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Abstract

We consider envy-free and budget-balanced allocation rules for problems where
a number of indivisible objects and a fixed amount of money is allocated among a
group of agents. In “small” economies, we identify under classical preferences each
agent’s maximal gain from manipulation. Using this result we find the envy-free
and budget-balanced allocation rules which are least manipulable for each preference
profile in terms of any agent’s maximal gain. If preferences are quasi-linear, then we
can find an envy-free and budget-balanced allocation rule such that for any problem,
the maximal utility gain from manipulation is equalized among all agents.

JEL Classification: C71, C78, D63, D71, D78.
Key Words: (Least) Manipulability, Envy-freeness, Budget-Balance, Indivisibilities.

1 Introduction

Several seminal papers have investigated the manipulability of competitive mechanisms in
classical exchange economies. Hurwicz (1972) has shown that in “small” finite economies
any competitive mechanism is manipulable, i.e. for some economies some agents’ profit
from mispresenting their true preferences may be substantial. Roberts and Postlewaite
(1976) have shown as when a small finite economy is replicated, then under certain as-
sumptions, any competitive mechanism becomes limiting incentive compatible.
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the FQRSC (Québec) for financial support.
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In this paper we consider economies with indivisible objects. Any agent’s consumption
bundle consists of an object and a monetary consumption. Such problems arise in rent
division, job allocation, land distribution, and heritage division.1 Specifically we are inter-
ested in investigating the manipulability of envy-free and budget-balanced allocation rules.
In our setting Svensson (1983) has shown that there is a close relationship between com-
petitive mechanisms and envy-free and budget-balanced rules. From Green and Laffont
(1979) it is known that any such rule is manipulable. Not only this, as we show considering
replica of economies with indivisible objects will neither change the set of envy-free and
budget-balanced allocations nor alter the amount by which any agent is able to manipulate
any envy-free and budget-balanced allocation rule. Therefore, we search for the rules which
are “least” manipulable in the class of envy-free and budget-balanced allocation rules in
small finite economies.

Specifically, we determine by how much any agent can profit from manipulation for any
envy-free and budget-balanced rule. Namely, for any economy and any agent there exist
envy-free and budget-balanced allocations which maximize his utility in this set. Then
this agent’s gain from (optimal) manipulation is equal to the utility difference between
this maximizing allocation and the allocation chosen by the rule for this economy. This
result then allows us to show the existence of envy-free and budget-balanced rules which
are “least” manipulable in the following sense: for each preference profile, the amount
by which any agent can manipulate is minimal among all profitable manipulations of all
envy-free rules. Under quasi-linear utilities, we show that there exists an envy-free and
budget-balanced allocation rule which for each utility profile equalizes the maximal utility
gain from manipulation among all agents.

Envy-free allocation rules have been studied extensively in the literature, and con-
sequently also issues related to (non-)manipulability. For example, Alkan, Demange, and
Gale (1991) consider the case with two agents and two objects, and demonstrate that there
is no envy-free and budget-balanced rule which is not susceptible to manipulation except
in degenerate cases. Recently, Andersson, Ehlers, and Svensson (2010) and Fujinaka and
Wakayama (2011) independently characterized the set of preference profiles for which an
envy-free and budget-balanced allocation rule is non-manipulable by all agents. A different,
but related, approach is taken by Tadenuma and Thomson (1995). They consider a model
with one indivisible object (but where all agents receive monetary compensations) and
study the direct revelation games associated with sub-solutions of the envy-free and budget-
balanced solution. The main conclusion is that the set of Nash equilibrium allocations for
any such sub-solution coincides with the set of envy-free and budget-balanced allocations
of the true preferences. This finding has later been generalized by Beviá (2010), Fujinaka
and Wakayama (2011), and Velez (2011). However, except for Fujinaka and Wakayama
(2011), none of the above papers have attempted to search for “least” manipulable envy-
free and budget-balanced allocation rules in the sense of minimizing the maximal gain from
manipulation.

