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Abstract

This thesis presents five papers on minimax adaptive control and estimation.
Minimax adaptive estimation is a framework for output prediction and state
estimation that provides a priori computable performance bounds for esti-
mators. Minimax adaptive controllers ensure that the closed loop has finite
gain, maintaining stability and performance under model class uncertainty.

The contributions of these papers are as follows: Paper I: Presents a min-
imax optimal output prediction algorithm for linear systems with parameter
uncertainty. Paper II: Proposes an algorithm to compute performance bounds
for minimax adaptive estimators. Paper III: Develops a minimax suboptimal
adaptive controller for scalar linear systems with noisy measurements. Paper
IV: Introduces a class of nonlinear systems for which minimax dual control
admits a finite-dimensional sufficient statistic, builds dynamic programming
theory around this class, and designs an adaptive controller for stabilizing an
integrator from absolute-value measurements. Paper V: Provides a unified
framework for state-feedback and output-feedback minimax adaptive control
and methods for synthesizing suboptimal controllers. Complementing these
theoretical contributions are two software artifacts: one for adaptive control
and the other for adaptive estimation.

The contributions apply to simple systems that represent components of
larger systems, marking a step towards automating controller synthesis and
maintenance for critical infrastructures.
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1
Introduction

This thesis is a collection of five papers on reliable learning, estimation, and
control of physical systems. The types of systems we consider are simple but
are typically parts of larger, more complex systems, like the critical infras-
tructure systems on which society relies. They supply us with water, electric-
ity, heat, transportation, communication, and so on. Their performance and
reliability are crucial for the well-being of society. However, inefficient opera-
tions and maintenance of these systems risk wasting resources and increasing
the risk of failures.

To operate and maintain these systems, we employ sensors to monitor
their state and actuators to control them based on the sensor measurements.
That is, we use feedback loops to ensure that the system behaves as desired.
Control theory provides methods to design and analyze such feedback loops.
It has been instrumental in improving efficiency and reliability across differ-
ent applications in the process industry, aviation, automotive industry, and
robotics, to name a few.

However, accessing the most potent control methods requires a deep un-
derstanding of the system and accurate models. Obtaining and maintaining
such models can be challenging and requires significant engineering effort.
Hence, obtaining accurate models for modern infrastructure systems is of-
ten infeasible due to their scale and complexity, preventing control engineers
from harnessing the true potential of control theory.

There is a growing interest in automating the design and analysis of con-
trol systems. Such automatic methods alleviate the need for manual model-
based design and are a practical approach to larger systems. However, auto-
matic methods trade the manual engineering effort for additional complexity
in the control system. This complexity can be challenging to analyze and un-
derstand, leading to unexpected behaviors and system failures. For example,
caution is not always the safe approach, as illustrated by the teddy bears in
Figure 1.1.
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Chapter 1. Introduction

Figure 1.1 A figure of teddy bears illustrating some difficulties of simultaneous
learning and control. The left teddy bear is observing the pot and will only note
a change in the potato when it starts to dissolve. The middle and right teddy
bears take an active approach and will undoubtedly gain more information than
the left teddy bear. However, the right teddy bear prioritizes the experiment over
the result. Although the hammer is a powerful tool, and smashing the potatoes
will reveal their consistency, the dish is ruined. The middle teddy bear is more
careful and uses a knife to test one potato, revealing enough information to decide
whether to remove the potatoes from the heat without negatively impacting the
result. This thesis aims to be the middle teddy bear. It contains control methods
that are bold enough to extract the necessary information yet careful enough to
avoid compromising the end goal.
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2
Background

All reasonable methods for designing control systems rely on some infor-
mation about the system. This information can be a model, a set of mea-
surements, or expert rules. Some methods include an explicit experiment to
gather information about the system. However, we still require some initial
knowledge, like whether it has an inverse response, the sign of the gain, signal
ranges, and so forth, to apply the method.

Our prior knowledge about the system is imperfect, as with all engineer-
ing practices. This imperfection comes from many sources, like simplifying
assumptions, non-exhaustive experiments, changing conditions, and so on.
Feedback, as illustrated in Figure 2.1, is used because of its remarkable abil-
ity to deal with these imperfections. However, feedback is not a panacea
and, if not appropriately designed, may introduce unwanted behaviors, like
oscillations, instability, or slow responses.

If we have an accurate model of the system, using this model as a proxy
for the actual system in a feedback loop typically results in a well-behaved

ProcessController

∑

Reference
Control Signal Regulated Output

Measurement Noise

Disturbance

Figure 2.1 Block diagram of a feedback system. The controller generates a con-
trol signal and feeds it to the process. The process is the system that we want to
control. It is affected by our control signal and exogenous disturbances. The reg-
ulated output is a system quantity that we wish to regulate and may or may not
be directly measurable. The measurement is a typically noisy sensor reading of a
system quantity, which we use to calculate our control signal.
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Chapter 2. Background

ProcessController

Estimator
Controller

Design

Specification

Reference Input

Self-tuning regulator

Figure 2.2 Block-diagram of a self-tuning regulator, recreated from [Åström and
Wittenmark, 2008, Figure 1.19]. The system consists of two feedback loops, one for
control signal computation (dashed, blue) and one for the parameter estimator
(dotted, red). The shaded area represents the “controller” portion of the feedback
loop. The estimator and control loop may run at different rates; in the extreme case,
the analog controller may run continuously, while the estimator and the controller
design procedure may rely on sampling and run in discrete time.

system. Unfortunately, as argued in the Introduction, we often do not have
accurate models. Two umbrella terms cover the methods that explicitly deal
with the model uncertainty: Adaptive Control and Robust Control.

Adaptive control concerns methods that adjust the controller based on
the system’s response. The controller is typically parameterized, and an ad-
ditional feedback loop is used to adjust the parameters, like the self-tuning
regulator in Figure 2.2. Although adaptive control methods can be com-
pelling, the added complexity can make them challenging to analyze and
understand. Both successful applications and disastrous failures have been
reported [Anderson and Dehghani, 2008], and there is a need for methods
that come with rigorous guarantees [Matni et al., 2019; Alleyne et al., 2023].

Robust control quantifies the initial uncertainty and poses controller de-
sign as a robust optimization problem. The uncertainty is often represented
as a set of models, and the controller is designed to work well for all models
in the set. As illustrated in Figure 2.3, the controller is designed to work
reasonably well in reality, provided that model-to-reality mismatch belongs
to the uncertainty set. The controller structure is typically fixed and sim-
pler, most often linear, than in adaptive control. However, the methods have
strong guarantees, like stability and performance bounds for the closed-loop
system. Unfortunately, the simplicity of the controller structure comes at the
cost of a lower performance ceiling compared to adaptive control methods.

In this thesis, we will build on the robust control framework but relax
the assumption that the model and the controller are linear. This relaxation

4



2.1 Tanks filled with uncertainty

System
model

Uncertainty

Controller

measurements control
signal

InputsRegulated
output

Figure 2.3 Representation of real systems as a nominal model in feedback with
a controller and an uncertainty block typical of robust control. This representation
is quite general. While the model and controllers are typically linear in the robust
control literature, we will relax these assumptions. Usually, robust control methods
come with guarantees of the following form: “If the uncertainty is within a certain
set, then the closed-loop system is finite gain. ” Finite gain means the closed-loop
system is asymptotically stable and attenuates exogenous disturbances.

allows us to design and analyze adaptive controllers from a robust control
perspective. The chapter proceeds with the story of uncertainty in control
systems via a simple system, a tank process, in Section 2.1, followed by a
discussion on robust control and its limitations in Section 2.2. Section 2.3
argues that the minimax adaptive control framework is a natural extension
with the potential to overcome these limitations, leading up to our research
questions in Section 2.4.

2.1 Tanks filled with uncertainty

In the introductory control course at Lund University, students experiment
with a tank process, illustrated in Figure 2.4. We will use eight supposedly
identical tank processes to discuss different aspects of uncertainty in control
systems.

The physical system consists of a cylindrical tank with a hole in the
bottom, a basin, a pump that pumps water from the basin back into the tank,
a pressure transducer, and an I/O-box with AD/DA conversion connected
to a computer.

The students are tasked with designing feedback controllers to regulate
the tank’s water level. Teaching assistants challenge informal robustness spec-
ifications by pouring additional water into the tanks, occasionally squeezing
the tubes connected to the pressure sensor, and shaking the table.

5



Chapter 2. Background

Figure 2.4 Drawing of the tank process. The pump pumps water from the basin
back into the tank, and the pressure transducer measures the water level. The
outflow depends on the water level and the hole’s area. The pump’s efficiency and
the hole’s area vary between tanks due to manufacturing tolerances and wear and
tear, leading to uncertainty in the system.

A process model is straightforward to derive using Toricelli’s law, relating
the outflow speed v to the water level h of the tank and mass balance. The
law states that the speed v equals that of a free body falling from h, i.e.,
v =
√
2gh.

Denote the inflow by Qin, the outflow by Qout, then conservation of mass
means that their difference describes the volume’s change, i.e.,

V̇ = Qin −Qout, (2.1)

where V denotes that tank’s volume.
Denoting the cylinder’s cross-sectional area by A and the outflow by a,

we get V = Ah and Qout = av. We linearize the pump with a fast, compared
to the tank’s dynamics, PI controller, so Qin ≈ ku, where u is the control
signal of the (outer) tank controller. Substituting the above expressions and
Toricelli’s law into (2.1) results in

ḣ = − a

A

√
2gh+

k

A
u. (2.2)

6



2.1 Tanks filled with uncertainty

0 10 20 30 40 50

0

2
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6
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ei

gh
t[
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]

Figure 2.5 Step response of the tanks.

The control signal is limited to 0 ≤ u ≤ 10V and 0 ≤ h ≤ 14 cm. We will
examine this process around the stationary point u0 = 5V, with

0 = − a

A

√
2gh0 +

k

A
u0 =⇒ h0 =

(
ku0

a

)2
1

2g
.

We would proceed with nominal values for the parameters and linearize
around (u0, h0), arriving at a first-order model

d∆h

dt
= a0∆h+ a0k0∆u. (2.3)

We will now investigate the tanks experimentally.

Experimental Evaluation
This section illustrates some differences between the tanks and discrepancies
to the physics-inspired model above. We perform two experiments; we first
apply u(t) = 5 for t ≥ 0 and highlight differences in the stationary point. The
second experiment is a chirp signal around u0 = 5: a linear frequency sweep
from 0.01Hz to 10Hz with amplitude 3. The chirp experiment is repeated
after one hour of continuous operation to illustrate some time-varying effects.

Figure 2.5 shows the initial response of the tanks. The stationary points
vary between 4.4 cm ≤ h0 ≤ 6.4 cm, revealing a significant difference between
the tanks. Figures 2.6 and 2.7 display Bode plots of the first and second
chirp experiments. When compared to a first-order time-delay model (red),
our empirical responses have a slightly higher degree of roll-off and are not
as smooth as the first-order model. The pole is around 0.07 rad/s, the gain
around 2 and the time-delay is around 2 s. There is also significant uncertainty
in the low and high-frequency spectra inherent to the estimation method not
shown here.

7



Chapter 2. Background

Stationary Point h0

Experiment \ Tank 1 2 3 4 5 6 7 8
Cold 4.6 5.1 5.1 5.9 6.3 6.9 5.0 4.8
Hot 4.6 4.8 4.5 5.7 5.8 6.4 4.7 4.4

Table 2.1 Stationary points of the tanks, the cold-start experiment is performed
directly after starting the pump, and the hot-start experiment is performed after
one hour of continuous operation. Tank 1 was used for prototyping during the initial
setup, and its cold start response was thus compromised.

10−1 100 101
10−3

10−2

10−1

100

Frequency [rad/s]
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ai

n

10−1 100 101

−400

−200

Frequency [rad/s]

Ph
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e
[d

eg
]

Figure 2.6 Empirical frequency response of the tanks, blue, from the cold-start
chirp. A first-order time-delay model, red, is fitted to the data.
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2.1 Tanks filled with uncertainty
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Figure 2.7 Empirical frequency response of the tanks, blue, from the hot-start
chirp. A first-order time-delay model, red, is fitted to the data.

Uncertainty classes
When we talk about uncertainty, we typically discuss its origin, its effects,
how to model it, and how to mitigate its effects. The discussion is complicated
because even simple systems, such as tanks, are affected by uncertainty from
many sources with different characteristics. Table 2.2 lists some common
classes of uncertainty, their effects, and their origins.

Consider the tanks’ stationary points, h0, in Table 2.1. The stationary
points depend on the cross-sectional areas of the tank, the hole, and the
pump’s efficiency. Slight variations in the tank’s area do not affect the sta-
tionary points much, but the hole’s area and the pump’s efficiency are more
sensitive to perturbations. Comparing the cold and hot start experiments, we
may hypothesize that the continuous water flow cleans the hole, increasing its
area and, therefore, the outflow. The pump’s efficiency may also change due
to operating conditions. Performing the experiments, one can hear different
pitches from the pumps, indicating that they are not operating at the same

9



Chapter 2. Background

Table 2.2 Summary of uncertainty properties in the tank process (and control
systems in general).

Model Uncertainty Affect Origin

Parameters
Poles and Zeros, Tolerances,
Stationary points, wear & tear
low frequencies operating conditions

Additive Noise
Measurements Sensor noise,
Stationary points load disturbances

Dynamic Uncertainty High frequencies
unmodeled dynamics,
time-varying effects,
simplifications

10−2 10−1 100 101 102

10−2

100

Frequency (rad/s)

M
ag

ni
tu

de

(a) Pole, a0 ∈ {0.01, 10}

10−2 10−1 100 101 102

10−3

10−1

101

Frequency (rad/s)

M
ag

ni
tu

de

(b) Gain, k0 ∈ {0.01, 10}

Figure 2.8 Effects of parameter variations on the first-order model. The pole,
a0, affects the bandwidth, while the gain, k0, affects the gain. The case a0, k0 = 1
is highlighted in black.

speed. This pump speed variation likely affects the pump efficiency constant
k in (2.2), leading to differences in the stationary points.

For the behavior around the operating points, the parameter variations
translate to uncertainty about a0 and k0 in (2.3). By varying a0, we affect the
bandwidth of the system, illustrated in Figure 2.8a. By varying k0, we affect
the gain, illustrated in Figure 2.8b. So, given the ability to experiment with
each tank, we fit the parameters of the first-order model to the empirical data
for one tank by adjusting a0 and k0, illustrated in Figure 2.9. The first-order
model captures the low-frequency behavior well, but there are discrepancies
in the high-frequency behavior. This discrepancy is likely due to unmodeled
phenomena, the pump linearization, sampling, measurement noise, et cetera.

Toward quantifying the remaining uncertainty, we add a multiplicative

10



2.1 Tanks filled with uncertainty
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Figure 2.9 ...
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First-order model

Figure 2.10 Uncertain first-order model with multiplicative uncertainty. The
light-yellow area indicates the feasible realizations bounded by ∥∆∥∞ ≤ 1 with
constant weighting W (s) = 6. The light-blue area indicates the feasible realizations
with frequency-dependent weighting W (s) = 0.9s

s+12
.

block, ∆(s),

P∆(s) = (I +W (s)∆(s))P, (2.4)

where W is a frequency-dependent weight, and ∆ is a norm-bounded un-
certainty; ∥∆∥∞ ≤ 1. The shaded areas in Figure 2.10 indicate the feasible
realizations of P∆ , and the black line indicates the nominal model. The
light-yellow area indicates the feasible realizations with constant weighting
W (s) = 6, and the light-blue area indicates the feasible realizations with
frequency-dependent weighting W (s) = 0.9s

s+12 . Both weights are chosen to in-
clude the high-frequency behavior of the empirical data. The constant weight,
W (s) = 6, describes an uncertainty set too large for meaningful controller
design. The frequency-dependent weight, W (s) = 0.9s

s+12 , describes a smaller
uncertainty set that works well with robust control synthesis methods.
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100
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Figure 2.11 The eight responses of the tanks, red, and an uncertain first-order
model with parametric and frequency-dependent uncertainty, shaded area.

G

∆

C

y u

p q

wz

Figure 2.12 Generalized plant for robust control synthesis. The controller C is
designed to work well for all possible uncertainty realizations ∆.

Conclusions
The tanks are simple systems, analyzed in an ideal setting, a laboratory,
yet they illustrate many aspects of uncertainty in control systems. The ex-
periments indicate the presence of both low and high-frequency uncertainty.
Parametric uncertainty models low-frequency uncertainty well, while high-
frequency uncertainty is due to higher-order dynamics and measurement
noise. In particular, the tanks illustrate that high-frequency uncertainty re-
mains even after carefully fitting the model parameters. This high-frequency
uncertainty can be modeled as a norm-bounded, otherwise arbitrary, uncer-
tainty, but the robust control design will be conservative unless paired with
a suitable weighting.

2.2 Robust control

Robust control is a subfield of control theory that aims to analyze and design
controllers for uncertain systems, like in Figure 2.11. The abstraction, Fig-
ure 2.12, captures a variety of uncertainty models and is the starting point

12



2.2 Robust control

for many robust control methods. The block diagram contains a generalized
plant G that captures the interaction between the linear controller C, the
nominal plant (P ), and the uncertainty block ∆ For example, consider mul-
tiplicative weighted uncertainty as in (2.4), assuming that the controller can
access noisy measurements. Let

y = z + v = (I +W (s)∆(s))P (s))(u+ d) + v

where u is the control signal, d are load disturbances, v is measurement noise,
z the regulated output and y the measurements, then

G =




Gpq Gpw Gpu

Gzq Gzw Gzu

Gyq Gyw Gyu


 =




0 P 0 P
W (s) P 0 P
W (s) P 1 P


 . (2.5)

Here, Gab denotes the open-loop transfer function from b to a.
For more complex uncertainty models, like the one illustrated in Fig-

ure 2.11, one proceeds similarly by laying out the inputs and outputs of each
source of uncertainty. These inputs are concatenated into p and their outputs
into q. This procedure is often called “pulling out the deltas” and always ad-
mits generalized plants such that ∆ is block diagonal, and by absorbing the
weights into the plant, we may assume ∥∆∥ < 1.

Unfortunately, the associated synthesis problems are computationally
challenging. One typically minimizes a biconvex upper bound in two vari-
ables: the controller C (sometimes called K in the literature) and the scaling
operator, often called D. For dynamic uncertainty, the relaxation takes the
form

min
D∈D

∥D−1Tpq(C)D∥∞,

where Tpq(C) is the closed-loop transfer function q 7→ p given controller C
and D is the set of norm bounded operators that commute with ∆, i.e.,

D = {D ∈ H∞ : D is invertible, D∆ = ∆D for all ∆}.

An operator D is in H∞ if its frequency response is a bounded holomorphic
function outside the unit disc. For linear analysis preliminaries, see [Dullerud
and Paganini, 2000, Chapter 3] or [Zhou and Doyle, 1998, Chatper 4]. Con-
troller synthesis concerning this upper bound then becomes a joint minimiza-
tion problem. Unfortunately, the minimization problem is not jointly convex
in C and D but convex in C for fixed D and convex in D for fixed C. This
coordinate-wise convexity has inspired the use of coordinate-wise descent,
alternating between C and D, often called D −K iteration.

The upper bound for mixed uncertainty is significantly more involved
and conservative, leading to more challenging synthesis problems. The rela-
tionship between uncertainty models and analysis and synthesis methods is
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unsettling: the more we restrict the uncertainty, the more complex the com-
putations and the more conservative the results become. We will next discuss
the limitations of linear time-invariant controllers.

Controller classes and uncertainty types
It is well known that linear controllers achieve optimal robustness margins
for unstructured uncertainty, where ∆ is a full block and possibly nonlinear
or time-varying dynamic uncertainty. However, when the uncertainty is para-
metric, nonlinear and time-varying controllers can do much better. Consider
the systems

P (s) =
B(s)

A(s)
=

b

s
, where b = ±1.

There is no linear time-invariant controller, C(s) = R(s)
Q(s) that stabilizes the

system for both b. To see this, examine the characteristic polynomials of the
closed-loop systems

A(s)Q(s) +B(s)R(s) = qns
n+1 + . . .+ q0s+ b (rns

n + . . .+ r0) .

The systems are asymptotically stable only if all coefficients have the same
sign, but this is impossible for both b = ±1.

Instead, consider sampling the system at one Hertz with zero-order hold.
The sampled system is described by the difference equation

xk+1 = ϕxk + bγuk,

for some constants ϕ and γ. The controller

uk = (−1)k ϕ
γ
xk,

stabilizes the system for both b = ±1, illustrating that time-varying con-
trollers can stabilize uncertain systems that linear time-invariant controllers
cannot.

Conclusions
Robust control is a powerful framework with methods to model and mitigate
uncertainty in control systems. A significant advantage is the ability to ex-
plicitly model how uncertainty affects the system and treat different types of
uncertainty differently. The synthesis methods require output feedback con-
trollers, since measuring the signals before and after the uncertainty block is
typically impossible, leading to partial and corrupted measurements. How-
ever, if the uncertainty is parametric, the analysis and synthesis problems are
computationally demanding and often conservative. Further, the restriction
to linear time-invariant controllers significantly limits the achievable perfor-
mance under parametric uncertainty.

14
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Historical Notes
Robust control has roots in early work on input/output descriptions by
Zames and Sandberg [Zames, 1966], the Lur’e problem of absolute stabil-
ity [Liberzon, 2001] and Popov’s hyperstability [Popov and Georgescu, 1973].
Much of the historical development of the theory is nicely described in the
historical accounts [Safonov, 2012; Dorato, 1987] and the textbooks [Francis,
1987; Zhou and Doyle, 1998; Dullerud and Paganini, 2000].

George Zames initiated the H∞-control problem when he argued for
minimizing the induced norm of the weighted sensitivity function (for-
mulated for Banach algebras but specialized to the induced L2-gain set-
ting.) [Zames, 1981]. The primary motivation is that the H∞-norm is an
induced norm whose sub-multiplicative property can be used to guaran-
tee stability for plants that deviate from a nominal model. H∞ control
theory has gone through three major stages: the early frequency-domain
(functional analysis) approach [Francis, 1987; Feintuch, 1998], the Riccati
equations approach [Zhou and Doyle, 1998] and the linear-matrix inequal-
ity approach [Dullerud and Paganini, 2000]. The Riccati equation approach
strongly connects to the theory of dynamic differential games [Basar and
Bernhard, 2008; Tadmor, 1993]. Game theoretic and passivity-based ap-
proaches can be extended to the nonlinear setting [James, 1995]. In the
nonlinear setting, partial differential equations replace the Riccati equations.

Critics of H∞-control claim it is overly conservative. One reason for con-
servativeness is that naive applications discard any structural or topologi-
cal information about the nature of the perturbations entering the system.
To remedy this conservativeness [Doyle, 1982] introduced the frequency-
dependent structured singular value (µ) to analyze robustness against struc-
tured perturbations, and [Doyle et al., 1982] extended µ to robust perfor-
mance. These results generalize earlier work [Safonov, 1978; Safonov, 1981].
In the mid-’80s, researchers were concerned with computing upper and lower
bounds of µ for structured uncertainty where the perturbations are linear
time-invariant systems. [Fan and Tits, 1986] reformulated the problem as a
smooth, non-convex optimization problem. This reformulation is amenable
to gradient-based optimization methods and always returns the correct value
when the upper bound is tight. A power method for computing lower bounds
was introduced in [Packard et al., 1988], and the case of robustness against
static, mixed real, and complex uncertainties was considered in [Fan et al.,
1988; Fan et al., 1991] with power methods for lower bounds in [Young and
Doyle, 1990; Young et al., 1992] [Shamma, 1994] showed that the upper
bound with constant D-scales is necessary and sufficient for LTV pertur-
bations, and [Poola and Tikku, 1995] showed that the upper bound with
frequency-weighted D-scales is necessary and sufficient for “arbitrarily slowly
time-varying structured linear perturbations”. Structured robustness can be

15



Chapter 2. Background

further generalized and studied in the framework of integral-quadratic con-
straints [Megretski and Rantzer, 1997], which extends to nonlinear systems.

2.3 Minimax adaptive control

The H∞-norm minimization problem of robust control can be approached
by finding minimax equilibria in an associated two-player zero-sum game,
sometimes called a minimax control problem. In the standard setup, the
controller selects the control signal to minimize the performance measure,
while the adversary selects the uncertain inputs to maximize the performance
measure. In minimax adaptive control, the adversary is also empowered to
select the parameters of the plant, and the resulting controller is adaptive—
with bounded ℓ2-gain for all possible parameter realizations. The rest of this
section will provide a brief overview of minimax adaptive control.

Finite uncertainty sets
[Vinnicombe, 2004] studied the achievable closed-loop induced ℓ2-gain for
scalar systems,

xt+1 = axt + but + wt,

where xt ∈ R, ut ∈ R and wt ∈ R in two settings. In both settings, a ∈ R
and b ∈ R are fixed. In the first setting, a ∈ {−a0, a0} is unknown but b = 1
is known. In the second setting, a is known, but b ∈ {−1, 1}.

Vinnicombe found that a certainty-equivalence deadbeat controller
achieves an induced ℓ2 gain from w → x of a +

√
1 + a2 and that, to

within numerical accuracy, no controller can do better for the second prob-
lem. For the first problem, this is demonstratedly suboptimal. The parameter
estimate for certainty equivalence is the least squares estimate of a and b,
respectively.

[Rantzer, 2021] extends the previous results to uncertain linear systems
of the form

xt+1 = Axt +But + wt t ≥ 0 ut = µt(x0, . . . , xt, u0, . . . , ut−1).

Here, (A,B) are unknown but belong to a finite set. The solution is based
on a similar reformulation, using the current state xt and sum-of-squares
matrix,

Zt+1 = Zt +



vt
xt

ut





vt
xt

ut



T

, Z0 = 0.

The proposed formal statement for an explicit expression of an adaptive
controller satisfying a pre-specified bound on the induced ℓ2 gain for finite
model sets is the following:
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Proposition 1
Given A1, . . . , AN ∈ Rnx×nx , B1, . . . , BN ∈ Rnx×nu and positive definite
Q ∈ Rnx×nx , R ∈ Rnu×nu , supposed there exists K1, . . . ,KN ∈ Rnu×nx and
Pij ∈ Rnx×nx with 0 ≺ Pij ≺ γ2I and

|x|2Pik
≥ |x|2Q + |Kkx|2R + |(Ai −BiKk +Aj −BjKk)x/2|2(P−1

ij −γ2I)−1

− γ2|(Ai −BiKk −Aj +BjKk)x/2|2 (2.6)

for x ∈ Rnx and (i, j, k) ∈ {1, . . . , N}. Then Jµ(x0) ≤ maxij

{
|x0|2Pij

}
is

valid for the control law µ defined by

ut = −Kkt
xt,

kt = argmin

t−1∑

τ=0

|Aixτ +Biuτ − xτ+1|

Inequality (2.6) is generally not simultaneously convex in Pij and Kk, so
simultaneous synthesis is challenging. Rantzer remarked that one might take
Kk as the γ-suboptimal H∞ state-feedback gain associated with the model
(Ak, Bk). [Cederberg et al., 2022] proposed a linearization technique around
nominal gains K0

k and demonstrated significant improvement (lowering γ).
Initial results show that the inequality admits a solution for pairs of sys-
tems that are individually stabilizable with a common quadratic Lyapunov
function, [Bencherki and Rantzer, 2023].

Conclusions
The minimax adaptive control framework treats both low and high-frequency
uncertainty: low-frequency uncertainty is treated via adaptation, and
high-frequency uncertainty is treated via robustness. Rantzer’s piecewise-
quadratic approximation of the value functions allows for explicit controller
synthesis for finite model sets, and the results are promising. The conditions
under which (2.6) admits a solution still need to be fully understood. Output
feedback extensions are so far unexplored.

Historical notes
Minimax control originated in the ’60s [Witsenhausen, 1966]. We refer the
reader to [Basar and Bernhard, 2008, Chapter 1.1] for the historical devel-
opment up to the mid-’90s and connections to game theory and statistical
decision theory. Nonlinear state-feedback analysis and control design was
considered in the early ’90s, see [Schaft, 1992] and the references therein.
The generalization to the output-feedback problem is considerably more in-
volved. Sufficient and necessary conditions were derived in [James and Baras,

17



Chapter 2. Background

1995], who brought in the concept of an information state (a sufficient statis-
tic [Striebel, 1965]) and argued that it is typically infinite-dimensional. Al-
though the optimal controller is computable, in principle, by solving nonlinear
functional equations, there are only a few known practical cases where the
information state has a finite-dimensional representation, and computations
become tractable [James and Yuliar, 1995].

The term “minimax adaptive control” was introduced in [Didinsky and
Basar, 1994]. The authors consider continuous-time dynamics that are linear
in the unknown constant parameters but possibly nonlinear in the state and
control signals, as well as a soft-constrained performance measure that is
quadratic in the disturbances and unknown parameters but non-quadratic
otherwise. The authors obtain a set of necessary and sufficient conditions
and show that the minimax controller, if it exists, is a function of the least-
squares estimate of the unknown parameters. The results were generalized
to nonlinear SISO systems on “parametric strict-feedback form” in [Pan and
Basar, 1998]. First-order discrete-time linear systems with sign-uncertainty
were considered in [Vinnicombe, 2004] and [Megretski and Rantzer, 2003]
provides a lower bound on the achievable ℓ2-gain for first-order discrete-time
linear systems where the uncertain pole belongs to an interval.

2.4 Research topics

This thesis extends the minimax adaptive control framework to partial and
imperfect measurements, aiming for a reliable and practical framework for
adaptive control in mind. In particular we study

RT 1 Estimation and prediction for uncertain linear systems with minimax
objectives.

RT 2 Output feedback where the preimage of a measurement under the
measurement function is a finite set.

RT 3 Output feedback for finite sets of linear systems, where the controller
can only access noisy linear combinations of the state.

The first point is a natural starting point for extending the minimax adaptive
control framework to partial and imperfect measurements. The second point
considers systems where the uncertainty set may change over time and is
constructed after each measurement yt = h(xt) as h−1{yt}. The nature of
the variation may be due to time-varying parameters, nonlinear phenomena,
or exogenous signals. The last point means that the synthesis method can
be applied to the µ-synthesis framework, allowing for much larger parameter
uncertainty sets than previously possible, keeping the ability to incorporate
frequency-dependent weighting functions.
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3
Contributions

This chapter discusses the theoretical contributions of the five included pa-
pers and the author’s specific contributions. The chapter ends with a short
discussion of five excluded peer-reviewed papers.

3.1 Included papers

The first two papers concern estimation and prediction, research topic RT 1
in Chapter 2. The insights from these papers, especially those about forward
dynamic programming and its connection to observer design, are leveraged
to tackle non-injective measurement functions in Paper IV (RT 2 ), and noisy
measurements (RT 3 ) in Papers III and V. We proceed to discuss each paper
in turn.

Paper I
O. Kjellqvist and A. Rantzer (2022c). “Minimax adaptive estimation for finite
sets of linear systems”. In: Proc. 2022 IEEE Amer. Control Conf. Pp. 260–
265. doi: 10.23919/ACC53348.2022.9867474, © 2022 IEEE. Reprinted,
with permission.

