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Abstract

This study investigates volatility spillovers to electric power from large exogenous
shocks in the prices of gas, coal, and carbon emission allowances in the German energy
market. Our sample ranges from 2008 to 2016 and covers periods of di�erent market
conditions. We use a general VAR-BEKK model and the volatility impulse response
function methodology to analyze and evaluate the spillover e�ects. Special attention
is paid to selecting an appropriate econometric volatility model. Our results show
that the spillover e�ects often are of a signi�cant magnitude and display considerable
variation over time and across commodities. Coal and gas generate non-negligible
spillovers during almost the entire sample period. Carbon has very little impact
during the early and late parts of the sample, but generates signi�cant, and highly
variable, spillovers during the period from 2011 to the end of 2014.
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1. Introduction

In this study, we examine the multivariate modelling of the return series of elec-

trical power, natural gas, coal, and carbon (CO2) emission allowances in the German

market. These commodities are connected through the process of power generation.

The prices of the input fuels, namely gas and coal, constitute the main portion of

the variable costs of producing electricity. Because the use of gas or coal to produce

electricity is associated with carbon emissions, the price of these emissions also en-

ters the cost side of electricity generation. The spread between the power price and

the generation cost de�nes the gross margin of the energy producer. Energy spreads

drive the pro�tability of power plants, and further serve as indicators that provide

incentives for agents in the energy sector to invest in future production capacity.

For these reasons, it is of fundamental importance that energy companies and pol-

icymakers understand how the cost side of the price spreads impacts the electricity

price, both in mean and in volatility.

There is a growing body of literature on interrelations between di�erent energy

commodities. A common approach in previous research has been to employ methods

of co-integration in order to investigate �rst-order interrelations between di�erent

prices. For example, Gjolberg and Johnsen (1999) study crude oil prices. Casassus,

Liu, and Tang (2013) provide empirical evidence of co-integration between several

petroleum-related markets. A comparable study available for electricity markets is

that of De Vany and Walls (1999), who test for co-integration in 11 regional power

spot prices in the U.S. market.

All studies mentioned so far are concerned with �rst-moment interrelations. While

second-order interrelations have been extensively studied in the context of equity

markets, there are only a few studies related to energy markets. The studies by Lin
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and Tamvakis (2001), E�mova and Serletis (2014), and Karali and Ramirez (2014) all

examine second-order interrelations in di�erent segments of the U.S. oil and gas mar-

kets. Interrelations between crude oil and various other commodities in the European

markets are studied in Reboredo (2014) and Liu and Chen (2013). Koenig (2011)

studies the time variation in the correlations among power, fuels, and carbon in the

U.K. market. Similar to our study, Le Pen and Sevi (2010) use a VAR-BEKK model

and employ volatility impulse response functions in their analysis. However, they

investigate spillover e�ects between di�erent regional electricity markets in Europe,

and are not concerned with cross-commodity e�ects.

To the best of our knowledge, this is the �rst comprehensive study of volatility

spillover e�ects from fuel and carbon prices to power prices in the German market.

We focus on the German market for two reasons. Firstly, it represents the largest

European power market, which exhibits a growing degree of transparency and open-

ness towards the surrounding markets, with relevant price data being reliable and

publicly available from the European Energy Exchange (EEX). The German power

market should not necessarily be regarded as a market bounded by national borders

since it is a part of the German-Austrian market area, which also includes the sup-

pliers on the Austrian side. Germany further has signi�cant cross-border electricity

import-export with many of its neighboring countries, which adds to the degree of

competition and openness in the market. The second reason to why we choose to

focus on the German market is that it is currently undergoing a structural transition

of its energy portfolio in order to reduce its dependence on fossil fuels, moving to-

wards a larger proportion of renewable energy sources. In this study, we thoroughly

analyze the volatility spillover e�ects from fossil fuels and carbon prices to power

prices in the light of the ongoing structural changes in the market.

In order to perform the analysis in a reliable and statistically robust way, we
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employ a vector autoregressive (VAR) system coupled with time-varying volatilities

and correlations, as captured by a relatively general BEKK speci�cation. The VAR

part of the model allows for commodity interrelations in expected returns, while

the BEKK part of the model allows for interrelations and spillover e�ects among

volatilities and correlations. We estimate the model with six di�erent covariance

speci�cations, each under seven di�erent distributional assumptions, by making use

of the �exible skew-Student distribution proposed in Bauwens and Laurent (2005).

The �exible distributional assumption allows each return series to have individual

statistical properties. Within this model framework, we perform an extensive analysis

of the model speci�cation, with particular focus on the speci�cation of conditional

second moments and distributional assumptions. According to likelihood tests, the

preferred covariance matrix speci�cation is the most general one, allowing for spillover

e�ects across a number of di�erent channels. The tests reject models that do not

allow for spillover e�ects. The preferred distributional speci�cation is also the most

general one, allowing for individual skewness and degrees of freedom parameters.

We continue the paper with an economic analysis of the implications using the

best model chosen by our speci�cation tests. Our analysis focuses on spillover e�ects

and, for this purpose, we utilize the volatility impulse response function (VIRF),

which is an informative and convenient tool for analyzing shock transmission in non-

linear systems. Our implementation is based largely on the methodologies in Koop et

al. (1996) and Hafner and Herwartz (2006). Similar to Hafner and Herwartz (2006),

we refer to large independent and exogenous shocks as news. In our analysis we

study the impact of news of a magnitude that the markets experience two or three

trading days per year on average. Further, we suggest a novel way of normalizing

the variance responses, which facilitates comparability both over time and across

di�erent commodities.
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The VIRF analysis is developed along several dimensions. We investigate how

news in the gas, coal and carbon markets a�ect the expected power market volatility

on each trading day from the beginning of 2008 until the end of 2015. First of all, we

compute the average responses in power variance for each year. Secondly, we examine

the responses for di�erent horizons. Lastly, we are able to di�erentiate between the

e�ects of news leading to price increases (positive news) and news leading to price

decreases (negative news), which we �nd highly relevant.

The results show that positive news in gas and coal generate economically sig-

ni�cant volatility spillovers to power. On the other hand, negative news in gas and

coal have only weak e�ects. Both positive and negative news in carbon generate

signi�cant spillovers to power only during 2011�2014, the period of elevated car-

bon market volatility. Overall, there is considerable variation in the strength of the

spillover e�ects, both over time and across the markets. Spillovers from gas start to

decline both in magnitude and variability in 2011, turning negative in 2013. This is

consistent with the developments in the underlying market, where we observe that

gas plays a less important role in the generation mix and that clean spark spreads

turn negative, in addition to gas market volatility being very low. From 2014 positive

news in gas again starts to generate signi�cant spillovers to power volatility, which

might be related to the drop in global oil prices, and the associated drop in gas

prices, leading to an upward trend in spark spreads and increase in competitiveness

of gas-�red power plants. Average spillovers from positive news in coal remain above

zero in all years, peaking in 2008 and 2015, when coal market volatility is at the

highest levels.

The remainder of this paper is organized in �ve sections. Our data are presented

in Section 2. Sections 3 and 4 describe the model framework and the estimation

procedures, respectively. The estimation results and analysis are discussed in Section
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5, and Section 6 concludes the paper.

2. The data

Our data set comprises the daily closing prices of the following front-year futures

contracts:

1. German base load power, traded on the EEX in EUR/MWh. Base load pro�le

refers to the delivery of power as a constant �ow during the delivery period.

2. Gas TTF,1 traded on the APX-ENDEX exchange in EUR/MWh.

3. Coal API2,2 traded on the EEX in USD/t. We use the spot USD/EUR ex-

change rate to convert the prices into EUR/t.

4. CO2 EU Allowances, traded on the EEX in EUR/t. One EUA permits the

emission of one ton of carbon dioxide. The futures contract size is 1000 EUAs.