1See e.g. Andersson and Svensson (2008), Aragones (1995), Dufton and Larson (2011), Haake, Raith
and Su (2000), Klijn (2000), Jaramillo, Kayı and Klijn (2012), Svensson (2009), and Sun and Yang (2003).
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The remaining part of this paper is organized as follows. Section 2 introduces economies
with indivisibilities and envy-free allocations. Section 3 characterizes any individual’s max-
imizing envy-free allocations. Section 4 contains all our results regarding manipulation of
envy-free allocation rules. Section 5 considers the replication of economies.

2 Agents, Preferences and Allocations

Let N = {1, ..., |N |} denote the finite set of agents and M = {1, ..., |M |} denote the finite
set of objects. Throughout we assume |M | = |N |.2 There is a finite amount m ∈ R of an
infinitely divisible good called money. Each object j ∈M has a (monetary) compensation
denoted by cj. Let c ∈ RM denote the compensation vector for all objects in M .

A consumption bundle is a pair (j, cj) ∈M×R (which stands for consuming object j and
receiving compensation cj). Agent i’s preference over consumption bundles is represented
by a continuous utility function ui : M × RM → R. Let uij(c) denote the utility of
agent i when consuming object j and receiving compensation cj. The utility function ui
is supposed to satisfy the following three properties: for all c, c′ ∈ RM , (i) selfishness, i.e.,
uij(c) = uij(c

′) whenever cj = c′j, (ii) monotonicity, i.e., uij(c) > uij(c
′) whenever cj > c′j,

and (iii) finite compensability, i.e., for any two consumption bundles (j, cj) and (k, ck), there
exists a number β ∈ R such that uij(c) = uik(c

′) for c′k = ck + β and c′l = cl for all l ̸= k.
This means that no object is infinitely desirable or undesirable for any agent. The set of
all utility functions having the above properties is denoted by U . A list u = (u1, ..., un)
of individual utility functions is a (utility) profile. We adopt the notational convention of
writing u = (ui, u−i) for any i ∈ N . The set of all profiles is denoted by UN .

A feasible assignment x : N →M assigns every agent i ∈ N exactly one object j ∈M
and no object is assigned to more than one agent. Let xi denote the object assigned to
agent i ∈ N . An allocation consists of a compensation vector c and a feasible assignment
x, and is denoted by (c, x). An allocation (c, x) is budget-balanced if

∑
j∈M cj = m. For

any given profile u ∈ UN , an allocation (c, x) is efficient if (i) (c, x) is budget-balanced and
(ii) there is no other budget-balanced allocation (d, y) such that uiyi(d) ≥ uixi

(c) for all
i ∈ N with strict inequality holding for some k ∈ N .

Definition 1. At a given profile u ∈ UN , an allocation (c, x) is envy-free if (i) (c, x) is
budget-balanced and (ii) for all i ∈ N and all j ∈M , uixi

(c) ≥ uij(c).

Let F(u) denote the set of envy-free allocations at a given profile u ∈ UN . From, e.g.,
Alkan, Demange and Gale (1991), Tadenuma and Thomson (1995), and Svensson (1983),
it is known that F(u) is non-empty for each profile u ∈ UN and that each allocation in
F(u) is efficient.

A(n allocation) rule is a non-empty correspondence φ choosing for each profile u ∈ UN

a non-empty set of allocations φ(u) such that uixi
(c) = uiyi(d) for all i ∈ N whenever

(c, x), (d, y) ∈ φ(u), i.e., all agents are indifferent between any two allocations selected by

2If |N | > |M |, then adding |N | − |M | null objects does not alter our results.
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the rule. Such a rule is called essentially single-valued. A rule φ is envy-free if φ(u) ⊆ F(u)
for each profile u ∈ UN .