Theoretical contributions This paper addresses output prediction in lin-
ear dynamical systems with uncertain dynamics, where the uncertainty be-
longs to a finite set. We provide a convex program that computes an estimate
of the output at the next time step, ensuring that a constant, γ, bounds the
gain from unmeasured disturbances to the output prediction error, provided
that γ is a feasible gain bound. Additionally, we show how to evaluate online
whether γN is a feasible gain bound.

Software contributions The paper includes a Julia implementation1 of
the algorithms, which is used to verify the theoretical results.

1 https://github.com/kjellqvist/MinimaxEstimation.jl
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Credits The paper is a joint work with Anders Rantzer, who suggested the
initial problem formulation, provided guidance throughout the project, and
pointed to [Basar and Bernhard, 2008] as a source of inspiration. The author
implemented the algorithms, derived the theoretical results, and wrote the
first draft of the paper. The author and Anders Rantzer jointly edited the
paper, and the author revised it.

Paper II
O. Kjellqvist (2024c). “Minimax performance limits for multiple-model esti-
mation”. In: Proc. 2024 Eur. Control Conf. Pp. 2540–2546. doi: 10.23919/
ECC64448.2024.10590947, © 2024 IEEE. Reprinted, with permission.

This paper was presented at ECC2024 in Stochkolm, Sweden, and the
abridged form is to be published in the conference proceedings. This thesis
includes proofs that were previously omitted and are available on Arxiv:

O. Kjellqvist (2024d). Minimax performance limits for multiple-model es-
timation. arXiv: 2312.05159 [math.OC]. url: https://arxiv.org/abs/
2312.05159

Theoretical contributions This paper extends Paper I in two ways:

1. It considers strictly causal state estimation.

2. It provides upper and lower bounds on the achievable disturbance gains
γN (from disturbances to Nth time-step estimation error).

The achievable attenuation level indicates whether the set of feasible models
is suitable for state estimation, independent of the estimation procedure. The
gain-bound can be interpreted as a finite-time performance guarantee.

By computing the upper and lower bounds for γN for indistinguishable
and distinguishable systems, we argue that distinguishability [Silvestre et al.,
2021] alone is neither sufficient nor necessary to guarantee that the estimation
error will be small.

In practical multiple-model settings, such as in fault detection scenarios,
one is often interested in detecting which model generated the data. The
work in Papers I and II is limited to the state estimate and does not consider
the ability to identify the underlying model.

Credits The author proposed the problem formulation, derived the theo-
retical results, implemented the algorithms to verify the theoretical results,
validated all algebraic expressions numerically, wrote the first draft of the
paper and edited and revised it. The author is thankful to Anders Rantzer
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for supervising the project and providing valuable feedback, Venkatraman
Renganathan for reviewing an early draft, Anders Helmerson for related dis-
cussions and reviewing the first submission during the Licentiate seminar,
and the anonymous reviewers for their constructive feedback.

Paper III
O. Kjellqvist and A. Rantzer (June 2022b). “Learning-enabled robust con-
trol with noisy measurements”. In: R. Firoozi et al. (Eds.). Proc. 4th Annu.
Learning Dyn. Control Conf. Vol. 168. PMLR, pp. 86–96. url: https :

//proceedings.mlr.press/v168/kjellqvist22a.html

This paper was presented at L4DC 2022 in Stanford and was published
in an abridged form. The version contained in this thesis is an extended ver-
sion including proofs that were previously omitted and is published on Arxiv:

O. Kjellqvist and A. Rantzer (2022a). Learning-enabled robust control
with noisy measurements. doi: 10.48550/ARXIV.2202.08363.

Theoretical contributions The main contribution of this paper is the
equivalence between the following two statements for uncertain scalar linear
dynamical systems where the uncertainty belongs to a finite set.

1. There exists a causal output feedback controller that achieves a closed-
loop ℓ2-gain bound of at most γ from disturbances to errors.

2. There exists a memoryless function of an H∞ multi observer, such that
certain performance quantities are bounded.

The multi observer consists of one H∞ observer per feasible model, coupled
with a performance quantity related to how well the model explains the ob-
served data. The performance quantities can be evaluated recursively using
observed signals and the observer states. We use this result to extend [Vin-
nicombe, 2004] to the output feedback setting, constructing suboptimal con-
trollers for integrators where the gain’s sign is unknown. The controllers
are of the certainty-equivalence type, which coincides with a multiple-model
adaptive (supervisory) control architecture.

Credits The paper is a joint work with Anders Rantzer, who challenged
the author to extend [Vinnicombe, 2004]’s results to the output feedback set-
ting. The author derived the theoretical results (initially with Vinnicombe’s
variable transformation), implemented the algorithms to verify the theoreti-
cal results, and wrote the first draft of the paper. Anders Rantzer pointed out
that Vinnicombe’s variable transformation was unnecessary, and the author
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found a more straightforward proof. The author and Anders Rantzer jointly
edited the paper, and the author revised it.

Paper IV
This paper was presented in an abridged form, without many of the proofs,
at L4DC 2024 in Oxford, July 15-17.

O. Kjellqvist (July 2024b). “Minimax dual control with finite-dimensional
information state”. In: A. Abate et al. (Eds.). Proc. 6th Annu. Learning Dyn.
Control Conf. Vol. 242. PMLR, pp. 299–311. url: https://proceedings.
mlr.press/v242/kjellqvist24a.html

This thesis contains the extended version of the paper, including all
proofs, which is available on Arxiv:

O. Kjellqvist (2024a). Minimax dual control with finite-dimensional in-
formation state. doi: 10.48550/arXiv.2312.05156

Theoretical contributions This article identifies a class of systems where
the minimax optimal dual controller admits a finite-dimensional information
state. The class of systems is characterized by the bounded number of solu-
tions to the measurement equation yt = h(xt), exemplified by the magnitude-
measured integrator

xt+1 = xt + ut + wt,

yt = |xt|.

This class of systems is broader than one might think, as uncertain pa-
rameters can be lifted to unmeasured states. The system belongs to the
class as long as the set of feasible parameter realizations is finite. Practi-
cal examples include fault detection with control reconfiguration, where the
number of fault models is finite, and real-time optimization of physical sys-
tems, where the performance measurement has a set-valued inverse with a
bounded number of elements. The class is not restricted to linear systems,
and the parameters do not have to be constant.

Additionally, if one has only partial measurements of the state, one can of-
ten reconstruct a finite set of feasible state realizations by virtually augment-
ing the measurement with previous measurements (related to the observabil-
ity index). We demonstrate how to construct the augmented measurement
with an example: magnitude-measured input-output models of arbitrary (fi-
nite integer) order.

The information state admits recursive computation, and Theorem 1
shows the equivalence between the minimax dual control problem and an
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information-state dynamic programming problem. We also provide a dis-
sipativity interpretation in Theorem 2. We apply the results to design an
adaptive controller for the magnitude-measured integrator with ℓ2 gain from
w to (x, u) less than 4.

Credits The magnitude-measured integrator example is due to Bo Bern-
hardsson, who challenged the author to develop a method to systematically
derive controllers for such systems. The author formulated the problem as a
minimax dual control problem, identified the broader class of systems treated
in the paper, derived the theoretical results, implemented the algorithms to
verify the theoretical results, validated all algebraic expressions numerically,
wrote the first draft of the paper, edited and revised it. The author thanks
Bo Bernhardsson for the example, Venkatraman Renganathan for reviewing
an early draft, Anders Rantzer and Tore Hägglund for helpful discussions
and feedback, and the anonymous reviewers for their constructive feedback.
Anders Rantzer supervised the project.

Paper V
O. Kjellqvist and A. Rantzer (2024). “Output feedback minimax adaptive
control”. IEEE Transactions on Automatic Control. Submitted

Preliminary results of this paper were presented at the 25th International
Symposium on Mathematical Theory of Networks and Systems (MTNS) in
Bayreuth, Germany, in 2022.

Theoretical contributions This paper extends the results in Paper III to
higher-order linear MIMO systems and provides a unified treatment of state-
and output-feedback minimax adaptive control, thus subsuming [Rantzer,
2021]. We show that if the uncertain parameters belong to a finite set, the
minimax optimal controller admits a finite-dimensional information state.
The finite-dimensional information state allows for explicit controller syn-
thesis, and we provide heuristics for approximating the minimax optimal
dual controller.

Software contributions The paper includes a Julia implementation2 of
the algorithms, which is used to verify the theoretical results.

Credits This paper results from almost five years of research, starting with
Anders Rantzer’s suggestion to generalize the preliminary results [Rantzer,

2 https://github.com/kjellqvist/MinimaxAdaptiveControl.jl
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2020] to the output feedback setting at the start of the author’s PhD stud-
ies. The author formalized the problem and the theoretical results based on
five years of discussions and investigations with Anders Rantzer. The au-
thor implemented the heuristic and the Julia package and wrote the first
draft of the paper. The author and Anders Rantzer jointly edited the paper,
and the author revised it. The author is thankful to colleagues Venkatraman
Renganathan and Richard Pates for reviewing early drafts.

3.2 Excluded papers

The following papers are peer reviewed but excluded from this thesis because
the author’s contribution was minor, or because they have already been dis-
cussed in the author’s Licentiate thesis [Kjellqvist, 2022].

Excluded paper I
V. Renganathan et al. (2024). “Distributed adaptive control for uncertain
networks”. In: Proc. 2024 Eur. Control Conf. Pp. 1789–1794. doi: 10.23919/
ECC64448.2024.10591151

Theoretical contributions This paper proposes a distributed adaptive
control algorithm for a class of uncertain networked linear systems based
on the minimax adaptive control framework proposed in [Rantzer, 2021].
The critical insight is that for the class of studied systems, the controller
in [Rantzer, 2021] uses only a subset of the empirical covariance matrix. The
subset can be partitioned into a set of local covariance matrices, one for each
node in the network, corresponding to the interactions between the nodes
and their neighbors. This locality is exploited to reduce the communication
between the nodes in the network. The main theoretical contribution is to
show that a certainty-equivalence controller is stabilizing with finite ℓ2 gain
from the disturbance to the state.

Credits This paper is a joint work with Venkatraman Renganathan and
Anders Rantzer, the main contributors. The author contributed to the prob-
lem formulation by pointing out the uncertainty set should be the cartesian
product of the individual nodes’ uncertainty sets, proved Theorem 1, vali-
dated the claims, and assisted in editing the paper.

Expluded paper II
O. Kjellqvist and A. Gattami (2022). “Learning optimal team-decisions”.
In: Proc. 61st IEEE Conf. Decis. Control, pp. 1441–1446. doi: 10.1109/
CDC51059.2022.9992786
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Theoretical contributions This work concerns static team decision prob-
lems where the models are unknown to the players. The goal is to minimize
the losses incurred by the team as the team interacts with the environment.
We employ online gradient descent to improve the policy over time. The pa-
per’s main findings concern upper bounds for the expected regret both when
each player has access to the gradient, and when each player only learns the
total loss incurred by the team after each action is taken (bandit). In the ban-
dit setting, we use a “zeroth“-order gradient estimate. The gradient estimate
is obtained by sampling the corners of the unit cube, as suggested in [Shamir,
2013]. This sampling strategy is a good idea in distributed settings because
it does not require coordination between players.

Credits This paper is a joint work with Ather Gattami, who suggested
the problem formulation and guided the project. The author derived the
theoretical results, and implemented the algorithms to verify the theoretical
results. Both authors wrote the first draft of the paper and edited and revised
it.

Excluded paper III
O. Kjellqvist and J. Yu (2022). “On infinite-horizon system level synthesis
problems”. In: Proc. 61st IEEE Conf. Decis. Control, pp. 5238–5244. doi:
10.1109/CDC51059.2022.9992443

Theoretical contributions This paper considers the synthesis of spatially
localized controllers with delayed communication between controllers. The
main contributions are twofold. Firstly, we solve the infinite-horizon state-
feedback localized LQR problem with delayed communication. Previous re-
sults consider finite-impulse response approximations [Wang et al., 2018] or
instantaneous communication [Yu et al., 2021]. Secondly, we combine the
state feedback policy with a localized Kalman filter to synthesize localized
output feedback controllers. These localized controllers are not LQ optimal
but have much smaller memory requirements than those based on the finite-
impulse response approximation.

This work assumes that the problem admits feasible solutions and does
not discuss how to determine the feasibility.

Credits The project emerged from discussions with Jing Yu during the
author’s visit to the California Institute of Technology. Both authors con-
tributed equally to the problem formulation, derivation of the theoretical re-
sults and writing and revising the paper. Jing Yu implemented the algorithms
to verify the theoretical results The author reviewed the implementation.
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Excluded paper IV
O. Kjellqvist and J. C. Doyle (2022). “ν-analysis: a new notion of robustness
for large systems with structured uncertainties”. In: Proc. 61st IEEE Conf.
Decis. Control, pp. 2361–2366. doi: 10.1109/CDC51059.2022.9992640

Theoretical contributions This paper argues that the current robustness
measures for structured uncertainty are inadequate to analyze large systems
and proposes an alternative, ν. The argument is based on the observation
that structured singular values and ℓ1-robustness measures certify stability
against the largest perturbation and cannot distinguish between dense and
sparse perturbations.

The work was motivated by the search for robustness measures compatible
with system-level synthesis for control design. In particular, we aimed for a
convex and separable quantity so one can synthesize controllers locally.

Credits This paper is part of a joint work with John Doyle, who suggested
the problem formulation, and Lisa Li during the author’s visit to the Cali-
fornia Institute of Technology. The mathematical problem formulation and
the theoretical results are based on discussions with John Doyle and Lisa Li,
mainly conjectures and counterexamples. These discussions resulted in two
papers, where the author wrote and revised [Kjellqvist and Doyle, 2022] and
Lisa Li wrote and revised [Li and Doyle, 2022].

Excluded paper V
O. Kjellqvist and O. Troeng (2020). “Numerical pitfalls in Q-design”. In:
vol. 53. 2, pp. 4404–4408. doi: 10.1016/j.ifacol.2020.12.368

Theoretical contributions This paper concerns the numerical stability
of basis expansions of the Youla-Kucera parametrization. We show that, for
quadratic constraints and objectives, using orthogonal basis expansions has
numerical advantages and that numerical stability depends heavily on the
choice of state-space realization. Further, we provide a realization that em-
pirically demonstrates superior numerical stability.

Credits This work is the result of the author’s master’s thesis under the
supervision of Olof Troeng. The author and Olof Troeng jointly formulated
the problem, derived the results, implemented the software, validated the
results numerically, wrote the first draft of the paper, and revised it.
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4
Relations to Literature

This chapter discusses the relationship between the work in this thesis and
other control-related topics. We relate problem formulations, methodologies,
difficulties, and results to the literature. The strongest connections, those
that have inspired the work, are already discussed in the background. The
sections are intended to be self-contained but may refer to the background
and the included papers.

4.1 Finite model sets

Papers I–III and V propose a practical approach by assuming a finite uncer-
tainty set. Finite uncertainty sets retain some of the simplicity and tractabil-
ity of the perfect model case while still accommodating significant parameter
variations. The finite model set approach is common in several fields, some
discussed below.

Multiple model adaptive estimation
Multiple-model adaptive estimation originated in the ’60s with [Magill, 1965;
Lainiotis, 1976]. The approach consists of a set of filters, called a filter bank,
and a method of combining the estimates to form a composed estimate. There
are many ways to design the filter bank, but the most common is to consider
a finite set of linear systems driven by white noise. Each system is associated
with a Kalman filter and an a priori probability. The posterior probabili-
ties are computed recursively using Bayes’ rule. The composed estimate is
then the conditional expectation of the state given the measurements, which
reduces to a weighted sum of the Kalman filter estimate for each model.

The approach easily extends to switching systems by matching a Kalman
filter with each possible trajectory. In that case, the number of filters will
grow exponentially with time, which has sparked research into more effi-
cient methods. Notable numerically tractable and suboptimal algorithms for
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estimation in hybrid systems are the Generalized Pseudo Bayesian [Acker-
son and Fu, 1970; Chang and Athans, 1978], and the Interacting Multiple
Model [Blom and Bar-Shalom, 1988]. These methods efficiently circumvent
the exponential growth by reinitializing the filters using the combined esti-
mates. This way, the number of filters is kept constant. The suggested future
work in Paper II of bounding the historical cost of switching between models
using a finite set of filters would also alleviate the computational burden, but
suboptimality could be quantified.

Multiple-model adaptive control
Multiple-model adaptive control originated in the ’70s to handle linear
stochastic systems with uncertain parameters belonging to a finite set. The
framework was tried on equilibrium flight control of an F-8C aircraft [Athans
et al., 1977] and STOL F-15 with sensor and actuator failures [Maybeck and
Pogoda, 1989] with mixed results. Each model was associated with a Kalman
filter and a control law. The composed control law was a weighted sum of
the individual control laws, where the likelihood of the model determined the
weights. Unfortunately, the closed loop is not guaranteed to be stable and
the posterior probability of the “true” model is not guaranteed to converge
even if the individual models are stable, controllable and observable. By a
model being “true”, we mean that the trajectory of the system is generated
by that model. This issue is demonstrated in the following counterexample.

Example 1—Counterexample to convergence in probability
Consider the uncertain first-order linear stochastic discrete-time system

x(t+ 1) = ax(t)± u(t) + w(t),

y(t) = x(t) + v(t).
(4.1)

In (4.1), x(t), u(t), y(t) ∈ R are the state, input and measured output.
The process disturbance w(t) and the measurement noise v(t) are two jointly
Gaussian uncorrelated white-noise random variables with E[v(t)] = E[w(t)] =
0 and E[v(t)2] = E[w(t)2] = 1, drawn independently and identically dis-
tributed at each time t. If we assume the initial probability of each mode
to be ρ+(0) = ρ−(0) = 0.5, we will choose u(0) = 0. However, if we do not
inject any control signal—the residual of the two Kalman filters will be the
same, so ρ+(1) = ρ−(1) = 0.5. Since u+(y(1), y(0)) = −u−(y(1), y(0)) we
have u(1) = 0.5u+(1) + 0.5u−(1) = 0. By similar arguments, we will have
u(t) = 0 for all t and ρ+(t) = ρ−(t) for all t, regardless of which model is
“true”.

Stability can be guaranteed, however, if certain distinguishability conditions
are fulfilled [Silvestre et al., 2021]. The above example is treated in Paper III,
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where we provide a stabilizing control law by switching between controllers
instead of interpolating.

The uncertain system (4.1) is stabilizable in the ℓp sense by a periodic
controller. [Khargonekar et al., 1985] showed that any finite collection of
finite-dimensional controllable LTI systems is stabilizable by periodically cir-
culating dead-beat controllers. For instance, taking u(t) = (−1)tay(t) stabi-
lizes (4.1) with finite ℓ2 gain. This result was extended to finite collections
of internally stabilizable linear time-varying systems in [Khargonekar et al.,
1988], and [Mårtensson, 1985] showed similar results for continuous sets of
parametric uncertainty using an exhaustive dense search in parameter space.
Like [Khargonekar et al., 1985; Khargonekar et al., 1988], [Mårtensson, 1985]
did not rely on interpolating among feasible candidates. Instead, the results
rely on certainty equivalence—using a prerouted search among controllers
that work well for each realization.

Stephen Morse proposed using the predictive performance of each fea-
sible model to decide which model to use for certainty equivalence control
in [Morse, 1996] and proved that the closed-loop is ℓ2 stable in [Morse, 1997].
Morse’s contribution concerned linear time-invariant SISO systems with pos-
sibly uncountable uncertainty sets. It was also assumed that any realization
could be satisfactorily controlled by a linear time-invariant controller based
on a model from an a priori specified finite collection of ”nominal” models.

Figure 4.1 illustrates a supervisory switched control system. The main
difference between prerouted search amongst controllers and Morse’s adap-
tive approach is the supervisor determining the switching sequence σ. In the
prerouted case, σ is a predetermined function of time, whereas in the adaptive
case, σ is a function of the control input u and the process output y.

The adaptive switching algorithms (supervisors) can roughly be divided
into two categories: those based on process estimation and those based on a
direct performance evaluation of each candidate controller. Our work mainly
relates to the estimation-based supervisors, and we will focus on them.

The tutorial [Hespanha, 2001] contains much of the development up to
2002. [Buchstaller and French, 2016a; Buchstaller and French, 2016b] pro-
posed an axiomatic framework providing robust stability and performance
bounds for a broad class of estimation-based supervisory control schemes for
MIMO LTI plants and some classes of nonlinear plants.

Our work differs from the above in that rather than starting with a finite
set of controllers; we start with a set of models and an objective. The finite set
of controllers and the switching law are consequences of the objective and
the models. Compared to [Buchstaller and French, 2016a; Buchstaller and
French, 2016b], we get less complicated conditions for finite gain stability
that can be used directly for synthesis.
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Supervisor

controller 1

controller n

process y

w
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Figure 4.1 Illustration of a supervisory control architecture, recreated from [Hes-
panha, 2001]

4.2 Data-driven approaches

Learning controllers from data is not new; many practical tuning meth-
ods rely on identifying coarse models and applying tried and tested rules
related to those parameters. For example, in the classical Ziegler-Nichols
methods, the process dynamics are characterized by two parameters. The
step-response method identifies a first-order time-delay model. The frequency
domain method describes the ultimate point in the Nyquist plot by the ul-
timate gain and the ultimate frequency. Improved tuning rules exist now
[Åström and Hägglund, 1995; Berner, 2017], and many can be automated.
The new schemes’ performance improvement comes from better-identified
models, more expressive models, and improved tuning rules. When the meth-
ods that employ low-order approximate models and good tuning rules fail,
one can turn to system identification [Ljung, 1999] and robust controller
design [Dullerud and Paganini, 2000], or adaptive control [Åström and Wit-
tenmark, 2008].

In the recent “data-driven control” literature, the model used for control
design is the “raw“ collected trajectories themselves; the controller is synthe-
sized directly from the collected data without first identifying an intermediate
model. Related methods include iterative feedback tuning [Hjalmarsson et al.,
1998], the intelligent PID [Fliess and Join, 2009; Tabuada et al., 2017], vir-
tual reference feedback tuning [Campi and Savaresi, 2006] and direct adaptive
control [Åström and Wittenmark, 2008]. Recently, control-design methods
based on Willems’ fundamental lemma [Willems et al., 2005; Berberich et
al., 2023] have gained much attention in the data-driven control commu-
nity. The result states that for linear systems, future trajectories are linear
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combinations of past trajectories if the data is rich enough. Linear systems
were studied in [De Persis and Tesi, 2020; Berberich et al., 2020], polynomial
systems in [Guo et al., 2022], rational systems in [Strässer et al., 2021] and
nonlinear stabilization [De Persis et al., 2023]. The recent survey [Martin et
al., 2023] provides a comprehensive overview of recent progress in the field,
especially on theoretical guarantees.

Model predictive control based on the behavioral framework was proposed
in [Yang and Li, 2015]. Coulson et al. [Coulson et al., 2019] argued that the
behavioral framework naturally addresses one of the significant shortcomings
of most MPC schemes, the assumption of perfect state measurements, and
introduced regularization as a means to extend the framework to stochastic
nonlinear systems. Berberich et al. proved recursive feasibility, constraint sat-
isfaction, and exponential stability in [Berberich et al., 2021]. They extended
their theory of linear MPC to the nonlinear case in [Berberich et al., 2022]
by adaptation, in the sense that they update the Hankel matrix online with
new observations.

Our problem formulation also leverages data to improve control perfor-
mance but differs from the recent data-driven frameworks in several ways.
We collect data and improve performance online instead of relying on data
collected from previous experiments to design a controller. We do, however,
allow for different rates of parameter updates and control actions, resem-
bling a periodic controller redesign. We take a grey box approach, allowing
users to construct uncertain models and reduce uncertainty online rather
than viewing the system as a black box.

4.3 Adaptive control

There is no consensus on the definition of adaptation in control theory. We use
the definition from [Åström andWittenmark, 2008], who consider a controller
adaptive if a mechanism changes the controller parameters based on the
system response.

A thorough review of the field is outside the scope of this thesis. However,
the interested reader may consult the textbooks [Åström and Wittenmark,
2008; Goodwin and Sin, 2009; Ioannou and Sun, 1995] for a solid foundation,
and the excellent survey [Annaswamy and Fradkov, 2021] for a comprehensive
overview of the field and its connections to reinforcement learning. Instead,
we will focus on the connection between our work and the adaptive control
literature, starting with positioning our work in the taxonomy of adaptive
control.

We consider the proposed controllers in Papers III–V as indirect adap-
tive controllers, as they have internal system models, one for each possible
parameter realization. However, one could argue that once the observers and
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controllers are designed, the system models are not used in updating the
control law, and one chooses the control signal based on each controller’s
performance metric—hence, there is no intermediate model, and the con-
trollers are direct adaptive controllers. This conceptual shift does not alter
the controllers, only their interpretation.

The controllers in Papers III and V concern fixed parameters and thus
relate to self-tuning regulators. Introducing an exponential forgetting factor
in the empirical covariance matrix allows self-tuning regulators to adapt to
slowly changing parameters. This forgetting factor typically does not work
well if the parameters change abruptly, as when the system switches between
operating modes, as in the uncertain sign in Paper IV. It is more appropriate
to include a mechanism, like a covariance reset, to detect the change and
reinitialize the parameter estimation scheme. The controller in Paper IV can
detect the change in the state’s sign but does not reinitialize the parameter
(and uncertainty) estimate, which allows it to reject a false detection more
quickly.

Classical adaptive control laws may become unstable in the presence of
disturbances and unmodeled dynamics; see [Ioannou and Sun, 1995, Chapter
8.3] and [Anderson, 2005] for thorough discussions. The topic “robust adap-
tive control” pursues the same ideal as this thesis. Robust adaptive control
schemes are modifications of the classical adaptive control laws that include
robustifying terms to ensure stability in the presence of disturbances and
unmodeled dynamics. The idea of a “dominantly rich” control law [Ioannou
and Sun, 1995, Chapter 9] is based on the observation that adaptation deals
with low-frequency uncertainty and that the remaining uncertainty is in the
high-frequency spectrum. The modification concerns the frequency content of
the excitation signal. Care is taken to excite the system in the low-frequency
range to avoid exciting the high-frequency range where the unmodeled dy-
namics reside. Section 2.1 discusses the frequency characteristics of different
types of uncertainty. However, we approach the problem starting with ro-
bustness in mind rather than attempting to robustify a classical adaptive
control law.

[Anderson, 2005] relates some of the (catastrophic) failures that can occur
in adaptive control to three fundamental underlying timescales: that of the
physical system and the controller, that of the adaptation, and that of the
changing parameters. The timescales have a natural ordering in that the
physical system and controller are the fastest, the adaptation rate is slower,
and the parameter changes are the slowest. Problems tend to occur when the
timescales conflict, like when adaptation is too slow to track the changing
parameters and when adaptation and control start to interact.

In the self-tuning regulator, Figure 2.2, the two loops are often executed
at different rates, with the parameter estimate being the slower. Paper V
provides an example where the sufficienct condition of [Rantzer, 2021] does
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not admit a solution. The example includes a delay between the input and
the effect of an uncertain parameter on the output. The resolution is only
to update the controller parameters after the effect of the previous update
becomes clear, formalized as a periodic Bellman inequality. Effectively, the
control and parameter update loops are executed at different rates.

4.4 Reinforcement learning

Reinforcement learning considers problem formulations and methodologies
for agents that learn to act in an (unknown) environment to maximize re-
wards. As such, it is closely related to optimal control theory, and the two
fields intersect in many ways. Most of the work in reinforcement learning con-
cerns discrete time, finite states, and action spaces, and the agent interacts
with the environment through a sequence of actions. It has been successful
in settings such as chess, Go, and video games.

Strong connections exist between reinforcement learning and optimal con-
trol, perhaps most apparent in the work concerning continuous states and
action spaces. Notable works include the continuous counterpart of temporal-
difference methods [Doya, 2000], the adaptation of the “deep Q-learning”
framework [Lillicrap et al., 2019]. However, in the terminology of [Matni et
al., 2019], this body of work considers episodic tasks: iterative experimental
design and controller synthesis, assuming access to perfect simulators or the
ability to reset the system safely. The work is concerned with a controller
design problem, not adaptation. We point the interested reader to the sur-
veys [Recht, 2019; Shin et al., 2019] for a control-theoretic perspective on the
larger body of reinforcement learning.

Recently, there has been a surge of interest in applying theory from
“single-trajectory”, or “continuing task”, reinforcement learning to analyze
the sample complexity of adaptive control settings. The movement was ini-
tiated by [Abbasi-Yadkori and Szepesvári, 2011], who took an “optimism in
the face of uncertainty” approach to the adaptive LQR problem. Most of
the work in this area concerns linear quadratic control problems with perfect
state measurements and stochastic disturbances. The tutorial paper [Matni
et al., 2019] provides an excellent introduction and overview of the results
up to 2019.

Much of the recent progress in the field has come from the combination
of learning theory, much inspired by the work on bandit problems, with high-
dimensional statistics and online convex optimization. [Tsiamis et al., 2023]
gives an outstanding account of recent progress on the sample complexity
of system identification and statistical guarantees for linear-quadratic single-
trajectory problems based on high-dimensional statistics. The guarantees are
typically given in terms of regret, which is the difference between the learned
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controller’s performance and a suitable baseline and hold in expectation or
high probability.

Online control
The work based on online convex optimization [Hazan, 2023] has evolved
in a slightly different direction: “online nonstochastic control”. The recent
book [Hazan and Singh, 2023], currently in draft, provides an introduction
to the field. Online nonstochastic control concerns linear systems, possibly
unknown, with bounded disturbances and sequentially revealed cost func-
tions. The cost functions are unknown apriori and revealed to the controller
after each control action. The strictly causal access to the cost functions
prevents closed-form solutions of the optimal controller; optimal controller
synthesis occurs online, in feedback with the physical system.

For a comprehensive set of references, we direct the reader to [Hazan and
Singh, 2023], but we will list a few seminal papers and highlight some in-
triguing similarities and differences. The state-feedback case without model
uncertainty was introduced in [Agarwal et al., 2019], the uncertain case with
an available stabilizing controller in [Hazan et al., 2020], and the “black-box”,
without a stabilizing controller, in [Chen and Hazan, 2021]. Output feedback
was treated in [Simchowitz et al., 2020]. In papers IV and V, the uncertainty
is initially in the observations and the system parameters, but after a refor-
mulation, it is moved to the cost functions. Just like this thesis, the theoretical
guarantees hold for adversarial disturbance models. However, the adversary
selects the disturbance sequences in online control apriori, which may not
depend on the control signal realization. This thesis allows for disturbances
dependent on both estimates and control signals.

In all the above papers, the control law comprises two parts: a stabilizing
state feedback, or dynamical output feedback, controller, and a finite impulse
response (FIR) component operating on a finite window of past disturbances
Online optimization is used to tune the FIR component, and the window
length is a parameter that depends on the control horizon and specific system
quantities. The infinite horizon case is treated by a doubling trick, meaning
that the memory required to store the FIR components goes to infinity.

