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Abstract

Advances in medical technology have made kidney transplants over the blood group barrier
feasible. This paper investigates how such technology should be implemented when design-
ing pairwise kidney exchange programs. The possibility to receive a kidney transplant from a
blood group incompatible donor motivates an extension of the preference domain, allowing
patients to distinguish between compatible donors and half-compatible donors (i.e., blood
group incompatible donors that only become compatible after undergoing an immunosup-
pressive treatment). It is demonstrated that the number of transplants can be substantially
increased by providing an incentive for patients with half-compatible donors to participate
in kidney exchange programs. The results also suggest that the technology is beneficial for
patient groups that are traditionally disadvantaged in kidney exchange programs (e.g., blood
group O patients). The positive effect of allowing transplants over the blood group barrier is
larger than the corresponding effects of including altruistic patient-donor pairs or of allowing
three-way exchanges in addition to pairwise exchanges.
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1 Introduction

Since the pioneering work by Roth et al. (2004, 2005b) and the establishment of the first cen-
tralized multi-hospital kidney exchange program in New England in 2004, kidney exchange re-
search has become an integral part of the market design literature. The research is motivated by
the rapidly increasing shortage of kidneys1 together with the key observation that even if patients
have access to living donors, they cannot always receive transplants due to medical incompatibil-
ities. Kidney exchange programs facilitate transplantation for these patients by gathering them
in exchange pools and by organizing centralized trades where incompatible patient-donor pairs
exchange their kidneys with other pairs defined as medically compatible.2

The standard notion of medical compatibility in kidney exchange (adopted by, e.g., Roth
et al., 2004, 2005a,b, 2007; Okumura, 2014; Saidman et al., 2006; Sönmez and Ünver, 2014;
Sönmez et al., 2018) defines a patient and a donor as compatible if they are blood group and tissue
type compatible. This paper challenges this notion by considering a medical technology based on
immunosuppressive protocols that enables kidney transplantation over the blood group barrier,
i.e., a technology that removes one of the two major sources for medical incompatibility. The
extended compatibility notion allows patient-donor pairs to also be classified as half-compatible,
meaning that a patient can receive a kidney from the donor only by crossing the blood group
barrier. As demonstrated in this paper, this seemingly small extension of the standard kidney
exchange model will have large positive welfare effects for patients in need of transplantation if
utilized correctly.

Following, e.g., Roth et al. (2005b) and Sönmez and Ünver (2014), the analysis in this paper is
restricted to kidney exchange programs that only allow for pairwise exchanges. This was initially
the case in the United States and it is the current practice in, for example, France, India, Italy and
Sweden.3 The point of departure in the welfare analysis is a model, referred to as the Benchmark
Model, in which transplantation over the blood group barrier is either not allowed or not an
option considered by the transplant community. The Benchmark Model describes the standard
kidney exchange model in the theoretical literature analyzed in, e.g., all of the above cited papers.
Note also that in, e.g., Belgium, France, India, Italy, The Netherlands, Poland and Portugal,
transplantation over the blood group barrier is not allowed within their corresponding exchange
programs. The paper attempts to investigate how the availability of a medical technology that
enables transplantation over the blood group barrier affects patient welfare in exchange programs.
To investigate this, it is noted that the technology can be utilized in two different ways and these

1In the United States, for example, the number of patients on the waiting list for kidney transplantation increased
from 22,063 to over 100,000 between 1992 and 2014 (Ellison, 2014).

2For an overview of the development of kidney exchange programs in the United States and Europe, see Ander-
son et al. (2015), Andersson et al. (2018), Biró et al. (2017, 2018) and Sönmez and Ünver (2014).

3All references to European kidney exchange programs in the remaining part of this section are from (Biró et al.,
2017, 2018). For the considered Indian program, see Jha et al. (2015).
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specific ways can be described and analyzed in two different “models”. Both these models
allow for transplantation across the blood group barrier within the exchange program as in, e.g.,
Austria, the Czech Republic, Spain, the United Kingdom, Sweden and Switzerland.

In the first model, referred to as Model (a), patients with half-compatible donors receive kid-
neys from their own donors over the blood group barrier and are therefore not part of the kidney
exchange program. Consequently, the kidney exchange pool consists exclusively of incompat-
ible patient-donor pairs. Kidney exchanges over the blood group barrier are, however, allowed
within the exchange program. This is in line with current practice in, e.g., Sweden, where pa-
tients that can feasibly receive kidneys from their own donors over the blood group barrier are
routinely referred to immunosuppressive treatments outside the kidney exchange program.4 In
fact, a recent paper by Biró et al. (2018) concludes that a key challenge reported by all European
countries is immunosuppressive treatments outside of organized kidney exchange programs. It
can therefore be argued that Model (a) is a fair description of the programs in Austria, the Czech
Republic, Spain, the United Kingdom and Switzerland, where transplants over the blood group
barrier are allowed within their corresponding exchange programs.5

In the second model, referred to as Model (b), all patients with either half-compatible or
incompatible donors participate in the kidney exchange program. To the best of our knowledge,
no such program currently exists in the world. As will be explained in more detail in Section 2, it
is natural to assume that patients strictly prefer compatible donors to half-compatible donors, e.g.,
to avoid additional medical treatments or to shorten the time to transplantation. Consequently, to
ensure that patients with half-compatible donors have an incentive to participate in Model (b), it
is reasonable to restrict the feasible exchanges for these patients to exchanges with compatible
donors. Note also that patients with half-compatible donors that are included in the exchange
pool, as in Model (b), but remain unmatched after the match run can always receive transplants
over the blood group barrier from their own half-compatible donors. In this sense, patients
with half-compatible donors are, in Model (b), always first given the possibility to receive a
compatible kidney within the exchange framework. This possibility is never presented to patients
in Model (a).

The theoretical findings in this paper indicate that Model (b) always generates a weakly larger
number of transplants than both the Benchmark Model and Model (a). Somewhat surprisingly,
the theoretical results also reveal that the number of transplants need not be higher in Model (a)
than in the Benchmark Model. In other words, if transplantation over the blood group barrier is
implemented as in Model (a), it may actually reduce the number of transplants. These theoretical
findings suggest that if the objective of a kidney exchange program is to maximize the number
of transplants, then any program corresponding to the Benchmark Model or Model (a) should be

4Patients with half-compatible donors are strictly speaking not prohibited from participating in kidney exchange
in Sweden but the option is routinely not presented to them. As far as we know, only one such pair participated in
the Swedish program in the years 2017–2018.

5Note, however, that some of these programs allow for larger cyclical exchanges.
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redesigned in accordance with Model (b). The magnitudes of the theoretical findings are eval-
uated by means of a simulation study that, in addition, also investigates whether certain patient
groups are proportionally disadvantaged by the technology enabling transplants over the blood
group barrier, e.g., patients with incompatible donors or patients with blood group O (it is well-
known that blood group O patients are often proportionally disadvantaged in kidney exchange
programs, see, e.g., Roth et al., 2007). This exercise further strengthens the arguments in favor
of Model (b). In particular, if the technology is utilized as in Model (b), there is a large spillover
to patients with incompatible donors since they also receive transplants more frequently.

To put the medical technology enabling transplantation over the blood group barrier to the
test, the simulation study also compares Models (a) and (b) to two other models that have design
features that are known to substantially increase the number of transplants. These are the Altruis-
tic Model (Roth et al., 2005a; Sönmez and Ünver, 2014) in which compatible patient-donor pairs
participate in the kidney exchange program, and the Cycle Model (Saidman et al., 2006; Roth
et al., 2007) which allows for three-way exchanges in addition to pairwise exchanges. The sim-
ulation study reveals that the positive effect on the mean number of transplants is significantly
larger for Models (a) and (b) than for the Altruistic Model and the Cycle Model. In addition,
blood group O patients are on average less disadvantaged.

Even though the conclusions above suggest that a transition to Model (b) would improve
patient welfare, it should be noted that when half-compatibility is introduced, the preference
domain of the patients is extended from the dichotomous to the trichotomous domain. As can
be expected from findings in the literature (e.g., Sönmez, 1999; Nicoló and Rodríguez-Álvarez,
2012), the domain extension makes it possible for some patients to manipulate any maximal
matching mechanism to their advantage. Thus, half-compatibility introduces a tradeoff between
welfare improvements and incentives. However, the simulation results reveal that, depending on
the pool size, between 6.2 percent and 15.9 percent of the patients can manipulate Model (a),
but only between 1.9 percent and 8.5 percent of the patients can manipulate Model (b). Hence,
Model (b) performs better than Model (a) in this respect as well. Here, it should also be noted
that manipulation attempts are risky for patients because if they are unsuccessful, the patients
will not receive any transplants at all. In this sense, an attempt to manipulate the outcome of the
mechanism may ultimately come at the cost of the patient’s own life.

1.1 Related Literature

After the establishment of the kidney exchange program in New England 2004, new design
features such as non-simultaneous extended altruistic donor chains (Roth et al., 2006) and larger
cyclic exchanges (Saidman et al., 2006; Roth et al., 2007) were suggested in the literature and
added to existing exchange programs. One of the most important insights from the early literature
is that a clever method for increasing the number of transplants in existing kidney exchange
programs is to increase the number of participating patient-donor pairs. This can be achieved in
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a number of different ways. For example, Roth et al. (2005a) advocate the inclusion of patients
with compatible donors, as this would generate “the largest patient welfare gains in comparison
to a number of other design modifications” (Sönmez and Ünver, 2014, p.108). Considering that
the participation of compatible pairs is purely altruistic, one may wish to minimize the number
of compatible pairs involved in exchanges. This is the idea in Sönmez and Ünver (2014), where a
pairwise kidney exchange problem with both compatible and incompatible patient-donor pairs is
investigated. They introduce Pareto efficient matchings that maximize the number of transplants
while minimizing participation of compatible pairs.

A crucial assumption in Sönmez and Ünver (2014) is that patients are indifferent between
compatible donors. This assumption can be supported by medical practice in the United States,
as the general tendency among US doctors is to assume that two compatible living-donor kidneys
essentially have the same survival rates (Delmonico, 2004; Gjertson and Cecka, 2000; Sönmez
and Ünver, 2014). A recent paper by Nicoló and Rodríguez-Álvarez (2017) also focuses on
the inclusion of compatible pairs in kidney exchange programs. Based on a number of medical
studies (e.g., Gentry et al., 2007; Øien et al., 2007), they argue that the age and general health
status of a donor impacts graft survival. Given this observation, patients in their model have
strict preferences over compatible donors based on kidney age. This provides an incentive for
compatible pairs to participate in exchange programs as the patient may be assigned a different,
strictly preferred donor. As already explained above and in similarity with Sönmez and Ünver
(2014) and Nicoló and Rodríguez-Álvarez (2017), this paper also considers exchanges involving
“compatible pairs”. However, their participation is not motivated by altruism or the possibility
to receive a preferred kidney in terms of age. Instead, the main argument rests, as in Chun et al.
(2015), on recent developments in immunosuppressive protocols and, more specifically, on the
possibility to transplant kidneys over the blood group barrier (see Section 2 for a description of
the immunological conditions and the medical requirements for transplantation across the blood
group barrier). This also motivates the extension of the compatibility concept to also include
half-compatibility.

The inclusion of half-compatible patient-donor pairs in a kidney exchange program plays a
similar role to the inclusion of compatible pairs, as the inclusion increases the size of the patient-
donor pool. However, these patients have an incentive beyond altruism to participate since they
may be assigned a compatible donor and thereby avoid transplantation over the blood group
barrier. Due to the distinction between compatible and half-compatible donors, some standard
results in the literature will not continue to hold. For example, Roth et al. (2005b) consider
a pairwise kidney exchange problem with no transplantation over the blood group barrier and
introduce a class of Pareto efficient matchings called priority matchings (see Appendix A.2).
However, priority matchings are no longer Pareto efficient in settings that distinguish between
compatible and half-compatible donors. For this reason, a specific subset of priority matchings is
introduced in this paper. They are called half-compatibility priority matchings and are guaranteed
to be Pareto efficient. The paper also provides a computationally efficient method for identifying
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such matchings.
The two papers that are most closely related to this paper are Chun et al. (2015) and Sönmez

et al. (2018). The former of these papers considers a kidney exchange program where transplants
can be carried out over immunological barriers (both blood group and tissue type). In their
model, it is assumed that patients are indifferent between crossing the immunological barrier and
not crossing it and that cyclic exchanges of arbitrary length are possible. To reflect that there
is a limited availability of immunosuppressants in South Korea, Chun et al. (2015) assume that
at most k patients are allowed to use immunosuppressants. For each kidney exchange problem,
they first determine which patients are to receive immunosuppressants. Based on this selection
and the compatibility structure, a matching is chosen. Their counterfactual analysis shows that
the current use of immunosuppressants in South Korea can be reduced by 55 percent.

Sönmez et al. (2018) analyze a recent change in the United States where kidneys are trans-
planted over the blood group barrier using advanced blood subtyping. This new method allows
a fraction of blood group A kidneys to be safely transplanted into a fraction of blood group B
and O patients. Given their assumptions, Sönmez et al. (2018) demonstrate that the current im-
plementation of this technology has some unintended consequences in the sense that it reduces
the number of transplants from living donors, both in the overall population and for certain bio-
logically disadvantaged groups. Their main results show that these unintended problems can be
solved by making two small adjustments to the current practice. They suggest the establishment
of an anti-A titer level history for blood group O patients and a delay in the subtyping tests until
incompatible pairs are transferred to the kidney exchange pool.

1.2 Outline of the Paper

The remaining part of the paper is outlined as follows. Section 2 provides a description of the
immunological conditions and the medical requirements that enable transplantation across the
blood group barrier. The formal kidney exchange framework is introduced in Section 3. Section
4 provides some properties of half-compatibility priority matchings and presents a computa-
tional method for finding them. Section 5 analyzes the welfare implications of pairwise kidney
exchange over the blood group barrier, both theoretically and by means of a simulation study.
Section 6 concludes the paper. Appendix A provides an equivalence between the set of prior-
ity matchings as defined in this paper and the set of priority matchings as defined by Roth et al.
(2005b), and some technical results relating to the matroid structure of pairwise kidney exchange
problems. Appendix B contains the proofs of the theoretical results.

2 Medical Details of Blood Group Incompatible Transplantation

This section provides a brief description of the ABO blood group classification system and a
medical technology that enables transplantation across the blood group barrier. Throughout this
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section, the reader should keep in mind that transplantation across the blood group barrier is
a medical reality not only in “regular” transplantation, but also within kidney exchange frame-
works. As described in the Introduction section, European countries like Austria, the Czech Re-
public, Spain, the United Kingdom, Sweden and Switzerland already use this technology within
their exchange programs.

The central principle in the ABO blood group system is that antigens on red blood cells differ
between individuals. Since there are two possible antigens (A and B), there are four possible
red blood cell types (or blood groups); O, A, B, and AB, where O is standard notation for the
absence of antigen A and B. A patient who only has antigen A (antigen B) can not produce anti-A
antibodies (anti-B antibodies) and will therefore only have anti-B antibodies (anti-A antibodies)
in her blood plasma. For a patient to be blood group compatible with a donor, the patient must
not have anti-A or anti-B antibodies in the plasma that correspond to the A or B antigens in the
donor’s red blood cells. Consequently, a patient with red blood cell type A (type B) is only blood
group compatible with donors that have red blood cell types A and O (types B and O). Patients
with red blood cell type O have neither antigen A nor antigen B while carrying both antibodies,
and patients with red blood cell type AB have both antigens while carrying neither antibody.
Hence, red blood cell type O patients are only blood group compatible with donors that have red
blood cell type O, whereas red blood cell type AB patients are blood group compatible with all
donors independently of their red blood cell types.

The incompatibilities between some blood groups clearly impose restrictions on organ trans-
plantation as the patient’s immune system rejects kidneys from incompatible blood groups. How-
ever, immunosuppressive protocols for removing anti-A and/or anti-B antibodies, also known as
desensitization, have been known since the 1970s (Alexander et al., 1987). By removing an-
tibodies, these protocols make transplants over the blood group barrier feasible. In 2001, the
blood group antigen-specific filter GlycoSorb was introduced (Rydberg et al., 2005). This filter
absorbs specific antibodies with the purpose of reducing the patient’s antibody level below a cer-
tain threshold in order to enable transplantation over the blood group barrier. The antibody level
(antibody titer) is determined by a blood serum sample and is diluted in serial ratios (1:1, 1:2,
1:4, 1:8, 1:16, 1:32, . . .). Using an appropriate detection method, each dilution is tested for the
presence of detectable levels of the antibody of interest. If the level of anti-A and/or anti-B anti-
bodies in a patient’s blood is below a threshold value after the filtering process and over a given
period of time, a transplant over the blood group barrier is feasible. In Sweden, for example,
the threshold is set to 1:32 and the time period is typically set between three to six months.6,7

6These numbers were communicated to one of the authors of this paper (Andersson) at a meeting in Stockholm
(March, 2016) with immunologists and transplant surgeons from the four Swedish transplant centers (Karolinska
institutet, Akademiska sjukhuset, Sahlgrenska sjukhuset, and Skånes universitetssjukhus). In the United States, for
example, a threshold of 1:8 must be maintained for six months before the transplant (Sönmez et al., 2018).

7The authors of this paper are unaware of any studies that report the share of patients that can feasibly receive
kidneys over the blood group barrier. Peter S. Björk at the “Immunotherapy Unit” at “Skånes universitetssjukhus”
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GlycoSorb is currently used in all Swedish transplant centers and at least 60 European centers
spread across 17 countries. Between 2001–2012, more than 200 living donor kidney transplants
over the blood group barrier were carried out in Sweden using this filter (Thydén et al., 2012).

There are no medical reasons related to graft and/or patient survival for not using GlycoSorb
to conduct transplants over the blood group barrier. In fact, the GlycoSorb filtering process is
completely non-toxic (as opposed to non-specific plasma exchange). Moreover, the five-year
graft survival rate and patient survival rate for living donor kidney transplants across the blood
group barrier are identical to the corresponding five-year survival rates for “normal” blood group
compatible living donor kidney transplants (Thydén et al., 2007). Even though these arguments
speak in favor of using this medical technology, there are also good reasons for not transplant-
ing kidneys across the blood group barrier whenever alternative transplantation opportunities
exist, e.g., if patients have alternative compatible donors available or if it is possible to obtain
kidneys from compatible donors by means of exchange. By taking advantage of such alterna-
tive transplantation opportunities, additional medical treatments before and after the transplant
can be avoided, time to transplantation can be shortened and costs related to the purchase of
immunosuppressants can be reduced.

Finally, we note that it can be argued that there are no cost-benefit reasons for not using Gly-
coSorb.8 In Sweden, for example, the alternative to a transplant is to keep the patient on dialysis
at an annual cost of SEK 650,000. The costs of the surgical procedure and the immunosuppres-
sive protocol are SEK 2,000,000 and SEK 100,000, respectively. Hence, it only takes around
three years to reach parity in expenses. In addition, sick leave costs are reduced as the patients
no longer need to be on dialysis and patients often experience an increased quality of life after
transplantation (Pinson et al., 2000). Similar evidence can be found in, e.g., the United States.
In a recent debate article in the Washington Post, Cartwright and Roth (2018) concluded that a
kidney transplant “pays for itself in less than two years”.

3 The Model

This section introduces the basic ingredients of the kidney exchange model together with a num-
ber of important concepts and definitions.

stated, in a telephone conversation with one of the authors (Andersson) in May 2016, that approximately 90 percent
of patients can receive kidneys over the blood group barrier whenever the donor is tissue type compatible. Further-
more, Thydén et al. (2004) report that all patients in their sample with a titer value of at most 1:128 who were treated
with GlycoSorb successfully received transplants over the blood group barrier and evidence in Dallaval et al. (2011)
suggests that 86.9 percent of all blood donors with blood group O had antibody titer values strictly below 1:128.

