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Abstract

This study presents a model for the joint dynamics of power price, temperature, and
hydrological balance, with a view towards scenario analysis. Temperature is a major
demand-side factor a�ecting power prices, while hydrobalance is a major supply-side
factor in power markets dominated by hydrological generation, such as the Nordic
market. Our time series modelling approach coupled with the skew-Student distri-
bution allows for interrelations in both mean and volatility, and accommodates most
of the discovered empirical features, such as periodic patterns and long memory. We
�nd that in the Nordic market, the relationship between temperature and power
price is driven by the demand for heating, while the cooling e�ect during summer
months does not exist. Hydrobalance, on the other hand, negatively a�ects power
prices throughout the year. We demonstrate how the proposed model can be used
to generate a variety of joint temperature/hydrobalance scenarios and analyse the
implications for power price.
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1. Introduction

In this study, we develop a model for the joint evolution of the spot electrical

power price, outdoor temperature, and hydrological balance. The model is relevant
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for power markets with a large share of hydrological generation, such as the Nordic

market, and o�ers a wide range of opportunities for scenario analysis.

Consider the following example illustrating the fundamental relationship between

power price, temperature, and hydrobalance. Energy producers and retailers plan

their business activities based on the estimated demand for power (load) for a certain

time horizon. During the heating seasons, the load is driven to a large extent by

temperature. If a particular season is actually colder than expected, more power

than planned will be consumed for heating purposes. Temperature a�ects demand,

but to understand the implications for prices, we also need to consider the supply

side of price formation. We de�ne hydrobalance as the measure of the potential

capacity of a hydrological power generation system. If a year has been relatively

wet, with lots of precipitation, i.e., hydrobalance is high, this excess demand may

be covered at a low cost without moving the price. On the contrary, a combination

of low temperature and low hydrobalance is a major source of price risk in power

markets. Therefore, it is natural to model these three variables as a system.

Both temperature modelling and hydrological modelling are large research areas

on their own. Among the literature related to power markets, Halldin (2005) studies

modelling of the time series of water in�ows and stochastic optimization of a hydro-

power system. Green (2015) shows that the intra-daily pro�les of the Nord Pool

system price are a�ected by hydrological balance and develops an hourly forward

curve model with hydrological dependence. Bivariate power-temperature models

have been developed in Benth et al. (2012) and Caporin et al. (2012), for the purpose

of pricing an exotic type of weather derivatives called energy quanto options. This

study adopts an econometric modelling approach, similar in certain respects to that

of Caporin et al. (2012), introducing the third dimension of hydrobalance into the

system.

We analyse both the univariate properties of our three data series, and the depen-

dencies between them in detail. The model is identi�ed within the Vector Autoregres-

sive Fractionally Integrated Moving Average (VARFIMA) framework, coupled with

a time-varying covariance process of Baba-Engle-Kraft-Kroner (BEKK) type. The

need for fractional integration is motivated by long memory, observed in all series.
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In addition to the stochastic part, our model contains a deterministic component

capturing the yearly periodic patterns in power prices and temperatures. Due to the

highly pronounced non-normal statistical properties of our data, we apply a �exi-

ble multivariate skew-Student distribution proposed in Bauwens and Laurent (2002,

2005), while treating the normal distribution as the benchmark for comparison. The

model allows for interrelations, both in means and volatilities, restricted such that

power price can be a�ected by temperature and hydrobalance, but not the other way

around.

We �nd that in the Nordic market, the relationship between temperature and

power price is driven by the demand for heating, while the cooling e�ect during sum-

mer months does not exist, likely due to mild temperature conditions. Hydrobalance,

on the other hand, has a signi�cant inverse e�ect on power prices throughout the

year. Further, estimation results indicate the existence of volatility spillover e�ects

from hydrobalance and temperature to power. Correlations between power and tem-

perature show seasonal patterns, ranging from −0.5 during winter periods to 0 during

summer periods. Correlations between power and hydrobalance oscillate around an

average level of −0.25. Finally, the simulation exercise reveals the bene�ts of skew-

Student distribution in reproducing the distinct non-Gaussian properties of both

power price and meteorological series.

The remainder of the study is organized as follows. Section 2 dscribes the data

and the results of preliminary data analysis. Section 3 presents the modelling frame-

work, as well as the identi�cation and estimation procedure. The empirical results

are discussed in Section 4. Section 5 addresses the simulation from the model and

provides a scenario analysis example, which demonstrates how our model can be uti-

lized to generate a variety of joint temperature/hydrobalance scenarios and analysing

the implications for power prices. Section 6 contains a summary and concluding re-

marks.

2. Data and preliminary analysis

This section describes the data and the results of preliminary data analysis, which

lays the foundation for our choice of modelling framework. We �rst investigate the
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properties of the univariate series that we want the model to reproduce, and then

discuss the desired dependence structure.

2.1. The dataset

Our dataset consists of daily observations of the power price series, the tempera-

ture series, and the hydrobalance series. Since the model is designed speci�cally for

power markets with a large share of hydrological generation, we use Nordic market

data.1 The sample period spans from January 1, 2008, to February 21, 2016.

We obtain the power price data from the Nordic power exchange, the Nord Pool.

The Nord Pool Elspot is the spot market where agents trade power on an auction

basis for physical delivery during each hour of the following day, which is why it

is often referred to as the day-ahead market. The daily spot power price is the

arithmetic average across 24 hourly prices, and is quoted in EUR/MWh. Being

the common marketplace for the Nordic (Denmark, Finland, Norway, and Sweden)

and the Baltic (Estonia, Latvia, and Lithuania) countries, Nord Pool is divided

into a number of bidding areas, which can have di�erent prices in the presence of

transmission constraints. In addition to these area prices, all participating countries

share a common system spot price, calculated under the assumption of unconstrained

transmission capacity. In this study, we consider the Nord Pool system spot power

price since it is the reference price for trading and clearing the majority of �nancial

contracts.

The temperature and hydrobalance data are obtained from Thomson Reuters.

We use the daily average temperature (DAT) in Sweden, which is the population-

weighted average across a basket of several cities. Alternatively, we could consider

the average temperature across all Nord Pool area countries, but since the Baltic

countries joined the market during 2010 � 2013, it is more straightforward to use a

single country as a proxy for the whole region. This does not lead to any loss of

generality because temperature series in the individual Nordic and Baltic countries

1Hydro power is the largest generation source in terms of installed capacity in the Nordic power
market. According to the Nord Pool, in a year with normal precipitation, hydro power accounts
for half of Nordic countries' demand (98% in Norway, in particular).
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are highly correlated, and Sweden would have had the largest population weight in

the index anyway. The daily average temperature is the average of the minimum

and the maximum temperature during a given day measured in degrees of Celsius.

