultiple
times?”), and then experiences reading code in an IDE (i.e., “How
is the experience of reading and understanding new code in other
tools, environments or situations?”), and finally comparing the two
(i.e., “How is the experience different compared to code review in
Gerrit?”)

The problems and challenges discussed in the focus group were
gathered as post-it notes on a big sheet of paper (Figure 2) and sorted
into categories depending on if the challenge usually occurred
before, in the beginning, middle, or end of looking through a new
code review. The session was held in Swedish and recorded for later
transcription and translation.

To balance the participation in the meeting, the facilitation was
done in a way where every participant got the same time to talk
about their perspective and then with a discussion where everyone
could contribute before moving on to the next person’s perspective.
See results in Section 3.1.

2.2 Define phase
The Define phase consisted of a workshop in the research group
where the sorted and categorized challenges from the focus group
were described based on potential impact and feasibility to pro-
totype within the scope and time limits of the project. Based on
the description, the group prioritized the challenges to conclude
which problem areas to move on with. After this, the first author
put together a problem statement as input to the next phase. The
results from this process are described in Section 3.2.

2.3 Develop phase
In the Develop phase, we conducted a co-design workshop [22]
where five industry practitioners (four who also participated in the
focus group, plus one more developer from the same company but
a different development team) co-created different solution designs.
The reason for choosing a co-design workshop as the method was
to deeply involve the developers in designing solutions to improve
their own working tools, in accordance with RQ3.

The first author facilitated the co-design workshop and prepared
hand-drawn low-fidelity mockups of the Gerrit user interface (Ap-
pendix B) and different kinds of widgets, buttons, and overlays
on overhead film. New interfaces and ideas could be created by
cutting and moving parts of the interface around. The output of the
meeting was documented with photos of the mockups and notes
on the ideas and principles behind them.

The ideas from the co-design workshop were elaborated through
conceptual design [16] to make them more rich and substantial.
Conceptual design is the definition of the metaphors, use cases,
concepts, and actions that can be involved in the design. This also
included the creation of two personas [11] based on the concerns
and challenges emphasized by the participants in the focus group
and co-design workshop.

2.4 Deliver phase
The final Deliver phase distilled the solution ideas and conceptual
designs from the Develop phase and reduced this to one high-
fidelity prototype that can be evaluated towards the problem state-
ment developed in the Define phase. The phase contained 4 steps
(Table 1). First, a high-fidelity prototype was created using Figma1,
a tool for creating interactive prototypes of computer interfaces.

The prototype was verified by using the personas and their
questions. After some updates, the practitioners from the focus
group, co-design workshop, and one additional external developer
from a different company were invited to individually test and
evaluate the prototype. During the test, the participants did a code
review in a private Zoom meeting without detailed instructions
or guidance (see Appendix C. All of them reviewed the same code
that contained examples of blocks moved both within a file and
between different files. Their running commentary and their shared
screen was recorded to evaluate the interface’s usability and how
well it supported the challenge selected in the Define phase. The
meetings were held in Swedish and the recordings were transcribed,
referenced, and translated into English where needed.

Finally, the design of the prototype was adjusted based on the
results and suggestions from the evaluations.

3 RESULTS
The result section follows the structure of the Double Diamond
process and the sequence of method steps described in Table 1.

3.1 Discover phase
In the developer meeting and literature review (Section 2.1) several
developers and articles mentioned file order as an important factor
in code reviews. For this reason, the design brief and questions for
the focus group, started out exploring this problem area.

Design brief. When doing a code review, the developer often
has to read the files multiple times because they are presented
in an order where early files are not understood until after
reading files further down in the review. Design questions:

(1) In what ways could reading the code in a review be
improved so that fewer passes or even a single pass
through the files in the review would be enough to
understand the changes?

(2) Are there ways to improve the ordering or let the author
convey more of the narrative when sending the code
for review?

However, during the meeting our participants raised six different
problem areas that they felt were more frequent and impacting their
experience more. The areas are described below:

Diff problems. There are many cases when the diff algorithms break
down and require tedious manual comparison word-for-word. For
example, if a function is moved within a file from the bottom to
the top, or maybe refactored into two separate functions, it will all
show up as just deleted lines and completely different added lines.

1https://www.figma.com/

3

https://www.figma.com/

‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden Heander, Söderberg, and Rydenfält

This makes it hard to see if the code was only moved or moved and
modified. Also, if a file is renamed and then changed, or a function
is moved into a different file, it is impossible to use the built-in diff
tools to compare the code.

Suggestions from the focus group included manually selecting
files, lines or blocks, to compare sections that the algorithms them-
selves don’t match for diffing.

Participant 3. “I was working with this today and had to
sit with two separate windows and go through it, just like,
Control-F in this file and see if I find it. Is it added? Is it com-
pletely new? Or is it just moved from further down in the
file?”

Participant 1. “Do we want a more semantic diff? Where
you can kind of say that this has been extracted from over
there or it has been moved between here and there?”

Finding similar but unchanged code. It might be the case that a
code base contains several similar snippets of code and that a code
change should affect all of them. In the code review tools, this is
difficult to verify. There might be a forgotten snippet left in an
unchanged file that is never even shown in the review. It would be
helpful to have a tool to find similar code that maybe also should
have been changed or looked at.

Participant 1. “It is one of the things that are easiest to miss
during a review, regardless of reviewing a document or code.
It is like, you only look, think, and look at what is in the diff.
Not what should have been there.”

Lack of navigation. Lack of navigation in code review tools causes
problems, such as making it difficult to go from a variable’s or
function’s use to its definition, or finding all uses of a variable
or function. In IDEs such as VS Code, this kind of navigation is
easy and commonly just one or two clicks away, but the same
convenience is missing from code review tools.