8The figures in this paragraph are based on Swedish data and they can be found in Thydén et al. (2012) and
Wennberg (2010). SEK 1 = USD 0.11 (November, 2018).
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3.1 Agents, Preferences and Priorities

Let N = {1, . . . , n} be a finite set of patients participating in a kidney exchange program. Each
patient i ∈ N has a living donor di. Patient i is compatible with donor dj if patient i can receive
a kidney from donor dj without crossing the blood group barrier. Patient i is half-compatible
with donor dj if patient i can receive a kidney from donor dj only by crossing the blood group
barrier. Patient i is incompatible with donor dj if patient i can not receive a kidney from donor
dj under any circumstances. No patient in N is compatible with her own donor since patients
with compatible donors are assumed to receive kidneys from their own donors outside the kidney
exchange program (except in Section 5.2). The patients inN are partitioned into two disjoint sets:
NH and NI . A patient i belongs to NH if and only if she is half-compatible with her own donor
di. NI thus contains all patients who are incompatible with their own donors. The compatibility
structure C describes the compatibility between patient i and donor dj for any patients i, j ∈ N .

For any patient i ∈ N , let %i denote the patient’s preferences over the set of donors. Let �i
and ∼i denote the corresponding strict preference and indifference relations, respectively. Each
patient inN strictly prefers any compatible donor to all half-compatible and incompatible donors,
and any half-compatible donor to all incompatible donors. Each patient i ∈ N is indifferent
between two donors (not including di) whenever both are compatible or both are half-compatible
with i. Patients in NH also strictly prefer their own donors to all other half-compatible donors.
Formally, for any i, j ∈ N and any k, l ∈ N \ {i}:

• dk ∼i dl if dk and dl are either both compatible or both half-compatible with i,

• dk �i dj if i is compatible with dk and half-compatible or incompatible with dj ,

• dk �i dj if i is half-compatible with dk and incompatible with dj ,

• di �i dk if i ∈ NH and i is half-compatible with dk.

The preferences of all patients in N are gathered in the list %:= (%i)i∈N . Many existing kidney
exchange programs give priority to patients that are highly HLA-sensitized since it is particularly
difficult to find compatible donors for such patients (see, e.g., Biró et al., 2017). As in Roth et al.
(2005b), this is modeled by a priority function π : N → R++ assigning each patient i ∈ N a
unique priority π(i).9 Patient i has higher priority than patient j whenever π(i) > π(j). It is
assumed that the priority π(i) of each patient i ∈ N is given by a fraction of the type π(i) = p(i)

q

for some p(i) ∈ {1, . . . , p} and some p, q ∈ Z++, where p and q are fixed and equal for all
patients. The interpretation of this assumption is that all patients are assigned a priority that takes
a value on a predetermined scale (based on, e.g., Panel Reactive Antibody scores or some other

9R+ and R++ denote the set of non-negative real numbers and the set of positive real numbers, respectively. The
same convention applies to the set of integers, Z.
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measure of HLA-sensitization).10 A kidney exchange problem is defined as a triple (N,C, π)

and will, with a few exceptions, be held fixed throughout most of the paper.

3.2 Matchings and Properties of Matchings

A pairwise kidney exchange between pairs (i, di) and (j, dj) is feasible if and only if dj �i di and
di �j dj . That is, whenever both patients strictly benefit from the exchange. For a given problem
(N,C, π), a matching M consists of (i) a set of mutually exclusive feasible pairwise exchanges
and (ii) a set of patients in NH that do not participate in any kidney exchanges. Informally,
patients may either receive a transplant (i) through a kidney exchange or (ii) from their own
half-compatible donors. A matching specifies which transplants to carry out. The set of all
matchings for a given problem (N,C, π) is denoted byM. For any matching M , patients that
receive a transplant are said to be matched and patients that receive kidneys from their own half-
compatible donors are said to be self-matched. A patient that does not receive a transplant is said
to be unmatched. If patient i receives a kidney from donor dj at a matchingM , patient i is said to
be matched to both j and dj at M . All patients that are matched at a matching M are collected in
the set N∗(M). The number of transplants at a matching M is therefore given by the cardinality
of N∗(M), i.e., by |N∗(M)|.

A matching M ∈ M is a maximal matching if N∗(M) is not properly contained in the set
N∗(M ′) for any other matching M ′ ∈ M, i.e., if N∗(M) 6⊂ N∗(M ′) for all M ′ ∈ M. A
matching M ∈ M is a maximum matching if it maximizes the number of transplants over all
matchings inM, i.e., if |N∗(M)| ≥ |N∗(M ′)| for allM ′ ∈M. For any matchingsM,M ′ ∈M,
matching M Pareto dominates matching M ′ if, according to the preferences %, all patients in N
weakly prefer the donors they are matched to at M to the donors they are matched to at M ′ with
at least one strict preference. A matching inM is Pareto efficient if it is not Pareto dominated
by any other matching inM.

3.3 Priority Matchings and Half-Compatibility Priority Matchings

There is a planner (or a market designer) with complete, transitive and responsive preferences%B
over matchings inM. Let �B and ∼B denote strict preference and indifference, respectively. A
matching M is strictly preferred to a matching M ′ if all patients matched at M ′ are also matched
at M and some patients not matched at M ′ are matched at M . Moreover, M is strictly preferred
to M ′ if the set of patients matched at M can be obtained from the set of patients matched at
M ′ by replacing some patient matched at M ′ with some patient with higher priority matched
at M . Finally, given that the planner distinguishes compatible donors from half-compatible
donors, it is reasonable for the preference relation %B to somehow separate the two notions of

10This assumption on π(i) is made without loss of generality to get a “non-messy” upper bound on the constant
ε defined in Section 4.2. All results presented in the paper hold for any π(i) ∈ R++ as long as the priorities are
unique.
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compatibility. For this purpose, let B(M) denote the number of patients that are matched to
compatible donors at matching M . Formally, a preference relation %B belongs to a class of
preferences called half-compatibility priority preferences if it is complete, transitive and satisfies
the following conditions:

M �B M ′ if


N∗(M ′) ⊂ N∗(M),

N∗(M) \N∗(M ′) = {i}, N∗(M ′) \N∗(M) = {j} and π(i) > π(j),

N∗(M) = N∗(M ′) and B(M) > B(M ′),

(1)

M ∼B M ′ if N∗(M) = N∗(M ′) and B(M) = B(M ′). (2)

Half-compatibility priority preferences are closely related to the priority preferences introduced
by Roth et al. (2005b). In fact, a preference relation %π is a priority preference relation if
it satisfies all of the conditions above, given that (2) and the last line in (1) have been re-
placed by a requirement that the planner always be indifferent between M and M ′ whenever
N∗(M) = N∗(M ′).11 The only difference between priority preferences and half-compatibility
priority preferences is that whenever the same patients are matched at two different matchings, a
planner with priority preferences is indifferent between the two matchings whereas a planner with
half-compatibility priority preferences prefers the matching that minimizes the number of trans-
plants over the blood group barrier. Note that N∗(M) = N∗(M ′) implies that B(M) = B(M ′)

in models where transplantation over the blood group is either disallowed or not considered an
option by the transplant community. Hence, the two classes of preferences coincide in such
settings.

Consider some priority preferences%π and some half-compatibility priority preferences%B.
A matching M is called a priority matching if M %π M ′ for every matching M ′ ∈ M. For a
given problem (N,C, π), all priority matchings are gathered in the setM∗ ⊆ M. A matching
M is called a half-compatibility priority matching if M %B M ′ for every matching M ′ ∈ M.
For a given problem (N,C, π), all half-compatibility priority matchings are gathered in the set
MB.

4 Properties of Half-Compatibility Priority Matchings

This section is divided into two parts. The first part discusses the properties of half-compatibility
priority preferences and half-compatibility priority matchings. The second part provides a com-
putational method based on graph theoretical techniques that can be used to find half-compatibility
priority matchings.

11See Appendix A.2 for a detailed discussion.
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4.1 Properties

A first observation is that the definition of half-compatibility priority preferences does not in-
duce a unique preference relation. For a given problem, there may be multiple half-compatibility
priority preference relations. A natural question is then whether the set of half-compatibility pri-
ority matchingsMB depends on the choice of preference relation%B. Fortunately, the following
result reveals thatMB remains the same for any choice of half-compatibility priority preference
relation %B.

Proposition 1. For a given problem (N,C, π), all half-compatibility priority preference relations
induce the same set of half-compatibility priority matchings.

Consider some matching mechanism that, for every problem (N,C, π), makes use of some
half-compatibility priority preference relation to locate a half-compatibility priority matching
M . Proposition 1 then guarantees that M is a half-compatibility priority matching for all half-
compatibility priority preferences (such a mechanism is described in Section 4.2). Proposition 1
is closely related to the observation in Roth et al. (2005b, Corollary 1) that any priority matching
(defined differently) is weakly preferred to every other matching by any priority preference re-
lation. It is established in Appendix A.2 that the definition of priority matchings in this paper is
equivalent to the definition in Roth et al. (2005b) and that Corollary 1 in Roth et al. (2005b) can
be extended to a biconditional statement both in settings with and without transplantation over
the blood group barrier. Given the following result, it is not surprising that priority matchings
and half-compatibility priority matchings share many properties.

Proposition 2. For a given problem (N,C, π), every half-compatibility priority matching is a
priority matching.

Half-compatibility priority matchings can therefore be thought of as the subset of priority match-
ings that minimize the number of transplants over the blood group barrier. If patients do not
distinguish between compatible and half-compatible matchings, then every maximal matching is
Pareto efficient. Since priority matchings are maximal by construction, they are always Pareto
efficient in such settings (Roth et al., 2005b).12 However, priority matchings are no longer nec-
essarily Pareto efficient when transplantation over the blood group barrier is possible. The next
result shows that, contrary to priority matchings, half-compatibility priority matchings are guar-
anteed to be Pareto efficient. Furthermore, half-compatibility priority matchings (and priority
matchings) maximize the number of transplants.

Proposition 3. For a given problem (N,C, π), every half-compatibility priority matching is a
Pareto efficient maximum matching.

12To see that priority matchings are maximal matchings, suppose that M ∈ M is a priority matching that is
not maximal. Then there exists some other matching M ′ ∈ M such that N∗(M) ⊂ N∗(M ′). This implies that
M ′ �π M which contradicts the assumption that M is a priority matching (i.e., that M %π M ′′ for all M ′′ ∈M).
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Proposition 3 is silent about how the technology enabling transplantation over the blood group
barrier is implemented. The result merely states that if a matching is a half-compatibility pri-
ority matching in a given problem, then it is Pareto efficient and a maximum matching in that
particular problem. As will be discussed in Section 5, immunosuppressants can be introduced
in a kidney exchange program by finding a half-compatibility priority matching for the patients
in NI and self-matching all the patients in NH . Then the outcome may not be Pareto efficient
or maximize the number of transplants when considering all patients in N (see Proposition 7).
However, Proposition 3 still implies that the matching is a Pareto efficient maximum matching
in the reduced problem containing only the patients in NI .

Another implication of Proposition 3 is that all half-compatibility priority matchings result
in the same number of transplants, i.e., |N∗(M)| = |N∗(M ′)| for all M,M ′ ∈ MB, since all
maximum matchings necessarily match the same number of patients. In fact, Proposition 4 shows
that all priority matchings (including all half-compatibility priority matchings) match exactly the
same patients.

Proposition 4. For a given problem (N,C, π), N∗(M) = N∗(M ′) for all M,M ′ ∈M∗.

This result no longer holds if priorities are not required to be unique as in, e.g., Okumura (2014).
To see this, imagine a situation with three patient-donor pairs; pairs 1, 2 and 3. There is a feasible
kidney exchange between pair 1 and pair 2, a feasible exchange between pair 2 and pair 3, but no
feasible exchange between pair 1 and pair 3. If pair 1 and pair 3 have the same priority, then each
of the two feasible exchanges constitutes a priority matching. Only one of them can be selected
by the planner and depending on this selection, different patients will be matched.

Many of the results in this section relate to the structure of pairwise kidney exchange prob-
lems in particular. One important aspect of pairwise kidney exchange problems is that the set of
all patients N and a family I containing all sets of patients that can be matched simultaneously
constitute a matroid (N, I). Such a structure ensures that every maximal matching is a maxi-
mum matching and that the same number of patients receive a transplant at every Pareto efficient
matching. Thanks to this structure, the opportunity cost of matching a particular patient (e.g., a
high priority patient) will never be more than one patient (with lower priority) who could other-
wise have been matched. Roth et al. (2005b) showed that the pairwise kidney exchange problem
has a matroid structure when the compatibility structure is binary (no transplantation over the
blood group barrier). Proposition 11 in Appendix A.1 demonstrates that this result continues to
hold in settings that distinguish between compatibility and half-compatibility. This is not im-
mediately obvious since self-matches alter the structure of the sets of simultaneously matchable
patients.

A final remark is that the findings in this section provide justification for half-compatibility
priority preferences. As argued in Section 2, there are good reasons for minimizing the use of
immunosuppressants. Furthermore, as described in Biró et al. (2017), maximizing the number
of transplants is an objective in all existing European kidney exchange programs and all these
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programs (except in Austria and the Czech Republic) also prioritize patients in accordance with
their HLA-sensitization levels. A planner with half-compatibility priority preferences selects a
matching from the set of half-compatibility priority matchings. Consequently, the use of im-
munosuppressants is minimized, the number of transplants is maximized and patients receive
priority based on, e.g., the degree of HLA-sensitization. In addition, the planner is guaranteed
that any choice of half-compatibility priority preferences will result in the same set of half-
compatibility priority matchings and that the same set of patients will receive transplants. The
last point implies that a planner need not worry about the specific choice of half-compatibility
priority preference relation affecting various groups in a diverse patient population differently.

4.2 Identification of Half-compatibility Priority Matchings

Given the desirable properties of half-compatibility priority matchings discussed in the previous
section, the main purpose of this section is to investigate how these matchings can be computed.
In contrast to the iterative method for identifying priority matchings introduced by Roth et al.
(2005b), the method considered in this section takes a graph theoretical approach. More specifi-
cally, it is demonstrated that half-compatibility priority matchings can be identified in polynomial
time by solving a maximum weight matching problem. This maximization technique is, in sim-
ilarity with many algorithms like, e.g., the deferred acceptance algorithm (Gale and Shapley,
1962) and the top trading cycles mechanism (Shapley and Scarf, 1974), frequently adopted in
the market design literature to solve various matching problems. For example, solution methods
based on maximum weight matching problems have previously been applied to problems related
to school choice (Kesten and Ünver, 2015), delegate pairings at meetings (Vaggi et al., 2014),
kindergarten placements (Biró and Gudmundsson, 2017) and kidney exchange (Biró et al., 2009).
To describe this computational method, some graph theoretical notation needs to be introduced.

For any compatibility structure C, there exists a corresponding compatibility graph g =

(N,E) comprising a set N of vertices and a set E of edges. It will sometimes be convenient to
let N(g) and E(g) denote the vertex set and the edge set, respectively, of the compatibility graph
g. Every vertex in a compatibility graph corresponds to a patient in N . There is an edge between
two patients i, j ∈ N if and only if a pairwise exchange between the pairs (i, di) and (j, dj) is
feasible, and there is a loop at vertex i ∈ N if and only if patient i is half-compatible with her
own donor di. Let ij denote an edge between patients i and j and let ii denote a loop at patient
i. Formally, the edges in a compatibility graph g = (N,E) have the following construction:

• if i, j ∈ N and i 6= j, then ij ∈ E if and only if dj �i di and di �j dj ,

• if i ∈ N , then ii ∈ E if and only if i ∈ NH .

For any compatibility graph g = (N,E), a matching M ⊆ E can be defined as a set of edges
in the graph that are not incident to each other. That is, for any edge ij ∈ M , it must be the
case that ik /∈ M and jk /∈ M for all k ∈ N \ {i, j}. There is an edge ij ∈ M for some
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i, j ∈ N , i 6= j, whenever the pairs (i, di) and (j, dj) are involved in a pairwise kidney exchange.
Moreover, ii ∈ M for some i ∈ NH whenever i receives a kidney from her own donor. The
non-incidence requirement on the edges ensures that each patient receives at most one kidney
and each donor donates at most one kidney. This definition of a matching is thus equivalent to
the definition given in Section 3.2.

A weighted graph (g, w) consists of a graph g and a set of edge weights w := (wij)ij∈E(g)

where wij is a weight assigned to edge ij ∈ E(g). Let (g, w) be a weighted graph and let
S(M,w) :=

∑
ij∈M wij be the sum of all edge weights at matching M ∈ M. A matching M

is a maximum weight matching in (g, w) if S(M,w) ≥ S(M ′, w) for all M ′ ∈ M. Okumura
(2014) demonstrated that priority matchings can be found by solving an appropriately defined
maximum weight matching problem.

Lemma 1. (Okumura, 2014, Theorem 2). Consider a problem (N,C, π) with corresponding
compatibility graph g. Suppose that transplantation over the blood group barrier is not possible.13

If wij = π(i) + π(j) for all ij ∈ E(g), then M is a priority matching if and only if M is a
maximum weight matching in (g, w).

The maximum weight matching problem described in Lemma 1 is not directly applicable in the
setting considered in this paper since the result is based on the assumptions that patients cannot
receive kidneys from their own donors (i.e., no loops in the compatibility graph) and that there is
no distinction between compatible and half-compatible donors. However, the following theorem
shows that even if these assumptions are relaxed, priority matchings can be identified by solving
an almost identical maximum weight problem (the only difference being the presence of loops
in the graph).

Proposition 5. Consider a problem (N,C, π) with corresponding compatibility graph g. Ifwii =

π(i) for all ii ∈ E(g) and wij = π(i) + π(j) for all ij ∈ E(g) whenever i 6= j, then M is a
priority matching if and only if M is a maximum weight matching in (g, w).

Recall that the set of half-compatibility priority matchings is the subset of priority matchings
that minimize the number of transplants over the blood group barrier. Hence, solving the max-
imum weight matching problem defined in Proposition 5 will not necessarily identify a half-
compatibility priority matching. To address this issue, a modified maximum weight match-
ing problem is presented, the solution to which is guaranteed to be a half-compatibility pri-
ority matching. Consider a problem (N,C, π) with corresponding compatibility graph g. Let
0 < ε < 1

2nq
and let the weights wε := (wεij)ij∈E(g) for each i, j ∈ N be defined by:

wεij =

{
π(i) + π(j) + v(i, j) + v(j, i) if i 6= j

π(i) if i = j,

13Each patient i ∈ N is incompatible with her own donor and either compatible or incompatible with donor dj
for all j ∈ N .
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where:

v(i, j) =

{
ε if patient i is compatible with donor dj
0 otherwise.

Proposition 6. Consider a problem (N,C, π) with corresponding compatibility graph g. Then a
matching is a half-compatibility priority matching if and only if it is a maximum weight matching
in (g, wε).

A solution to the maximum weight matching problem in Proposition 6 can be found in polyno-
mial time by adopting the techniques in Edmonds (1965).

5 Welfare Implications of Kidney Exchange over the Blood Group Barrier

This section analyzes the consequences of introducing transplantation over the blood group bar-
rier in kidney exchange programs. Even though the existence of some welfare effects can be
proven theoretically, a simulation study is necessary to estimate their magnitudes. The section
ends with an extended discussion on the possibility to manipulate the matching mechanisms
induced by Model (a) and Model (b).

As a benchmark in the analysis, we will use a model with pairwise exchanges, in which
transplants over the blood group barrier are either not allowed or not an option considered by
the medical community (as in, e.g., Roth et al., 2005b). It is then assumed that the technology
enabling transplants across the blood group barrier gets implemented within kidney exchange
programs, e.g., due to new legislation allowing such transplants, awareness or changes in the atti-
tude towards immunosuppressants in the transplant community. This will have the consequence
that patient and planner preferences will distinguish between compatible and half-compatible
donors and matchings. Two distinct “models” are introduced to represent two different ways
in which the planner can implement this technology within kidney exchange frameworks. Both
models can be thought of as extensions to the Benchmark Model. Let (NI , CI , π) denote a re-
duced problem containing only the patients in NI , where CI denotes the compatibility structure
between patients in NI and donors of patients in NI .14

• Benchmark Model. Transplants over the blood group barrier are either disallowed or not
considered an option by the medical community. A priority matching is found for the
problem (N,C, π).

