
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

An Auction with Approximated Bidder Preferences - When an Auction has to be Quick

Ingebretsen Carlson, Jim

2016

Document Version:
Other version

Link to publication

Citation for published version (APA):
Ingebretsen Carlson, J. (2016). An Auction with Approximated Bidder Preferences - When an Auction has to be
Quick. (Working Papers; No. 2016:12).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 21. Jul. 2025

https://portal.research.lu.se/en/publications/a0fbe109-b3f6-4446-8e65-c8806835006f


 
Working Paper 2016:12 
 
Department of Economics 
School of Economics and Management 

 
 

 

An Auction with Approximated Bidder 
Preferences - When an Auction has to 
be Quick 
 
 
Jim Ingebretsen Carlson 
 
June 2016 



An auction with approximated bidder preferences.
- When an auction has to be quick∗

Jim Ingebretsen Carlson†

Abstract

This paper presents a combinatorial auction which is of particular interest when short
completion times are of importance. It is based on a method for approximating the
bidders’ preferences over two types of items when complementarity between the two
may exist. The resulting approximated preference relation is shown to be complete
and transitive at any given price vector. It is shown that an approximated Walrasian
equilibrium always exists if the approximated preferences of the bidders comply with
the gross substitutes condition. This condition also ensures that the set of approx-
imated equilibrium prices forms a complete lattice. A process is proposed which is
shown to always reach the smallest approximated Walrasian price vector.

Keywords: Approximate auction; approximated preferences; non-quasi-linear prefer-
ences.
JEL classification: D44.

1 Introduction

Auctions are extensively used as a way to determine who gets to buy what good and at
which price. It is not uncommon for a seller to simultaneously auction multiple items.
Spectrum licenses are often divided into smaller geographical areas rather than one coun-
trywide license and a company can be sold as several divisions rather than one entity. In
recent years, the literature on multi-item auctions and in particular combinatorial auc-
tions has grown substantially. In a unit-demand setting, Demange et al (1986) propose a
multi-item auction, which is Pareto efficient and strategy-proof. Key to their result is to
find the unique minimal Walrasian equilibrium price vector, its existence being guaranteed
by the lattice structure of equilibrium prices (Demange and Gale, 1985; Shapley and Shu-
bik, 1971), and to allocate the items in accordance with this price. Allowing bidders to
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Hedelius Foundation” (P2012-0107:1) is gratefully acknowledged.
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demand multiple units of items, the problem becomes more complex. For homogeneous
items, Ausubel (2004) presents an ascending-bid auction, which is efficient and where the
outcome of the auction coincides with the outcome of the Vickrey auction. Extending to
heterogeneous items, Gul and Stacchetti (2000) design a generalized version of Demange
et al (1986)’s auction, which also terminates at the unique minimal Walrasian equilibrium
price vector1. In their setting, the existence of a Walrasian equilibrium is guaranteed when
bidders have gross substitute preferences. The gross substitutes condition was introduced
by Kelso and Crawford (1982) and is utilized by Ausubel (2006), who suggests a multi-
item auction that reaches the Vickrey-Clarkes-Groves outcome and therefore is incentive
compatible. Sun and Yang (2006, 2009) introduce the gross substitutes and complements
condition, which allows for some complementarity in the bidders’ preferences. The authors
show that this condition is sufficient for the existence of competitive equilibrium and pro-
pose two auction processes that always finds an equilibrium price vector. Ausubel and
Milgrom (2002) suggest an ascending-bid proxy auction: Each bidder reports a valuation
for each package and then commits to bid straightforwardly according to these reports.
When bidders have quasi-linear preferences in money and goods are substitutes, the out-
come of the proxy auction coincides with the Vickrey auction and sincere bidding is a
Nash equilibrium. By allowing prices to differ across packages and bidders, authors such
as de Vries et al (2007) and Mishra and Parkes (2007) have proposed auction processes
that reach the VCG outcome for general valuations.

A possible problem with many auction formats is that they may take a long time to
carry out. The auction for British telecom licenses, conducted in the year 2000, is one
example of this as it took two months to complete (Binmore and Klemperer, 2002). One
reason for long completion times is that many auctions are dynamic processes where the
prices of the items are either only increased or only decreased2. This may result in a time-
consuming process as the starting prices have to be set far below or far above the expected
final prices to make sure that the process converges to a desired equilibrium. In some
cases, however, short completion times of auctions are very important. One such example
is the Product-mix auction, which was designed to help the Bank of England during the
bank run in the autumn of 2007. Due to the outbreak of the financial crisis, the Bank of
England wished to allocate loans to commercial banks in a very rapid fashion. Klemperer
(2010) proposed a quick auction procedure for allocating two different types of loans to
the banks. The idea was that bidders submitted a number of bids consisting of two prices
(interest rates), one for each type of loan, and a quantity (same for both loans), which
served as an approximation of the bidders’ demand. Based on the supplied quantities of
the two loans, prices were determined and the bidders were awarded the loans which gave
them the highest, non-negative, profit. In this way, the central bank allocated the loans in
a quick fashion.

1Auction processes converging to the unique minimal equilibrium price vector is common in the lit-
erature, see e.g. Andersson et al (2013); Andersson and Erlanson (2013); Mishra and Talman (2010);
Sankaran (1994).

2For auction processes that may be both ascending and descending see e.g. Andersson and Erlanson
(2013); Ausubel (2006); Erlanson (2014); Grigorieva et al (2007).
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Quick auctions are not uncommon in the auction literature. Sealed-bid auctions, such
as the famous Vickrey auction, are well studied examples. However, such auction for-
mats, and many more, are usually analyzed under the assumption that bidders have quasi-
linear preferences in money. This may be restrictive as it implies that bidders neither
exhibit risk-aversion, experience wealth effects, nor face financing- or budget constraints.
If bidders’ preferences are in fact non-linear in money, this should be taken into account.
Optimal auctions, where bidders exhibit risk-aversion, have been studied by Maskin and
Riley (1984) and Matthews (1987). Morimoto and Serizawa (2014) analyze allocation rules
for multiple indivisible items, allowing bidders to have non-linear preferences in money
and unit-demand. Ausubel and Milgrom (2002) also propose a generalized proxy auction,
where the seller and the bidders have non-linear but strict preferences over all offers made
in the bidding process. This auction is embedded in the matching with contracts model
by Hatfield and Milgrom (2005).

Thus far, two problems have been identified: Auctions may take a long time to con-
duct and bidders may not have quasi-linear preferences in money. This paper proposes a
combinatorial auction which is both quick and allows for bidders to have non-linear pref-
erences in money. In order for the auction to be quick, the bidders report all required
information prior to the execution of the auction. Consequently and similar to sealed bid
auctions, the bidders do not participate in a dynamic auction process. Due to the pos-
sible high complexity of the bidders’ non-linear preferences in money, requiring a bidder
to report her preferences over money seems highly infeasible. Therefore, the bidder will
report a fraction of her preferences which will be used to approximate her preferences.
More specifically, a bidder reports prices which makes her indifferent between the packages
which are available in the auction. Using these indifference prices, linear approximations
of the bidder’s indifference curves between any two distinct packages will be made. In
this context, an indifference curve contains all combinations of prices for the two pack-
ages which makes the bidder indifferent between the packages. By combining the linearly
approximated indifference curves, a bidder’s approximated preferences can be constructed.

As suggested in the literature review, linear approximations of bidders preferences are
not uncommon. Importantly, the quasi-linear preferences are contained in the class of
preferences corresponding to the approximation procedure of this paper. In particular, if
a bidder has quasi-linear preferences in money and reports truthfully, the approximated
preferences will coincide with the bidder’s true preferences.

It is shown that the approximated preference relation of each bidder is complete and
transitive at any price vector. Given the approximated preference relations of the bidders,
it is of interest to know whether it is always possible to find an equilibrium assignment.
In addition to theoretical interest, equilibrium assignments are particularly important in
e.g. spectrum auctions as governments typically want all regions of the country to have
coverage. As a bidder’s approximated preferences do not necessarily coincide with her true
preferences, the equilibrium concept analyzed in this paper is denoted an approximated
Walrasian equilibrium. It is shown that imposing the gross substitutes condition on the
bidders’ approximated preference relations is sufficient for the set of approximated Wal-
rasian equilibrium prices to be non-empty. Moreover, the gross substitutes condition also
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ensures that the set of approximated Walrasian equilibrium prices forms a complete lattice
and hence contains a unique minimal element.

Finally, a process is described which can be used to find the unique minimal approxi-
mated Walrasian equilibrium price vector. However, the bidders do not actively participate
in any intermediate step of this process. Using the bidders’ approximated preferences as
input, the process is a structured method for finding the unique minimal approximated
Walrasian equilibrium price vector. This price vector may be of particular importance
when the auctioneer is concerned with consumer welfare. A government selling spectrum
licenses may be interested in assuring low consumer prices. Selling the licenses for the
smallest equilibrium prices may aid in achieving this as the resulting producer costs are
relatively low.

To sum up, the auction procedure is as follows:

1. Each bidder reports prices which makes her indifferent between the available pack-
ages.

2. These prices are used to construct linear approximations of the bidder’s indifference
curves.

3. Combining a bidder’s linearly approximated indifference curves, her approximated
preferences are constructed.

4. Using the approximated preferences as input, a process is used to find the unique
minimal approximated Walrasian equilibrium price vector.

5. The items are allocated to the bidders in accordance with this price vector.

The paper is outlined as follows: Section 2 introduces the basic model and some def-
initions. The approximation procedure is described in Section 3. In Section 4, results
concerning the existence of approximated Walrasian equilibrium are presented. Section 5
contains a description of the process and related results. Section 6 concludes the paper.
All proofs are collected in the appendix.