Participant 4. “I mean, say that you could just press it and
«yeah, you have 5 references here» and then you see that, yeah,
but the reference down there is not changed in this commit.
Why? Then it would be very fast to get to that insight.”

Ordering of files. When changes are big and spread out over many
files, the alphabetic ordering of files in the code review tool is
essentially random, in regards to how the code should be read
and understood in the best way. Suggestions for how to address
this problem from our participants include placing generated code
last or placing the tests last. The uploader could also draw a path
through the change with commentary for each file, to clarify the
story told by the code under review.

Participant 4. “You could make it easy for yourself and just,
like, let the person uploading the review decide or give a sug-
gestion for an order. Then people can choose to go back to
their own order, but you can say, kind of, that I suggest you
look at it in this way. Then you can do it in call stack order if
you like that.

Overlays and annotations. The continuous integration (CI) pipeline
used by our participants already includes support from running a
wide variety of testing and code analysis tools, but these results
are disconnected from the code. In the best case, they are shown as
a pass/fail stoplight in the code review tool with a link to the full
logs. It would be useful to show these results as inline overlays on
top of the code. To see, for example, test coverage, linter warnings,
execution traces, loops with frequent execution, failing tests, etc.
The overlays need to be easy to select and toggle on and off so that
the user interface stays easy to use. For adoption, it needs to be
easy to integrate the results from the CI without modifying the
linters, tests, etc.

Participant 5. “It would have been nice to have a code cov-
erage overlay because then you would have been able to see
that (if more tests were needed) in a completely different way.”

Unchanged files. Finally, it was discussed that unchanged files are
not shown at all in code reviews today. It would help to have a way
both to find and navigate to unchanged files and also write review
comments in them. There may be places in unchanged files that
have not been changed, but that should have been changed, or that
affect some parts of the changed code.

Participant 5. “But if you don’t want to be marked as the
uploader, you have to do it (commenting on an unchanged file)
through URL-hacking. (...) NN does it fairly often and I do it
sometimes when I realize that there is a change in a nearby
file that should have been there.”

3.2 Define phase
When considering the problem areas discussed in the focus group,
we made a first selection of problems that can be addressed by col-
laborative design (RQ3). This selection removed Lack of Navigation,
Ordering of files and Finding similar but unchanged code, since these
problem areas would have put more of the focus on deeper code
analysis instead.

The three remaining problem areas, Diff problems, Overlays and
annotations and Unchanged files are all very interesting areas to
explore under the scope of interaction design. In diff problems, you
want an interface that is flexible in choosing the blocks to compare.
It should also be intuitive to use to quickly make comparisons, and
at the same time not get in the way of the classical code review
interface.

4

Design of Flexible Code Block Comparisons to Improve Code Review of Refactored Code ‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden

For overlays and annotations, completely new concepts of layers
would need to be designed and introduced in a way that fits well
into the existing code review interface. It needs space for rich
information and at the same time needs to be easy to navigate and
turn on and off.

To create a design solution for unchanged files, the existing in-
terface for presenting and commenting in the files could largely be
reused. The challenge is rather in the navigation and to make it
clear that the unchanged file is outside the changed code.

In the end, overlays and annotations was estimated to be too
large for the scope of this project and that diff problems was more
important and had a greater impact on the quality and ease of
reviewing than unchanged files. Because of this diff problems was
chosen as the problem area to explore during the next phase.

3.3 Develop phase - co-design workshop
During the co-design workshop (Section 2.3), our industry prac-
titioners were given hand-drawn cut-and-paste prototyping kits.
With these, solution suggestions for the problem of comparing code,
that the diff algorithms do not detect as moved, could be created
and discussed. Two guiding principles, which should always be
present, and three separate solution ideas were formulated:

Principle 1: Show context. One important principle is to always
show context for both blocks. The context lines should be syntax-
highlighted and displayed in a muted way but still show where the
two blocks were found originally.

Principle 2: Review comments while comparing blocks. Since it
will often be during these more detailed comparisons that ideas or
comments about the code will be found, it is an important principle
to be able to write comments right there and then. Maybe it should
also be possible to view and read previous comments from other
reviewers or the author, even if these were not written in the new
comparison views.

Principle 3: Support comparison within and across files. The diff
problems discovered and defined in the previous phases can occur
both within the same file and across different files depending on
the types of changes and refactorings done. Support for both these
cases is needed to get the most benefit from the tool.

Principle 4: Integrated in code review environment. There are exist-
ing software that can do comparisons of any code blocks or texts
that you choose such as Meld2, KDiff3, git diff, etc. The issue with
them is that it requires the reviewer to either check out the code
locally or copy-paste the code blocks they want to compare into
another window. This could switch them out of the code review
task [23] and would require extra steps and time. To make review-
ing faster and easier the tool needs to be integrated into the code
review environment.

Idea 1: Scroll-lock one side. One solution idea that came up was
to be able to scroll-lock one side of the diff view and then scroll
only the other side, to be able to align code blocks that you want
to compare so that they are next to each other. In this way, you
would not have to select any lines for a block and would save the
2Meld is a desktop visual diff tool available for many operating systems https:
//meldmerge.org/

extra work and navigation of opening a new Gerrit tab and trying
to place that next to the code you want to compare.

The idea is to keep the coloring and the diff the same, and just
change which lines are shown next to each other. Probably some
kind of snapping at line alignments would be nice. A further im-
provement could be a feature to mark a segment and then tell the
view to scroll through matching segments on the other half.

Idea 2: Switch comparison base. Another idea is for the case of
comparing blocks, or whole changes, across different changesets,
for example after a revert and re-submit with changes. Here, the
proposed solution is to let the user switch the base commit-id to
compare against.