Finally, the hydrobalance series represents the deviations of the total hydrolog-

ical resources from the seasonal normal level measured in terms of energy capacity

(TWh). The total hydrological resources are de�ned as the sum of the water reser-

voir content, the snow pack, and soil water, and re�ect the available capacity of the

hydro-power system. The seasonal normal levels of the hydrological resources for

each day of a year are computed by Thomson Reuters based on the 1981 � 2005 pe-

riod, and thus account for recent weather trends. Consequently, a positive (negative)

hydrobalance value on a given day indicates that the hydrological condition is wetter

(drier) than it has been on average for the same day of a year during 1981 � 2005.

Most hydrological data are usually available at a weekly granularity, but Thomson

Reuters provides daily Nordic hydrobalance series starting from 2008. This series

contains more fundamental information than if we were to interpolate between the

weekly observations, which motivates our choice of the sample period start.

2.2. Data analysis

Figure 1 plots the power price series along with the �tted seasonal mean function

given by Eq. (1) below.
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Figure 1: Time series of Nord Pool power system spot prices.

We can clearly see a decreasing trend, as an increasing amount of low marginal

cost wind, solar, and biomass generation displaces coal and gas technologies. Another

important feature is yearly seasonal patterns with higher prices during winter periods

related to demand for heating and shorter day-light length. Seasonal patterns can be

captured by a periodic function, such as sine or cosine. In addition, day-of-the-week

e�ects in power prices have been widely documented, with lower prices observed on

weekends and holidays due to limited business activity (see, e.g., Lucia and Schwartz,

2002). Therefore, we choose the following speci�cation for power seasonal mean at

time t, denoted Λ1,t:

Λ1,t = λ1,1 + λ1,2 cos(
2π

365
(t− λ1,3)) + λ1,4t+ λ1,5Dt, (1)

where λ1,i, i = 1, ..., 5, are the parameters to estimate, t is time measured in days,

and Dt is a dummy variable taking a value of 1 if day t is a non-business day (i.e.,

a weekend or a holiday), and 0 otherwise. λ1,1 represents the overall (non-seasonal)

average price level, λ1,2 is the amplitude of the mean price, and λ1,3 is the phase

angle. The amplitude of a cosine wave re�ects how large the distance between peaks

and troughs is. A phase angle shifts the time to adjust for the fact that yearly
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maximum and minimum mean prices do not necessarily have to occur on January 1

and July 1, respectively. Note that the period of oscillation is equal to one year, or

365 days, ignoring leap years.

A closer look at Figure 1 reveals that power prices can have large upward spikes,

followed by fast mean reversion. Spikes typically occur during winter seasons if high

demand for power coincides with an unexpected supply-side shock, like an outage at a

major power plant. It is worth noting that spikes are relatively less dramatic in power

markets with a large share of hydro generation, such as the Nordic market, since

water reservoirs can serve as a safety bu�er against unforeseen imbalances between

supply and demand. This, of course, heavily depends on hydrological conditions and

whether there is enough excess capacity in the hydro-power system to provide this

sort of safety cushion.

The temperature series is plotted in Figure 2, along with the �tted seasonal mean

function given by Eq. (2) below.
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Figure 2: Time series of daily average temperature in Sweden.
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We adopt the following speci�cation for temperature seasonal mean at time t,

denoted Λ2,t:

Λ2,t = λ2,1 + λ2,2 cos(
2π

365
(t− λ2,3)), (2)

where λ2,1 is the overall (non-seasonal) average level of the series, λ2,2 is the amplitude

of the mean temperature, and λ2,3 is the phase angle. Alaton et al. (2002) document

a small yet statistically signi�cant increasing linear trend in Stockholm temperatures

during 1957 � 1997, which is attributed to global warming and urbanization. We do

not �nd such an e�ect in our sample, probably since we are looking at a much shorter

time span. Since our model is not meant for multi-year forecasts, we omitted the

linear trend term. Benth and �altyt
e-Benth (2005) reach the same conclusion while

examining the Norwegian temperature data during 1990 � 2003.

We form de-seasonalised power price and de-seasonalised temperature series by

subtracting from the original series Λ1 and Λ2, respectively. Further analysis in this

section is concerned with the properties of de-seasonalised series.

Finally, we examine hydrobalance. Note that hydrobalance is a series of devia-

tions from the normal state, and therefore should have a long-run mean level of zero,

assuming that the chosen normal state is representative of recent dynamics, or stable

over long periods of time. However, when looking at shorter horizons, the sample

mean can move away from zero, as is the case in our sample. As Figure 3 shows, dry

periods are more common than wet periods during the sample.

We can also see how extremely persistent hydrological condition is: once a trend

is established, it might take months for hydrobalance to revert back to zero. It is

also fairly uncommon for the series to change signs within a single year; therefore,

it makes sense to classify the whole years as `wet' or `dry'. Nevertheless, it is by no

means binary, and a wide range of possible scenarios are likely. The hydrobalance

series in itself is not seasonal, although the total hydrological resources do exhibit

strong yearly seasonal patterns, with water reservoirs being gradually �lled after the

spring �ood and melting of the snow pack.
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Figure 3: Time series of daily Nordic hydrological balance.

Table 1 contains the results of stationarity tests.

Table 1: Stationarity tests.

Power price Power log-price Temperature Hydrobalance

ADF −5.33∗∗∗ −6.48∗∗∗ −14.35∗∗∗ −2.27
KPSS 0.39∗ 0.33 0.36∗ 0.81∗∗∗

Sample size 2974 2974 2974 2974

Note: The table reports the results of stationarity tests. ADF refers to the Augmented Dickey-Fuller test with the
null hypothesis of a unit root. KPSS refers to Kwiatkowski et al.'s (1992) test with the null of a stationary I(0)
process. Stationarity tests for power price, log-price, and temperature were applied to de-seasonalised series. The
number of lags in the ADF tests were selected based on Schwartz Information Criterion. KPSS tests used the Bartlett
kernel with Newey-West automatic bandwidth selection. Superscripts *, **, and *** denote statistical signi�cance
at the 10%, 5%, and 1% levels, respectively.

The presence of a unit root can be strongly rejected based on the Augmented

Dickey-Fuller test for all series except hydrobalance. Interestingly, the KPSS test

with the opposite null hypothesis of stationarity can also be rejected for power price

and temperature series, although at the 10% signi�cance level only. Haldrup and

Nielsen (2006) report similar results in conducting a wide range of stationarity tests
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on Nordic power prices, showing that neither I(0) nor I(1) processes seem to be

appropriate. Let us get further insights into the time series properties of our data

by examining Figure 4, which plots the sample autocorrelation functions (ACFs) for

de-seasonalised power price, de-seasonalised temperature, and hydrobalance.

We can see slight peaks in power price ACF at lags 7 and 14, which indicate

the presence of weekly seasonal e�ects not captured by Λ1. Hydrobalance shows

an extremely high degree of persistence in the autocorrelation function, typical for

I(1) processes. Both power price and temperature show a slow (hyperbolic) decay

in autocorrelations that cannot be captured by traditional Autoregressive Moving

Average (ARMA) models. This type of behaviour is known as long memory, or

long-range dependence.
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Figure 4: Sample autocorrelation functions.