2 The model

A finite number of bidders, collected in the set N = {1, 2, . . . , n}, participate in the auction.
A seller wishes to auction two types of indivisible items, called a and b,3 of which there
may exist multiple copies. Let qa ≥ 1 and qb ≥ 1 denote the finite integer number of copies
of each type of item. Copies of the same type are to be sold for some uniform price pa
or pb depending on the type. In order to sell the items, the seller requires at least some
prices ra ≥ 0 and rb ≥ 0 for each type of item. Such prices are referred to as the seller’s
reservation prices and imply that pa ≥ ra and pb ≥ rb. Each bidder has the outside option

3To simplify the notation we let a and b denote both the item and a set containing the item, i.e., a ≡ {a}
and b ≡ {b}.
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of not acquire anything in the auction. The outside option is represented by a null-item,
which is denoted 0 and is equal to the empty set. The price of the null-item is normalized
to 0 so p0 = r0 = 0. Each bidder is interested in acquiring at most one copy of item a and b
respectively. Let ab = {a, b} be the combination of one item of each type and let pab denote
its price. The sets of items which the bidders are interested in purchasing are collected in
I = {0, a, b, ab} and any element x ∈ I is referred to as a package. A bidder’s preferences
over the packages are determined by the utility generated from consuming the packages
and their prices. A consumption bundle is therefore defined to be a pair consisting of a
package and a price. For any given prices of the packages, the bidders are hence interested
in consuming at least one of the consumption bundles (0, 0), (a, pa), (b, pb), or (ab, pab).
Each bidder i ∈ N has a preference relation, denoted Ri, over all possible consumption
bundles. Ri is complete, transitive, continuous, and finite. Let Pi be the strict relation
and Ii the indifference relation associated with Ri. The preferences of the bidders satisfy
price monotonicity, that is, for any package x ∈ I and any two prices p′x, p

′′
x ∈ R+, if

p′x > p′′x, then (x, p′′x)Pi(x, p
′
x). Finally, any bidder is indifferent between any two identical

consumption bundles. An objective of the auction is to find an assignment of the items
to the bidders such that any bidder is assigned either 0, a, b, or ab. While any number of
bidders can be assigned the null-item, an assignment needs to be such that the number of
assigned items of any type, a or b, does not exceed the available number of copies of the
type. Formally, let µ : N → I be an assignment such that #Na ≤ qa and #Nb ≤ qb, where
Na = {i ∈ N | µ(i) ∈ {a, ab}} and Nb = {i ∈ N | µ(i) ∈ {b, ab}}, and where µ(i) denotes
the assignment of bidder i ∈ N .

3 Approximation of the bidders’ preferences

In order to approximate the true preference relation, Ri, of any bidder i ∈ N , the bidder
makes two reports. The first report, denoted v, consists of one price vj ∈ R for each
package j ∈ {a, b, ab}. Recalling that the price of the null-item is normalized to 0, these
reported prices are interpreted as the bidder being indifferent between the consumption
bundles (0, 0), (a, va), (b, vb), and, (ab, vab). The second report, z, consists of some other
prices zj < vj for each j ∈ {a, b, ab}. The prices in z are interpreted as making the
bidder indifferent between the consumption bundles (a, za), (b, zb), and (ab, zab). Note that
any price reported for ab need not necessarily equal the sum of the prices reported for
the individual items. Moreover, the assumptions on Ri guarantee the existence of prices
which fulfill the requirements of the reports. Assuming that the bidders report truthfully,
the two reports will be used to make linear approximations of the bidder’s indifference
curves between any two distinct packages. The approximations will be referred to as the
bidder’s approximated indifference curves. The approximated indifference curves will be
constructed under the restriction that pab = pa + pb. Consequently, the package ab will be
sold for pab = pa + pb and no price discrimination is hence allowed. In line with this, four
constants, which are based on the two reports, are defined: αv = vab − vb, αz = zab − zb,
βv = vab − va, and βz = zab − za. A constant αj, where j ∈ {v, z}, is interpreted as a price
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for item a, which would make the bidder indifferent between the consumption bundles
(ab, αj + jb) and (b, jb). βj has the corresponding interpretation for a price of item b. In
this way, six pairs of prices, (pa, pb), are extracted with the help of which the approximated
indifference curves between any two packages, except 0, are constructed.

In the following, a number of formal concepts will be introduced. In order to ease the
understanding of the approximation procedure, an example will accompany these concepts.
The example is depicted in Figures 1 - 4 and is based on that a bidder i makes the following
reports of v and z:

a b ab αj βj

v 10 8 14 6 4
z 6 5 10 5 4

From the reported prices it follows that αv = 6, βv = 4, αz = 5, and βz = 4. Assuming
truthful reports, two pairs of prices (10, 8) and (6, 5) are obtained such that (a, pa)Ii(b, pb)
for bidder i. In addition, (10, 4) and (6, 4) are prices for which (a, pa)Ii(ab, pa + pb) and
for (6, 8) and (5, 5) it follows that (b, pb)Ii(ab, pa + pb). These six pairs of prices are shown
in Figure 1 and will be the basis for the linear approximation of the bidder’s indifference
curves. In order to construct the approximated indifference curve between the packages a
and b in general, the two pairs of prices (va, vb) and (za, zb) are used in constructing the
following linear function:

f1(pa) = zb + (pa − za)
(
vb − zb
va − za

)
(1)

(va, vb) = (10, 8) and (za, zb) = (6, 5) in our example, and f1 is depicted in Figure 2. By
combining an approximated indifference curve with price monotonicity, prices which make
the bidder strictly prefer one consumption bundle over another consumption bundle can
be approximated. For example, as a bidder reports that she is indifferent between (a, va)
and (b, vb), it follows by price monotonicity that the bidder strictly prefers (a, pa) to (b, pb)
if pa ≤ va and pb > vb or if pa < va and pb ≥ vb. Similarly, prices pa and pb for which the
bidder would strictly prefer (b, pb) to (a, pa) are found by reversing the inequality signs. By
applying this reasoning to any pair of prices (pa, pb) for which f1(pa) = pb is true, all pairs
of prices that generate strict preferences between (a, pa) and (b, pb) are approximated.

pa
56 10

pb

4
5

8

Figure 1

pa
6 10

pb

5

8 f1(a, pa)

(b, pb)

Figure 2
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pa
56 10

pb

4
5

8 f1

f2

f3

Figure 3

pa
56 10

pb

4
5

8

(ab, pab)

(a, pa)

(b, pb)

(0, 0)

Figure 4

Returning to the example, Figure 2 depicts strict preferences between the consumption
bundles (a, pa) and (b, pb). (a, pa) is strictly preferred to (b, pb) for any pair of prices above
and to the left of f1 whereas (b, pb) is strictly preferred to (a, pa) for any pair of prices
below and to the right of f1.

Similarly as for f1, the pairs of prices (va, βv) and (za, βz) are used to construct the
approximated indifference curve between the packages a and ab, while (αv, vb) and (αz, zb)
are used for b and ab, in the following way:

f2(pa) = βz + (pa − za)
(
βv − βz
va − za

)
(2)

f3(pb) = αz + (pb − zb)
(
αv − αz
vb − zb

)
(3)

The three approximated indifference curves corresponding to the bidder of our example
are displayed in Figure 3. Finally, the approximated indifference curves between 0 and
any other package x is given by vx. As before, by combining an approximated indifference
curve and price monotonicity, strict preferences between any two consumption bundles are
approximated. In this way, the approximated indifference curves and price monotonicity
approximate the true preferences of a bidder. Let %i denote the approximated preference
relation of any bidder i ∈ N . Furthermore, �i and ∼i are the strict and indifference
relations associated with %i.

In order for the approximated preference relation of a bidder to be meaningful, it is
important that, at any given prices of the items, a consistent ranking of the consumption
bundles can be constructed. Proposition 1 ensures that this is the case.

Proposition 1. For any given prices of the items, the approximated preference relation of
each bidder i ∈ N is complete and transitive.

Figure 4 shows the combination of prices for which a certain consumption bundle is uniquely
most preferred for the bidder in our example.

For a bidder whose preferences are quasi-linear in money, her indifference curves are
linear. If prices are reported truthfully, the resulting approximated indifference curves will
coincide with the true indifference curves of the bidder. The bidder’s approximated- and
true preferences will therefore coincide and the quasi-linear preferences are thus contained
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in the class of preferences corresponding to the approximation procedure described in this
section.

4 Existence

Given the approximated preference relations of the bidders, it is of interest to know whether
it is always possible to find an equilibrium assignment. A commonly analyzed equilibrium
concept is Walrasian equilibrium. However, as the approximated preferences do not nec-
essarily coincide with the true preferences of the bidders, the equilibrium concept of this
paper is denoted an approximated Walrasian equilibrium. In order to define this formally,
let a price vector be denoted by p = (0, pa, pb) ∈ R3, which contains a price for the null-item
and one price for each type of item. Furthermore, the approximated demand correspon-
dence of a bidder i ∈ N is defined as Di(p) = {x ∈ I | (x, px) %i (y, py) for all y ∈ I} at
any p. If x ∈ Di(p), then package x is said to be demanded by bidder i ∈ N .

Definition 1. The pair 〈p, µ〉 constitutes an approximated Walrasian equilibrium if: (i)
µ(i) ∈ Di(p) for all i ∈ N and (ii) if #Nx < qx for some x ∈ ab, then px = rx.

Thus, a price vector p and an assignment µ constitute an approximated Walrasian equi-
librium if each bidder is assigned a package which she demands and if a copy of an item
remains unassigned, then the price of this type of item has to equal the seller’s reservation
price for the item.

An approximated Walrasian equilibrium does not always exist. For an excellent exam-
ple, see Milgrom (2000) and recall that the quasi-linear preferences are a special case of
the approximated preferences of this paper. However, requiring substitutability in the bid-
ders’ preferences has been shown to guarantee the existence of equilibrium in the standard
model. Kelso and Crawford (1982) required firms’ preferences over workers to comply with
the gross substitutes condition to show the existence of a core allocation. This in turn
implies that a Walrasian equilibrium exists in Gul and Stacchetti (1999, 2000). Sun and
Yang (2006) showed that the more general gross substitutes and complements condition
guarantees the existence of competitive equilibrium. Analyzing the simultaneous ascending
auction, Milgrom (2000) showed that if objects are mutual substitutes for the bidders, then
the objects can be allocated in accordance with a competitive equilibrium. Similarly in
the matching with contracts model, a stable allocation exists if hospitals view contracts as
substitutes (Hatfield and Milgrom, 2005).

Following Kelso and Crawford (1982), the gross substitutes condition is defined as:

Definition 2. The approximated preference relation, %i, of any bidder i ∈ N , fulfills the
gross substitutes condition if for any two price vectors p′ ≥ p and any x ∈ Di(p), there
exists y ∈ Di(p

′) such that {w ∈ x | pw = p′w} ⊆ y.

The gross substitutes condition implies that a bidder’s demand for an item does not
decrease as the prices of any other items are raised. Let P = {p ∈ R3

+ | ∃µ s.t.
〈p, µ〉 is an approximated Walrasian equilibrium} be the set of approximated equilibrium
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prices. Proposition 2 asserts that if the approximated preference relations of each bidder
comply with the gross substitutes condition, then there exists an approximated Walrasian
equilibrium.

Proposition 2. If the gross substitutes condition is fulfilled for the approximated preference
relation of each bidder i ∈ N , then the set of approximated equilibrium prices, P, is non-
empty.