Since we are concerned with analyzing the interaction between power and fu-

els in the futures market we require market based daily fuel price references being

continuously traded and immediately interacting with the power market. The TTF

market meets all of these requirements. According to ICIS, being a leading market

information provider, TTF is the most liquid gas market in the region, and it is

widely used as a reference for German gas prices. This is furthermore con�rmed by

market information providers Platts and Heren who use the TTF price as a standard

price reference in the daily price reports on German spark spreads. Similar to the

case of gas, we require a liquidly traded forward looking price reference for coal that

1The Title Transfer Facility (TTF) is a virtual market place for natural gas in the Netherlands.
2API2 is a price index calculated as the average of the Argus cif (cost, insurance, and freight),

ARA (Amsterdam, Rotterdam, and Antwerpen) assessment, and McCloskey's northwest European

steam coal marker.
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immediately interacts with the German power market. The API2 price is commonly

marketed by the leading market information providers (ICIS, Platts, and Heren) as

the relevant coal price reference in Germany. It is furthermore used in the German

OTC market for pricing of dark spreads and in daily price assessment reports dis-

tributed by market information providers. The CO2 EU allowances traded on the

EEX are also used for pricing the so-called clean spreads, and there is no traded

alternative.

The futures prices are sampled daily, and are organized in the rolling contract

form. The front-year futures contracts are traded until the last trading day of a year

for the delivery of the underlying over the next calendar year. Our sample starts on

January 3, 2008, and ends on March 31, 2016. The choice of the starting point is

related to the speci�cs of the carbon EUA market. The European Emissions Trading

Scheme (EU ETS) was introduced in 2005 and had to be implemented in three phases,

or three trading periods. The �rst phase (2005�2007) was highly volatile and, during

this period, prices could triple or collapse by a half over a one-week period. In 2007,

carbon prices fell to almost zero, compared to a peak level of around 30 EUR/t,

when it became known that the aggregate emissions were in fact lower than the

number of allowances issued. The carbon derivatives market was highly illiquid

until the beginning of the second phase in 2008. The daily futures settlement prices

for the �rst phase are available, but there were no actual trades on most of these

days. Therefore, we choose to start our sample in 2008. The carbon market is still

extremely volatile, and has exhibited a number of sharp rises and falls, not only in

the early stages. For example, on April 16, 2013, the price of a yearly carbon futures

contract dropped by 42%, from 4.97 EUR/t to 3.25 EUR/t. This happened after the

European Parliament rejected a proposal to delay the sales of 900 million EUAs as a

supply restriction measure, which was supposed to arti�cially raise the price during
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the period of economic slowdown and the drop in power production. Extreme price

movements and high volatility have been characteristic features of the carbon market,

and will likely remain so unless there are signi�cant regulatory changes, such as, for

example, price caps and �oors. Therefore, we keep the extreme observations in our

sample, and take their presence into account in the estimations.

Table 1 presents the descriptive statistics for the daily log-returns on our futures

contracts. The returns resulting from rolling to a new contract are deleted from the

sample.

INSERT TABLE 1 HERE - descriptive statistics

Table 1 shows that all the series are leptokurtic, with the carbon returns being

the most extreme case. It is worth noting that we have both positively and negatively

skewed series in our sample; the gas and power returns are positively skewed, while

coal and carbon returns feature a negative skew. These observations motivate us not

only to introduce asymmetry, but also to employ �exible distributional assumptions

that allow for di�erent properties of the individual series.

Figure 1 indicates that all return series exhibit time-varying volatility and volatil-

ity clustering. The energy markets were not una�ected by the �nancial crisis and,

as can be seen in Figure 1, the gas, power, and coal markets experienced a period

of particularly high volatility from the middle of 2008 to the middle of 2009. We

can see a slump in gas volatility during 2011�2013, when European hub prices were

loosely tracking oil-indexed contract prices in a benign market environment. In 2014,

however, the gas market broke out of the relatively stable state, as the sharp fall in

the hub prices, as well as uncertainty about future price levels, caused volatility to

rise. The coal market experienced an increase in volatility in 2015, as coal demand

in Europe declined under pressure of the excess supply of ecologically cleaner cheap

8



gas. The carbon market features several periods of pronounced volatility. Perhaps

the most striking price changes occurred during the �rst half of 2013, which includes

the turmoil caused by the aforementioned decision by the European Parliament not

to delay EUA sales.

INSERT FIGURE 1 HERE - log-returns

3. Model framework

This section describes the econometric speci�cation that we use to analyze the

volatility dynamics of the energy futures markets. It consists of three building blocks:

the model for conditional mean equations, the conditional covariance model, and the

choice of the distribution of innovations.

A general model within our multivariate framework can be formulated as follows:

rt = µt + εt, (1)

where rt is a k×1 vector of log-returns for k di�erent assets, µt is a k×1 conditional

mean vector, and εt is a k × 1 vector of zero-mean error terms with conditional

covariance matrix Ht. Below we discuss each component of the model in more detail.

3.1. Conditional mean

The conditional mean vector is modelled within the vector autoregression (VAR)

framework. That is, each return series is assumed to be a linear function of its own

past lags and the past lags of the other return series. An unrestricted VAR(p) model

(lag order p) can be written as follows:

µt = η + Φ1rt−1 + . . .+ Φprt−p, (2)

where Φj, for j = 1, . . . , p, are k × k matrices and η is a k × 1 vector of constants.
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3.2. Conditional covariance

We assume that the conditional covariance matrix Ht follows a multivariate

GARCH process of the BEKK type developed by Engle and Kroner (1995) and

Kroner and Ng (1998):

Ht = C ′C + A′εt−1ε
′
t−1A+B′Ht−1B +D′ζt−1ζ

′
t−1D, (3)

where A, B, C, and D are k × k matrices, εt−1 is the k × 1 vector of error terms

in Eq. (1), and ζt−1 is a k × 1 vector of asymmetric error terms. Each element in

ζt−1 = (ζ1,t−1, . . . , ζk,t−1) is de�ned either as:

ζ+
i,t−1 ≡ max (εi,t−1, 0) or ζ−i,t−1 ≡ min (εi,t−1, 0) , (4)

depending on whether the conditional variance is higher following a positive or a neg-

ative shock. We determine the speci�cation of ζ by estimating univariate GARCH

models with asymmetric residuals on each individual time series. This approach

enforces consistency between the individual series in both the multivariate and uni-

variate models.

The speci�cation of the k×k parameter matrix C is such that C ′C is guaranteed to

be positive semi-de�nite, while A, B, and D are, apart from identi�ability conditions,

unrestricted k × k parameter matrices.3

We estimate six di�erent versions, M1�M6, of the BEKK model, which are sum-

marized in Table 2. The models di�er in terms of the speci�cation of the parameter

matrices A, B, and D, and whether or not the asymmetric term (D) is included.

The least complex parameterization is M1, in which the parameter matrices A and B

3A su�cient condition to eliminate observationally equivalent structures is to �x the sign of one

of the diagonal parameters in A, B, and D (see Engle and Kroner, 1995; Kroner and Ng, 1998).
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are diagonal matrices, and the asymmetric term is not included. The most complex

speci�cation is M6, in which the parameter matrices A, B, and D are non-diagonal,

non-symmetric matrices (i.e., with no restrictions on the elements), and where the

asymmetric term is included. By de�nition, diagonal speci�cations allow for own-

market in�uences on conditional volatility only, while non-diagonal speci�cations

also allow for cross-market in�uences. If the parameter matrices are symmetric,

spillovers between two markets are automatically the same in both directions, while

non-symmetric parameter matrices remove this restriction.