Saying that a given process has long memory means that the e�ect of a single

shock is extremely persistent. However, unlike in the case of a random walk, per-

sistence can be combined with mean-reversion in long-memory models. There is no

reason to assume that any of the series in question could wander arbitrarily away from
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their fundamental mean levels, and therefore, a model that enforces mean-reversion

while allowing high shock persistence appears to be a good choice.

Figure 5 illustrates the daily changes in de-seasonalised power log-price (i.e., log-

returns), de-seasonalised temperature and hydrobalance. We can see pronounced

clustering e�ects in power volatility, and seasonal patterns in temperature volatility

with peaks during winter periods. Daily hydrobalance �uctuations have notable

positive skewness, which suggests the need for a non-symmetric distribution. In

addition, the graph reveals a frequent occurrence of extreme observations in power

log-returns.
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Figure 5: Time series of daily changes.

2.3. Relationship between power price, temperature, and hydrobalance

In the previous subsection, we investigated the properties of power prices, tem-

perature, and hydrobalance separately. We now discuss how they are related, and

the kind of dependence structure we want our model to impose.

Temperature is the main demand-side stochastic factor a�ecting power price.

Temperature determines demand for heating during the winter periods and demand
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for cooling during the summer periods. Ebbeler, Benth and Kiesel (2014) �nd that

the correlation between de-seasonalised temperature and German power spot price

is negative in the winter months, and positive, though lower in magnitude, in the

summer months. Seasonal e�ects of this kind can be accommodated in the linear

model, either by allowing the temperature coe�cient in the power mean equation

to take di�erent values during cooling and heating seasons, or by having a single

temperature coe�cient for the entire sample and an additional coe�cient for heating

seasons only. We test both speci�cations by regressing de-seasonalised power log-

returns on de-seasonalised temperature and �nd that there is no extra heating season

e�ect. In fact, temperature has no e�ect on power evolution during summer months

in our sample, so one could argue that the entire e�ect is driven by demand for

heating. When considering October � March periods only, the estimated coe�cient

is negative and very close to the coe�cient for the whole sample period. Thus, we

conclude that Nordic summer temperatures are too mild to generate any signi�cant

cooling demand e�ect in the power market, and therefore, a single coe�cient for each

temperature lag in the power mean equation is su�cient.

Halldin (2005) discussed the inverse relationship between the Nordic power price

and the hydro reservoir level in the context of the stochastic optimization of a hydro-

thermal power system. We now compare the Nord Pool system prices under di�erent

hydrological conditions, but the same demand conditions. Here, we use the Nord Pool

consumption data in addition to the data described previously. Figure 6 presents a

scatterplot of power prices against power consumption, where we group observation

pairs depending on the hydrobalance level. The red dots represent the lower quartile

of hydrobalance, i.e., the driest 25% of days during the sample period. The blue

crosses, on the other hand, mark the upper quartile of hydrobalance, i.e., the wettest

25% of days.
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Figure 6: Power price versus power consumption scatterplot.

It is evident that given the same consumption, power price is generally higher

under dry hydrological conditions. This is explained by the fundamentals of power

price formation: as less hydro power is available, more generation technologies with

higher marginal costs are utilised. In addition to a higher average price level, dry

hydrological conditions lead to an increased probability of extreme prices. Additional

regression analysis reveals that the relationship between power price and hydrobal-

ance can be approximated su�ciently well by a single linear term, and there seems

to be no motivation for including any non-linear e�ects.

To summarize, we would like the model to allow temperature and hydrobalance

to in�uence the power price dynamics, but not the other way round. We expect a

reasonable model to produce negative correlations between power and hydrobalance.

Further, we expect the correlations between power and temperature to be negative

during the heating seasons and close to zero otherwise.

3. The model

This section presents the model for the joint evolution of power price, tempera-

ture, and hydrobalance. We �rst describe the model in its general form, and motivate
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how it is expected to capture the numerous features discovered in the preliminary

analysis. Further, we discuss the model identi�cation and estimation methodology.

3.1. General framework

3.1.1. Conditional mean

Considering all of the theoretical and empirical arguments outlined in Section 2,

we suggest a model of the mean evolution of the system within the Vector Autore-

gressive Fractionally Integrated Moving Average (VARFIMA) framework. Univariate

ARFIMA processes are a well-known class of long-memory models, introduced by

Granger and Joyeux (1980) and Hosking (1981) as a generalization of the traditional

ARIMA (p, d, q) model, which allows the di�erence parameter d to take fractional

values. Beran (1994) and Palma (2007) discuss the statistical properties and infer-

ence for long-memory processes in detail. Prior to becoming a subject of interest

for econometricians, the fractional behaviour of certain time series was extensively

studied in hydrology and climatology. The �rst published papers describing how

to test and model the long-range dependence date back to the 1950s, and are con-

cerned with modelling the in�ows of the river Nile (see Hurst, 1951).2 Brody et al.

(2002) document fractional behaviour in the English temperature series. Haldrup

and Nielsen (2006) explain that I(d) processes with fractional d �t the power price

data well in the presence of long memory e�ects. Similar to this study, Caporin et

al. (2012) apply the VARFIMA framework to a joint model of power prices and

temperatures.

We denote the power log-price series by x1,t, the temperature series by x2,t, and

the hydrobalance series by x3,t. Their joint evolution is governed by the following

dynamic system:

Φ(L)∆(L)

x1,t − Λ1,t

x2,t − Λ2,t

x3,t

 = Θ(L)

ε1,t

ε2,t

ε3,t

 , (3)

2Hurst was an English civil servant sent to Egypt as a hydrological consultant to predict how
much the Nile �oods from year to year. He developed rescaled range statistics, which became known
later as the Hurst's exponent (H), and is related to the fractional di�erence parameter d.
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Φ(L) = I −
p∑
j=1

φ
j
11 φj12 φj13

0 φj22 0

0 0 φj33

Lj, Θ(L) = I +

q∑
k=1

θ
k
11 θk12 θk13

0 θk22 0

0 0 θk33

Lk,

where Φ(L) is a restricted vector autoregressive (VAR) polynomial of order p, with

L denoting the lag operator (Ljxt = xt−j), and I denoting a 3 × 3 identity matrix.

∆(L) is a diagonal long-memory matrix with a typical diagonal element (1−L)di , di
is a fractional di�erence parameter for variable i; Θ(L) is a restricted vector moving

average (VMA) polynomial of order q; (ε1,t, ε2,t, ε3,t)
′ is the vector of innovations; and

�nally, Λ1,t and Λ2,t are the seasonal mean functions given by Eq. (1) and Eq. (2),

respectively. Recall that hydrobalance is de-seasonalised a priori, representing the

deviations of the total hydrological resources from the seasonal mean level. Φ(L) and

Θ(L) are restricted such that temperature and hydrobalance can a�ect power prices,

while the opposite is not possible.3 Note that in the process of lag order selection,

we will restrict Φ(L) and Θ(L) even further to achieve the highest possible sparsity

while retaining the essential e�ects. The parameters di determine the long-range

behaviour of the series, while the parameters in Φ(L) and Θ(L), together with the

lag order p and q, determine the short-range properties.