It turns out that the gross substitutes condition also guarantees that P forms a complete
lattice. For any two price vectors p′, p′′ ∈ R3, let the meet p′ ∧ p′′ be defined as a vector
s ∈ R3 with elements sj = min{p′j, p′′j}. Similarly, let the join p′ ∨ p′′ be a vector h ∈ R3

with elements hj = max{p′j, p′′j}. Any S ⊆ R3 forms a complete lattice if for each p′, p′′ ∈ S,
s, h ∈ S.

Proposition 3. If the gross substitutes condition is fulfilled for the approximated preference
relation of each bidder i ∈ N , then P forms a complete lattice.

Proposition 3 implies that P contains a unique minimal element. Let this unique minimal
approximated Walrasian equilibrium price vector be denoted pmin.

5 Process

The proposed process can be used to find pmin. It is designed as an English auction;
starting at some low prices, prices are increased until pmin is reached. As mentioned in
Section 1, the bidders do not actively participate in any intermediate step of the process.
The process uses the approximated preference relations of each bidder as input in order to
find pmin. As the approximated preferences are constructed prior to running the process,
the process can be executed quickly.

Following Gul and Stacchetti (2000), the process will use the bidders’ requirement of
the different packages in order to, at least partly, determine how prices should be increased.

Definition 3. The requirement function Ki : I × R3 → N0 for each i ∈ N is defined by:

Ki(x, p) = min
y∈Di(p)

#(x ∩ y).

Let KN(x, p) =
∑

i∈N Ki(x, p) be the bidders’ aggregate requirement of any x ∈ I at
some p. Proposition 4, below, justifies the interest in the requirement function. Most
importantly, it asserts that when, at some p, the bidders’ aggregate requirement for each
package is weakly less than the number of existing copies of the items contained in the
package, it is possible to assign each bidder a package that she demands. Hence, the first
condition for an approximated Walrasian equilibrium is fulfilled at p. As any bidder’s
requirement of the null-object always equals zero, let q0 = 0 and naturally qab = qa + qb.

Proposition 4. For a given price vector p, there exists an assignment µ such that µ(i) ∈
Di(p) for all bidders i ∈ N if and only if KN(x, p) ≤ qx for all x ∈ I.
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Hence, if KN(x, p) > qx for some package x ∈ I, then there is more demand for the items
contained in x, at p, than the number of available copies of x. To determine the net
demand, in terms of aggregate requirement, for any package at some price vector p, the
function g : I × R3 → Z : g(x, p) = KN(x, p) − qx is defined. Packages with the greatest
net demand at p are collected in O(p) = {x ∈ I | g(x, p) ≥ g(y, p) for all y ∈ I}.

Lemma 1. O(p) has a unique minimal element with respect to cardinality denoted O∗(p).

Lemma 1 is important for describing the process as whenever O∗(p) contain any of a, b, or
ab, in any step of the process, the prices of the items contained in O∗(p) will be the main
focus of the price increase.

A price increase consists of one part determining how much the prices are increased
relative to each other and a second part deciding the magnitude. For the first part,
δ(p) ∈ R3

+ is introduced, which has elements δx(p) for each x ∈ {0, a, b} and p. Let
pt ∈ R3

+ denote the price vector at step t of the process. The magnitude of a price increase
at any step t is then given by ε(t) = sup{e | O∗(pt + eδ(pt)) = O∗(p

t)}. In Step 2 of the
process, prices of the items contained in O∗(p) are raised by equal amounts. However, as
the approximated preferences of the bidders are not necessarily quasi-linear, such a price
increase may not always be possible. To solve this problem, let x 6= y for x, y ∈ ab, and
lx(t) = inf{δx(pt) ∈ R+ | δ0(pt) = 0, δy(p

t) = 1, and ε(t) > 0} is defined. lx(t) and δ(p) are
used to determine the relative price increase of the items.

Process 1. Set t = 0 and let p0 = r
Step 1: If O∗(p

t) = 0 set pt = pT and stop. Otherwise, go to step 2.
Step 2: Let δx(p

t) = 1 if x ∈ O∗(pt) and 0 otherwise.

If =

{
ε(t) 6= 0, let pt+1 = pt + ε(t)δ(pt) and set t := t+ 1 and go to step 1.

ε(t) = 0, go to step 3.

Step 3: Let δ0 = 0 and

if =

{
a, ab ∈ O∗(pt), then δa(p

t) = 1 and δb(p
t) = lb(t).

b ∈ O∗(pt), then δa(p
t) = la(t) and δb(p

t) = 1.

Let pt+1 = pt + ε(t)δ(pt) and set t := t+ 1 and go to step 1.

Assuming that the bidders’ approximated preferences fulfill the gross substitutes condition,
Lemma 2 asserts that the auction process does not get stuck at any step t < T .

Lemma 2. If the gross substitutes condition is fulfilled for the approximated preference
relation of each bidder i ∈ N and ε(t) = 0 in step 2 of process 1, then ε(t) > 0 in step 3 of
process 1.
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As O∗(p
T ) = 0, Proposition 4 ensures that the first condition for pT to yield an ap-

proximated Walrasian equilibrium is fulfilled. Assuming that each bidder’s approximated
preference relation complies with the gross substitutes condition, Theorem 1 states that
the process always converges to the unique minimal approximated Walrasian equilibrium
price vector.

Theorem 1. If the gross substitutes condition is fulfilled for the approximated preference
relation of each bidder i ∈ N , then Process 1 always terminates at pT = pmin.

Finally we consider an example of Process 1. One item of type a and one item of type b
are to be sold and two bidders, i and j, participate in the auction. By reporting v and z,
the bidders’ preferences have been approximated. The parts of the bidders’ approximated
indifference curves which are relevant to determine their demand at any price vector are
shown in Figure 5. Note that bidder i is the bidder of our example in Section 3. Bidder
j has reported va = vb = 7, and vab = 13 as well as za = zb = 5, and zab = 11. It is
left to the reader to confirm that bidder j’s reports generate the approximated indifference
curves shown in Figure 5. The seller has reservation prices ra = 2 and rb = 0 and the price
trajectory of Process 1 is shown by the dashed line in Figure 5. O∗(p

t) and the packages
demanded by each bidder at the price vectors corresponding to the different stages of
Process 1 are shown in the table below.

pt Di(p
t) Dj(p

t) O∗(p
t)

p0 ab ab ab
p1 b, ab ab b
p2 a, b, ab ab ab
p3 a, b b, ab 0

• t = 0: As O∗(p
0) = {ab}, Process 1 moves to Step 2 where δa(p

0) = δb(p
0) = 1

and δ0(p
0) = 0. Given this δ(p0) it is possible to increase prices and maintain

O∗(p) = {ab}. Consequently, ε(0) 6= 0 and prices are raised from p0 to p1 in Figure 5.
At p1, O∗(p

1) = {b} due to the change in bidder i’s demand. Therefore, p1 is the upper
bound for the price increase at this step. Consequently, p1 = p0+ε(0)δ(p0) and t = 1.

• t = 1: Since O∗(p
1) = {b}, we set δb(p

1)=1 and δ0(p
1) = δa(p

1) = 0 in Step 2. For
this δ(p1), ε(1) = 0 since an increase in pb would change O∗(p) to contain ab as i
would change to only demand ab. Therefore, Process 1 proceeds to Step 3. In this
step, we find the smallest relative price increase of pa to pb, which makes ε(1) 6= 0.
In Figure 5, this is given by the slope of the indifference curve of bidder i. δa(p

1) is
therefore adjusted such that δa(p

1) = la(1), which makes ε(1) 6= 0. The magnitude
of the price increase is bounded by the intersection of bidder i’s indifference curves.
This is where the demand of bidder i changes. Finally, p2 = p1 + ε(1)δ(p1) and t = 2.
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• t = 2: Now O∗(p
2) = {ab} and the only price increase which is possible while

maintaining O∗(p) = {ab} is to follow bidder i’s indifference curve. δ(p2) is adjusted
accordingly and pa and pb are increased until the packages demanded by bidder j
change. Let p3 = p2 + ε(2)δ(p2) and t = 3.

• t = 3: O∗(p
3) = {0} and item a is sold to i for a price of 6 and b is sold to j for a

price of 5.

pa

pb

2

0

4

2

4.7

4

5

6

p3 = pT = pmin

p0

p1

p2

i
j

Figure 5

6 Concluding remarks

This paper has provided a procedure for approximating a bidder’s preferences over two
types of items when complementarity between the two may exist. A quick auction proce-
dure is proposed which is shown to always converge to the unique minimal approximated
Walrasian equilibrium price vector. The auction procedure is efficient with respect to the
approximated preferences of the bidders. It would therefore be of interest to evaluate the
performance of the auction procedure in relation to the bidders’ true preferences. Another
more complicated question is whether a perhaps similar approximation procedure can be
applied to a more general setting, where bidders are interested in more than two items.
Finally, the approximation procedure described in this paper assumes that bidders report
truthfully and the auction procedure is not strategy-proof. Finding a strategy-proof way
of conducting a quick auction, when bidders preferences are not necessarily quasi-linear,
would be of great interest and importance.
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7 Appendix A: Proofs Related to the Approximation

For proving Proposition 1, completeness of %i for any i ∈ N will be shown in Lemma
3. Then Lemma 4, which is of technical nature, will be proven to aid in the proof of the
transitivity of %i. Transitivity of %i will be shown in Lemma 5.

Let the consumption set of a bidder be Z = I × R+ and any consumption bundle is a
pair (x, px) ∈ Z. Let Z(p) denote the consumption set at any p = (p0, pa, pb) ∈ R3. For
any bidder i ∈ N , %i is complete if for any given p and for all (x, px), (y, py) ∈ Z(p), we
have that (x, py) %i (y, py) or (y, py) %i (x, px) (or both). Let I+ = {a, b, ab}.

Lemma 3. For any given prices of the items, the approximated preference relation of each
bidder i ∈ N is complete.

Proof of lemma 3. Fix p = (p0, pa, pb). Then as any bidder is assumed to be indifferent
between two identical consumption bundles, we need to show that any pair of the four
distinct consumption bundles available at p are related by %i. By the requirements on the
bids we know that (x, vx) ∼i (0, 0) for any x ∈ I+. Assume that px ≤ vx. Then it follows
by price monotonicity that (x, px) % (x, vx) ∼i (0, 0). By construction, fi(pj) = pik, for
i = 1, 2, 3, are some prices of j, k ∈ ab, which would make the bidder indifferent between
any two packages x 6= y where x, y ∈ I+. Assume that pij ≤ pj for i = 1, 2, 3, which by
price monotonicity implies that (x, px) % (x, pix) ∼i (y, piy) ∼i (y, py), where the identity
of the two packages depend on the identity of i. By replacing ≤ with ≥ in the arguments
above, the same conclusion is derived by symmetry.