• Model (a). The technology enabling transplants over the blood group barrier is adopted
by the medical community. Patients in NH (i.e., patients with half-compatible donors) are

14With the exception of Section 5.2, patients with compatible donors are assumed to receive kidneys from their
own donors outside kidney exchange programs throughout the paper. Patients with compatible donors are therefore
not included in any of the models described below.
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self-matched and do not participate in the kidney exchange program. A half-compatibility
priority matching is found for the reduced problem (NI , CI , π).

• Model (b). The technology enabling transplants over the blood group barrier is adopted by
the medical community. A half-compatibility priority matching is found for the problem
(N,C, π).

Even though there are variations in rules, regulations, techniques, etc., that differentiate kidney
exchange programs from each other, many existing programs can, in general terms, be catego-
rized within our framework. The Benchmark Model is the standard model in the theoretical
kidney exchange literature and it has been analyzed by, e.g., Roth et al. (2004, 2005a,b, 2007),
Okumura (2014), Saidman et al. (2006), Sönmez and Ünver (2014) and Sönmez et al. (2018).
Note also that the initial program in the United States (Roth et al., 2005b) and the current prac-
tice in, e.g., France, India and Italy (Biró et al., 2018; Jha et al., 2015), only considered/consider
pairwise exchanges and transplants over the blood group barrier within the existing exchange pro-
grams were/are not allowed or not considered an option by the medical community. The same
holds in, e.g., Belgium, the Netherlands, Poland and Portugal, even if larger cyclical exchanges
are allowed in these countries (Biró et al., 2017, 2018).

Transplantation across the blood group barrier is, however, allowed in Model (a). This model
corresponds to the current program in, e.g., Sweden, where only pairwise exchanges are consid-
ered and patients with half-compatible donors receive kidneys from their own donors outside the
exchange system. Although larger cyclic exchanges are allowed in, e.g., Austria, the Czech Re-
public, Spain, the United Kingdom and Switzerland, it can be argued that the exchange programs
in these countries correspond to Model (a). Patients in these countries are routinely referred to
desensitization treatments outside their respective exchange programs, even though transplants
over the blood group barrier are allowed within their corresponding exchange frameworks (Biró
et al., 2017, 2018).

Model (b) also allows for transplantation across the blood group barrier. To the best of our
knowledge, no country in the world has adopted an exchange program that corresponds to Model
(b), i.e., a program that includes all incompatible and all half-compatible patient-donor pairs in
a common exchange pool. The main difference between Model (b) and Model (a) is that the
exchange program in the latter model does not include patients with half-compatible donors.
These patients are, in Model (a), always self-matched with their own donors and will therefore
never be part of an exchange.

An important distinction between the Benchmark Model and the other two models is that the
matching selected in the Benchmark Model may not be a half-compatibility priority matching.
There are good reasons for a planner concerned with patient welfare to select half-compatibility
priority matchings, which are known to be Pareto efficient, in Models (a) and (b). The following
example shows that priority matchings may be Pareto dominated by the matchings selected in
Models (a) and (b).

17



Example 1. Suppose that N = {1, 2, 3, 4} and that each patient is incompatible with her own
donor. A possible pairwise exchange between pairs (i, di) and (j, dj) is denoted by ij and it
is assumed that only the pairwise exchanges 12, 23, 34 and 14 are feasible. Suppose further
that patient 1 is compatible with donor d2 and that no other patient is compatible with any other
donor. In this case, matchings M = {12, 34} and M ′ = {14, 23} are both priority matchings
since all patients receive transplants. However, only M is a half-compatibility priority matching
since more patients are matched to compatible donors at M than at M ′. This means that both M
and M ′ could be selected in the Benchmark Model, but only M can be selected in Models (a)
and (b). Since patient 1 strictly prefers donor d2 to donor d4 and all other patients are indifferent
between M and M ′, it follows that M Pareto dominates M ′. �

5.1 Theoretical Results

A noteworthy difference between the Benchmark Model and Model (b) on the one hand and
Model (a) on the other is that (half-compatibility) priority matchings are identified for the entire
set of patients in the former two models, whereas Model (a) only selects a half-compatibility pri-
ority matching for the patients in NI and self-matches the patients in NH . Proposition 3 implies
that the half-compatibility priority matching which patients in NI are matched in accordance
with in Model (a) is a Pareto efficient maximum matching for the reduced problem (NI , CI , π).
The matchings selected in the Benchmark Model and Model (b), on the other hand, are Pareto
efficient maximum matchings for the problem (N,C, π) containing all patients in N (note that
the matching selected in the Benchmark Model is only Pareto efficient under the constraint that
transplantation over the blood group barrier is not possible).

By excluding the patients in NH when identifying a half-compatibility priority matching
in Model (a), the aggregate outcome, defined by the transplants outside the kidney exchange
program and the transplants generated by exchanges within the exchange program, need not
maximize the number of transplants or be Pareto efficient. Intuitively, this failure hinges on the
use of immunosuppressants that enable patients with half-compatible donors to receive kidneys
from their own donors outside the kidney exchange program. A planner implementing Model (a)
not only denies patients with half-compatible donors the possibility to find a compatible donor
within the exchange framework, but also shrinks the size of the patient-donor pool when self-
matching all patients with half-compatible donors. This reduces the likelihood that patients with
incompatible donors participate in pairwise exchanges since the set of patients they could be
matched to is smaller.15 The following result is proven with the help of an example that will also
be useful later in this section.

Proposition 7. The matching selected in the Benchmark Model may Pareto dominate the match-
ing selected in Model (a). In addition, the total number of transplants may be higher in the

15It is well-known that larger patient-donor pools result in more transplants than smaller pools. See, e.g., Roth
et al. (2006)

18



Benchmark Model than in Model (a).

Proof. Suppose that N = {1, 2} where NI = {1} and NH = {2}. Assume further that patient
1 is compatible with donor d2 and that patient 2 is compatible with donor d1. In Model (a),
patient 2 is self-matched as 2 ∈ NH . Since patient 1 is incompatible with donor d1, patient 1

remains unmatched. In the Benchmark Model, no patients are self-matched. Patient 2 is therefore
available for a mutually beneficial kidney exchange with patient 1. Thus, both patients receive
transplants in the Benchmark Model, whereas only patient 2 receives a transplant in Model (a).
Furthermore, patient 2 is strictly better off in the Benchmark Model since patient 2 is compatible
with donor d1 and only half-compatible with donor d2.

The example above shows that the introduction of transplantation over the blood group barrier
could, in theory, reduce the number of transplants and make all patients worse off if implemented
as in Model (a). This is not the case in Model (b) since it includes patients with half-compatible
donors in the kidney exchange program and selects a Pareto efficient matching for all patients
N in the problem (N,C, π). Given this observation, it is natural to ask whether Model (b) will
generally result in a weakly larger number of transplants than the Benchmark Model and Model
(a). According to the next result, it will.

Proposition 8. Consider a problem (N,C, π) and suppose that µ, µ′ and µ′′ contain all patients
that receive transplants in the Benchmark Model, Model (a) and Model (b), respectively.16 Then
|µ′′| ≥ |µ| and |µ′′| ≥ |µ′|.

The results above indicate that the manner in which medical technology enabling kidney trans-
plants over the blood group barrier is used can have significant welfare implications. Even though
one would suspect that this technology would increase the total number of kidney transplants,
Proposition 7 reveals that this is not necessarily the case since a planner implementing Model (a)
first maximizes the number of self-matches and only includes the remaining patient-donor pairs
in the kidney exchange program. A planner implementing Model (b), on the other hand, regards
self-matches as the last option for patients with half-compatible donors since these patients are
first included in the exchange program in the hope of finding compatible donors for them. This
inclusion means that a planner using Model (b) first aims to maximize the number of pairwise
exchanges and, consequently, ensures that the number of patient-donor pairs participating in the
kidney exchange program is maximized. As seen in Proposition 8, this strategy guarantees the
total number of transplants to be (weakly) greater in Model (b) than it is in both the Benchmark
Model and Model (a).

Recall that Model (a) corresponds to current practice in, e.g., the Swedish kidney exchange
program. Given the findings above, a natural question is then whether to transition from Model

16Note that |µ| = |N∗(M)| and |µ′′| = |N∗(M ′′)| if matchings M and M ′′ are the outcomes of the Benchmark
Model and and Model (b), respectively.
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(a) to Model (b). The answer not only depends on the number of additional transplants that
the transition would result in, it also depends on how it would affect patients with incompatible
donors. To make this point clear, recall that patients with half-compatible donors can always re-
ceive kidneys over the blood group barrier from their own donors outside the exchange program.
From a welfare perspective, it is then important to ensure that a patient with a half-compatible
donor is not involved in an exchange at the expense of a patient with an incompatible donor
as patients of the latter type cannot receive kidneys outside the exchange program. The next
proposition ensures that such situations never occur. More precisely, Proposition 9 shows that all
patients that would have received transplants in Model (a) will still receive transplants if there is
a transition from Model (a) to Model (b).

Proposition 9. Consider a problem (N,C, π) and suppose that µ′ and µ′′ contain all patients that
receive transplants in Model (a) and Model (b), respectively. Then µ′ ⊆ µ′′.

From a welfare perspective, it is reassuring that a transition from Model (a) to Model (b) is
guaranteed to weakly increase the number of transplants (Proposition 8) and that patients receiv-
ing transplants before the transition are guaranteed to still receive transplants after the transition
(Proposition 9). This does, however, not say anything about what type of donors the patients
will be matched to. It is clear that patients with half-compatible donors are made weakly better
off by the transition since the worst possible outcome for them is to be paired with their own
half-compatible donors, i.e., the same outcome as in Model (a). The story for patients with in-
compatible donors is a bit different and there is no general theoretical prediction. For some prob-
lems, there is no half-compatibility priority matching such that all patients with incompatible
donors weakly gain by the transition from Model (a) to Model (b), and for some problems there
is. A situation where all patients with incompatible donors are made better off by the transition
is illustrated in the proof of Proposition 7 above, since the outcomes in the Benchmark Model
and Model (b) coincide. A situation where some patient is made worse off by the transition is
illustrated in the following example.

Example 2. Suppose that N = {1, 2, 3, 4}, NI = {1, 2, 3}, NH = {4} and π(1) > π(3). A
feasible pairwise exchange between pairs (i, di) and (j, dj) is denoted by ij and it is assumed
that only the pairwise exchanges 12, 14, and 23 are feasible. Suppose further that patient 1 is
half-compatible with donor d4 and that all patients in the other three feasible pairwise exchanges
are compatible with the donors they participate in the exchanges with. In Model (a), patient 4
is matched to her own half-compatible donor and the pairwise exchange 12 is conducted since
π(1) > π(3). In Model (b), the pairwise exchanges 14 and 23 are carried out. Even though
patient 1 receives a transplant in both models, patient 1 is made worse off by a transition from
Model (a) to Model (b) since the patient is compatible with donor d2 and only half-compatible
with donor d4. �
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5.2 Simulation Results

This section aims to investigate the magnitudes of the theoretical findings presented in the pre-
vious section. It also attempts to shed light on some issues that are discussed extensively in the
kidney exchange literature but have so far not been addressed in this paper. For instance, this sec-
tion will investigate how patients that are often proportionally disadvantaged in kidney exchange
programs (specifically, blood group O patients) are affected by the introduction of transplantation
over the blood group barrier.

In addition to the three models introduced earlier in this section, two additional models will
be investigated. The first of these models is the Altruistic Model (Roth et al., 2005a; Sönmez
and Ünver, 2014) in which compatible patient-donor pairs participate in the kidney exchange
program. It is called the Altruistic Model because patients with compatible donors do not benefit
from participation in exchange programs, as they can already receive kidneys from their own
donors (without crossing the blood group barrier). The compatible pairs (“altruistic pairs”) par-
ticipate to help other incompatible or half-compatible pairs. The second model, called the Cycle
Model (Roth et al., 2007), allows for three-way exchanges in addition to pairwise exchanges, i.e.,
cyclic exchanges involving three patient-donor pairs.17 The reason for including these models in
the simulation study is that the design features of both models are known to (weakly) increase
the number of transplants (see, e.g., Gentry et al., 2007; Roth et al., 2005a; Sönmez and Ünver,
2014). The outcomes in these two models are estimated under the assumption that transplants
over the blood group barrier are either not allowed or not considered an option by the transplant
community, and compared to the outcomes in Models (a) and (b). This makes it possible to com-
pare the effect of introducing medical technology enabling transplantation over the blood group
barrier to the impact of other design features that are known to work well.

In order to analyze the Altruistic Model, a third type of patients must be added to the model,
namely the patients with compatible donors. These patients are gathered in the set NC and all
patients in NC ∪ N are included in the simulations, where NC ∩ N = ∅. The patients in NC

play no role in the Benchmark Model, Model (a), Model (b) or the Cycle Model since they are
simply self-matched and unavailable for pairwise exchanges in all of these models. The patients
in NC do, however, play a significant role in the Altruistic Model. Let CC be the compatibility
structure between patients in NC ∪ N and donors of patients in NC ∪ N . Furthermore, let
πC : NC ∪N → R++ be a priority function assigning each patient in NC ∪N a unique priority.

• Altruistic Model. Transplants over the blood group barrier are either disallowed or not
considered an option by the medical community. A priority matching is found for the
problem (NC ∪N,CC , πC).18 Unmatched patients in NC are then self-matched with their

17Cyclic exchanges involving four or more pairs are not considered in this section. This restriction can be sup-
ported by Roth et al. (2007) who demonstrated that allowing exchange cycles involving more than three pairs would
only have a marginal impact on the number of transplants.

18Since patients in NC are assumed to be “altruistic” in the Altruistic Model, their preferences must be amended
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own compatible donors.

• Cycle Model. Transplants over the blood group barrier are either disallowed or not consid-
ered an option by the medical community. Three-way exchanges are permitted in addition
to pairwise exchanges. A maximum matching19 is found for the problem (N,C, π).

The reported results for the Cycle Model are taken from Roth et al. (2007), but these results are
directly comparable to the other simulation results provided in this section (see footnotes 22 and
24 for details). For the other four models, a population of patient-donor pairs is generated using
medical data (e.g., blood group distributions, PRA distributions, crossmatch probabilities, etc.)
identical to the data described in Roth et al. (2007) and Saidman et al. (2006).

Two pieces of information required for the simulations are missing in these articles; the
share of patients that are female and have a spouse donor, and the share of patients for whom
transplantation over the blood group barrier is feasible. The first of these numbers is based on
Swedish medical data (Fehrman-Ekholm et al., 2011) and is set to 10 percent. For the second
number, it is assumed that transplantation over the blood group barrier is feasible for 75 percent
of patients.20 The priority π(i) for each patient i is defined as in Keizer et al. (2005):

π(i) = PRA(i)× (share of donors in the pool that patient i is incompatible with) (3)

The equation above captures the transplantation possibilities for patient i both outside and within
the kidney exchange program. The higher the priority, the more difficult it is to find a suitable
donor for the patient. Since both factors on the right hand side of equation (3) belong to the
interval [0, 1], patient priorities are guaranteed to take values between 0 and 1. Note also that
the above priorities are somewhat arbitrarily selected since priorities may be based on other
methods and/or input variables. In the UK program, for example, priorities are based on previous
unsuccessful matching runs, sensitization, HLA mismatch and donor-donor age difference. For
a technical overview of all European programs (including priority rules), see Andersson et al.
(2018).

The remainder of this section analyses a Monte Carlo simulation based on 1,000 populations
randomly drawn from the medical distributions discussed above for population sizes of 25, 50,
100, 200 and 500 patient-donor pairs.21 To put these population sizes in perspective, the kidney

slightly. More precisely, patients inNC are assumed to be indifferent between all compatible donors, including their
own. Furthermore, it is sufficient that a patient i ∈ NC weakly gain in a pairwise exchange for the exchange to be
feasible. Patients in N must, however, still strictly gain for an exchange to be feasible.

19The reason the Cycle Model selects a maximum matching rather than a priority matching is that the matroid
structure, discussed in Section 4.1 and Appendix A.1, is lost in the Cycle Model, giving rise to a trade-off between
prioritization of HLA-sensitized patients and maximization of the number of transplants. See, e.g., Kratz (2018) or
Sönmez and Ünver (2014).

20Recall from footnote 7 that this number is estimated to be around 90 percent. In the simulation study, however,
a more conservative number is used to ensure that the results for Models (a) and (b) are not overestimated.

21The simulation makes use of Joris van Rantwijk’s script for finding maximum weight matchings in graphs,
ported to MATLAB by Daniel R. Saunders.
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exchange program in the United Kingdom is the largest in Europe with 250 participating patient-
donor pairs per matching run. The second largest European program is found in Spain with
110 participating pairs per run. In the simulations, around 50 percent of the patients already
have compatible donors (see column “Self-match” in Table 1) and will, consequently, not be part
of the patient-donor pool. This means that generated populations of 500 and 200 patient-donor
pairs correspond to kidney exchange programs with 250 and 100 participating pairs, respectively,
like the UK program and the Spanish program. Many European countries, including Austria,
Belgium, France, Italy, Poland, Portugal and Sweden, have much smaller programs captured by
the population sizes 100, 50 and 25.

Table 1 displays the percentages of different types of transplants for each model and popu-
lation size. In the table, “Exchange” only includes pairwise exchanges in all models except the
Cycle Model, which includes three-way exchanges as well. Moreover, “ABOi” indicates that
a patient receives a transplant over the blood group barrier. Note that such transplants, by as-
sumption, are infeasible in the Benchmark Model, the Altruistic Model and the Cycle Model.
Furthermore, in all models except the Altruistic Model, patients with compatible donors receive
kidneys from their own donors outside the kidney exchange program.