3 Individual Utility Maximizing Envy-free Alloca-

tions

For our purposes, it will turn out to be useful to characterize the utility maximizing envy-
free allocations for any (individual) agent k ∈ N . Obviously, for any agent k ∈ N and for
each profile u ∈ UN , there exists an allocation in F(u) which maximizes the utility of agent
k. This follows simply from the fact that the set F(u) is compact under our assumptions.
For any profile u ∈ UN , let ϕk(u) denote the set of envy-free allocations which maximize
the utility for agent k ∈ N . In the remaining part of the paper, let (ck, xk) stand for some
element in ϕk(u) unless otherwise stated.

Given an allocation (c, x) and a profile u ∈ UN , for any i, j ∈ N we write i →(c,x) j if
uixi

(c) = uixj
(c), i.e., if agent i is indifferent between his consumption bundle and agent j’s

consumption bundle at allocation (c, x). Now, to characterize allocation (ck, xk) in more
detail, the following concepts from Andersson, Ehlers and Svensson (2010) will be useful.

Definition 2. Let u ∈ UN and (c, x) be an envy-free allocation.

(i) An indifference chain at allocation (c, x) consists of a tuple of distinct agents g =
(i0, ..., it) such that i0 →(c,x) i1 →(c,x) · · · →(c,x) it.

(ii) Agent i ∈ N is linked to agent k ∈ N at allocation (c, x) if there exists an indifference
chain of type (i0, ..., it) at allocation (c, x) with i = i0 and it = k.

(iii) Allocation (c, x) is agent-k-linked if each agent i ∈ N is linked to agent k.

An indifference chain is simply a sequence of agents such that any agent in the sequence
is indifferent between his bundle and the bundle of the agent following him in the se-
quence. Indifference chains indirectly link agents via indifference in a sequence of linked
agents. At agent-k-linked envy-free allocations each agent is linked to agent k through
some indifference chain.

The following result establishes that for any profile, agent-k-linked envy-free allocations
coincide with the set of envy-free allocations which maximize agent k’s utility among all
envy-free allocations.

Theorem 1. For each profile u ∈ UN , each agent k ∈ N and each allocation (c, x) ∈ F(u),
we have:

(c, x) ∈ ϕk(u) if and only if allocation (c, x) is agent-k-linked.

4



Proof. Let u ∈ UN , k ∈ N and (c, x) ∈ ϕk(u). First, we demonstrate that (c, x) is agent-k-
linked. To obtain a contradiction, suppose that (c, x) is not agent-k-linked, i.e., that there
is an agent l ∈ N that is not linked to agent k. Let

G = {i ∈ N : i is linked to k at (c, x)} ∪ {k}.

Because k ∈ G and l ∈ N \ G, both G and N \ G are non-empty. It follows by construction
that uixi

(c) > uixj
(c) if i ∈ N \ G and j ∈ G. From the Perturbation Lemma in Alkan,

Demange and Gale (1991) it then follows that there exists another (d, y) ∈ F(u) such that
dxi

> cxi
for all i ∈ G. Then by Definition 1 and monotonicity of ui it follows that

uiyi(d) ≥ uixi
(d) > uixi

(c) for all i ∈ G.

Because k ∈ G it follows that ukyk(d) > ukxk
(c), which contradicts the fact that (c, x) ∈

ϕk(u) and (c, x) maximizes k’s utility among all envy-free allocations. Hence, if (c, x) ∈
ϕk(u), then (c, x) is agent-k-linked.

In showing the other direction, let u ∈ UN , k ∈ N , and (c, x), (d, y) ∈ F(u) be two
agent-k-linked envy-free allocations. By the first part of the proof, without loss of general-
ity, we may suppose (c, x) ∈ ϕk(u). Obviously, if c = d, then for all i ∈ N , uixi

(c) = uiyi(d)
and (d, y) ∈ ϕk(u).

Suppose that c ̸= d. Since
∑

i∈M ci =
∑

i∈M di = m, the set G = {j ∈ M : cj < dj} is
non-empty.