While completeness of the approximated preference relations could be established by
only considering one indifference curve at a time, transitivity depends on the construction
of different indifference curves. Therefore, it is important to know the relationship of the
approximated indifference curves. Let ci be the intercept, mi the slope of fi for i = 1, 2, 3,
c4 = zb − αz

m3
, and m4 = 1

m3
. We start by noting that since vj > zj for j ∈ ab, it is always

the case that m1 = vb−zb
va−za > 0.

Lemma 4. The linearly approximated indifference curves have the following relationship:

i. If mj 6= mk for some j, k = 1, 2, 4, then m1 6= m2 6= m4

ii. If m1 6= m2 6= m4, then there exist unique p∗a ∈ R and p∗b ∈ R such that f1(p
∗
a) =

f2(p
∗
a) = p∗b and f3(p

∗
b) = p∗a.

iii. If m3 > 0 and m1 6= m2 6= m4, then l > m1 > k for l, k ∈ {m2,m4} ⊂ R2 where l 6= k.

iv. mj > −1 for j = 2, 3.

v. If m2 > m1, then m2 > m1 > m4 > 0.

vi. If m1 = m2 = m4, then l ≤ c1 ≤ k for l, k ∈ {c2, c4} ⊂ R2 where l 6= k.

vii. If cj 6= ck for some j, k = 1, 2, 4, then c1 6= c2 6= c4
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Proof. i. By symmetry it is enough to consider one case. Let m1 6= m4 and to derive a
contradiction we assume that m2 = m1 6= m4, which is equivalent to βv−βz

va−za = vb−zb
va−za 6=

vb−zb
αv−αz

.
Therefore, βv − βz = vb− zb and va− za 6= αv −αz. By the definition of the four constants
βv, αv, βz, and αz we know that

βv + va = αv + vb (4)

and
βz + za = αz + zb (5)

Using equations (4) and (5) to replace αv and αz we get that βv − βz 6= vb − zb, which is a
contradiction.

ii. As any fi is a linear function for i = 1, 2, 3 and m1 6= m2, there must exist a unique
p∗a where f1 = f2. f1 and f2 are defined by equation (1) and (2) respectively. This gives:

p∗a =
za(vb − βv) + va(βz − zb)

vb − zb − βv + βz
(6)

Naturally since m1 6= m2 we have vb − zb 6= βv − βz and vb − zb − βv + βz 6= 0. Replacing
pa in equation (1) by (6) gives:

p∗b =
vbβz − zbβv

vb − zb − βv + βz
(7)

We proceed by showing that p∗a and p∗b can be found for f1 and f3 as well. Replacing pb in
(3) by (1) gives:

p′a =
zaαv − αzva

αv − αz − va + za
(8)

As m1 6= m4 it is ensured that αv − αz − va + za 6= 0. Replacing p′a in equation (1) by (8)
gives:

p′b =
zb(αv − va) + vb(za − αz)

αv − αz − va + za
(9)

By using equation (4) in (8) as well as (5) in (9) we get p′a = p∗a and p′b = p∗b .
iii. First note that if m3 > 0, then m4 > 0. As m1 6= m2 6= m4 we either have

m1 > mj or m1 < mj for some j = 2, 4. By symmetry it is enough to consider one case.
Let m1 > m4, then m1 = vb−zb

va−za >
vb−zb
αv−αz

= m4 > 0. As vb > zb by construction we have
αv−αz > va− za. Using equation (4) and (5) to replace αv and αz we get βv−βz > vb− zb
and thus m2 = βv−βz

va−za > m1 = vb−zb
va−za .

iv. As we have a requirement on the reports that vab > zab we get vab = va + βv =
vb + αv > za + βz = zb + αz = zab or va − za > βz − βv and vb − zb > αz − αv. Therefore,
1 > βz−βv

va−za and 1 > αz−αv

vb−zb
or equivalently, −1 < m2 = βv−βz

va−za and −1 < m3 = αv−αz

vb−zb
.

v. m2 > m1 gives that βv−βz
va−za > vb−zb

va−za > 0 or βv − βz > vb − zb. Moreover, m2 > m1

implies that m2 6= m1 6= m4. Applying (4) and (5) to α and βz gives that αv − αz >
va − za > 0 and thus m3 = αv−αz

vb−zb
> 0. The rest follows from point iii of this lemma.
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vi. Let m1 = m2 = 1
m3

= m and then either c1 ≤ l or c1 ≥ l for l = c2, c4. By symmetry
it is enough to consider when c1 ≥ c2, which implies c1 = zb− za ∗m ≥ βz − za ∗m = c2 or
zb ≥ βz. Using (5) to replace βz gives za ≥ αz and thus c4 = zb−αz ∗m ≥ zb− za ∗m = c1.

vii. If l 6= c1 for l = c2, c4, then by symmetry it is enough to consider one case: Let
c2 6= c1, which implies za 6= αz. Using (5) to replace αz gives βz 6= zb and hence c4 6= c1.
By point vi. of this lemma we must have c2 6= c1 6= c4. If c2 6= c4, then by point vi. of this
lemma we have l ≥ c1 ≥ k with at least one weak inequality being a strict inequality and
we can use the same argument as before.

For any bidder i ∈ N , %i is transitive if for any given p and for all
(x, px), (y, py), (w, pw) ∈ Z(p), (x, px) %i (y, py) and (y, py) %i (w, pw) imply that
(x, px) %i (w, pw).

Lemma 5. For any given prices of the items, the approximated preference relation of each
bidder i ∈ N is transitive.

Proof. As (x, px) ∼i (x, px) at any p for any (x, px) ∈ Z(p) it is assumed that x 6= y 6= w.
Transitivity in any other case follows by completeness. Fix some p = (p0, pa, pb). We start
by considering the case when x, y, w ∈ I+ and then proceed to where one of x, y, or w is
equal to the null-item 0. By point i. of Lemma 4 it follows that either m1 = m2 = m4 or
m1 6= m2 6= m4. These will have to be treated separately. Assume m1 6= m2 6= m4 and by
point ii. of Lemma 4 there exist p∗a and p∗b such that (a, p∗a) ∼i (b, p∗b) ∼i (ab, p∗a + p∗b). Let
x 6= y for x, y ∈ {b, ab}, then we will show the following:

If for any i ∈ N (a, pa) %i (x, px) and either (i) (x, px) %i (y, py) or (ii) (y, py) %i (a, pa) at
some p, then (i) (y, py) �i (a, pa) or (ii) (x, px) �i (y, py).

By symmetry, the following arguments apply when %i and � are replaced by �i and ⊀i

respectively. Let fX be the indifference curve between a and x and fY be the indifference
curve between y and a. Note that X, Y ∈ {1, 2} and X 6= Y as x 6= y. Moreover, let
fX(pa) = pXb , fY (pa) = pYb and f3(pb) = p3a.

Let V 6= W for V,W ∈ {%i,�i}. In order to derive a contradiction, assume that
(a, pa) %i (x, px), (x, px)W (y, py), and (y, py)V (a, pa) for any i ∈ N at some p. By price
monotonicity it follows that pXb ≤ pb ≤ pYb and, depending on the identity of the packages,
either p3a ≥ pa or p3a ≤ pa, with some weak inequality being a strict inequality.

It will now be shown that p∗a 6= pa. If pa = p∗a, then p∗b 6= pb since otherwise (a, pa) ∼i
(b, pb) ∼i (ab, pa+pb), which contradicts the assumption that bidder i ∈ N is not indifferent
between the three consumption bundles. Combining pXb ≤ pb ≤ pYb with p∗b 6= pb we get
that either pXb 6= p∗b and/or pYb 6= p∗b . This together with pa = p∗a imply that the slopes

mX =
pXb −p

∗
b

pa−p∗a
and/or mY =

pYb −p
∗
b

pa−p∗a
would be undefined. This contradicts the requirement on

the bids that va > za. Hence, pa 6= p∗a.
Assume that pa > p∗a. Symmetric arguments, to the ones presented below, can be used

when pa < p∗a. As m1 6= m2 by assumption, it follows that mY =
pYb −p

∗
b

pa−p∗a
> mX =

pXb −p
∗
b

pa−p∗a
.
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Case 1: y = b. Then m1 > m2 and either m3 = p3a−p∗a
pb−p∗b

or m3 = p∗a−p3a
p∗b−pb

. By price

monotonicity y = b requires that p3a ≥ pa > p∗a, which implies that we must have p∗b 6= pb
as m3 would otherwise be undefined, contradicting that vb > zb. If pb > p∗b , then m1 =
pYb −p

∗
b

pa−p∗a
> m4 =

pb−p∗b
p3a−p∗a

> 0, which contradicts point iii. of Lemma 4. If p∗b > pb, then we

must have that m1 =
pYb −p

∗
b

pa−p∗a
> 0 >

p∗b−pb
p∗a−p3a

= m4 =
pb−p∗b
p3a−p∗a

≥ m2 =
pXb −p

∗
b

pa−p∗a
. By point iv. of

Lemma 4 m3 > −1 and we have −1 > m4 ≥ m2. This is a contradiction of point iv. of
Lemma 4.

Case 2: y = ab. Now p3a ≤ pa and m2 > m1 =
pXb −p

∗
b

pa−p∗a
> 0, which requires pb ≥ pXb > p∗b .

Then it follows by point v. of Lemma 4 that m1 =
pXb −p

∗
b

pa−p∗a
> m4 =

pb−p∗b
p3a−p∗a

> 0. This in

turn requires p∗b < pb ≤ pXb and p∗a < pa ≤ p3a with some weak inequality being a strict
inequality, which is a contradiction.

Next the case when m1 = m2 = m4 = m is considered, which implies that we can

rewrite f3(pb) = p3A = c3 + pb ∗ m3 as pb = − c3
m3

+ p3a
m3

. Note that c4 = − c3
m3

and thus

pb = c4 + p3a ∗m. Let x 6= y 6= w for x, y, w ∈ I+, then the following will be shown:

If (x, px) %i (y, py) and (y, py) %i (w, pw) for any i ∈ N at some p, then (w, pw) �i (x, px).

