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You want to run an experiment where you anticipate finding a treatment effect. 

How large should your sample size be to have a reasonable chance of detecting 

significant results? In this manuscript, I present and explain the Stata code I use to 

address this question. The code uses simulations to conduct power analyses, 

offering a flexible alternative to the commonly used analytical tools. Unlike 

traditional methods, this approach can accommodate any experimental design and 

statistical test that Stata supports. The code is straightforward, user-friendly, and 

can be used effectively with minimal coding experience. 
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Disclaimer: Using simulations to do power analyses has been used for a long 

time (Feiveson 2002; Arnold et al., 2011). There are even Stata packages 

(powersim, Luedicke 2013; powerBBK, Bellemare et al. 2016) and R packages 

(SIMR, Green and MacLeod 2016) to do specific types of power analyses through 

simulations. Despite the widespread use of these methods among statisticians, my 

experience is that most experimental economists still rely on analytical tools for 

power analyses. While these tools are effective for simple experimental designs, 

they lack the flexibility to accommodate a wide range of experiments and statistical 

tests. The purpose of this manuscript is to share the Stata code I frequently use for 

power analyses, which many of my colleagues have found to be particularly useful. 

 

1. Introduction 

Conducting a power analysis is a fundamental aspect of any experimental design. 

For most basic designs, equations are available to perform power calculations 

analytically (see, for example, List et al. 2011). 1 However, many more complex 

designs lack straightforward analytical solutions or are difficult to derive. These 

complexities may include factors such as clustering, treatment interactions, 

covariates, or non-normal distributions requiring non-parametric tests. In such 

cases, simulations offer a powerful and flexible tool for conducting your power 

calculations.  

In this manuscript, I share the code I use to perform power calculations. The code 

is written in straightforward programming language, with the aim that any reader 

with basic programming knowledge can easily understand and apply it. It is also 

highly flexible, capable of accommodating any experimental design or statistical 

test that the reader wishes to run.  

 
1 G-Power (Faul et al. 2007) is a very useful tool to perform such basic power calculations. You 

can download it here: http://www.gpower.hhu.de.  

http://www.gpower.hhu.de/
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In Section 2, I define power and explain why conducting power analyses is 

important for your research. Section 3 provides a summary of how the code works. 

Section 4 offers a simple example of using the code, for which analytical solutions 

exist. In Section 5, I discuss a more complex example, where analytical solutions 

are not available. 

2. Power 

This section offers an overview of the concept of power. If you're already familiar 

with this topic, feel free to skip ahead. 

2.1 What is power? 

Power is the probability of detecting an effect when the effect actually exists. In 

other words, if the treatment we are testing has a real effect, power indicates the 

likelihood that our experiment will yield statistically significant results for that 

effect. 

Experimenters typically use power calculations for two main purposes. The first 

is to determine the sample size required to have a reasonable chance of rejecting 

the null hypothesis (no effect) if the alternative hypothesis (an actual effect) is true. 

To calculate this sample size, you need to specify an effect size for your alternative 

hypothesis—essentially, how large you expect the treatment effect to be. There are 

three primary ways to choose this effect size: based on your best estimate, from 
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results in previous research2, or by determining the minimum effect size that would 

be meaningful to detect. 3 

Second, researchers may conduct a power analysis to determine the minimum 

effect size that can be reliably detected given a fixed sample size. This is 

particularly useful in situations where the sample size is predetermined, such as the 

number of students in a class. By calculating how large the true effect must be to 

achieve, for instance, an 80% chance of finding a significant result, researchers can 

assess whether their experiment is well-designed or overly ambitious. This type of 

analysis is important to ensure that the experiment's objectives are realistic and 

achievable.4  

2.2 Why is it important to conduct power analyses? 

Conducting power analyses is important for several reasons: 

1. It increases the chances of obtaining statistically significant results. With low 

power, such as 40%, there's a 60% chance of failing to detect a true effect, 

leading to a null result. Recognizing this early and increasing your sample 

size to achieve, for instance, 80% power, will improve your ability to detect 

true effects and boost the credibility of your research. 

 
2 Some researchers also use results from pilot experiments to specify the expected effect size. 

However, I am often skeptical towards this approach. Pilot experiments are typically conducted with 
small sample sizes, resulting in noisy estimates that can be less reliable than informed guesses. 
Relying too heavily on these estimates can lead to significant errors. That said, pilot experiments 
are very valuable for understanding the data-generating process, which is also necessary for 
conducting accurate power analyses. 