INSERT TABLE 2 HERE - covariance speci�cations

An important feature of the BEKK parameterization is that variances and co-

variances are modelled directly. Consequently, o�-diagonal elements in the parame-

ter matrices A, B, and D have immediate interpretations in terms of cross-market

volatility spillover e�ects. The signs of the o�-diagonal parameters do not have a

straightforward interpretation, because these parameters appear in several non-linear

terms determining each element of the H-matrix at each time point. As a result,

the total e�ect of a shock in one market on the volatility in another market is a

non-linear function of the shocks to all variables in the system.

3.3. Distributional assumptions

The model framework is completed with a speci�cation of the joint distribution

for the vector of error terms ε in Eq. (1). A common practice is to use the multi-

variate normal distribution and argue that, even if the true conditional distribution

of the innovations is not normal, the quasi-maximum likelihood (QML) estimator is

consistent and asymptotically normal, provided that the conditional mean and con-

ditional variance equations are correctly speci�ed (see Bollerslev and Wooldridge,
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1992). However, Engle and Gonzales-Rivera (1991) show that the QML estimator

is ine�cient and, furthermore, that its ine�ciency increases with the degree of de-

parture from normality. This point is particularly important for �nancial assets,

the returns of which are generally skewed and leptokurtic. Furthermore, in many

practical applications that involve estimating tail quantiles, distributions that incor-

porate non-zero skewness and excess kurtosis are highly relevant, for example, in

parametric value-at-risk estimations (see Giot and Laurent, 2003; Hung, Lee, and

Liu, 2008; Cheng and Hung, 2011). Therefore, while the normal distribution may

serve as a benchmark case, we believe that more �exible distributions are an impor-

tant building block when modelling energy-related asset returns. In this study, we

choose to deviate from the normality assumption. In particular, we implement the

VAR-BEKK process in conjunction with the multivariate skew-Student density of

Bauwens and Laurent (2002, 2005).

The most general version of the multivariate skew-Student distribution is con-

structed such that the univariate marginal distributions are allowed to have indi-

vidual skewness coe�cients and di�erent tail properties. Given the nature of our

data, summarized in Table 1, with the carbon return series being considerably more

leptokurtic, we want to relax the restriction of equal degrees of freedom implied

by the standard multivariate Student distribution. We also want to allow for dif-

ferent skewness coe�cients of the individual series, especially since we have both

positively and negatively skewed variables in our sample. The multivariate skew-

Student density with independent components of Bauwens and Laurent (2002, 2005)

introduces the above-mentioned �exibilities at a reasonable computational cost. In

addition, this skew-Student distribution is relatively straightforward to augment with

GARCH-type second-moment dynamics. Naturally, the skewness coe�cients, as well

as the degrees of freedom, can be restricted to a single value, creating di�erent types

12



of nested distributions, the relevance of which can be statistically contrasted using

standard likelihood ratio tests.

Following Bauwens and Laurent (2002), a k × 1 random vector zt is said to be

standard multivariate skew-Student distributed with independent components if its

probability density function is given by:

f(zt) =

(
2√
π

)k  k∏
i=1

ξisi
1 + ξ2

i

Γ
(
υi+1

2

)
Γ
(
υi
2

)√
υi − 2

(
1 +

κ2
i,t

υi − 2

)− 1+υi
2

 , (5)

where

κi,t = (sizi,t +mi) ξ
−Ii,t
i , (6)

and

Ii,t =

 1 if zi,t ≥ −mi
si

−1 if zi,t < −mi
si

, (7)

with skewness parameters ξ = (ξ1, ..., ξk) and degrees of freedom parameters υ =

(υ1, ..., υk), for υi > 2. We let Γ(x) denote the Gamma function evaluated at x >

0. The density function f(zt) is obtained by taking the product of k independent

skew-Student components, thereby allowing each marginal distribution to have a

di�erent tail behavior. In the present setting, we de�ne the multivariate skew-Student

distribution for the vector of standardized residuals zt as follows:

zt = H
−1/2
t εt, (8)

where εt is the vector of error terms from the model in Eq. (1) and Ht is the BEKK

covariance matrix in Eq. (3). The constants mi = mi (ξi, υi) and si = si (ξi, υi) are

the means and standard deviations of the non-standardized univariate skew-Student

density of Fernandez and Steel (1998), respectively, de�ned by:

mi (ξi, υi) =
Γ
(
υi−1

2

)√
υi − 2

√
πΓ
(
υi
2

) (
ξi −

1

ξi

)
, (9)
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s2
i (ξi, υi) =

(
ξ2
i +

1

ξ2
i

− 1

)
−m2

i . (10)

The parameter ξ2
i is the ratio of probability masses above and below the mode, and

can be interpreted directly as a measure of skewness. In the case where ξi < 1, the

data are negatively skewed, and ξi > 1 indicates positive skewness. The symmetric

case corresponds to ξi = 1, which implies that mi = 0 and si = 1. If we restrict all ξi

to be equal to 1, and all υi to be the same, Eq. (5) reduces to a distribution similar

to the textbook multivariate Student density.

4. Estimation

In our �nal four-asset model framework, we organize the vector of futures log-

returns as rt = (r1,t, r2,t, r3,t, r4,t)
′, where r1,t denotes the return on power, r2,t denotes

the return on natural gas, r3,t denotes the return on coal, and r4,t denotes the return

on carbon.

We start by determining the appropriate lag-order p for the VAR part governing

the conditional mean equation. To do so, we employ a number of di�erent criteria.

Individual correlograms of the return series indicate that autocorrelation is present

at the �rst lag, and in some cases, at the second lag as well. We do not observe any

weekly seasonal patterns, which in the case of futures contracts traded �ve days per

week would correspond to a correlogram spike at the �fth lag. Next, we compare

the VAR models of up to the �fth order based on the information criteria (AIC, SIC

and HQ), the sequential likelihood ratio (LR) test statistics, and the �nal prediction

error.4 Two lags are selected by three out of these �ve criteria, and none are in favor of

more than two lags. The �nal check is a test for any remaining serial correlation in the

4These VAR models are estimated under the assumption of normally distributed innovations.
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residuals. According to the multivariate LM test, we can reject the null hypothesis of

no autocorrelation up to the second order in residuals of VAR(1), at any conventional

signi�cance level. In contrast, for the VAR(2) model, we cannot reject the hypothesis

of no autocorrelation up to the second order at the 5% signi�cance level. Therefore,

we choose a VAR(2) speci�cation for the conditional mean process.

To determine an appropriate de�nition for the asymmetric error term of each

asset, ζi, we estimate univariate GARCH models of the type proposed in Glosten,

Jagganathan, and Runkle (1993) for each of the series. Then, we pick the best

speci�cation based on the likelihood value. This analysis leads us to specify the

vector ζ as:

ζt =
(
ζ−1,t, ζ

+
2,t, ζ

+
3,t, ζ

−
4,t

)′
,

where ζ+
i,t and ζ−i,t are de�ned in Eq. (4). This speci�cation is consistent with the

conditional variance being higher after a negative shock for power and carbon, but

higher after a positive shock for gas and coal.

4.1. Methodology

We estimate all parameters in our models simultaneously using a full-information

maximum likelihood (ML). Our estimation methodology proceeds in three steps.

First, we use the OLS method to estimate the parameters in the mean equations,

ignoring the GARCH error structure. Then, we estimate the GARCH parameters by

QML, assuming normality and conditioning on the given VAR parameters. These

two steps yield consistent estimates of all mean and covariance parameters (Bollerslev

and Wooldridge, 1992). However, to obtain e�cient estimates, a joint estimation of

all parameters is required. This motivates our �nal step, in which all parameters

are re-estimated using the parameter estimates from the two initial steps as starting
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values only.5 This procedure is implemented for all six covariance speci�cations in

Table 2.