We first show for all i ∈ N , if xi ∈ G, then yi ∈ G. To obtain a contradiction, suppose
that xi ∈ G and yi /∈ G. But then by Definition 1 and monotonicity of ui,

uixi
(d) > uixi

(c) ≥ uiyi(c) ≥ uiyi(d). (1)

But this is a contradiction to (d, y) ∈ F(u). Hence, yi ∈ G.
Let H = {i ∈ N : xi ∈ G}. By |N | = |M | we have H ̸= ∅. Now for i ∈ H, it follows

from condition (1) that yi ∈ G.
First, let k ∈ H. Because (c, x) is agent-k-linked, there exist i ∈ N\H and j ∈ H such

that i→(c,x) j. But then we have

uiyi(d) ≤ uiyi(c) ≤ uixi
(c) = uixj

(c) < uixj
(d),

where the first inequality follows from i ∈ N\H and dyi ≤ cyi , the second inequality from
envy-freeness of (c, x), the equality from i →(c,x) j, and the last inequality from xj ∈ G
and cxj

< dxj
. Now (d, y) is not envy-free, a contradiction.

If k ∈ N\H, then we obtain similarly a contradiction to envy-freeness of (c, x) using
the agent-k-linked allocation (d, y).

Remark 1. Since agent k utility maximizing envy-free allocations exist for any profile
u ∈ UN (because F(u) is compact), it is clear that agent-k-linked envy-free allocations
exist for any profile u ∈ UN . In addition, the second part of the proof of Theorem 1
demonstrates that if allocations (c, x) and (d, y) are agent-k-linked, then c = d and all
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allocations belonging to ϕk(u) are utility equivalent. Hence, the compensation vector at the
agent k utility maximizing allocations is unique. Note, however, that envy-free allocations
maximizing the utility of agent k need not be unique because there may exist several
assignments for such allocations.

4 Manipulability

Manipulability (and non-manipulability) in our context refers to the following.

Definition 3. A rule φ is manipulable at profile u ∈ UN by agent i ∈ N if there exists
ûi ∈ U and two allocations (c, x) ∈ φ(u) and (d, y) ∈ φ(ûi, u−i) such that uiyi(d) > uixi

(c).
If the rule φ is not manipulable by any agent at any profile u ∈ UN , then φ is said to be
strategy-proof (or non-manipulable).3

It is well-known from Green and Laffont (1979) that any efficient rule is manipulable for
some profile u ∈ UN . Since envy-free rules are efficient (Svensson, 1983), this result implies
that any envy-free rule is manipulable for some profile u ∈ UN .

A natural weakening of strategy-proofness is ω-strategy-proofness where no agent can
gain by more than ω from manipulation.

Definition 4. Let ω ≥ 0. A rule φ is ω-non-manipulable at profile u ∈ UN if for all i ∈ N
and any ûi ∈ U , and any (c, x) ∈ φ(u) and (d, y) ∈ φ(ûi, u−i), we have uiyi(d) ≤ uixi

(c)+ω.
If φ is ω-non-manipulable at any profile u ∈ UN , then φ is said to be ω-strategy-proof.

Note that 0-strategy-proofness is identical with strategy-proofness.

4.1 Maximal Gain from Manipulation

Because each rule φ that makes a selection from the set F(u) is manipulable, it is important
to characterize exactly how much agents can gain from strategic misrepresentation. The
following lemma states that if agent k ∈ N profitably manipulates any envy-free rule, then
the agent must be assigned an object whose compensation has increased.

Lemma 1. For any envy-free rule φ, for any profile u ∈ UN , for any agent k ∈ N and for
any ûk ∈ U , we have:

(i) If there exist (c, x) ∈ φ(u) and (d, y) ∈ φ(ûk, u−k) such that ukyk(d) > ukxk
(c), then

dyk > cyk .

(ii) If there exist (c, x) ∈ φ(u) and (d, y) ∈ φ(ûk, u−k) such that ukyk(d) ≥ ukxk
(c), then

dyk ≥ cyk .