Recall Proposition 8, which states that Model (b) always generates a weakly larger number
of transplants than both the Benchmark Model and Model (a). The exact magnitude of this
difference can be seen in Table 1. For a population size of 50, an average of 34.2 percent of the
patients in the Benchmark Model will not receive transplants.22 The corresponding numbers for
Models (a) and (b) are 11.1 percent and 8.0 percent, respectively. For a population size of 50, the
simulation results also suggest that a transition from the Benchmark Model to Model (b) would
on average result in 13.1 additional transplants (i.e., 34.2−8.0 = 26.2 percent of 50 patients). To
achieve this, 11.5 patients (i.e., 14.6+8.4 = 23.0 percent of 50 patients) must on average receive
transplants over the blood group barrier. An implied rule of thumb is that for every additional
transplant achieved by a transition from the Benchmark Model to Model (b), one transplant must
be carried out over the blood group barrier. This rule of thumb holds for all population sizes.
Note also that the gain, measured in total number of transplants, from introducing transplants

22Roth et al. (2007) consider both the Benchmark Model and the Cycle Model. The patient-donor pool in their
simulation study only contains patients with incompatible donors, whereas the patients in NC are included in this
section. Since roughly 50 percent of the pairs included in this simulation study have a compatible donor (see the
“Self-match” column for the Benchmark Model in Table 1), the case when n = 50 in this paper roughly corresponds
to the case when n = 25 in Roth et al. (2007). Table 2 in Roth et al. (2007) shows that an average of 8.86 patients
are involved in exchanges when n = 25 and only pairwise exchanges are allowed. The corresponding number in
this paper is 8.6 patients (17.2 percent when n = 50). Furthermore, Roth et al. (2007) find that an average of 21.8
patients are involved in pairwise exchanges when n = 50. The corresponding number in this paper is 21.5 (21.5
percent when n = 100). In this sense, the results in this paper confirm the findings in Roth et al. (2007). As a
consequence, the results in Roth et al. (2007) for the Cycle Model can safely be used as an approximation of the
corresponding results in this paper.
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over the blood group barrier increases with pool size.23

Table 1: Distribution of different types of transplants for various models and population sizes.

n Model No transplant Self-match ABOi self-match Exchange ABOi exchange Total

25 Benchmark Model 38.5% 49.1% 0.0% 12.4% 0.0% 100.0%
Model (a) 16.4% 49.1% 20.6% 9.5% 4.5% 100.0%
Model (b) 13.1% 49.1% 15.4% 15.6% 6.8% 100.0%
Altruistic Model 18.5% 25.9% 0.0% 55.6% 0.0% 100.0%
Cycle Model∗ N/A N/A N/A N/A N/A N/A

50 Benchmark Model 34.2% 48.6% 0.0% 17.2% 0.0% 100.0%
Model (a) 11.1% 48.6% 20.9% 13.2% 6.2% 100.0%
Model (b) 8.0% 48.6% 14.6% 20.4% 8.4% 100.0%
Altruistic Model 12.8% 22.0% 0.0% 65.2% 0.0% 100.0%
Cycle Model∗ 28.9% 48.6% 0.0% 22.5% 0.0% 100.0%

100 Benchmark Model 29.9% 48.6% 0.0% 21.5% 0.0% 100.0%
Model (a) 6.5% 48.6% 21.0% 16.5% 7.4% 100.0%
Model (b) 4.1% 48.6% 13.5% 24.4% 9.4% 100.0%
Altruistic Model 8.2% 19.9% 0.0% 71.9% 0.0% 100.0%
Cycle Model∗ 24,1% 48.6% 0.0% 27.3% 0.0% 100.0%

200 Benchmark Model 27.3% 48.7% 0.0% 24.0% 0.0% 100.0%
Model (a) 2.9% 48.7% 21.1% 19.1% 8.2% 100.0%
Model (b) 1.7% 48.7% 12.9% 27.0% 9.7% 100.0%
Altruistic Model 5.3% 19.0% 0.0% 75.7% 0.0% 100.0%
Cycle Model∗ 21.4% 48.7% 0.0% 29.9% 0.0% 100.0%

500 Benchmark Model 24.0% 48.8% 0.0% 27.2% 0.0% 100.0%
Model (a) 0.4% 48.8% 20.9% 22.3% 7.6% 100.0%
Model (b) 0.2% 48.8% 12.1% 29.7% 9.2% 100.0%
Altruistic Model 3.0% 18.5% 0.0% 78.5% 0.0% 100.0%
Cycle Model∗ N/A N/A N/A N/A N/A N/A

∗ Approximations from Roth et al. (2007). N/A = Not Available.

It is also notable that not only do more patients receive transplants in Model (b) than in Model
(a), the share of transplants over the blood group barrier is also lower. For a population size of
50, an average of 27.1 percent (i.e., 20.9 + 6.2 percent) of patients receive transplants over the
blood group barrier in Model (a). The corresponding number in Model (b) is only 23.0 percent
(i.e., 14.6 + 8.4 percent). This conclusion holds for all population sizes. The results in Table 1
also suggest that the impact on the number of transplants of introducing transplantation over the
blood group barrier is larger than the impact of including altruistic donors or allowing three-way
exchanges.24 This conclusion holds for both Models (a) and (b).

23This follows from the fact that both Models (a) and (b) select maximal matchings. More specifically, suppose
that a set of patient-donor pairs are added to an existing exchange pool but that the number of transplants decreases.
Then a contradiction is obtained immediately because the matching for the initial and smaller pool is feasible also
for the larger pool and both Models (a) and (b) select maximal matchings. Consequently, the total number of
transplants must increase with pool size (in fact, this conclusion holds for any matching mechanism that selects
maximal matchings, including, e.g., the priority mechanism).

24Note that the results in Table 1 for the Cycle Model are most likely marginally underestimated. This follows
from the fact that the simulations in Roth et al. (2007) are based on population sizes of 25, 50 and 100, while the
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The results for Models (a) and (b) in Table 1 are based on the assumption that all patients
would accept receiving a kidney from any half-compatible donor.25 Even though this is a rea-
sonable assumption since most patients would prefer receiving a half-compatible kidney to not
receiving any transplant at all26, a sensitivity analysis is provided in Tables 2 and 3. These tables
provide the recalculated results for Model (a) and Model (b) under the assumption that 0, 25, 50,
75 or 100 percent of all patients are willing to receive kidneys from all half-compatible donors.

Table 2: Distribution of transplant types for Model (a) when different proportions of patients accept ABOi
transplants.

n Model (a) No transplant Self-match ABOi self-match Exchange ABOi exchange Total

25 0 percent accept 38.5% 49.1% 0.0% 12.4% 0.0% 100.0%
25 percent accept 32.3% 49.1% 5.1% 11.9% 1.6% 100.0%
50 percent accept 26.8% 49.1% 10.1% 11.2% 2.8% 100.0%
75 percent accept 21.0% 49.1% 15.3% 10.7% 3.9% 100.0%
100 percent accept 16.4% 49.1% 20.6% 9.5% 4.5% 100.0%

50 0 percent accept 34.2% 48.6% 0.0% 17.2% 0.0% 100.0%
25 percent accept 27.6% 48.6% 5.2% 16.6% 2.0% 100.0%
50 percent accept 21.5% 48.6% 10.4% 15.7% 3.8% 100.0%
75 percent accept 15.9% 48.6% 15.6% 14.7% 5.2% 100.0%
100 percent accept 11.1% 48.6% 20.9% 13.2% 6.2% 100.0%

100 0 percent accept 29.9% 48.6% 0.0% 21.5% 0.0% 100.0%
25 percent accept 23.3% 48.6% 5.3% 20.5% 2.3% 100.0%
50 percent accept 17.0% 48.6% 10.5% 19.4% 4.5% 100.0%
75 percent accept 11.0% 48.6% 15.8% 18.2% 6.4% 100.0%
100 percent accept 6.5% 48.6% 21.0% 16.5% 7.4% 100.0%

200 0 percent accept 27.3% 48.7% 0.0% 24.0% 0.0% 100.0%
25 percent accept 20.4% 48.7% 5.2% 23.0% 2.7% 100.0%
50 percent accept 13.6% 48.7% 10.5% 21.9% 5.3% 100.0%
75 percent accept 7.5% 48.7% 15.8% 20.7% 7.3% 100.0%
100 percent accept 2.9% 48.7% 21.1% 19.1% 8.2% 100.0%

500 0 percent accept 24.0% 48.8% 0.0% 27.2% 0.0% 100.0%
25 percent accept 16.9% 48.8% 5.2% 26.1% 3.0% 100.0%
50 percent accept 10.0% 48.8% 10.5% 25.2% 5.5% 100.0%
75 percent accept 4.1% 48.8% 15.7% 24.1% 7.3% 100.0%
100 percent accept 0.4% 48.8% 20.9% 22.3% 7.6% 100.0%

Note first that the results for 0 percent and 100 percent in Table 2, by definition, represent the
Benchmark Model and Model (a) as presented in Table 1, respectively. Similarly, the results for

corresponding population sizes in this paper are 25.7, 51.4 and 102.6 (see also footnote 22). Since Models (a) and
(b) clearly outperform the Cycle Model in Table 1, the marginal difference in population sizes will not affect the
general conclusions that can be drawn from the results.

25This assumption will be discussed further in Section 5.3 in relation to manipulability. Note also that even if all
patients are assumed to be willing to receive kidneys from all half-compatible donors, not all patients are able to
receive kidneys from all half-compatible donors as explained earlier (see footnote 7).

26This assumption has also been informally confirmed by the Swedish transplant doctors and immunologists we
have spoken to based on the observation that patients follow the recommendations made by their medical doctors in
almost all cases and the fact that Sweden has had a well-functioning program for kidney transplantation across the
blood group barrier for more than 10 years (see Fehrman-Ekholm et al., 2011). Unfortunately, we have been unable
to confirm this informal statement with official statistics.
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0 percent and 100 percent in Table 3 represent the Benchmark Model and Model (b) as presented
in Table 1, respectively. As can be seen in Tables 2 and 3, for every additional 25 percent of
patients that are willing to receive kidneys from half-compatible donors, between 3–7 percent
more of the patients in the pool will receive transplants. This conclusion holds for both Model
(a) and Model (b) independently of pool size. Furthermore, it suffices that at least 25 percent of
the patients are willing to receive kidneys from half-compatible donors for Model (a) and Model
(b) to perform better than the Cycle Model in terms of the number of transplants. However,
more than 75 percent of the patients must be willing to receive kidneys from any half-compatible
donors for Model (a) and Model (b) to perform better than the Altruistic Model. The two latter
conclusions also hold independently of pool size.

Table 3: Distribution of transplant types for Model (b) when different proportions of patients accept
ABOi transplants.

n Model (b) No transplant Self-match ABOi self-match Exchange ABOi exchange Total

25 0 percent accept 38.5% 49.1% 0.0% 12.4% 0.0% 100.0%
25 percent accept 31.7% 49.1% 4.4% 13.2% 1.6% 100.0%
50 percent accept 25.3% 49.1% 8.3% 14.0% 3.3% 100.0%
75 percent accept 18.8% 49.1% 12.2% 14.8% 5.1% 100.0%
100 percent accept 13.1% 49.1% 15.4% 15.6% 6.8% 100.0%

50 0 percent accept 34.2% 48.6% 0.0% 17.2% 0.0% 100.0%
25 percent accept 27.0% 48.6% 4.4% 17.9% 2.1% 100.0%
50 percent accept 20.0% 48.6% 8.4% 18.7% 4.3% 100.0%
75 percent accept 13.5% 48.6% 12.1% 19.4% 6.4% 100.0%
100 percent accept 8.0% 48.6% 14.6% 20.4% 8.4% 100.0%

100 0 percent accept 29.9% 48.6% 0.0% 21.5% 0.0% 100.0%
25 percent accept 22.6% 48.6% 4.3% 22.1% 2.4% 100.0%
50 percent accept 15.5% 48.6% 8.3% 22.7% 4.9% 100.0%
75 percent accept 8.9% 48.6% 11.7% 23.5% 7.3% 100.0%
100 percent accept 4.1% 48.6% 13.5% 24.4% 9.4% 100.0%

200 0 percent accept 27.3% 48.7% 0.0% 24.0% 0.0% 100.0%
25 percent accept 19.7% 48.7% 4.3% 24.5% 2.8% 100.0%
50 percent accept 12.5% 48.7% 8.2% 25.1% 5.5% 100.0%
75 percent accept 6.1% 48.7% 11.5% 25.9% 7.8% 100.0%
100 percent accept 1.7% 48.7% 12.9% 27.0% 9.7% 100.0%

500 0 percent accept 24.0% 48.8% 0.0% 27.2% 0.0% 100.0%
25 percent accept 16.3% 48.8% 4.3% 27.6% 3.0% 100.0%
50 percent accept 9.5% 48.8% 7.9% 28.3% 5.5% 100.0%
75 percent accept 3.6% 48.8% 11.1% 29.1% 7.4% 100.0%
100 percent accept 0.2% 48.8% 12.1% 29.7% 9.2% 100.0%

Proposition 7 showed that the Benchmark Model may generate a larger number of transplants
than Model (a). The simulation results in Table 1 suggest that this is not the average case. Table
4 provides more details for the different population sizes. For population sizes 50, 100, 200 and
500, the Benchmark Model never generates more transplants than Model (a). For a population
size of 25, the Benchmark Model only generates more transplants than Model (a) in 0.3 percent
of the cases. In fact, in nearly 100 percent of all cases, Model (a) generates a strictly larger
number of transplants than the Benchmark Model. Hence, the theoretical finding in Proposition
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7 that fewer patients may receive transplants in Model (a) than in the Benchmark model appears
to mostly be a theoretical possibility and not something a planner needs to worry about.

Table 4: Frequency of cases in which fewer, equally many and more patients receive transplants in Model
(a) than in the Benchmark Model for different population sizes.

Patient-donor pool size 25 50 100 200 500

Fewer transplants in Model (a) than in the Benchmark Model 0.3% 0.0% 0.0% 0.0% 0.0%
Equally many transplants in Model (a) and the Benchmark Model 0.9% 0.0% 0.0% 0.0% 0.0%
More transplants in Model (a) than in the Benchmark Model 98.8% 100.0% 100.0% 100.0% 100.0%
Total 100.0% 100.0% 100.0% 100.0% 100.0%

Proposition 9 showed that if there is a transition from Model (a) to Model (b), then all patients
receiving transplants in the former model will still receive transplants in the latter. However,
Example 2 revealed that some patients that would have been matched to compatible donors in
Model (a) may only be matched to half-compatible donors in Model (b). For this reason, it is
important to investigate how many patients are made better off and how many patients are made
worse off by such a transition. Table 5 shows that, on average, between 1.2 and 2.4 percent
of the patients (depending on the population size) who were matched to compatible donors in
Model (a) were matched to half-compatible donors in Model (b). By comparison, an average of
between 6.4 and 9.7 percent of the patients (again, depending on the population size) who were
matched to half-compatible donors in Model (a) were matched to compatible donors in Model
(b). In this sense, a transition from Model (a) to Model (b) would improve the average “kidney
quality” for patients receiving transplants in Model (a). Another indication of this result can be
found in Table 1 where, for a population size of 50, an average of 27.1 percent of patients receive
kidneys over the blood group barrier in Model (a), whereas the corresponding number for Model
(b) is 23.0 percent.

Table 5: Shares of patients receiving transplants in Model (a) that are matched to better, equally compat-
ible and worse donors in Model (b) in terms of blood group compatibility.

Patient-donor pool size 25 50 100 200 500

Compatible donor in Model (a) and half-compatible donor in Model (b) 1.2% 1.6% 2.0% 2.2% 2.4%
Equally compatible donors in Models (a) and (b) 92.4% 90.8% 89.2% 88.4% 87.9%
Half-compatible donor in Model (a) and compatible donor in Model (b) 6.4% 7.6% 8.8% 9.5% 9.7%
Total 100.0% 100.0% 100.0% 100.0% 100.0%

So far, there has been no discussion of the patients who remain unmatched after a matching has
been selected. It is, for example, well-known that patients with blood group O are often pro-
portionally disadvantaged in kidney exchange programs (Roth et al., 2007; Sönmez and Ünver,
2013; Sönmez et al., 2018). The underlying reason for this is that there are typically more blood
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group O patients than there are blood group O donors in kidney exchange pools when transplants
over the blood group barrier are infeasible. A blood group O patient is less likely to be involved in
a kidney exchange than a patient with a different blood group since she can only receive kidneys
from blood group O donors (see Section 2 for a description of the ABO blood group classifica-
tion system). Hence, not only are blood group O patients expected to be over-represented in the
kidney exchange pool, the proportion of blood group O patients is also expected to increase after
the exchanges have been carried out.

Table 6: Ex ante and ex post distributions of blood groups in the patient-donor pool for various models
and population sizes. The mean number of patients is displayed inside parentheses.

Model n Distribution O A B AB Total

Benchmark Model 25 Ex Ante 59.5% (7.56) 24.2% (3.08) 14.5% (1.85) 1.8% (0.23) 100.0% (12.73)
Ex Post 69.0% (6.55) 18.9% (1.85) 11.2% (1.13) 0.9% (0.10) 100.0% (9.63)

Benchmark Model 50 Ex Ante 58.8% (15.12) 24.6% (6.33) 14.7% (3.78) 1.9% (0.49) 100.0% (25.75)
Ex Post 72.5% (12.41) 16.7% (2.86) 10.1% (1.73) 0.7% (0.12) 100.0% (17.12)

Benchmark Model 100 Ex Ante 58.5% (30.07) 25.0% (12.85) 14.6% (7.51) 1.9% (0.98) 100.0% (51.41)
Ex Post 76.9% (23.02) 14.3% (4.28) 8.2% (2.45) 0.6% (0.18) 100.0% (29.93)

Benchmark Model 200 Ex Ante 59.0% (60.53) 25.0% (25.65) 14.3% (14.67) 1.7% (1.74) 100.0% (102.59)
Ex Post 80.8% (44.04) 12.1% (6.60) 6.8% (3.71) 0.3% (0.16) 100.0% (54.51)

Benchmark Model 500 Ex Ante 59.2% (151.56) 24.7% (63.11) 14.3% (36.67) 1.8% (4.66) 100.0% (256.00)
Ex Post 86.3% (103.54) 8.5% (10.23) 5.1% (6.07) 0.1% (0.17) 100.0% (120.01)

Model (a) 25 Ex Ante 53.7% (4.07) 29.0% (2.20) 14.3% (1.08) 3.0% (0.23) 100.0% (7.58)
Ex Post 57.5% (2.36) 26.1% (1.07) 13.7% (0.56) 2.7% (0.11) 100.0% (4.10)

Model (a) 50 Ex Ante 52.4% (8.00) 30.1% (4.60) 14.4% (2.20) 3.1% (0.47) 100.0% (15.27)
Ex Post 59.1% (3.29) 26.0% (1.45) 12.4% (0.69) 2.5% (0.14) 100.0% (5.57)

Model (a) 100 Ex Ante 51.9% (15.77) 30.6% (9.30) 14.2% (4.32) 3.3% (1.00) 100.0% (30.39)
Ex Post 61.3% (4.00) 23.4% (1.53) 12.7% (0.83) 2.6% (0.17) 100.0% (6.53)

Model (a) 200 Ex Ante 52.4% (31.67) 30.4% (18.38) 14.3% (8.64) 2.9% (1.75) 100.0% (60.44)
Ex Post 67.1% (3.95) 20.0% (1.18) 11.2% (0.66) 1.7% (0.1) 100.0% (5.89)

Model (a) 500 Ex Ante 52.8% (80.02) 30.1% (45.56) 14.0% (21.21) 3.1% (4.66) 100.0% (151.45)
Ex Post 69.9% (1.43) 16.7% (0.34) 11.0% (0.22) 2.4% (0.05) 100.0% (2.04)

Model (b) 25 Ex Ante 59.5% (7.67) 24.2% (3.08) 14.5% (1.85) 1.8% (0.23) 100.0% (12.73)
Ex Post 61.1% (2.00) 24.0% (0.79) 12.6% (0.41) 2.3% (0.08) 100.0% (3.28)

Model (b) 50 Ex Ante 58.8% (15.12) 24.6% (6.33) 14.7% (3.78) 1.9% (0.49) 100.0% (25.72)
Ex Post 65.4% (2.63) 21.7% (0.87) 10.5% (0.42) 2.4% (0.10) 100.0% (4.02)

Model (b) 100 Ex Ante 58.5% (30.07) 25.0% (12.85) 14.6% (7.51) 1.9% (0.98) 100.0% (51.31)
Ex Post 69.0% (2.82) 19.5% (0.80) 9.2% (0.38) 2.3% (0.09) 100.0% (4.09)

Model (b) 200 Ex Ante 59.0% (60.53) 25.0% (25.65) 14.3% (14.67) 1.7% (1.74) 100.0% (102.59)
Ex Post 76.1% (2.58) 15.4% (0.52) 7.2% (0.24) 1.3% (0.04) 100.0% (3.38)

Model (b) 500 Ex Ante 59.2% (151.56) 24.7% (63.11) 14.3% (36.67) 1.8% (4.66) 100.0% (256.00)
Ex Post 85.7% (0.96) 9.1% (0.10) 5.0% (0.06) 0.2% (0.00) 100.0% (1.12)

Altruistic Model 25 Ex Ante 48.0% (12.00) 33.8% (8.45) 14.1% (3.52) 4.1% (1.03) 100.0% (25.00)
Ex Post 68.1% (3.16) 19.2% (0.89) 11.7% (0.54) 1.0% (0.05) 100.0% (4.64)

Altruistic Model 50 Ex Ante 48.0% (24.00) 33.9% (16.95) 14.1% (7.05) 4.0% (2.00) 100.0% (50.00)
Ex Post 70.5% (4.52) 17.3% (1.11) 11.5% (0.74) 0.7% (0.04) 100.0% (6.41)

Altruistic Model 100 Ex Ante 47.5% (47.50) 34.2% (34.20) 14.1% (14.10) 4.2% (4.20) 100.0% (100.00)
Ex Post 71.8% (5.90) 16.2% (1.33) 11.5% (0.94) 0.5% (0.04) 100.0% (8.21)

Altruistic Model 200 Ex Ante 47.8% (95.60) 34.3% (68.60) 13.9% (27.80) 4.0% (8.00) 100.0% (200.00)
Ex Post 72.4% (7.73) 16.2% (1.73) 11.1% (1.18) 0.3% (0.03) 100.0% (10.67)

Altruistic Model 500 Ex Ante 47.8% (239.19) 34.2% (170.84) 14.0% (70.00) 4.0% (19.97) 100.0% (500.00)
Ex Post 74.4% (11.16) 15.0% (2.24) 10.5% (1.57) 0.1% (0.02) 100.0% (14.99)
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Table 6 sheds some light on the impact that the introduction of transplantation over the blood
group barrier would have on this biological unbalance. In the table, the “Ex Ante” distribution
is the blood group distribution in the kidney exchange pool, whereas the “Ex Post” distribution
is the blood group distribution of the patients that remain in the pool after the matched patients
have been removed.