To derive a contradiction assume that (x, px) %i (y, py), (y, py) %i (w, pw), and (w, pw) �i
(x, px) for some i ∈ N at some p. Note that by price monotonicity we either have: (i)
f1(pa) = p1b ≤ pb ≤ p2b = f2(pa) and f3(pb) = p3a ≤ pa or (ii) f1(pa) = p1b ≥ pb ≥ p2b = f2(pa)
and f3(pb) = p3a ≥ pa, with at least one weak inequality being a strict inequality. By
symmetry it is enough to consider one case. Assume that the three consumption bundles
are related such that f1(pa) = p1b ≤ pb ≤ p2b = f2(pa) and f3(pb) = p3a ≤ pa, with at least
one weak inequality being a strict inequality. From this it follows that p1b = c1 + pa ∗m ≤
pb = c4 + p3a ∗m ≤ c4 + pa ∗m and p1b = c1 + pa ∗m ≤ p2b = c2 + pa ∗m. Thus, c1 ≤ c4
and c1 ≤ c2. However, as at least one of the three previous mentioned weak inequalities
is a strict inequality we must have that cj 6= ck for some j 6= k where j, k ∈ {1, 2, 4}.
Therefore, c1 6= c2 6= c4 by point vii. of Lemma 4. Hence, c1 < c4 and c1 < c2, which is a
contradiction of point vi. of Lemma 4.

Finally, the case when x, y, w ∈ I and where one of x, y, or w is equal to the null-item 0
is considered. By the requirements of the reports we know that (0, 0) ∼i (a, va) ∼i (b, vb) ∼i
(ab, vab) for any i ∈ N . Let x 6= y for x, y ∈ ab and l 6= k 6= w for l, k, w ∈ {0, x, ab}, then
we will show the following:

1. If (x, px) %i (0, 0) and either (i) (y, py) %i (x, px) or (ii) (0, 0) %i (y, py) for any i ∈ N
at some p, then (i) (0, 0) �i (y, py) or (ii) (y, py) �i (x, px).

2. If (l, pl) %i (k, pk) and (k, pk) %i (w, pw) for any i ∈ N at some p, then (w, pw) �i

(l, pl)

Once again, let V 6= W for V,W ∈ {%i,�i}.
1. To derive a contradiction we assume that (x, px) %i (0, 0), (y, py)V (x, px), and

(0, 0)W (y, py). Combining we have: (y, py)V (x, px) %i (0, 0) ∼i (y, vy)W (y, py). By price
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monotonicity we have py ≤ vy ≤ py, with at least one of the weak inequalities being a strict
inequality.

2. Note that pab = px+py. Let fX denote the indifference curve between x and ab and let
mX denote its slope. Moreover, let fX(px) = pXy for some px. Assume that (l, pl) %i (k, pk),
(k, pk) %i (w, pw), and (w, pw) �i (l, pl) at some p. By price monotonicity we either have:
pXy ≥ py, px ≤ vx, and px + py ≥ vab, or pXy ≤ py, px ≥ vx, and px + py ≤ xab, with at least
one weak inequality being a strict inequality as (w, pw) �i (l, pl). By symmetry it is enough
to consider one case. So assume the consumption bundles are related such that pXy ≥ py,
px ≤ vx, and px + py ≥ vab, with at least one weak inequality being a strict inequality. By
the requirements of the bids we know that vab = vx + η, where η is equal to either αv or βv
depending on the identity of x. Hence, px + py ≥ vx + η. Therefore, py − η ≥ vx − px and
pXy − η ≥ vx − px ≥ 0. If vx = px, then pXy = η as fX(vx) = η by construction. From this
it follows that py = η as 0 = pXy − η ≥ py − η ≥ 0. Therefore, pXy = py and px + py = vab.
Since some of the three weak inequalities above must be a strict inequality, it must be
that px < vx, which is a contradiction. Hence, vx > px and as fX(vx) = η we must have

mX = η−pYx
vx−px . Since py−η ≥ vx−px and pXy ≥ py by assumption, we have mX ≤ −1, which

is a contradiction.

Proposition 1. For any given prices of the items, the approximated preference relation of
each bidder i ∈ N is complete and transitive.

Proof. Lemma 3 and Lemma 5 together imply Proposition 1

8 Appendix B: Proofs Related to Existence

In the following sections, it is assumed that the gross substitutes condition is fulfilled for
%i for any i ∈ N and if x ⊂ y, then x is a proper subset of y. An item is said to be in
excess demand if there are more bidders demanding a package containing the item than the
number of copies of the item. Similarly, an item is said to be in under demand if there are
less bidders demanding a package containing the item than the existing number of copies
of the item.

Proposition 2. If the gross substitutes condition is fulfilled for the approximated preference
relation of each bidder i ∈ N , then the set of approximated equilibrium prices, P, is non-
empty.

Proof. We start by noting that it is always possible to set pa, pb, and thus p, sufficiently
high such that it is possible to construct an assignment µ where µ(i) ∈ Di(p) for all x ∈ ab.
Let C = {p ∈ R3 | ∃µ s.t. µ(i) ∈ Di(p) for all i ∈ N}, which we know is non-empty.
Moreover, P ⊂ C. To derive a contradiction it is assumed that P = ∅. From this it follows
that for each p ∈ C there exists some assignment µ associated with p such that #Nx < qx
and px > rx for at least some x ∈ ab and where µ(i) ∈ Di(p) for all i ∈ N . Let µp denote
an assignment at some price vector p and A(p) = {µ | µ(i) ∈ Di(p) for all i ∈ N} be the
set of assignments such that each bidder is assigned a package she demands at price vector
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p. Let r = (r0, ra, rb). As p ≥ r, it follows that C contains some minimal element. Denote
such a minimal element by s. The idea of the proof is to show that if P = ∅, then s cannot
be a minimal element of C.

If pb = rb for some p ∈ C, then sb = rb for some s and it must be that #Na < qa and
sa > ra for any µs ∈ A(j). By symmetry, the following arguments hold when b and a
are interchanged. For this part of the proof, price monotonicity and the continuity of the
approximated indifference curves will imply that s cannot be a minimal element of C. Let
p′ ≤ s be such that p′b = sb = rb, and ra ≤ p′a < sa. By price monotonicity, the demand for
item b has weakly decreased at p′ as compared to at s. Moreover, as p′b = rb = sb we know
that there does not exist excess demand for item b at p′. Since p′ /∈ C, it is required that
there exist at least some bidder k ∈ N for whom µp′ /∈ Dk(p

′) at any µp′ . Since the demand
for item a has weakly increased at any p′, in comparison to s, it must always be possible
to find some p′ and µp′ where either #Na = qa, if p′a > ra, or #Na ≤ qa, if p′a = ra, and
where µp′(i) ∈ Di(p

′) for all i ∈ N . Because if there exists excess demand for item a at any
p′ ≤ s and under demand at s, then there exist at least two bidders who did not demand
any package containing a at s and who only demand packages containing a at p′. Collect
these bidders in the set F . By price monotonicity and since the approximated indifference
curves are continuous, there must exist some price vector p′′ such that p′ < p′′ < s for each
bidder i ∈ F where the bidder is indifferent between a package containing a and another
package not containing a. As item a is in under demand at s, there must exist some p′′

where it is possible to assign µs(j) to each j ∈ N \{i}, and in particular to each j ∈ F \{i},
and w ⊃ a to some i ∈ F . Therefore, µp′′(i) ∈ Di(p

′′) for all i ∈ N and p′′ ∈ C, which
contradicts the minimality of s.

Now assume that px > rx for all x ∈ ab and p ∈ C, which implies that there exists
at least some minimal element s ∈ C such that p′ /∈ C for any p′ ≤ s where p′x < sx for
some x ∈ ab. Once again, at s we know that #Nx < qx for at least some x ∈ ab at any
µs ∈ A(s). Assume that #Na < qa and #Nb ≤ qb for some µs ∈ A(s). By symmetry, the
following arguments can be used if a and b are interchanged. Let p′ be a price vector such
that ra < p′a < sa and p′b = sb. As p′ /∈ C we know that µp′(i) /∈ Di(p

′) for some i ∈ N and
there exists excess demand for item a and/or b.

Assume that item b is in excess demand at p′. Since the demand for item a is weakly
lower at s, by price monotonicity, and b must belong to at least some demanded package
at s for any bidder who demands any package w ⊇ b at p′ by gross substitutes, it follows
that b must be in excess demand at s as well. This contradicts that s ∈ C.

So, it must be that a is the item in excess demand at p′. If #Na < qa for all µs ∈ A(s),
then the same argument as for the case when sb = rb = p′b can be used to generate a
contradiction. Therefore, #Na < qa for some assignment µ′s ∈ A(s) and #Na = qa,
#Nb < qb for some other assignment µ′′s ∈ A(s) as s /∈ P . If #Nb < qb for all µs ∈ A,
then we can use symmetric arguments to case when sb = rb = p′b in order to derive a
contradiction. It must therefore be that #Na < qa and #Nb = qb at µ′s.

In this part it will be shown that it must be possible to find some p′ ≤ s such that
p′ ∈ C. More specifically, it will be shown that an assignment µp′ can be constructed such
that µp′(i) ∈ Di(p

′) for all i ∈ N . To see this, note that for any bidder i ∈ N who only
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demands one package, the price decrease can always be made sufficiently small such that
Di(p

′) = Di(s). For any bidder i ∈ N for whom 0, x ∈ Di(s), where x ∈ {a, b, ab}, then
either the gross substitutes condition is violated in the case when x = ab as Di(p) = 0
for any p ≥ s where px > sx for some x ∈ ab, or it is possible to make the price decrease
sufficiently small such that x ∈ Di(p

′) for any such bidder. Note that µi(s) = x at any
µs ∈ A(s) for any such bidder i ∈ N as s ∈ P otherwise. Therefore, it is possible to
construct µp′ such that µs(i) = µp′(i) = x for any bidder i ∈ N discussed above. Moreover,
any bidder who is indifferent between x ∈ ab and ab at s must have µs(i) = ab at any
µs ∈ A(s) as p ∈ P otherwise. For any price decrease sufficiently small it follows that
Di(p

′) ⊆ Di(s
′). Hence, it is possible to let µp′(i) ⊆ µs(i) for any such bidder i ∈ N .