3 Most treatments that we try will have some true effect. However, if this effect is 0.001 standard 
deviations, in most cases this will not be of any practical relevance. 

4 During the first year of my PhD studies, when I had little understanding of power analysis, I 
conducted a class experiment with 200 students. I divided them into a control group and two 
treatment groups of about 65 students each. I didn’t find any significant results. Later, when I 
calculated the effect size that my study was actually powered to detect, I realized that it was far too 
large. Had I performed a power analysis beforehand, I would have likely opted for just one treatment 
group, giving me a better chance of detecting something meaningful. As it stands, because my study 
lacked the power to detect a reasonable effect size, even the null results aren’t particularly useful. 
The data now sits unused in my drawer since, obviously, no one cares about an underpowered null. 
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2. It optimizes resource use in experiments. Experiments are often costly and 

time-consuming. A power analysis ensures that your sample size is 

appropriate for detecting the expected effect, preventing you from 

unnecessarily overspending on a too large sample. 

3. It strengthens the credibility of null results. A null result from an experiment 

with only 20% power is uninformative—it does not clarify whether the effect 

is truly absent or simply undetected. However, if you can demonstrate that 

your study had 80% power to detect a reasonable effect, your null result 

becomes much more meaningful. 

4. It improves the precision of your estimates, making the treatment effect in 

your experiment more robust and meaningful. 

5. It benefits science. Significant results from low-power studies are less likely 

to reflect true effects and are less likely to be replicated. This contributes to 

replication crises, undermining the credibility of scientific knowledge. 

3. Method 

The simulation requires the following steps: 

1. Set the sample size for the simulated experiment.  

2. Assign a baseline value to each observation, representing what is expected in 

the absence of a treatment effect. You can choose this baseline value using 

one of the following two options:  

a. Simulate a distribution using Stata’s tools (e.g., the command `gen 

x = rnormal()`). To determine which distribution to draw from, you 

can base your choice on previous results, a dataset of the subjects 

you plan to experiment with, a pilot study, or just your best guess. 

b. Use data that already exists. If available, you can bootstrap this data 

to populate your simulated sample. For instance, if you want to test 

whether an intervention affects students' GPA, you can use data 

from a previous cohort. If you have data for 100 students but need a 
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simulated sample size of 200 observations, you can use bootstrap 

with replacement and randomly assign the data from each of the 100 

students to each of the 200 observations. 

3. Randomly assign each observation to each treatment based on the proportion 

of treated vs control subjects that you would like to simulate. 

4. For those who have been assigned to the treatment group, add the expected 

treatment effect.  

5. Run your test on the created dataset and store the p-value of the test. 

6. Repeat steps 2-5 many times. 

7. Count the number of instances where the p-value is less than 0.05. This 

represents your statistical power. For example, if you repeated steps 2-5 a 

thousand times and found that the p-value was below 0.05 in six hundred 

cases, you can conclude that you have 60% power to detect the effect 

introduced in step 4. 

I will now present two examples showing how to apply this method. Please note 

that the code provided is designed for clarity and ease of understanding rather than 

efficiency or elegance. It is written to be accessible for those with basic coding 

experience.  

4. Example 1 

Now, let's apply this method to a straightforward example. Suppose you design a 

lab experiment where subjects are tasked with completing a task as quickly as 

possible. You want to test whether incentivizing them to finish faster—by offering 

higher payments for quicker completion—will reduce the time it takes them to 

complete the task. For this example, assume the following:  

1. You know (or guess) that the time required for subjects to complete the task 

follows a normal distribution with a mean of 100 seconds and standard 

deviation of 20 seconds (note that in this case a lognormal distribution seems 
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more reasonable, but we will use a normal distribution for the sake of the 

example). 

2. You anticipate that the true effect of incentivizing subjects will reduce their 

completion time by 5 seconds.  

3. You plan to have an equal number of subjects in both the control and 

treatment groups. 

How many subjects do you need in your study to achieve 80% power? In other 

words, how many subjects are required for your experiment to reject the null 

hypothesis with an 80% probability if the true effect is indeed a 5-second reduction? 

Let’s dive into the coding to find out! 

 
************************************** 

* This Stata code is for Stata 15. It should work also work in most other Stata 

versions (sometimes requiring minor modifications) 

************************************** 

* This code performs a power analysis for an experiment in which: the observations 

from the control group follow a normal(100,20); the true treatment effect is -5; 

the significance level is 0.05; the sample is 200, equally divided between control 

and treatment group. We will calculate the power of this experiment to detect a 

significant result. 

************************************** 

clear 

set matsize 1000 

mat estimates = J(1000,1,.) 