As in Roth et al. (2007) and Saidman et al. (2006), the simulations are based on a blood group
distribution where 48 percent, 34 percent, 14 percent and 4 percent of the patients have blood
group O, A, B and AB, respectively. The biological unbalance described above is confirmed
for the Benchmark Model where between 58.5 and 59.5 percent (depending on population size)
of patients included in the kidney exchange pool have blood group O. These numbers are even
higher in the ex post distribution and range between 69.0 and 86.3 percent. In fact, the pro-
portion of all blood groups except blood group O is lower in the ex post distribution than in
the ex ante distribution in the Benchmark Model. Hence, not only are blood group O patients
over-represented in the ex ante distribution, they are even more over-represented in the ex post
distribution. The ex ante blood group distribution in the Altruistic Model is expected to be close
to the assumed underlying blood group distribution since all patients are included in the ex ante
distribution, independently of whether they can receive kidneys from their own donors. However,
blood group O patients are still clearly disadvantaged in the ex post distribution in the Altruistic
Model as well. Again, this finding hinges on the fact that it is more difficult for blood group O
patients to find donors within the kidney exchange pool compared to patients with other blood
groups.

When the medical technology that enables transplantation over the blood group barrier is
introduced, blood group O patients become less disadvantaged than they were in the Benchmark
Model and the Altruistic model, although they are still disadvantaged. The ex post proportion
of blood group O patients in Models (a) and (b) for a population size of 50 is 59.1 and 65.4
percent, respectively. This can be compared to the corresponding numbers for the Benchmark
Model and the Altruistic Model, which are 72.5 and 70.5 percent, respectively. This means that
transplantation over the blood group barrier both increases the number of transplants and makes
blood group O patients less disadvantaged. This conclusion holds for almost all population
sizes. The only exception is for n = 200 and n = 500, in which the proportion of blood group
O patients in the ex post distribution is 76.1 and 85.7 percent, respectively, in Model (b) and
72.4 percent and 74.4 percent, respectively, in the Altruistic Model. However, note that Table
6 also reports the average (absolute) number of patients for each blood group (in parenthesis).
It can be seen that the higher percentages in Model (b) are a direct consequence of the fact that
only an average of 3.38 and 1.12 patients remain unmatched in Model (b) for n = 200 and
n = 500, respectively. That is, it hinges on the fact that the proportion of unmatched patients
with a specific blood group in the ex post distributions is defined relative to the proportion of
unmatched patients with other blood groups. Furthermore, a quick look at Table 6 may give the
impression that blood group O patients are less disadvantaged in Model (a) than in Model (b)
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since the proportion of blood group O patients in the ex post distribution in Model (a) is lower
than the corresponding proportion in Model (b) for all population sizes. However, Model (b)
generates significantly more transplants than Model (a) and the patients that remain unmatched
tend to be those that are the most difficult to find suitable donors for, e.g., blood group O patients.
By consulting the absolute values (in parenthesis) in Table 6, it is clear that the skewed ex post
distributions for Model (b) is a direct consequence of the fact that almost all patients receive
transplants. The average number of blood group O patients that remain unmatched is lower in
Model (b) than in all other models for all population sizes.

If a planner in a “small” program (e.g., the programs in Austria, Belgium, France, Poland,
Portugal and Sweden) is concerned about the outcome for blood group O patients in Models
(a) and (b), the edge weights in the maximum weight matching problem (previously defined in
Section 4.2) can be adjusted slightly, by adding a “sufficiently small” constant for blood group
O patients to increase their likelihood of receiving transplants.

5.3 On Manipulability

An important problem in all market design applications is whether or not agents can manipu-
late the outcome of the matching mechanism by misrepresenting their preferences over donors.
When only pairwise exchanges are allowed and patient preferences are dichotomous, as in, e.g.,
the Benchmark Model, it is well-known that it always is in the best interest of the patients to
truthfully report their preferences (Roth et al., 2005b). However, when expanding the preference
domain from the dichotomous to the trichotomous domain, as in, e.g., Model (a) and Model (b),
the positive findings relating to non-manipulability no longer hold. Specifically, if the planner
insists on always selecting maximum matchings that minimize the use of immunosuppressants
(such as half-compatibility priority matchings), it may be possible for patients to benefit by mis-
representing their preferences as illustrated in the following example.

Example 3. Suppose that N = {1, 2, 3, 4} and that each patient is incompatible with her own
donor. A possible pairwise exchange between the pairs (i, di) and (j, dj) is denoted by ij and
it is assumed that only the pairwise exchanges 12, 14, and 23 are feasible. Assume that pa-
tient 1 is compatible with donor d2 but only half-compatible with donor d4, i.e., that patient
1 strictly prefers a pairwise exchange with the pair (2, d2) over a pairwise exchange with the
pair (4, d4). Next, suppose that patient 2 and patient 3 are half-compatible with donor d3 and
donor d2, respectively. In this case, the unique maximum matching that minimizes the use of
immunosuppressants is described by the pairwise exchanges 14 and 23. However, patient 1 can
manipulate the outcome by declaring herself incompatible with donor d4. In this case, the unique
maximum matching that minimizes the use of immunosuppressants is described by the pairwise
exchange 12. �

The findings in Example 3 should come as no surprise as it is well-known that non-manipulability
is incompatible with individual rationality and Pareto efficiency (or maximality) on preference
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domains more general than the dichotomous (Sönmez, 1999).27 Note also that no priority func-
tion is needed to obtain the negative conclusion in Example 3., i.e., it is maximality in combina-
tion with minimal use of immunosuppressants that drives the result. Moreover, while Example
3 demonstrates that Model (b) can be manipulated, it is easy to construct an example showing
that Model (a) can be manipulated as well. In fact, as will be demonstrated below, it is “eas-
ier” for patients to manipulate Model (a) than Model (b). Before evaluating which patients that
can manipulate Models (a) and (b), we state a few general remarks regarding the above type of
manipulation in kidney exchange.

It is by no means obvious that patients are allowed to or even should be allowed to declare
themselves incompatible with specific donors. Such decisions are more likely to be made by
their immunologists and medical doctors based on observable and verifiable medical data. This
conclusion was recently stated by two of the researches that have pioneered kidney exchange
research:

“. . . manipulations of this sort [preference manipulation] do not play a significant
role, since compatibility information is usually obtained from observable and verifi-
able medical data.” (Sönmez and Ünver, 2014, p.114)

If preferences are solely based on medical information, the manipulation strategy adopted by
patient 1 in Example 3 will no longer work.28 However, even though the use of immunosuppres-
sants can increase the number of transplants, it may also introduce new opportunities for manip-
ulation. Whether or not a patient finds kidney transplants over the blood group barrier acceptable
is the patient’s private information (recall the discussion relating to Tables 2 and 3). Then, if
patients are allowed to object to the use of immunosuppressive treatments, they may use this
option to manipulate the matching mechanism. That is, even if a patient accepts half-compatible
donors, she may claim that she does not as part of a strategy to be matched to a more preferred
donor, exactly like patient 1 did in Example 3. A similar discussion can, for example, be found in
liver exchange frameworks (Ergin et al., 2018) where it is private information for living donors
whether or not they are willing to donate the right lobe of their livers. This kind of strategy may
then be adopted in an attempt to avoid donating the right lobe of the liver as the mortality rate
is 4–5 times higher for right lobe donors than for left lobe donors. As already argued in Section
2, no such medical risks are associated with kidney transplantation over the blood group barrier,
but whether or not patients consider these types of transplants to be acceptable is nevertheless
private information. Here, it should also be noted that this type of manipulation attempt is very
risky. If it is unsuccessful, the patient will not receive a transplant at all. In this sense, an attempt

27This conclusion has previously been reached in a kidney exchange framework by Nicoló and Rodríguez-Álvarez
(2012). For similar results in other matching frameworks, see, e.g., Alcalde and Barberà (1994), Roth (1982) or
Schummer (1999).

28Unless patients are assisted by their immunologists and/or medical doctors in manipulating the matching mech-
anism.
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to manipulate the outcome of the matching mechanism may ultimately come at the cost of the
patient’s own life.

Given the insight that patients may successfully manipulate matching mechanisms by declar-
ing half-compatible donors unacceptable, it is next investigated under what circumstances pa-
tients can gain by such manipulation strategies. Since Roth et al. (2005b) and Sönmez and Ünver
(2014) have already proved that the Benchmark Model and the Altruistic Model, respectively,
cannot be manipulated, the analysis is restricted to Model (a) and Model (b). To make the anal-
ysis tractable, it will be based on two assumptions, namely that (i) all medical information is
observable and can be verified, and that (ii) no patient i ∈ N can affect the priority function π
by declaring certain donors (such as half-compatible donors) unacceptable. The first assumption
can be justified by the arguments above. The second assumption is also standard in the literature,
where priorities are assumed to be exogenously given (see, e.g., Roth et al. (2005b) and Oku-
mura (2014)).29 The second assumption implies that patients cannot affect the edge weights in
the maximum weight matching problem described in Section 4.2. Patients can, however, remove
some edges from the graph by declaring half-compatible donors unacceptable. If some patient
i declares half-compatible donors unacceptable, all edges between patient i and patients whose
donors are half-compatible with i would be removed. Proposition 10 states that only patients
matched to half-compatible donors have the potential to manipulate Model (a) and Model (b) in
this way.

Proposition 10. Consider a problem (N,C, π) and a matching M selected in Model (b) (Model
(a)). Suppose that a patient i ∈ N is either unmatched or matched to a compatible donor at
M . Then, in Model (b) (Model (a)), patient i cannot benefit by declaring half-compatible donors
unacceptable.

Note that Proposition 10 provides a necessary, but not sufficient, condition for this type of ma-
nipulation. Any patients that could potentially manipulate the matching mechanism in this way
are either (a) incompatible with their own donors and receive half-compatible donors through
exchange or (b) matched to their own half-compatible donors. This means that a failed manipu-
lation attempt would always result in the patient not receiving any transplant.

A simulation study is conducted to evaluate how “difficult” it is for patients matched to
half-compatible donors to gain by strategic misrepresentation of preferences, i.e., to gain by
declaring half-compatible donors unacceptable. The simulation study is based on each of the
1, 000 × 5 = 5, 000 populations considered in Section 5.2. The following method is adopted

29If a patient can improve her priority by declaring certain donors unacceptable, it is easy to find problems in
which the priority mechanism in Roth et al. (2005b) can be manipulated (see Appendix A.2 for a formal description
of the priority mechanism). For instance, suppose that some unmatched patient i is compatible with some donor dj ,
but the patient matched to dj has higher priority than i when i reports truthfully. Clearly, if i could raise her priority
above j’s priority by declaring some donors (other than dj) unacceptable, the priority mechanism would match i to
donor dj , which she prefers to being unmatched.
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for each population. First, all patients matched to half-compatible donors are identified. The
proportion of these patients is stated in the column “Potential manipulation” in Table 7. For
example, for Model (a) and population size 50, this group represents, on average, 27.1 percent of
the patients (this can also be seen in Table 1 where 20.9 + 6.2 = 27.1 percent of the 50 patients
in the pool are matched to half-compatible donors on average). Second, each of these patients
will then, one by one, declare all half-compatible donors unacceptable. For each such unilateral
declaration, the maximum weight matching problem is solved for the modified graph and the
matching for the patient that declared all half-compatible donors unacceptable is compared to
the original matching.30 If the patient is matched to a compatible donor when declaring all
half-compatible donors unacceptable, the manipulation is said to be successful. Note also that
successful manipulation always comes at the cost of fewer transplants in total.

The mean success rate among the patients that could potentially manipulate the matching
mechanism is stated in the column “Success among potential” in Table 7. As can be seen in
the table, patients in Model (a) are on average more successful than patients in Model (b) and
the success rate increases monotonically with pool size. The success rates for the different pool
sizes are between 24.8 and 56.0 percent in Model (a), and between 8.3 and 39.9 percent in Model
(b). That it is more difficult to manipulate in Model (b) follows from the fact that patients with
half-compatible donors are always given the opportunity to be matched to a fully compatible
donor as they are always, by construction, included in the kidney exchange pool even when not
declaring half-compatible donors unacceptable. Patients with half-compatible donors in Model
(a), however, are never given this opportunity as they are always, by construction, matched to
their own half-compatible donors. That it is easier to manipulate in larger pools follows from
the fact that there are more transplantation opportunities (i.e., more edges in the graph) in larger
pools and patients are therefore more likely to receive transplants even if they remove edges from
the graph by declaring half-compatible donors unacceptable. The column “Success in pool” in
Table 7 reports the mean percentage of all patients in the pool that can successfully manipulate
the matching mechanism. Given the conclusions above, this number is also expected to be lower
in Model (b) compared to Model (a) but increasing in pool size. This is confirmed in Table 7
where it is shown that the success rate among all patients in the pool is between 6.2 percent and
15.9 percent in Model (a), but only between 1.9 percent and 8.5 percent in Model (b).

30For, e.g., Model (b) and pool size 500, this means that 106,500 additional maximum weight matching problems
had to be solved. This follows since, for each of the 1,000 populations, an average of 106.5 patients (i.e., 12.1+9.2 =

21.3 percent of 500 the patients in the pool) were matched to half-compatible donors.
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Table 7: Mean percentage of patients that can successfully manipulate Models (a) and (b).

n Model Potential manipulation Success among potential Success in pool

25 Model (a) 25.1% 24.8% 6.2%
Model (b) 22.2% 8.3% 1.9%

50 Model (a) 27.1% 30.2% 8.2%
Model (b) 23.0% 14.7% 3.4%

100 Model (a) 28.4% 37.2% 10.6%
Model (b) 22.9% 22.9% 5.2%

200 Model (a) 29.3% 44.3% 13.0%
Model (b) 22.6% 31.0% 7.0%

500 Model (a) 28.5% 56.0% 15.9%
Model (b) 21.3% 39.9% 8.5%

6 Conclusions

This paper has investigated pairwise kidney exchange programs using a medical technology for
transplanting kidneys over the blood group barrier. In particular, the focus has been on the set
of half-compatibility priority matchings and how the technology is best utilized. If a planner is
only interested in maximizing the number of transplants, minimizing the number of transplants
over the blood group barrier and, in addition, designing a program that is less biased against the
biologically disadvantaged blood group O patients, the theoretical results and the findings in the
simulation study suggest the following policy recommendations.

First, if the technology enabling transplantation over the blood group barrier not is allowed
within the existing kidney exchange framework, like in, e.g., Belgium, France, India, Italy, the
Netherlands, Poland and Portugal, and there is a change in the legal framework or in the attitude
towards immunosuppressants in the transplant community allowing for transplantation over the
blood group barrier within the exchange program, then any existing kidney exchange program
should be amended to make use of it. In the language of this paper, a transition to Model (b) is
recommended. This would generate a significantly larger number of transplants and, in addition,
help the biologically disadvantaged blood group O patients.

Second, if the technology enabling transplantation over the blood group barrier is allowed
but mainly used to obtain self-matches over the blood group barrier outside a kidney exchange
program as in, e.g., Austria, the Czech Republic, Spain, Sweden, Switzerland and the United
Kingdom, a transition to a system where patients with half-compatible donors are first added to
the exchange pool in search of a compatible donor is recommended. In the language of this paper,
a transition from Model (a) to Model (b) is recommended. This would generate more transplants
in total and reduce the proportion of patients receiving transplants over the blood group barrier.

The conclusions above are only valid if the social planner can accept that some patients may
be able to manipulate the outcome of the matching mechanism. More precisely, the introduction
of the technology enabling transplants over the blood group barrier naturally extends the pref-
erence domain from the dichotomous to the trichotomous domain and, therefore, also opens up
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for manipulation possibilities. However, fewer patients can manipulate Model (b) than Model
(a), so the former model performs better than the latter in this respect as well. Since less than 10
percent of all patients can successfully manipulate Model (b) even in very large exchange pools
(and they attempt to do so with their own lives at stake), the main take away message is that
if the social planner can accept that a small fraction of all patients may be able manipulate the
matching mechanism, then a transition to Model (b) is recommended independently of what the
current exchange framework is.

It should be noted that Model (a) is an exact description of the exchange program currently
used in Sweden. This program was initiated and designed by one of the authors of this paper
(Andersson) and will be expanded to also include Norway and Denmark in the spring of 2019
at the latest.31 Patients with half-compatible donors are not routinely asked to join the Swedish
exchange program, although there is a discussion within the transplant community about design-
ing a protocol for investigating their interest in participating. The findings in this paper strongly
support any such initiative.

The theoretical results and the simulation results presented in this paper are valid for kidney
exchange programs where only pairwise exchanges are allowed. Considering the findings in this
paper, it is important that future research investigates how transplantation over the blood group
barrier can be integrated into more sophisticated kidney exchange programs allowing for, e.g.,
non-simultaneous extended altruistic donor chains and larger cyclic exchanges. Such features
will with certainty lead to even more transplants. In general, new medical technology and more
potent immunosuppressants will most likely continue to affect kidney exchange programs in the
future, making more research in this direction important. Apart from the results presented in this
paper, future research may also build on, e.g., Chun et al. (2015), Nicoló and Rodríguez-Álvarez
(2017) and Sönmez et al. (2018).

A Priority Matchings and Matroids

This Appendix is divided in two parts. The first shows that pairwise kidney exchange problems
have a matroid structure, even in settings with immunosuppressants. The second demonstrates
that the set of priority matchings defined in this paper is equivalent to the set of priority match-
ings defined by Roth et al. (2005b). The graph theoretical definition of matchings will be adopted
throughout both Appendix A and Appendix B. That is, for any problem (N,C, π) with corre-
sponding compatibility graph g, a matching M ⊆ E(g) is defined as a set of edges in g that are
not incident to each other (see Section 4.2).

31For more details on the Swedish/Scandinavian program (STEP), see Andersson et al. (2018) and Biró et al.
(2018).
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A.1 Matroids

Many of the results in Section 4.1 relate to the structure of pairwise kidney exchange prob-
lems in particular. One important aspect of pairwise kidney exchange problems is that the set
of all patients N and a family I containing all sets of patients that can be matched simulta-
neously constitute a matroid (N, I). This was shown by Roth et al. (2005b) for settings with
a binary compatibility structure (no transplantation over the blood group barrier). Proposition
11 below states that the matroid result in Roth et al. (2005b) continues to hold in settings that
distinguish between compatibility and half-compatibility. This is not immediately obvious since
self-matches alter the structure of the sets of simultaneously matchable patients.

Definition 1. A pair (X, I) where X is a finite set (called the ground set) and I is a family of
subsets of X (called the independent sets) is a matroid if it has the following two properties.

• If I ∈ I and J ⊂ I , then J ∈ I (the hereditary property).

• If I, J ∈ I and |J | < |I|, then there exists some i ∈ I \ J such that J ∪ {i} ∈ I (the
augmentation property).

The matroid structure ensures that every maximal matching is a maximum matching. Before
stating the matroid result formally, note that if cyclic exchanges involving three or more patient-
donor pairs are feasible, the matroid result no longer holds, giving rise to a trade-off between
prioritizing patients and maximizing the number of transplants, see, e.g., Kratz (2018) or Sönmez
and Ünver (2014) for detailed discussions.