The di�erence operator (1 − L)d, for any real d, is an in�nite linear �lter given

by the following binomial expansion:

(1− L)d =
∞∑
k=0

(
d

k

)
(−1)kLk, (4)

with the binomial coe�cients
(
d
k

)
= d!

k!(d−k)!
= Γ(d+1)

Γ(k+1)Γ(d−k+1)
, where Γ(·) denotes the

Gamma function. Hosking (1981) shows that under certain assumptions ensuring

stationarity and invertibility, a fractional process has in�nite moving average and

autoregressive representations with coe�cients based on the binomial expansion of

the di�erence operator. In practice, the truncated versions of these representations

3It is reasonable to allow temperature to in�uence the evolution of hydrobalance in the mean
equation. However, since the primary focus of this study is power price dynamics, we do not explore
the e�ect of temperature on hydrobalance.
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are often estimated with approximate maximum likelihood methods. Not all fraction-

ally integrated processes have long memory. An I(d) process shows the long-memory

property in the form of hyperbolic autocorrelation decay rate only if d > 0. Further,

d < 1
2
corresponds to a stationary process with a �nite variance and an integrable

spectral density. For the range 1
2
≤ d < 1, an I(d) process is not stationary, but

still mean reverting, and we can de�ne its spectral density in a more general form,

although not integrable (see Beran, 1994, for details). Finally, d > 1 leads to a non-

stationary and non-mean-reverting case with long memory. Note that we can reduce

the case of d > 1 to one of the cases mentioned above by taking the appropriate

number of integer di�erences (e.g., if xt is I(1.2), then (1 − L)1xt = xt − xt−1 is

I(0.2)).

3.1.2. Conditional covariance

The innovation process in our model follows a conditional distribution with zero

mean and time-varying covariance matrix Ht:

(ε1,t, ε2,t, ε3,t)
′ | ωt−1 ∼ D(0, Ht), (5)

where ωt−1 denotes the information set at t − 1, which constitutes all past obser-

vations. The importance of modelling the time-varying volatility both in �nancial

and meteorological data is an established fact. There is far less consensus, however,

on what the best way to do this is, and the choice of model is often driven by the

speci�cs of the dataset and the application in mind. Previous studies on tempera-

ture modelling suggest that temperature volatility has yearly cycles, similar to the

mean. Benth and �altyt
e-Benth (2005, 2007) calibrate the truncated Fourier series to

the daily temperature residuals. Campbell and Diebold (2005) propose conditional

volatility dynamics for temperature that combines a seasonal component captured

by Fourier series and a cyclical component captured by a Generalized Autoregressive

Conditional Heteroskedasticity (GARCH) process. Including a periodic component

in the volatility process seems to be relevant for meteorological series. However, a

very limited number of multivariate volatility models allow for inclusion of exogenous

variables and deterministic terms, mostly due to the excessive parameter restrictions
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required to guarantee positive semi-de�niteness of the covariance matrix. In the

setup most similar to ours, Caporin et al. (2012) model conditional variances of

power and temperature by long-memory log-GARCH processes with deterministic

components, and model conditional correlations separately. They mention that their

approach to modelling correlations cannot be generalized to systems of a dimension

higher than two.

In this study, we specify the evolution of the full covariance matrix directly using

the multivariate GARCH framework of the Baba-Engle-Kraft-Kroner (BEKK) type

de�ned in Engle and Kroner (1995). Following the multivariate GARCH literature,

the vector of model error terms from Eq. (3) is written as:

εt = H
1/2
t zt, (6)

where zt is a 3× 1 vector of independently identically distributed (i.i.d.) innovations

with zero mean and unit variance, and H1/2
t is the 3×3 square root of the conditional

covariance matrix, which imposes the desired dependence structure.

We assume that the conditional covariance matrix Ht follows a BEKK(1,1) pro-

cess:

Ht = C ′C + A′εt−1ε
′
t−1A+B′Ht−1B, (7)

where A, B, and C are 3× 3 parameter matrices, C is lower triangular, and εt−1 is

the 3× 1 vector of innovations in Eq. (3).

An important advantage of the BEKK model is that Ht is positive semi-de�nite

by construction. In addition, the o�-diagonal elements in the A and B matrices have

immediate interpretations in terms of the cross-variable volatility spillover e�ects.

Due to the nature of our series, we restrict some of these o�-diagonal elements to

zero. In particular, we rule out any cross-e�ects to the temperature series and allow

temperature, but not power, to a�ect hydrobalance.

3.1.3. Distributional assumptions

We complete the model framework with a speci�cation of the joint distribution

of the i.i.d. innovation vector zt in Eq. (6).
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Despite the wide acknowledgement that �nancial data series exhibit heavy tails

and skewness, the normal distribution is still dominant in the modelling literature for

several reasons. First, it is convenient to resort to the asymptotic properties of the

Quasi-Maximum Likelihood (QML) estimator, which is consistent even if the true

conditional distribution of innovations is not normal, provided that the conditional

mean and variance models are correctly speci�ed. Second, the normal distribution

often allows for closed-form pricing and hedging of derivative assets while introducing

any non-normal dynamics requires computationally intensive numerical methods to

price even standard derivatives in most cases.

Temperature series, on the other hand, can be much better approximated by the

normal distribution than any price series. Most of the temperature modelling papers

we referred to (Alaton, 2002; Brody et al., 2002; Campbell and Diebold, 2005) rely on

the normal distribution assumption for the residuals. However, Benth and �altyt
e-

Benth (2005) show that normality is rejected for some of the Norwegian temperature

data and propose to apply the generalized hyperbolic distribution family. A closer

look at Figure 2, which plots the Swedish temperature series, reveals that extreme

deviations from the seasonal mean are quite common, especially in the winter periods.

Recall that it is those extreme values, and not the average dynamics, that give rise

to excess power demand and are of primary interest for any risk management or

production planning purposes.

Finally, hydrological time series are known to be signi�cantly positively skewed

(see Helsel and Hirsch, 2002), which is also the case with our hydrobalance data, as

con�rmed by Figure 5. Considering all of the arguments above, we suggest using

a �exible heavy-tailed and skewed distribution while keeping the normal distribu-

tion as the benchmark for comparison. The multivariate skew-Student distribution

with independent components of Bauwens and Laurent (2002, 2005) appears to be

an excellent choice, since it allows the univariate marginal distributions to have in-

dividual skewness and tail properties. Furthermore, this distribution is relatively

straightforward to augment with GARCH-type dynamics.