Interestingly, none of the above papers discuss the implications of non-
minimum phase behavior, like right halfplane zeros and delays, on the achiev-
able performance. Nonminimum phase behavior is a commonly acknowledged
problem in adaptive control. It can occur in both state and output-feedback
settings. Online optimization has an extra feedback loop that includes the
cost function. This cost function may have right-half plane zeros or delay-
like behavior even if the controller can access perfect state measurements. In
model predictive control, it is well known that nonminimum phase costs may
require a long prediction horizon to be stable. The counterexample in Paper
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V, which shows the nonexistence of a solution to the LMIs in [Rantzer, 2021],
is based on a nonminimum phase cost function. Periodic parameter updates
resolve it.

Convex body chasing
For systems with (large) parametric uncertainty, [Ho et al., 2021] introduces
a new take on certainty equivalence control. The procedure consists of a
robust oracle that provides a controller that robustly satisfies performance
measures and a parameter selection mechanism that selects parameters. The
procedure is guaranteed to make only a finite number of mistakes, given that
each oracle would satisfy the specifications in a small neighborhood around
the “true” parameters.

The parameter selection mechanism finds the set of parameters consistent
with the observed trajectory and then selects a point in this set for certainty
equivalence control. Under the assumption that the feasible sets are convex,
the selection procedure is posed as an online convex body-chasing problem.
In convex body chasing, the goal is select points p0, p1, . . . from a sequence
of convex sets K0,K1, . . . such that the path length, |p1−p0|+ |p2−p1|+ . . .
is minimized.

The initial work [Ho et al., 2021] concerns fixed parameters, for which the
feasible sets are nested (monotonically decreasing in terms of set inclusion).
For nested convex body chasing, the path length is bounded by the diameter
of the first set. By combining the robustness of the oracle with the finite path
length, the controller is guaranteed to make only a finite number of mistakes.

The framework is extended to slowly-varying linear time-varying systems
in [Yu et al., 2023], where the feasible sets are no longer nested, using recent
results for convex function and body chasing [Sellke, 2023]. The controller
guarantees bounded-input bounded-output stability of the closed loop.

Like in Papers III—V, this work uses certainty equivalence control, but
the parameter set may be infinite. The focus is on state feedback, but [Ho et
al., 2021] remarks that the framework can be applied to the output feedback
setting if a common observer state exists so that the robust control oracle is a
memoryless function of this shared state. In Paper V’s output feedback case,
each observer has its own observer state. However, we exploit a reformulation
where they are stacked into a vector to reduce output feedback to an instance
of the principal problem. This stacked vector then becomes a shared state
that the controller uses.

The performance metrics
Regret quantifies a learning method’s accumulated suboptimality and gives
a clear picture of its learning performance, but the implications for system
theoretic properties like stability, sensitivity, bandwidth, et cetera still need
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to be better understood. [Karapetyan et al., 2023] provides a first step in
this direction for linear systems with linear controllers, but the results do not
apply to learning systems as they are inherently nonlinear. The performance
metric of papers III–V is the soft-constrained reformulation of the induced
gain, which has a transparent system theoretic interpretation. Our guarantees
are “anytime” and hold for the moment the controller is initialized. However,
the worst-case approach may be overly conservative, and optimizing regret
instead could potentially lead to more efficient controllers. Further, statistical
guarantees make more sense if accurate probabilistic models of the system
parameters and noise realization can be provided.

4.5 Dual control

For linear systems with uncertain parameters1, the relationship between pa-
rameter observability (more commonly known as identifiability) and inputs
is well understood through the concept of excitation. Perhaps the first work
to scrutinize the effects of this interplay in optimal control was Alexander
Aronovich Feldbâum [Feldbâum, 1963]. Feldbâum argued that optimal con-
trollers would have two distinct traits for a large class of uncertain systems:
they would ensure the system is well-behaved and probe the system for ad-
ditional information. These traits are called exploitation and exploration in
reinforcement learning. Controllers that exhibit these traits are called dual
controllers. The interested reader is referred to the book [Åström and Wit-
tenmark, 2008, Chapter 7.] [Feldbâum, 1963], and the surveys [Filatov and
Unbehauen, 2000; Mesbah, 2018].

Stochastic dual control formulates adaptive control as a stochastic opti-
mal control problem, where uncertain disturbances and parameters are drawn
randomly from apriori known distributions. The posterior distribution of the
states and uncertain parameters is a sufficient statistic, sometimes called an
information state or a hyperstate. Interestingly, the hyperstate does not de-
pend on the objective, only the system dynamics and observations. This is
in contrast to the controllers in Papers III–V, and minimax control in gen-
eral [Witsenhausen, 1966; Bertsekas and Rhodes, 1973; James and Baras,
1995], where the information state characterizes the worst-case realization of
the cost functions consistent with data.

The hyperstate sometimes has a finite-dimensional representation that
can be updated recursively, like Markov decision processes with finite state
and action spaces. If the hyperstate is infinite-dimensional, one can approxi-
mate it with a finite-dimensional state: [Alspach, 1972] proposes using a sum
of Gaussians.

1 Such systems are not jointly linear in the previous sense
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In Papers III–V, the hyperstate describes one quadratic function (of the
state) per hypothesis. These functions’ offsets and linear terms are updated
recursively but depend on the hypothesis’ parameter values. These quadratic
functions describe precisely the worst-case realization of the costs under each
hypothesis. Like Alspach, we see great potential in relaxing the restriction to
finite uncertainty sets by approximating the worst-case cost with a finite set
of quadratic functions. This would be realized practically by associating a
robust observer with each member in a finite covering of the uncertainty set.
The robust observer would provide over- and under-approximations of the
worst-case cost valid for any parameter realization in its covering member.

[Filatov and Unbehauen, 2000] classifies dual control into direct and in-
direct methods. A direct method is a controller with an explicit exploration
term, like adding white noise to the control signal to ensure excitation. An
indirect method is a controller that is a solution, or an approximation, to an
optimal dual control problem. The controllers in Papers III–V are indirect
dual controllers, as they are suboptimal solutions to dual control problems.
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Concluding remarks

This thesis has presented a framework for minimax (sub)optimal control
and estimation under additive and parametric uncertainty. We conclude by
summarizing the key findings and discussing limitations and future work.

5.1 Summary of key findings

• Paper I: Characterizes the minimax optimal output predictor for a
finite set of linear systems, providing a framework for robust output
prediction.

• Paper II: Presents a priori computable performance bounds for the esti-
mator developed in Paper I, enhancing the reliability of the estimation
process under uncertainty.

• Paper III: Proposes a minimax suboptimal adaptive controller for scalar
systems with unknown sign in the b-parameter, achieving a finite ℓ2-
gain and providing an upper bound, which is crucial for ensuring system
stability.

• Paper IV: Introduces a class of systems for which the minimax opti-
mal dual controller admits a finite-dimensional information state and
derives a suboptimal controller for the magnitude-measured integrator
with an ℓ2-gain less than 4, offering practical control solutions.

• Paper V: Proposes a unified framework for minimax adaptive control
that combines output feedback and state feedback cases, along with
heuristics for explicit controller synthesis, broadening the applicability
of minimax control strategies.
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5.2 Limitations and future work

Finite-dimensional information state: The results in this thesis are
based on reformulating uncertainty in the system model or measurements
as an optimization variable in the objective function. We have limited our
attention to settings where we can represent this reformulation by a finite
number of variables. For example, Paper IV is limited to systems where the
preimage of the measurement map yt = h(xt) is a finite set, and Papers I–III
and V are limited to parametric uncertainty with finite parameter sets.

A natural extension is to consider infinite uncertainty sets. The chal-
lenge, however, is that the information state may be infinite-dimensional,
which makes the optimization problem intractable. As a first step, consider
a finite cover of the infinite set and associate a robust observer with each
element in the cover. Just like we could express the optimization problem for
finite uncertainty sets by associating one observer and performance quantity
with each element in the set, we could instead approximate the optimization
problem with one robust observer and performance quantity for each element
in the cover.

Conservative bounds The bounds in Papers I–V are conservative; there
are three reasons for this:

1. We employ a worst-case analysis, meaning we must consider all possible
uncertainty realizations. This is a conservative approach, as the actual
realization of the uncertainty tends not to be the worst-case.

2. The bounds in Papers II–V approximate the minimax optimal solution
with a suboptimal solution. In Paper II, we investigated the optimality
gap empirically, and it was found to be small in certain cases and larger
in others. For the other papers, the optimality gap is not investigated.

3. Our suboptimal controllers, based on certainty equivalence, do not con-
tain an active mechanism to explore the uncertainty. This is mitigated
to some extent by two assumptions about the parameter set: that the
set is finite and the parameters are fixed.

The first point is a limitation of the worst-case analysis and can be
mitigated by stronger assumptions on the uncertainty set or different un-
certainty models. Concerning structured uncertainty, as our framework pro-
vides bounded ℓ2-gain, it can be combined with robust control techniques like
D−K iterations or integral quadratic constraints to provide less conservative
bounds. The second point warrants further investigation, and the suboptimal
controllers may be closer to the optimal solution than our bounds indicate.
The third point is a limitation of the certainty equivalence approach; how-
ever, as our controllers and value function approximations are feasible, they
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can be used as starting points for more complex function approximations
and numerical optimization. We are interested in exploring reinforcement
learning to approximate the value function, Q-function and policies.

Lower bounds Although the thesis’ synthesis methods are based on upper
bounds and sufficiency conditions, its framework and tools are well suited for
studying lower bounds. We conclude this discussion by deriving a new lower
bound on the achievable ℓ2-gain in the setting of [Megretski and Rantzer,
2003, Theorem 1]. This proof not only underscores the utility of the approach
taken in this thesis but also serves as a delightful finale for the mathematically
inclined reader.

Consider the system

xt+1 = axt + ut + wt, ∀t ≥ 0

ut = µt(xt, xt−1, . . . , x0),
(5.1)

where x ∈ R, ut ∈ R and wt ∈ R are the state, control input and disturbance
at time t, respectively. The control input ut is a function of the state and
past states, and agnostic of the uncertain parameter a ∈ [a0, a1] ⊂ R, but
aware of the end points a0 < a1.

Theorem 1
Given real numbers a1 > a0 and a quantity 0 < γ <

√
1 + (a1 − a0)2/4.

Then, for any causal control law µt in (5.1) and initial condition x0 ∈ R,
there exists a parameter value a ∈ [a0, a1] so that, under the dynamics (5.1),

JT
µ (a) ≜ sup

w

{
T∑

t=0

x2
t − γ2

T∑

t=0

w2
t

}
=∞,

for all T ≥ 3.

Proof. Let 0 < γ <
√
1 + (a1 − a0)2/4. The quantity JT

µ (a) is monotoni-
cally non-decreasing in T , so it suffices to show that J3

µ(a) = ∞. Consider
the change of variables vt = axt + ut + wt. Just like in Paper IV, we can
rewrite the dynamics into a terminal cost problem:

xt+1 = vt

rt+1(a) = rt(a) + x2
t − γ2|vt − axt − ut|2, r0(a) = 0,

(5.2)

where vt is chosen by the adversary, and rt(a) : [a0, a1]→ R is a sequence of
functions so that J3

µ(a) = supv r3(a).
Even though the realization a is unknown to the controller, the function rt

is constructed using observations of the state (xt, xt−1, . . .) and control inputs
(ut−1, ut−2. Therefore, the controller can choose the control input ut based
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on the function rt and the state xt. We will now bound supa0≤a≤a1
J3
µ(a)

from below using dynamic programming. Consider the value functions

V3(x, r) = max
a0≤a≤a1

r(a)

Vk−1(x, r) = min
u

max
v
{Vk(v, a 7→ r(a) + x2 − γ2|v − ax− u|2)},

(5.3)

for k = 3, 2, 1. The value functions Vk are functions of the state x and the
function r and Vk−1 ≥ Vk. The notation a 7→ r(a) + x2 − γ2|v − ax − u|2
defines a new function of a corresponding to the dynamics (5.2). By stan-
dard dynamic programming arguments, V0(x0, 0) = infµ supa0≤a≤a1

J3
µ(a).

Explicit computation shows

V2(x, r) = min
u

max
v
{V3(v, a 7→ r(a) + x2 − γ2|v − ax− u|2)}

= min
u

max
a
{ r(a) + x2

︸ ︷︷ ︸
Independent of u

−γ2 min
v
|v − ax− u|2

︸ ︷︷ ︸
=0

}

= max
a

{
x2 + r(a)

}
.

For V1(x, r), we have

V1(x, r) = min
u

max
v
{V2(v, a 7→ r(a) + x2 − γ2|v − ax− u|2)}

= min
u

max
a,v
{x2 + v2 − γ2|v − ax− u|2 + r(a)}

The maximization over v is unbounded for γ2 ≤ 1. For γ2 > 1, the maximiz-
ing v is unique and given by v⋆ = −(1− γ2)−1γ2(ax+ u), thus

V1(x, r) = min
u

max
a

{
x2 +

(
γ4

γ2 − 1
− γ2

)
|ax+ u|2 + r(a)

}

= min
u

max
a

{
x2 +

|ax+ u|2
1− γ−2

+ r(a)

}
.

We will bound the maximum over a using (1 − γ−2)−1 > 1 and the naive
bound

max
a

{
|ax+ u|2 + r(a)

}
≥ max

a
|ax+ u|2 +min

a
r(a).

Denote the interval’s length by L = a1 − a0, then maxa |ax+ u|2 ≥ L2/4|x2|
for any u. and

V1(x, r) ≥ min
a

{(
1 +

(
L

2

)2
)
x2 + r(a)

}
.

41



Chapter 5. Concluding remarks

As the Bellman operator is monotone in V , we have

V0(x, r) = min
u

max
v
{V1(v, a 7→ r(a) + x2 − γ2|v − ax− u|2)}

≥ min
u

max
v

min
a
{x2 +

(
1 +

(
L

2

)2
)
v2 − γ2|v − ax− u|2 + r(a)}

≥ min
u

max
v

min
a

{
x2 +

(
1 +

(
L

2

)2

− γ2

)
v2

+ γ2v(ax− u)− γ2|ax+ u|2 + r(a)

}

By assumption γ2 < 1 + L2/4, so the quadratic term in v is strictly convex
and the right-hand side is unbounded. Therefore supa0≤a≤a1

J3
µ(a) =∞. 2
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model predictive control with stability and robustness guarantees”. IEEE
Trans. Autom. Control 66:4, pp. 1702–1717. doi: 10.1109/TAC.2020.
3000182.
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Paper I

Minimax Adaptive Estimation for

Finite Sets of Linear Systems

Olle Kjellqvist Anders Rantzer

Abstract

For linear time-invariant systems with uncertain parameters belonging
to a finite set, we present a purely deterministic approach to multiple-
model estimation and propose an algorithm based on the minimax cri-
terion using constrained quadratic programming. The estimator tends
to learn the dynamics of the system, and once the uncertain parameters
have been sufficiently estimated, the estimator behaves like a standard
Kalman filter.

1. Introduction

1.1 Problem statement
In this article, we consider output prediction for linear systems of the form

xt+1 = Fxt +Gut + wt

yt = Hxt + vt, 0 ≤ t ≤ N − 1,
(1)

where xt ∈ Rn, ut ∈ Rp and yt ∈ Rm are the states and the measured input
and output at time-step t, respectively. wt ∈ Rn and vt ∈ Rm are unmeasured
process disturbance and measurement noise. The model, (F,H,G) is fixed but
unknown, belonging to some finite set

{(F1, H1, G1), · · · , (FK , HK , GK)}.

consiting of of triplets of real-valued matrices. In particular, we are inter-
ested in strictly causal estimation of yN , such that the gain from disturbance
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trajectories (wt, vt)
N−1
t=0 to pointwise estimation error (yN − HxN ) in some

weigthed ℓ2-norm is bounded by a constant γN > 0. This means that given
positive definite matrices P0 ∈ Rn×n, R ∈ Rm×m and Q ∈ Rn×n and a
nominal value of the initial state, x̂0,

|ŷN −HxN |2

|x0 − x̂0|2P−1
0

+
∑N−1

t=0

(
|wt|2Q−1 + |vt|2R−1

) ≤ γ2
N , (2)

should hold for all disturbances and models compatible with the measurement
history (yt, ut)

N−1
t=0 . This approach is different from the Bayesian approach

to filtering where one takes the conditional expectation as the estimate ŷN .
The interest in worst-case gain is motivated by robust feedback-control from
estimates. In such settings instability or lack of performance due to model
errors is a larger concern than robustness to outliers.

1.2 Background
Simultaneous estimation of states and parameters in linear systems is a bi-
linear estimation problem. The Maximum-likelihood approach leads to esti-
mates which cannot be put in recursive form and must be obtained by itera-
tion [Bar-Shalom, 1972]. A recursive method can be obtained by parametriz-
ing the dynamical equations and the observer and learning the parameters
using the sequential prediction error approach. Alternatively, one can aug-
ment the state vector with the uncertain parameters and apply nonlinear
filtering methods such as the Extended Kalman filter [Goodwin and Sin,
1984]. Unfortunately, optimality guarantees for such methods are difficult to
obtain. One exception is when the system can be modeled as a finite set
of linear systems and the noise is Gaussian, then the Maximum-likelihood
estimates can be put on a recursive form [Crassidis and Junkins, 2011].

Solutions based on the multiple-model approach have been tremen-
dously successful in modeling and estimating complex engineering systems.
In essence, it consists of two parts: 1) design simpler models for a finite set
of possible operating regimes. 2) Run a filter for each model and cleverly
combine the estimates. Multiple-model adaptive estimation has been around
since the ’60s [Magill, 1965; Lainiotis, 1976] and has been an active research
field since. The estimation approach easily extends to systems where the ac-
tive model can switch (hybrid systems) by matching a Kalman filter with each
possible trajectory. In that case, the number of filters will grow exponentially,
which has sparked research into more efficient methods. Notable numerically
tractable and suboptimal algorithms for estimation in hybrid systems are the
Generalized Pseudo Bayesian [Ackerson and Fu, 1970; Chang and Athans,
1978], and the Interacting Multiple Model [Blom and Bar-Shalom, 1988]. The
algorithms have been coupled with extended and unscented Kalman filters
to deal with non-linear systems [Akca and Efe, 2019], and [Xiong et al., 2015]
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studied robustness to identification error. In [Ronghua et al., 2008], the au-
thors pointed out that methods based on Kalman filters are sensitive to noise
distributions and proposed an Interactive Multiple Model algorithm based
on particle filters to handle non-Gaussian noise at the expense of a 100 fold
increase in computation. Recently, machine-learning approaches to classifica-
tion have been combined with the Interacting Multiple Model estimator [Li
et al., 2021; Deng et al., 2020] and showed improved accuracy in simulations.

The Bayesian approach to the Multiple-model estimation problem in-
volves assigning probability distributions to disturbances (wt, vt) and models
(F,G,H). The estimate is taken as the expected value of yN conditioned on
past measurements. If the disturbances are zero-mean and Gaussian, then the
conditional expectation can be computed as the weighted average of Kalman
filter estimates (one for each model), weighted by the conditional probability
that its model is active.

It is evident in practice that the estimator’s performance depends on the
quality of the model set. The models must be distinguishable using measured
signals, and the models should accurately describe the operating regimes.
Since the estimates can be susceptible to non-Gaussian noise, it is surprising
that deterministic approaches similar to those studied by the control com-
munity in the ’80s and ’90s have gathered little attention. Recent progress
to minimax adaptive control of linear systems with uncertain parameters be-
longing to a finite set [Rantzer, 2021] under the assumption of perfect mea-
surements has inspired this research into compatible estimation techniques.

1.3 Contribution
In this paper, we formulate the multiple-model estimation problem as a de-
terministic, two-player dynamic game. In particular, this formulation allows
for online computation of the worst-case gain from disturbances to estima-
tion error and tractable synthesis of suboptimal estimators that minimize
the worst-case gain. Deterministic dynamic games have played a key role in
solving and understanding H∞ filtering [Shen and Deng, 1997; Basar and
Bernhard, 2008]; our goal in this work has been to take a first step towards
extending the advantages of that framework to the multiple model setting.

1.4 Outline
The outline is as follows: First, we introduce notation in Section 2, then we
introduce minimax multiple-model filtering and the main results in Section 3.
In Section 4, we present a simplified form for time-invariant systems. We illus-
trate the theory through a numerical example in Section 5. Section 6 contains
concluding remarks, and supporting lemmata are given in the Appendix.
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2. Notation

The set of n×m-dimensional matrices with real coefficients is denoted Rn×m.
The transpose of a matrix A is denoted A⊤. For a symmetric matrix A ∈
Rn×n, we write A ≻ (⪰)0 to say that A is positive (semi)definite. Given
x ∈ Rn and A ∈ Rn×n, |x|2A := x⊤Ax. For a vector xt ∈ Rn we denote the
sequence of such vectors up to time t by x[0:t] := (xk)

t
k=0.

3. Minimax multiple model filtering

In contrast to the Bayesian approach, our approach is fully deterministic;
similarly to [Shen and Deng, 1997; Basar and Bernhard, 2008], we do not
make explicit assumptions on the distribution of the noise trajectories w[0:t]

and v[0:t]. We will instead construct a two-player dynamic game between a
minimizing player that chooses the estimate, and a maximizing player that
chooses dynamics and disturbances. Recall that we are interested in charac-
terizing an estimator ŷN such that the gain from disturbances to the point-
wise estimation error is bounded by γN . I.e., (2) holds for all disturbances
consistent with (1) and the data (y[0:N−1], u[0:N−1]). Since the disturbances
are unknown, we cannot evaluate (2) directly. However, define

JN (y[0:N−1], u[0:N−1], ŷN ) := sup
x0,w[0:N−1],v[0:N−1],(F,G,H)

{
|ŷN −HxN |2

− γ2
N

(
|x0 − x̂0|2P−1

0
+

N−1∑

t=0

(
|wt|2Q−1 + |vt|2R−1

))}
, (3)

where the maximization is performed subject to the constraints (1). Then
(2) holds if and only if

JN (y[0:N−1], u[0:N−1], ŷN ) ≤ 0.

In this setting, wt = xt+1 − Fxt − Gut and vt = yt − Hxt are uniquely
determined by the states, the measurements and the active model. Inserting
into (3), we get

JN (y[0:N−1], u[0:N−1], ŷN ) = sup
x[0:N],(F,G,H)

{
|ŷN −HxN |2 − γ2

N |x0 − x̂0|2P−1
0

− γ2
N

N−1∑

t=0

(
|xt+1 − Fxt −Gut|2Q−1 + |yt −Hxt|2R−1

)}
. (4)
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3 Minimax multiple model filtering

We will call an estimator ŷ⋆N a minimax estimator if

inf
ŷN

JN (y[0:N−1], u[0:N−1], ŷN ) = JN (y[0:N−1], u[0:N−1], ŷ
⋆
N )

=: J⋆
N (y[0:N−1], u[0:N−1]), (5)

holds, where ŷN are functions of past data y[0:N−1] and u[0:N−1]. This con-
stitutes a two-player dynamic game and would be linear quadratic if not
for the model being chosen by the maximizing player. The intuition behind
(5) makes sense in the following way. The minimizing player is penalized for
deviating from the true (noiseless) output, and the maximizing player is pe-
nalized for selecting a model which requires large disturbances w and v to be
compatible with the data. As N increases, the penalty for selecting a model
different from the truth grows too large, resulting in a learning mechanism. It
turns out that the cost associated with the disturbance trajectories required
to explain each model corresponds to the accumulated prediction errors from
a corresponding Kalman filter and that the minimax estimate is a weighted
interpolation between the Kalman filter estimates.

Theorem 1
Consider matrices F1, . . . , FK ∈ Rn×n, H1, . . . ,HK ∈ Rm×n, G1, . . . , GK ∈
Rn×p and positive definite Q,P0 ∈ Rn×n, R ∈ Rm×m. Define Pt,i according
to

P0,i = P0

Pt+1,i = Q+ Fi(Pt,i − Pt,iH
⊤
i (R+HiPt,iH

⊤
i )−1HiPt,i)F

⊤
i ,

and assume that HiPN,iH
⊤
i ≺ γ2

NI. Then the cost (4) is equivalent to

JN (y[0:N−1], u[0:N−1], ŷN )

= max
i

{
|ŷN −Hix̆N,i|2(I−γ−2

N HiPN,iH⊤
i )−1 − γ2

NcN,i

}
. (6)

x̆N,i is the Kalman filter estimate of xN using the ith model, and cN,i are
generated according to

x̆0,i = x0

x̆t+1,i = Fix̆t,i +Kt,i(yt −Hix̆t,i) +Giut

Kt,i = FiPt,iH
⊤
i (R+HiPt,iH

⊤
i )−1

c0,i = 0

ct+1,i = |Hix̆t,i − yt|2(R+HiPt,iH⊤
i )−1 + ct,i.

Proof. We will perform the maximization over state-trajectories in (4) in
two steps. First over past trajectories (x[0:N−1]) and then over the future
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state xN
1. The right-hand side of (4) becomes

sup
xN ,i

{
|ŷN −HixN |2 − γ2

N inf
x[0:N−1]

{
|x0 − x̂0|2P−1

0

+
N−1∑

t=0

(
|xt+1 − Fixt −Giut|2Q−1 + |yt −Hixt|2R−1

)}
}
,

where i = 1, . . .K is an index for the active model (Fi, Hi, Gi). Apply
Lemma 1 to get

JN (y[0:N−1], u[0:N−1], ŷN ) = sup
xN ,i

{
|ŷN −HixN |2 − γ2

NVN,i((xN , y[0:N−1])
}

= sup
i,xN

{
|ŷN −HixN |2 − γ2

N

(
|xN − x̆N |2P−1

N,i

+ cN,i

)}
.

For fix ŷN and i, the assumption HiPN,iH
⊤
i ≺ γ2

NI guarantees that we
maximize a concave function of xN and we apply Lemma 2 with A = Hi, X =
I, Y = PN,i to conclude2,

JN (y[0:N−1], u[0:N−1], ŷN ) = max
i
|ŷN −Hix̆N,i|2(I−γ−2

N HiPN,iH⊤
i )−1 − γ2

NcN,i.
2

Remark 1
Theorem 1 holds also for time-varying systems, if Fi and Hi are replaced by
Ft,i and Ht,i. Further, P0, Q and R can be time-varying and differ between
models.

Remark 2
Equation (6) is monotonically increasing in γN and the smallest γ⋆

N such
that JN (y[0:N−1], u[0:N−1], ŷN ) ≤ 0 can be found efficiently through bisection.

The below Corollary follows from Theorem 1 and describes how to compute
the minimax estimator as a convex quadratic program.

Corollary 1
With assumptions as in Theorem 1, consider the convex program

minimize
ŷN ,t

t

subject to: |ŷN −Hix̆N,i|2(I−γ−2
N HiPN,iH⊤

i )−1 − γ2
NcN,i ≤ t

∀i = 1 . . .K.

1maxx[0:N]
{. . .} = maxxN

{
maxx[0:N−1]

{. . .}
}
.

2The maximizing argument is given by x⋆
N (ŷN , i) = (H⊤

i Hi − γ2
NP−1

N,i)
−1(H⊤

i ŷN −
P−1
N,iγ

2
N x̆N,i)
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4 Stationary solution

The minimizing argument ŷ⋆N satisfies (5).

Remark 3
If the model set is a singleton, then ŷ⋆N = Hx⋆

N = Hx̆N is the estimate gener-
ated by the Kalman filter, which is a well known result [Basar and Bernhard,
2008].

3.1 On cN,i and the relation to conditional probability.
It is known (see for instance [Crassidis and Junkins, 2011]) that if wt and
vt are uncorrelated Gaussian white noise with covariances Q and R, the
conditional probability that the measured output y[0:N ] has been generated
by the model (Fi, Gi, Hi) and the input u[0:N ] can be expressed as

p(i|y[0:N ], u[0:N ]) =
αNe

−|yN−Hix̆N,i|2R̃N,i

det(2πR̃N,i)1/2
p(i|y[0:N−1], u[0:N−1]).

αN is some normalization constant independent of i, and

R̃N,i = R+HiPN,iH
⊤
i ,

with PN,i as in Theorem 1. Taking cN,i as in Theorem 1 we see that the
conditional probability is proportional to e−cN+1,i ,

p(i|y[0:N−1], u[0:N−1]) ∝ e−cN+1,i

N∏

t=1

det(2πR̃t,i)
−1/2.

4. Stationary solution

For a set of time-invariant systems, we summarize a simple version of the
filter in the below theorem.

Theorem 2
Consider matrices F1, . . . , FK ∈ Rn×n, H1, . . . ,HK ∈ Rm×n and positive
definite Q,P0 ∈ Rn×n, R ∈ Rm×m. Assume that the algebraic Riccati equa-
tions

Pi = Q+ Fi(Pi − PiH
⊤
i (R+HiPiH

⊤
i )−1HiPi)F

⊤
i ,

have solutions HiPiH
⊤
i ≺ γ2

NI. Then a minimax strategy ŷ⋆N for the game
defined by

min
ŷN

max
x[0:N],i

{
|ŷN −HixN |2 − γ2

N |x0 − x̂0|2P−1
i

− γ2
N

N−1∑

t=0

(
|xt+1 − Fixt −Giut|2Q−1 + |yt −Hixt|2R−1

)}
,
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and (1), is the minimizing argument of

min
ŷN

max
i

{
|ŷN −Hix̆N,i|2(I−γ−2

N HiPiH⊤
i )−1 − γ2

NcN,i

}
.

x̆N,i is the Kalman filter estimate of xN using the ith model, and cN,i are
generated according to

x̆0,i = x0

x̆t+1,i = Fix̆t,i +Ki(yt −Hix̆t,i) +Giut

Ki = FiPiH
⊤
i (R+HiPiH

⊤
i )−1

c0,i = 0

ct+1,i = |Hix̆t,i − yt|2(R+HiPiH⊤
i )−1 + ct,i.

Proof. This is a special case of Theorem 1, by replacing P0 with Pi. 2

5. Example

In this example, we compare a minimax estimator synthesized using Corol-
lary 1, bisecting over γN , to find the estimator ŷ⋆N such that (2) is satisfied for
the smallest possible γN . We compare this to a Bayesian multiple-model es-
timator [Crassidis and Junkins, 2011] and calculate the corresponding bound
γN using Theorem 1 and bisection. Consider the uncertain linear system

xt+1 = Fxt + wt

yt = xt + vt
, F ∈ {−1, 1}.

The weights in (2) are chosen to be Q = R = P0 = 1. We generate data
y[0:N−1] by simulating the system with F = 1 and wt, vt as independent
Gaussian white noise with intensity 1. For N = 5 we find

P5,1 = P5,−1 = 1,62,

x̆5,1 = −2,34, x̆5,−1 = 1,50,

c5,1 = 3,56, c5,−1 = 8,11.

In Fig. 1, we illustrate (6) forN = 5 and the estimates. Note that γ = 1,51
can be guaranteed for the minimax estimator, but not the Bayesian. Fig. 2
contains a comparison between the smallest γN so that (2) can be guaranteed
for the minimax estimator and the Bayesian estimator when N = 1 . . . 20.
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5 Example

−2 −1.5 −1 −0.5 0 0.5

0

20

Minimax, γ5 = 1.51

Bayesian

ŷ5

J
5

J+
5

J−
5

J5 = max{J+
5 , J−

5 }

Figure 1. Illustration of the optimization problem (6) for N = 5, together with
the minimax solution and the one given by a Bayesian multiple model estimator
for γN = 1.51. The minimax estimate has a guaranteed worst-case gain bound from
disturbances to observer error lower than 1.51, whereas the Bayesian estimator does
not. Here J+

5 = |ŷ5 − x̆5,1|2(I−γ−2
5 P5,1)−1 − c5,1 corresponds to F = 1, whereas J−

5

(defined similarly) corresponds to F = −1. J5 = J5(y[0:5], 0, ŷ5) is then equivalent
to (6).