The only bidders left to consider are the ones who are indifferent between a and b. Note
that some such bidder must exist as #Na < qa and #Nb = qb for µ′s and #Na = qa and
#Nb < qb for µ′′s . Collect each such bidder in the set S. As µp′(i) ⊆ µs(i) for all i ∈ N \ S
and #Nx < qx for some x ∈ ab at s, it follows that, at p′, there are more copies of item a
and b to assign to the bidders in S than number of bidders contained in S. As each bidder
i ∈ S wishes to be assigned only one item at s and prices can always be lowered sufficiently
little such that Di(p

′) ⊆ Di(s) for any i ∈ S, there must exist some p′ where µp′(i) ∈ Di(p
′)

for all i ∈ S.
More specifically, let f i1 be the approximated indifference curve between item a and b

for any bidder i ∈ S and mi
1 its slope. let T = {mi

1 | i ∈ S} and as any mi
1 ∈ R+, the

elements in T can be ordered from smallest to greatest. Let k = #{i ∈ S | µ′s(i) = b}. As
#Na < qa and #Nb = qb for µ′s and #Na = qa and #Nb < qb, it must be that k ≥ 1. Pick
the kth element from T and denote the corresponding approximated indifference curve by
fk1 . As µi(p

′) = µi(s) for all i ∈ N \ S it follows that k is the number of copies of b which
are possible to assign to any bidder i ∈ S at p′. Furthermore, #S − k + 1 is the number
of copies of a which can be assigned at p′. By lowering prices along fk1 sufficiently little,
it must by price monotonicity be that (b, pb) �i (a, pa) for a maximum of k − 1 bidders
i ∈ S, (a, pa) �i (b, pb) for a maximum of #S− k bidders i ∈ S, and (a, pa) ∼i (b, pb) for at
least 1 bidder i ∈ S. As there are more copies of item a and b to assign to the bidders in
S than number of bidders contained in S at p′ and no bidder requires ab, it is possible to
let µp′(i) ∈ Di(p

′) for all i ∈ S. Therefore, µp′(i) ∈ Di(p
′) for all i ∈ N , which contradicts

the minimality of s.

Lemma 6 will be used in the proof of Proposition 3.

Lemma 6. For any two price vectors p and p′ where px > p′x and p′y ≥ py for x, y ∈ ab
and x 6= y, if for some i ∈ N , x ⊆ w for some w ∈ Di(p), then x ⊆ w′ for all w′ ∈ Di(p

′).

Proof. Let the price vector p′′ be defined as p′′j = max{pj, p′j} for all j ∈ {0, a, b}. Since
p′′x = px we know by gross substitutes that there exists some w ∈ Di(p

′′) such that x ⊆ w.
By price monotonicity (w, p′w) �i (w, p′′w) %i (o, p′′o) ∼i (o, p′o) for any o ∈ I for which x * o.
Therefore, x ∈ w′ for all w′ ∈ Di(p

′).

Proposition 3. If the gross substitutes condition is fulfilled for the approximated preference
relation of each bidder i ∈ N , then P forms a complete lattice.
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Proof. It will first be shown that if p′, p′′ ∈ P , then s ∈ P and then that h ∈ P as well.
Combining this with the fact that P is bounded from below by the seller’s reservation
prices and from above by some bidder’s report v, we can conclude that P forms a complete
lattice.

By definition p0 = 0 for any p, so pa and pb are the prices of interest. If #Nx < qx for
some x ∈ ab at some p′ ∈ P , then we must have px = rx for all p ∈ P . Therefore, for any
p′, p′′ ∈ P , s ∈ P . Now let 〈p′, µ′〉 and 〈p′′, µ′′〉 be two distinct approximated Walrasian
equilibria where p′ and p′′ are such that p′a > p′′a > ra and p′′b > p′b > rb. Hence, #Na = qa
and #Nb = qb for both µ′ and µ′′. Let µp be an assignment associated with the price vector
p. It will first be shown that µ′(i) = µ′′(i) for all i ∈ N and secondly that it is possible
to let µ′(i) = µ′′(i) = µs(i) = µh(i) for all i ∈ N . Therefore, 〈s, µs〉 and 〈h, µh〉 are two
approximated Walrasian equilibria.

If µ′(i) = a for any i ∈ N , then a ⊆ µ′′(i) by Lemma 6. In order to derive a contra-
diction, assume ab ∈ Di(p

′′), which by Lemma 6 implies that b ⊆ w for all w ∈ Di(p
′),

which is a contradiction. Hence, µ′(i) = a implies that µ′′(i) = a. Now assume µ′′(i) = a
and µ′(i) 6= a. Since #Na = qa and #Nb = qb under both µ′ and µ′′, there has to exist
some j ∈ N \ {i} such that either a ⊆ µ′(j) and a * µ′′(j), or b ⊆ µ′′(j) and b * µ′(j),
which we know by Lemma 6 does not exist. Therefore, µ′′(i) = a implies that µ′(i) = a.
If µ′(i) = ab, then a ⊆ µ′′(i) by Lemma 6, which, by using the same arguments as before,
implies that µ′′(i) = ab. By symmetry the above arguments apply for the case when a
and b, together with the assignments, are interchanged. The previous arguments together
imply that if µ′(i) = 0 then µ′′(i) = 0.

Now to the second part. For any i ∈ N for whom µ′(i) = µ′′(i) = y for any y ∈ {0, a, b}
we know by price monotonicity that (y, sy) %i (x, sx) for any x ∈ {0, a, b}. In order to derive
a contradiction assume that (ab, sa+sb) �i (y, sy). By gross substitutes a ⊆ w for some w ∈
Di(p

′′) and b ⊆ w for some w ∈ Di(p
′). From Lemma 6 it follows that ab = Di(p

′′) = Di(p
′),

which is a contradiction. Finally, for any i ∈ N for whom µ′(i) = µ′′(i) = ab, it follows by
price monotonicity that (ab, sa+sb) �i (0, 0), (ab, sa+sb) �i (ab, p′a+p

′
b) %i (b, p′b) ∼i (b, sb),

and (ab, sa+sb) �i (ab, p′′a+p′′b ) %i (a, p′′a) ∼i (a, sa). It is therefore possible to let µ(i) = ab.
Therefore, s ∈ P .

Lastly it will be shown that h ∈ P as well. For any i ∈ N for whom µ′(i) = µ′′(i) = y
for any y ∈ {0, a, b} we know by price monotonicity that (y, hy) %i (x, hx) for any x ∈ I.
If µ′(i) = µ′′(i) = ab, then a ∈ w and b ∈ w′ for some w,w′ ∈ Di(h) by gross substitutes.
Assume ab /∈ Di(h) and a, b ∈ Di(h). However, for any price vector p such that pa < ha
and pb = hb it follows by price monotonicity that for a price decrease sufficiently small,
b /∈ Di(p), which contradicts the gross substitutes condition. Thus, h ∈ P .

9 Appendix C: Proofs Related to the Process

For many of the proofs in this section, the following sets of packages are introduced: Let
Ca = {a, ab, {a, ab}}, Cb = {b, ab, {b, ab}} and Ca,b = {{a, b}, {a, b, ab}}. The reason for
this is that the approximated demand correspondence of any bidder who demands some
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package x 6= 0, at some p, is a subset of at least one of Ca, Cb, and Ca,b. Therefore, at any
price vector p, it is possible to collect any bidder who demands at least some package x 6= 0
into at least one of the following sets: Let Da(p) = {i ∈ N | Di(p) ∈ Ca}, Db(p) = {i ∈
N | Di(p) ∈ Cb}, Da,b(p) = {i ∈ N | Di(p) ∈ Ca,b}, and Dab(p) = {i ∈ N | Di(p) = {ab}}.
These sets will be very useful in many of the proofs in this section.

Proposition 4. For a given price vector p, there exists an assignment µ such that µ(i) ∈
Di(p) for all bidders i ∈ N if and only if KN(x, p) ≤ qx for all x ∈ I.

Proof. We start by showing the if part of Proposition 4: If there exists an assignment µ for
some price vector p such that µ(i) ∈ Di(p) for all i ∈ N , then KN(x, p) ≤ qx for all x ∈ I.

We know that KN(0, p) ≤ q0 for all p. Note that if Ki(a, p) = 1 for some i ∈ N , then
i ∈ Da(p). Thus, KN(a, p) = #Da(p). Since µ(i) ∈ Di(p) ∀i ∈ N , it is implied that
Da(p) ⊆ Na. As #Na ≤ qa by assumption, it therefore follows that KN(a, p) = #Da(p) ≤
#Na ≤ qa. KN(b, p) ≤ qb by symmetrical arguments.

We can also note that KN(ab, p) = #Da(p) + #Db(p) + #Da,b(p) since Ki(ab, p) = 1
for any i ∈ N whenever Di(p) ∈ Ca ∪ Cb ∪ Ca,b \ ab, Ki(ab, p) = 2 whenever Di(p) = ab,
and Da(p) ∩ Db(p) ∩ Da,b(p) = Dab(p). Since µ is such that µ(i) ∈ Di(p) for all i ∈ N
by assumption, it follows that Da(p) ∪ Db(p) ∪ Da,b(p) = Na ∪ Nb and Dab(p) ⊆ Na ∩ Nb.
Therefore, KN(ab, p) = #Da(p) + #Db(p) + #Da,b(p) ≤ #Na + #Nb ≤ qa + qb = qab.

We continue by showing the only if part of Proposition 4: If KN(x, p) ≤ qx for all x ∈ I at
some p, then there exists an assignment µ such that µ(i) ∈ Di(p) for all i ∈ N .

As KN(x, p) ≤ qx for all x ∈ I, we know from before that #Da(p) ≤ qa, #Db(p) ≤ qb
and #Da(p)+ #Db(p)+ #Da,b(p) ≤ qa+ qb. Assume that at some price vector p there does
not exist a µ such that µ(i) ∈ Di(p) for all i ∈ N , which implies that for all assignments
there exists at least one bidder i ∈ N such that µ(i) /∈ Di(p). Denote this bidder by k.
Note that we can always let µ(k) = 0 so k ∈ Da(p)∪Db(p)∪Da,b(p). Moreover, if µ(k) = ab,
then it is possible to remove items in order for µ(k) ∈ Dk(p). If there would exist a group
of bidders S ⊆ N for which µ(i) /∈ Di(p) for all i ∈ S, then the following arguments would
apply to each bidder i ∈ S individually.

We will focus our attention on an assignment, denoted µ, for which #Nx ≤ qx for
all x ∈ ab, and where each bidder j ∈ N \ {k} is matched to a minimal element, w.r.t
cardinality, of her demand correspondence. We will show, by way of contradiction, that
it is always possible to construct µ such that each bidder is assigned something which she
demands. As µ(k) 6= ab, and µ(j) = ab if and only if j ∈ Dab(p) for all j ∈ N \ {k} we
know that Dab(p) ⊇ Na ∩Nb.