In this study, we specify the multivariate skew-Student distribution for the vector

of standardized innovations zt in Eq. (6). Following Bauwens and Laurent (2002),
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a k × 1 random vector zt is standard multivariate skew-Student distributed with

independent components if its probability density function is given by:

f(zt) =

(
2√
π

)k  k∏
i=1

ξisi
1 + ξ2

i

Γ
(
υi+1

2

)
Γ
(
υi
2

)√
υi − 2

(
1 +

κ2
i,t

υi − 2

)− 1+υi
2

 , (8)

where

κi,t = (sizi,t +mi) ξ
−Ii,t
i , (9)

and

Ii,t =

{
1 if zi,t ≥ −mi

si

−1 if zi,t < −mi
si

, (10)

with skewness parameters ξ = (ξ1, ..., ξk) and degrees of freedom parameters υ =

(υ1, ..., υk) for υi > 2, and Γ(·) denoting the Gamma function. The constants mi =

mi (ξi, υi) and si = si (ξi, υi) are the means and standard deviations of the non-

standardized skew-Student density, respectively, de�ned by:

mi (ξi, υi) =
Γ
(
υi−1

2

)√
υi − 2

√
πΓ
(
υi
2

) (
ξi −

1

ξi

)
, (11)

s2
i (ξi, υi) =

(
ξ2
i +

1

ξ2
i

− 1

)
−m2

i . (12)

ξi = 1 corresponds to the symmetric density, while the thickness of the tails

is decreasing in υi. Note that the standardized multivariate normal density is the

limiting distribution of f(zt) in Eq. (8), when ξi = 1 and υi →∞.

3.2. Model identi�cation and estimation procedure

Long-memory model estimation is a well-addressed area, and many estimation

methods have been proposed in the literature. Most are based on either a time do-

main or frequency domain representation of the density function. The time domain

procedures include various implementations of exact maximum likelihood, such as

the Durbin-Levinson algorithm and state space methods, as well as a number of

approximate likelihood methods based on truncated versions of autoregressive and
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moving average representations of long-memory processes (see, e.g., Hasslett and

Raftery, 1989). The frequency domain procedures include Whittle estimators and

various semiparametric methods, and are based in one way or another on the calcu-

lation of the periodogram of the series using Fast Fourier Transform (FFT). These

methods o�er signi�cant computational advantage over the time domain methods,

but at the cost of lower precision of estimates. In this study, we estimate all model

parameters jointly in the time domain using exact maximum likelihood. However,

model complexity requires us to proceed in several steps.

First, we estimate the parameters in Λ1 and Λ2 using the least squares method.

Subtracting these functions from the original power log-price and temperature ob-

servations yields the de-seasonalised series, which are the input to the next step.

The second step is to get the initial estimates of the fractional di�erence parame-

ters. We would like to get a consistent estimate of the degree of fractional integration

in the series without making any prior assumptions about the short-range proper-

ties. This can be achieved by using a semiparametric estimation method, which does

not require speci�cation of the parametric model and relies only on the assump-

tion about the shape of the spectral density of the time series. The most common

semiparametric methods to estimate long-memory parameters are local Whittle (see

Künsch, 1987, and Robinson, 1995a), and log-periodogram regression (see Geweke

and Porter-Hudak, 1983, and Robinson, 1995b). However, as Shimotsu and Phillips

(2005) point out, these estimators are inconsistent for d > 1, and discontinuous

at several points in the non-stationary region, leading to non-normal limit theory.

Instead, they suggest a general purpose semiparametric estimator called the exact

local Whittle estimator with well-behaved asymptotic properties in the wide range

of stationary and non-stationary values. We use the exact local Whittle estimator of

Shimotsu and Phillips (2005) to obtain the initial estimates of the d-parameters.

The third step is to apply the fractional di�erence �lter to the series and identify

the short-range part of the model, that is, the structure of Φ(L) and Θ(L). Calcu-

lating fractional di�erences is in itself a non-trivial task. Standard implementations

of fractional di�erencing based on the binomial expansion of the di�erence operator

have O(n2) time complexity, which means that the number of operations performed
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to compute the di�erenced series is a quadratic function of the input size. This is

acceptable if di�erences are only to be computed once, but makes the joint estima-

tion of all parameters in a trivariate model with several thousand time series points

practically infeasible. However, Jensen and Nielsen (2013) suggest a fast fractional

di�erence algorithm that takes advantage of a frequency-domain transform of the

series. Their algorithm is of O(n log n) time complexity and o�ers substantial com-

putational advantages. We identify the short-range dynamics by inspecting the ACFs

and PACFs of the di�erenced series following the standard practice. In addition, we

conduct a number of univariate estimations assuming constant variance and compare

them based on the information criteria.

The �nal step is the joint estimation of all model parameters by exact maximum

likelihood using the parameter estimates from the previous steps as starting values

only.4 We implement this procedure for the cases of normal distribution and skew-

Student distribution, separately. In the case of normally distributed residuals, the

log-likelihood function is given by the log of the multivariate normal density function.

In the case of the skew-Student distributed residuals, the log-likelihood function is

given by:

lnL(θ) =
T∑

t=max(p,q)+1

{
ln f(zt)−

1

2
ln |Ht|

}
, (13)

where θ is the parameter vector for the full model, f(zt) is the probability density

function in Eq. (8), T is the number of time series observations, and |Ht| denotes
the determinant of Ht. Note that the summation is conditional on the �rst p or q

observations, whichever is larger, owing to the lag order of Φ(L) and Θ(L) in the

mean equations. The second term in the sum in Eq. (13) is the Jacobian correction

term arising in the transformation from z to ε. We calculate the square root matrix

H
1/2
t , which is required to obtain the vector of standardized residuals zt as given by

Eq. (6) at each time point using a standard spectral decomposition. The initial Ht

4Parameters in the seasonal mean functions are not re-estimated to decrease computational time.
As starting values for the shape parameters in the skew-Student distributions, we use ξi = 1 for all
skewness parameters and υi = 100 for all kurtosis parameters (υi →∞ corresponds to normality).
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is set to the sample covariance matrix of the fractionally di�erenced data and the

initial values of the residuals are set to zero.

The log-likelihood function is maximized by simulated annealing, following Go�e,

Ferrier and Rogers (1994). The fundamental property of simulated annealing is that

it is allowed to accept worse intermediate solutions (downhill moves) while searching

for the optimum, which leads to a more extensive exploration of the parameter space

and prevents the algorithm from becoming stuck in local optima. In theory, this

property also makes the algorithm insensitive to starting values. To further increase

the chance of identifying the global optimum, we use consistent QML estimates as

starting values for the model with skew-Student distributed innovations. Finally,

we calculate the standard errors of the parameters using the outer product gradient

method with numerical �rst derivatives.

4. Results

This section presents the results of model identi�cation and estimation. We start

by discussing how we identi�ed the conditional mean system within our general

framework. We then discuss the estimated parameters. Finally, we examine the

model implied second moments in light of the �ndings from our preliminary analysis.