3Note that for single-valued rules (which choose for each profile a unique allocation), Definition 3 may
be rewritten as follows: φ is manipulable at u ∈ UN by agent i ∈ N if there exists ûi ∈ U such that for
{(c, x)} = φ(u) and {(d, y)} = φ(ûi, u−i) we have uiyi(d) > uixi(c).
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Proof. We only show (i) since (ii) can be shown similarly. Let k ∈ N , u ∈ UN , ûk ∈ U and φ
be any envy-free rule. Suppose that (c, x) ∈ φ(u), (d, y) ∈ φ(ûk, u−k) and ukyk(d) > ukxk

(c).
Then by envy-freeness,

ukyk(d) > ukxk
(c) ≥ ukyk(c).

This and monotonicity of ui yields dyk > cyk which concludes the proof.

The following result shows that each agent k ∈ N for each profile u ∈ UN can manipulate
any envy-free rule φ at most by receiving the utility from his utility maximizing envy-free
allocation(s) (ck, xk) at profile u ∈ UN , i.e., the agent-k-linked envy-free allocation(s) at
profile u ∈ UN by Theorem 1.

For any profile u ∈ UN and any (c, x) ∈ φ(u), let

fk(φ, u) = sup
ûk∈U

max
(d,y)∈φ(ûk,u−k)

ukyk(d)− ukxk
(c)

denote agent k’s maximal gain from manipulation at u under φ.

Theorem 2. For any envy-free rule φ, for any profile u ∈ UN and for any agent k ∈ N ,
we have for (ck, xk) ∈ ϕk(u) and (c, x) ∈ φ(u), fk(φ, u) = ukxk

k
(ck)− ukxk

(c).

Proof. Let k ∈ N , u ∈ UN , φ be an envy-free rule, and (c, x) ∈ φ(u). Take some ûk ∈ U
and some (d, y) ∈ φ(ûk, u−k). If

ukyk(d)− ukxk
(c) > ukxk

(ck)− ukxk
(c),

then ukyk(d) > ukxk
(ck) which would mean the agent-k-linked envy-free rule is manipulable

by agent k, which is a contradiction to Andersson, Ehlers and Svensson (2010, Lemma 7)4.
Thus, fk(φ, u) ≤ ukxk

k
(ck)− ukxk

(c).

It remains to show that fk(φ, u) ≥ ukxk
k
(ck) − ukxk

(c). Suppose that (ck, xk) ∈ ϕk(u).

In the remaining part of the proof, let ûεk ∈ U be such that for all z ∈ RM , ûεkj(z) = zj − ckj
for all j ∈M \ {xkk} and ûε

kxk
k
(z) = zxk

k
− ck

xk
k
+ ε for some “small” ε > 0.

Note first that (ck, xk) ∈ F(ûεk, u−k). This follows since (ck, xk) ∈ F(u) and ûε
kxk

k
(ck) =

ε > 0 = ûεkj(c
k) for all j ∈M \ {xkk} by construction.

Second, by (ck, xk) ∈ ϕk(u) and Theorem 1, (ck, xk) is agent-k-linked under profile
u. But now (ck, xk) is agent-k-linked under (ûεk, u−k) and again by Theorem 1, (ck, xk) ∈
ϕk(ûεk, u−k). Thus, ε is agent k’s maximal utility in F(ûεk, u−k).

Let (d, y) ∈ φ(ûεk, u−k). If ck
xk
k
< dxk

k
, then by envy-freeness, ûεkyk(d) ≥ ûε

kxk
k
(d) > ε,

which contradicts the fact that ε is agent k’s maximal utility in F(ûεk, u−k).
Thus, ck

xk
k
≥ dxk

k
. We show that yk = xkk. Suppose that yk ̸= xkk. If d = ck, then

ûεkyk(d) = 0 < ε = ûε
kxk

k
(d), a contradiction. Thus, d ̸= ck. By budget-balance, ck

xk
k
≥ dxk

k

4Lemma 7 of Andersson, Ehlers and Svensson (2010) holds in our setting: first, Theorem 1 generalizes
Theorem 6 of Andersson, Ehlers, and Svensson (2010) from quasi-linear utilities to our more general setting;
and second, the proof of Lemma 7 in Andersson, Ehlers, and Svensson (2010) is not dependent on their
quasi-linearity assumption and remains valid in our setting.