Let θ denote the parameter vector for the full model. Then, the log-likelihood

function is given by:

lnL (θ) =
T∑
t=3

{
ln f (zt)−

1

2
ln |Ht|

}
, (11)

where f (zt) is the probability density function in Eq. (5), T is the number of

time-series observations, and |Ht| denotes the determinant of Ht. Note that the

summation starts from t = 3 because the estimation is conditional on the �rst two

time series observations owing to the VAR(2) speci�cation of the conditional mean

equation. The second term in the sum in Eq. (11) is the Jacobian correction term

arising in the transformation from z to ε. To evaluate the likelihood function, we

calculate the inverse of the square root matrix H
−1/2
t in Eq. (8) at each time point

using a standard spectral decomposition. We set the initial Ht equal to the sample

covariance matrix and the initial values of the residuals ε0 are set equal to zero.

We estimate the six di�erent BEKK speci�cations described in Table 2 by maxi-

mizing the log-likelihood function in Eq. (11). In addition, each model is estimated

under the assumption of the six types of multivariate Student distributions summa-

rized in Table 3. We also estimate all BEKK speci�cations for the benchmark case

of the normal distribution. In the case of normally distributed residuals, the density

function in Eq. (11) is replaced by the standardized normal density, obtained as the

limiting distribution of f (zt) when ξi = 1, as υi →∞.

5As starting values for the distributional parameters in the skew-Student distributions, we use

ξi = 1 for all skewness parameters. For the degrees of freedom υi , we use either the value corre-

sponding to the average kurtosis of the data series, or the values corresponding to the individual

kurtosis of the data series, depending on the speci�cation (see Table 3).
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INSERT TABLE 3 HERE - distributions

In total, we estimate 42 di�erent model speci�cations. The number of conditional

mean parameters is always 36. The total number of conditional covariance parame-

ters together with the skewness and shape parameters ranges from 18 in the simplest

speci�cation (M1/Normal) to 66 in the most complex speci�cation (M6/Type6). The

log-likelihood function is maximized by simulated annealing, which is a derivative-

free stochastic search algorithm. The fundamental property of simulated annealing

is that it is allowed to accept worse intermediate solutions (downhill moves) while

searching for the optimum, which leads to a more extensive exploration of the pa-

rameter space and prevents the algorithm from becoming stuck in local optima. In

theory, this property also makes the algorithm insensitive to starting values. How-

ever, to further increase the chance of identifying the global optimum, we implement a

sequential strategy, described above, which involves using consistent QML estimates

as starting values. Our particular implementation of the algorithm follows closely

the approach in Go�e, Ferrier, and Rogers (1994). The advantages of simulated an-

nealing come at the cost of a higher execution time when compared to conventional

algorithms. Thus, we execute all optimizations on a high-performance computer

cluster. We calculate the standard errors for individual parameters by estimating

the outer product of the gradients matrix using numerical �rst derivatives.6

6An alternative is to calculate the standard errors based on the inverse of the Hessian. However,

implementing stable and reliable numerical second derivatives is a challenge, even in less complex

settings than ours. Thus, we leave this topic for future research.
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5. Results

We �rst describe our preferred model speci�cation. Then, we discuss the esti-

mated parameters from this model, with a particular focus on volatility spillovers.

Finally, we conduct an elaborate variance impulse-response (VIRF) analysis to gain

further insight into how news of one market (gas, coal, or carbon) propagates through

the system to a�ect the volatility in the power market. In particular, we examine

the di�erences between commodities and changes over time.

5.1. Model speci�cation

The conditional mean equation in our model is a preselected VAR(2) speci�ca-

tion. Therefore, the choice of the preferred model involves two parts: the covariance

speci�cation and the distributional assumption.

Table 4 reports the results of the LR tests of the six BEKK speci�cations. We

�nd that, regardless of the additional assumptions, the models with an asymmetric

term and with non-diagonal parameter matrices are superior. The results for non-

symmetric versus symmetric parameter matrices are more involved. Without the

asymmetric term, the spillover e�ects are the same in both directions (M3 is not

rejected against M5). However, when the asymmetric term is included, the spillover

e�ects are not the same in both directions (M4 is rejected against M6).

INSERT TABLE 4 HERE - LR tests covariance

Because speci�cations with diagonal parameter matrices are rejected against their

non-diagonal counterparts, we conclude that there exist volatility spillovers in the

energy futures markets. Also, because all models without the asymmetric term are

rejected, asymmetric e�ects in volatility are clearly prevalent in these markets. From

the second result above, we infer that these spillovers are the same in both directions
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for the symmetric terms (matrices A and B), but that they are di�erent for the

asymmetric term (matrix D). In addition, both M1 and M3 are rejected against M6.7

In summary, based on the LR tests, we prefer the most general covariance model

(M6), with non-diagonal, non-symmetric parameter matrices and an asymmetric

term.

Next, we compare the distributional speci�cations using LR tests. The distri-

butional test results for the M6 covariance model are summarized in Table 5.8 As

the �rst observation (not reported), we note that the log-likelihood value increases

signi�cantly when switching from the benchmark normal distribution to the sim-

plest Student distribution (Type1). This indicates that allowing for excess kurtosis

is highly important also in a conditional setting, which is not surprising given the

descriptive statistics in Table 1 that clearly indicate that energy futures returns ex-

hibit excess sample kurtosis. Furthermore, because the models with equal degrees

of freedom are rejected against models that allow for di�erent degrees of freedom

(Type1 against Type2, Type3 against Type4, and Type5 against Type6), our results

also suggest that the excess kurtosis is statistically di�erent between the four com-

modities. From Table 1, it is clear that kurtosis of carbon returns is most likely to

be the main cause of this result.

INSERT TABLE 5 HERE - LR tests distribution

We reject Type1 against Type3, and Type2 against Type4 (however marginally),

7Our focus in the sequel is on M6, which can be tested against all other covariance models and

based on these tests is our preferred covariance speci�cation. For this reason we do not investigate

the non-nested covariance models further.
8The conclusions are the same regardless of the covariance model speci�cation, although we only

report the distributional test results for the preferred model M6.
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which means that non-zero skewness is statistically important. Allowing for di�er-

ent individual skewness is statistically even more important, because we strongly

reject Type3 against Type5, and Type4 against Type6. These results are also not

unexpected because from Table 1, two of the commodities have negative sample

skewness, and the other two have positive sample skewness, which logically should

make it worthwhile to allow for individual skewness. Based on these tests, our pre-

ferred distribution is Type6, which is the multivariate skew-Student distribution with

both individual skewness and kurtosis (degrees of freedom) for the di�erent energy

futures.9

All further analysis is based on the estimation results of the preferred model:

M6/Type6. In the next section, we examine the signi�cance of the individual pa-

rameters, focusing mainly on the parameters directly related to volatility spillovers.

5.2. Parameter estimates

Tables 6 and 7 present the estimation results for the model M6/Type6. We are

particularly interested in the o�-diagonal elements of the A, B, and D parameter ma-

trices, because they control the cross-market e�ects in the second-moment dynamics.

However, we start with a general overview of the estimation results.

INSERT TABLE 6 HERE - mean parameters

INSERT TABLE 7 HERE - covariance parameters

We �nd a number of cross-commodity e�ects in the mean equations. There are

particularly many signi�cant parameters in the power mean equation (parameters

9Our focus in the sequel is on Type6, which can be tested against all other distribution types

and based on these tests is our preferred distribution. For this reason we do not investigate the

non-nested distributions further.
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14 ). All diagonal elements of the A- and B-matrices are signif-

icant, which con�rms the existence of own-market GARCH e�ects in the volatility

dynamics of energy futures log-returns. The diagonal elements of the B-matrix in-

dicate high levels of persistence in volatilities. Among the diagonal elements of the

D-matrix, we �nd d11 of power, d33 of coal and d44 of carbon to be signi�cant. This

con�rms the presence of asymmetric e�ects in the conditional volatility of these as-

sets. We �nd no evidence of any asymmetric e�ects in the gas volatility for which

asymmetric residuals were de�ned to be positive.