4.1. Model identi�cation results

The long-memory parameters are estimated by the exact local Whittle method

as follows: 0.6747 for power, 0.2970 for temperature, and 1.1115 for hydrobalance.

These results are consistent with the autocorrelation functions of the non-di�erenced

data in Figure 4. Speci�cally, hydrobalance has the slowest ACF decay, re�ected in

the highest d-parameter, while temperature shows the fastest (yet still hyperbolic)

ACF decay, with the lowest d-parameter. Further, the d-parameter of temperature

lies in the stationary region, while the other two take values in the non-stationary

region. It is worth noting that the d-parameter of hydrobalance is above one, which

means that mean the reversion property is lost. The implications of this result on

the model simulation will be discussed further.
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We proceed to identifying the short-range properties of the conditional mean

system. Figure 7 displays the autocorrelation and partial autocorrelation functions

of the fractionally di�erenced series. The 95% white noise con�dence bounds are

given by the horizontal blue lines.

We can see that power has a slight spike in both functions at the �rst lag, and

weekly periodic patterns. One alternative to capture weekly periodicities is to take

seasonal di�erences. However, due to the presence of non-seasonal fractional dif-

ferencing in our model, we prefer to include seasonal autoregressive lags instead.

Further investigation in the univariate framework reveals that two weekly seasonal

terms, in addition to the non-seasonal AR(1) term, are su�cient to whiten the resid-

uals. Moreover, a parsimonious speci�cation with a single temperature term and

a single hydrobalance term in the power mean equation is preferred based on the

information criteria.
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Figure 7: Autocorrelation and partial autocorrelation functions after fractional

di�erencing.

Both temperature and hydrobalance show an AR signature, with ACF decaying

gradually and PACF truncated at a certain lag. The PACF of temperature features
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three signi�cant lags, while the PACF of hydrobalance is truncated at the �rst lag.

Overall, the interpretation of the functions after appropriate fractional di�erencing is

straightforward, suggesting to model temperature as an AR(3) process and hydrobal-

ance as an AR(1) process. We argue that there is no need to include any moving

average terms, thus reducing the general VARFIMA framework presented in the pre-

vious section to its special case of fractionally integrated vector autoregression. This

leads us to identify the following conditional mean equation system:

y1,t − φ1
11y1,t−1 − φ7

11y1,t−7 − φ14
11y1,t−14 − φ1

12y2,t−1 − φ1
13y3,t−1 = ε1,t

y2,t − φ1
22y2,t−1 − φ2

22y2,t−2 − φ3
22y2,t−3 = ε2,t

y3,t − φ1
33y3,t−1 = ε3,t

(14)

where y1, y2, and y3 denote de-seasonalised fractionally di�erenced power log-price,

de-seasonalised fractionally di�erenced temperature, and fractionally di�erenced hy-

drobalance, respectively.

4.2. Estimation results

We �rst comment on the seasonal mean parameter estimates presented in Table

2.

Table 2: Seasonal mean parameter estimates.

Power Temperature

λ1,1: constant 3.9575 λ2,1: constant 6.9372
(0.0113) (0.0614)

λ1,2: amplitude 0.1606 λ2,2: amplitude −9.7656
(0.0085) (0.0861)

λ1,3: phase angle 7.9960 λ2,3: phase angle 21.728
(3.1498) (0.5202)

λ1,4: linear trend −0.0003
(0.0000)

λ1,5: non-business days −0.1205
(0.0132)

Note: The table reports the estimated coe�cients and their standard errors (in parentheses). The seasonal mean
functions are given by Eq. (1) and Eq. (2). All coe�cients are statistically signi�cant at the 1% level. The R2 values
are 0.400 for power and 0.846 for temperature.
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We can interpret the parameters λ1,1 and λ2,1 as constant average levels of power

log-price and temperature, respectively. The estimated average log-price corresponds

to the average price of 52.32 EUR/MWh. The parameters λ1,2 and λ2,2 represent half

of the distance between the peaks and the troughs of the yearly seasonal functions.

Thus, the di�erence between the temperature highs and lows is around 19 degrees

Celsius, while the average power price di�erence between warm and cold seasons is

16.88 EUR/MWh.5 Parameters λ1,3 and λ2,3 act as time shifts, placing the cosine

waves in the correct phase of power price and temperature yearly cycles. Further,

we report a signi�cant decreasing linear time trend in the power price series. As

mentioned in Section 2, this phenomenon is related to the changes in the Nordic

power generation mix, with a growing share of load covered by low marginal cost

renewable generation sources. Finally, note the non-trivial e�ect of non-business

days, comparable in magnitude to the amplitude of the yearly cycle.

We estimated the remaining parameters under two distributional assumptions:

the normal distribution, serving as the benchmark case, and the more �exible skew-

Student distribution. Since the two model speci�cations are not nested, it is not

possible to formally test them against each other using the likelihood ratio test.

However, we can still get an idea of the gain from departing from normality by

comparing the starting log-likelihood value of the skew-Student speci�cation, which

is −4559.23, with the �nal log-likelihood value of −3696.94. Recall that the optimal

parameter values from the normal speci�cation were the starting values for the skew-

Student speci�cation, while the starting values of the ξ- and υ-parameters were set

to roughly correspond to normality.

Table 3 presents the estimated values of the parameters from the stochastic com-

ponent of the conditional mean system.

The estimates of the memory parameters are very close to the univariate exact

local Whittle estimates discussed earlier. Haldrup and Nielsen (2006) �nd that the

Nordic zonal hourly spot price series show long memory with d ranging between 0.31

and 0.52. Caporin et al. (2012) report d-parameters of 0.39 and 0.19 for the Oslo

5e(3.9575+0.1606) − e(3.9575−0.1606)
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area daily power and temperature series. We �nd a higher degree of long memory

for both series, with d1 of power being well in the non-stationary region.

Table 3: Stochastic conditional mean parameter estimates.

Normal Skew-Student

Power Temperature Hydrobalance Power Temperature Hydrobalance
d1 0.6963 d2 0.2660 d3 1.2103 d1 0.6445 d2 0.2957 d3 1.1478

(0.0231) (0.0371) (0.0227) (0.0214) (0.0360) (0.0145)
φ111 0 .0130 φ122 0.8506 φ133 0.1351 φ111 0.0755 φ122 0.8283 φ133 0.1596

(0.0290) (0.0411) (0.0280) (0.0278) (0.0394) (0.019)
φ711 0.2128 φ222 −0.2561 φ711 0.2058 φ222 -0.2367

(0.0155) (0.0259) (0.0143) (0.0244)
φ1411 0.1289 φ322 0.0629 φ1411 0.1170 φ322 0.0445

(0.0124) (0.0193) (0.0120) (0.0183)
φ112 −0.0037 φ112 -0.0035

(0.0005) (0.0005)
φ113 −0.0153 φ113 -0.0126

(0.0014) (0.0015)

Note: The table reports the estimated coe�cients and their standard errors (in parentheses). The conditional mean
system is given by Eq. (3) in the general form for the original series, and Eq. (14) in the restricted form for the de-
seasonalised and di�erenced series. Non-signi�cant coe�cients are reported in italics, while the remaining coe�cients
are statistically signi�cant at the 1% level.