Proposition 11. Let I be the sets of simultaneously matchable patients, i.e., I := {I ⊆ N | I ⊆
N∗(M) for some M ∈M}. Then (N, I) is a matroid.

Proof. The hereditary property holds trivially. The rest of this proof will focus on elements in I,
each of which containing all patients matched at some matching. By the hereditary property, this
is without loss of generality. Let M and M ′ be two matchings such that |N∗(M)| < |N∗(M ′)|.
To reach a contradiction, suppose that the augmentation property does not hold. Then there exists
no patient i ∈ N∗(M ′) \ N∗(M) such that N∗(M) ∪ {i} ∈ I. By the hereditary property, this
can only be true if N∗(M) \N∗(M ′) 6= ∅. This conclusion together with |N∗(M)| < |N∗(M ′)|
implies that |N∗(M) \N∗(M ′)| < |N∗(M ′) \N∗(M)|. Hence, N∗(M ′) \N∗(M) 6= ∅.

Now consider an arbitrary patient i ∈ N∗(M ′) \ N∗(M). First note that it must be the case
that ij ∈ M ′ for some j ∈ N∗(M). To see why, note that if both i, j ∈ N∗(M ′) \ N∗(M),
then M ∪ {ij} ∈ M. Furthermore, if ii ∈ M ′, then M ∪ {ii} ∈ M. Both cases contradict the
non-existence of some i ∈ N∗(M ′) \N∗(M) such that N∗(M) ∪ {i} ∈ I.

Next, note that it it must be the case that jk ∈ M for some k ∈ N∗(M) \ {j}. Otherwise,
jj ∈M and (M \ {jj}) ∪ {ij} ∈ M, which again is a contradiction.
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Finally, note that it can not be the case that kl ∈ M ′ for some l ∈ N∗(M ′) \ N∗(M),
because then (M \ {jk}) ∪ {ij, kl} ∈ M, which again contradicts the non-existence of some
i ∈ N∗(M ′) \ N∗(M) such that N∗(M) ∪ {i} ∈ I. Hence, (a) k ∈ N∗(M) \ N∗(M ′), or
(b) kl ∈ M ′ for some l ∈ N∗(M). In case (b), both ll ∈ M and ll′ ∈ M ′ for some l′ ∈
N∗(M ′) \ N∗(M) result in the same contradiction. This “chain” continues until reaching some
patient j′ ∈ N∗(M) \N∗(M ′).

Thus, both in case (a) and case (b), there exists exactly one “corresponding” patient in
N∗(M) \N∗(M ′) for every patient i ∈ N∗(M ′) \N∗(M). This contradicts the assumption that
|N∗(M)| < |N∗(M ′)|. Hence, the augmentation property holds and (N, I) is a matroid.

Henceforth, for any problem (N,C, π), I will always denote the sets of simultaneously match-
able patients, i.e., I := {I ⊆ N | I ⊆ N∗(M) for some M ∈M}.

A.2 Priority Matchings

This section finds an equivalence between the set of priority matchings defined in this paper and
the set of priority matchings defined by Roth et al. (2005b). To achieve this, Proposition 11 is
used to derive a number of new lemmas. These lemmas will not only prove to be important in
showing the equivalence mentioned above, they will also be useful in proving some of the results
in Appendix B.

Let Γ : N → {1, . . . , n} be a permutation of N such that Γ(i) = j if i is the patient with
the jth highest priority. That is, Γ−1(1) is the top priority patient and Γ−1(n) is the patient with
lowest priority. Roth et al. (2005b) define priority matchings in terms of the following priority
mechanism:

• Let E0 =M.

• For k ∈ {1, . . . , n}, let Ek ⊆ Ek−1 be defined by

Ek =

{
{M ∈ Ek−1 | Γ−1(k) ∈ N∗(M)} if non-empty,

Ek−1 otherwise.

The set En is the set of priority matchings in Roth et al. (2005b). Note that En is defined without
reference to any preferences. To avoid confusion between the two definitions of priority match-
ings before they have been shown to be equivalent, En will be used whenever discussing priority
matchings as defined by Roth et al. (2005b).

A first observation is that all priority matchings are maximal matchings by construction. One
implication of Proposition 11 is then that all priority matchings are also maximum matchings.

Lemma 2. For a given problem (N,C, π), each priority matching is a maximum matching.
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Proof. Consider any priority matchingM ∈ En. M is maximal by construction. Suppose thatM
is not a maximum matching. Then there exists some M ′ ∈ M such that |N∗(M)| < |N∗(M ′)|.
Note that N∗(M), N∗(M ′) ∈ I by definition of I. Since (N, I) is a matroid, by Proposition
11, there exists some i ∈ N∗(M ′) \ N∗(M) such that N∗(M) ∪ {i} ∈ I by the augmentation
property. Consequently, there is some matching M ′′ ∈ M such that N∗(M) ∪ {i} ⊆ N∗(M ′′).
Hence, M is not a maximal matching. This contradicts the assumption that M ∈ En, since all
priority matchings are maximal.

Priority preference relations were defined informally in Section 3. Formally, a preference relation
%π is called a priority preference relation if it is complete, transitive and satisfies the following
conditions:

M �π M ′ if

{
N∗(M ′) ⊂ N∗(M),

N∗(M) \N∗(M ′) = {i}, N∗(M ′) \N∗(M) = {j} and π(i) > π(j),

M ∼π M ′ if N∗(M) = N∗(M ′).

The proof of the result that any priority matching is preferred to any other matching by any
priority preference relation (Lemma 3) is included alongside the proof of the converse statement
(Lemma 5) for completeness. Lemmas 3 and 5 imply that the set of priority matchings as defined
in this paper is identical to the set of priority matchings as defined by Roth et al. (2005b), i.e.,
thatM∗ = En.

Lemma 3. (Roth et al., 2005b). For any priority preference relation %π and any M ∈ En,
M %π M ′ for all M ′ ∈M.

Proof. Consider some priority preference relation %π and some M ∈ En. To reach a contradic-
tion, suppose that there exists some M ′ ∈ M such that M ′ �π M . Note that matchings in En
are maximal by construction. Furthermore, since (N, I) is a matroid by Proposition 11, every
maximal matching is a maximum matching by the augmentation property. Since M ′ �π M , it
must be the case that N∗(M) 6= N∗(M ′) since if N∗(M) = N∗(M ′), then M ∼π M ′ by the
definition of %π.32

Let N∗(M)4N∗(M ′) be the symmetric difference between N∗(M) and N∗(M ′), i.e., the
set of patients that are matched at M or M ′ but not both. In the case that M ′ is not a maximum
matching, there exists some maximum matching M1 ∈ M such that N∗(M ′) ⊂ N∗(M1) by
the augmentation property. Then M1 �π M by transitivity, since M1 �π M ′ �π M . Let M1

denote some maximum matching such that M1 �π M . Note that N∗(M)4N∗(M1) contains the
same number of patients from N∗(M) and N∗(M1) and that its cardinality is at least 2, since
N∗(M) 6= N∗(M1) by M1 �π M .

32It should be noted that this requirement on priority preferences is only imposed implicitly in Roth et al. (2005b),
but is nevertheless necessary for Lemma 3 to hold.
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First, suppose that |N∗(M)4N∗(M1)| = 2. Then N∗(M1) \ N∗(M) = {j} and N∗(M) \
N∗(M1) = {j′} for some j, j′ ∈ N . Since M1 �π M , it must be the case that π(j) > π(j′)

by the definition of priority preferences. Let Γ(j) = t. It then follows from M ∈ En that
M ∈ Et−1. Furthermore, since N∗(M)4N∗(M1) contains only j and j′ and since Γ(j′) > t

by π(j) > π(j′), it follows that i ∈ N∗(M1) for all i ∈ N∗(M) such that Γ(i) < t. Hence,
M1 ∈ Et−1 as well. Due to the fact that Γ−1(t) = j, M1 ∈ Et−1 and j ∈ N∗(M1) \ N∗(M), it
follows from the definition of Et that M /∈ Et. Since En ⊆ Et, this contradicts M ∈ En. Thus,
|N∗(M)4N∗(M1)| > 2.

Let j be the patient with the highest priority in N∗(M)4N∗(M1). Such patient must exist
since each patient have a unique priority and |N∗(M)4N∗(M1)| > 2. By definition of the set
N∗(M)4N∗(M1), it must be the case that j ∈ N∗(M1) or j ∈ N∗(M). To reach the desired
contradiction, it will be demonstrated that (a) j /∈ N∗(M1) and (b) j /∈ N∗(M).

(a) Suppose that j ∈ N∗(M1). Let A = N∗(M) ∩ N∗(M1) be the set of patients matched
at both M and M1. Since A ∪ {j} ⊂ N∗(M1) and N∗(M1) ∈ I, A ∪ {j} ∈ I by the
hereditary property. Furthermore, because |A∪{j}| < |N∗(M)|, there exists some patient
j′ ∈ N∗(M) \ (A ∪ {j}) such that A ∪ {j, j′} ∈ I by the augmentation property. Patients
can continue to be added in this way until the union between A and the added patients has
the same cardinality as N∗(M). That is, there exists some A′ ⊂ N∗(M) \ (A ∪ {j}) such
that A ∪ A′ ∪ {j} ∈ I and |A ∪ A′ ∪ {j}| = |N∗(M)|. Since A ∪ A′ ∪ {j} ∈ I, there
exists some M2 ∈ M such that A ∪ A′ ∪ {j} ⊆ N∗(M2) by the definition of I. Since M
is a maximum matching, A ∪ A′ ∪ {j} = N∗(M2). Note that N∗(M2) \ N∗(M) = {j}
and N∗(M) \N∗(M2) = {j′′} for some j′′ ∈ N∗(M)4N∗(M1). Since M2 is a maximum
matching such that M2 �π M (as π(j) > π(j′′)) and |N∗(M)4N∗(M2)| = 2, this is
identical to the case discussed above and, consequently, results in the same contradiction.
Thus, j /∈ N∗(M1).

(b) Suppose that j ∈ N∗(M). As before, let A = N∗(M) ∩ N∗(M1) and note that A ∪
{j} ∈ I. By the same logic as in case (a), there exists some A′ ⊂ N∗(M1) \ N∗(M)

such that A ∪ A′ ∪ {j} ∈ I by (possibly repeated application of) the augmentation
property. Moreover, there exists some M2 ∈ M such that N∗(M2) = A ∪ A′ ∪ {j}.
Since π(j) > π(i) for the unique patient i ∈ N∗(M1) \ (A ∪ A′ ∪ {j}), it follows
that M2 �π M1. Note that |N∗(M)4N∗(M2)| = |N∗(M)4N∗(M1)| − 2, since j is
matched at M and M2 but not at M1 and, furthermore, since i is matched at M1 but not
at M or M2. Now, |N∗(M)4N∗(M1)| > 2 and |N∗(M)4N∗(M2)| > 0 imply that
N∗(M) 6= N∗(M2). Suppose that the highest priority patient j′ in |N∗(M)4N∗(M2)|
(which does not contain j) belongs to N∗(M). Then a matching M3 ∈ M contain-
ing j′ can be constructed in the same way as above such that M3 �π M2 �π M1 and
|N∗(M)4N∗(M3)| = |N∗(M)4N∗(M3)| − 2. This process can continue until some Mt

(possibly identical to M3) is found such that either |N∗(M)4N∗(Mt)| = 0 or the highest
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priority patient in N∗(M)4N∗(Mt) belongs to N∗(Mt). If |N∗(M)4N∗(Mt)| = 0, then
N∗(M) = N∗(Mt), implying that M ∼π Mt. Since M ∼π Mt �π · · · �π M1, it follows
that M �π M1 by transitivity. This contradicts M1 �π M . The process can thus continue
until some Mt ∈ M is found such that |N∗(M)4N∗(Mt)| > 0 and the patient with high-
est priority in N∗(M)4N∗(Mt) belongs to N∗(Mt). Then, either |N∗(M)4N∗(Mt)| = 2

or |N∗(M)4N∗(Mt)| > 2. Since Mt is a maximum matching such that Mt �π M and the
highest priority patient in N∗(M)4N∗(Mt) belongs to N∗(Mt), both cases have already
been shown to result in contradictions. Hence, j /∈ N∗(M).

As explained above, cases (a) and (b) provide the desired contradiction. Consequently, there
exists no M ′ ∈M and no priority preference relation %π such that M ′ �π M .

Lemma 4. Consider any priority preference relation %π and any matching M ∈ M such that
M %π M ′ for all M ′ ∈M. Then N∗(M) = N∗(M ′) for any M ′ ∈ En.

Proof. Consider some priority preference relation %π and some M1 ∈ M such that M1 %π
M ′ for all M ′ ∈ M. First note that En 6= ∅ as M 6= ∅. Since %π is a priority preference
relation, Lemma 3 implies that M %π M ′ for all M ∈ En and all M ′ ∈ M. This implies that
M1 ∼π M ′ for all M ′ ∈ En. This, in turn, requires that |N∗(M1)| = |N∗(M ′)| for all M ′ ∈
En. To see why, first note that since priority matchings are maximal by construction and since
(N, I) is a matroid by Proposition 11, every priority matching is a maximum matching by the
augmentation property. Hence, |N∗(M1)| ≤ |N∗(M ′)| for allM ′ ∈ En. To reach a contradiction,
suppose that |N∗(M1)| < |N∗(M)| for some M ∈ En. Since N∗(M1), N∗(M) ∈ I and since
(N, I) is a matroid by Proposition 11, there exists some patient i ∈ N∗(M) \N∗(M1) such that
N∗(M1) ∪ {i} ∈ I by the augmentation property. Thus, there exists a feasible matching M2

such that N∗(M1) ∪ {i} ⊆ N∗(M2). Then, M2 �π M1 since N∗(M1) ⊂ N∗(M2). Therefore,
M2 �π M1 ∼π M which implies that M2 �π M by transitivity. This contradicts M ∈ En, since
M %π M ′ for all M ′ ∈ M (including M2) by Lemma 3. Hence, |N∗(M1)| = |N∗(M ′)| for all
M ′ ∈ En.

Next, it will be shown that N∗(M1) = N∗(M ′) for all M ′ ∈ En. Assume that N∗(M1) 6=
N∗(M) for some M ∈ En to reach a contradiction. Note that |N∗(M1)| = |N∗(M)| implies that
|N∗(M1) \ N∗(M)| = |N∗(M) \ N∗(M1)|. As before, let N∗(M1)4N∗(M) be the symmetric
difference between N∗(M1) and N∗(M). That is, the set of patients matched at either M1 or
M , but not both. Again, note that the symmetric difference always contains the same number of
patients from N∗(M1) and N∗(M) and that its cardinality is at least 2, since N∗(M1) 6= N∗(M)

by assumption.
First, suppose that |N∗(M1)4N∗(M)| = 2. Then there exist j, j′ ∈ N such that N∗(M1) \

N∗(M) = {j} and N∗(M) \ N∗(M1) = {j′}. Since %π is a priority preference relation,
M1 �π M if π(j) > π(j′), and M �π M1 if π(j′) > π(j). Both cases contradict M1 ∼π M .
Hence, |N∗(M1)4N∗(M)| > 2.
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Let j be the patient in N∗(M1)4N∗(M) with highest priority. Without loss of generality,
suppose that j ∈ N∗(M1). Let A = N∗(M1) ∩ N∗(M) be the (possibly empty) set of patients
matched at both M1 and M . Since A ∪ {j} ⊂ N∗(M1) and N∗(M1) ∈ I, A ∪ {j} ∈ I by the
hereditary property. As |N∗(M1)4N∗(M)| > 2, it follows that |A ∪ {j}| < |N∗(M)|. Hence,
there exists some j′ ∈ N∗(M)\(A∪{j}) such thatA∪{j, j′} ∈ I by the augmentation property.
Patients can continue to be added like this until the union between A and the added patients has
the same cardinality as N∗(M). That is, there exists some A′ ⊂ N∗(M) \ (A ∪ {j}) such that
A ∪ A′ ∪ {j} ∈ I and |A ∪ A′ ∪ {j}| = |N∗(M)|. Since A ∪ A′ ∪ {j} ∈ I, there exists some
M2 ∈ M such that A ∪ A′ ∪ {j} ⊆ N∗(M2). Furthermore, since |A ∪ A′ ∪ {j}| = |N∗(M)|
and M is a maximum matching by M ∈ En, it follows that A ∪ A′ ∪ {j} = N∗(M2). Note that
N∗(M)\(A∪A′) = {j′} for some j′ ∈ N∗(M) andN∗(M2)\(A∪A′) = {j}. Then, sinceA∪A′
is a subset of bothN∗(M2) andN∗(M), N∗(M2)\N∗(M) = {j} andN∗(M)\N∗(M2) = {j′}.
As j′ ∈ N∗(M1)4N∗(M) and j is the patient in N∗(M1)4N∗(M) with the highest priority, it
follows that π(j) > π(j′). Hence, M2 �π M . This violates the assumption that M %π M ′ for
all M ′ ∈ M. Thus, N∗(M1) = N∗(M). Since M is an arbitrary priority matching, N∗(M1) =

N∗(M) for any M ∈ En.

Lemma 5. For any priority preference relation %π and any M ∈ M, if M %π M ′ for all
M ′ ∈M, then M ∈ En.

Proof. Consider some M ∈M such that M %π M ′ for all M ′ ∈M. If M ′ ∈ En and N∗(M) =

N∗(M ′), then M ∈ En by the definition of En. To see this, note that whether or not a matching
M ∈ M belongs to En is exclusively determined by the patients matched at M , i.e., the patients
in N∗(M). By Lemma 4, N∗(M) = N∗(M ′) for all M ′ ∈ En. Hence, M ∈ En.

B Proofs of the Theoretical Results

This Appendix contains the proofs of all theoretical results except Proposition 11 and Proposition
7. The proof of Proposition 11 is found in Appendix A.1 and the proof of Proposition 7 is found
in Section 5.1. Many proofs make use of results from other lemmas and propositions. For this
reason, the proofs are not necessarily presented in the same order as their corresponding results
in the main text. To make it easier for the reader to find the proofs, this Appendix is divided into
four parts that are named after the specific sections where the results are presented in the main
text. As in Appendix A, the graph theoretical definition of matchings will be adopted in this
Appendix as well (see Section 4.2).

B.1 Proofs of the Results in Section 4.1

Proposition 2. For a given problem (N,C, π), every half-compatibility priority matching is a
priority matching.

41



Proof. Consider some priority matching M ∈ M∗. Then M %π M ′ for all M ′ ∈ M and all
priority preference relations %π by Lemma 3. Note that if M �π M ′ for some M ′ ∈ M and
all priority preferences %π, then M �B M ′ for all half-compatibility priority preferences %B.
To see this, first note that if M is preferred to M ′ by all priority preference relations, then this
preference does not depend on the choice of priority preference relation. Thus, the preference is
induced by the properties of priority preferences, i.e., the restrictions imposed on priority prefer-
ence relations. Note that the same restrictions are imposed on both priority preference relations
and half-compatibility priority preference relations when considering matchings M,M ′ ∈ M
for which N∗(M) 6= N∗(M ′). Since M 6∼π M ′, it follows that N∗(M) 6= N∗(M ′). The restric-
tions imposed on half-compatibility priority preference relations will therefore induce the same
preferences over M and M ′. Then, because M �π M ′ for all M ∈ M∗, all M ′ ∈ M \M∗ and
all priority preference relations%π, it follows thatM �B M ′ for allM ∈M∗, allM ′ ∈M\M∗

and all half-compatibility priority preference relations %B. That is, half-compatibility priority
preference relations prefer all priority matchings to all non-priority matchings. Consequently,
MB ⊆M∗, i.e., every half-compatibility priority matching is a priority matching.

Proposition 3. For a given problem (N,C, π), every half-compatibility priority matching is a
Pareto efficient maximum matching.