Code that has changed independently, by other commits, should
be hidden. Only changes in the diff are highlighted so it becomes
easy to compare what the difference is between the old faulty code
and the new suggested changeset.

Being able to input a git commit-id manually could be a first
step, with a possible extension of automatically finding suitable
comparison bases that have very similar diff towards the main
branch.

Idea 3: Workspace for blocks. To have a workspace where inter-
esting blocks can be placed as they are seen in the code, such as a
sidebar or a drawer, is another interesting workshop idea. These
blocks could then be brought up and listed in a modal dialog to get
an overview of all the interesting blocks. From here the user could
compare them to each other, or search for other similar blocks to
compare them to.

3.4 Develop phase - conceptual design
From the sketches and discussions during the co-design workshop,
we developed a conceptual design meant to capture and enrich the
metaphors, concepts, mappings, objects, and personas that can be
involved in the design.

Figure 3: Developed analogfilmon a lightboard. From ‘Museum
of Obsolete Media’, used under CC BY-SA 4.0.

Metaphor: Lightboard. In analog photography, a lightboard is a flat
luminous surface where the developed film can be previewed and
frames compared to each other before choosing which to enlarge
onto photo paper (Figure 3). It can also be used for drawing, to
copy or compare art drawn on paper. In this project, the lightboard
is a metaphor for a work surface where pieces that you need to
illuminate or inspect can be kept and compared.

5

https://meldmerge.org/
https://meldmerge.org/

‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden Heander, Söderberg, and Rydenfält

Concept: Changeset. The changeset is the central concept in Gerrit
and is what you are approving or rejecting in a code review. It is
submitted by an author and contains a commit message written by
the author to describe the contained changes.

Concept: File. A file is part of the changeset and has a name, a path,
an old and one or more new versions. The diff view in Gerrit can
show the comparison between any pair of selected versions for the
same file.

Concept: Line. A line in a file within the changeset. Line numbers
and contents might not correspond between versions of the same
file, so a line only makes sense as a concept when referring to a
specific version.

Concept: Blocks. A block consists of one or more consecutive lines
of code in a file. Since it is built up of lines, it also must refer to a
specific version of the file.

Concept: Diff view. A view to show differences between two text-
based contents. One content is designated as the older one, and the
other as the newer one. Differences can be shown interleaved or in
a side-by-side view.

Concept: Matches. Two blocks that either have a similarity score
above a certain threshold or that the user has manually selected.

Action: Select block. Select a block by selecting lines on either the
old or the new side of the file diff view.

Action: Compare blocks. Open up a comparison of a match.

Action: Comment on match. While looking at a diff view of a match,
write review comments.

Action: Read comments in context. When seeing a review comment
in a file, open up the match in a diff view to see the same context
as the comment was written in.

Persona: Willow. Willow is new to the team and inexperienced with
the particular code base. They have some experience in general
software development and code review from education and previous
projects, but not seasoned enough to feel super secure in a new
code base and environment. Willow is part of a small team with
five colleagues, two of whom are on a similar level and three who
are more experienced, especially in this particular codebase. Their
process is mutual peer reviews where at least one, preferably two,
developers should look at and approve new changesets. When
reviewing code and finding whole functions or blocks that have
been removed,Willow often asks the following questions andwould
like the design to help them answer them:

• Where did this code go?
• Was this block deleted or moved?

Persona: Raven. Raven has experience with many different software
projects in a range of teams, tools, and programming languages.
In the project she is working on, she knows most of the codebase
by heart and is aware of most of the interactions and intricacies
in how it interweaves with its environment. Raven is part of a
small team with four colleagues, two on a similar level and two less
experienced. Their process in the team is peer code review where
one other developer should look at and approve all changesets.

When finding files, functions, or blocks that have been moved, she
often asks:

• Is this moved block identical to the original?
• Why was it moved?
• How does moving the code affect the surrounding code and
projects?

3.5 Deliver phase - first high-fidelity prototype
To converge the ideas and concepts from the Develop phase we
focused on Idea 3. Idea 1 was discarded since it would be hard
to support comparison across files intuitively with just scrolling.
Also, it would require the reader to compare manually line for line
without diff coloring. Idea 2 was also discarded since it would need
a functional version of Idea 3 to start with so that wherever the
blocks come from (same patchset version, other versions, or other
changesets) they could be compared easily and intuitively.

The prototype3 (Section 2.4) simulates both source code that has
been moved and then modified within a single file, and code that
has been broken out into a new file and modified in the process.
The prototype is designed as if being fully integrated into Gerrit
[Principle 4].

Figure 4: Modal dialog for detailed comparison of blocks.

Feature I: Comparison modal. The comparison modal (Figure 4)
shows a detailed diff view between two blocks of code with intra-
line markings to highlight the changed parts. The context around
the selected blocks is shown without background colors and with
lower contrast to make it clear that it is not part of the current
comparison [Principle 1].

Clicking on the row numbers opens up a comment text field,
so the reviewer can write directly in the context that made them
notice an issue or questions [Principle 2].

Feature II: Comparison within a single file. If code has been moved
within a single file, that is detected and a hint is shown on the line
above the moved code (Figure 5). The user can click the link to open
the comparison modal with the two blocks loaded.

Feature III: Lightboard toolbar. If the user wants to compare blocks
across files [Principle 3], an added or removed code block can be
3Available at https://figma.com/proto/KZIrsBH8DZ22ZI0B0YD2BC/GBC?hide-ui=1

6

https://figma.com/proto/KZIrsBH8DZ22ZI0B0YD2BC/GBC?hide-ui=1

Design of Flexible Code Block Comparisons to Improve Code Review of Refactored Code ‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden

Figure 5: Moved code detected within the same file.