In general, there are no extreme di�erences between the parameter estimates from

the two distributional speci�cations. We can see the natural trade-o� between the

degree of long memory and the magnitude of the non-seasonal autoregressive coe�-

cients in all the three series. In particular, a higher estimate of d1 under the normal

distribution is coupled with a lower and nonsigni�cant φ1
11. The autoregressive co-

e�cients from the temperature mean equation are slightly lower in magnitude than

those reported in Benth, �altyt
e-Benth and Koekebakker (2008) for the Stockholm

temperature series, due to the presence of the long-memory component in our speci�-

cation. Further, we report signi�cant φ7
11 and φ

14
11 coe�cients capturing the �rst- and

the second-order weekly seasonal autoregressive patterns in the power price. Finally,

we �nd signi�cant negative temperature and hydrobalance e�ects in the power mean

equation, which is in line with our preliminary analysis.

Table 4 presents the estimated values of the conditional covariance and distribu-

tional parameters.
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We �rst analyse the diagonal coe�cients of A and B-matrices. Caporin et al.

(2012) �nd that temperature has a lower degree of persistence in volatility than

power price. According to our results, temperature and hydrobalance volatility have

weaker ARCH-e�ects (as measured by a22 and a33) compared to power price volatility.

However, the GARCH-coe�cient b22 for temperature suggests a higher degree of

persistence in volatility than the corresponding coe�cient b11 for power. This might

be related to the fact that we do not explicitly model the seasonality in temperature

volatility, so part of it is accommodated by b22.

Table 4: Conditional covariance and distributional parameter estimates.

Normal Skew-Student

c11 0.0102 c11 0.0153∗∗∗

(0.0134) (0.0017)
c21 −0.0189∗∗∗ c22 0.1169∗∗∗ c21 -0.0069∗∗∗ c22 0.1904∗∗∗

(0.0072) (0.0377) (0.0020) (0.0274)
c31 −0.0076∗∗∗ c32 −0.1312∗∗∗ c33 0.0791∗∗∗ c31 -0.0088∗∗∗ c32 -0.0792∗∗∗ c33 0.0752∗∗∗

(0.0020) (0.0244) (0.0044) (0.0016) (0.0221) (0.0084)
a11 0.5435∗∗∗ a12 −0.5599∗∗ a13 −0.1963∗∗ a11 0.4414∗∗∗ a12 -0.1430 a13 -0.2178∗∗∗

(0.0142) (0.2255) (0.0956) (0.0223) (0.1733) (0.0691)
a22 0.1830∗∗∗ a22 0.1615∗∗∗

(0.0117) (0.0137)
a32 −0.0609∗∗ a33 0.1350∗∗∗ a32 -0.0196 a33 0.1956∗∗∗

(0.0274) (0.0067) (0.0258) (0.0126)
b11 0.8311∗∗∗ b12 0.2075∗ b13 0.0561 b11 0.8786∗∗∗ b12 -0.0272 b13 0.1554∗∗∗

(0.0086) (0.1071) (0.0400) (0.0094) (0.0707) (0.0288)
b22 0.9734∗∗∗ b22 0.9764∗∗∗

(0.0032) (0.0038)
b32 0.0471∗∗∗ b33 0.9829∗∗∗ b32 0.0224∗∗∗ b33 0.9764∗∗∗

(0.0078) (0.0016) (0.0074) (0.0028)
ξ1 0.9843∗∗∗ ξ2 1.0288∗∗∗ ξ3 1.8734∗∗∗

(0.0212) (0.0270) (0.0574)

υ−1
1 0.2598∗∗∗ υ−1

2 0.1351∗∗∗ υ−1
3 0.2569∗∗∗

(0.0168) (0.0218) (0.0198)

Note: The table reports the estimated coe�cients and their standard errors (in parentheses). The conditional covari-
ance model is given by Eq. (7) and is parameterized by the 3×3 matrices C,A and B, with typical elements cij , aij ,
and bij , for i, j = 1 (power), 2 (temperature), and 3 (hydrobalance), respectively. The C-matrix is lower triangular,
while the A and B matrices are restricted such that temperature volatility dynamics is exogenous, hydrobalance
volatility is allowed to be a�ected by temperature but not by power, while all variables in the system can a�ect
power volatility. Skew-Student distributional parameters are reported in the last two rows. Superscripts *, **, and
*** denote statistical signi�cance at the 10%, 5%, and 1% levels, respectively.
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The majority of the o�-diagonal coe�cients both in A and B-matrices are statis-

tically signi�cant, which con�rms the existence of volatility spillover e�ects. There

are di�erences, however, in the estimates of these e�ects between our two distri-

butional speci�cations. The normal speci�cation features signi�cant spillovers from

temperature to power volatility, as measured by a12 and b12, and smaller magnitude

a13 coe�cient, representing the spillover from hydrobalance to power volatility. The

skew-Student speci�cation, on the other hand, results in nonsigni�cant temperature-

to-power e�ects, but highly statistically signi�cant and sizeable hydrobalance-to-

power e�ects, as measured by both a13 and b13.

We also �nd the b32-coe�cient on temperature-to-hydrobalance volatility spillover

e�ect to be statistically signi�cant at the 1% level in both speci�cations. However, its

magnitude is much lower than of the coe�cients capturing spillovers to power. Note

that the signs of the o�-diagonal parameters do not have a straightforward interpre-

tation because these parameters appear in several non-linear terms determining each

element of the conditional covariance matrix at each time point.

The last two rows in Table 4 report the estimates of the skewness and the inverses

of the degrees of freedom parameters.6 Although the ξ1 of power is below 1, and the

ξ2 of temperature is above 1, the 95% con�dence intervals for these parameters leave

the question of asymmetry open, with the lower bound in the negative region and the

upper bound in the positive region. The story is di�erent with the ξ3 of hydrobalance,

which is well in the positive asymmetry region, as expected. Further, we �nd that

power and hydrobalance have very similar tail properties with υ-parameters close

to 4. Temperature shows less heavy tails with the υ2 estimate of 7.4, although it

still implies a relatively fat-tailed distribution. Taking another look at Figure 2, we

expect that this estimate is mostly driven by the extreme temperature occurrences

in winter periods, and this has to be taken into account in a simulation from the

model.

Diagnostic checks of the residuals from both model speci�cations reveal that we

are left with zero-mean uncorrelated noise. Examining the estimated volatilities and

6We estimate υ−1 instead of υ itself for numerical reasons.
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correlations, plotted in Figures 8 and 9, allows us to further assess the in-sample

model performance.