The skewness parameters ξ1 of power and ξ2 of gas are statistically signi�cantly

larger than 1 at the 5% and 1% levels, respectively. This is consistent with the

positive sign of the unconditional skewness in the data.

Of the nine parameters that control volatility spillovers to the power market (a21,

a31, a41, b21, b31, b41, d21, d31, d41), we �nd that a21, a41, d21, and d31 are statistically

signi�cant. The spillovers associated with these parameters are coming from all

the other markets, and are channeled through both regular and asymmetric BEKK

terms. Volatility spillovers are determined by combinations of parameters and in

Section 5.4 we will investigate these e�ects with the use of the VIRF methodology.

The interrelation in volatility between electrical power and a speci�c fuel should

in part be related to the pro�tability of power generation from that fuel type. Based

on the comparison of clean dark spreads versus clean spark spreads we �nd that

power generation from coal was more pro�table than that from gas during almost

the entire sample period.10 Moreover, coal never fell out-of-the-money, unlike gas, for

10We use the following typical de�nitions of the clean spark spreads (CSS) and clean dark spreads

(CDS):

CSS = Power− 2×Gas− 0.4× Carbon,
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which the clean spark spread became negative from the beginning of 2013 onwards.

This competitive advantage of coal versus gas was driven by a relative weakness in

coal and carbon prices, while the price level in gas was reinforced by oil linkage.

However, the trend reversed in late 2014, after the severe drop in global oil prices,

and the associated drop in gas prices.

To gain additional insights, we examine the data on actual daily electricity pro-

duction in Germany from di�erent technologies, available at the EEX Transparency

platform. Much more electricity was generated from coal almost every day during our

sample period. Generation levels from gas were steadily falling until the beginning

of 2014, owing to decreasing spark spreads. However, during 2014�2016 we observe

a reversal of this trend, with gas power plants slowly building up competitiveness

in light of the low oil price environment, as well as the recent surplus in the global

supply of Lique�ed Natural Gas (LNG). We believe that these fundamental relation-

ships in the supply stack must also a�ect the relative strength of volatility spillover

e�ects in the energy markets.

Finally, we also report statistically signi�cant parameters involved in spillovers

between the di�erent fuel components. For instance, we observe a bidirectional statis-

tically signi�cant spillover between the coal market and the gas market (parameters

a23, b23, and b32). We believe that an increase in coal volatility impacts the uncer-

tainty of the future production mix (coal/gas) for power production, which manifests

as gas volatility, and vice versa. Moreover, we also report statistically signi�cant pa-

rameters involved in spillover e�ects from the coal market to the carbon market

and

CDS = Power− 0.4× Coal− 0.9× Carbon.

.
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(parameters b34 and d34). We note that the coal and carbon markets are clearly

linked via the power market, because coal power plants are major CO2 emitters. In

terms of electrical energy, coal emits more than twice as much CO2 as gas. This

is veri�ed by the carbon coe�cients in the spark and dark spread de�nitions (see

footnote 10), which represents the number of carbon credits necessary to cover the

respective power production. We believe that the connection between the coal and

carbon markets, along with coal having been a pro�table technology (in-the-money)

for power production during the full sample period are why we �nd signi�cant pa-

rameters related to volatility spillover e�ects from coal to power. An increase in coal

volatility likely creates uncertainty about the future production mix (coal/gas) and,

hence, uncertainty about future CO2 volumes, which �nally transmits to the carbon

prices.

5.3. Conditional correlations

Next, we use the estimated parameters to calculate conditional correlations. This

topic is of economic relevance, because correlations re�ect the extent to which power

and fuel prices move together. This, in turn, determines the hedging strategies of

power producers.

Figure 2 presents the power/gas and power/coal correlations obtained from the

preferred model (M6/Type6). Being model generated, the estimated day-by-day

correlations should be interpreted with care. However, we are only interested in the

overall development of the correlations over time as conveyed in Figure 2.

INSERT FIGURE 2 HERE - correlations

The correlations between power and gas display a steady decrease from 2008

until 2013. During this period the clean spark spread has decreased successively and
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gas volumes have gradually been reduced from the generation mix. This structural

change is related to the increasing share of renewables within the same time horizon,

pushing gas out of the merit order as the most expensive fuel. The reduction in gas

volumes has likely also contributed to the general trend of decreasing correlations

between power and carbon over the same period. The power/gas correlations exhibit

a particularly sharp decline from the beginning of 2013, which coincides with the

spark spreads turning negative. The negative spark spreads have a direct impact in

the gas market where the volumes used for power production are rapidly reduced,

which clearly weakens the fundamental connection between power and gas. In the

last years of the sample period (2014�2016) the clean spark spread partially returns

into the money, and the power/gas correlation increases. Such temporary periods

of moneyness most commonly take place during cold winter months, where they are

captured by e�cient CCGT (combined cycle gas turbine) plants.

To fully understand the evolution of the power/gas correlations we also need

to recognize the changes in volatility during the sample period. Between 2008�

2013 we observe a decreasing trend in the volatility of gas prices. In periods of

low volatility the power plant owners are not required to update their economic

generation calculation as often, which means that the hedge positions for plants can

be left unchanged for longer periods. This loosens the connection between the power

and gas markets. In 2014 we observe a rapid increase in the gas volatility, which lasts

for the remainder of the sample period. In connection with this change, the plant

owners are likely to adopt a more frequent hedging strategy, which again strengthens

the linkage between gas and power and increases the correlation.

Similar to power/gas correlations, power/coal correlations exhibit an overall down-

ward trend until 2014, followed by an upward trend lasting until the end of our sample

period. Contrary to the case of gas, the clean dark spread has clearly remained posi-
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tive during the whole sample period. The coal price volatility, however, is decreasing

from 2011 up until the beginning of 2015, and we therefore argue that the changed

hedging behavior of plant owners might have contributed to the observed decrease

in correlations. In 2015 the coal volatility increases and plant owners are likely to

adopt a more frequent hedging strategy that tightens the connection between power

and coal and increases the correlation.

5.4. Variance impulse response analysis

5.4.1. De�nition and computation of the VIRF

The volatility impulse response function (VIRF) is a recently developed econo-

metric tool used to understand the dynamics of shock transmission in a non-linear

system, which is arguably more informative than considering individual estimated

parameters alone. The VIRF concept was introduced by Hafner and Herwartz (2006),

who extended the generalized impulse response function of Koop et al. (1996) to a

general symmetric multivariate GARCH setting. The VIRF measures the response

in the variances and covariances in future periods to news in the underlying variables

today, for example commodity returns. We consider news in the return of one of the

commodities, and the corresponding VIRFs describe the transmission or propaga-

tion of this news to the variances and covariances of all other commodities over time,

through the non-linear BEKK system. Accordingly, the news vector z is a vector

with a non-zero element in one position and zero elements elsewhere:

z = (z1, 0, 0, 0)′

z = (0, z2, 0, 0)′

z = (0, 0, z3, 0)′

z = (0, 0, 0, z4)′ ,
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where zi denotes news in the return of commodity i = 1, ..., 4; power, gas, coal, and

carbon. Note that the news vectors are time invariant, because the individual news

processes (i.e., the univariate marginal densities in Eq. (5)) are standardized w.r.t.

the mean and the variance, and have constant higher moments. We consider the 99%

and the 1% quantiles in the news distributions, which we refer to as positive news and

negative news, respectively.11 Therefore, the markets, on average, experience news

of this magnitude two or three trading days per year, both for positive and negative

news. Positive news corresponds to an increase in a commodity price, while negative

news represents a price decrease. We separate news and shocks conceptually, and

the shock εt corresponding to news z is given by:

εt = H
1/2
t z = (ε1t, ε2t, ε3t, ε4t)

′ , (12)

whereH
1/2
t is the �square root� of the covariance matrix, calculated using the spectral

decomposition. In general, all elements in εt are time-varying and non-zero because of

the dependence structure imposed by the time-varying and non-diagonal covariance

matrix Ht.