* Creates a matrix of 1000 rows by 1 column. In each row, we will store the p-value 

of each simulation. 

local subjects=200 

local teffect=5 

* Defines the number of subjects in our experiment and the treatment effect. 

quietly forvalues j=1(1)1000 { 

* Repeats the following code 1000 times. 

clear 

set obs `subjects' 

gen id=_n 

* Sets 200 observations and assign an ID to each one of them from 1 to 200. 

gen treatment=0 

replace treatment=1 if id >= `subjects'/2 

* Assigns half of the subjects to the treatment group. 
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gen time=rnormal(100,20) 

replace time=time-`teffect' if treatment==1 

* Assigns an observation to each of the subjects. Those who are treated perform the 

task 10 seconds earlier. 

ttest time, by(treatment) 

scalar pvalue = r(p) 

* Tests differences between the control and treated group. Stores the p-value of 

the test. 

matrix estimates[`j',1] = pvalue 

* Adds the p-value of the test in the row number "j" of column 1 on the 1000x1 

matrix that we created. 

noisily display `j' 

* Shows you on which simulation you are at (personal preference) 

} 

* This experiment is repeated 1000 times. 

svmat estimates, names(pvalues)  

* Retrieves (and adds to our dataset) the 1000x1 matrix with the p-values of all 

the simulated experiments. 

gen significant=0 

replace significant=1 if pvalues<0.05 

* Creates a variable with value 1 if the experiment was significant.  

ci means significant 

* It displays the percentage of experiments in which the test was significant (power) 

and its confidence interval. In my case, I had 41% power. 

* Now you can play around with the number of observations and true treatment effect 

to see how power changes with a different sample size and treatment effect. 
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5. Example 2 

Let us consider a more complex scenario. Suppose you want to test whether 

incentivizing university students to achieve a specific grade improves their GPA. 

You plan to conduct this test during the students’ second semester, allowing you to 

control for their first-semester GPA. For this example, assume the following: 

1. There are 1,000 students in this cohort, and your task is to decide how many 

of them to incentivize. Therefore, your goal is not to determine the sample 

size, but rather to decide what percentage of students to treat. 

2. You have data on the first-semester GPA for all 1,000 students in this 

cohort. 

3. You also have data on the first- and second-semester GPA for 1,000 

students from the previous cohort. 

4. Students are divided into 4 groups of 250, with the possibility of GPA fixed 

effects in the second semester based on these groups. 

5. The treatment effect is expected to vary among students, drawn from a 

normal distribution. Since a treatment effect of less than 2 (on average) 

would not be considered meaningful, we will conduct a power analysis 

assuming that the treatment effect follows a normal distribution with a mean 

of 2 and a standard deviation of 2. 

6. We plan to perform three tests: a t-test, a Wilcoxon rank-sum test, and a 

class fixed-effects regression that controls for the students' first-semester 

GPA. 

The question is: how many students should you incentivize to achieve 80% power? 

To determine this, we will use the dataset from the previous cohort and simulate 

1,000 experiments. In each simulation, we will randomly select students to receive 

a hypothetical treatment effect added to their second-semester GPA. We will then 

calculate how often each test yields a significant result (i.e., the power of the 

experiment). Let’s code this! 
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************************************** 

* This Stata code is for Stata 15. It should work also work in most other Stata 

versions (sometimes requiring minor modifications) 

************************************** 

* This code performs a power analysis for an experiment in which we test whether 

incentivizing students boosts their GPA. We have: 1000 students to experiment with 

from which we know their first semester GPA; 1000 observations about the first and 

second semester GPA of students in the previous cohort (which go from 0, lowest 

grade, to 100, highest grade); the true treatment effect is distributed following a 

normal (2,2); there are four class groups with class fixed effects. Out of 1000 

students, we have to decide how many students to incentivize to have 80% power. 

************************************** 

clear 

set matsize 1000 

mat estimates = J(1000,3,.) 

* Creates a matrix of 1000 rows by 3 columns. In each row, we will store the p-value 

of each simulation. In each column, we will store the p-value of each different 

test. 