Proof. Consider anyM ∈MB. It follows immediately from Lemma 2 and Proposition 2 thatM
is a maximum matching. Suppose that M is not Pareto efficient to reach a contradiction. Then
there exists some M ′ ∈ M that Pareto dominates M . First, suppose that N∗(M) 6= N∗(M ′).
Note that N∗(M) 6⊂ N∗(M ′) since M is a maximum matching. Hence, there exists some i ∈
N∗(M) \ N∗(M ′), which implies that M �i M ′. This contradicts the assumption that M ′

Pareto dominates M . It must therefore be the case that N∗(M) = N∗(M ′). Furthermore, since
N∗(M) = N∗(M ′) and since M ′ Pareto dominates M , it must be the case that B(M ′) > B(M).
To see this, note that each patient must weakly prefer the kidney she receives at M ′ to the kidney
she receives at M with strict preference for some patients. Since M ∈ MB, it follows by the
construction of MB that B(M) ≥ B(M ′). This contradicts B(M ′) > B(M). Hence, every
half-compatibility priority matching is a Pareto efficient maximum matching.

Proposition 4. For a given problem (N,C, π), N∗(M) = N∗(M ′) for all M,M ′ ∈M∗.

Proof. The proof follows directly from Lemma 4 and the fact that the set of priority matchings
defined in this paper is equivalent to the set of priority matchings defined by Roth et al. (2005b).

Proposition 1. For a given problem (N,C, π), all half-compatibility priority preference relations
induce the same set of half-compatibility priority matchings.
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Proof. Consider any half-compatibility priority preference relation%B. Note that for anyM,M ′ ∈
M, either B(M) > B(M ′), B(M) < B(M ′) or B(M) = B(M ′). Since N∗(M) = N∗(M ′)

for all M,M ′ ∈ M∗, by Proposition 4, all half-compatibility priority preference relations will
rank all priority matchings in the same way. That is, for any M,M ′ ∈ M∗, M %B M ′ for
some half-compatibility priority preference relation %B if and only if M %′B M ′ for all half-
compatibility priority preference relations %′B. By Proposition 2, MB ⊆ M∗. This implies
that N∗(M) = N∗(M ′) for all M,M ′ ∈ MB as well. Hence all half-compatibility priority
preferences induce the same set of half-compatibility priority matchings.

B.2 Proof of Proposition 5

The proof of Proposition 5 is divided into two main parts. In the first part (Lemmas 7–10), a
specific problem, denoted by (N, Ĉ, πM), plays an important role. More specifically, a num-
ber of equivalences are derived between an arbitrary problem (N,C, π) and a specific problem
(N, Ĉ, πM), which has a simple corresponding compatibility graph ĝ. For any problem (N,C, π),
the corresponding compatibility graph g is a simple graph whenever it contains no loops, i.e.,
whenever NH = ∅. While Lemma 1 is only applicable in problems with corresponding compat-
ibility graphs that are simple graphs, this is not a sufficient requirement. It also requires that no
transplantation over the blood group barrier be possible, i.e., that the compatibility structure is bi-
nary in the sense that any patient i and donor dj are either incompatible or compatible. The main
idea in the second part of the proof (Lemma 11 to the end of Appendix B.2) is therefore to use
the findings from the first part of the proof to demonstrate that an arbitrary problem (N,C, π) can
be translated into an equivalent specific problem (N, Č, π) with a corresponding simple graph,
where Č is a compatibility structure at which no patients are half-compatible with any donors.
Once this has been established, the proof of Proposition 5 follows from Lemma 1 and the find-
ings in this Appendix. Note that this section (Appendix B.2) involves multiple compatibility
structures (e.g., C, Ĉ, Č), each of which may induce a different set of matchingsM. For this
reason, the notationM(C) will be used throughout the section to denote the set of all matchings
for a given compatibility structure C. The setsM∗(C) andMB(C) are defined analogously.

Before introducing the problem (N, Ĉ, πM), it is first proved that all patients in NH are
matched at any maximal matching and, by extension, at any maximum weight matching or pri-
ority matching.

Lemma 6. Consider a problem (N,C, π) with corresponding compatibility graph g, where
NH 6= ∅. Then each patient in NH is matched at each maximal matching.

Proof. By construction, ii ∈ E(g) for all i ∈ NH . To obtain a contradiction, suppose that
there exists some patient i ∈ NH who is unmatched at some maximal matching M . Then
M ′ := M ∪ {ii} ∈ M(C) since i ∈ NH . This contradicts the assumption that M is a maximal
matching. Hence, each patient in NH is matched at each maximal matching.
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Consider a problem (N,C, π) with corresponding compatibility graph g and let M ∈M(C). As
mentioned above, the construction of the problem (N, Ĉ, πM) is key in the first part of the proof
of Proposition 5. For any compatibility structure C ′, let NH(C ′) denote the set of patients that
are half-compatible with their own donors at C ′ and define NI(C

′) analogously, i.e., NI(C
′) =

N \NH(C ′). The priority function πM is defined by:

πM(i) = π(i) for all i ∈ NI(C), (4)∑
i∈NH(C)

πM(i) < min{πM(j) | j ∈ NI(C)}, (5)∑
i∈ΦM

πM(i) < min{πM(j) | j ∈ NH(C) \ ΦM}, (6)

where ΦM is the set containing each patient in NH(C) not matched to any patient in NI(C) at
matchingM . Moreover, the compatibility structure Ĉ is defined by the following two conditions:

• For any i, j ∈ NH(C), i and j are incompatible at Ĉ. This includes the cases when i = j.

• Consider two patients i, j ∈ N such that i /∈ NH(C) or j /∈ NH(C). Then i and j are
compatible (half-compatible) at Ĉ if and only if they are compatible (half-compatible) at
C.

Note that the first condition removes all the loops at patients in NH . Consequently, the
resulting compatibility graph ĝ is a simple graph. Furthermore, for each matching inM(Ĉ), a
patient in NH(C) is either unmatched or matched to a patient in NI(C). Let L(g) := {ij ∈
E(g) | i, j ∈ NH(C)} be the set of edges between patients in NH(C), including all loops. Then
E(ĝ) and L(g) constitute a partitioning of E(g), i.e., E(g) = E(ĝ)∪L(g) and E(ĝ)∩L(g) = ∅.
A final observation is that if NH(C) = ∅, then C = Ĉ and π = πM . In that case, the proofs
of Lemmas 7–10, below, follow immediately. Hence, in the proofs of these four lemmas, it is
assumed that NH(C) 6= ∅. Let w(π) be defined by wii(π) = π(i) for all i ∈ N and wij(π) =

π(i) + π(j) for all i, j ∈ N such that i 6= j.

Lemma 7. Consider two problems (N,C, π) and (N,C, πM) with corresponding compatibility
graph g and let M ∈M(C). Then M is a maximum weight matching in (g, w(π)) if and only if
M is a maximum weight matching in (g, w(πM)).

Proof. Consider some patient i ∈ NH(C) such that M is a maximum weight matching in
(g, w(π)). By definition,M is a maximum weight matching in (g, w(π)) whenever S(M,w(π))−
S(M ′, w(π)) ≥ 0 for all M ′ ∈ M(C). Since each maximum weight matching is a maximal
matching, patient i is matched at M by Lemma 6. Consider an arbitrary matching M ′ where,
without loss of generality, patient i is matched. Then the term π(i) is found in both the sum
S(M,w(π)) and the sum S(M ′, w(π)). Thus, π(i) cancels out in the difference S(M,w(π)) −
S(M ′, w(π)). Consequently, S(M,w(π))−S(M ′, w(π)) ≥ 0 for allM ′ ∈M(C) and all values
of π(i). That is, M is a maximum weight matching in (g, w(π)) for all values of π(i). Since this

44



argument can be repeated for all i ∈ NH and since π(j) = πM(j) for all j ∈ NI , it follows that
M is a maximum weight matching in (g, w(πM)) as well. The same argument can be used in
reverse to show that if M is a maximum weight matching in (g, w(πM)), then it is a maximum
weight matching in (g, w(π)).

Lemma 8. Consider two problems (N,C, π) and (N,C, πM) with corresponding compatibility
graph g and let M ∈ M(C). Then M is a priority matching at (N,C, π) if and only if it is a
priority matching at (N,C, πM).

Proof. Since almost identical arguments can be used in both directions of the proof, it is only
shown that if M is a priority matching at (N,C, π), then it is a priority matching at (N,C, πM).
To reach a contradiction, suppose thatM is a priority matching at (N,C, π) but not at (N,C, πM).
As M is a priority matching at (N,C, π), it is a maximum matching by Proposition 3. Further-
more, since the priority function does not impact whether a matching is a maximum matching,M
is a maximum matching at (N,C, πM) as well. Then there exists some pair of patients i, j ∈ N
and some maximum matching M ′ such that N∗(M) \N∗(M ′) = {i}, N∗(M ′) \N∗(M) = {j}
and πM(j) > πM(i). First, suppose that i ∈ NH . This means that i can feasibly be self-matched.
Hence, M ′ ∪ {ii} ∈ M(C). N∗(M) ⊂ N∗(M ′ ∪ {ii}) contradicts the observation that M is
a maximum matching. Hence, i ∈ NI . Since πM(j) > πM(i), condition (5) in the definition
of πM implies that j ∈ NI as well. As πM(i) = π(i) and πM(j) = π(j), this contradicts the
assumption that M is a priority matching at (N,C, π). Consequently, if M is a priority matching
at (N,C, π), then it is a priority matching at (N,C, πM).

Now recall that L(g) := {ij ∈ E(g) | i, j ∈ NH(C)} is defined to be the set of edges between
patients in NH(C), including all loops.

Lemma 9. Consider two problems (N,C, πM) and (N, Ĉ, πM) with corresponding compatibility
graphs g and ĝ, respectively. Let M ∈M(C) be a maximal matching. Then M is is a maximum
weight matching in (g, w(πM)) if and only if M ′ := M \ L(g) is a maximum weight matching
in (ĝ, w(πM)).

Proof. It will first be shown that M is a maximum weight matching in (g, w(πM)) only if
M ′ := M \ L(g) is a maximum weight matching in (ĝ, w(πM)). Suppose that M is a maximum
weight matching in (g, w(πM)). Since M ⊆ E(g) and E(g) \ L(g) = E(ĝ), by construction, it
follows that M ′ ∈ M(Ĉ). As L(g) only contains edges between patients in NH(C), it is clear
that N∗(M) ∩ NI(C) = N∗(M ′) ∩ NI(C). Now, to reach a contradiction, suppose that M ′ is
not a maximum weight matching in (ĝ, w(πM)). By definition of πM , it must be the case that
πM(j) >

∑
i∈NH(C) πM(i) for any j ∈ NI(C). Consequently, any maximum weight matching at

(N,C, πM) or (N, Ĉ, πM) must match all patients in N∗(M) ∩ NI(C) since M is a maximum
weight matching at (N,C, πM) and all patients in N(M)∩NI(C) are simultaneously matchable
at (N, Ĉ, πM) by N∗(M) ∩NI(C) = N∗(M ′) ∩NI(C) and M ′ ∈M(Ĉ).
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If M ′ is not a maximum weight matching at (N, Ĉ, πM), then there must exist some max-
imum matching M̂ ∈ M(Ĉ) such that N∗(M) ∩ NI(C) = N∗(M̂) ∩ NI(C) and some i ∈
(N∗(M ′) ∩ NH(C)) \ N∗(M̂) such that π(i) <

∑
j∈(N∗(M̂)∩NH(C))\N∗(M ′) π(j). Next, note that

i ∈ NH(C)\ΦM for all i ∈ (N∗(M ′)∩NH(C))\N∗(M̂), since all patients in ΦM are unmatched
at M ′ by construction. Moreover, every patient in NH(C) matched to a patient in NI(C) at M
is still matched to the same patient at M ′ and every patient in NH(C) that is matched at M ′ or
M̂ is matched to some patient in NI(C) since ĝ contains no loops or edges between patients in
NH(C). Thus, j ∈ ΦM for all j ∈ (N∗(M̂) ∩ NH(C)) \ N∗(M ′). This contradicts condition
(6). Hence, M is a maximum weight matching in (g, w(πM)) only if M ′ is a maximum weight
matching in (ĝ, w(πM)).

It is next proved that M is a maximum weight matching in (g, w(πM)) if M ′ is a maximum
weight matching in (ĝ, w(πM)). Suppose that M ′ is a maximum weight matching in (ĝ, w(πM)).
Then condition (5) implies that there exists no M̂ ∈ M(Ĉ) such that

∑
i∈N∗(M̂)∩NI(C) π(i) >∑

i∈N∗(M ′)∩NI(C) π(i). Recall that N∗(M) ∩ NI(C) = N∗(M ′) ∩ NI(C). These two findings
together with the observation that L(g) only contains loops and edges between patients inNH(C)

imply that there exists no M̃ ∈ M(C) such that
∑

i∈N∗(M̃)∩NI(C) π(i) >
∑

i∈N∗(M)∩NI(C) π(i).
To reach a contradiction, suppose that M is not a maximum weight matching in (g, w(πM)).
Then there exists some M̃ ∈M(C) such that S(M̃, w(πM)) > S(M,w(πM)). Considering that∑

i∈N∗(M̃)∩NI(C) π(i) ≤
∑

i∈N∗(M)∩NI(C) π(i), it must be the case that
∑

i∈N∗(M̃)∩NH(C) π(i) >∑
i∈N∗(M)∩NH(C) π(i). However, this is a contradiction as all patients in NH(C) are matched at

M by Lemma 6. Hence, M is a maximum weight matching in (g, w(πM)) if M ′ is a maximum
weight matching in (ĝ, w(πM)).

Some definitions related to paths are helpful in some of the coming proofs.

Definition 2. An ordered list of (not necessarily unique) patients (i1, . . . , it) is a path of length t
in a graph g if:

• ijij+1 ∈ E(g) for all j ∈ {1, . . . , t− 1},

• ijij+1 6= ij′ij′+1 for all distinct j, j′ ∈ {1, . . . , t− 1}.33

A path is a maximal path if it is not contained in a longer path.

Lemma 10. Consider a problem (N,C, πM) with corresponding compatibility graph g and let
M ∈M(C) be a maximal matching. Then M is a priority matching at (N,C, πM) if and only if
M ′ := M \ L(g) is a priority matching at (N, Ĉ, πM).

33In the case when ii ∈ E(g) for some i ∈ N , the list (i1, i2) is a path of length 2 where i1 = i2, i.e., every path
has a length of at least 2.

46



Proof. It will first be shown that M is a priority matching at (N,C, πM) only if M ′ is a priority
matching at (N, Ĉ, πM). Suppose that M is a priority matching at (N,C, πM). Since M ⊆ E(g)

and E(g) \L(g) = E(ĝ), by construction, it follows that M ′ ∈M(Ĉ). To reach a contradiction,
suppose that M ′ is not a priority matching at (N, Ĉ, πM). Then there exists some M̂ ∈ M(Ĉ)

such that M̂ �πM M ′. Furthermore, since M ′ is a maximal matching, there must exist some
matching M̂ ∈M(Ĉ) such that N∗(M̂)\N∗(M ′) = {i} and N∗(M ′)\N∗(M̂) = {j} for some
i, j ∈ N , where πM(i) > πM(j). By the definitions of NI(C) and NH(C) and by the existence
of patient i, it must be the case that i ∈ NI(C) or i ∈ NH(C). Two different cases must be
considered to reach the desired contradiction:

(i) Suppose that i ∈ NI(C). Since N∗(M) ∩ NI(C) = N∗(M ′) ∩ NI(C), it must then be
the case that i /∈ N∗(M) and j ∈ N∗(M). Let M̃ := M̂ ∪ {kk | k ∈ NH(C) \ N∗(M̂)}
be an amended version of M̂ , where all patients in NH(C) that are unmatched at M̂ are
self-matched at M̃ . Note that M̃ ∈M(C). If j ∈ NH(C), then N∗(M) ⊂ N∗(M̃). If j ∈
NI(C), thenN∗(M)\N∗(M̃) = {j} andN∗(M̃)\N∗(M) = {i}, where πM(i) > πM(j).
However, this in implies that M̃ �πM M in both cases, which contradicts the assumption
that M is a priority matching at (N,C, πM). Hence, i /∈ NI(C).

(ii) Suppose that i ∈ NH(C). Then condition (5) implies that j ∈ NH(C) as well. Fur-
thermore, i ∈ ΦM and j ∈ NH(C) \ ΦM by construction. This is a contradiction, since
πM(i) < πM(j) by condition (6). Hence, i /∈ NH(C).

In conclusion, i /∈ NI(C) and i /∈ NH(C), which contradict the existence of patient i. Thus, M
is a priority matching at (N,C, πM) only if M ′ is a priority matching at (N, Ĉ, πM).

Finally, it will be shown that M is a priority matching at (N,C, πM) if M ′ is a priority
matching at (N, Ĉ, πM). To reach a contradiction, suppose that M ′ is a priority matching at
(N, Ĉ, πM) and that M is not a priority matching at (N,C, πM). Then there exists some M̂ ∈
M(C) such that M̂ �πM M . Furthermore, since all patients in NH(C) are matched at all
maximal matchings given the priority structure C, there exists some M̂ ∈ M(C) such that
N∗(M̂) \ N∗(M) = {i} and N∗(M) \ N∗(M̂) = {j} for some i, j ∈ NI(C) such that π(i) >

π(j). Note that M̃ := M̂ \ L(g) ∈M(Ĉ) and that (N∗(M̃) ∩NI) \ (N∗(M ′) ∩NI) = {i} and
(N∗(M ′) ∩NI) \ (N∗(M̃) ∩NI) = {j}.

Let i := i1 and note that there must exist a maximal path (i1, . . . , it) in (N, M̃ ∪M ′), where
i1 6= it. Hence, t ≥ 2. To establish the contradiction, it will next be demonstrated that it can not
be the case that t ≥ 2.

(i) Suppose that t = 2. Since it is matched at M while i is not, this implies that itit ∈M and
consequently that it ∈ ΦM . Then M̌ := M ′ ∪ {i1it} ∈ M(Ĉ). Since N∗(M ′) ⊂ N∗(M̌),
this contradicts the assumption that M ′ is a priority matching at (N, Ĉ, πM).

(ii) Suppose that t = 3. Then either it ∈ NI(C) \ N∗(M̃) and it = j, or it ∈ NH(C). Note
that M̌ := (M ′ \ {i2it}) ∪ {i1i2} ∈ M(Ĉ). Furthermore, by π(i) > π(j) and condition
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(5), π(i1) > π(it) both in the case when it = j and the case when it ∈ NH(C). This
implies that M̌ �πM M ′, which contradicts the assumption that M ′ is a priority matching
at (N, Ĉ, πM).

(iii) Suppose that t ≥ 4. Recall that there are no edges between patients in NH(C) or loops in
M ′ or M̃ . Two different cases arise:

– If t is even, then it ∈ ΦM . Define γ := {ikik+1 | k ∈ {2, . . . , t − 2} ⊂ 2N} and
γ′ := {ikik+1 | k ∈ {1, . . . , t−1} ⊂ N\2N}. Note that M̌ := (M ′\γ)∪γ′ ∈M(Ĉ).
Since N∗(M ′) ⊂ N∗(M̌), M̌ �πM M ′. This contradicts the assumption that M ′ is a
priority matching at (N, Ĉ, πM).

– If t is odd, then either it ∈ NI(C) \N∗(M̃) and it = j, or it ∈ NH(C) \ΦM . Define
γ := {ikik+1 | k ∈ {2, . . . , t − 1} ⊂ 2N} and γ′ := {ikik+1 | k ∈ {1, . . . , t − 2} ⊂
N \ 2N}. Note that M̌ := (M ′ \ γ)∪ γ′ ∈M(Ĉ). Furthermore, N∗(M̌) \N∗(M ′) =

{it} and N∗(M ′) \N∗(M̌) = {i}. By π(i) > π(j) and condition (5), it follows that
π(i1) > π(it) both in the case when it = j and the case when it ∈ NH(C) \ ΦM .
This implies that M̌ �πM M ′, which contradicts the assumption that M ′ is a priority
matching at (N, Ĉ, πM).

Hence, M is a priority matching at (N,C, πM) if M ′ is a priority matching at (N, Ĉ, πM).