The VIRF de�ned in terms of the shock εt is given by:

V IRF (t, n, ωt−1, εt) = E [vech(Ht+n)|ωt−1, εt]− E [vech(Ht+n)|ωt−1] , (13)

where vech() is the operator that stacks the lower triangular fraction of a k × k

matrix into a k∗ = k(k + 1)/2 dimensional vector. The �rst expectation in Eq. (13)

11The model-implied 99% quantiles (positive news) are z1 = 3.206, z2 = 3.180, z3 = 2.841 and

z4 = 3.357. The 1% quantiles (negative news) are z1 = −2.905, z2 = −2.671, z3 = −2.887 and

z4 = −3.596. The 99% quantile for a given commodity is numerically di�erent from the 1% quantile

because of the estimated non-zero skewness. Power and gas are right-skewed and, therefore, the

99% quantile is larger in absolute terms than the 1% quantile. For coal and carbon the opposite is

true.
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is the expected covariance matrix n periods ahead, given the history ωt−1 (i.e., all

previous shocks) and the time t shock εt. The second expectation is the expected

covariance matrix n periods ahead, given only the history (the baseline expectation).

In our case of four commodities, the VIRF as given by Eq. (13) is a 10 × 1 vector,

with four entries representing the responses in variances and six entries representing

the responses in covariances. Note that the shock enters the covariance process non-

linearly. Therefore, the baseline expectation does not correspond to a zero shock

(i.e., εt equal to the zero vector). In the de�nition of the VIRF, future shocks are

not zero and, therefore, the e�ect of future shocks is averaged out in the calculation

of the VIRF.

To evaluate the expectations, Hafner and Herwartz (2006) derive an analytical

expression of the VIRF for symmetric BEKK models. However, our preferred model

is an asymmetric BEKK model that lacks analytical expressions for the expectations.

Therefore, we perform the integrations numerically using the Monte Carlo method

instead, following the procedure outlined in Koop et al. (1996) for computation of

the generalized impulse response function. We draw from the underlying univariate

skew-Student distributions to generate future scenarios (shocks), using the analytical

quantile function.

To calculate the VIRFs, we proceed in two steps:

1. Construct shocks εt for each trading day t, corresponding to positive and

negative news zi for each commodity. This gives two time-series of shocks for each

commodity (in total, eight time-series of shocks).

2. Calculate a VIRF for each trading day t for each time-series of shocks.

In step two, given the constructed shocks for both positive and negative news, we

calculate the VIRFs at each trading day t for all commodities, and for horizons from

n = 1 to n = 63 (i.e., approximately three calendar months ahead). We average
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out the future shocks over 20, 000 simulated trajectories.12 Finally, we normalize

the variance responses for all commodities with the initial baseline expected own

variance (i.e., the baseline expectation one period ahead). This normalization creates

a �percentage� response in the variances that is comparable over time and across

commodities.

5.4.2. Results of the VIRF analysis

We focus our empirical analysis on the transmission of news in gas, coal, and

carbon to the variance of power. Thus we are primarily interested in a single element

of the VIRF vector, which we refer to as the power VIRF, or simply the VIRF, in

this subsection.

We present two sets of complementing results, based on the calculations outlined

above. First, we show the average variance response in power for each year, 2008

to 2015, for all horizons. The yearly VIRFs are calculated by taking the average

of the daily VIRFs over all trading days each year. This yearly analysis gives an

overall dynamic picture of the strength of volatility spillovers between the di�erent

commodities. It also provides us with insights into the speed of decay of the responses

when the horizon increases. Second, we show the initial day-ahead responses in power

variance for each trading day in the sample. This daily time series analysis gives a

di�erent picture of the time variation in the news transmission, which allows us to

trace changes in the volatility spillovers over time in more detail, and to connect

these changes to speci�c market events.

12We calculate a VIRF for each trading day from January 7, 2008 to December 29, 2015, when

there are 63 trading days remaining in the sample. We cannot iterate the BEKK model outside the

sample, because we need the actual covariance matrix to construct the shocks (futures), given the

simulated news.
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The yearly VIRFs are plotted in Figures 3�5. These plots provide us with insight

into the nature of the spillover e�ects from various perspectives. First, we can track

changes over time. Second, since the normalized VIRFs are expressed as percentages,

we can compare the strength of the news transmission between di�erent commodities

in a more straightforward way than by examining the estimated coe�cients. It is

also possible to determine the half-life of a shock and assess how fast the system

recovers after an abnormal event. Finally, we can di�erentiate between the impact

of positive and negative news.

Econometrically, these varying volatility responses are a consequence of the com-

plex dynamic interrelations between the di�erent commodities in the BEKK system.

By construction of the VIRF, the strength of volatility spillovers is directly propor-

tional to the level of volatility and correlations in the underlying markets. This also

makes sense intuitively, since we would expect larger spillovers to occur at more

turbulent times, as well as between highly correlated markets. Figures 3 and 4 re-

veal how the impact of news in gas and coal prices on power price variance changes

depending on relative volatility levels in these markets, as well as their correlation

with the power market. Coal news leads to larger responses in power price variance,

compared to gas news, in 2008, 2012, 2013, and 2015. For example, in 2015, pos-

itive news in the coal market results in an, on average, 23% larger than otherwise

expected day-ahead variance in the power market, compared to the corresponding

e�ect of 14% for positive news in the gas market. Note that in 2013, when the period

of the lowest power/gas correlations coincides with subdued gas volatility, we �nd a

negative power VIRF in response to positive gas news. Technically, a negative VIRF

means that the expected power variance, given the news in gas, is lower than what

we would otherwise expect it to be. Economically, this reveals weakness of the fun-

damental production link between power and gas markets during that period, which
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is in line with clean spark spreads reaching their lowest, and the associated drop in

the competitiveness of gas-�red power plants.

INSERT FIGURES 3-5 HERE - yearly VIRFs

Further, we �nd that the response in power variance is much larger following

positive news than following negative news in both gas and coal throughout the

sample period. This result makes sense, because increases in the prices of fuels,

such as gas or coal, have a negative e�ect on the pro�t margins of power producers.

For carbon, the story is di�erent. There are no large di�erences in the responses

to positive and negative news. We see no signi�cant di�erence during 2008�2011,

while starting from 2012, negative news has a slight tendency to produce higher

VIRFs. However, it is only during 2011�2014 that carbon news leads to economically

signi�cant spillovers. This increase in spillovers from carbon may be explained by

a signi�cant increase in carbon price volatility during that period. However, the

underlying economic reasons for the patterns we see in response to positive and

negative carbon news are much harder to identify.

We �nd news in gas to have a longer-lasting e�ect, on average, than news in coal.

It takes approximately ten trading days for a power VIRF to decrease by half after

news in gas, compared to eight trading days after news in coal. News in carbon has

the least lasting e�ect on expected power volatility, with an average half-life of �ve

trading days.

Figure 6 displays the evolution of the day-ahead responses in the power variance

over the sample period, providing a detailed dynamics behind the average day-ahead

responses corresponding to n = 1 points on Figures 3�5. The spillovers to the power

variance resulting from news in all other commodities show considerable variation

over time. Figure 6 shows that day-ahead increases in the expected power variance
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following positive news in coal range between 0% and 20%, in most years, with

generally higher levels in 2008 and 2015. The day-ahead responses to positive news

in gas are at the highest levels in the second half of 2009, averaging at roughly 35%,

followed by a steady decrease during 2011�2013, and a revival in the end of our

sample period. The lower, right panel on Figure 6 indicates that positive news in

the power market itself leads to, on average, 20% higher than expected power price

variance, while the impact of own negative news is slightly lower. In comparison to

these levels, the cross-market e�ects depicted on the rest of the panels are far from

trivial.