7



and d ̸= ck, for some j ∈ M\{xkk} we have ckj < dj. Now by envy-freeness, ûεkyk(d) ≥
ûεkj(d) > 0 = ûεkyk(c

k). Thus, dyk > ckyk . Let j ∈ N be such that xkj = yk. Now we have

ujyj(d) ≥ ujyk(d) > ujyk(c
k) ≥ ujyj(c

k),

where the weak inequalities follow from envy-freeness and the strict inequality from dyk >
ckyk . Thus, dyj > ckyj . Now again let l ∈ N be such that xkl = yj. Using the same arguments,

it can be shown dyl > ckyl . Continuing iteratively, now for some h ∈ N we must (cycle and)
have yh = xkk. But now again dyh > ckyh , or equivalently dxk

k
> ck

xk
k
, which is a contradiction

to ck
xk
k
≥ dxk

k
.

Thus, yk = xkk and ck
xk
k
≥ dxk

k
. If ck

xk
k
= dxk

k
, then fk(φ, u) ≥ ukxk

k
(ck) − ukxk

(c), the

desired conclusion. Let ck
xk
k
> dxk

k
. But now we have

ûεkxk
k
(d) = dxk

k
− ckxk

k
+ ε ≥ max

j∈M\{xk
k}
(dj − ckj ) > 0,

where the first inequality follows from envy-freeness and the construction of ûεk and the
second inequality follows from ck

xk
k
> dxk

k
and

∑
j∈M dj = m =

∑
j∈M ckj . Thus, dxk

k
− ck

xk
k
+

ε > 0. Now as ε→ 0, by ck
xk
k
> dxk

k
, we must have dxk

k
→ε→0 cxk

k
. Thus, by yk = xkk,

lim
ε→0

ukyk(d) = lim
ε→0

ukxk
k
(d) = ukxk

k
(ck),

and fk(φ, u) ≥ ukxk
k
(ck)− ukxk

(c), the desired conclusion.

Theorem 2 yields as corollary that if some agent i’s maximal gain from manipulation is
greater for one rule than for a second rule, then there is another agent j whose maximal
gain from manipulation is smaller for the first rule than for the second one.

Corollary 1. For each profile u ∈ UN and for any two envy-free rules φ and ψ, it holds
that: if fi(φ, u) > fi(ψ, u) for some i ∈ N , then fj(φ, u) < fj(ψ, u) for some j ∈ N .

Proof. Let (c, x) ∈ φ(u) and (d, y) ∈ ψ(u). Suppose that the statement is not true, i.e.,
that for all l ∈ N , fl(φ, u) ≥ fl(ψ, u). By Theorem 2, we have then for all l ∈ N ,
ulxl

(c) ≤ ulyl(d), and uixi
(c) < uiyi(d). But now allocation (c, x) is not efficient, which

contradicts the fact that all envy-free allocations are efficient (Svensson, 1983).

Theorem 2 characterizes the exact amount by which an agent may manipulate any envy-
free rule. In applications, we may want to minimize the gains from manipulation for all
agents in the spirit of Definition 4, i.e., identifying a smallest global bound and an envy-free
rule such that for any given profile no agent can manipulate by more than this bound (and
we cannot find another envy-free rule with a smaller bound). Of course, by Theorem 2 this
approach is fruitless because utilities are arbitrary and for any fixed ω ≥ 0 there does not
exist an envy-free rule which is ω-strategy-proof (or ω-non-manipulable for all profiles).
Instead we follow below a local bound approach, i.e., where the bound is dependent on the
given profile and we minimize this bound for any profile.
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4.2 Existence