Figure 6: Floating toolbar with blocks marked as interesting
for comparison.

added to the list of interesting blocks to compare (Figure 6). This
toolbar can be minimized to only take up less space and attention
while reviewing and navigating the files, and then expanded to
show the list of selected blocks.

Figure 7: Moved code that matches marked block on light-
board.

Feature IV: Comparison to lightboard block. When navigating through
the files under review, the current file is checked for blocks that are
similar to any block that is on the lightboard. These blocks show
a hint on the line above the code block (Figure 7). Clicking there
will open the comparison modal dialog between the block and its
closest match on the lightboard.

3.6 Deliver phase - prototype persona
verification

The first sanity check of the prototype was done by the research
group by checking if the questions and use cases described by our
two personas, Willow and Raven, could be answered and performed
using the flow in the prototype.

Willow: Where did this code go? This question is answered by the
move-detection and the headings that come up over a block [Feature
II, Feature IV] and allows Willow to compare it to similar blocks in
the same file, or files that have been added to their lightboard.

Willow: Was this block deleted or moved? This question is also an-
swered by the move-detection, where moved blocks will have head-
ings over them showing Willow where the block was moved to
or from [Feature II, Feature IV]. However, if the block is moved
between different files, and the source or destination blocks are not
on the lightboard, the heading will not show and it will look the
same as if the block was deleted or newly created. Integrating a
clone detection [2] tool could make it possible to scan the whole
changeset for similar blocks to detect those cases.

Raven: Is this moved block identical to the original? This question is
answered by the comparison modal [Feature I]. Here, Raven can
see detailed differences between the block before and after it was
moved, with intra-line diff markers to highlight changes.

Raven: How does moving the code affect the surrounding code and
projects? This question is a bit more complex. The comparison
modal [Feature I] should give Raven a detailed view of any changes
in functionality, which will help judge the effects on surrounding
code. It also shows the context before and after the blocks, so that
Raven can look for potential side effects there as well.

Raven: Why was it moved? Not supported - The design of the
prototype does not give any extra help for this question. Knowing
the details of the changes might in the best case give you a hint,
but without a clear rationale being stated by the changeset author
it is hard to infer it just from the code.

3.7 Deliver phase - prototype evaluation
The prototype evaluation (Section 2.4 and Table 1) showed that all
of the 7 participants could complete the code review task, and were
able to use the comparison modal dialog to clarify questions that
they had about the moved and refactored code blocks without any
additional instructions except for the user interface.

One thing that stood out, when analyzing the recorded evalua-
tions, was how positive the sentiment was regarding the usefulness.
For example, in the co-design workshop some of the participants
commented on how the solutions they used today, e.g., opening
two browser windows next to each other and comparing the code
line-by-linemanually, worked pretty well, but when using the proto-
type they expressed surprise at how much easier it was to read and
validate the changes by using the new comparison modal instead.

Participant 3. “So I am, if anything, yes, positively surprised
that it is, yeah, that it feels like it works and is maybe also not
a lot of different things that needs to be developed to still kind
of make a pretty big difference to the better.”

Participant 1. “Well, when code has been moved around
and when it is so easy to use so you get comfortable with it
[...] it is a really big difference. And then, like I said, it makes
you able to stay in Gerrit the whole time. You don’t need to,

7

‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden Heander, Söderberg, and Rydenfält

as said, cut and paste into a Meld-window and figure out what
happened that way.”

One participant also commented that this improvement could
potentially change how they write code themselves. Today, they
avoid moving and refactoring code in the same changeset since
it was so difficult to review. They therefore try their best first to
move the code, commit that, send that for review, and only after
the move is approved go ahead and also do the refactoring.

Participant 1. “This thing can really make the difference
between how you today tend to only move code but not touch
it. Then you make the actual changes. [...] One reason today
is that it is hopeless to review if you do, if you don’t separate
that into two steps.”

For the case when code had been refactored into a new file, 3 of
the 7 participants needed several passes back and forth between
the two files before they understood how the feature worked and
how the new file could be marked for comparison and then used to
verify the changes by bringing up the comparison modal in the old
file.

Participant 6. “But then there was a feature here in the
second file, file 2. It said «Mark for comparison». At first, I
did not understand what to do with it. Then I understood that
I could go to file number 3 and then click on «Compare to
marked block»”

Comments on the functionality and interface included that it
was confusing sometimes which of the selected blocks were shown
on the left or the right side of the modal diff dialog. Also, 4 out of
the 7 participants commented that it should be possible to mark
either the new or the old blocks for comparison and add them to the
lightboard in any order. When comparing in a single file, several
of the participants would have wanted a visual marker linking the
two blocks that were detected for comparison.

Participant 5. “But I, I think it would have helped to have
an explaining text from both sides, absolutely.”

Another more general comment from one of the participants
was that this feature might mean that you see and read code in a
file you have not fully visited in Gerrit yet, so when you finally get
to that file it should be marked in some way that these particular
lines have already been seen and potentially commented on.

Participant 4. “...so then if I do this review and compare
and see that, well, this block looks good, then I am finished
with this part. But I am also finished with the other file, I
just compared to. So then it could like almost be defined as
reviewed. And if I press «Next» here it is nice to know that in

some way, yes like, you have already, you looked at this file
just now. There is not a lot more to see.”

In regards to code review comments written while inside the
comparison modal, it would also be important to include a link so
that the author could bring up and read the comment in the same
context as it was written in so that it would be easier to understand
what the comment means and how they saw it.

Participant 2. “But if you click on the comments in the
change view do you come to this view (the comparison modal)
then?”

One other idea from one of the participants was to be able to click
a single link and button and bring up all relevant comparisons for
a full file collected in one single modal to save the time of reading
through and clicking each correspondence one by one.