* Now we would use the dataset of the previous cohort, in which each row corresponds 

to each student and it shows the students' first semester GPA (gpa1), second semester 

GPA (gpa2) and class group. Instead of importing a dataset, in this example we 

generate it (and we imagine it is real) 

set obs 1000 

gen id=_n 

gen classgroup=. 

replace classgroup=1 if id<=250 

replace classgroup=2 if id>250 & id<=500 

replace classgroup=3 if id>500 & id<=750 

replace classgroup=4 if id>750 & id<=1000 

scalar fe1 = rnormal(0,10) 

scalar fe2 = rnormal(0,10) 

scalar fe3 = rnormal(0,10) 

scalar fe4 = rnormal(0,10) 

gen gpa1=rnormal(50,15) 

gen gpa2r=rnormal(50,15) 

gen gpa2=0.7*gpa1+0.3*gpa2r+fe1 

replace gpa2=0.7*gpa1+0.3*gpa2r+fe2 if id>250 & id<=500 

replace gpa2=0.7*gpa1+0.3*gpa2r+fe3 if id>500 & id<=750 

replace gpa2=0.7*gpa1+0.3*gpa2r+fe4 if id>750 & id<=1000 

drop gpa2r 

* Generates the fake dataset in which gpa1 explains 70% of gpa2 and there are 4 

class groups with their own fixed effects. 

local treatedsubjects=500 

local teffectscalar=1 
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* Defines the number of subjects that we are going to treat in this simulation and 

the treatment effect (these are the values to play around with). 

quietly forvalues j=1(1)1000 { 

* Repeats the following code 1000 times. 

capture drop randomnumber  

capture drop treatment  

capture drop teffect  

capture drop idnew 

* We drop variables from the previous loop, if there are any. 

gen randomnumber=runiform() 

sort randomnumber 

gen idnew=_n 

* We generate a random number for each observation to sort all observations randomly. 

This is to randomly allocate the treatment (although, obviously, in this kind of 

design it would be better to stratify). 

gen treatment=0 

replace treatment=1 if idnew <= `treatedsubjects' 

* Assigns the treatment to the number of subjects that we previously set as treated.  

gen teffect=rnormal(`teffectscalar',2) 

replace gpa2=gpa2+teffect if treatment==1 

* Assumes that the treatment effect is normally distributed around what we decided 

in "teffectscalar" with a standard deviation of 2 (contrary to the previous example, 

we no longer assume that the treatment effect is constant across all subjects). 

ttest gpa2, by(treatment) 

scalar pvalue1 = r(p) 

matrix estimates[`j',1] = pvalue1 

* Performs a t-test and stores it in the first row of the matrix. 

ranksum gpa2, by(treatment) 

scalar pvalue2=2 * normprob(-abs(r(z))) 

matrix estimates[`j',2] = pvalue2 

* Performs a Wilcoxon rank sum test. The pvalue for this test has to be computed 

with the formula above (cannot be extracted with r(p) as with the t-test). Then 

stores it in the second row of the matrix. 

areg gpa2 gpa1 treatment, absorb(classgroup) 

 local q = _b[treatment]/_se[treatment] 

 scalar pvalue3 = 2*ttail(e(df_r),abs(`q')) 

matrix estimates[`j',3] = pvalue3 

* Performs a regression with class fixed effects and controlling for gpa1. The 

pvalue for "treatment" is extracted from the formula above. Then stores it in the 

third row of the matrix. 

replace gpa2=gpa2-teffect if treatment==1 

* Recall that we added the treatment effect to the dataset to make our test. For 

each simulation, we want to start from the basic dataset and the treatment effect 
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to be different. So now we take the treatment effect away so that in the next loop 

we start with the same dataset as before. 

noisily display `j' 

* Shows you on which simulation you are at (personal preference) 

} 

* This experiment is repeated 1000 times. 

svmat estimates, names(pvalues)  

* Retrieves (and adds to our dataset) the 1000x3 matrix with the p-values of all 

the simulated experiments. 

gen significant1=0 

replace significant1=1 if pvalues1<0.05 

* Creates a variable with value 1 if the test was significant.  

gen significant2=0 

replace significant2=1 if pvalues2<0.05 

gen significant3=0 

replace significant3=1 if pvalues3<0.05 

ci means significant1 

ci means significant2 

ci means significant3 

* It displays the percentage of experiments in which the test was significant (power) 

and its confidence interval for each of the tests. In my example, with 200 treated 

students, I got 13% power with the t-test, 12% power with the rank sum test, and 

80% power with the regression test. If we wanted the t-test or the rank sum test to 

be our main test, we do not have enough power with 200 incentivized students. But 

if we want the regression test to be our main test, then we do have 80% power to 

find a significant result. 

 

6. Conclusion 

Power analyses are useful and should be conducted before any experiment. No 

matter the complexity of the experimental design, power analyses can be easily 

conducted through simulations. This paper provides a hands-on, hopefully helpful 

example of how you can easily apply this method. 
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