0 5 10 15 20

1.2

1.4

1.6

1.8

2

N

γ
⋆ N

Minimax
Bayesian√

maxi{Pi,N}

Figure 2. The smallest γN such that JN (y[0:N−1], 0, ŷN ) ≤ 0 for the minimax es-
timator (blue) compared to the Bayesian multiple-model adaptive estimator (green)
for one realization.
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6. Conclusions

We stated the minimax criterion for output prediction, where the dynamics
belong to a finite set of linear systems and proposed a minimax estimation
strategy. The strategy can be implemented as a convex program, and the
resulting estimate is a weighted interpolation of Kalman filter estimates.
We showed in a numerical example how to apply the theoretical results to
compute the worst-case gain from disturbances to error for any multi-model
estimation algorithm online and how to generate estimates that minimize the
said gain.

By running a minimax estimator in parallel to another estimator, we can
measure the worst-case performance level of the other estimator. A large
difference in performance levels indicates that the nominal estimator may be
highly sensitive to errors in the noise model.

Predetermining the smallest achievable gain from disturbances to estima-
tion errors is still an open research problem, that is, finding necessary and
sufficient conditions such that

sup
y[0:N−1]

J⋆
N (y[0:N−1], u[0:N−1]) ≤ 0.

In future work, we plan to develop a Multiple-model adaptive estimator with
a prescribed ℓ2-gain bound from disturbance to error and methods for infinite
sets of linear systems.
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Appendix — supporting lemmata

Lemma 1
The cost function

VN,i(xN , y[0:N−1]) = min
x[0:N−1]

{
|x0 − x̂0|2P−1

0

+

N−1∑

k=1

(|xt+1 − Fixt −Giut|2Q−1 + |yt −Hixt|2R−1)

}
(7)
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under the dynamics (1), is of the form

Vt,i(x, y[0:t−1]) = |x− x̆t,i|2Pt,i
+ ct,i,

where Pt,i and ct,i are generated as

P0,i = P0

Pt+1,i = Q+ FiPt,iF
⊤
i − FiPt,iH

⊤
i (R+HiPt,iH

⊤
i )−1HiPt,iF

⊤
i

x̆0,i = x0

x̆t+1,i = Fix̆t,i +Kt,i(yt −Hix̆t,i) +Giut

Kt,i = FiPt,iH
⊤
i (R+HiPt,iH

⊤
i )−1

c0,i = 0

ct+1,i = |Hix̆t,i − yt|2(R+HiPt,iH⊤
i )−1 + ct,i.

Proof. The proof builds on forward dynamic programming [Cox, 1964], and
is similar to one given in [Goodwin et al., 2005] but differ in the assump-
tion that Fi is not invertible. Further, the constant terms ct,i are explicitly
computed. The cost function VN

3 can be computed recursively

V1(x, y[0:0]) = |x− x0|2P−1
0

(8)

Vt+1(x, y[0:t]) = min
ξ
|x− Fξ −Gut|2Q−1 + |yt −Hξ|2R−1 + Vt(ξ, y[0:t−1]). (9)

With a slight abuse of notation, we assume a solution of the form Vt(x) =
|x− x̆t|P−1

t
+ ct and solve for the minimum

Vt+1(x) = min
ξ
|x−Gut|2Q−1 + |ξ|2F⊤Q−1F+H⊤R−1H+P−1

t

− 2(F⊤Q−1(x−Gut) +H⊤R−1yt + P−1
t x̆t)

⊤ξ + |yt|2R−1 + |x̆|P−1
t

.

Assume at this stage St := F⊤Q−1F + H⊤R−1H + P−1
t ≻ 0, then the

minimizing ξ⋆ is a stationary point

ξ⋆ = S−1
t (F⊤Q−1(x−Gut) +H⊤R−1yt + P−1

t x̆t)

and the resulting partial cost

|x− x̆t+1|2P−1
t+1

+ ct+1 = |x−Gut|2Q−1 + |yt|2R−1 + |x̆t|2P−1
t

− |F⊤Q−1(x−Gut) +H⊤R−1yt + P−1
t x̆t|2S−1

t
+ ct. (10)

3We relax the index i in this proof

63



Paper I. Minimax Adaptive Estimation for Finite Sets of Linear Systems

Since this should hold for arbitrary x and

x− x̆t+1 = (x−Gut)− (x̆t+1 −Gut),

we get
P−1
t+1 = Q−1 −Q−1FS−1

t F⊤Q−1

x̆t+1 −Gut = Pt+1Q
−1FS−1

t (H⊤R−1yt + P−1
t x̆t)

The expression for calculating Pt+1 can be further simplified using the Wood-
bury identity,

P−1
t+1 = (Q+ F (H⊤R−1H + P−1

t )−1F⊤)−1

Pt+1 = Q+ FPtF
⊤ − FPtH

⊤(R+HPtH
⊤)−1HPtF

⊤,

where we used the Woodbury matrix identity twice. Inserting these ex-
pressions into (10), applying the Woodbury matrix identity to S−1

t F⊤(Q −
FS−1

t F⊤)−1S−1
t + S−1

t = (St − F⊤Q−1F )−1 = (H⊤R−1H + P−1
t )−1 gives

ct+1 = −|H⊤R−1yt + P−1
t x̆t|2(H⊤R−1H+P−1

t )−1 + |yt|2R−1 + |x̆t|2P−1
t

+ ct

= |Hx̂t − yt|2(R+HPtH⊤)−1 + ct

Next we show that x̆ can be formulated as a state-observer

x̆t+1 −Gut = Pt+1Q
−1FS−1

t (H⊤R−1yt + P−1
t x̆)

= Pt+1Q
−1FS−1

t H⊤R−1(yt −Hx̆t)+

Pt+1Q
−1FS−1

t (H⊤R−1H + P−1
t )x̆t

Use the matrix inversion lemma (A+BCD)−1BC = A−1B(C+DA−1B)−1.

Pt+1Q
−1FS−1

t = −(−Q−1 +Q−1FS−1
t F⊤Q−1)−1Q−1FS−1

t

= −(−Q−1)−1(Q−1F )(St − F⊤Q−1F )−1

= F (H⊤R−1H + P−1
t )−1.

Insert in to the previous expression and conclude

x̆t+1 = Fx̆t +Kt(yt −Hx̆) +Gut,

where
Kt = FPtH

⊤(R+HPtH
⊤)−1

2
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Lemma 2
For x ∈ Rn, v, y ∈ Rm, a non-zero matrix A ∈ Rn×m, positive-definite

matrices X ∈ Rn×n and Y ∈ Rm×m, and a positive real number γN > 0 such
that

A⊤X−1A− γ2
NY −1 ≺ 0,

it holds that

max
v

{
|x−Av|2X−1 − γ2

N |y − v|2Y −1

}
= |x−Ay|2

(X−γ−2
N AY A⊤)−1 . (11)

Proof. Expanding the left-hand side of (11) and equating the gradient with
0 we get

max
v

{
|x−Av|2X−1 − γ2

N |y − v|2Y −1

}

= max
v

{
|v|2A⊤X−1A−γ2

NY + |x|2X−1 − γ2
N |y|2Y −1 − 2v⊤(A⊤X−1x− γ2

NY −1)y
}

= |x|2X−1 − γ2
N |y|2Y −1 − |A⊤X−1x− γ2

NY −1y|(A⊤X−1A−γ2
NY −1)−1

= |x|2X−1−X−1A⊤(A⊤X−1A−γ2
NY −1)−1A⊤X−1

+ |y|2−γ2
NY −1−γ2

NY −1(A⊤X−1A−γ2
NY −1)−1Y −1γ2

N

− 2x⊤X−1A(A⊤X−1A− γ2
NY −1)−1(−γ2

NY −1)y

= |x|2
(X−γ−2

N AY A⊤)−1 + |Ay|2
(X−γ−2

N AY A⊤)−1 − 2x⊤(X − γ−2
N AY A⊤)−1Ay

= |x−Ay|2
(X−γ−2

N AY A⊤)−1 . 2
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Paper II

Minimax Performance Limits for

Multiple-Model Estimation

Olle Kjellqvist

Abstract

This article concerns the performance limits of strictly causal state
estimation for linear systems with fixed, but uncertain, parameters
belonging to a finite set. In particular, we provide upper and lower
bounds on the smallest achievable gain from disturbances to the point-
wise estimation error. The bounds rely on forward and backward Ric-
cati recursions—one forward recursion for each feasible model and one
backward recursion for each pair of feasible models. We give simple
examples where the lower and upper bounds are tight.

1. Introduction

Multiple-model estimation is a valuable tool for state estimation of systems
that operate in different modes, for problems involving unknown parameters,
for dealing with systems subject to faults, and for target tracking. If the mode
is known, one selects the filter corresponding to the current mode. Otherwise,
one can use a bank of filters, one for each mode, and cleverly combine the
estimates. The latter approach is precisely what is called multiple-model
estimation.

Almost all of the literature assumes that the system is affected by stochas-
tic noise and that good noise statistics are available. Unfortunately, many
popular methods are sensitive to a mismatch between the assumed and ac-
tual noise statistics. This assumption limits the applicability of in control
systems, where we often use simplified models and disguise the model mis-
match as additive disturbances. These disturbances are sometimes poorly
modeled by Gaussian noise, and the noise statistics are often unknown.
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In this article, we consider the problem of predicting the state of a linear
system with unknown but fixed parameters belonging to a finite set. We as-
sume that the system is affected by disturbances but make no assumptions
about the noise statistics. We study the minimax performance level, defined
as the gain from disturbances to point-wise estimation error, and are con-
cerned with bounding the optimal (smallest achievable) performance level.
See Fig. 1 for an illustration of our problem.

1.1 Contributions
This author, and Rantzer, recently proposed an estimator that achieves the
optimal performance level but the performance level itself was not character-
ized [Kjellqvist and Rantzer, 2022b]. The main contribution of this article is
to extend the framework in [Kjellqvist and Rantzer, 2022b] with a method
to compute upper and lower bounds of the optimal performance level. These
bounds are computed offline, a priori, and depend on the pairwise interaction
between candidate models.

1.2 Background
The idea of using multiple models to reduce uncertainty is prevalent in many
fields. It has been used in adaptive estimation since the ’60s [Magill, 1965],
where it is called multiple-model estimation and in feedback control since
the ’70s [Athans et al., 1977], where it is called multiple-model adaptive con-
trol [Buchstaller and French, 2016], or supervisory control [Hespanha, 2001].
The concept has been known in machine learning at least since Dasarty and
Sheela introduced the “Composite classifier system” in 1979 [Dasarathy and
Sheela, 1979], and is commonly referred to as ensemble learning [Dietterich,
2000]. In the field of economics, the idea of multiple models is known as
model averaging [Steel, 2020], and was popularized by the work of Bates and
Granger [Bates and Granger, 1969].

The task usually falls into one of two categories: model selection, where
the goal is to find the best performing model, or model averaging, where
the goal is to use all the models to generate an estimate of some common
quantity. In this article, the focus is on predicting the state in dynamical
systems, which falls into the latter category.

When the model is known, the Kalman filter is a realization of many
reasonable estimation strategies. The minimum variance estimate, the
maximum-likelihood estimate, and the conditional expectation under white-
noise assumptions [Anderson and Moore, 1979] all coincide with the estimate
generated by the Kalman filter. The filter also has appealing deterministic
interpretations as the minimum energy estimate [Willems, 2004; Buchstaller
et al., 2020], and as Krener showed [Krener, 1980], it constitutes a minimax
optimal estimate.
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Interestingly, a minimax optimal estimate can be derived and computed
without explicit knowledge of its minimax performance level, a property
not shared with the H∞-optimal estimate [Shen and Deng, 1997] and con-
troller [Basar and Bernhard, 2008], which require knowledge of their per-
formance levels. Tamer Başar showed that the optimal performance level
can be obtained from the finite escape times of some related Riccati recur-
sions [Başar, 1991].

In the case of multiple fixed models, the different estimation strategies
give rise to different estimates1. The stochastic multiple-model approach to
adaptive estimation was introduced in the ’60s [Magill, 1965; Lainiotis, 1976]
for linear systems with fixed, but unknown parameters, and has numerous
applications in fault detection, state estimation and target tracking [Rong
Li and Jilkov, 2005]. This estimation algorithm applies the Bayes rule recur-
sively under white-noise assumptions on (w, v) and is well described in many
textbooks like [Gustafsson, 2000; Crassidis and Junkins, 2011; Anderson and
Moore, 1979]. The book [Anderson and Moore, 1979] also contains a conver-
gence result, stating that given a certain distinguishability condition2, the
conditional probability for the active model generating the data converges
to 1 as time goes to infinity. Vahid et al., [Hassani et al., 2009], proposed a
minimum-energy condition for multiple-model estimation and proved a con-
vergence result given a persistency-of-excitation-like criterion.

Multiple-model estimation has also been extended to the case with chang-
ing parameters, the case when i in Fig. 1 evolves on a Markov chain. One can,
in principle, solve exactly for the Baysian average, but this is computationally
intractable as the number of feasible trajectories grows exponentially with
time. Instead, there exist sub-optimal algorithms that cleverly combine es-
timates at each time-step, compressing the feasible trajectories, like Blom’s
Interacting-Multiple-Model algorithm, [Blom and Bar-Shalom, 1988]. This
idea was further generalized by Li and Bar-Shalom to the case when the
model set varies with time, [Li and Bar-Shalom, 1996].

The work in this article is inspired by recent progress in minimax adaptive
control [Rantzer, 2020; Rantzer, 2021; Kjellqvist and Rantzer, 2022a], and
in a broader sense, the search for performance guarantees in learning-based
control and identification [Matni et al., 2019; Mania et al., 2022].

1.3 Outline
The rest of this paper is organized as follows. We establish notation in Sec-
tion 2. Section 3 contains the problem formulation and solution. Illustrative
examples are in Section 4. We give conclusions and final remarks in Section 5.

1Except the maximum likelihood estimate under white-noise assumptions and a uniform
prior over M coinciding with the minimum-energy estimate.

2 Silvestre et al., [Silvestre et al., 2021], recently reexamined the distinguishability re-
quirements from a multiple-model adaptive control perspective.
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2 Notation

The proofs of the main results and supporting Lemmata are contained in the
appendix.

2. Notation

The set of n×m-dimensional matrices with real coefficients is denoted Rn×m.
The transpose of a matrix A is denoted AT. For a symmetric matrix A ∈
Rn×n, we write A ≻ (⪰)0 to say that A is positive (semi)definite. The n×n-
dimensional identity matrix is denoted In, and the n ×m-dimensional zero
matrix is denoted 0n×m. Given x ∈ Rn and A ∈ Rn×n, |x|2A := xTAx. For
a vector xt ∈ Rn we denote the sequence of such vectors up to time t by
x[0:t] := (xk)

t
k=0. For a sequence of square matrices (Ai)

M
i=1, we denote the

corresponding block-diagonal matrix as BlockDiag(Ai)
M
i=1.

3. Minimax performance limits

3.1 Problem statement
In this article, we consider strictly causal3 state estimation for uncertain
linear systems of the form

xt+1 = Fxt + wt, (F,H) ∈M
yt = Hxt + vt, 0 ≤ t ≤ N − 1,

(1)

where xt ∈ Rn, and yt ∈ Rm are the states and the measured output at time t.
wt ∈ Rn and vt ∈ Rm are unmeasured process disturbance and measurement
noise. We employ a deterministic framework and make no assumptions on the
distributions of wt and vt. Instead, they are adversarially chosen to maximize
the objective of a related minimax problem that we will define shortly. The
model, (F,H) ∈ Rn×n×Rm×n is unknown but fixed, belonging to a (known)
finite set

M = {(F1, H1), . . . , (FM , HM )}.

The state estimate at time N , x̂N , is generated by a causal estimator, µ,
that depends on previous measurements but is unaware of the model, (F,H),
and noise, (w, v), realizations,

x̂N = µ(yN−1, . . . , y0).

3The ideas in this paper extend to other information structures like filtering, k-step
prediction, and smoothing, but they require some extra steps.
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We are interested in describing the smallest γN , denoted γ⋆
N , such that

the below expression has finite value.

J⋆
N (x̂0) := inf

µ
sup

x0,w[0:N−1],v[0:N−1],i

{
|xN − x̂N |2

− γ2
N

(
|x0 − x̂0,i|2P0,i

+

N−1∑

t=0

[
|wt|2Q−1

i

+ |vt|2R−1
i

])}
, (2)

where the trajectory x[0:N ] in (2) is generated according to (1) with (Fi, Hi) ∈
M. The problem set-up is a two-player game where the adversary picks the
disturbance sequences w[0:N−1] and v[0:N−1], the initial state x0, and the
active model i = 1, . . . ,M . The minimizing player picks the estimation policy
µ. The matrices Qi ∈ Rn×n and Ri ∈ Rm×m are positive definite matrices
that weights the norms on w and v. The matrices P0,i ∈ Rn×n are positive
definite and quantify the uncertainty in the estimates of the initial states
x̂0,i.

3.2 Forward recursions
The forward recursions describe the worst-case disturbances consistent with
the dynamics and an observed trajectory. They are also fundamental in con-
structing a minimax-optimal estimator µ⋆. The recursions are equivalent to
those of a Kalman filter of a system driven by zero-mean independent white
noise sequences wt and vt with covariance matrices Qi and Ri respectively,

Kt,i = FiPt,iH
T
i (Ri +HiPt,iH

T
i )

−1,

Pt+1,i = Qi + FiPt,iFi −Kt,i(Ri +HiPt,iH
T
i )K

T
t,i.

(3)

The relation between the stochastic interpretation and our determinis-
tic framework lies in that the least-squares estimate coincedes with the
maximum-likelihood estimate under white-noise assumptions.

Remark 1
P0,i is a regularization term that penalizes deviations from an initial state
estimate x̂0,i and can be interpreted as the covariance of the initial estimate
x̂0,i. It is practical to choose P0,i as the stationary solution to (3), and we
will do so in the sequel to simplify the notation by removing the time index.
The results in this section are valid for any positive semi-definite choice of
P0,i. However, the resulting observer dynamics will be time-varying. We leave
it to the reader to reintroduce the dependence on t.

The solution, Pi, to the Riccati equation (3) quantifies the uncertainty of
the state estimate given the observations y0:t and the model i and bounds the
smallest achievable gain from below if the model is known. This is formalized
in the following proposition, whose proof is in the Appendix.
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3 Minimax performance limits

Proposition 1
γN ≥ γ⋆

N only if Pi ⪯ γ2
NI for all i = 1, . . . ,M .

In our previous work, [Kjellqvist and Rantzer, 2022b], we show how to
construct the minimizing argument µ⋆ of (2) in the case of output-prediction.
The estimator uses the forward recursions (3) and requires a γN that fulfills
Proposition 1. The following proposition shows how to construct a state
predictor that is optimal for (2).

Proposition 2—Minimax multiple-model estimator
Given matrices Fi ∈ Rn×n and Hi ∈ Rm×n, positive definite Qi, P0,i ∈
Rn×n and Ri ∈ Rm×m for i = 1, . . . ,M . With P0,i, Pi and Ki as the sta-
tionary solutions to (3),

R̃i = Ri +HiPiH
T
i , (4)

a quantity γN such that γ2
NI ≻ Pi, the below estimate achieves the infimum

in (2):

x̂⋆
N = min

x̂N

max
i

{
|x̂N − x̆N,i|2(I−γ−2Pi)−1 − γ2

NcN,i

}
,

where x̆N,i ∈ Rn and cN,i ∈ R are generated according to

x̆0,i = x0, c0,i = 0, (5a)

x̆t+1,i = Fix̆t,i +Ki(yt −Hix̆t,i), (5b)

ct+1,i = |Hix̆t,i − yt|2R̃−1
i

+ ct,i. (5c)

Proof. The proof is identical to that of Theorem 1 in [Kjellqvist and Rantzer,
2022b] but with the following modifications: P0,i is replaced by the stationary
solution to (3) leading to Kt,i and Pt,i being replaced by Ki and Pi, the term
ŷN −HixN is replaced by x̂N − xN . 2

3.3 Backward recursions
The backward recursions are similar to those of the linear-quadratic regu-
lator and relate to the worst-case trajectories, in contrast to the forward
recursions, which relate to the worst-case disturbances consistent with any
given trajectory. They play no role in constructing the optimal estimator, µ⋆,
once a performance level γ has been found, but form the basis for a priori
analysis of the optimal performance level γ⋆

N that holds for any realization.
Let

F ij =

[
Fi −KiHi 0n×n

0n×n Fj −KjHj

]
, Kij =

[
Ki

Kj

]
.

F ij
t corresponds to the closed-loop of a pair (i, j) of Kalman filters with filter

gains Ki and Kj as in (3). We will express the necessary and sufficient con-
ditions using the following Riccati recursions. Given some symmetric matrix
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T ij
N ∈ R2n×2n and t = N − 1, . . . , 0,

Xij
t = (Kij)TT ij

t+1K
ij + (R̃−1

i + R̃−1
j ),

Lij
t = (Xij

t )−1
(
(Kij)TT ij

t+1F
ij −

[
R̃−1

i Hi R̃−1
j Hj

])
,

T ij
t = (F ij)TT ij

t+1F
ij − (Lij

t )
TXij

t Lij
t +

[
HT

i R̃
−1
i Hi

HT
j R̃

−1
j Hj

]
.

(6)

For these recursions to be well-defined, the matrix Xij
t must be invertible.

The conditions for bounding γ⋆
N are related to the positive definiteness of Xij

t

and are summarized in Theorems 1 and 2 below. The first concerns sufficient
conditions and can be used to obtain upper bounds.

Theorem 1—Sufficient Condition
Given matrices Fi ∈ Rn×n and Hi ∈ Rm×n, positive definite Qi ∈ Rn×n

and Ri ∈ Rm×m for i = 1, . . . ,M . Further, let P0,i = Pi and Ki be the
stationary solutions to (3), and consider a quantity γN such that γ2

NI ≻ Pi.
Let Q ∈ Rn×n be a positive definite matrix such that Q ⪯ I − γ−2

N Pi for
all i = 1, . . . ,M and initialize the backward recursions (6) with the terminal
state

T ij
N = −

[
Q−1 −Q−1

−Q−1 Q−1

]
/γ2

N .

Assume that Xij
t in (6) is negative definite for all i, j. Then γ⋆

N ≤ γN and

J⋆
N (x̂0) ≤

1

2
max
i,j

{
−γ2

N

[
x̂0,i

x̂0,j

]T
T ij
0

[
x̂0,i

x̂0,j

]}
.

The second theorem concerns necessary conditions and helps obtaining
lower bounds.

Theorem 2—Necessary Condition
Given matrices Fi ∈ Rn×n and Hi ∈ Rm×n, positive definite Qi ∈ Rn×n and
Ri ∈ Rm×m for i = 1, . . . ,M . Further, let P0,i = Pi and Ki be the stationary
solutions to (3), and consider a quantity γN such that γ2

NI ≻ Pi. Initialize
the backward recursion (6) with the terminal state

T ij
N = −

[
Qij −Qij

−Qij Qij

]
/γ2

N ,

Qij = (2I − γ−2
N (PN,i + PN,j))

−1.

If Xij
t ̸⪯ 0 for some pair i, j and 0 ≤ t ≤ N − 1, then γ⋆

N > γN . If Xij
t ≻ 0,

for all t = 0, . . . , N − 1 then

J⋆
N (x̂0) ≥

1

2
max
ij

{
−γ2

N

[
x̂0,i

x̂0,j

]T
T ij
0

[
x̂0,i

x̂0,j

]}
.
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4 Examples

Table 1. Parameters for the systems in Fig. 2a–2d. In all cases Q1 = Q2 = R1 =
R2 = 1 and P0,i is the stationary solution to (3).

System F1 F2 H1 H2 P1 P2

2a 1.1 1.1 1 -1 1.77 1.77
2b 0.9 0.9 1 -1 1.48 1.48
2c 0.7 0.9 1.5 1 1.16 1.48
2d 2 1 1 16 4.23 1.00

Remark 2
Theorems 1 and 2 give upper and lower bounds on J⋆

n that can be translated
upper and lower bounds on γ⋆

N by bisecting over γN .

4. Examples

Figures 2a–2d show γ⋆
N along with upper bounds, γN , and lower bounds, γ

N
for four different pairs of scalar systems, defined in Table 1. The optimal per-
formance level, γ⋆

N , was computed using the construction in Appendix A.4,
gridding the probability simplex {(θ, 1−θ) : θ = 0, 10−3, . . . , 1−10−3, 1} and
the bounds were computed using Theorem 1 and 2, bisecting over γ to an
accuracy of ±10−3. The systems in Fig. 2a are unstable and indistinguish-
able, and the resulting optimal performance level γ⋆

N grows exponentially in
N . Fig. 2b is also indistinguishable, but here both systems are stable. The
optimal performance level γ⋆

N is bounded and is equal to the lower bound
γ
N
. This is because the systems are BIBO stable, so picking x̂N = 0 results

in an estimation error bounded by the disturbance’s norm. Fig. 2c contains
two stable systems that are distinguishable. The performance level γ⋆ is sim-
ilar to the case where the system is known, and the bounds are close. γ⋆

N

is smaller than the other examples. Fig. 2d contains two unstable distin-
guishable systems. Here γ⋆

N is bounded and approaches the upper bound γN .

5. Conclusions

This article proposed a method to compute upper and lower bounds for the
optimal minimax performance level for uncertain linear systems, where the
uncertainty belongs to a finite set. The bounds are computed by evaluating
the positive-definiteness of matrices appearing in coupled Riccati recursions.
The performance level refines the notion of distinguishability in a priori anal-
ysis of the problem set-up for multiple-model estimation, and answers the
question “To what extent can I guarantee the performance multiple-model
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Figure 2. Numerically evaluated optimal performance levels, upper and lower
bounds for the four system pairs considered in Section 4. Only stable and or dis-
tinguishable systems have bounded performance levels. In two pairs γ⋆

N achieves
the lower bound, and in Fig 2d it approaches the upper bound.
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6 Acknowledgements

estimation applied to my problem?”. Our experiments indicate that if simi-
lar output trajectories come from similar state trajectories, the gain is small.
This agrees with the intution that such systems generate similar estimates,
and that in order for these estimates to be poor, the disturbances must be
large. However, if similar output trajectories come from different state tra-
jectories, the state estimates will be different even for small disturbances,
and as the optimal estimate is an interpolation of the estimates from the
different models, the term x− x̂N will be large even for small distrubances.
The provided examples show that there are systems where the optimal per-
formance level is equal to its lower bound, approaches its upper bound, and
where neither bound is ever tight.

As with H∞-control and estimation, the results are valid for any dis-
turbance realization but are conservative if good disturbance statistics are
available.

5.1 Future work
The numerical examples show that the bounds are tight for some systems, but
not for others. The difference between the upper and lower bounds trivially
bounds the conservativeness, but obtaining general conditions, and classify-
ing systems where the bounds are tight, would enhance the practical utility
of the results.

In this work, the system parameters Fi and Hi are assumed to be fixed.
The extension to time-varying parameters is straightforward, but the exten-
sion to jump-linear systems is not. The reason is that the number of feasible
parameter trajectories grows exponentially with time. There are heuristic
ways of combining the Kalman filter estimates from different models, such
as Blom’s interacting-multiple-model estimator, [P. Blom, 1984].

The worst-case history can be losslessly compressed to quadratic func-
tions, but the number of functions will grow exponentially in time. How-
ever, it is possible to upper bound the time-evolution of the worst-case data-
consistent parameter realization by updating a constant number of quadratic
functions, similar to how we combine many Kalman-filter estimates into one
estimate in this paper. It would be interesting to exploit this bound to extend
the results to jump-linear systems.
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Appendix

A. Proofs

This section proves Theorems 1 and 2. In doing so we obtain an expression
that can be used to evaluate the value (2), but is computationally intractable
for problems with uncertainties belonging to moderately-sized sets.

A.1 Proof strategy
We reparameterize the disturbance trajectory (w[0:N−1], v[0:N−1]) in the
state-output trajectory and the active model (x[0:N−1], y[0:N−1], i). This repa-
rameterization allows us to partially switch the order of the minimization and
the maximization, as µ is a function of y[0:N−1], yielding a problem of the form
maxy[0:N−1]

minµ maxi,x[0:N]
. Previous work, [Kjellqvist and Rantzer, 2022b],

shows how to maximize over x[0:N ] using forward dynamic programming,
resulting in the forward Riccati recursions (3).

We then reformulate the maximization over the feasible set to maximizing
over its convex hull. This reformulation allows us to switch the order of
minimizing with respect to µ and maximizing with respect to the model.
The catch is that while the value is unchanged, the maximizing θ is not
necessarily the same. As we are interested in the value, we can ignore this
issue.

The inner minimization problem is unconstrained and convex-quadratic
in the estimate x̂N , which has a closed-form solution. The maximization
over the convex hull of the model set is then bounded from above and from
below by a maximum over a finite number of functions that linear-quadratic
regulator costs in y[0:N−1], which has a solution expressed by the backward
Riccati recursion, (6).