We can see the resemblance between the estimated volatility processes and the

daily changes series in Figure 5. Temperature volatility displays peaks during the

winter periods and troughs during the summer periods. Hydrobalance volatility

starts the yearly cycle at a relatively low level, reaches the minimum around April,

and then takes on an upward trend with a peak in August � September, followed by

a sharp decline.
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Figure 8: Model implied volatilities.

The estimated conditional correlations are well in line with our expectations. The

correlation between power and temperature reaches the minimum of −0.5 to −0.4

during the winter months, and is roughly zero during the summer months. The

correlation between power and hydrobalance does not have a pronounced seasonal

shape, and mostly stays in the negative region between −0.5 and 0, oscillating around

the average level of −0.25, with a few extremes.
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Figure 9: Model implied correlations.

Finally, there seem to be very minor di�erences between the estimated second

moments from the two distributional speci�cations. Hydrobalance volatility and

the power/hydrobalance correlations display more variation under the skew-Student

speci�cation. On the rest of the plots, the red lines and the blue lines coincide almost

perfectly.

5. Application: Scenario analysis

This section illustrates how our model can be used to generate a number of

power price scenarios under di�erent hydrological and temperature conditions. We

address the issues related to simulation from the model and present an overview of

the simulation results from the skew-Student speci�cation.

We start the simulation on February 22, 2016 (the day after the sample period

ends), and �nish on February 28, 2017, yielding a simulation length of 373 days.

We use the last sample values of power price, temperature, and hydrobalance as

the starting points for all simulated paths. In addition, the estimated conditional
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covariance matrix on the last day of the sample period (HT ) and the last values

of the residuals are used to iterate the BEKK process forward. For each day of

the simulation period, we draw the random shocks zt from the underlying skew-

Student distributions using the analytical quantile function, given in Laurent (2002).

Appendix A presents the kernel density estimates of the random samples drawn

from the univariate skew-Student distributions with skewness and degrees of freedom

parameters equal to our estimates. We construct the error terms εt using Eq. (6).

Next, the long memory is created by applying numerical fractional integration of

the error term series.7 Further, we follow Eq. (14) to generate the stochastic mean

component. Finally, we add the predicted seasonal mean component for power and

temperature, and transform the log-price back to the natural units.

Figures 10 � 12 show the historical data series starting from April 27, 2015,

followed by ten simulated paths.
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Figure 10: Historical power prices and simulated paths.

7To generate a fractionally integrated process, we approximate the binomial expansion of (1 −
L)−d by truncating at 100 terms. The �rst 100 simulated values use the actual model residuals.
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Figure 11: Historical temperature and simulated paths.

A �rst glance at the simulated paths suggests that the model does a fairly good job

of capturing the empirical properties of the modelled series. It is worth noting that

since the extreme power price and temperature observations are typically observed

during the winter months, we can adjust the random shock generation to re�ect this.

We can see in Figure 11 that only one temperature path out of ten produced

an outlier during the winter period. However, we can easily adjust the simulation

procedure to increase the likelihood of outliers occurring in winter, and if necessary,

decrease the likelihood of outliers in other periods.8 Overall, the simulation stage

reveals the true bene�ts of using the skew-Student distribution, since the normal dis-

tribution cannot generate large enough moves frequently enough to produce realistic

behaviour.

8For instance, this can be done by drawing the quantiles from a distribution other than uniform
while generating the random values from the skew-Student distribution.
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Figure 12: Historical hydrobalance and simulated paths.

As Figure 12 illustrates, we can generate a wide variety of hydrological scenarios.

Recall from the discussion of the di�erence parameter properties that a value of d

above 1 corresponds to a non-stationary case without mean reversion property. This

means that some of the hydrobalance paths produced by our model will be unrea-

sonable, and have to be discarded, which can also be automated in the simulation

by introducing the bounds on how far hydrobalance can wander away from zero.

A limitation of the model that is more fundamental is that although extreme

power price occurrences are likely, there is nothing in the model enforcing fast mean

reversion and enabling spikes to appear once in a while. On the contrary, the other-

wise desirable long-memory property makes it impossible for a single extreme value

to occur. However, for an application such as meteorological scenario analysis, this

limitation is of minor importance.

Our model creates plenty of interesting opportunities in scenario analysis. For

instance, an average power price can be calculated for a range of temperature and

hydrobalance combinations. This might be of interest for production planning in

power markets with heavy reliance on hydrological generation, such as the Nordic
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market. As an illustration, we simulate 1000 scenarios from the model and calculate

the average power price, temperature, and hydrobalance values for November 1, 2016

� February 28, 2017, for each scenario. Figure 13 plots the average power price and

temperature observation pairs grouped by hydrological conditions. The red dots

mark the driest quarter of scenarios, while the blue crosses mark the wettest quarter.

We omit the observations in the middle of the range.

We can see that, with rare exceptions, the average power price is higher in dry

scenarios, given the same average temperature. Further, extremely high average

power prices tend to occur under a combination of cold and dry conditions. A

similar analysis can be done for statistics other than the average.
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Figure 13: A scenario analysis example.

Another potential application of the model is Monte Carlo pricing of weather

derivatives, such as energy quanto contracts. Energy quanto contracts have a payo�

that depends on the product of two indices: an energy index (e.g., an average power

price during the delivery period) and a temperature index (e.g., Heating Degree Days,

or HDD). A wide variety of payo� structures is possible for quanto contracts, such as
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swap, put/call, collar, and so on. Caporin et al. (2012) illustrate how their bivariate

power-temperature model can be utilised to price such contracts. Our model can be

applied in a similar fashion, with the additional �exibility of computing `hydrological

bounds' on contract prices.

6. Summary and conclusions

In this study we propose a model for the joint evolution of spot power price,

temperature, and hydrobalance. Our model successfully captures most of the dis-

covered empirical features, such as long memory and heavy tails in all series, yearly

seasonal patterns in power price and temperature, weekly periodic patterns in power

price, pronounced positive skewness in hydrobalance, and time-varying conditional

second moments. We �nd that in the Nordic market, power price is inversely related

to temperature throughout the year, except for summer months, when the e�ect is

nonsigni�cant. Hydrobalance, on the other hand, negatively a�ects power price in all

periods, since in dry hydrological conditions, higher marginal cost generation sources

set the price. Further, we con�rm the existence of volatility spillover e�ects from

temperature and hydrobalance to power. We illustrate how our model can be used

to generate a variety of weather scenarios and to analyse the implications for power

prices. The model is relevant for power markets with a dominant share of hydrolog-

ical generation and provides a wide scope of opportunities for scenario analysis with

relatively little meteorological input.
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Appendix A
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Note: The �gure shows the smooth kernel density estimates of the random samples drawn from
the standard normal distribution and the standardized skew-Student distribution with ξ and υ
parameters equal to our estimates. Each random sample consists of 1000 values.
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