The next result (Lemma 11) finds an equivalence between priority matchings and maximum
weight matchings for any given problem (N,C, π). The problem (N, Ĉ, πM) has a corresponding
simple compatibility graph ĝ, since all the loops have been removed. However, while no patients
are half-compatible with their own donors at Ĉ, they may still be half-compatible with other
donors. Therefore, the key idea in the proof of Proposition 5 will be to demonstrate that for any
problem (N,C, π), there exists an equivalent problem (N, Č, π) with a corresponding simple
graph ǧ, in which no patients are half-compatible with any donors. That is, Č is binary, in the
sense that any pair of patients and donors is either compatible or incompatible at Č. Gather all
compatibility structures at which no patients are half-compatible with any donors in the set C02.
Note that the compatibility structures considered by Okumura (2014) belong to C02. Lemma 1
is only applicable in problems with compatibility structures belonging to C02. To understand
Lemma 11, note that the problem (N,C, π) need not correspond to the conditions in Lemma
1 by Okumura (2014). Any problem (N,C, π) in which NH = ∅ has a corresponding simple
compatibility graph. However, NH = ∅ does not guarantee the requirement in Lemma 1 that
no patients and donors are half-compatible to be satisfied. Lemma 11 is therefore not implied
by Lemma 1, since there are compatibility structures not belonging to C02 with corresponding
compatibility graphs that are simple graphs.
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Lemma 11. For any problem (N,C, π) with corresponding simple compatibility graph g, a
matching M is a priority matching at (N,C, π) if and only if M is a maximum weight matching
in (g, w(π)).

Proof. It will first be demonstrated that for any problem (N,C, π) with corresponding simple
compatibility graph g, there exists a compatibility structure Č such that no patients and donors
are half-compatible, a matchingM is a priority matching at (N,C, π) if and only if it is a priority
matching at (N, Č, π) andM∗(C) = M∗(Č). The corresponding compatibility graph of Č is
denoted by ǧ.

Let C be a compatibility structure for which each patient is incompatible with her own donor
and compatible with every other donor. Then C ∈ C02 and the corresponding compatibility
graph, g, is a complete graph. Consider some arbitrary set of edges E ′ ⊆ E(g). Let Ĉ ′ be
a compatibility structure for which each patient i ∈ N is compatible with some donor dj if
and only if idj ∈ E(g) \ E ′ and let ĝ′ be its corresponding compatibility graph. Then Ĉ ′ ∈ C02,
E(ĝ′) ⊂ E(g) andE(g)\E(ĝ′) = E ′. SinceC ∈ C02, g is a complete graph andE ′ is an arbitrary
set of edges, there exists some C ′ ∈ C02 with corresponding compatibility graph g′ = (N,E)

for any E ⊆ E(g). Hence, for any compatibility structure C /∈ C02 with corresponding simple
compatibility graph g, there exists some Č ∈ C02 with corresponding simple compatibility graph
ǧ such that ǧ = g. If ǧ = g, thenM∗(C) = M∗(Č) since the set of priority matchings for a
given compatibility structure only depends the priority function, which is fixed, and on informa-
tion contained in its corresponding compatibility graph. Hence, for any problem (N,C, π) with
corresponding simple compatibility graph g, there exists some Č ∈ C02 such that a matching M
is a priority matching at (N,C, π) if and only if it is a priority matching at (N, Č, π).

To conclude the proof, note that since Č ∈ C02, Lemma 1 implies that M is a priority match-
ing at (N, Č, π) if and only if it is a maximum weight matching in (ǧ, w). Since ǧ = g, M
is a maximum weight matching in (ǧ, w) if and only if it is a maximum weight matching in
(g, w). Hence, for any problem (N,C, π) with corresponding simple compatibility graph g, M
is a priority matching if and only if M is a maximum weight matching in (g, w).

Proposition 5. Consider a problem (N,C, π) with corresponding compatibility graph g. If
wii = π(i) for all ii ∈ E(g) and wij = π(i) + π(j) for all ij ∈ E(g) whenever i 6= j, then M is
a priority matching if and only if M is a maximum weight matching in (g, w).

Proof. Let (N,C, π) be a problem with corresponding, not necessarily simple, compatibility
graph g and suppose that M is a maximum weight matching in (g, w). Since M is a maximal
matching in g, Lemmas 7 and 9 imply that there exists a compatibility matrix Ĉ with correspond-
ing simple compatibility graph ĝ such that M is a maximum weight matching in (g, w) if and
only if M ′ := M \ L(g) is a maximum weight matching in (ĝ, w(πM)). Since ĝ is a simple
compatibility graph, it follows from Lemma 11 that M ′ := M \ L(g) is a priority matching at
(N, Ĉ, πM) if and only if it is a maximum weight matching in (ĝ, w(πM)). This implies that M
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is a maximum weight matching in (g, w) if and only if M ′ := M \ L(g) is a priority match-
ing at (N, Ĉ, πM). This conclusion together with Lemma 8 and Lemma 10 implies that for any
problem (N,C, π), M is a maximum weight matching in (g, w) if and only if M is a priority
matching.

B.3 Proof of Proposition 6

Proposition 6. Consider a problem (N,C, π) with corresponding compatibility graph g. Then a
matching is a half-compatibility priority matching if and only if it is a maximum weight matching
in (g, wε).

Proof. (⇒) It is first proved that any maximum weight matching in (g, wε) is a half-compatibility
priority matching, i.e., if a matching M is a maximum weight matching in (g, wε), then M ∈
MB. LetM be a maximum weight matching in (g, wε). The first step in this part of the proof is to
show that M is also a maximum weight matching in (g, w), where w is defined as in Proposition
5. To obtain a contradiction, suppose that M is not a maximum weight matching in (g, w). This
means that there is some other matching M ′ ∈ M such that S(M ′, w) > S(M,w). By the
construction of w, it is clear that:

S(M ′, w)− S(M,w) ≥ 1

q

⇐⇒ S(M ′, w) ≥ S(M,w) +
1

q
. (7)

Next, note that wεij − wij ∈ [0, 2ε] for all ij ∈ E(g) by the construction of w and wε. Hence:

S(M,wε)− S(M,w) ≤ |N∗(M)|ε ≤ nε <
n

2qn
=

1

2q
<

1

q

⇐⇒ S(M,wε) < S(M,w) +
1

q
. (8)

Inequalities (7) and (8) imply that:

S(M ′, w) > S(M,wε). (9)

Since wεij − wij ∈ [0, 2ε] for all ij ∈ E(g), it follows that:

S(M ′, wε) ≥ S(M ′, w). (10)

Inequalities (9) and (10) then imply that S(M ′, wε) > S(M,wε). But this contradicts the as-
sumption that M is a maximum weight matching in (g, wε), i.e., that S(M,wε) ≥ S(M ′, wε) for
all M ′ ∈ M. Hence, M is a maximum weight matching in (g, w) and, consequently, a priority
matching by Proposition 5.
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To complete this part of the proof, it will next be shown that M ∈ MB. To obtain a contra-
diction, suppose that M /∈ MB. Consider a matching M ′ that belongs toMB. AsMB ⊆ M∗,
M ′ is a maximum weight matching in (g, w) by Proposition 5. However, as demonstrated above,
M is also a maximum weight matching in (g, w). Hence, S(M,w) = S(M ′, w). Furthermore,
note that:

S(M ′, wε)− S(M ′, w) = εB(M ′) (11)

S(M,wε)− S(M,w) = εB(M). (12)

Since M ∈ M∗ \ MB and M ′ ∈ MB, it must be that B(M ′) > B(M). This implies that
εB(M ′) > εB(M), as ε > 0. It then follows from the conclusion that S(M,w) = S(M ′, w) and
from equations (11) and (12) that:

S(M ′, wε)− S(M ′, w) > S(M,wε)− S(M,w) ⇐⇒ S(M ′, wε) > S(M,wε).

This contradicts the assumption that M is a maximum weight matching in (g, wε). Hence, M ∈
MB.

(⇐) It will now be proved that any M ∈ MB is a maximum weight matching in (g, wε). To
obtain a contradiction, consider a matching M ∈ MB and assume that M is not a maximum
weight matching in (g, wε). Then there exists some other matching M ′ ∈M such that:

S(M ′, wε) > S(M,wε). (13)

From Proposition 5, it follows that S(M ′, w) ≤ S(M,w) sinceM ∈M∗. It is next demonstrated
that S(M ′, w) = S(M,w). To reach a contradiction, suppose that S(M ′, w) < S(M,w). Then:

S(M,w)− S(M ′, w) ≥ 1

q

⇐⇒ S(M,w) ≥ S(M ′, w) +
1

q

=⇒ S(M,wε) ≥ S(M ′, w) +
1

q
. (14)

As before, wεij − wij ∈ [0, 2ε] for all ij ∈ E(g) ensures that:

S(M ′, wε)− S(M ′, w) <
1

q

⇐⇒ S(M ′, w) +
1

q
> S(M ′, wε). (15)

Inequalities (14) and (15) imply that S(M,wε) > S(M ′, wε), which contradicts inequality (13).
Hence, S(M ′, w) = S(M,w).
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Next, note that M is a maximum weight matching in (g, w) by Proposition 5 since M ∈M∗.
But then, M ′ is also a maximum weight matching in (g, w) because S(M ′, w) = S(M,w) by
the conclusion above. Hence, M ′ ∈M∗ by Proposition 5. Recall that:

S(M ′, wε)− S(M ′, w) = εB(M ′), (16)

S(M,wε)− S(M,w) = εB(M). (17)

Now, the conclusion that S(M ′, w) = S(M,w) together with inequality (13) and equations (16)
and (17) imply that:

ε(B(M ′)−B(M)) = S(M ′, wε)− S(M,wε) > 0. (18)

Condition (18) and ε > 0 imply that B(M ′) > B(M). But this contradicts the assumption that
M ∈MB as M ′ ∈M∗. That is, M can not be an element inMB if there exists another priority
matching M ′ at which the number of patients receiving a compatible kidney is larger. Hence, M
is a maximum weight matching in (g, wε).

B.4 Proofs of the Results in Section 5.1

Proposition 9. Consider a problem (N,C, π) and suppose that µ′ and µ′′ contain all patients that
receive transplants in Model (a) and Model (b), respectively. Then µ′ ⊆ µ′′.

Proof. Consider a problem (N,C, π) with corresponding compatibility graph g and let g̃ be
the compatibility graph corresponding to the reduced problem (NI , CI , π). That is, let g̃ =

(NI , E(g̃)) where ij ∈ E(g̃) for all i, j ∈ NI such that ij ∈ E(g). Suppose thatM is a maximum
weight matching in (g, wε) and M̃ is a maximum weight matching in (g̃, wε). By Proposition 6,
M corresponds to a matching selected in Model (b) and M̃ corresponds to a matching selected
in Model (a). Moreover, µ′′ = N∗(M) and µ′ = N∗(M̃) ∪ NH . Note that while Model (a) and
Model (b) only select a single matching each from a set of half-compatibility priority matchings
in their corresponding problems, the selection is inconsequential since any half-compatibility
priority matching is a maximum weight matching in the corresponding weighted compatibility
graphs.

To prove the result, it will be demonstrated that any patient contained in a maximal path (see
Definition 2) in the graph (N,M ∪ M̃) belongs to N∗(M).34 The result mentioned above is first
proved for maximal paths of length t = 2, i.e., paths of the type (i1, i2) in (N,M ∪ M̃).

Now consider a maximal path of the type (i1, i2) and suppose first that i1 = i2. Since i1
belongs to a path in (N,M ∪ M̃), i1 must be matched at either M or M̃ . Furthermore, since

34Recall that a matching is defined as a set of non-incident edges in a compatibility graph g (or g̃). M∪M̃ ⊆ E(g)

is therefore a subset of the edges in the compatibility graph g, constituting the edge set in the graph (N,M ∪ M̃).
Maximal paths in (N,M ∪M̃) are of interest since any patient corresponding to an interior element (non-end point)
in such a maximal path will be matched at both M and M̃ . Thus, attention can be restricted to the end points of
such maximal paths.
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i1 = i2 and (i1, i2) is a maximal path in (N,M ∪ M̃), i1 must be self-matched at M or M̃ . This
implies that i1 ∈ NH and consequently that that i1 is matched at M , as all patients in NH are
matched at M . Hence, i1 ∈ N∗(M). Suppose next that i1 6= i2 and that i1 is matched to i2 at M̃
but that both i1 and i2 are unmatched at M . Then M ′ := M ∪ {i1i2} ∈ M, which contradicts
the assumption that M is a maximum weight matching in (g, wε). Hence, i1, i2 ∈ N∗(M). In
summary, any patient contained in a maximal path of length t = 2 in (N,M ∪ M̃) belongs to
N∗(M).

In the remaining part of the proof, maximal paths of length t ≥ 3 are considered, i.e., paths of
the type (i1, . . . , it) in (N,M∪M̃). Suppose first that i1 = it. Then all patients in {i1, . . . , it} are
matched at both M and M̃ . Hence, i ∈ N∗(M) for all i ∈ {i1, . . . , it}. The more difficult case
is when i1 6= it.35 Now consider all interior elements in the path, i.e., each i ∈ {i2, . . . , it−1}. To
be an interior element in a maximal path, i must be matched at both M and M̃ . This implies that
i ∈ NI and i ∈ N∗(M) for all i ∈ {i2, . . . , it−1}. Hence, for any patient i ∈ NH , i ∈ (i1, . . . , it)

only if i ∈ {i1, it}. That is, if a patient in NH is an element in a maximal path, then the patient is
a starting point or an end point of that path. Now define:

γ := {ikik+1 | k ∈ {2, . . . , t− 2} ⊂ 2N},
γ′ := {ikik+1 | k ∈ {1, . . . , t− 1} ⊂ N \ 2N},
γ̂ := {ikik+1 | k ∈ {2, . . . , t− 1} ⊂ 2N},
γ̂′ := {ikik+1 | k ∈ {1, . . . , t− 2} ⊂ N \ 2N}.

To complete the proof, three distinct cases, called (a)–(c), are considered. These cases are also
divided into a number of subcases.

(a) Suppose that i1, it ∈ NI . The following three subcases illustrate that this always results in
a contradiction.

(a.1) Suppose that t = 3, i1 ∈ N∗(M) \N∗(M̃), and it ∈ N∗(M̃) \N∗(M). Since M ′ :=

(M \ {i1i2}) ∪ {i2it} is a feasible matching in g̃ and since M̃ is a maximum weight
matching in (g̃, wε), it must be the case that π(i1) < π(it). Next, because M ′′ :=

(M̃ \ {itit}) ∪ {i1i2} is a feasible matching in g and since M is a maximum weight
matching in (g, wε), it must be the case that π(i1) > π(it). This is a contradiction.

(a.2) Suppose that t ≥ 4 and that t is even. Then i1 and it are either both unmatched at
M or both unmatched at M̃ . Suppose that both are unmatched at M̃ . Then M ′ :=

(M̃ \ γ) ∪ γ′ is a feasible matching in g̃. Since N∗(M̃) ⊂ N∗(M ′), this contradicts
the assumption that M̃ is a maximum weight matching in (g̃, wε).

35No maximal paths (N,M ∪ M̃) of lengths strictly greater than 2 may contain loops. A loop ii ∈ M ∪ M̃
implies that i ∈ NH and that i is self-matched at M . Since i /∈ NI , there exists no j ∈ N such that ij ∈ M̃ .
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(a.3) Suppose that t ≥ 4, that t is odd, that i1 ∈ N∗(M) \N∗(M̃) and that it ∈ N∗(M̃) \
N∗(M). Then M ′ := (M̃ \ γ̂) ∪ γ̂′ is a feasible matching in g̃, which implies that
π(i1) < π(it). Furthermore, M ′′ := (M \ γ̂′) ∪ γ̂ is a feasible matching in g, which
implies that π(i1) > π(it). This is a contradiction.

(b) Suppose that i1 ∈ NH and it ∈ NI . Since i1 /∈ N(g̃) and i1 ∈ N∗(M) \N∗(M̃), it follows
that it ∈ N∗(M̃) \ N∗(M) whenever t is odd and it ∈ N∗(M) \ N∗(M̃) whenever t is
even.

(b.1) Suppose that t = 3. Then M ′ := (M \ {i1i2}) ∪ {i2it, i1i1} is a feasible matching in
g. This contradicts the assumption that M is a maximum weight matching in (g, wε).
Hence t ≥ 4.

(b.2) Suppose that t ≥ 4 and that t is odd. Then M ′ := (M \ γ̂′) ∪ γ̂ ∪ {i1i1} is a feasible
matching in g where N∗(M) ⊂ N∗(M ′). This contradicts the assumption that M is
a maximum weight matching in (g, wε). Hence, t is even.

(b.3) Suppose that t ≥ 4 and that t is even. Then i ∈ N∗(M) for all i ∈ {i1, . . . , it}.

(c) Suppose that i1, it ∈ NH . Then i1, it ∈ N∗(M) \ N∗(M̃). Hence, i ∈ N∗(M) for all
i ∈ {i1, . . . , it}.

From cases (a)–(c), it can be concluded that any patient contained in a maximal path of length
t ≥ 3 in (N,M ∪ M̃) belongs to N∗(M).

It has thus been shown that every patient contained in a maximal path of any length is matched
at M . Since every patient in NI who is matched at M̃ is contained in some maximal path, it must
be the case that N∗(M̃) ⊆ N∗(M). Recall that µ′′ = N∗(M), µ′ = N∗(M̃) ∪NH and note that
NH ⊆ µ′′ by Lemma 6 and the maximality of M . Hence, µ′ ⊆ µ′′.

Proposition 8. Consider a problem (N,C, π) and suppose that µ, µ′ and µ′′ contain all patients
that receive transplants in the Benchmark Model, Model (a) and Model (b), respectively. Then
|µ′′| ≥ |µ| and |µ′′| ≥ |µ′|.

Proof. Consider some problem (N,C, π). Let M , M ′ and M ′′ be the matchings selected in
the Benchmark Model, Model (a) and Model (b), respectively. By Proposition 3, |N∗(M ′′)| ≥
|N∗(M̂)| for all M̂ ∈ M. Since M ∈ M, it follows that |N∗(M ′′)| ≥ |N∗(M)|. That is,
|µ| ≤ |µ′′|. By Proposition 9, |µ′| ≤ |µ′′|.

Proposition 10. Consider a problem (N,C, π) and a matching M selected in Model (b) (Model
(a)). Suppose that a patient i ∈ N is either unmatched or matched to a compatible donor at
M . Then, in Model (b) (Model (a)), patient i cannot benefit by declaring half-compatible donors
unacceptable.
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Proof. Consider a problem (N,C, π) with corresponding weighted compatibility graph (g, wε).
First note that no patient can affect the weights by declaring half-compatible donors unacceptable
by Assumption (ii). This means that a patient i may only influence the outcome of the maximum
weight matching problem by removing edges incident to i in g. Let M be a maximum weight
matching in (g, wε) and consider a patient i ∈ N . Furthermore, let Ĉ be the resulting compat-
ibility structure when i removes some edges incident to i and let (ĝ, ŵε) be the corresponding
weighted compatibility graph. Note that, given ŵε, all edges in ĝ are assigned the same weights
as in (g, wε).

First, if i is unmatched at M , then there are no edges incident to i in M . Thus, M is still a
feasible matching at Ĉ. Since ĝ is a subgraph of g (i.e., it contains the same vertices and a subset
of the edges) and both ŵε and wε assign the same weights to the edges in ĝ, if M is a maximum
weight matching in in (g, wε), it must also be a maximum weight matching in (ĝ, ŵε). Thus,
by Proposition 4 and Proposition 6, exactly the same patients are matched at both (N,C, π) and
(N, Ĉ, π) in Model (b) and i remains unmatched. Since (N,C, π) is an arbitrary problem, the
same arguments apply to the reduced problem considered in Model (a) as well.

Finally, suppose that i is matched to a compatible donor dj at M . Then there exists no donor
in the exchange pool that i strictly prefers to dj . Consequently, i can only be made weakly worse
off by declaring half-compatible donors unacceptable.
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