A.2 Reparameterization
The disturbance wt is uniquely determined by F = Fi and (xt+1, xt), and
vt is uniquelly determined by H = Hi, yt and xt. As the maximizing player
is aware of the dynamics, i, we can substitute wt = xt+1 − Fixt and vt =
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yt −Hixt into (2),

J⋆
N (x̂0) = inf

µ
sup

x[0:N],y[0:N−1],i

{
|xN − x̂N |2 − γ2|x0 − x̂0,i|2P0,i

− γ2
N−1∑

t=0

[
|xt+1 − Fixt|2Q−1

i

+ |yt −Hixt|2R−1
i

]}
. (7)

Furthermore, as µ is a function of y[0:N−1], we can move the maximization
over output trajectories outside of the minimization and minimize directly
over the estimate x̂N ∈ Rn. Consider the inner maximization over state
trajectories, which is a function of the observations and estimates,

J inner
N (y[0:N−1], x̂N , x̂0) = sup

x[0:N],i

{
|xN − x̂N |2 − γ2

N |x0 − x̂0,i|2P0,i

− γ2
N−1∑

t=0

[
|xt+1 − Fixt|2Q−1

i

+ |yt −Hixt|2R−1
i

]}
. (8)

Then (7) can be written as

J⋆
N (x̂0) = sup

y[0:N−1]

inf
x̂N

J inner
N (y[0:N−1], x̂N , x̂0). (9)

A.3 Forward recursion
Following the proof of Theorem 1 in [Kjellqvist and Rantzer, 2022b], with
P0,i as the stationary solution to (3), we see that the value inner optimization
problem (8) is equal to

sup
i,xN

{
|x̂N − xN |2 − γ2

(
|xN − x̆N,i|2P−1

i

+ cN,i

)}

= max
i

{
|x̂N − x̆N,i|2(I−γ−2Pi)−1 − γ2cN,i

}
, (10)

if I ≻ γ−2P−1
i for all i. The value is unbounded if I ⪰̸ γ−2P−1

i for some i,
which proves Proposition 1. Proposition 2 shows how to compute x̆N,i, Pi

and cN,i in (10)

A.4 Exact computations of J⋆
N

By substituting (10), we see that the value of (9) is equal to

sup
y[0:N−1]

min
x̂N

max
i

{
|x̂N − x̆N,i|2(I−γ−2Pi)−1 − γ2cN,i

}
. (11)
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Maximizing over the finite set M in (11) is equivalent to optimizing for
convex combinations over the probability simplex Θ = {θ ∈ Rn : 0 ≤ θi ≤
1,
∑M

i=1 θi = 1}. The equivalence is because the optimal value of a linear
program over a simplex is located on a vertix. As (11) is convex in x̂, the
minimizing x̂ can be bounded in terms of x̆N,i. The convex combination is
affine in θ, so Von Neumann’s minmax theorem applies and the value (11) is
equal to

sup
θ∈Θ

min
x̂

{
M∑

i=1

θi

(
|x̂− x̆N,i|2QN,i

− γ2cN,i

)}
,

where QN,i = (I − γ−2Pi)
−1. Applying Lemma 3 to the inner minimization

problem means that the value (11) is equal to

sup
y[0:N−1],θ

{
M∑

i=1

θi

(
|x̆i,i|2QN,i

− γ2cN,i

)
−
∣∣∣

M∑

i=1

θiQN,ix̆N,i

∣∣∣
2

(
∑

θiQN,i)−1

}
. (12)

For a fixed θ, this is a sequential quadratic optimization problem in y that
can be solved using dynamic programming. In fact this can be reformulated
into a standard linear-quadratic regulator problem, except that the terminal
penalty is indefinite. This indefinite term will, for small values of γN , lead
to a loss of concavity in y[0:N−1]. This means that the value is unbounded,
and γN < γ⋆

N . Larger values of γN will compensate for the indefinite term
and ensure concavity in y[0:N−1]. Testing for concavity amounts to evaluating
whether Xt in (16) is positive definite for all t. If concavity in y[0:N−1] holds
for all θ ∈ Θ, then the value is finite and γN ≥ γ⋆

N . Define

F ≜ BlockDiag
(
{Fi −KiHi}Mi=1

)

x̆t ≜
[
x̆Tt,1 · · · x̆Tt,M

]T
, K ≜

[
KT

1 · · · KT
M

]T
.

Then, the multi-observer update (5b) becomes,

x̆t+1 = Fx̆t +Kyt.

Further, let

QN ≜ BlockDiag{θiQN,i}Mi=1 −




θ1QN,1

...
θMQN,M



(
(
∑

θiQN,i)
−1
)−1




θ1QN,1

...
θMQN,M




T

,

(13)
[
Q NT

N R

]
≜

[
BlockDiag

(
{−HT

i }Mi=1

)

I · · · I

]

× BlockDiag
(
{θiR̃−1

i }Mi=1

)[
BlockDiag

(
{−HT

i }Mi=1

)

I · · · I

]T
, (14)
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where × denotes standard matrix product. With

l(θ, x̆t, yt) = γ2
N

(
|x̆t|2Q − 2yTt Nx̆t + |yt|2R

)
,

(9) becomes

J⋆
N (x̂0) = − inf

θ
inf

y[0:N−1]

{
|x̆t|2QN

+

N−1∑

t=0

l(θ, x̆t, yt)

}

︸ ︷︷ ︸
≜JN (θ,x̂0)

. (15)

It is apparent that l is strictly convex in yt. However, the terminal penalty
matrix, QN , is indefinite, which may cause (15) to lose convexity and become
unbounded.

Remark 3
The stage cost is a convex combination of the Kalman filter residuals

l(θ, x̆t, yt) = γ2
N

∑M
i=1 (θict,i).

The Riccati recursions corresponding to the linear-quadratic regulator are
well described in many textbooks, for instance in [Åström and Wittenmark,
1997, Chapter 11.2], and can be used to compute the value provided that
θ ∈ Θ fixed:

Xt = KTTtK+R, Lt = X−1
t (KTTtF−N)

Tt−1 = FTTtF+Q− LT
tXtLt.

(16)

The relationship between the solution to the above Riccati equations and the
value of the game are summarized in the below lemma.

Lemma 1
Consider the backward Riccati equations above with terminal condition TN =
−QN/γ2

N . Let J⋆
N (x0) be the value of the game (2) and JN (θ, x0) be value

of the inner, sequantial, optimization problem in (15). If Xt ̸⪯ 0 for some
θ ∈ Θ, then J⋆

N (x0) is unbounded. If Xt ≻ 0 for all θ ∈ Θ then JN (θ, x̂0) =
−γ2

N |x̆0|2T0
, and

J⋆
N (x̂0) = max

θ
(JN (θ, x̂0)) .
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B. Upper- and lower bounds of J⋆
N

This section develops upper and lower bounds on the objective, (2). As the
maximum is greater than the average of any two points, we have that

J⋆
N (x̂0) ≥ sup

i,j,y[0:N−1]

min
x̂N

1

2

{
|x̂N − x̆N,i|2(I−γ−2Pi)−1

− γ2cN,i + |x̂N − x̆N,j |2(I−γ−2Pj)−1 − γ2cN,j

}

= sup
i,j,y[0:N−1]

1

2

{
|x̆N,i − x̆N,j |2(2I−γ−2Pi−γ−2Pj)−1 − γ2cN,i − γ2cN,j

}

≜ max
i,j

J ij
N (x̂0). (17)

Thus γN < γ⋆
N only if J ij

N (x̂0) is bounded for all pairs (i, j). Towards finding
a sufficient condition, let S ∈ Rn×n be a positive definite matrix such that
S ⪯ I − γ−2Pi for all i = 1, . . . ,M . Then, applying Lemma 2 to (12), we
have

J⋆
N (x̂0) ≤ max

y,θ

{ M∑

i,j

θiθj |x̆N,i − x̆N,j |2S−1/2− γ2
N

∑

i

θicN,i

}

≤ 1

2
max

y
max

θ

M∑

i

θi

[
− γ2cN,i +max

σ

{ M∑

j

σj(|x̆N,i − x̆N,j |2S−1 − γ2cN,j)
}]

= max
i,j

max
y

1

2

{
|x̆N,i − x̆N,j |2S−1 − γ2(cN,i + cN,j)

}

︸ ︷︷ ︸
J

ij
N (x̂0)

. (18)

Thus, if J
ij

N (x̂0) is bounded for all pairs (i, j), then γ⋆
N ≤ γN . The only

difference between the expressions of J
ij
(x̂0) and J ij(x̂0) is the penalty of

the term |x̆N,i − x̆N,j |2∗.
Theorems 1 and 2 follow from applying Lemma 1 to the upper bound

J
ij

N (x̂0) in (18) and the lower bound J ij
N (x̂0) in (17) with θi = θj =

1
2 .
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C Lemmata

C. Lemmata
Lemma 2
Let Xi ≻ 0 and θi ∈ (0, 1) for i = 1, . . . ,M and that

∑M
i=1 θi = 1. Let

S =
∑

θMi=1X
−1
i , then

min
v

{∑
θi|v − xi|2X−1

i

}
=

M∑

i=1

θi

(
|X−1

i xi|2Xi−S−1

+
1

2

M∑

j=1

θj
(
|X−1

i xi −X−1
j xj |2S−1

) )
.

Proof. As Xi ≻ 0, we have that
∑

θiX
−1
i ≻ 0 and the (unique) minimum

is a stationary point. We have

min
v

{∑
θi|v − xi|2X−1

i

}
=

M∑

i=1

θi|xi|2X−1
i

− |
M∑

i=1

θiX
−1
i xi|2(∑M

1 θiX
−1
i )−1

With S := (
∑M

1 θiX
−1
i ), we have that

− |
M∑

i=1

θiX
−1
i xi|2S = −

M∑

i=1

M∑

j=1

θiθjx
⊤
i X

−⊤
i SX−1

j xj

=
1

2

M∑

i=1

M∑

j=1

θiθj
(
|X−1

i xi −X−1
j xj |2S

)
−

M∑

i=1

θi|X−1
i xi|2S . 2

Lemma 3—Interpolation

Let zk ∈ Rn and Zk ∈ Rn×n be matrices such that
∑K

k=1 Zk ≻ 0 for k =
1, . . . ,K. Then,

min
x

{
K∑

k=1

|x− zk|2Zk

}
=

K∑

k=0

|zk|2Zk
−
∣∣∣∣∣

K∑

k=1

Zkzk

∣∣∣∣∣

2

(
∑K

k=1 Zk)−1

.

Proof. The problem is unconstrained and strictly convex—the minimizing
solution is given by the stationary point. 2
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Paper III

Learning-Enabled Robust Control with

Noisy Measurements

Olle Kjellqvist Anders Rantzer

Abstract

We present a constructive approach to bounded ℓ2-gain adaptive con-
trol with noisy measurements for linear time-invariant scalar systems
with uncertain parameters belonging to a finite set. The gain bound
refers to the closed-loop system, including the learning procedure. The
approach is based on forward dynamic programming to construct a
finite-dimensional information state consisting of H∞-observers paired
with a recursively computed performance metric. We do not assume
prior knowledge of a stabilizing controller.

1. Introduction

The great control engineer is lazy; her models are simplified and imperfect,
the operating environment may be poorly controlled — yet her solutions per-
form well. Robust control provides excellent tools to guarantee performance
if the uncertainty is small [Zhou and Doyle, 1998]. If the uncertainty is large,
one can perform laborious system identification offline to reduce model un-
certainty and synthesize a robust controller. An appealing alternative is to
trade the engineering effort for a more sophisticated controller, particularly
a learning-based component that improves controller performance as more
data is collected. However, for such a controller to be implemented, it had
better be robust to any prevalent unmodelled dynamics. Currently, there
is considerable research interest in the boundary between machine learn-
ing, system identification, and adaptive control. For a review, see for exam-
ple [Matni et al., 2019]. Most of the studies concern stochastic uncertainty
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Linear system with
uncertain parameters

Unmodelled
dynamics

Learning-Enabled
Robust Controller

noisy
measurements

noise and
disturbances

errors

Figure 1. For a finite set of linear time-invariant models, the Learning-Enabled
Robust Controller minimizes the ℓ2-gain from noise and disturbances to errors for
any realization of the unknown model parameters. This gain bound guarantees
robustness to unmodelled dynamics.

and disturbances and assume perfect state measurements. Recently, works
connecting to worst-case disturbances have started to appear. For example,
non-stochastic control was introduced for known systems with unknown cost
functions in [Agarwal et al., 2019] and extended to unknown dynamics and
output feedback, under the assumption of bounded disturbances and prior
knowledge of a stabilizing proportional feedback controller in [Simchowitz,
2020]. In [Dean et al., 2019] the authors leverage novel robustness results
to ensure constraint satisfaction while actively exploring the system dynam-
ics. In this contribution, the focus is on worst-case models for disturbances
and uncertain parameters as discussed in [Didinsky and Basar, 1994], [Vin-
nicombe, 2004] and more recently in [Rantzer, 2021], but differ in that we
consider output-feedback. See Figure 1 for an illustration of the considered
problem. Unlike most recent contributions, the approach taken in this paper:

1. does not assume prior knowledge of a stabilizing controller. In par-
ticular, we allow for uncertain systems that a linear controller cannot
stabilize,

2. assumes that the measurements are corrupted by additive noise,

3. provides guarantees on the ℓ2-gain from disturbance and noise to state
for the entire control duration.

1.1 Contributions and outline
We formalize the problem of finding a causal output-feedback controller with
guaranteed finite ℓ2-gain stability that is agnostic to the realization of the
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2 Notation

system parameters in Section 3. Section 4 is devoted to characterizing the
Learning-Enabled Robust Controller in known or computable quantities. In
Theorem 1 we show that ensuring finite ℓ2-gain is equivalent to running one
H∞-observer for each feasible model, checking the sign of the associated cu-
mulative cost and that each cumulative cost can be computed recursively.
We show that it is necessary and sufficient to consider observer-based feed-
back in Theorem 2. In other words, the history can be compressed to a finite
number of recursively computable quantities, growing linearly in the number
of feasible models. In Section 5, we apply these results to synthesize a con-
troller for an integrator with unknown input sign with a guaranteed bound
on the ℓ2-gain from noise and disturbances to error. All results in this paper
are in discrete-time and for scalar systems, but sections 3 and 4 are readily
extended to multivariable time-invariant systems.

2. Notation

The set of n×m matrices with real coefficients is denoted Rn×m. The trans-
pose of a matrix A is denoted A⊤. For a symmetric matrix A ∈ Rn×n and a
vector x ∈ Rn we use the expression |x|2A as shorthand for x⊤Ax. We write
A ≺ (⪯) 0 to say that A is positive (semi)definite. We refer to the value of
a signal w at time t as w(t). The space of square-summable sequences from
{T0, T0 + 1, . . . , Tf} taking values in R is denoted ℓ2[T0, Tf ]. For a set S, we
let #(S) be the cardinality.

3. Learning-enabled control with guaranteed finite ℓ2
gain

Given a positive quantity γ > 0 and a finite set of feasible modelsM⊂ R3,
we concern ourselves with the uncertain linear system

x(t+ 1) = ax(t) + bu(t) + w(t), x(0) = x0

y(t) = cx(t) + v(t), t ≥ 0
(1)

where the control signal u(t) ∈ R is generated by a causal output-feedback
control policy

u(t) = µt (y(0), y(1), . . . , y(t)) . (2)

In (1), x(t) ∈ R is the state, y(t) ∈ R is the measurement, the model
M := (a, b, c) is unknown but belongs toM. The noise v and disturbances w
satisfy w, v ∈ ℓ2([0, T ]) for all T ≥ 0. We are interested in control that makes
the closed-loop system finite gain, with gain from (w, v) to x bounded above
by γ. That is,
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α(T ) :=
∑

τ≤T+1

x(τ)2 − γ2
∑

τ≤T

w(τ)2 − γ2
∑

τ≤T+1

v(τ)2 − PMx(0)2 ≤ 0 (3)

must hold for all T ≥ 0, any admissible disturbances, initial state and the
possible realizations M of (1). PM quantifies prior information on the initial
state and is taken as a positive solution to the Riccati equation

PM =
(
a2
(
PM + γ2c2 − 1

)−1
+ γ−2

)−1

. (4)

In this article, we explicitly construct controllers satisfying the finite-gain
property and give conditions under which such controllers exist for the case
when c = 1 and b = ±1.

Remark 1
The cases b = −1 and b = 1 cannot be simultaneously stabilized by a static
feedback controller when a ≥ 1

Remark 2
PM could be any positive quantity. Our choice leads to stationary observer
dynamics, simplifying the coming sections.

4. An information-state condition

In this section we will apply a slight modification to the H∞-observer
from [Basar and Bernhard, 2008] to bound (3) in a way which leads itself to
recursive computation. We need the following lemma:

Lemma 1—Past cost
Given a known model M = (a, b, c), a positive quantity γ, assume that the
Riccati equation (4) has a positive solution PM . For fixed u ∈ ℓ2([0, t]), y ∈
ℓ2[0, t]) and x(t+ 1) ∈ R, we have that

sup
w,v∈ℓ2[0,t],x0∈R

{∑

τ≤t

x(τ)2 − γ2
∑

τ≤t

(
w(t)2 + v(t)2

)
− Px(0)2 : s.t. (1)

}

= −PM (x(t+ 1)− x̂M (t+ 1))2 + lM (t+ 1). (5)
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4 An information-state condition

The state observer x̂M (t), and the past cost lM (t) are defined by the recursion

KM =
γ2c2M

PM + γ2c2 − 1
, ŵM (t) =

x̂M (t)

PM + γ2c2 − 1
,

x̂M (t+ 1) = ax̂(t) + bu(t) +KM (y(t)− cx̂(t)) + ŵM (t), x̂M (0) = 0, (6)

lM (t+ 1) = lM (t)− PM x̂M (t)2 − γ2(y(t))2 +

(
PM x̂M (t) + γ2cy(t)

)2

PM + γ2c2 − 1
, (7)

lM (0) = 0.

Remark 3
The observer form (6) makes sense for linear systems where we can design a
state-feedback controller and observer separately and then join them together
using the separation principle in [Basar and Bernhard, 2008]. The assump-
tions for the separation principle are not satisfied in our case, so we find it
simpler to use the equivalent form

x̂M (t+ 1) = âMx(t) + bu(t) + ĝMy(t),

where âM = aPM/(PM + γ2c2 − 1) and ĝM = γ2ac/(PM + γ2c2 − 1).

Proof Lemma 1. The system is equivalent to (6.1) and (6.2) in [Basar and
Bernhard, 2008, p. 243] but with Dk =

[
I 0

]
and Ek =

[
0 I

]
. Note

that the term −PMx(0)2 in (5) ensures that Pk+1 = Pk = . . . = PM , i.e.
stationarity. Explicitly computing lM (t) requires some extra bookkeeping; in
6.35 the terms independent of ξ and w is equivalent to γ2|y(t)|2(HH⊤)−1 +

|x̂(t)|2P (t)−|u(t)|2R− l(t), the notational differences are (HH⊤)→ N , P (t)→
K(t) and l(t)→ c(t). After application of Lemma 6.2 on p. 259 we identify

mk = −|P (t)x̂(t) + γ2C⊤(HH⊤)−1y(t)|2(P (t)+γ2C⊤(HH⊤)−1C−Q)−1

+ γ2|y(t)|2(HH⊤)−1 + |x̂(t)|2P (t) − |u(t)|2R − l(t)

and conclude lM (t+ 1) = −mk. 2

Lemma 1 lets us express the worst-case accumulated cost compatible with the
dynamics as a function of the past trajectory (u, y) and the next state x(t+1),
if the dynamics M of the system (1) are known. As x(t+1) changes, so does
the set of trajectories w, v that are compatible with x(t+1). In particular, the
entire sequence of a maximizing trajectory will change as x(t+ 1) is varied.
With that in mind, it is remarkable that the effect to the accumulated cost
is captured completely by the term −P

(
x(t+ 1)− x̂(t+ 1)2

)
. The second

term l(t+ 1) contains the terms of the cost that depend only on past inputs
and outputs and is independent of x(t+ 1).
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We will study the value of the left-hand side of (3) for each model sep-
arately. Define for M = (a, b, c) ∈ M, y ∈ ℓ2[0, t] and an arbitrary output-
feedback control policy µ the quantities

αM (t) := sup
w,v∈ℓ2[0,t],x0∈R

{α(t) : (a, b, c) = M, subject to (1) and (2)} (8)

Then maxM αM (t) is the largest possible value of (3) at time t. In the
following theorem, we use Lemma 1 to express αM recursively and construct
equivalent conditions using computable quantities.

Theorem 1—Information-state condition
Given a causal output-feedback control policyµ, a positive quantity γ, and
an uncertainty set M. Assume that for all (a, b, c) = M ∈ M the Riccati
equation

PM =

(
a2

PM + γ2c2 − 1
+ γ−2

)−1

(9)

a positive solution PM and let

âM =
aPM

PM + γ2c2 − 1
, ĝM = γ2 ac

PM + γ2c2 − 1
.

Further let

x̂M (t+ 1) = âM x̂M (t) + bu(t) + ĝMy(t), x̂M (0) = 0, (10)

lM (t+ 1) = lM (t)− PM x̂M (t)2 − γ2y(t)2 +
(PM x̂M (t) + γ2cy(t))2

PM + γ2c2 − 1
, (11)

lM (0) = 0. (12)

Then the closed-loop system (1), (2) with control µ is finite gain for any
realization M ∈ M if and only if lM (t+ 1) ≤ 0 holds for all M ∈ M, t ≥ 0
and y ∈ ℓ2([0, t]). If PM < 1 for some M , γ is not an upper bound of the
ℓ2-gain from disturbance to error.

Proof. Let αM (t) be defined as in (8). Then (3) holds for all (w, v, x0),
M ∈M and T if and only if αM (T ) ≤ 0 for all M ∈M and y ∈ ℓ2[0, T ]. We
now apply Lemma 1 to express αM (t) in the known quantities x̂M (t), PM
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and lM (t)1:

αM (t) = sup
x(t),v(t)∈R

sup
w,v∈ℓ2[0,t−1],x0∈R

{
x(t)2 − γ2v(t)2 +

∑

τ≤t−1

x(τ)2

− γ2
∑

τ≤t−1

(
w(t)2 + v(t)2

)

: x(t+ 1) = ax(t) + bu(t) + w(t), y(t) = cx(t) + v(t), (a, b, c) = M

}

= sup
x∈R,v∈R

{
x2 − γ2v2 − PM (x− x̂M (t))

2
+ lM (t)

}

=
(
PM x̂M (t) + γ2cy(t)

)2
/(PM + γ2c2 − 1)

− PM x̂2
M (t)− γ2y(t)2 + lM (t) = lM (t+ 1).

Finally, note that if for some M , PM < 1, then lM (t+1) is strictly convex
in y(t) and thus unbounded from above. 2

From Theorem 1 we see that the observer states x̂M (t) and cumulative
objectives lM (t+1) contain the information necessary and sufficient to eval-
uate the finite-gain condition (3). In other words, we can tell everything we
need about the current state of affairs by running one H∞ observer and com-
puting lM (t+1) for each model M in parallel; but is it sufficient to consider
observer-based feedback for control? If so, is it also necessary?. the next the-
orem, we show that the observer states and cumulative objectives contain
precisely the information required to synthesize a finite-gain control policy.

Theorem 2—Observer-based feedback
Given a positive quantity γ > 0 and an uncertainty set M ∈ R3. The

following are logically equivalent.

(i) There exists a causal output-feedback control policy µ⋆ such that the
closed-loop system (1) and (2) is finite-gain.

(ii) There exist observers (x̂M , lM ) for each model m ∈ M generated by
(10), (12) and an observer-based control policy η⋆

u(t) = η⋆ {(x̂M (t), lM (t+ 1), y(t)) : m ∈M} ,

such that lM (t+ 1) ≤ 0 for all m ∈M, y ∈ ℓ2[0, t] and t ≥ 0.

If η⋆ satisfies (ii), the following control policy satisfies (i):

µ⋆
t (y(0), y(1) . . . , y(t)) = η⋆ {(x̂M (t), lM (t+ 1), y(t)) : m ∈M} (13)

1We let subscript M denote quantities using (a, b, c) = M .
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Observer-based
Controller:

η
Observer 2

Observer 1

...

Observer K

y u

(x̂1, l1)

u

(x̂2, l2)

u

(x̂K , lK)

u
Causal output-feedback

controller: µ

Figure 2. Illustration of the controller architecture in Theorem 2 for uncertainty
sets consisting of K linear models. The controller η only considers the current state
of the observers.

Remark 4
By compressing the past trajectory to a finite set of cumulative performance
quantities lM , policies of this type learns the actual dynamics of the system
as time goes on. This leads to a kind of multi-observer controller. The archi-
tecture is illustrated in 2.

Proof. Theorem 2 (ii) implies (i) follows from that x̂M (t), lM (t+1) depend
causally on y, thus the observer-based control policy is a special case of
causal feedback control policies. By assumption, lM (T ) ≤ 0 for all T , M and
y ∈ ℓ2[0, T ] for the controller (13), which we know implies that the system is
finite gain by Theorem 1.

(i) implies (ii): Assume that the controller µ⋆ fulfills (i). By the construc-
tion of (3) the Riccati equations have positive solutions PM , therefore the
assumptions of Theorem 1 are fulfilled and there exist observers x̂M and lM
generated by (10) and (12). Define the set of feasible generating trajectories
given observer states x̂M (t), l(t) and current measurement y(t):

T
{
(x̂M (t), l̂M (t+ 1), y(t)) : M ∈M

}

:=
{
(y̆(τ))Tτ=0 : x̆M (T ) = x̂M (t), y̆(T ) = y(t),

l̆M (T+1) = lM (t+1), (x̆M , l̆M ) generated by y̆ and u(τ) = µ⋆(y̆(0), . . . y̆(τ))
}
.

Then T {(x̂(0), lM (1), y(0)) : M ∈M} is nonempty since it is compati-
ble with any trajectory of length 1 such that y̆(0) = y(0). Fix t ≥ 0
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and observer states x̂M (t), lM (t + 1) and measurement y(t). Assume that
T {x̂M (t), lM (t), y(t)) : M ∈M} is non empty. Then there exists a sequence
y̆, and final time T so that lM (t + 1) = αM (T ) with αM (t) as in (8) gen-
erated by y̆ and the controller u(τ) = µ⋆(y̆(0), . . . , y̆(τ)). By assumption,
lM (t+ 1) = αM (T ) ≤ 0. Taking

η⋆ {(x̂M (t), lM (t+ 1), y(t)) : M ∈M} = µ⋆(y̆),

for some y̆,∈ T {(x̂M (t)lM (t+ 1), y(t)) : M ∈M} ensures that T will be
nonempty the next time step. By induction T will be nonempty for all T ≥ 0
and thus u is well defined and lM (T ) ≤ 0 for all T . 2

5. Certainty equivalence control

We will now leverage these results to synthesize a control policy for the
case when the pole a ∈ R is known, b = ±1 and c = 1. Emboldened by
Theorem 2 we will construct a simple observer-based supervisory controller in
the following way: We will run two observers in parallel corresponding to the
cases b = ±1. The supervisor will monitor the cumulative objectives l−1(t)
and l1(t) and determine which observer and model to use for computing the
control signal. The policy computes the control signal as if the selected model
were true. Let i ∈ {−1, 1} index the observers. The Riccati equations (9)
reduce to

Pi = P =
1

2
(1− γ2a2) +

√
γ2(−1 + γ2) + (γ2a2 − 1)2/4. (14)

Construct the observers x̂i and cumulative objectives li using (10) and (12)
with bi = i and

âi = â =
aP

P + γ2 − 1
, ĝi = ĝ =

γ2a

P + γ2 − 1
.

Define the certainty-equivalence dead-beat controller as the function

u(t) =

{
−(âx̂1(t) + ĝy(t)) if l1(t+ 1) ≥ l−1(t+ 1)

âx̂−1(t) + ĝy(t) if l1(t+ 1) < l−1(t+ 1).
(15)

The dead-beat controller2 ensures that for every t, either x̂1(t) or x̂−1(t) will
be zero. This simplifies the observer dynamics x̂ and the cost associated with
the history l. We summarize the properties in the following proposition.

2The controller is dead-beat for the observer state corresponding to the model with the
hightest cumulative cost. The observers themselves are not dead-beat.
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Proposition 1
With â, ĝ, P as above, x̂i and li as in (10) and (12), and the control signal
given by (15), let

x̂(t+ 1) = âx̂(t) + 2ĝy(t), x̂(0) = 0.

Then the following is true:

x̂1(t) =

{
0, if l1(t) ≥ l−1(t)

x̂(t), if l1(t) < l−1(t)
, x̂−1(t) =

{
x̂(t), if l1(t) ≥ l−1(t)

0, if l1(t) < l−1(t),

and

l1(t+ 1) =

{
l1(t)− γ2y(t)2 + (γ2y(t))2

P+γ2−1 if l1(t) ≥ l−1(t)

l1(t)− Px̂(t)2 − γ2y(t)2 + (Px̂(t)+γ2y(t))2

P+γ2−1 , if l1(t) < l−1(t)

l−1(t+ 1) =

{
l−1(t)− Px̂(t)2 − γ2y(t)2 + (Px̂(t)+γ2y(t))2

P+γ2−1 , if l1(t) ≥ l−1(t)

l−1(t)− γ2y(t)2 + (γ2y(t))2

P+γ2−1 , if l1(t) < l−1(t)

(16)

Proof. We start by proving the first claim. Consider the case when l1(t+1) ≥
l−1(t+ 1). Then x̂1(t+ 1) = 0 and x̂−1(t+ 1) = â(x̂1(t) + x̂−1(t)) + 2ĝy(t).
The case when l1(t+ 1) < l−1(t+ 1) is similar. Taking x̂(t) = x̂1(t) + x̂−1(t)
completes the proof. To see that the second claim is true, note that if l1(t) ≥
l−1(t) then x̂1(t) = 0 and x̂−1(t) = x̂(t). The claim follows by substitution
into (12). 2

5.1 Conditions for finite-gain stability
This section determines sufficient conditions for the certainty-equivalence
controller to guarantee a gain-bound of at most γ. We first give conditions
on l1(t) and l−1(t) such that both quantities are negative for the next time
step. We will then give conditions on γ so that the negativity conditions
hold for all t. We summarize the non-negativity conditions in the following
Lemma.

Lemma 2
Given P > 1, γ > 0, x̂(t) ∈ R, l1(t) and l−1(t). Assume that
maxi∈{−1,1} li(t) ≤ 0 and that

min
i

li(t) ≤ −
P

P − 1
x̂(t)2.

Then with li(t+ 1) as in (16), it holds that li(t+ 1) ≤ 0 for i ∈ {1,−1}.
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Proof Lemma 2, full. We will give the proof for the case 0 ≥ l1(t) ≥
l−1(t). The case 0 ≥ l−1(t) ≥ l1(t) is similar. Note that l1(t+1) and l−1(t+1)
are concave in y(t) if and only if

1

γ2
≥ 1

P + γ2 − 1
⇐⇒ P + γ2 − 1 ≥ γ2,

and we conclude that l1(t+1) and l−1(t+1) are bounded from above if and
only if P ≥ 1. Secondly, we see that l1(t + 1) = l1(t) − cy2 ≤ 0 for some
positive constant c. Finally, let X = P + γ2 − 1 and consider

max
y(t)

l−1(t+ 1) = max
y(t)

{
l−1(t)− Px̂(t)2 − γ−2

(
γ2y(t)

)2

+ (Px̂(t) + γ2y(t))2/X
}

= max
y(t)

{
l−1(t) +

(
−γ−2 +X−1

) (
γ2y(t)

)2

+ 2X−1Px̂(t)γ2y(t)− (P − P 2/X)x̂(t)
}

= l−1(t)−
(

X−2P 2

−γ−2 +X−1
+ P − P 2/X

)
x̂(t)2

= l−1(t)−
γ2P 2/X + P (γ2 −X)− P 2/X(γ2 −X)

γ2 −X
x̂(t)2

= l−1(t)−
P (γ2 −X) + P 2

γ2 −X
x̂(t)2

= l−1(t)−
P (1− P ) + P 2

1− P
x̂(t)2

= l−1(t) +
P

P − 1
x̂(t)2

Which is negative if and only if l−1(t) ≤ − P
P−1 x̂(t)

2. 2

Next we give conditions on γ so that the assumptions in Lemma 2 are
fulfilled for all t. This is illustrated in Figure 3, where subfigure (a) illustrates
a case where l1(t+ 1) and l−1(t+ 1) cannot simultaneously be greater than
− P

P−1 x̂(t + 1)2 and subfigure (b) illustrates the case when the condition is
not guaranteed to hold for the next time step. For values of γ so that the
system behaves as in Figure 3 (a), if the assumptions are fulfilled for some t,
then (by induction) they will be fulfilled for all T ≥ t. This is formalized in
the next theorem.