INSERT FIGURE 6 HERE - daily VIRFs

Another perspective of the strength of the spillover e�ects is provided by calcu-

lating the �critical news� at time t required to generate a VIRF of zero at time t+ 1.

How large does news in gas, coal, and carbon have to be to obtain a VIRF of zero?

Recall that a VIRF of zero means a variance response in power that is equal to the

baseline expected power variance. These critical news levels have to be calculated

numerically, and we do so for both positive (right-tail) and negative (left-tail) news.

We report the results as critical quantiles rather than actual news values because this

gives a more direct sense of the magnitude of news required to generate a VIRF of

zero. These quantile values can also be related to the 99% and 1% quantiles we used

in our previous VIRF calculations. The results are reported in Table 8, where we list

the positive and negative quantiles (as percentages) for all commodities and for each

year in our sample. We observe that the news that makes the VIRF at t+ 1 equal to

zero varies signi�cantly across commodities and over time. For example, extremely

large positive and negative news is required in gas in 2013 (at the 99.58% quantile in

the right tail and the 0.01% quantile in the left tail). News at the 99% quantile, used
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to calculate the VIRFs presented earlier in this section, are not su�cient to produce

a positive power variance response. On the other hand, for carbon in 2013, news at

the 96.63% level in the right tail and 4.69% in the left tail are su�cient.

INSERT TABLE 8 HERE - critical quantiles

6. Summary and conclusions

In this study, we investigate the transmission of news and volatility spillovers

between electrical power, gas, coal, and carbon in the German market. The price

of power is connected to the prices of gas, coal, and carbon through the cost of

electricity generation (gas, coal) and emissions (carbon). Our sample data consist of

futures prices for power, gas, coal, and carbon emission allowances for the period from

January 2008 to March 2016. We study the spillover e�ects that news originating in

the gas, coal, and carbon markets have on the variance of power.

In the analysis, we estimate a four-asset VAR-BEKK model that allows for

spillover e�ects through several di�erent channels. To measure and evaluate the

strength of spillovers from di�erent commodities and during di�erent periods, we

use the volatility impulse response function (VIRF) as our primary tool. From the

estimation and analysis of VIRFs, we conclude that there are signi�cant spillover

e�ects from gas, coal, and carbon a�ecting the variance of power. The results in-

dicate that spillover e�ects show large variation across commodities and over time.

Spillovers from coal are substantial throughout our sample period, but with signi�-

cant time variation on a daily basis. Spillovers from gas are also substantial during

2008�2010, after which they start to decrease in magnitude and turn negative for

the majority of 2013. This coincides with the period of low gas market volatility,

low power/gas correlations, and unpro�tability of gas-�red power plants as measured
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by spark spreads. However, in 2014 we see a revival of spillover e�ects from gas to

power, as gas prices fall in the low oil price environment, increasing the competitive-

ness of gas versus coal as a power generation fuel. We �nd that it takes longer, on

average, for the e�ect of news in gas to die out, compared to the e�ect of news in coal.

Spillovers from carbon exhibit the fastest decay and are economically signi�cant be-

tween 2011 and 2014, which is the period of highest volatility in the carbon market.

We �nd that positive news in gas and coal markets leads to a much larger response

in the variance of power compared to negative news. Distinguishing between positive

and negative news appears to be much less important for the carbon market.

There are a number of interesting applications that could be explored within

our multivariate framework in future studies. Risk management applications such as

hedging and Value-at-Risk calculations for di�erent portfolios of energy assets appear

particularly relevant in this setting. Physical gas- and coal-�red power plants, and

�nancial spark- and dark-spread positions are natural examples of such portfolios.
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Table 1

Summary statistics for log-returns.

Power Gas Coal Carbon
Mean (%) -0.057 -0.059 -0.048 -0.068
Median (%) -0.062 -0.062 -0.040 0.000
Maximum (%) 6.508 9.224 8.622 22.369
Minimum (%) -5.909 -7.406 -9.821 -42.477
Std. Dev. (%) 1.011 1.316 1.370 3.150
Skewness 0.156 0.460 -0.211 -1.057
Kurtosis 8.213 7.623 9.099 22.867

Table 2

Conditional covariance speci�cations.

Model Parameter matrices A,B, and D Asymmetric BEKK term
M1 diagonal no
M2 diagonal yes
M3 non-diagonal symmetric no
M4 non-diagonal symmetric yes
M5 non-diagonal non-symmetric no
M6 non-diagonal non-symmetric yes

Table 3

Types of Student distributions.

Parameter Type 1 Type 2 Type 3 Type 4 Type 5 Type 6
υ1 υ υ1 υ υ1 υ υ1
υ2 υ υ2 υ υ2 υ υ2
υ3 υ υ3 υ υ3 υ υ3
υ4 υ υ4 υ υ4 υ υ4
ξ1 1 1 ξ ξ ξ1 ξ1
ξ2 1 1 ξ ξ ξ2 ξ2
ξ3 1 1 ξ ξ ξ3 ξ3
ξ4 1 1 ξ ξ ξ4 ξ4

Note: Types 1 and 2 correspond to symmetric distributions. Types 3 and 4 are asymmetric with a common value of

the skewness parameter, while Types 5 and 6 allow the variables to have di�erent skewness properties. With respect

to kurtosis, Types 1, 3, and 5 restrict degrees of freedom parameters to a common value, while Types 2, 4, and 6

allow them to vary.
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Table 4

Likelihood ratio tests of covariance speci�cations.

Test 5% cr.v. 1% cr.v. Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

1
M1 vs. M2
LR (4)

9.49 13.28 78.68 75.06 78.73 74.82 79.95 76.84

2
M3 vs. M4
LR (10)

18.31 23.21 114.30 114.18 114.37 113.99 112.29 112.61

3
M5 vs. M6
LR (16)

26.30 32.00 139.70 140.12 140.34 140.31 138.69 139.86

4
M1 vs. M3
LR (12)

21.03 26.22 29.61 28.43 28.85 27.68 27.33 26.17

5
M2 vs. M4
LR (18)

28.87 34.81 65.23 67.54 64.49 66.84 59.67 61.94

6
M1 vs. M5
LR (24)

36.42 42.98 42.43 40.67 41.36 39.48 39.08 37.52

7
M2 vs. M6
LR (36)

51.00 58.62 103.45 105.72 102.97 104.97 97.81 100.54

8
M3 vs. M5
LR (12)

21.03 26.22 12.82 12.24 12.51 11.80 11.74 11.35

9
M4 vs. M6
LR (18)

28.87 34.81 38.21 38.18 38.48 38.13 38.14 38.60

10
M1 vs. M4
LR (22)

33.92 40.29 143.92 142.61 143.22 141.67 139.62 138.78

11
M1 vs. M6
LR (40)

55.76 63.69 182.13 180.79 181.70 179.79 177.76 177.38

12
M3 vs. M6
LR (28)

41.34 48.28 152.52 152.36 152.85 152.11 150.43 151.21

Note: Tests 1�3 are for the asymmetric BEKK term (H0: D = 0 versus H1: D 6= 0).

Tests 4�5 are for H0: diagonal matrices versus H1: non-diagonal, symmetric matrices.

Tests 6�7 are for H0: diagonal matrices versus H1: non-diagonal, non-symmetric matrices.

Tests 8�9 are for H0: non-diagonal symmetric matrices versus H1: non-diagonal, non-symmetric matrices.

Tests 10-12 are for the remaining nested covariance speci�cations.

The left-out combinations of models are not nested. The degrees of freedom are reported in parentheses. Columns

3 and 4 report the upper-tail critical values of χ2-distribution with the corresponding degrees of freedom, while

columns 5�10 report the LR test statistics.
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Table 5

Likelihood ratio tests of distributional speci�cations for model M6.