Participant 7. “To select several from this page would have
been nice so that you can see, just click, like, I want this and
this and then look.”

Overall, the participants thought that the user interface, with
links above the blocks, was clear and easy to understand. However,
it would take some time to learn which blocks are useful to mark for
comparison and get into the habit of doing so while passing through
a file. Especially, if they are not completely sure if a matching block
to compare to will occur later in the review or not.

3.8 Deliver phase - updates after evaluation
After the evaluation meetings, the prototype was updated to incor-
porate some of the feedback, in particular:

Consistent placement of old and new versions. If a selected block is
originally on the left side, it should be kept on the left side also in
the comparison modal and vice-versa if it is originally on the right
side. If the user chooses to compare two blocks that are both on
the same side, we could place the first selected one to the right and
allowing the user to flip the comparison with a button in the top
part of the modal.

Figure 8: Moved code explicitly marked with arrow, filename,
and line numbers.

Explicit location of matches. Every action block with a compari-
son link lists the file name and the line numbers it would open
a comparison with to make it more explicit what you would be
comparing to. If the match is in the same file, a line with arrows is
drawn linking the two blocks to give a visual marker (Figure 8).

8

Design of Flexible Code Block Comparisons to Improve Code Review of Refactored Code ‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden

Mark blocks for comparison from both directions. It should not mat-
ter if you encounter the old or the new file first when dealing with
blocks that have been moved between files. Therefore, the links to
mark a block for comparison are made available for both removed
and added blocks.

4 DISCUSSION
The goal of this study was to address the three research questions
in Section 1 and through the choice of methodology, the execu-
tion and the analysis we have found new insights into all of them.
Concerning RQ1, we found that several issues in the code review
experience causes frustration for the group participating in the
study. These issues are not directly related to the specific code, lan-
guage, or process these developers use, so we believe that similar
frustrations can be found among other developers elsewhere.

By designing and evaluating one possible modification to Gerrit,
we also presented one answer to how review tools can be modified
to improve the developer experience (RQ2). While this improve-
ment can be seen as relatively small, we are convinced that even
small improvements can have an impact since so much time is
spent on code review and because the task is so cognitively de-
manding [8].

Finally, we explored one way to involve developers in improving
their tools (RQ3), specifically code review tools. By centering devel-
opers’ experiences and needs from the beginning, involving them
both in the design and evaluation of solutions, we estimate that we
have reached a prototype that is more in line with processes and
flows in code review. Which helps give a larger improvement than
its learning curve or distraction.

Overall, as a recommendation and reflection, we think that since
the code review tools and processes today are so accepted and
ingrained into modern software development practices, we are at
a point where completely disrupting and re-designing these tools
from the ground upwould have a steep hill before reaching adoption
and making a difference. One way around such adoption problems,
is the way shown in this study; to make small improvements that
have the potential to compound and over time, and after continued
incremental development, make a big difference.

4.1 Reflection on the method
We estimate that the choice of method was a good fit for this type
of study and we also discovered some ways in which the execu-
tion of it can be improved. During the co-design workshop, the
participants were at first hesitant to directly change the prototype
themselves. The first author, as the facilitator, had to draw, cut, and
paste together the ideas in the room. Both to get things started, to
keep the ideas going, and the solutions evolving.

After discussing this experience during a research groupmeeting,
there were ideas shared about warming up the co-design team by
first collaborating on designing something low-stakes and fun, like
a celebratory garbage bin for redundant code. When the team has
warmed up and gotten used to creating and discarding sketches
together it could be easier move on to the real design task and
see more confidence in the group to directly change and create
prototypes. This would require 2-3 times as much time from the
participants, which can be an issue in practice, but could have the

potential of getting results that are more creative and more firmly
anchored in the whole group.

4.2 Threats to validity
One threat to the validity of this study is that the participating
software developers in the focus group and co-design workshop are
a fairly small group of only 6 developers. They are also all working
in the same company, albeit in different teams. While this focus
group size falls within the ideal size of 4-8 participants described
by Liamputtong [18], she also recommends conducting several
focus groups with the same interview questions until reaching data
saturation (i.e., no new ideas or data is being found). However,
since the study is aimed at finding some (rather than all) possible
improvements we believe that ideas and experiences from this
group are still valid.

The study is also only valid for the code review tool Gerrit.
However, since Gerrit has a large user base, this still means that the
results could have broad applicability. Also, other tools in wide use
today, such as GitHub and GitLab, are similar to Gerrit and there
might be findings here that can be generalized to apply to them as
well, but it is beyond the scope of this study to verify or evaluate
that.

There is also a risk that the prototype validation has a positive
confirmation bias since the developers evaluating the prototype
have participated in the co-design workshop that led to its creation.
In this way, they might both be more familiar with the concepts and
also personally invested in the success of the prototype. To check
for this we also did one extra validation with a software practitioner
who has not been involved in the project at all and works for a
different company than the other participants.

Finally, the prototype evaluation is also exposed to response
bias [12]. We tried to counter-balance this by encouraging feedback.

4.3 Directions for future work
Paths to broader adoption and impact. Exploring the prototype of
more flexible diffing between blocks further and implementing it
as a feature or a plugin to Gerrit (or GitLab or GitHub) would be
very interesting and something we would like to address in the
future. Further validation with several other teams of industry prac-
titioners would be needed to refine the prototype into something
generally useful. Implementing the features of the prototype would
also require the integration of clone detection tools [2] to identify
blocks to suggest for comparison.