Theorem 3—Certainty equivalence, upper bound
Given a real number a and a quantity γ > 0. Assume that

P =
1

2
(1− γ2a2) +

√
γ2(−1 + γ2) + (γ2a2 − 1)2/4 > 1.
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(a) a = 1,γ = 4
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+
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(b) a = 1,γ = 3.4

Figure 3. Illustrations of l1(t+ 1), l−1(t+ 1) and − P
P−1

x̂(t+ 1) when l1(t) = 0,

l−1(t) = − P
P−1

x̂(t)2. The solid lines highlight the values of y(t) where li(t + 1) ≥
− P

P−1
x̂(t+1)2. We see that in (a) the solid lines do not overlap, i.e. given that the

assumptions of Lemma 2 are fulfilled for some t, they will be fulfilled the next time
step as well. In (b) the solid lines overlap, i.e. there are values for y(t) so that the
assumptions are violated the next time step.

If P and γ fulfill the curvature condition (17) and strong negativity condi-
tion (18) below, then the closed-loop system (1) controlled with the certainty-
equivalence deadbeat controller (15) has gain from (w, v)→ x bounded above
by γ.

P > 2γ − 1 (17)

(P + 2γ2 − 1)
(
P − 1− 2

√
γ2 − P )2

)
≥ (P − 1)

(
(P + 1)2 − 4γ2

)
(18)

Remark 5
We can solve (18) with equality restricted to the domain P > 2γ − 1. The

resulting γ satisfies (|a|+
√
a2 + 1)

√
a2 + 1 ≤ γ ≤ 2.1a2+2, and is shown in

Figure 4.

Remark 6
In [Vinnicombe, 2004], Vinnicombe studied the state-feedback version of the

problem and found that the bound γ = |a|+
√
a2 + 1 is achieved by the control

policy

u(t) =

{
ax(t), if α1(t) ≤ α−1(t)

−ax(t), else,

where αb(t) =
∑

τ≤t−1 (x(τ + 1)− ax(τ)− bu(τ))
2
. If we apply this control

policy to the noisy measurements y(t) = x(t) + v(t) we have that x(t+ 1) =
ax(t) + bu(t) + w(t) ± av(t), and we get ∥x∥2 ≤ γ∥

[
1 a

]
(w, v)∥2 ≤ (|a| +√

1 + a2)
√
1 + a2∥(w, v)∥2 which is the lower bound in Figure 4.
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Proof Theorem 3, full. By assumption P > 1 is positive so Theorem 1
applies. We will show that if the curvature condition and the strong negativity
condition are fulfilled, then the assumptions in Lemma 2 will hold for all
t. Then, by Theorem 2 the observer-based controller is finite-gain for the
original system. For t = 0, we have that li(0) = 0, x̂(0) = 0 and that li(t) ≤
− P

P−1 x̂(0)
2 holds trivially. Fix t ≥ 0, assume without loss of generality that

0 ≥ l1(t) ≥ l−1(t) and that l−1(t) ≤ − P
P−1 x̂(t)

2. By Lemma 2 maxi{li(t +
1)} ≤ 0. It remains to show that

min
i
{li(t+ 1)} ≤ − P

P − 1
x̂(t+ 1)2. (19)

Let z(t) := y(t)− P
2γ2 x̂(t). Then x̂(t+1) = 2ĝz(t) and using Proposition 1,

letting X = P + γ2 − 1 we have

l1(t+ 1) = l1(t) +

(
−Px̂(t)

2
+ γ2z(t)

)2

(1/X − 1/γ2)

l−1(t+ 1) = l−1(t) +

(
Px̂(t)

2
+ γ2z(t)

)2

/X −
(
−Px̂(t)

2
+ γ2z(t)

)2

/γ2

− Px̂(t)2

Curvature: For (19) to be true for all z(t) ∈ R it is necessary that li(t +
1) + 4 P

P−1 ĝ
2z(t)2 is concave in z(t). This is the case if and only if

γ4(1/X − 1/γ2) ≤ −4 P

P − 1
ĝ2 (20)

⇐⇒ γ4 ≥ −4 P

P − 1

1

1/X − 1/γ2
ĝ2

Insert ĝ = γ2a2/X to get

−4 P

P − 1

1

1/X − 1/γ2
ĝ2 = 4

P

P − 1

γ2X

X − γ2
ĝ2 =

4P

(P − 1)2
γ2a2/Xγ4.

Further, insert

P =
1

a2/X + γ−2
⇐⇒ a2

X
=

1

P
− γ−2

to get

− 4
P

P − 1

1

1/X − 1/γ2
ĝ2 = 4

γ2 − P

(P − 1)2
γ4. (21)

The concavity condition (20) simplifies to the curvature condition (17),

1 ≥ 4
γ2 − P

(P − 1)2
⇐⇒ (P + 1)2 ≥ 4γ2 ⇐⇒ P ≥ 2γ − 1.
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Strong negativity: Define the upper bounds

l̄1(t+ 1) :=

(
−Px̂(t)

2
+ γ2z(t)

)2

(1/X − 1/γ2)

l̄−1(t+ 1) := − P

P − 1
x̂(t)2 +

(
Px̂(t)

2
+ γ2z(t)

)2

/X

−
(
−Px̂(t)

2
+ γ2z(t)

)2

/γ2 − Px̂(t)2.

Also define the sets

Ii :=
{
z ∈ R : li(t+ 1) ≥ −4 P

P − 1
ĝ2z(t)2

}
.

and Īi anagolously. Then the inequality (19) is satisfied if and only if
# (I1 ∩ I−1) ≤ 1. Since l̄i ≥ li we have that Ii ⊆ Īi, and a sufficient condition
is that they intersection contains at most one point, i.e. #

(
Ī1 ∩ Ī−1

)
≤ 1.

The reason we allow for the intersection to contain one point, is that at such a
point both l1(t+1) and l−1(t+1) fulfills (19) with equality. We will start with
characterizing Ī1 by looking for the solutions to l̄1(t+ 1) = −4 P

P−1 ĝ
2z(t)2:

(
−Px̂(t)

2
+ γ2z(t)

)2

(1/X − 1/γ2) = −4 P

P − 1
ĝ2z(t)2

⇐⇒
(
−Px̂(t)

2
+ γ2z(t)

)2

= 4
γ2 − P

(P − 1)2
(γ2z(t))2

⇐⇒
(
−Px̂(t)

2
+ γ2

(
1 + 2

√
γ2 − P

P − 1

)
z(t)

)

×
(
−Px̂(t)

2
+ γ2

(
1− 2

√
γ2 − P

P − 1

)
z(t)

)
= 0

We conclude that for positive x̂(t)

Ī1 =

[
P

2γ2

(
1 + 2

√
γ2 − P

P − 1
γ2z(t)2

)−1

x̂(t),

P

2γ2

(
1− 2

√
γ2 − P

P − 1
γ2z(t)2

)−1

x̂(t)

]
.
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We continue with the solutions to l̄2(t+ 1) = −4 P
P−1 ĝ

2z(t)2.

− P

P − 1
x̂(t)2+

(
Px̂(t)

2
+ γ2z(t)

)2

/X−
(
−Px̂(t)

2
+ γ2z(t)

)2

/γ2−Px̂(t)2

= −4 P

P − 1
ĝ2z(t)2

Using (21) we get

⇐⇒
(

1

X
− 1

γ2

)(
1− 4

γ2 − P

(P − 1)2

)(
γ2z(t)

)2
+

(
1

X
+

1

γ2

)
Px̂(t)γ2z(t)

+

(
1

4

(
1

X
− 1

γ2

)
− 1

P − 1

)
(Px̂(t))

2
= 0

⇐⇒ (z(t))
2 − X + γ2

X − γ2

(P − 1)2

(P − 1)2 − 4(γ2 − P )
Px̂(t)γ2z(t)

+

1
4 − 1

P−1
1

1/X−1/γ2

(P − 1)2 − 4(γ2 − P )
(P − 1)2P 2x̂(t)2 = 0

⇐⇒
(
γ2z(t)

)2 − (P + 2γ2 − 1)(P − 1)

(P + 1)2 − 4γ2
Px̂(t)γ2z(t)

+
1

4

(P − 1)2 + 4γ2(P + γ2 − 1)

(P + 1)2 − 4γ2
P 2x̂(t)2 = 0

⇐⇒
(
γ2z(t)− 1

2

(P + 2γ2 − 1)(P − 1)

(P + 1)2 − 4γ2
Px̂(t)

)2

− (P + 2γ2 − 1)2
γ2 − P

((P + 1)2 − 4γ2)
2P

2x̂(t)2 = 0

which has the solutions

z(t) =
1

2γ2
(P + 2γ2 − 1)

P − 1± 2
√
γ2 − P

(P + 1)2 − 4γ2
Px̂(t).

Thus for positive x̂(t),

Ī−1 =

[
1

2γ2
(P + 2γ2 − 1)

P − 1− 2
√
γ2 − P

(P + 1)2 − 4γ2
Px̂(t),

1

2γ2
(P + 2γ2 − 1)

P − 1 + 2
√

γ2 − P

(P + 1)2 − 4γ2
Px̂(t)

]

103



Paper III. Learning-Enabled Robust Control with Noisy Measurements

−5 0 5

0

20

40

60

80

a

γ

−1 −0.5 0 0.5 1

1

2

3

4 γ 2.1a2 + 2

(|a|+
√
a2 + 1)

√
a2 + 1

a

γ

Figure 4. Guaranteed bound on the ℓ2-gain from disturbances to error under
feedback with the certainty equivalence controller with respect to a. We note that
experimentally γ is lower bounded by (|a|+

√
a2 + 1)

√
a2 + 1 and upper bounded

by ≤ 2.1a2 + 2. The lower bound becomes tighter as a increases.

From the definition, it is clear that the vertex of l̄1(t + 1) lies closer to the
origin, than that of l̄−1(t+ 1). Thus #

(
Ī1 ∩ Ī2

)
≤ 1 is equivalent to

P

2γ2

(
1− 2

√
γ2 − P

P − 1
γ2z(t)2

)−1

x̂(t)

≤ 1

2γ2
(P + 2γ2 − 1)

P − 1− 2
√
γ2 − P

(P + 1)2 − 4γ2
Px̂(t),

which simplifies to (18). The case when x̂(t) is negative is similar. 2

6. Conclusions

This article presents a constructive approach to accounting for worst-case
models of measurement noise, disturbance and uncertain parameters in con-
troller design. In particular Theorem 2 shows that it is necessary and suffi-
cient to consider feedback from the current states of a finite set of observers
and cumulative performance measures. The performance measures compress
the history allowing the controller to learn from past data. In Section 5, we
used this constructive approach to extend the results of [Vinnicombe, 2004] to
the case of noisy measurements. We focused on scalar systems, but Theorems
1 and 2 can easily be extended to MIMO systems. In particular, we are ex-
cited about the potential in extending Minimax Adaptive Control [Rantzer,
2021] to the output feedback case.
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Paper IV

Minimax Dual Control with

Finite-Dimensional Information State

Olle Kjellqvist

Abstract

This article considers output-feedback control of systems where the
function mapping states to measurements has a set-valued inverse.
We show that if the set has a bounded number of elements, then
minimax dual control of such systems admits finite-dimensional infor-
mation states. We specialize our results to a discrete-time integrator
with magnitude measurements and derive a surprisingly simple sub-
optimal control policy that ensures finite gain of the closed loop. The
sub-optimal policy is a proportional controller where the magnitude
of the gain is computed offline, but the sign is learned, forgotten, and
relearned online.

The discrete-time integrator with magnitude measurements cap-
tures real-world applications such as antenna alignment, and despite
its simplicity, it defies established control-design methods. For exam-
ple, whether a stabilizing linear time-invariant controller exists for this
system is unknown, and we conjecture that none exists.

1. Introduction

This article concerns ouput feedback control of discrete-time systems whose
measurement equations have a bounded number of solutions. As a prototype
example, we consider the discrete-time integrator, where the controller only
has access to the magnitude of the state. The state xt, the control signal ut,
and disturbance wt are real-valued scalars. The system is described by the
recursion

xt+1 = xt + ut + wt. (1)
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θ

(a) Receiver

θ −θ
h

(b) Pendulum

Figure 1. Examples of physical systems where the sign of the state is ambigu-
ous: The left figure illustrates a receiver with an uncertain and potentially non-
stationary source location. The objective is to adjust the receiver’s position to an
angle that maximizes signal intensity. Typically, the receiver’s radiant sensitivity is
symmetric relative to deviations from the incidence angle. The right figure shows
an inverted pendulum, which is regulated by monitoring the pendulum’s height.

We consider causal control policies, µ, that map measurements of the state
magnitude

yt = |xt| (2)

to control signals

ut = µt(y0, y1, . . . , yt, u0, . . . , ut−1). (3)

The uncertain sign in (2) captures some of the difficulties that may arise
when optimizing a system based on measurements of some (locally) convex
or concave performance quantity, as in Figure 1a. The problem is also closely
related to stabilizing an inverted pendulum by feedback from height measure-
ments rather than angular measurements, as in Figure 1b. This plain-looking
problem captures a surprising amount of complexity:

1. Exploration vs. exploitation. The more effectively we control the system,
the less confident we become about the state’s sign. If the system ever
reaches y = 0, the state’s sign information is lost.

2. No stabilizing linear time-invariant controller. Previous work report no
stabilizing linear time-invariant controller for the system (1)–(3) [Ros-
dahl and Bernhardsson, 2020; Alspach, 1972] and the system cannot
be stabilized by proportional feedback1. This author conjectures that
there exists no finite-dimensional linear time-invariant controller that
stabilizes the system.

3. Extended Kalman filter. The extended Kalman filter (EKF) is a popular
algorithm for estimating a nonlinear system’s state, often coupled with

1A linear time-varying controller can stabilize the system. For example, ut = (−1)tyt
will ensure xt = 0 for all t ≥ 2, for any x0 and wt = 0.
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certainty-equivalence control. However, the measurement equation (2)
is not differentiable at x = 0, and the EKF is not directly applicable.
One may substitute the measurement equation with yt = x2

t to re-
cover differentiability, but this substitution results in an unobservable
linearization.

4. Myopic Controller. The Myopic controller [Wittenmark, 1995] associ-
ated with minimizing the current cost x2

t + u2
t is not stabilizing.

In this article, we will design a control policy (3) that ensures that the
induced ℓ2-gain from w to (x, u) is less than some positive quantity γ. That
is, the inequality

N∑

t=0

(x2
t + u2

t ) ≤ γ2
N∑

t=0

w2
t + β(x0) (4)

must be fulfilled for all N ≥ 0, real-valued function β and realizations
w[0:N ] := w0, w1, . . . , wN of the disturbance sequence. The condition (4) gen-
eralizes the classical H∞-norm for linear systems. The function β is called
a bias term and is used to capture the effect of the initial state. The small-
gain theorem provides sufficient conditions for robust stability against feed-
back perturbations with induced ℓ2-norm less than γ−1. We refer the reader
to [Khalil, 2002, Chapter 5] for a detailed discussion on finite-gain stability
and the small-gain theorem. Surprisingly, we will see that it is possible to
compress the observed output trajectory (y[0:t], u[0:t−1]) using two recursively

computed quantities r+t and r−t . These quantities correspond to the small-
est feasible disturbance trajectory compatible with the observed outputs and
sign(xt) = 1 or sign(xt) = −1. Together with yt, they make a sufficient
statistic for optimal control of a corresponding dynamic game.

The quantities follow the recursions

r+t+1 = y2t + u2
t −max{r+t + γ2(yt+1 − ut − yt)

2, r−t + γ2(yt+1 − ut + yt)
2},

r−t+1 = y2t + u2
t −max{r+t + γ2(yt+1 + ut + yt)

2, r−t + γ2(yt+1 + ut − yt)
2}.
(5)

In Section 3, we will show that these quantities are sufficient for ensuring
bounded ℓ2 gain and summarize our conclusions about the magnitude control
problem in Proposition 1.

Proposition 1
An admissible policy µ exists that ensures ℓ2-gain smaller than γ if, and only

if, it is achievable with a policy of the form ut = ηt(yt, r
+
t , r

−
t ). Further, the

controller η(y, r+, r−) = 0.7 sign(r− − r+)y achieves ℓ2-gain less than 4.

We remark that η is admissible as r+t and r−t are functions of previous mea-
surements and control signals. Via substitution, one can recover µ.
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1.1 Related work
Adaptive control From the adaptive control perspective, system (1), (2)
could be interpreted as a linear system with uncertain time-varying parame-
ters. Several methods are described in excellent textbooks like [Goodwin and
Sin, 2009, Chapter 6.7] that apply uncertain linear time-varying systems.
However, these methods rely on a separation of time scales between the state
dynamics, the parameter adaptation, and the parameter variation. Hence,
we can not expect these methods to work well in our case [Anderson and
Dehghani, 2008]. Nonlinear stochastic control theory provides a framework
that can, in principle, handle fast parameter variation and large uncertainties,
and our problem fits well with the methodology of dual control [Wittenmark,
1995, Chapter 7].

Stochastic dual control has been applied to various problems with un-
certain gain, as demonstrated in [Åström and Helmersson, 1986; Dumont
and Åström, 1988; Allison et al., 1995]. [Alspach, 1972] considered control of
an integrator based on noisy measurements of the square of the magnitude.
The noise was assumed Gaussian, and the author proposed approximating
the information state by a sum of Gaussians. [Rosdahl and Bernhardsson,
2020] considered a noisy version of the problem in this article but from a
stochastic dual control perspective. The authors proposed to approximate
the information state by a neural network.

Learning-to-control Lately, there has been a surge of interest in learning
to control linear systems. Much of the work concerns the sample complexity
of learning optimal controllers of linear time-invariant systems. For example,
[Dean et al., 2018; Mania et al., 2019] concerns quadratic performance objec-
tives and additive stochastic noise, [Chen and Hazan, 2021] adapts the theory
of online convex optimization [Hazan, 2023] to unknown linear time-invariant
systems with bounded disturbances. [Yu et al., 2023] proposed a method to
control slowly varying linear systems with unknown parameters belonging to
a polytope perturbed by bounded disturbances using convex body chasing.

Minimax control Minimax control for uncertain systems was introduced
in the Ph.D. thesis of [Witsenhausen, 1966]. Information states, or sufficient
statistics, for optimal control for output feedback minimax control, was dis-
cussed in [Bertsekas and Rhodes, 1973] based on Bertsekas’s Ph.D. thesis.
The game-theoretic formulation of H∞-control [Basar and Bernhard, 2008]
is a special case of minimax control, and the information state formulation
was derived for nonlinear systems in [James and Baras, 1995] demonstrat-
ing that, in general, the information state is infinite-dimensional. The term
minimax adaptive control was introduced in [Didinsky and Basar, 1994].
Recently, [Rantzer, 2021] proposed a minimax adaptive controller for uncer-
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tain linear systems with perfect state measurements. The uncertainty was
assumed to belong to a finite, known set. The author proposed a finite-
dimensional information state related to the empirical covariance matrix of
the current state, previous state, and previous control signal. This author
extended Rantzer’s results to scalar linear systems with noisy measurements
in [Kjellqvist and Rantzer, 2022]. Recently, [Renganathan et al., 2023] stud-
ied the regret of Rantzer’s controller for linear systems with energy-bounded
disturbances.

1.2 Contributions
This article identifies a class of systems where the minimax dual controller
admits a finite-dimensional information state. The information state admits
recursive computation, and Theorem 1 shows the equivalence between the
minimax dual control problem and an information-state dynamic program-
ming problem. We also provide a dissipativity interpretation in Theorem 2.
The proofs of Theorems 1 and 2 are available in the ArXiV version of this
article [Kjellqvist, 2024]. These results generalize Theorem 1 in [Rantzer,
2021] to a larger system class and specialize the results in [James and Baras,
1995] to classes of systems where the information state iteration becomes
explicit. The explicit iteration results from the bounded number of solutions
to the measurement equation (2) and can be exploited to obtain closed-form
(suboptimal) solutions to the minimax dual control problem. We specialize
these results to the magnitude control problem in the introduction and prove
Proposition 1 in Section 3.

1.3 Notation
We use R to denote the set of real numbers, Rn means the set of n-dimensional
real vectors, and Rn×m means the set of n×m real matrices. The vector of
ones is denoted 1. We use y[0:N ] as shorthand for the sequence (y0, y1, . . . , yN ).

For a matrix A ∈ Rn×m, we denote the transpose by AT. For sets A ⊆ S
and B ⊆ T , and a function f : S → T , the image of A is denoted f(A)
and the preimage of B is denoted f−1(B); the Cartesian product is denoted
S × T and the n-ary Cartesian power S = S × S × . . .× S︸ ︷︷ ︸

ntimes

is denoted Sn.

For vectors v, v′ ∈ Rn, the inequality v ≤ v′ is understood component-wise,
and for functions f, g : S → T , the inequality f ≤ g means that f(s) ≤ g(s)
for all s ∈ S where ≤ is the partial order on T . Strict inequalities are defined
analogously.
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2. Minimax dual control

This section introduces the minimax dual control problem, the information
state, and dynamic programming. By information state, we mean an auxiliary
state variable that is computable by the controller, has a recursive expres-
sion in observed quantities and is sufficient to compute the optimal control
policy and the associated cost. For example, in the linear-quadratic Gaussian
control problem, the information state is the conditional mean and covari-
ance of the state given the observations—the Kalman filter estimate and the
error covariance. It is well known that the “worst-case” history is an infor-
mation state for the minimax control problem, and dynamic programming
with this information state is pretty well understood. Unfortunately, this in-
formation state is generally infinite-dimensional and, therefore, impractical.
The main contribution of this section is to show that for our class of systems,
the worst-case history admits a finite-dimensional representation. This rep-
resentation is, in itself, an information state. We derive a verification and an
approximation theorem for value iteration specific to this finite-dimensional
representation.

2.1 Problem formulation
Let f : X × U ×W → X and h : X → Y describe the dynamical system

xt+1 = f(xt, ut, wt)

yt = h(xt).
(6)

The control signal, ut ∈ U is generated by a causal control policy µt : Yt ×
U t−1 → U , where Y = h(X ) by

ut = µt(y[0:t], u[0:t−1]). (7)

We call the tuple π = (µ0, µ1, . . .) a strategy and the set of all such admissible
strategies Π. Consider the objective function as the “worst-case” sum of stage
costs l : X × U ×W → R,

JN
π (y0) ≜ sup

w[0:N]

{
N∑

t=0

l(xt, ut, wt) : w[0:N ] ∈ WN+1, y0 = h(x0)

}
. (8)

The goal of this section is to examine the minimax optimal control problem

J⋆(y0) ≜ inf
π∈Π

sup
N

JN
π (y0). (9)

We make two crucial assumptions:

Assumption 1
For all x ∈ X , u ∈ U , supw l(x, u, w) ≥ 0.
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The assumption that supw l(x, u, w) ≥ 0 implies monotonicity properties of
JN
π in (8) and, as we will see later, the value iteration.

Assumption 2
For any y ∈ Y, the preimage h−1{y} ⊂ X is an indexed set of at most M
elements.

This assumption relates to the dimensionality of the information state, or suf-
ficient statistic, of the dynamic programming version of this problem. Tech-
nically, the bound M does not have to be known a priori, but we require the
capability to enumerate all the solutions to yt = h(xt) online. At first glance,
this assumption may appear overly limiting, but the following examples prove
otherwise.

Example 1—Magnitude control of input-output models
Consider controller design for the input-output system

zt+1 = −a1zt − · · · − adzt−d+1 + b1ut + · · ·+ bdut−d+1 + wt, (10)

where the controller has access magnitude measurements |z0|, |z1|, . . . , |zt| at
time t. The system (10) has a (nonminimal) state-space realization xt+1 =
Axt +But +Gwt, where

xt =



zt
...

zt−d+1

ut−1

...
ut−d+1


, A =



−a1 · · · −ad b2 · · · bd
1

. . .

1
0 · · · 0 0 · · · 0

1

. . .

1


, B =



b1
0
...
0
1
0
...
0


, G =



1
0
...
0
0
0
...
0


.

Store the past d− 1 inputs and outputs and define the augmented measure-
ment

yt = h(xt) = (|zt|, . . . , |zt−n+1|, ut−1, . . . , ut−n+1).

Then, the preimage

h−1{yt} = {±|zt|} × · · · × {±|zt−d+1|} × {ut−1, . . . , ut−d+1}

has cardinality 2n, corresponding to the possible signs of the past measure-
ments. A first-order difference equation can model the integrator in the in-
troduction, so M = 21 = 2, and the inverted pendulum (linearized around its
equilibrium) by a second-order difference equation, for which M = 22 = 4.
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Example 2—Linear system with uncertain dynamics
Consider the linear system xt+1 = Axt +But +wt where A,B are unknown
matrices belonging to a finite setM of cardinality M . Then, the equivalent
lifted system xt = (zt, At, Bt) with

At+1 = At, Bt+1 = Bt, (A0, B0) ∈M
zt+1 = Azt +But + wt, yt = h(xt) = zt

satisfies Assumption 2 as h−1{yt} = {zt} ×M has cardinality M .

Example 3—Finite state space
If the state space X is finite, per definition h−1{y} ⊆ X is finite.

Remark 1
In our case f and h are given by (1) and (2) and the stage cost is
l(xt, ut, wt) = x2

t + u2
t − γ2w2

t . The states, observations and inputs take val-
ues in X = R,U = R,Y = R≥0,W = R. The finite-gain condition (4) then
correspond to J⋆(y0) being bounded. If not for the nonlinearity h(xt) = |xt|,
it would be equivalent to the standard dynamic game formulation of H∞ sub-
optimal control [Basar and Bernhard, 2008], rather it can be seen as a special
case of nonlinear H∞ output feedback control [James and Baras, 1995].

2.2 An information state
Following previous work [Witsenhausen, 1966; Bertsekas and Rhodes, 1973;
James and Baras, 1995; Basar and Bernhard, 2008] we consider the “worst-
case history”, ρt, that is compatible with the observations y[0:t−1] and inputs
u[0:t−1] up to time t− 1 reaching the state x at time t:

ρt(x, y[0:t−1], u[0:t−1]) ≜ sup
w[0:t−1]∈Wt−1

sup
x0∈X

{
t−1∑

τ=0

l(xτ , uτ , wτ )

: xt = x, xτ+1 = f(xτ , uτ , wτ ), yτ = h(xτ )

}
. (11)

Remark 2
We follow the convention that the supremum over the empty set is −∞.

The worst-case performance of a policy π ∈ Π, JN
π (y0) can be expressed

in terms of ρt as

JN
π (y0) = sup

y[0:N],x
ρN+1(x, y[0:N ], u[0:N ]), (12)
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where u[0:N ] is generated by π and y[0:N ]. The functions ρ are causal func-
tions of the measurements and control signals and obey the forward dynamic
programming, [Magill, 1965], recursion:

ρt+1(x, y[0:t], u[0:t])

= sup
ξ,w

{
l(x, ut, w) + ρt(ξ, y[0:t−1], u[0:t−1]) : x = f(ξt, ut, w), yt = h(ξ)

}
.

(13)

Each step (13) involves extremizing over the previous state and the distur-
bance dependent on the current state xt, and in general, the computational
complexity of evaluating ρt grows with t. However, for systems satisfying As-
sumption 2, the set of feasible past states involved in (13) is restricted by the
measurement trajectory. To exploit this restriction, we split the computation
of (13) into two steps: a correction step incorporating the observation yt and
a prediction step after selecting ut:

(ξit)
M
i=1 = h−1{yt} (14a)

rit = ρt(ξ
i
t, y[0:t−1], u[0:t−1]) (14b)

ρt+1(x, y[0:t], u[0:t]) = sup
i,w∈W

{l(ξit, ut, w) + rit : x = f(ξit, ut, w)}. (14c)

The intuition behind procedure (14) is that at time t, the realization of
the state xt must belong to the M solutions of yt = h(ξ). The value rit is the
worst-case performance of the system up to time t under the hypothesis that
xt = ξit consistent with y[0:t] and u[0:t−1]. The prediction ρt+1(x, y[0:t], u[0:t]) is
the worst-case performance of the system up to time t+1 under the hypoth-
esis that xt+1 = x consistent with y[0:t] and u[0:t]. The extremization (14c)
includes two terms: the stage cost l(x, ut, w) capturing the cost of transi-
tion to xt+1 = x from xt and the past performance rit under the hypothesis
xt = ξit. The extremization is carried out over the hypotheses ξ1t , . . . , ξ

M
t

and the disturbance w. Define the update functions g for the M -dimensional
vector rt = (r1t , . . . , r

M
t )

gi(r, y+, y, u) ≜ sup
j,w∈W

{
l(ξj , u, w) + rj : ξi+ = f(ξj , u, w),

(ξk+)
M
k=1 = h−1{y+}, (ξk)Mk=1 = h−1{y}

}
(15)

In the following proposition, we formalize the properties of the update func-
tions g and the sequence r.

Proposition 2
Fix N , i = 1, . . . ,M , y0, a strategy π and let rN be defined recursively by
r0 = 0 and rt = g(rt−1, yt, yt−1, ut−1). Then

ρt+1(x, y[0:t], u[0:t]) = sup
i,w

{
l(x, ut, w) + rit : x = f(ξit, ut, w)

}
.
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Furthermore,

1. There exists a sequence w[0:N−1] such that maxi r
i
N ≥ 0.

2. For fixed yt, yt−1 ∈ Y and ut ∈ U , for r ≤ r′ we have g(r, yt, yt−1, ut) ≤
gr(r

′, yt, yt−1, ut).

3. g(r+ 1c, yt, yt−1, ut) = g(r, yt, yt−1, ut) + 1c for all c ∈ R.

Proof. 1. follows directly from Assumption 1. 2. follows from the monotonic-
ity of the supremum operator. 3. follows from that for any function f and
set Z supz∈Z{f(z)+ c} = supx{f(z)}+ c for all c ∈ R. Finally, by recursion,
the elements in rt are equal to the ones in (14b), thus for each i = 1, . . . ,M
equation (14c) holds with (rit)

M
i=1 = rt. 2

By Proposition 2, the worst-case history ρN , is sufficient to evaluate the
objective JN

π (y0). We will now study value iteration to minimize sup ρN .
Consider the time evolutions of the measurements y and representations r:

yt+1 = vt (16a)

rt+1 = g(rt, vt, yt, ut), r0 = 0, (16b)

where the next measurement, vt, is considered an exogenous input.
The optimization problem (9) can be expressed in terms of the worst-case

history ρN as

inf
η

sup
N,v[0:N−1],x∈X

{
ρN (x, v[0:N−1], u[0:N−1])

}
, (17)

where an information-state feedback policy generates ut

ut = ηt(rt, yt).

Define the set of information-state strategies Π̃ as the set of strategies π̃ =
(η0, η1, . . .). As r is a causal function of the measurements and control signals,

so is ηt (by composition) and Π̃ ⊂ Π. In other words, information-state
feedback is admissible. The following examples illustrate the information-
state recursions (16) for the systems in Examples 1 and 2.