Obviously, it cannot be that #Nx < qx for all x ∈ ab. Let x 6= y for x, y ∈ ab. There
are two cases to consider:

Case 1: #Nl = ql for all l ∈ {a, b}. We cannot have µ(k) = 0 because then Da(p) ∪
Db(p)∪Da,b(p) ⊃ Na ∪Nb and KN(ab, p) = #Da(p) + #Db(p) + #Da,b(p) > #Na + #Nb =
qa + qb = qab. Therefore, µ(k) = x and hence y ⊆ w for all w ∈ Dk(p), as we otherwise
would have µ(k) ∈ Dk(p). From this it follows that k ∈ Dy and as y * µ(k) it must either
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be that k ∈ Dab(p) ⊃ Na ∩Nb, in which case KN(ab, p) = #Da(p) + #Db(p) + #Da,b(p) >
#Na + #Nb = qa + qb = qab, or k ∈ Dy(p) \ Dab(p), which implies that there does not
exist a bidder j ∈ Da,b(p) such that y ⊆ µ(j). If this was true, it would be possible
to switch the assignment between bidder k and bidder j yielding µ(i) ∈ Di(p) for all
i ∈ N . As y * µ(j) for all j ∈ Da,b(p), and k ∈ Dy, it follows that Ny ⊂ Dy, and thus
KN(y, p) = #Dy(p) > #Ny = qy, which is a contradiction.

Case 2: #Nx < qx and #Ny = qy. Now we can always let µ(i) = x and if Nx = qx in
consequence of this, we are back in case 1. As µ(k) = x /∈ Dk(p) we know that y ∈ w for
all w ∈ Dk(p), and k ∈ Dy. As #Nx < qx it is implied that there does not exist a bidder
j ∈ Da,b(p) such that y ∈ µ(j) because then it would be possible to switch the assignment
between bidder k and bidder j. Therefore, Ny ⊂ Dy, and KN(y, p) = #Dy > #Ny = qy.

Lemma 1. O(p) has a unique minimal element with respect to cardinality denoted O∗(p).

Proof. By the construction of O(p) we know that g(x, p) = g(y, p) for all x, y ∈ O(p). Since
#0 < #a = #b < #ab, we need to show that a, b ∈ O∗(p) can never be true.

We will start by showing that if x ⊆ y for any x, y ∈ I, then Ki(x) ≤ Ki(y) for each
i ∈ N . To derive a contradiction, assume that x ⊆ y and Ki(x) > Ki(y) for some i ∈ N ,
which is equivalent to

min
w∈Di(p)

#(x ∩ w) > min
w∈Di(p)

#(y ∩ w)

Let w1 ∈ arg minw∈Di(p) #(x ∩w) and w2 ∈ arg minw∈Di(p) #(y ∩w). If w1 = w2 = w, then
#(x ∩ w) > #(y ∩ w) implies that x * y. If, on the other hand, w1 6= w2, then it must be
that #(x ∩ w2) ≥ #(x ∩ w1) > #(y ∩ w2), which in turn implies that x * y.

We will now show that Ki(ab, p) ≥ Ki(a, p) + Ki(b, p) for each i ∈ N . Since a ⊆ ab
and b ⊆ ab it follows, by the above, that Ki(ab, p) ≥ max{Ki(a, p), Ki(b, p)}. Assume that
Ki(ab, p) < Ki(a, p) + Ki(b, p) for some i ∈ N at some p. As Ki(a, p), Ki(b, p) ∈ {0, 1}
we must have that Ki(a, p) = Ki(b, p) = 1. However, Ki(a, p) = Ki(b, p) = 1 implies that
Di(p) = ab and thus that Ki(ab, p) = Ki(a, p) +Ki(b, p) for each i ∈ N .

Ki(ab, p) ≥ Ki(a, p) + Ki(b, p) for each i ∈ N implies that KN(ab, p) ≥ KN(a, p) +
KN(b, p) as well as g(ab, p) ≥ g(a, p) + g(b, p). Since g(0, p) = 0 for all p we have that if
O∗(p) = 0, then g(x, p) ≤ 0 for all x ∈ I. So, if a, b ∈ O∗(p), then g(a, p) = g(b, p) = s for
some s > 0 and g(ab, p) ≥ 2s by the arguments above. This implies that O(p) = O∗(p) =
ab, which is a contradiction.

Lemma 2. If ε(t) = 0 in step 2 of process 1, then ε(t) > 0 in step 3 of process 1.

Proof. By construction of Process 1, we know that 0 = O∗(p
t) if and only if t = T . So

assume that t < T , O∗(p
t) = x for some x ∈ I \ 0 and that ε(pt) = 0 in step 2. It will be

shown that at any pt there always exist some e > 0 and δ(pt) such that O∗(p
t + eδ(pt)) =

O∗(p
t), and hence ε(pt) > 0.

If x = O∗(p
t) ∈ ab, then by gross substitutes and price monotonicity it must be that

by only raising the price of item y, the demand for x is weakly increased and the demand
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for the other packages contained in I \ 0 are weakly decreased. As a consequence, the
aggregate requirement of x weakly increases as well. Therefore, if δ0(p

t) = 0, δx(p
t) = 1,

and δy(p
t) = ∞, then O∗(p

t + eδ(pt)) = O∗(p
t) for some e > 0 sufficiently small in step 3

of the process and there exists ε(t) > 0.
Assume O∗(p

t) = ab. The idea of this part of the proof is to construct a particular
price vector p′ ≥ pt and to show that the requirement for ab = O∗(p

t) is greater than for
any other package at p′. To simplify notation, let S = Da,b(pt) = {i ∈ N | Di(p) ∈ Ca,b}.
Furthermore, let qSx (p) = qx−KN\S(x, p) for any x ∈ ab at some p. Let p′ be a price vector
such that p′x > ptx for at least some x ∈ ab. Note that Ki(ab, p

t) = Ki(a, p
t) +Ki(b, p

t), for
any i ∈ N \ S at any pt and that for any p′ ≥ pt it is possible to make the price increase
sufficiently small such that Ki(ab, p

′) = Ki(a, p
′) + Ki(b, p

′) and Ki(x, p
′) ≥ Ki(x, p

t) for
any x ∈ I. Therefore, at any such p′ it must be that qSa (p′) ≤ qSa (pt) and qSb (p′) ≤ qSb (pt).
Moreover, for any i ∈ S we have Ki(ab, p

t) = 1, Ki(x, p
t) = 0 for any x ∈ I \ab. Therefore,

g(ab, pt) = #S − qSa (pt)− qSb (pt).
It will now be shown that for any p′ ≥ pt, where the price increase is sufficiently small,

Di(p
′) 6= {ab} for any i ∈ S. If ab /∈ Di(p

t) for any i ∈ S, then any such p′ ≥ pt can
be found by making the price increase sufficiently small. If Di(p

t) = {a, b, ab} however,
then Di(p

′) = {ab} would violate the gross substitutes condition. It can be noted that
pt is the price vector where the three approximated indifference curves, f1, f2, and f3,
intersect for bidder i ∈ S. If Di(p

′) = ab for some p′ ≥ pt, then p′x > ptx for all x ∈ ab
and we must by price monotonicity have that f2(p

′
a) = p′′b > p′b, and f3(p

′
b) = p′′a > p′a.

Therefore, m2 =
p′′b−p

t
b

p′a−pta
> m4 =

p′b−p
t
b

p′′a−pta
> 0. Let c be a price vector such that f2(ca) = cb and

ca + cb = vab. Since m2 > m4 it must be that f3(cb) = c′a > ca and Di(c) = {a, ab, 0}. Let
c′′ be a price vector such that c′′a = ca and c′′b = cb + γ for some γ > 0. Then we must have
Di(c

′′) = 0 for some γ > 0 sufficiently small as it is always possible to find c′′ such that
f3(c

′′
b ) = c′′′a > c′′a, c

′′
a + c′′b > vab, and f2(c

′′
a) = c′′′b > c′′b , which by price monotonicity implies

that (0, 0) ∼i (ab, vab) �i (ab, c′′a + c′′b ) �i (x, c′′x) for x ∈ ab. However, this contradicts the
gross substitutes condition as a * w for any w ∈ Di(c

′′).
As Di(p

′) 6= ab for any i ∈ S and p′ ≥ p, where the price increase is sufficiently small,
it must be possible to construct p′ such that Ki(ab, p

′) = 1, for any i ∈ S. Therefore,

0 < g(ab, pt) = #S − qSa (pt)− qSb (pt) ≤ #S − qSa (p′)− qSb (p′) = g(ab, p′).

The strict inequality follows from O∗(p
t) = ab and the weak inequality from the fact that

qSx (p′) ≤ qSx (pt) for x ∈ ab and some p′ ≥ pt. So, if qSx (pt) < 0 for all x ∈ ab, then
g(ab, p′) = #S − qSa (p′)− qSb (p′) > #S − qSx (p′) ≥ g(x, p′) and x ∈ ab. The weak inequality
follows from that Ki(x, p

′) ∈ {0, 1} for any i ∈ S. There are two cases two consider:
Case 1: qSa (pt) ≥ 0 and qSb (pt) ≥ 0. For g(ab, pt) > 0 it has to be that #S > qSa (pt) +

qSb (pt). As before, we have 0 < g(ab, pt) = #S − qSa (pt) − qSb (pt) ≤ g(ab, p′). Let mi
1

be the slope of f i1 for bidder i ∈ S, and note that f1(p
t
a) = ptb for all i ∈ S. Define

T = {mi
1 ∈ R | i ∈ S} and let n = qSa (pt) + 1. Pick the nth element from T , which we

denote mn
1 . Let δ0(p

t) = 0, δb(p
t) = mn

1 , and δa(p
t) = 1. By increasing the prices by

p′ = pt + eδ(pt) for some e > 0 sufficiently small, we must by price monotonicity have that
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(a, p′a) �i (b, p′b) for a maximum of qSa (pt) bidders who belong to S, (b, p′b) �i (a, p′a) for a
maximum of #S − qSa (pt) − 1 bidders who belong to S, and (a, p′a) ∼i (b, p′b) for at least
one bidder i ∈ S. Therefore,

g(a, p′) ≤qSa (pt)− qSa (p′)

<#S − qSb (pt)− qSa (p′)

≤#S − qSb (p′)− qSa (p′)

=g(ab, p′)

The first weak inequality follows from the fact that Di(p
′) 6= ab for any i ∈ S. The strict

inequality follows from #S−qSb (pt) > qSa (pt). Moreover, g(b, p′) ≤ #S−qSa (pt)−1−qSb (p′) <
#S − qSa (p′) − qSb (p′) = g(ab, p′). Hence, O∗(p

′) = ab, and there exist e, δ(pt) such that
ε(t) > 0 in step 3 of the process.