To have any significant benefits compared to already available
solutions and avoid context switches for the developers, we feel
that the implementation would need to be available directly in the
review tool. Therefore it is important to anchor the idea and the
implementation in the Gerrit (or GitHub or GitLab) community.
This could increase the support for a plugin implementation or
possibilities for merging the feature into the tool itself. A first step
here could be presenting the prototype and the thoughts behind it
to the Gerrit community during the annual Gerrit User Summit.

Future design explorations. The other problem areas and solution
suggestions uncovered during the workshops are also viable ideas
for improving the experience of code review and reduce the cogni-
tive load of the task while at the same time having the chance of

9

‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden Heander, Söderberg, and Rydenfält

increasing the benefits of a team’s code review process. The idea of
overlays or layers of meta-information from continuous integration
systems, tests and source code analyzers is particularly interesting
to study and explore further.

Increase understanding of cognitive demands. While many papers
agree [4, 6, 15, 20] that code review seems to be a cognitively de-
manding activity, there have not been many studies to measure
the cognitive load during code review and compare that to other
tasks that are known to be demanding. It would be interesting to
do a study integrating EEG measurements [3] or fNIRS [14] with
participants doing code reviews of different sizes and also, for ex-
ample, general problems in math or programming. This could give
valuable insight into code review’s cognitive demands and guide
future exploration into its design.

5 CONCLUSIONS
We used the Double Diamond design process to explore how the
Gerrit code review tool could improved. By hosting a focus group
we found several problem areas that are common experiences when
doing code reviews. The problem of comparing moved and refac-
tored blocks that the built-in diff algorithms don’t pick up was
chosen for exploring solutions.

A co-design workshop with industry practitioners was held and
the prototype created collectively there was then refined to a high-
fidelity interactive prototype that could be evaluated in one-on-one
testing sessions.

The results show that making these kinds of comparisons has the
potential of improving the code review experience both by reducing
the mental workload and also give higher accuracy in the comments
and the analysis of the code. The user interface of the prototype
was also intuitive enough for all of the participants to be able to
complete the assigned task without any hints or instructions.

ACKNOWLEDGMENTS
Special thanks to the study participants for sharing their insights,
ideas, and creativity. Special thanks to Andreas Bexell and Peng
Kuang for inspiration, discussions, and feedback. Thanks to Luke
Church for valuable input regarding the method.

The authors would further like to thank the following funders
who partly funded this work: the Swedish strategic research envi-
ronment ELLIIT, the Swedish Foundation for Strategic Research
(grant nbr. FFL18-0231), the Swedish Research Council (grant nbr.
2019-05658), and the Wallenberg AI, Autonomous Systems and Soft-
ware Program (WASP) funded by the Knut and Alice Wallenberg
Foundation.

REFERENCES
[1] 2023. Number of software developers worldwide in 2018 to 2024. https:

//www.statista.com/statistics/627312/worldwide-developer-population/
[2] Qurat Ul Ain, Wasi Haider Butt, Muhammad Waseem Anwar, Farooque Azam,

and Bilal Maqbool. 2019. A Systematic Review on Code Clone Detection. IEEE
Access 7 (2019), 86121–86144. https://doi.org/10.1109/ACCESS.2019.2918202
Conference Name: IEEE Access.

[3] Pavlo Antonenko, Fred Paas, Roland Grabner, and Tamara Van Gog. 2010. Using
Electroencephalography to Measure Cognitive Load. Educational Psychology
Review 22, 4 (Dec. 2010), 425–438. https://doi.org/10.1007/s10648-010-9130-y

[4] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In 2013 35th International Conference on Software
Engineering (ICSE). 712–721. https://doi.org/10.1109/ICSE.2013.6606617

[5] Farid Bagirov, Pouria Derakhshanfar, Alexey Kalina, Elena Kartysheva, and
Vladimir Kovalenko. 2023. Assessing the Impact of File Ordering Strategies
on Code Review Process. (2023). https://doi.org/10.48550/ARXIV.2306.06956
Publisher: arXiv Version Number: 1.

[6] Tobias Baum. 2019. Cognitive-support code review tools : improved efficiency
of change-based code review by guiding and assisting reviewers. (2019). https:
//doi.org/10.15488/9164 Publisher: Hannover : Institutionelles Repositorium der
Universität Hannover.

[7] Tobias Baum and Kurt Schneider. 2016. On the Need for a New Generation of
Code Review Tools. In Product-Focused Software Process Improvement, Pekka
Abrahamsson, Andreas Jedlitschka, Anh Nguyen Duc, Michael Felderer, Sousuke
Amasaki, and Tommi Mikkonen (Eds.). Vol. 10027. Springer International Pub-
lishing, 301–308. https://doi.org/10.1007/978-3-319-49094-6_19 Series Title:
Lecture Notes in Computer Science.

[8] Tobias Baum, Kurt Schneider, and Alberto Bacchelli. 2019. Associating working
memory capacity and code change ordering with code review performance.
Empirical Software Engineering 24, 4 (Aug. 2019), 1762–1798. https://doi.org/10.
1007/s10664-018-9676-8

[9] Amiangshu Bosu and Jeffrey C Carver. 2013. Impact of peer code review on peer
impression formation: A survey. In 2013 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement. IEEE, 133–142.

[10] L. Brothers, V. Sembugamoorthy, and M. Muller. 1990. ICICLE: Groupware
for Code Inspection. In Proceedings of the 1990 ACM Conference on Computer-
Supported Cooperative Work (CSCW ’90). Association for Computing Machinery,
New York, NY, USA, 169–181. https://doi.org/10.1145/99332.99353 event-place:
Los Angeles, California, USA.

[11] Yen-ning Chang, Youn-kyung Lim, and Erik Stolterman. 2008. Personas: from
theory to practices. In Proceedings of the 5th Nordic conference on Human-computer
interaction: building bridges. 439–442.