Example 4—continued
In this case, it is convenient to index the hypotheses h−1{yt} by se-
quences of hypothetical signs, st, . . . , st−d+1 of the d stored measurements
|zt|, . . . , |zt−d+1|. The update simplifies significantly as the realizations of
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zt, . . . , zt−d+2 must remain unchanged between time steps t and t + 1. Fur-
ther, wt = zt+1 + a1zt + . . . + adzt−d+1 − b1ut + . . . + bdut−d+1 is uniquelly
determined by the state trajectory, so

r
st+1,...,st−d+2

t+1 = max
st−d+1=±1

{
l(st|zt|, ut, w) + r

st,...,st−d+1

t

: w = st+1|zt+1|+a1st|zt|+. . .+adst−d+1|zt−d+1|−b1ut+. . .+bdut−d+1

}
.

(18)

Example 5—continued
Here, we index the hypotheses h−1{yt} by the matrices At, Bt. The update
becomes

r
At+1,Bt+1

t+1

= sup
At,Bt

{
l(xt, ut, xt+1 −Atxt −Btut) + rAt,Bt

t : At+1 = At, Bt+1 = Bt

}
.

By assumption (At, Bt) = (0, 0) for all t, so the update simplifies to rA,B
t+1 =

l(xt, ut, xt+1 −Axt −But) + rA,B
t .

2.3 Value iteration
Towards finding (sub)optimal solutions to (9), we introduce the Bellman
operators B and Bu for functions V : (R ∪ {−∞})M × Y → R

B V (r, y) = min
u∈U(y)

Bu V (r,y)︷ ︸︸ ︷
max
v∈Y
{V (g(r, v, y, u), v)} . (19)

and the value iteration

V0(r, y) = max
i=1,...,M

{ri} (20a)

Vk+1(r, y) = B Vk(r, y). (20b)

We are ready to state the main theoretical results, justifying the value
iteration algorithm (20).

Theorem 1
For the system (6) under Assumptions 1 and 2 and strategy class Π, the
value (9) is bounded for any x0 ∈ X if, and only if, the sequence V0, V1, . . .
defined in (20) is bounded. If bounded, the sequence converges to the optimal
value function V⋆. The limit V⋆ is a fixed point of the Bellman operator (19)
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and the value J⋆(y0) = V⋆(0, y0). If the minimum in (19) is attained for some
u ∈ U for all y ∈ Y and r, then the policy η∗(r, y) defined as the minimizing
argument in (19) satisfies Bη⋆(r,y) V⋆(r, y) = V⋆(r, y) and the policy

µt(y[0:t], u[0:t−1]) = η⋆(rt, yt)

is optimal for (9).

Proof. For any fix N ≥ 0, the quantity infπ∈Π JN
π (y0) lower bounds J⋆(y0)

due to Assumption 1. By (12),

inf
π∈Π

JN
π (y0) = inf

π∈Π
sup
x,w

ρN+1(x, y[0:N ], u[0:N ]) = inf
π∈Π

sup
i,v[0:N+1]

{riN+1 : vt ∈ Y}.

By standard dynamic programming arguments, see for example [Bertsekas,
2005, Chapter 1.6], this is equal to

inf
µ[0:N−1]

inf
µN

sup
v[0:N−1]

sup
vN

{V0(rN+1, yN+1) : vt ∈ Y}

= inf
u0∈U

sup
v0∈Y

· · · inf
uN∈U

sup
vN

V0(rN+1, yN+1) = VN+1(0, y0).

This proves that the sequence V0(0, y0), V1(0, y0), . . . is bounded if J⋆(y0) is
bounded. By assumption, this holds for all y0 ∈ Y.

By induction, the value iteration is non-decreasing as B is monotone and
V1 ≥ V0 follows from assumption 1. Further, Vk(r, y) ≤ Vk(max{ri}1, y) =
Vk(0, y)+max ri, proving that V0, V1, . . . is bounded, and since it is monotone
increasing, it converges to a limit V⋆.

Assume that V0, V1, . . . is bounded towards proving the other direction.
Then V⋆ is well-defined and satisfies V⋆ ≥ Vk for all k. Fix an arbitrary ϵ > 0
and define a policy ηϵt that chooses ut such that

But V⋆(rt, yt) ≤ V⋆(rt, yt) +
1

2
ϵ

(
1

2

)t

.

By the definition of the infimum, such a ut always exists. Then, by similar
arguments as above, we have

J⋆(y0) ≤ sup
N

JN
ηϵ(y0) ≤ sup

N
V⋆(0, y0) +

1

2
ϵ

N+1∑

t=0

(
1

2

)t

= V⋆(0, y0) + ϵ.

So we have V⋆(0, y0) ≤ J⋆(y0) ≤ V⋆(0, y0)+ϵ. As ϵ was arbitrary, we conclude
J⋆(y0) = V⋆(0, y0). If for any y ∈ Y and r, the minimum in (19) is attained
for some u ∈ U , then we can pick ϵ = 0 and conclude that the minimizing
argument in (19) is optimal for (9). 2
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Theorem 2—Approximation
For the system (6) under Assumptions 1 and 2 and strategy class Π, assume
that there exists a function V̄ : (R ∪ {−∞})M × Y → R and a strategy

π̄ = (η̄, η̄, . . .) ∈ Π̃ such that V̄ ≥ V0 and

Bη̄(r,y) V̄ (r, y) ≤ V̄ (r, y).

Then the value iteration V0, V1, . . . is bounded, and Jµ̄(y0) ≤ V̄ (0, y0) for the
policy

µ̄t(y[0:t], u[0:t−1]) = η̄(rt, yt).

Proof. By monotonicity of the Bellman operator, we have that Vk ≤ V̄
for all k = 0, 1, . . ., implying that the value iteration V0, V1, . . . is bounded.
Further,

J⋆(y0) ≤ sup
N

JN
π̄ (y0) = sup

N
sup
v[0:N]

{V0(rN+1, yN+1) : vt ∈ Y}

≤ sup
N

sup
v[0:N]

{V̄ (rN+1, yN+1) : vt ∈ Y} ≤ sup
N

V̄ (r0, y0) = V̄ (r0, y0).

2

3. Magnitude control

We now apply the above results to the example in Section 1. For any y, we
denote ξ+ = y and ξ− = −y. Then h−1{y} = {ξ+, ξ−}. We similarly index
r = [r+, r−]. Then g in (15) becomes gs(r, v, y, u) = y2 + u2 − γ2 min{r+ +
(sv − u− y)2, r− + (sv − u+ y)2} for s = ±1.

Proof of proposition 1 By the above analysis, the quantities (5) corre-
spond to (16), and the first statement in the proposition is a direct conse-
quence of Theorem 1. Drawing inspiration from [Rantzer, 2021], we parame-
terize an upper bound of the optimal value in the parameters 0 < p ≤ q < γ2

by

V̄ (r, y) = max{py2 + r+, py2 + r−, qy2 + (r+ + r−)/2}, (21)

and a certainty equivalence policy

η̄(r, y) = k sign(r− − r+)y (22)

The following lemma relates the parameters of the value function approx-
imation p, q and k to the ℓ2 gain of the closed loop.

119



Paper IV. Minimax Dual Control with Finite-Dimensional Information
State
Lemma 1
Given a quantity γ > 0, parameters 0 < p < q < γ2, k ∈ R, and V̄ as above.
The certainty equivalency policy η̄ in (22) achieves an ℓ2-gain of at most γ
for the system (1)–(3) and an objective value smaller than V̄ (0, |x0|) for the
decision problem (9), if

p > 1 + k2 +
(1− k)2

p−1 − γ−2
,

q > 1 + k2 +
(1 + k)2

p−1 − γ−2
,

q > 1 + k2 +
1

q−1 − γ−2
− γ2k2.

(23)

The values γ = 4, p = 1.7, q = 7 and k = 0.7 satisfy the conditions of
Theorem 1 and a simulation with wt = sin(πt/10) is shown in Figure 2.

Proof. Define
V̄ ++(r, y) ≜ py2 + r+

V̄ −−(r, y) ≜ py2 + r−

V̄ +−(r, y) ≜ qy2 + (r+ + r−)/2.

(24)

Then, for a fixed u, we have

Bu{max{V̄ ++(r, y), V̄ −−(r, y))}

= y2 + u2 +max

{
(y + u)2

p−1 − γ−2
+ r+,

(y − u)2

p−1 − γ−2
+ r−

}
.

Define for i, j ∈ {+,−}

αij ≜ sup
v≥0
{qv2 − γ2

2

(
(v − u− iy)2 + (−v − u− jy)2

)
+

ri + rj

2
.

Then Bu{V̄ +−(r, y)} = y2 + u2 +maxi,j∈{+,−} αij , where, for i ̸= j,

αii = ri − γ2(u+ iy)2, max{αij , αji} = y2

q−1 − γ−2
− γ2u2 +

ri + rj

2

Let l = argmaxi∈{+,−}{ri}, then by (23), we have

B−kly{V̄ (r, y)} = max
ij
{B−kly V̄

ij(r, y)}

≤ max{B−kly V̄
il(r, y)− (rl − rj)/2} ≤ max{V̄ il(r, y)} ≤ V̄ (r, y).

Therefore, by Theorem 2, the objective value is bounded from above by
V̄ (0, y0). 2
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Figure 2. Figures 2a and 2b contain plots of the outputs and control signal, re-
spectively. Figure 2c shows the empirical gain from w to (y, u) and Figure 2d shows
the value function approximation V̄ = max{V̄ ++, V̄ +−, V̄ −−} defined in (21). The
black marks corresponds to V̄ ++, the half circles to V̄ +−, the white marks to V̄ −−

and the blue crosses to V̄ . Note that the value function approximation is monoton-
ically decreasing.
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4. Conclusion

This article demonstrated that output feedback minimax dual control pos-
sesses a finite-dimensional information state when the measurement equation
has a finite number of solutions. We applied this finding to the magnitude
control of an integrator, resulting in a surprisingly simple sub-optimal con-
trol policy. The controller is proportional, with the gain determined through
hypothesis testing and updated online. However, the results are limited to
cases where the measurement equation has a finite number of solutions. This
restriction excludes scenarios where measurements are affected by real-valued
sensor noise, which typically leads to an infinite-dimensional information
state.

Future work will focus on extending these results to cases with noisy
measurements, specifically where the dynamics are linear and uncertain but
belong to a finite set. Progress has already been made for scalar systems [Kjel-
lqvist and Rantzer, 2022], and the extension to multi-dimensional cases is
currently under investigation.
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Paper V

Output Feedback Minimax Adaptive

Control

Olle Kjellqvist and Anders Rantzer

Abstract

This paper formulates adaptive controller design as a minimax dual
control problem. The objective is to design a controller that minimizes
the worst-case performance over a set of uncertain systems. The un-
certainty is described by a set of linear time-invariant systems with
unknown parameters. The main contribution is a common framework
for both state feedback and output feedback control. We show that
for finite uncertainty sets, the minimax dual control problem admits
a finite-dimensional information state. This information state can be
used to design adaptive controllers that ensure that the closed-loop has
finite gain. The controllers are derived from a set of Bellman inequali-
ties that are amenable to numerical solution. The proposed framework
is illustrated on a challenging numerical example.

1. Introduction

This paper addresses the design of adaptive controllers with guaranteed per-
formance for linear time-invariant systems with uncertain parameters. The
performance index is quadratic with a soft constraint on the size of the distur-
bance. The performance measure quantifies transient behavior and, if finite,
guarantees a bounded ℓ2-gain. Via the small-gain theorem, we guarantee sta-
bility in the presence of unmodeled dynamics.

This property implies that the closed-loop system behaves well even if
the assumptions on the model class are violated, as long as the violation is
minor. Toward this end, we do not make any assumptions on the statistical
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Parameterized
Linear system
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Parameters

Measurement Control action
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Figure 1. The minimax control problem. The controller minimizes a performance
index by selecting inputs, while the adversary selects the parameter realization and
disturbances to maximize it.

properties of the parameters or the exogenous signals. Instead, the underly-
ing models are deterministic, and the uncertain parameters and signals are
chosen by an adversary that seeks to maximize the performance index. See
Fig. 1 for an illustration of the problem.

1.1 Contributions
To address the complexities and challenges outlined above, this paper makes
several key contributions to the field of adaptive control.

Unifying State-Feedback and Output-Feedback We show that the
state-feedback and output-feedback minimax dual control problems can be
reduced to a minimax control problem with linear (known) dynamics and
uncertain objective functions. This reduction is based on the concept of
information-state feedback[Bertsekas and Rhodes, 1973; James and Baras,
1995], and is illustrated in Fig. 2. The problem with uncertain objective
functions is introduced in Section 2.1. State-feedback and output-feedback
minimax dual control problems and their reductions are presented in Sec-
tions 2.2 and 2.3, respectively.

Finite-Dimensional Information State We show that if the uncertain
parameters belong to a finite set, the optimal output-feedback controller is
observer-based and can be computed by dynamic programming. This is a
specialization of the result in [James and Baras, 1995] for the nonlinear H∞-
control problem. However, in contrast to the general result [James and Baras,
1995], we show in Section 2.3 that the observer state is finite-dimensional,
and we provide a constructive method to compute the observer state.

Heuristics for Suboptimal Controller Synthesis We provide a heuris-
tic method to synthesize suboptimal controllers. The method is based on
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ProcessController

Information-state
computation

Reference
Control Signal

Figure 2. Closed-loop with information state-feedback control.

approximating the value function as a piecewise-quadratic function and the
controllers as certainty-equivalence controllers. We introduce periodic Bell-
man inequalities to deal with delays and other nonminimum-phase behavior.
The method generalizes [Rantzer, 2021, Theorem 3] to minimax control of
linear time-invariant systems with unknown objective functions. Hence, the
method is applicable to both state-feedback and output-feedback minimax
dual control problems. The resulting controllers have guaranteed worst-case
performance in the sense of a bounded ℓ2-gain. The details of the method are
presented in Section 3, and the use of periodicity to deal with nonminimum-
phase behavior is examplified in Section 4.1.

Numerical Examples We provide a Julia [Bezanson et al., 2017] imple-
mentation1 of the proposed methods and design a controller that simultane-
ously stabilizes Gmp and Gnmp,

Gmp(z) =
z0z − 1/z0
(z − 1)2

, (1a)

Gnmp(z) =
z/z0 − z0
(z − 1)2

. (1b)

Here z is the complex frequency, and z0 is 1.01. Both systems are unstable,
with a double pole in 1/(z − 1). Gmp has a minimum phase zero at 1/z20
and Gnmp has a nonminimum-phase zero at z20 . The results are presented in
Section 4.2.

1.2 Related work
Minimax Control Witsenhausen introduced minimax control in his the-
sis [Witsenhausen, 1966] as a decision-theoretic approach to control of uncer-
tain dynamical systems. Bertsekas and Rhodes [Bertsekas and Rhodes, 1973]
showed that the optimal controller can be decomposed into an estimator and
an actuator. The optimal estimator can be expressed as a function of the ob-
servations, a so-called “sufficiently informative function”. H∞-control, both

1The code is available at https://github.com/kjellqvist/MinimaxAdaptiveControl.jl.
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in the linear-quadratic case [Basar and Bernhard, 2008] and in the nonlin-
ear case [James and Baras, 1995], has been formulated in terms of minimax
control. Recently, Goel and Hassibi [Goel and Hassibi, 2023] showed that
minimizing the regret or competitive ratio compared to an acausal controller
with access to the future disturbance trajectory may provide excellent nom-
inal performance at only a small robustness expense and that optimal con-
troller synthesis can be reformulated as standard H∞ controller synthesis.
Karapetyan et. al [Karapetyan et al., 2022] studied the suboptimality of H∞
control in the same setting.

The term “minimax adaptive” was introduced in [Didinsky and Basar,
1994] as a term for controllers that minimize the worst-case performance re-
alization for systems with parametric uncertainty. The authors considered
continuous-time state-feedback control of systems with uncertain but con-
stant parameters and showed that the cost can be rewritten in terms of
the least-squares estimate of the parameters. The reformulation using the
least-squares estimate of the parameters is viable in the state-feedback case
because it is sufficient to reconstruct the worst-feasible realization consistent
with a model hypothesis and data, which James and Baras [James and Baras,
1995] showed is an information state—or informative statistic in Striebel’s
terms [Striebel, 1965]. This information state has a recursive formulation and
is generally not finite-dimensional. This statistic corresponds to our function
r in (6) and has a finite-dimensional representation. Pan and Başar general-
ized the results to of nonlinear SISO systems on “parametric strict-feedback
form” in [Pan and Basar, 1998].

Vinnicombe [Vinnicombe, 2004] studied scalar systems where the parame-
ters’ signs are unknown and provided an explicit suboptimal controller based
on certainty equivalence control with the least-squares parameter estimate.
Megretski and Rantzer [Megretski and Rantzer, 2003] provides lower bounds
on the achievable ℓ2-gain for scalar systems with an uncertain pole belonging
to an interval. Rantzer extended Vinnicombe’s result to higher-order systems
where the state matrix has an unknown sign [Rantzer, 2020] and to finite sets
of linear systems assuming full state measurements [Rantzer, 2021]. A suffi-
cient condition for finite ℓ2-gain is formulated as bilinear matrix inequalities,
and a controller is obtained from the solution.

Cederberg et al. [Cederberg et al., 2022] proposed linearizing Rantzer’s in-
equalities to improve performance iteratively, Bencherki and Rantzer [Bencherki
and Rantzer, 2023] gave conditions under which a solution to the inequalities
is guaranteed to exist and Renganathan et al. [Renganathan et al., 2023]
studied empirical performance. Kjellqvist generalized the framework to non-
linear systems where the preimage of the output under the measurement
function is a finite set [Kjellqvist, 2024] assuming noise-free measurements.
Kjellqvist and Rantzer [Kjellqvist and Rantzer, 2022] previously extended
Vinnicombe’s [Vinnicombe, 2004] controller to the one-dimensional output-
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feedback case.

Dual Control The controllers in Section 3 are dual controllers. In the
nomenclature of Filatov and Unbehauen’s survey[Filatov and Unbehauen,
2000], they are implicit dual controllers, as they are suboptimal solutions to
dual control problems. Duality here is in the sense of Feldbaum’s observation:
that optimal controllers for uncertain nonlinear systems tend to have both
regulating and experimenting mechanisms [Feldbâum, 1963]. This duality is
known as the exploration-exploitation trade-off in the reinforcement learning
literature [Sutton and Barto, 2018]. For further reading on dual control, see
the surveys by Wittenmark [Wittenmark, 1995], Filatov and Unbehauen [Fi-
latov and Unbehauen, 2000] and Mesbah [Mesbah, 2018].

Supervisory Control & Multiple-Model Adaptive Control Super-
visory control, or multiple-model adaptive control, is a controller architec-
ture where a supervisor selects a controller from a set of candidate con-
trollers [Hespanha, 2001]. Supervisory controllers typically come in two fla-
vors: Estimator-based, where each model has an associated estimator and
control law, and the supervisor selects the model based on the estimator’s
output [Buchstaller and French, 2016], and controller-based, where the su-
pervisor selects among control laws by disqualifying controllers that violates
assumed performance guarantees [Safonov and Tsao, 1997; Patil et al., 2022].
Our certainty-equivalence controllers can be seen as an instance of the former.

Switching, even among stable subsystems, may induce instabil-
ity[Liberzon, 2003], so the supervisor must ensure that the switching is
safe. In estimator-based frameworks, this typically translates to dwell-time
constraints. In the controller-based framework, this can be achieved by hys-
teresis in switching out underperforming controllers [Battistelli et al., 2010].
This switching restriction relates to the separation of time scales exploited
in Ljung’s averaging arguments [Ljung, 1977], and to the difficulties of fast
adaptation [Anderson, 2005]. The periodicity in our certainty-equivalence
controllers can be seen as a form of dwell-time constraint.

Learning Recently, there has been a surge of interest in the intersection
of learning theory and control. Advances in, for example, high-dimensional
statistics [Tsiamis et al., 2023] and online convex optimization [Hazan, 2016]
have provided tools for the design of new adaptive algorithms and analysis of
achievable performance. Most work has focused on relating the asymptotic
scaling of performance bounds to assumptions on the size and number of
uncertain parameters. It is based on assumptions about the statistics of the
exogenous signals. We now provide a brief overview of the works most closely
related to our own.
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Agarwal et al. [Agarwal et al., 2019] considered control of linear systems
with known dynamics, where the control objective and disturbances were
adversarially chosen, as in our Problem 1. In contrast to our work, the cost
functions were time-varying, revealed sequentially after actuation, and did
not include a disturbance term. Instead of a soft constraint, they assumed
that the disturbance was bounded.

Simchowitz et al. [Simchowitz, 2020] extended the results to output feed-
back and uncertain dynamics but relied on apriori knowledge of a stabilizing
static output feedback controller and evaluations of the objective function.

Ghai et al. [Ghai et al., 2022] considered online control with model mis-
specification assuming perfect state measurements and provided an adaptive
controller with bounded ℓ2-gain. The bound is asymptotic and scales with the
number of uncertain parameters and the size of the model mismatch. In con-
trast our ℓ2-bound is specific to the problem instance, and the user specifies
precisely what parameters are uncertain. Lee et al. [Lee et al., 2024] stud-
ied the regret of certainty-equivalence controllers with normally distributed
exploration for approximately parameterized linear systems. The approxima-
tion allows the user to inject prior knowledge and identify a reduced number
of parameters, but means that the true system lies outside the space spanned
by the parameters. They showed an improvement over black-box adaptation
in the small-data regime, as long as the model misspecification and the num-
ber of parameters are few.

1.3 Notation
The set of n×m matrices with real coefficients is denoted Rn×m. The trans-
pose of a matrix A is denoted AT. The space of real symmetric matrices in
Rn×n is denoted Sn. For a symmetrix matrix H ∈ Sn+m with blocks

H =

[
H11 H12

H21 H22

]
,

we denote the Schur complements of H11 and H22 in H by

H/H22 = H11 −H12H−22H21,

H/H11 = H22 −H21H−11H12.

H−ii denotes the inverse of Hii, if it exists. For a symmetric matrix H ∈
Sn1+···nm with blocks

H =



H11 · · · H1m

...
. . .

...
Hm1 · · · Hmm


 ,
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and vectors x1 ∈ Rn1 , . . . , xm ∈ Rnm , we define the quadratic form

σH(x1, . . . , xm) =
∑

i,j

xTiH
ijxj .

We write H ⪰ 0 to indicate that H is positive semidefinite and H ≻ 0 to
indicate that H is positive definite. If H ≻ (⪰)0, we sometimes write |x|2H
to emphasize that |x|2H = σH(x) is a (semi) norm. The standard euclidean

norm is denoted |x| =
√

σI(x), and by extension |(x1, . . . , xm)|2 =
∑m

i=1 |x|2.
We refer to the value of a signal w at time t as wt and use the shorthand
notation w[0:t] for the sequence (w0, w1, . . . , wt). We sometimes use asterisks
in matrix expressions to denote elements implied by symmetry. For two sets,
X and Y , we denote the set of functions from X to Y by Y X .

2. Exact Analysis

2.1 Principal Problem
This section introduces the principal problem of this paper and presents
theory on minimax dynamic programming and value iteration. In Sections 2.2
and 2.3, we show how to reduce state feedback and output feedback adaptive
control to the principal problem.

Problem 1—Principal problem

Let Â ∈ Rnz×nz , B̂ ∈ Rnz×nu , Ĝ ∈ Rnz×nd , z0 ∈ Rnz and let M ⊂
Snz+nu+nd be a compact set whose members, H, satisfy

H =



Hzz Hzu Hzd

Huz Huu Hud

Hdz Hdu Hdd


 ,

Hdd ≺ 0,

H/Hdd ⪰ 0,

[H/Hdd]uu ≻ 0.

(2)

Compute

inf
µ

sup
H∈M,d,N

N−1∑

t=0

σH(zt, ut, dt)

︸ ︷︷ ︸
ĴN
µ (z0,H,d)

, (3)

where N ≥ 0 and the sequences, z[0:N ], u[0:N−1] are generated by

zt+1 = Âzt + B̂ut + Ĝdt, t ≥ 0 (4)

ut = µt(z[0:t], u[0:t−1], d[0:t−1]). (5)

Problem 1 concerns the upper value of a two-player zero-sum game, where
the minimization is over the controller, µ, and the maximization is over the
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disturbance, d, and the realization of the cost function, H ∈ M. If not
for the uncertainty in the cost function, the problem would be a (nonstan-
dard) linear-quadratic control problem, which is a well understood problem
class [Basar and Bernhard, 2008].

The relation to adaptive control is as follows. In state-feedback adaptive
control, with dynamics of the form xt+1 = Axt + But + wt, where xt is the
state and wt is the disturbance and the pair (A,B) is unknown, and quadratic
stage costs, we let dt = xt+1 and zt = xt. Substituting wt = dt − Azt −But

and zt into the cost function gives dynamics of the form (4) and cost functions
of the form (3). This is explained in more detail in Section 2.2.

For output-feedback adaptive control with a finite set of feasible models
and quadratic stage costs, we quantify the worst-case accrued cost using one
observer for each model. The zt of Problem 1 is constructed by stacking
the observer states, dt is the measured output, and ut is the control input.
The matrices Â, B̂ and Ĝ corresponds to aggregating the observer dynamics.
We get one Hessian, H, for each model, expressing the past performance of
the observer. The reformulation of output-feedback adaptive control as an
instance of Problem 1 is explained in Section 2.3. The rest of this section is
devoted to dynamic programming and value iteration.

Dynamic Programming Define the functions rt : M → R for t =
0, 1, 2, . . . by

rt(H) =

t−1∑

s=0

σH(zs, us, ds). (6)

Then rt satisfies the recursion

rt+1(H) = rt(H) + σH(zt, ut, dt)︸ ︷︷ ︸
f(rt,zt,ut,dt)(H)

. (7)

Although the controller does not know the realization of H, the functions rt
are constructed of known quantities and can be computed by the controller
at time t.

Remark 1
The functions rt take the form rt(H) = ⟨Zt, H⟩. The positive semidefinite
matrix Zt can be computed recursively by

Zt+1 = Zt +



zt
ut

dt





zt
ut

dt



T

, Z0 = 0.

This means that the matrix Zt compresses the information of the past states,
inputs, and disturbances into a single matrix. If the cardinality ofM is large
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compared to the state dimension, nz, then the matrix Zt can be used to reduce
the computational complexity of the problem. If the model set is finite, then
one can store the function values rt(H) for each H ∈M in an array.

For a function V : Rnz × RM → R, define the Bellman operators

Bu V (z, r) = max
d

V
(
Âz + B̂u+ Ĝd, f(r, z, u, d)

)
, (8a)

B V (z, r) = min
u
Bu V (z, r), (8b)

and the value iteration

V0(z, r) = max
H∈M

r(H), (9a)

Vk+1(z, r) = B Vk(z, r). (9b)

We will consider control policies ηt : Rnz × RM → Rnu of the form

ut = ηt(zt, rt), (10)

and note that this policy is admissible as rt depends causally on the states,
inputs, and measured disturbances.

Theorem 1
The following facts holds for Problem 1, the Bellman operator B in (8b) and
the value iteration defined in (9).

1. B is monotone: V ′ ≥ V =⇒ B V ′ ≥ B V .

2. The value iteration is nondecreasing: Vk+1 ≥ Vk.

3. The value iteration converges if, and only if, it is bounded.

4. The value (3) is bounded for all z0 ∈ Rnz if, and only if, the value
iteration converges.

If the value iteration converges to a limit V⋆, then

5. The value (3) is equal to V⋆(z0, 0).

6. V⋆ is a fixed point of B, not necessarily unique.

7. V⋆ is the minimal fixed point of B greater than V0.

8. The control law η⋆ defined as the minimizer in (8b) achieves
Bη⋆(x,r) V⋆(x, r) = B V (x, r), and the policy

µt(z[0:t], u[0:t−1], d[0:t−1]) = η⋆(zt, rt)

is optimal for Problem 1.
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Proof. The proofs of the statements in the theorem are standard but we
include them here for completeness.

1. As the maximization in (8a) and minimization in (8b) are monotone
operations, so is their composition B.

2. Assume that Vk ≥ Vk−1. By monotonicity of B, Vk+1 = B Vk ≥
B Vk−1 = Vk. We now consider the base case, and prove that V1 ≥ V0.
By the minmax inequality

V1(z, r) = min
u

max
d

V0(Âz + B̂u+ Ĝd, f(r, z, u, d))

≥ max
H∈M

min
u

max
d

{
σH(Âz + B̂u+ Ĝd, u, d)

+ r(H)
}

By (2), maxd σH(z, u, d) ≥ 0 for all H ∈ M, we have that V1(z, r) ≥
maxH∈M r(H) = V0(z, r).

3. Pointwise convergence of the value iteration is equivalent to conver-
gence of the monotone sequence of real numbers V0(z, r), V1(z, r), . . . .

We first show that Vk(z, r) converges if, and only if Vk(z, 0) converges.
Let a ∈ R be a constant. By induction Vk(z, r + a) = Vk(z, r) + a. Further,
as f and V0 are monotone in r, so is Vk: r

′ ≥ r =⇒ Vk(z, r
′) ≥ Vk(z, r).

Thus, for all k = 1, 2 . . .

Vk(z, 0) + min{r} ≤ Vk(z, r) ≤ Vk(z, 0) + max{r}.

For anyN , standard dynamic programming arguments show that VN (z0, 0) =
infµ supd,H∈M ĴN

µ (z0, H, d), which is a lower bound for (3). Thus (3) is
bounded only if the value iteration is bounded.

Now, fix an ϵ > 0 and let η̃t be a policy that achieves Bηt
V⋆(z, r) ≤

V⋆(z, r) + ϵt+1. Then (3) is bounded from above by the expression

sup
N,d,H∈M

ĴN
η̃ (z0, H, d) ≤ sup

N

{
V⋆(z, r) + ϵ

N∑

t=0

ϵt

}

= V⋆(z, 0) +
ϵ

1− ϵ
.

Thus we conclude statements 4, 5, and 8.
As V⋆ is the limit of the value iteration, it is a fixed point of B (otherwise,

the limit would not exist). To see that it is minimal, assume that V ′ is another
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fixed point of B such that V ′ ≥ V0 but that V ′(z0, r0) < V⋆(z, r) for some z0
and r0. Define the function V̂0 by

V̂0(z, r) =

{
V ′(z, r) if (z, r) = (z0, r0),

V0(z, r) otherwise.