Case 2: qSa (pt) ≥ 0 and qSb (pt) < 0. For g(ab, pt) > 0 we need g(ab, pt) = #S − qSa (pt)−
qSb (pt) > −qSb (pt) = g(b, pt), or #S > qSa (pt). Moreover, #S > qSa (pt) ≥ qSa (p′) from before.
Let p′ be such that p′a = pta and p′b = ptb + γ. Then for some γ > 0 sufficiently small it
must by price monotonicity be that (a, p′a) �i (b, p′b) for all i ∈ S. Combining this with
Di(p

′) 6= ab for any i ∈ S we have, g(a, p′) = #S−qSa (p′) < #S−qSa (p′)−qSb (p′) = g(ab, p′),
and g(b, p′) = −qSb (p′) < #S − qSa (p′) − qSb (p′) = g(ab, p′) since #S > qSa (p′). Hence,
O∗(p

′) = ab, and there exist e, δ(pt) such that ε(t) > 0 in step 3 of the process. Symmetric
arguments can be used if qSb (pt) ≥ 0 and qSa (pt) < 0.

The proof of Theorem 1 will be decomposed into Lemma 7 and Lemma 9. Lemma 8
will aid in the proof of Lemma 9.

Lemma 7. pmin ≤ pT

Proof. It will be shown that for any p ≤ pmin, for which px < pminx for some x ∈ ab, it must
be that O∗(p) 6= 0. As the prices are bounded from below by the seller’s reservation prices
it is assumed that pminx > rx for at least some x ∈ ab. p is constructed such that px < pminx

for at least some x ∈ ab. Thus, p /∈ P .
If it is possible to construct some assignment µp at price vector p such that #Nx = qx

for any x ∈ ab, or alternatively #Nx < qx for any x ∈ ab for which px = rx, then there
must exist i ∈ N for whom µp(i) /∈ Di(p) as p ∈ P otherwise. p ∈ P would contradict the
minimality of pmin. By Proposition 4 it follows that KN(x, p) > qx for some package x ∈ I
and since KN(0, p) ≤ q0 for all p it must be that O∗(p) 6= 0.

Now assume, in order to derive a contradiction, that µp can only be constructed such
that #Nx < qx and px > rx for at least some x ∈ ab and that µ(i) ∈ Di(p) for all
i ∈ N . Then it must be possible to find a price vector p′ ≤ p where an assignment can
be constructed such that µ(i) ∈ Di(p

′) for all i ∈ N and #Nw = qw for any w ∈ ab
for which p′w > rw and #Nw ≤ qw for any w ∈ ab for which p′w = rw. To see this it
can be noted that, by price monotonicity, the demand for any w ∈ ab weakly increases
as pw is decreased. Therefore, by decreasing px to p′x it must be possible to find a price
vector p′ and an assignment such that either p′x > rx and #Nx = qx or p′x = rx and
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#Nx ≤ qx. Furthermore, the demand for the other item y ∈ ab, for which y 6= x, has
weakly decreased. Therefore, #Ny ≤ qy, p

′
y ≥ ry. Moreover, µ(i) ∈ Di(p

′) for all i ∈ N as
there would otherwise exist excess demand for item x, which could be eliminated by raising
its price, as there was no excess demand at p. If #Ny < qy and p′y > ry, then the price of
item y can be decreased in the same manner. By repeating this process, it must be possible
to find some p′ ≤ p, where an assignment can be constructed, such that µ(i) ∈ Di(p

′) for
all i ∈ N and #Nx = qx for any x ∈ ab for which p′x > rx and #Nx ≤ qx for any x ∈ ab
for which p′x = rx. This implies however that p′ ∈ P , contradicting the minimality of pmin.
There therefore exists i ∈ N such that µ(i) /∈ Di(p) and by Proposition 4 it follows that
KN(x, p) > qx for some package x ∈ I and since KN(0, p) ≤ q0 for all p it must be that
O∗(p) 6= 0.

For Lemma 8 let x 6= y for x, y ∈ ab.

Lemma 8. If for any two price vectors p and p′ where p′x > px, p′y = py, and y ⊆ w for
all w ∈ Di(p) and some i ∈ N , then y ⊆ w for all w ∈ Di(p

′)

Proof. By symmetry it is enough to consider when x = a and y = b. If b ∈ Di(p) for any
i ∈ N , then (b, p′b) �i (k, p′k) for all k ∈ I \ b by price monotonicity. If ab = Di(p), then
f2(pa) = p2b > pb by price monotonicity. If, to derive a contradiction, a ∈ Di(p

′), then

f2(p
′
a) = p′2b ≤ p′b = pb and m2 =

p′2b −p
2
b

p′a−pa
< 0. Let p′′ be a price vector where p′′a = pa and

p′′b = pb + γ for some γ > 0 sufficiently small such that Di(p
′′) = ab as well. As m2 < 0

there exists a price vector k, for which ka < p′a and kb = p′′b , where f2(ka) = k2b < kb and
hence (a, ka) �i (ab, kab). Moreover, as a ∈ Di(p

′) and ka < p′a and kb > p′b we must by
price monotonicity have (a, ka) �i (x, px) for x ∈ {b, 0} as well. Hence, Di(k) = a, which
contradicts the gross substitutes condition since b /∈ w for any w ∈ Di(l).

Now we will show that ab = Di(p) implies that (b, p′b) �i (0, 0). Assume (0, 0) %i (b, p′b),
which by price monotonicity implies that p′b = pb ≥ vb. For some price vector k such that
kb = pb + γ and ka = pa for some γ > 0 sufficiently small we must have Di(k) = ab
as well. Let k′ be a price vector where k′b = kb and k′a > ka kuch that k′b + k′a > vab.
From the previous arguments we know that a /∈ Di(k

′). Therefore, 0 = Di(k
′). This

however, violates the gross substitutes condition since b /∈ w for any w ∈ Di(k
′). Hence,

(b, kb) �i (0, 0), which concludes the proof.

Lemma 9. pT ≤ pmin

Proof. To derive a contradiction assume that pt ≤ pmin for some t < T but pt+1
x > pminx for

some x ∈ ab. Denote the unique minimal set in excess demand at time t by O∗(p
t). We

know that there must exist some t and e ∈ [0, ε(t)) such that p′(e) = pt + eδ(pt) ≤ pmin.
As e < ε(t), it follows that O∗(p

t) = O∗(p
′(e)) 6= 0. Let c(p) = {x ∈ ab | px = pminx } for

any p. Moreover, let c1 = O∗(p
′(e)) ∩ c(p′(e)) and c2 = O∗(p

′(e)) \ c1. We start by noting
that if g(x, p′(e)) > 0 for x ∈ ab, then KN(x, p) = #Dx(p′(e)) > qx. There are two cases
to consider:
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Case 1: c1 6= ∅. If g(c1, p
′(e)) > 0, then either c1 = ab, in which case pmin /∈ P , or c1 ∈

ab, which implies that KN(c1, p
′(e)) = #Dc1(p′(e)) > qc1 . As c1 ⊆ w for all w ∈ Di(p

′(e))
for all i ∈ Dc1(p′(e)), it follows by Lemma 8 that c1 ⊆ w for all w ∈ Di(p

min) for any such
bidder i as well. Therefore, KN(c1, p

min) ≥ KN(c1, p
′(e)) and hence g(c1, p

min) > 0, which
contradicts that pmin ∈ P .

Now assume that g(c1, p
′(e)) ≤ 0, which implies that c1 ∈ ab and O∗(p

′(e)) = ab. To
simplify let c1 = a and c2 = b. By symmetry, the following arguments can be used when
a and b are interchanged. It will now be shown that g(a, pmin) > 0. To see this we start
by noting that as a, b ∈ Di(p

′(e)) for all i ∈ Da,b(p′(e)), it follows that Ki(ab, p
′(e)) = 1 for

any such bidder i ∈ N . Therefore, it follows that g(ab, p′(e)) = #Da,b(p′(e)) + g(a, p′(e)) +
g(b, p′(e)) and we know that #Da,b(p′(e)) ≥ 1 since O∗(p

′(e)) = ab and g(a, p′(e)) ≤ 0.
Moreover, as O∗(p

′(e)) = ab we know that #Da,b(p′(e))+g(a, p′(e))+g(b, p′(e)) > g(b, p′(e))
or #Da,b(p′(e)) + g(a, p′(e)) > 0. By gross substitutes and price monotonicity it must be
that Ki(a, p

min) ≥ Ki(a, (p
′(e))) for all i ∈ N . In particular, since a, b ∈ Di(p

′(e)) for all i ∈
Da,b(p′(e)), it follows that Ki(a, p

′(e)) = 0 and by gross substitutes and price monotonicity
that Ki(a, p

min) = 1 for any such bidder i ∈ Da,b(p′(e)). As #Da,b(p′(e)) + g(a, p′(e)) > 0,
it must be that g(a, pmin) ≥ #Da,b(p′(e)) + g(a, p′(e)) > 0, which is a contradiction.

Case 2: c1 = ∅ and c(p′(e)) 6= ∅. As c1 = ∅ and c(p′(e)) 6= ∅ it must be that e, δ(pt) and
ε(t) are generated in step 3 of Process 1. Furthermore, c2 = O∗(p

′(e)) 6= ∅ and O∗(p
′(e)) 6=

ab because if O∗(p
′(e)) = ab, then c1 6= ∅. For simplicity we can let c2 = O∗(p

′(e)) = a
but symmetric arguments apply if c2 = b. Let p′′ be defined as p′′b = pminb = p′b(e) and
p′′a = p′a(e) + γ for some γ > 0 sufficiently small such that p′′a < pmina . As e was generated
in step 3 and O∗(p

t) = a = O∗(p
′(e)), we know that δ0 = 0, δa(p

t) = 1, and δb(p
t) = lb(t),

where lb(t) = min{δb(pt) ∈ R+ | δ0(pt) = 0, δa(p
t) = 1, and ε(t) > 0}. More importantly,

as ε(t) = 0 in step 2 of Process 1, O∗(p
′(e)) 6= O∗(p

′′).
Note that as p′′b = pminb and p′′a < pmina , we know by Lemma 7 that O∗(p

′′) 6= 0. If
O∗(p

′′) = b, then pmin /∈ P as g(b, pmin) > 0 by the gross substitutes condition. Thus,
O∗(p

′′) = ab, which implies that g(ab, p′′) > g(a, p′′) or #Da,b(p′′) + g(a, p′′) + g(b, p′′) >
g(a, p′′) and hence #Da,b(p′′) + g(b, p′′) > 0. Since a, b ∈ Di(p

′′) for all i ∈ Da,b(p′′) we
know by price monotonicity that a /∈ Di(p

min) and by Lemma 8 that b ∈ Di(p
min) for

all i ∈ Da,b(p′′) as well. Furthermore, Ki(b, p
min) ≥ Ki(b, p

′′) for any i ∈ N \ Da,b(p′′).
Therefore, g(b, pmin) > 0, and/or g(ab, pmin) > 0, which contradicts that pmin ∈ P .

Theorem 1. Process 1 always terminates at pT = pmin.

Proof. Lemma 7 and Lemma 9 together imply Theorem 1.
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