[12] Nicola Dell, Vidya Vaidyanathan, Indrani Medhi, Edward Cutrell, and William
Thies. 2012. " Yours is better!" participant response bias in HCI. In Proceedings of
the sigchi conference on human factors in computing systems. 1321–1330.

[13] Design Council. 2023. Double Diamond framework for innovation. https://
www.designcouncil.org.uk/our-resources/framework-for-innovation/. [Online;
accessed 25-October-2023].

[14] Frank A. Fishburn, Megan E. Norr, Andrei V. Medvedev, and Chandan J. Vaidya.
2014. Sensitivity of fNIRS to cognitive state and load. Frontiers in Human
Neuroscience 8 (2014). https://doi.org/10.3389/fnhum.2014.00076

[15] Pavlína Wurzel Gonçalves, Enrico Fregnan, Tobias Baum, Kurt Schneider, and
Alberto Bacchelli. 2022. Do explicit review strategies improve code review
performance? Towards understanding the role of cognitive load. 27, 4 (2022), 99.
https://doi.org/10.1007/s10664-022-10123-8

[16] Jeff Johnson and Austin Henderson. 2002. Conceptual models: begin by designing
what to design. interactions 9, 1 (2002), 25–32.

[17] Oleksii Kononenko, Olga Baysal, and Michael W. Godfrey. 2016. Code Review
Quality: How Developers See It. In Proceedings of the 38th International Con-
ference on Software Engineering (New York, NY, USA) (ICSE ’16). Association
for Computing Machinery, 1028–1038. https://doi.org/10.1145/2884781.2884840
event-place: Austin, Texas.

[18] Pranee Liamputtong. 2011. Focus GroupMethodology: Principle and Practice. SAGE
Publications Ltd,.

[19] Laura MacLeod, Michaela Greiler, Margaret-Anne Storey, Christian Bird, and
Jacek Czerwonka. 2018. Code Reviewing in the Trenches: Challenges and Best
Practices. 35, 4 (2018), 34–42. https://doi.org/10.1109/MS.2017.265100500

[20] Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto
Bacchelli. 2018. Information Needs in Contemporary Code Review. Proceedings
of the ACM on Human-Computer Interaction 2, CSCW (Nov. 2018), 1–27. https:
//doi.org/10.1145/3274404

[21] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. 2018. Modern Code Review: A Case Study at Google. In Proceedings of
the 40th International Conference on Software Engineering: Software Engineering in
Practice (New York, NY, USA) (ICSE-SEIP ’18). Association for Computing Machin-
ery, 181–190. https://doi.org/10.1145/3183519.3183525 event-place: Gothenburg,
Sweden.

[22] Marc Steen. 2013. Co-Design as a Process of Joint Inquiry and Imagination.
Design Issues 29, 2 (April 2013), 16–28. https://doi.org/10.1162/DESI_a_00207

[23] Emma Söderberg, Luke Church, Jürgen Börstler, Diederick Niehorster, and
Christofer Rydenfält. 2022. Understanding the Experience of Code Review:
Misalignments, Attention, and Units of Analysis. In Proceedings of the Interna-
tional Conference on Evaluation and Assessment in Software Engineering 2022
(New York, NY, USA) (EASE ’22). Association for Computing Machinery, 170–179.
https://doi.org/10.1145/3530019.3530037 event-place: Gothenburg, Sweden.

[24] Emma Söderberg, Luke Church, Jürgen Börstler, Diederick C. Niehorster, and
Christofer Rydenfält. 2022. What’s Bothering Developers in Code Review?. In
Proceedings of the 44th International Conference on Software Engineering: Software
Engineering in Practice (New York, NY, USA) (ICSE-SEIP ’22). Association for
Computing Machinery, 341–342. https://doi.org/10.1145/3510457.3513083 event-
place: Pittsburgh, Pennsylvania.

10

https://www.statista.com/statistics/627312/worldwide-developer-population/
https://www.statista.com/statistics/627312/worldwide-developer-population/
https://doi.org/10.1109/ACCESS.2019.2918202
https://doi.org/10.1007/s10648-010-9130-y
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.48550/ARXIV.2306.06956
https://doi.org/10.15488/9164
https://doi.org/10.15488/9164
https://doi.org/10.1007/978-3-319-49094-6_19
https://doi.org/10.1007/s10664-018-9676-8
https://doi.org/10.1007/s10664-018-9676-8
https://doi.org/10.1145/99332.99353
https://www.designcouncil.org.uk/our-resources/framework-for-innovation/
https://www.designcouncil.org.uk/our-resources/framework-for-innovation/
https://doi.org/10.3389/fnhum.2014.00076
https://doi.org/10.1007/s10664-022-10123-8
https://doi.org/10.1145/2884781.2884840
https://doi.org/10.1109/MS.2017.265100500
https://doi.org/10.1145/3274404
https://doi.org/10.1145/3274404
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1162/DESI_a_00207
https://doi.org/10.1145/3530019.3530037
https://doi.org/10.1145/3510457.3513083

Design of Flexible Code Block Comparisons to Improve Code Review of Refactored Code ‹Programming›Companion ’24, March 11–15, 2024, Lund, Sweden

_as~rlC.:-_i o.._c.
<f- 0-l.~ \ . (...