Then V0 ≤ V̂0 ≤ V ′, so the value iteration V̂ ,B V̂ , . . . converges to some limit
V̂⋆. But by monotonicity, V⋆ ≤ V̂⋆ ≤ V ′, which is a contradiction. 2

2.2 State Feedback
Problem 2—State-feedback minimax adaptive control
Let Q ∈ Snx , R ∈ Snu , be positive definite. Given a compact set M ⊂
Rnx×nx × Rnx×nu , initial state x0 ∈ Rnx , and a positive quantity γ > 0,
compute

inf
µ

sup
w,N,M∈M

N−1∑

t=0

(
|xt|2Q + |ut|2R − γ2|wt|2

)

︸ ︷︷ ︸
JN
µ (x0,M,w)

(11)

whereM = (A,B) ∈M, wt ∈ Rnw ,N ≥ 0, and the sequences x[0:N ], u[0:N−1]

are generated by

xt+1 = Axt +But + wt, t ≥ 0 (12)

ut = µt(x[0:t], u[0:t−1]). (13)

The state-feedback minimax adaptive control problem, Problem 2, is sim-
ilar to a standard H∞ control problem, but differs in that the dynamics are
uncertain and chosen by the adversary. The problem differs from the prin-
cipal problem in that the realization of the objective function is known, but
the dynamics are not. To relate the two problems, we introduce zt = xt,
dt = xt+1. Substituting wt = dt −Axt −But into the dynamics (12), we get

zt+1 = Âzt + B̂ut + Ĝdt, (14)

where Â = 0, B̂ = 0 and Ĝ = I. For M = (A,B) ∈M, let

HM =



Q 0 0
0 R 0
0 0 0


− γ2



−AT

−BT

I





−AT

−BT

I



T

. (15)

Then, the objective (11) becomes

inf
µ

sup
d,N,M∈M

N−1∑

t=0

σHM
(z, u, d). (16)
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HM/Hdd
M =

[
Q 0
0 R

]
⪰ 0.

Finally, note that HM fulfills (2) as R ≻ 0. We summarize the result in the
following theorem.

Theorem 2—State-feedback reduction
The value of Problem 2 is equal to the value of Problem 1 with M = {HM :
M ∈ M} with HM as in (15), zt = xt, dt = xt+1, and Â = 0, B̂ = 0, and
Ĝ = I. Further, given a policy µ̂ : (z[0:t], u[0:t−1], d[0:t−1]) 7→ ut,

sup
d,N,H∈M̂

ĴN
µ̂ (z0, H, d) = sup

w,N,M∈M
JN
µ (x0,M,w),

where
µ(x[0:t], u[0:t]) = µ̂(z[0:t], u[0:t−1], d[0:t−1])

is feasible for Problem 3.

2.3 Output Feedback
This section presents how to rewrite the output-feedback minimax adaptive
control problem formalized below as an instance of the principal problem,
Problem 1.

Problem 3—Output-feedback minimax adaptive control
Let Q ∈ Snx , R ∈ Snu , be positive definite. Given a compact set M ⊂
Rnx×nx × Rnx×nu × Rnx×nw × Rny×nx × Rny×nv , and a positive quantity
γ > 0 , consider

−|x0 − x̂0|2SM,0
+

N−1∑

t=0

(
|xt|2Q + |ut|2R − γ2|(wt, vt)|2

)

︸ ︷︷ ︸
JN
µ (x̂0,M,y,w,v,x0)

. (17)

where SM,0 ⪰ 0, M = (A,B,G,C,D) ∈M, wt ∈ Rnw , vt ∈ Rnv , N ≥ 0, and
the sequences, x[0:N ], y[0:N−1] and u[0:N−1] are generated by

xt+1 = Axt +But +Gwt, t ≥ 0 (18a)

yt = Cxt +Dvt, (18b)

ut = µt(y[0:t−1], u[0:t−1]). (18c)

Compute
inf
µ

sup
y,M∈M,N,w,v

JN
µ (x̂0,M, y, w, v). (19)
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Remark 2
We assume that all members ofM have the same order, i.e., nx, nw and nv

are constant for all M ∈M. This is for notational simplicity only and is not
necessary for the theoretical development in this section.

We make the following assumptions on the problem parameters.

Assumption 1—Problem parameters

For each M ∈ M,
[
A G

]
and D have full column rank, and

[
AT

√
Q
]T

has full row rank.

We follow the approaches of [James and Baras, 1995] and [Basar and Bern-
hard, 2008], and split the optimization problem (19) into three steps,

inf
µ

sup
y,M∈M,w,v,N,x0

JN
µ (x̂0,M, y, w, v, x0) =

inf
µ

sup
y,M∈M,N

sup
x

[
sup

w,v,x0

{JN
µ (x̂0,M, y, w, v, x0) : xN = x}

]

︸ ︷︷ ︸
WN

M (x,u[0:N−1],y[0:N−1])

. (20)

The supremum in WN
M (x, u[0:N−1], y[0:N−1]) is taken subject to the inputs

w[0:N−1], v[0:N−1] and u[0:N−1], the observed output y[0:N−1], final state xN =
x and model M being feasible. Feasibility means that the state sequence
x[0:N ] is generated by the dynamics (18a) and the output sequence y[0:N−1]

is generated by the output equation (18b) under the model M .
Note that WN

M (x, u, y) is a function of the trajectory u[0:N−1] and not
the control law µ. This is because the outer optimization steps determine
the control law and the output sequence. The control law and the output
sequence in turn determine the control signal trajectory.

The reformulation has two major benefits. The first is that minimizing
over µt and maximizing over y[0:t−1] commutes as µt is a function of y[0:t−1].
This interchange of extremization leads to a sequential optimization problem
that can be solved by backwards dynamic programming. The second benefit
is that WN

M (x, u[0:N−1], y[0:N−1]) can be characterized using standard forward
Riccati recursions and observer equations of H∞-control theory.

The rest of the section is organized as follows. Section 2.3 shows how to
rewrite Problem 3 as an instance of Problem 1 in the case where the dynamics
are known. Section 2.3 modifies the approach to the case whereM is a finite
set of models.

Known Dynamics In this case,M = {M} for some M = (A,B,G,C,D),
and we will drop the subscript M from the notation. The value (19) is then
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equal to

inf
µ

sup
N,y[0:N−1],x

WN (x, u[0:N−1], y[0:N−1]).

Consider the forward Riccati recursions:

St+1 = (AX−1
t AT + γ−2GGT)−1,

Xt = St + γ2CT(DDT)−1C −Q,

Lt = γ2AX−1
t CT(DDT)−1,

(21)

where St ∈ Snx , Xt ∈ Sny , Lt ∈ Rnx×ny . The H∞-observer states obey the
dynamics

x̂t+1 = Ax̂t +But + Lt(yt − Cx̂t) +AX−1
t Qx̂t. (22)

The initial S0 and x̂0 are provided by the designer in (17). The following
lemma summarizes the recursive computation of WN , we refer the reader
to [Basar and Bernhard, 2008, Chapter 6] for a proof.

Lemma 1
For Problem 3 with M = {(A,B,C,G,D)}, let St+1 ∈ Snx , Xt ∈ Sny , and
Lt ∈ Rnx×ny be defined recursively for t = 0, 1, . . . by (21). If St ≻ Q for all
t = 0, . . . , N , then WN defined in (20) satisfies

WN (x, u[0:N−1], y[0:N−1]) = −|x− x̂N |2SN
+ rN . (23)

The observer states x̂t follow the observer equation (22), r0 = 0 and

rt+1 = rt + |x̂t|2(Q−1−S−1
t )−1 + |ut|2R

− |yt − C(S −Q)−1Sx̂t|2(DDT/γ2+C(S−Q)−1CT)−1 . (24)

If, for any t ≥ 0, St ⊁ Q, then the value (19) is unbounded.

It is not obvious how the designer should choose the initial S0. The Ric-
cati recursions (21) are known to admit positive definite fixed points S if
γ is sufficiently large, and the minimal fixed point leads to stable observer
dynamics (22). Thus, we can choose S0 = S, a stabilizing positive definite
fixed point of the Riccati recursions, and will assume so for the rest of the
section.

Assumption 2
γ is large enough so that there exists a stabilizing positive definite fixed point
of the Riccati recursions (21). Denote by S the minimal fixed point and as-
sume S0 = SM .
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Remark 3
Note that under Assumption 2

rt =

t−1∑

s=0

σQ̂(x̂s, us, ys)

where
Q̂xx = SX−1S − S Q̂xu = 0,

Q̂uu = R, Q̂yy = −(DDT/γ2 + C(S −Q)−1CT)−1,

Q̂uy = 0, Q̂xy = γ2SX−1CT(DDT)−1.

(25)

Remark 4
The expression of rt+1 is unnecessary when one employs the certainty equiv-
alence principle of [Basar and Bernhard, 2008], but is crucial to our theory
of adaptive control.

Theorem 3
For Problem 3 with M = {(A,B,C,G,D)}, under assumptions 1 and 2, let

Â = AX−1S, B̂ = B, Ĝ = L, where (S,X,L) is a fixed point of the Riccati
recursions (21). Then, the optimal value of Problem 3 is equal to the optimal
value of Problem 1 where H is replaced by Q̂ in (25) and zt = x̂t. Further,
given a policy µ̂ : (z[0:t], u[0:t−1], y[0:t−1])) 7→ ut,

sup
d,N

ĴN
µ̂ (z0, H, d) = sup

y,N,w,v,x0

JN
µ (x̂0,M, y, w, v, x0),

where
µ(y[0:t−1], u[0:t−1]) = µ̂(z[0:t], u[0:t−1], y[0:t−1])

is feasible for Problem 3.

Proof. From Lemma 1, we know that for a fixed policy µ and horizon N ≥ 0,
the value of the inner optimization problem in (19),

sup
w,v

{
N−1∑

t=0

(
|xt|2Q + |ut|2R − γ2|(wt, vt)|2

)
− |x0 − x̂0|2S0

}

= sup
y[0:N−1],x

{
−|x− x̂N |SN

+

N−1∑

t=0

σQ̂(x̂t, ut, yt)

}

︸ ︷︷ ︸
JN
µ (x̂0)

,

where Q̂ is defined in (25) and the sequences x̂t and ut are generated by (22)
and (18c), respectively. As SN is positive definite, the unique maximizing
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argument is x⋆ = x̂N . By assumption, S0 is a fixed point of the Riccati
recursion (21) and therefore St = S = S0. The corresponding matrices Q̂t,
Xt, Lt, Â, B̂ and Ĝ are also stationary. Finally, as x̂t is a function of y[0:t−1]

and u[0:t−1], the sets of feasible controllers µ in Problem 3 and µ̂ in this
theorem are equal. We conclude that the optimal values are equal. 2

Main Result: Output Feedback Adaptive Control We now consider
the case where the dynamics of the system are unknown and the controller
must adapt to the system, but assume that the model set M is finite. Let
x̂M,t, ÂM , B̂M , ĜM and Q̂M be as in Theorem 3 for each M ∈M and define

zt =




x̂1,t

...
x|M|,t


 , B̂ =




B̂1

...

B̂|M|


 , Ĝ =




Ĝ1

...

Ĝ|M|


 , (26)

Â = BlockDiag{AMX−1
M SM : M ∈M},

and dt = yt. Further, let Hi ∈ S|M|nx×nu×ny be given by



0 · · · 0 0 0 · · · 0 0 0
...

. . .
...

...
...

...
0 0 0 0 · · · 0 0 0

0 · · · 0 Q̂xx
i 0 · · · 0 Q̂xu

i Q̂xy
i

0 0 0 0 · · · 0 0 0
...

...
. . .

...
...

...
0 · · · 0 0 0 · · · 0 0 0

0 · · · 0 Q̂ux
i 0 · · · 0 Q̂uu

i Q̂uy
i

0 · · · 0 Q̂yx
i 0 · · · 0 Q̂yu

i Q̂yy
i


. (27)

row i

column i

The following theorem shows that the output-feedback adaptive control
problem can be reduced to an instance of Problem 1.

Theorem 4—Reduction
Under Assumptions 1 and 2, the optimal value of Problem 3 is equal to the
optimal value of Problem 1 where M is replaced by {HM : M ∈ M} with
HM as in (27) and Â, B̂ and Ĝ in (26), and z0 in (26). Further, given a
policy µ̂ : (z[0:t], u[0:t−1], y[0:t−1]) 7→ ut,

sup
d,N,H∈M̂

ĴN
µ̂ (z0, H, d) = sup

y,M∈M,N,w,v,x0

JN
µ (x̂0,M, y, w, v, x0),
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Observer-based
Controller:

η
Observer 2

Observer 1

...

Observer |M|

y u

(x̂1, r(H1))

u

(x̂2, r(H2))

u

(x̂|M|, r(H|M|))

u
Output-feedback

Controller: µ

Figure 3. Observer-based adaptive controller resulting from combining Theo-
rem 4 and Theorem 1.

where
µ(y[0:t−1], u[0:t−1]) = µ̂(z[0:t], u[0:t−1], y[0:t−1])

is feasible for Problem 3.

Proof. The proof is identical to that of Theorem 3, but with the additional
steps mentioned below. With W as in (20), we have that the cost (19) is
equal to

inf
µ

sup
M,N,y[0:N−1],x

WN
M (x, u[0:N−1], y[0:N−1]).

Let ŜM ∈ R|M|nx×|M|nx be the matrix that is zero except on the M -th
diagonal block, which is equal to SM . By Lemma 1, we have that

sup
x

WN
M (x, u[0:N−1], y[0:N−1]) = sup

x
{−|x− x̂M,N |2ŜM

+ rM,N}

=

N−1∑

t=0

σQ̂M
(x̂M,t, ut, yt) =

N−1∑

t=0

σHM
(zt, ut, yt).

where Q̂M is as in (25), zt is as in (26), and HM is as in (27). 2

Together with Theorem 1, Theorem 4 can be realized by a bank of ob-
servers as in Fig. 3.
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3. Explicit Controller Synthesis with Performance
Bounds

3.1 Bellman Inequalities
Sometimes, it may be difficult to compute the recursion (9) or to find the
minimal nonnegative fixed point of the Bellman operator B in (8b) and the
corresponding optimal control law. This is typically the case in our setting.
Some exceptions are the case of M being a singleton or the case where the
uncertainty setM contains an element HM that dominates all other models.
By dominate, we mean that a control policy that is optimal for HM achieves
a lower cost for all other models inM.

This section presents theory related to bounding the value function that
relies on periodic compensation. As we will see in Section 4, delays in the
control signal significantly complicates the computation of the value-function
approximation. Periodic compensation is a powerful method to handle this
problem.

Let τ be a positive integer. We model τ -periodic compensation as a control
law that contains a supervisor, η̄, that periodically selects a sequence of τ
control components,

η̄ : (zτk, rτk) 7→ (η̄τk, η̄τk+1, . . . , η̄τk+τ−1). (28)

During this period, the control signal is computed by the component control
laws

uτk+s = η̄τk+s(zτk+s, rτk+s). (29)

The connection to dynamic programming lies in compositions of the Bell-
man operator. The periodic versions of the operators B and Bu in (8) are

Bτ V̄ ≜ BB · · · B︸ ︷︷ ︸
τ -times composition

V̄ , (30a)

B̄η̄,τ V̄ (z, r) ≜ Bη̄1 Bη̄2 · · · Bη̄τ V̄ (z, r),

η̄(z, r) = (η̄1, η̄2, . . . , η̄τ ). (30b)

Theorem 5
For Problem 1, let V0 be as in (9), and let Bτ and B̄η̄,τ be as in (30). If there

exists a function V̄ : Rnz × RM → R and positive integer τ such that

V̄ ≥ V0, Bτ V̄ ≤ V̄ ,

then the value iteration V0, V1, . . . converges to a limit V⋆ ≤ V̄ .
If there exists a τ -periodic control law η̄ as in (28) and (29) such that

V̄ ≥ V0, B̄η̄,τ V̄ ≤ V̄ ,
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then Bτ V̄ ≤ V̄ and the policy η̄ achieves a cost, (3), no greater than

max{V (z0, 0),Bη̄τ V̄ (z0, 0), . . . ,Bη̄2 · · · Bη̄τ V̄ (z0, 0)}, (31)

where (η̄1, η̄2, . . . , η̄τ ) = η̄(z0, 0).

Corollary 1
If V̄ is the smallest fixed point of Bτ greater than V0, then V̄ = V⋆.

Corollary 2
If one has found a V̄ ≥ V0 that satisfies the periodic Bellman inequality,
Bτ V̄ ≤ V̄ , then the control law

η̄τk+s = argmin
u
Bu Bτ−1−s V̄ (zτk+s, rτk+s)

achieves a cost, (3), no greater than

max
s=0,1,...,τ−1

{Bs V̄ (z0, 0)}.

Corollary 3—1-Periodic

If there exists a function V̄ : Rnz×RM → R and control law η̄ : Rnz×RM →
Rnu such that Bη̄ V̄ ≤ V̄ , then the value iteration V0, V1, . . . is bounded, and
the control policy ut = η̄(zt, rt) achieves a cost no greater than V̄ (z0, 0) for
Problem 1.

Proof. Let V̄ ≥ V0 be satisfy Bτ V̄ ≤ V̄ for some τ . As B is monotone, so is
Bτ . Then, for any k = 0, 1, . . ., by monotonicity, V̄ ≥ Bkτ V̄ ≥ Bkτ V0 = Vkτ .
By Theorem 1, the value iteration is monotone, so for any l = 0, 1, . . . , τ − 1,
V̄ ≥ Vk(τ+1) ≥ Vkτ+l. Thus, the value iteration is bounded by V̄ .

For the second part, assume that there exists a V̄ and η̄ such that Bη̄,τ V̄ ≤
V̄ . As Bη̄,τ V̄ ≥ Bτ V̄ , we have that Bτ V̄ ≤ V̄ . It remains to show that the
controller η̄ achieves a cost no greater than (31).

Consider the value iteration starting with V̄0 = V̄ and

V̄(k+1)τ = Bη̄,τ V̄k,

V̄kτ+s+1 = Bη̄s V̄kτ+s, s = 0, 1, . . . , τ − 2.

Fix some N = 0, 1, . . . and consider the factorization N = kτ + s where
s = 0, 1, . . . , τ − 1. We have that

sup
H∈M,d

JN
η̄ (z0, H, d) = B̄η1

B̄η2
· · · B̄ηs

B̄kη̄,τV0(z0, 0)

≤ B̄η1 B̄η2 · · · B̄ηs B̄
k
η̄,τ V̄ (z0, 0)

≤ B̄η1
B̄η2
· · · B̄ηs

V̄ (z0, 0).

The bound (31) follows from taking the supremum over N = 0, 1, . . . on both
sides. 2
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3.2 Solution to the Bellman Inequality
This section is devoted to an explicit solution to the periodic Bellman in-
equality, Bη̄,τ V̄ ≤ V̄ in Theorem 5, in the case of a finite model set
M = {H1, . . . ,HN}. We parameterize an upper bound of the value func-
tion in a set of positive definite matrices Pij ∈ Snz ,

V̄ (z, r) = max
i,j

V̄ij(z, r), (32a)

V̄ij(z, r) = |z|2Pij
+ (r(Hi) + r(Hj)) /2, (32b)

where i, j = 1, . . . , N . We restrict out attention to τ -periodic certainty-
equivalence controllers of the form2

k(nτ) = argmax
i∈{1,...,N}

rnτ (Hi),

unτ+s = −Kk(nτ)znτ+s, s = 0, . . . , τ − 1,
(33)

for some matrices K1, . . . ,KN ∈ Rnu×nz . In the language of Section 3.1, the
supervisor, η̄, is executed at each τ -th time step and generates the feedback
control law to be used over the next τ time steps:

η̄(znτ , rnτ ) = (η̄k(nτ), η̄k(nτ), . . . , η̄k(nτ)),

where η̄k(z, r) = −Kkz is the component control law.

Remark 5
The theoretical development in this section does not rely on the gain ma-
trices Kk being constant over each period. One could let the supervisor, η̄,
predetermine a sequence of gain matrices for the next period.

The Bellman operator acting on a function V̄ij is the supremum of the
quadratic form of the operator G acting on the state and the disturbance, d:

B−Kkz V̄ij(z, r) = sup
d

{
σG(Pij ,Kk,(Hi+Hj)/2)(z, d)

+ (r(Hi) + r(Hj))/2
}
, (34)

where

G(P,K,H) ≜
[
A−BK G

]T
P
[
A−BK G

]

+




I 0
−K 0
0 I



T

H




I 0
−K 0
0 I


 . (35)

2 If the max is achieved on a set, any selection mechanism will work.
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We parameterize a bound of the temporal evolution over a period in a se-
quence of matrices P 1

ij,k, . . . , P
τ
ij,k ∈ Snz , so that Bsη̄k

Vij(z, r) ≤ |z|2P s
ij,k

+

(r(Hi) + r(Hj))/2 for s = 1, . . . , τ . This requirement is equivalent to the set
of matrix inequalities

[
P 1
ij,k 0

0 0

]
⪰ G(Pij ,Kk, (Hi +Hj)/2),

[
P s+1
ij,k 0

0 0

]
⪰ G(P s

ij,k,Kk, (Hi +Hj)/2).

(36)

By the choice of k in (33), we have that r(Hi) ≤ r(Hk) for all i. The following
theorem formalizes the sufficient condition that if P τ

ij,k ⪯ Pjk, then V̄ and η̄
fulfills the τ -periodic Bellman inequality.

Theorem 6—Explicit solution
For Problem 1 where the model set is finite, M = {H1, . . . ,HN}. Assume
there exist

• a positive integer τ ,

• matrices P s
ij,k = P s

ji,k ∈ Snz for i, j, k = 1, . . . , N and s = 1, . . . , τ ,

• positive semidefinite matrices Pij = Pji ∈ Snz for i, j = 1, . . . , N ,

• gain matrices K1, . . . ,KN ∈ Rnu×nz .

If P τ
ij,k ⪯ Pjk and (36) are fulfilled for all s = 1, . . . , τ − 1 and i, j, k =

1, . . . , N except for i ̸= j = k, then the value approximation V̄ in (32) with
the certainty-equivalence control law η̄ in (33) fulfills the periodic Bellman
inequality, Bη̄,τ V̄ ≤ V̄ .

Remark 6
Theorem 3 in [Rantzer, 2021] is obtained as a corollary of Theorem 6 by

substituting Â = 0, B̂ = 0 and Ĝ = I and HM from (15) into G, taking
τ = 1 and replacing (36) with their lower Schur complements.

Remark 7
The inequalities (36) are affine in Pij and P s

ij,k, but are not convex in Ki.
One heuristic approach to solve the inequalities is to first solve the linear-
quadratic problem associated with each model i to obtain Ki,

inf
µ

sup
d,N

{
N−1∑

t=0

σHi(zt, ut, dt)

}
.

Then use standard optimization software for semidefinite programming to
search for Pij and P s

ij,k, holding Ki fixed. This approach was suggested
in [Rantzer, 2021] and is also used in the examples in Section 4.
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4. Examples

4.1 State-Feedback, Delays and Periodic Compensation
This section studies state-feedback control of the delayed discrete-time inte-
grator where the sign of the gain is unknown. The dynamics can be modeled
in two ways, either the sign uncertainty is incorporated into the state matrix
or the input:

xt+1 =

[
1 i
0 0

]

︸ ︷︷ ︸
Ai

xt +

[
0
1

]

︸︷︷︸
B

ut + wt, i = ±1 (37)

xt+1 =

[
1 1
0 0

]

︸ ︷︷ ︸
A

xt +

[
0
i

]

︸︷︷︸
Bi

ut + wt, i = ±1, (38)

with Q = I and R = I. Although the input to output (x1) behavior of
the systems (37) and (38) are identical, from a control perspective, they are
significantly different. The difference lies in that an impulse in the controlled
input at time t will reveal information about the sign of Bi in (38) at time
t + 1 but information about Ai in (37) not until t + 2. This difference is
reflected in the smallest period, τ , for which the periodic Bellman inequality
can be satisfied.

We computedK1 andK2 according to Remark 7 and solved the conditions
in Theorem 6 using MOSEK. We find that for (38), the conditions are satisfied
for τ = 1 and γ = 6. Our software implementation cannot find a solution for
τ = 1 for the system in (37) and it is not until τ = 2 that a solution, with
γ = 11.2, is found.

Proposition 1
Given Ai and B in (37), γ > 0, Q ∈ R2×2 be positive definite and R > 0.
Then there does not exist matrices Ki ∈ R1×2 and positive definite P ∈ R2×2

such that Ai −BKi are Schur stable and,

[
P 0
0 0

]
≥ G(P,Kk, (H1 +H2)/2) (39)

for both (i, j, k) = (1,−1, 1), and (−1, 1,−1).

Proof. Taking the Schur complement of (39) we get the equivalent condition
that for all x

|x|2P ≥ |x|2Q + |Kkx|2R − γ2|(Ai −BiKk −Aj +BjKk)x/2|2

+ |(Ai −BiKk +Aj −BjKk)x/2|2(P−1−γ−2I)−1 .
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Note that (P−1 − γ−2I)−1 ≻ P . Let Kl =
[
k1l k2l

]
. By Lemma 2 in the

Appendix, that lk1l > 0. Furthermore, we have for i ̸= j

Ai −BiKl +Aj −BjKl =

[
1 0
−k1l −k2l

]
.

Thus,

(Ai −BiKl +Aj −BjKl)
TP (Ai −BiKl +Aj −BjKl)

=

[
p11 − 2k1l p21 + (k1l )

2p22 ∗
∗ ∗

]
,

where p12 = p21 and

P =

[
p11 p12
p21 p22

]
.

We also note that

−γ2|(Ai −BiKl −Aj +BjKl)x/2|2 = −γ2x2
2.

For x =
[
x1 0

]T
, we get

|x|2P − |x|2Q + |Kkx|2R − γ2|(Ai −BiKl −Aj +BjKl)x/2|2

+ |(Ai −BiKl +Aj −BjKl)x/2|2(P−1−γ−2I)−1

≤ |x|2P − |x|2Q + |Kkx|2R − γ2|(Ai −BiKl −Aj +BjKl)x/2|2

+ |(Ai −BiKl +Aj −BjKl)x/2|2P
= 2k1l p21 − (k1l )

2p22 − q11 − (k1l )
2R

As (k1l )
2p22 + q11 + (k1l )

2R > 0 and as k11 and k1−1 have opposite signs, we
have that the last line is smaller than zero for l = 1, l = −1 or both. 2

4.2 Approximate Unstable Pole Cancellation
We conclude the examples by synthesizing a controller for the double inte-
grator with uncertain approximate pole cancellation. See the pole-zero map
in Fig. 5. This corresponds to an approximate cancellation of the unstable
pole. The step responses of the system in Fig. 4, and Bode plots in Fig. 6
indicate that the high-frequency behavior of Gmp and Gnmp are similar to
an integrator, but that the low-frequency asymptotes are different.

The minimum phase system, Gmp, and the nonminimum-phase system,
Gnmp, have state-space realizations (A,B,Cmp, D,G) and (A,B,Cnmp, D,G)
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Figure 4. Step responses for the systems Gmp (blue) and Gnmp (red) as z0 varies
continuously from 1.4 to 1.01 (thick line). The dashed line y = t corresponds to
an integrator. As z0 → 1, note that the short-term behavior of both realizations
resemble that of the integrator. The asymptotic behavior, however, do not.

x2

1/z20 → 1 1← z20
ℜ

ℑ

Figure 5. Pole-zero map of the systems Gmp (blue) and Gnmp (red) as z0 ap-
proaches 1.0. The double pole at z = 1 is unstable, and the zero at z = 1/z20 (blue)
is minimum phase. The zero at z = z20 (red) is nonminimum phase. The zeros are
reflections in the unit circle.
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Figure 6. Bode plot of the systems Gmp (blue) and Gnmp (red) as z0 varies con-
tinuously from 1.4 to 1.01 (thick). The systems’ magnitude responses are equal for
a fixed z0, but they differ in phase. This difference is negligable for high frequncies.

respectively, where

A =

[
1 1
0 1

]
, B =

[
0
1

]
,

Cmp =

[
−1/z0 + z0

z0

]T
, Cnmp =

[
−z0 + 1/z0

1/z0

]T
.

Here z0 = 1.01. The LMIs (36) have solutions for τ = 4 and γ = 20 with
G = I/100, Q = I/100, R = I/100 and D = 1/10. The matrices were scaled
down for numerical stability in the optimization. We evaluate the perfor-
mance of the periodic certainty-equivalence controller and compare to self-
tuning LQG controller described in [Åström and Wittenmark, 2008, Chapter
4] by simulating the nonminimum-phase system with wt and vt normally
distributed with zero mean and unit variance.

Time series of the output signal are shown in Fig. 7. The self-tuning
controller has a spike at time-step 355 which is due to its inability to act
against the growth of the mode associated with the second integrator before
it starts dominating the output. The minimax adaptive controller does not
lead to such spikes. We also show the evolution of γt in Fig. 8 and the
evolution of the value function in Fig. 9.
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Figure 7. Simulations of the double integrator with uncertain approximate pole
cancellation. The system is in feedback with the periodic certainty-equivalence
controller of Section 3 (Minimax Adaptive, blue) and the self-tuning LQG controller
described in [Åström and Wittenmark, 2008, Chapter 4] (Self tuner, red). The
output is shown the entire duration in (a), and a shorter snapshot in (b). Note the
spike for the self-tuning regulator at time-step 355. These spikes do not occur with
the periodic controller.
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Figure 8. Evolution of γt for the double integrator with uncertain approximate
pole cancellation. The Minimax Adaptive controller (blue, left scale) initially has
a higher γt than the self-tuning LQG controller (red, right scale), but due to the
build up in the second-order mode, the self tuner spikes at t = 355.
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Figure 9. Evolution of the value function approximation for the double integra-
tor with uncertain approximate pole cancellation. The value function is shown for
the Minimax Adaptive controller and the periodic decrease, with period τ = 4, is
highlighted with circles.

5. Conclusions

We conclude with a few words about the limitations of this work and promis-
ing research directions.

1. Including pathological hypotheses in the model set, such as Gnmp

in (1b) severely impacts the performance guarantee, even when the
actual realization of the system is well-behaved. Integrating the frame-
work of Goel et al. [Goel and Hassibi, 2023] with the results of this
article seems promising to address the pathological hypotheses in the
model set. As the authors reformulate regret optimization and compet-
itive ratio optimization as H∞ synthesis problems, our results could
be integrated to compute suboptimal control policies in the case of
parametric uncertainty.

2. We assumed that the model set was finite. Even though finite sets can
approximate compact sets of models, our results do not inform how to
choose the approximate models and how to quantify the approximation
error. Theorem 4 shows that by constructing one H∞-observer for each
model in the model set, the output feedback problem can be exactly
reduced to an instance of Problem 1. If the model set is infinite but
compact, one could instead construct a robust H∞-observer for each
element in a finite cover and approximate the output feedback problem
with an instance of Problem 1.

3. Section 4.1 demonstrates that when delays are present, the value func-
tion approximation (32) does not capture the probing effect of the con-
trol policy. The introduction of periodicity in the control policy, as in
Section 3, mitigates this problem as it allows for information gathering
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over a longer time horizon. Capturing the probing effect of the control
policy in the value approximation is crucial for obtaining tighter perfor-
mance bounds. Numerical studies of the value iteration could provide
insight into this. One could also investigate using reinforcement learn-
ing to approximate the value function.
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Lemma 2
The system

xt+1 =

[
1 i
0 1

]
xt +

[
0
1

]
ut, (40)

where i ∈ ±1 and
u[t] = Kix[t]

is asymptotically stable if, and only if

iki1 > 0, (41a)

and

iki1 − 1 < ki2 < 1 +
iki1
2

. (41b)

Proof. The characteristic polynomial of the closed-loop system is

(z − 1)(z + ki2) + iki1 = z2 + (ki2 − 1)z + iki1 − ki2.

The inequalities (41) follow by the Jury stability criterion. 2
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