Because each agent can manipulate any envy-free allocation rule it is natural to ask if
there is an allocation rule that is better than other from the viewpoint of manipulability.
In some recent papers this issue has been investigated by minimizing the number of profiles
in UN for which the rule is manipulable (see Aleskerov and Kurbanov, 1999; Maus, Peters
and Storcken, 2007a,b), by minimizing the domain (with respect to inclusion) on which the
rule is manipulable (Pathak and Sönmez, 2013), and by finding rules that prevent the most
agents and coalitions of agents by gaining from misrepresentation (Andersson, Ehlers and
Svensson, 2010). Here, we have a somewhat different approach and instead search for rules
that minimize the maximal gain that any agent can obtain by strategic misrepresentation
(see also Fujinaka and Wakayama, 2011). This maximal gain is given by the functions of
type f previously given in Theorem 2. Hence, the aim is to identify a rule satisfying the
following:

Definition 5. Let ϖ : UN → R+.

(i) A rule φ isϖ-strategy-proof if for any profile u ∈ UN we have maxi∈N fi(φ, u) ≤ ϖ(u).

(ii) An envy-free rule ψ is least manipulable if for any ϖ : UN → R+ and any envy-free
rule φ which is ϖ-strategy-proof, ψ is ϖ-strategy-proof.

Alternatively, Definition 5 means finding an envy-free rule ψ such that for all u ∈ UN :

ψ = arg min
φ is envy-free

max
i∈N

fi(φ, u). (2)

The following theorem establishes the existence of such rule.

Theorem 3. There exists a least manipulable envy-free rule for each profile u ∈ UN .

Theorem 3 follows simply from the fact that for any profile u ∈ UN , F(u) is compact and
therefore, by Theorem 2, there exist envy-free allocations (c, x) ∈ F(u) which solve

arg max
(c,x)∈F(u)

min
k∈N

(
ukxk

k
(ck)− ukxk

(c)
)
.

Now, simply let the rule choose any such allocation for the profile u. Here the important
consequence of Theorem 2 is that the maximal gain from manipulation is independent of
which envy-free rule is considered.

4.3 Quasi-Linear Utilities

To obtain more specific results, we shall consider the subclass of quasi-linear utility func-
tions UN

q ⊂ UN , i.e., u ∈ UN
q if and only if for each i ∈ N there exists vi ∈ RM such that

for all c ∈ RM and all j ∈M :
uij(c) = vij + cj.
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Under quasi-linear utility functions, the following result from Svensson (2009, Proposition
2) will be useful.5

Lemma 2. For each profile u ∈ UN
q and all (c, x), (d, y) ∈ F(u), we have (c, y), (d, x) ∈

F(u).

Using Theorem 2 and Lemma 2, we can simplify the maximal manipulation possibility of
agent k under quasi-linear utilities. More specifically, for any arbitrary envy-free rule φ,
any agent k ∈ N , and any u ∈ UN

q , let (c, x) ∈ φ(u) and (ck, xk) ∈ ϕk(u). Now by Lemma
2 we have (c, xk) ∈ F(u) and ukxk

(c) = ukxk
k
(c). Quasi-linearity then yields

fk(φ, u) = ckxk
k
− cxk

k
.

The following result establishes that the sum of maximal gains from manipulation (given
by the function f), at a given profile, is independent of which envy-free rule is considered.
Therefore, if the maximal gain from manipulation decreases for one agent, then maximal
gain from manipulation must increase for some other agent.