LR Type 1 Type 2 Type 3 Type 4 Type 5 Type 6
Type 1 0.017 0.050 0.007 0.000 0.000

(dgf=3) (dgf=1) (dgf=4) (dgf=4) (dgf=7)
Type 2 � 0.044 � 0.000

(dgf=1) (dgf=4)
Type 3 0.015 0.001 0.000

(dgf=3) (dgf=3) (dgf=6)
Type 4 � 0.001

(dgf=3)
Type 5 0.016

(dgf=3)
Type 6

Note: `�' indicates that the distributional types are not nested. The table reports the χ2 p-values for upper-tail

one-sided tests with the corresponding degrees of freedom reported in parentheses.

Table 6

Conditional mean parameter estimates for the M6/Type6 model.

η1 -0.032*** η2 -0.008 η3 -0.033 η4 -0.021
(0.012) (0.018) (0.020) (0.042)

φ
(1)
11 -0.068*** φ

(1)
12 0.041*** φ

(1)
13 0.024* φ

(1)
14 0.027***

(0.021) (0.014) (0.014) (0.004)

φ
(1)
21 0.001 φ

(1)
22 0.053** φ

(1)
23 0.003 φ

(1)
24 0.001

(0.010) (0.022) (0.018) (0.005)

φ
(1)
31 0.094** φ

(1)
32 0.098*** φ

(1)
33 -0.029 φ

(1)
34 -0.004

(0.037) (0.023) (0.025) (0.006)

φ
(1)
41 -0.008 φ

(1)
42 -0.056 φ

(1)
43 -0.127*** φ

(1)
44 -0.011

(0.062) (0.035) (0.039) (0.021)

φ
(2)
11 -0.036* φ

(2)
12 0.020 φ

(2)
13 0.011 φ

(2)
14 -0.008*

(0.020) (0.014) (0.014) (0.005)

φ
(2)
21 0.000 φ

(2)
22 0.020 φ

(2)
23 0.004 φ

(2)
24 -0.004

(0.001) (0.022) (0.019) (0.005)

φ
(2)
31 0.016 φ

(2)
32 -0.002 φ

(2)
33 -0.035 φ

(2)
34 -0.007

(0.034) (0.021) (0.024) (0.007)

φ
(2)
41 0.028 φ

(2)
42 0.084** φ

(2)
43 -0.056 φ

(2)
44 -0.074***

(0.064) (0.039) (0.040) (0.022)

Note: The conditional mean is given by Eq. (2), where η is a 4 × 1 vector of constants, and Φ1 and Φ2 are 4 × 4

VAR parameter matrices with elements denoted by φ
(1)
ij and φ

(2)
ij , for i, j = 1 (power), 2 (gas), 3 (coal), 4 (carbon),

respectively. φ
(p)
ij represents the e�ect of commodity j on commodity i in lag p. Standard errors are reported in

parentheses. Superscripts *, **, and *** denote statistical signi�cance at the 10%, 5%, and 1% levels, respectively.
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Table 7

Conditional covariance and distributional parameter estimates for the M6/Type6 model.

a11 0.202*** a12 0.017 a13 0.030 a14 0.047
(0.024) (0.031) (0.029) (0.057)

a21 0.022* a22 0.244*** a23 0.048*** a24 -0.032
(0.013) (0.019) (0.016) (0.032)

a31 0.009 a32 -0.001 a33 0.152*** a34 0.003
(0.012) (0.012) (0.016) (0.029)

a41 0.008** a42 -0.001 a43 0.004 a44 0.202***
(0.003) (0.004) (0.004) (0.023)

b11 0.947*** b12 -0.017 b13 -0.015 b14 -0.045*
(0.009) (0.012) (0.011) (0.024)

b21 0.004 b22 0.971*** b23 -0.012** b24 0.030
(0.004) (0.005) (0.005) (0.021)

b31 0.003 b32 0.007* b33 0.989*** b34 0.008***
(0.003) (0.004) (0.004) (0.002)

b41 -0.001 b42 0.002 b43 -0.001 b44 0.951***
(0.001) (0.001) (0.001) (0.005)

c11 -0.052
(0.037)

c21 0.017 c22 0.059***
(0.035) (0.018)

c31 0.051 c32 0.013 c33 0.041
(0.038) (0.040) (0.029)

c41 0.032** c42 -0.023 c43 0.012 c44 0.246***
(0.016) (0.023) (0.024) (0.037)

d11 -0.091* d12 -0.049 d13 -0.025 d14 -0.127
(0.048) (0.061) (0.062) (0.121)

d21 0.072*** d22 0.004 d23 -0.001 d24 0.078*
(0.015) (0.024) (0.015) (0.047)

d31 0.102*** d32 0.047 d33 0.104*** d34 0.085***
(0.025) (0.035) (0.038) (0.023)

d41 -0.002 d42 0.005 d43 0.002 d44 -0.308***
(0.005) (0.005) (0.005) (0.029)

ξ1 1.068*** ξ2 1.130*** ξ3 0.988*** ξ4 0.961***
(0.033) (0.037) (0.034) (0.031)

ν−1
1 0.153*** ν−1

2 0.138*** ν−1
3 0.117*** ν−1

4 0.214***
(0.015) (0.024) (0.024) (0.026)

Note: The conditional covariance matrix is given in Eq. (3) and speci�ed by the 4× 4 matrices A, B, C, and D, the

elements of which are denoted by aij , bij , cij , and dij , for i, j = 1 (power), 2 (gas), 3 (coal), 4 (carbon). The C-

matrix is lower triangular and, therefore, there are no estimates for the entries above the diagonal. The distributional

parameters are reported in the last two rows. Standard errors are reported in parentheses. Superscripts *, **, and

*** denote statistical signi�cance at the 10%, 5%, and 1% levels, respectively.
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Table 8

Critical quantiles (in percent) in news distribution.

Positive News Negative News
Gas Coal Carbon Gas Coal Carbon

2008 96.93 94.57 99.05 0.33 0.64 1.17
2009 94.91 96.67 99.00 0.50 0.23 1.31
2010 95.05 97.26 99.25 0.63 0.11 1.06
2011 96.84 97.77 98.25 0.39 0.08 2.36
2012 97.80 97.14 98.09 0.16 0.09 2.66
2013 99.58 97.64 96.63 0.01 0.07 4.69
2014 95.91 97.88 98.67 0.31 0.04 2.07
2015 96.36 94.15 99.50 0.25 0.30 0.79

The table shows critical quantiles in the news distribution for di�erent markets. News of a lower magnitude does

not lead to a higher than otherwise expected day-ahead variance in the power market.
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Figure 1: Time series of commodity log-returns.
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Figure 2: Correlations between power and fuels, as implied by model M6/Type6.

43



Response in the variance of power to news in gas, %
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Figure 3: The power VIRF following news in the gas market. The variance responses are plotted
against the horizon for each year in 2008�2015, with the horizons ranging from 1 to 63 trading
days. The left panel displays responses following gas price increases, while the right panel displays
responses following gas price decreases.
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Response in the variance of power to news in coal, %
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Figure 4: The power VIRF following news in the coal market. The variance responses are plotted
against the horizon for each year in 2008�2015, with the horizons ranging from 1 to 63 trading
days. The left panel displays responses following coal price increases, while the right panel displays
responses following coal price decreases.
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Response in the variance of power to news in carbon, %
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Figure 5: The power VIRF following news in the carbon market. The variance responses are plotted
against the horizon for each year in 2008�2015, with the horizons ranging from 1 to 63 trading days.
The left panel displays responses following carbon price increases, while the right panel displays
responses following carbon price decreases.
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Day-ahead responses in power variance, %
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Figure 6: Time series of day-ahead responses in the variance of power. The upper, left panel shows
the day-ahead VIRF for power following news in gas; the upper, right panel shows the day-ahead
VIRF for power following news in coal; the lower, left panel shows the day-ahead VIRF following
news in carbon; and the lower, right panel shows the day-ahead VIRF following news in power (own
news).
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