••• ----- ----------------1-------- ---- -------- --------
lS"' re+\J-m r · \ ,el.,.m ½
~} Tl}
r+

- tB-il"l_-f-- __ ~-a-e-515~e_~_~\\ ¼t (Yoid o,.{_ r11r~ {

:,,c.i ,11'\+, \ci)(-,;:. -f,y,J_ne..~·Lca.\\bo.s:l-,d-d)i
>6 1 f (,dx?::: 'MC..)(-C..c:t\ve-~o..\\ ti::.cb J_ ~ _ _
~ o..c~-,~-c~\\k,h::.: e:AeV1dG-d-\11€..Cc-J\l,.:cL,:5, ~'"'"'-Y- c~~ !(D,\L~c~Jj_~_ b~ ,~-h ... ,Y\ R-Vt_Yl\---"'_'----'-,---=--es"-\..l,-'---\t--l-'---------------1

,;; 1 r ----- il~15) -- - - - --- - 8-~~ve.~\(~c.~sCl-,;:. ·L--17~,; __ ~
,-.N (~u\"'I\ gcc~\·~ ~l\-,c.~'> ~ 11... \""\- ~e(_ca,\\~ck('1o\d ~r k -l

)~} . __ _ i~ ~J)(....:=_ .(,j\cLne.:'.ft::..c.a.\\~5~~1ctr_(~½v__e.-_CJ_F._l~_-++-' ----------1
1(f~ \ _Cc\)(>-= Y'Vla..)cc;.d,-1e.-CA\\~ .(
_ 1" \l\t ~\~"~\~ GJ- ~ ~~V\B {_ _ __ _ _ __ _ 1f _ e-/Te.V\d(~~ve....CA.\l~_ &~_--'-c..,c_t_'1e-_C_c:.I_I\J_~ck-"-''?'-'--'1---------J

- ~ -~\, ~"''I kJ>D J • f p-h-;
1
~ r-cl._,I\ &.C\.d:\.JL-C."-.\\\.;;ck')' -------------+---:---'---'--"--

r111
36

. ...

._, ...

-~·--
~1. _ <eJ,_,Y\ e,ve"' t-::. (es'-'-1 +,;
1'3

---- ------------

bl ~EDF-)

I

----------- - - -

. \ I~ frcP I drw.(f 4
_ cS'f'-l-10.l "7

--------4--

·--------t------------

-------------- --- ·- -
r - - - -
f----

(--- 0-."'>\)'rlC.-\C, C.

-~t~w f \~ · - - -
- - -- - --- -- .

i C.o~vw,,\ \-- ~~';A. '-f,: _
I /'1<-r<

l ,._ Al'PI ,e.c.t\ «ec
'f<-/

- -- - - -~-- - -----

--- ----------

-~ - --• - ---------

________ __L --- ·- -- ---

--+------- - -

- --- - -------·

---------- -· ----

+ - .

-- ---

--- - ·- ----------

I r--

·- ----- --- --·---

Figure 9: The three base views for the co-design workshop.

A FOCUS GROUP DESIGN BRIEF
Agenda for the focus group meeting (Section 2.1).

A.1 Goal
Collect information about challenges in understanding the changes
in code reviews that span multiple files.

A.2 Warm-up questions
• Which is the best tool for code reviews? Gerrit, GitHub, or
GitLab?

• Which is your favorite IDE? Vim, Emacs, VS Code, others?

A.3 Main questions
• Do you read the files in a code review one time or multiple
times?

• Why?
• How do you choose which file you read first?
• How does it affect your review what kind of file that you
read first? (API, test, etc.)

• In what way?
• What is your experience of reading and understanding new
code in other tools, environments, or situations? (IDE, pair
programming, explained by a colleague, on paper in a book,
etc.)

• In what ways do they work?
• Where do you start reading in those cases?
• In what ways is that different compared to code review in
Gerrit?

• Are there features and support from there that could have
been applied also in code review tools?

• Is there anything else you would like to tell?

B CO-DESIGNWORKSHOP
The material for the co-design workshop consisted of three pre-
drawn base views (Figure 9), blank paper, overhead film, scissors,
tape, and pens in different colors. The base views displayed some of

Figure 10: First sketch of comparison modal.

the use cases brought up during the focus group. The participants
created simple prototypes and showcased ideas by overlaying new
components on top of the base views. A small example can be
seen in the top-right image where the first sketch of the “Compare”
action overlay is drawn on overhead film and then taped onto the
base view.

In Figure 10, we show an example of a rough sketch made during
the workshop to show the level of fidelity that we think is feasi-
ble and appropriate for the setting. This is the first sketch of the
comparison modal and shows the idea of lining up and comparing
blocks that are in different places in the original Gerrit diff view.

C PROTOTYPE EVALUATION QUESTIONS
C.1 Task

• You are welcome to think aloud, but I will not respond or
give hints until after the task.

• Perform the code review.
• Find changes in any moved code.

C.2 Interview questions
• What was your experience of trying this prototype?
• How often do you encounter the situation the prototype tries
to aid in?

• How much would a fully functional version of the prototype
help with the problem?

• What are the solution’s greatest weaknesses?
• What are the solution’s greatest strengths?

Received 2024-02-08; accepted 2024-02-26

11

	Abstract
	1 Introduction
	2 Method
	2.1 Discover phase
	2.2 Define phase
	2.3 Develop phase
	2.4 Deliver phase

	3 Results
	3.1 Discover phase
	3.2 Define phase
	3.3 Develop phase - co-design workshop
	3.4 Develop phase - conceptual design
	3.5 Deliver phase - first high-fidelity prototype
	3.6 Deliver phase - prototype persona verification
	3.7 Deliver phase - prototype evaluation
	3.8 Deliver phase - updates after evaluation

	4 Discussion
	4.1 Reflection on the method
	4.2 Threats to validity
	4.3 Directions for future work

	5 Conclusions
	Acknowledgments
	References
	A Focus group design brief
	A.1 Goal
	A.2 Warm-up questions
	A.3 Main questions

	B Co-design workshop
	C Prototype evaluation questions
	C.1 Task
	C.2 Interview questions