Theorem 4. Let φ and ψ be two envy-free rules. Then for each profile u ∈ UN
q it holds

that: ∑
i∈N

fi(φ, u) =
∑
i∈N

fi(ψ, u). (3)

Proof. Let i, j ∈ N , (ci, xi) ∈ ϕi(u) and (cj, xj) ∈ ϕj(u). By Lemma 2, we have (cj, xi) ∈
F(u) and obviously (cj, xi) ∈ ϕj(u). Thus, without loss of generality, we may assume
xi = xj for all i, j ∈ N . From the definition of f we obtain∑

i∈N

fi(φ, u) =
∑
i∈N

(cixi
i
− cxi

i
) =

∑
i∈N

cixi
i
−
∑
i∈N

cxi
i
,∑

i∈N

fi(ψ, u) =
∑
i∈N

(cixi
i
− dxi

i
) =

∑
i∈N

cixi
i
−

∑
i∈N

dxi
i
.

Thus, (3) holds by essentially single-valuedness and Remark 1 if∑
i∈N

cxi
i
=

∑
i∈N

dxi
i
. (4)

We have xii ̸= xjj for any j ∈ N where j ̸= i. Hence, by Definition 1, feasibility and
budget-balance, ∑

i∈N
cxi

i
=

∑
i∈N

dxi
i
= m. (5)

This together with (4) yields the desired conclusion.

5Furthermore, by Svensson (2009, Proposition 3), Definition 3 may be rewritten as follows on the
domain of quasi-linear utilities: φ is manipulable at u ∈ UN

q by agent i ∈ N if there exists ûi ∈ Uq such
that for all (c, x) ∈ φ(u) and all (d, y) ∈ φ(ûi, u−i) we have uiyi(d) > uixi(c).
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Theorem 4 establishes that the sum of maximal individual gains from manipulation (given
by the function f), at a given profile, is independent of which envy-free rule is considered.
This insight has the same flavor as Andersson, Ehlers, and Svensson (2010, Theorem 1
and Proposition 1): they show that it is impossible to distinguish any two envy-free rules
by their “degree of manipulability” if the measure is based on the number (or the set)
of profiles at which a given envy-free rule is manipulable (by some agent). Theorem 4
demonstrates that the very same result holds if the (cardinal) measure is based on the
sum of maximal individual gains from manipulation. Hence, like in Andersson, Ehlers, and
Svensson (2010), a “finer” (cardinal) measure is needed to distinguish envy-free rules. In
this sense, Theorem 4 can be seen as a motivation for adopting Definition 5 for a least
manipulable envy-free rule (in the quasi-linear domain). Theorem 3 demonstrates that
there exists a least manipulable envy-free rule for each profile. Below we show that under
quasi-linear preferences this rule selects envy-free allocations such that the maximal gain
from manipulation is equal for all agents.

Theorem 5. There exists an envy-free rule φ such that for each profile u ∈ UN
q , we have:

fi(φ, u) = fj(φ, u) for all i, j ∈ N . (6)

Proof. Let u ∈ UN
q . By Lemma 2, if (c, x) ∈ F(u) and (d, y) ∈ F(u), then (c, y) ∈ F(u)

and (d, x) ∈ F(u). For this reason we shall assume in the remaining part of the proof,
without loss of generality, that the feasible assignment is identical and given by x for all
envy-free allocations in F(u).

We need to show that there exists a envy-free allocation (c, x) ∈ F(u) such that

cixi
− cxi

= cjxj
− cxj

for all i, j ∈ N .

Consider now the utility maximizing compensation vectors c1x1
, ..., cnxn

for agents 1, ..., n, re-
spectively, at profile u ∈ UN

q and note that they are unique by Remark 1. Since preferences
are quasi-linear, we now have for all i ∈ N and all (c, x) ∈ F(u):

cixi
≥ cxi

. (7)

Thus, for any (c, x) ∈ F(u), we have
∑

i∈N c
i
xi

≥
∑

i∈N cxi
= m. Now, obviously there

exists ε ≥ 0 such that ∑
i∈N

(cixi
− ε) = m. (8)

Let cε ∈ RM be the compensation vector where cεxi
= cixi

− ε for each i ∈ N such that (8)
holds. To complete the proof we need to demonstrate that (cε, x) ∈ F(u). To obtain a
contradiction, suppose that (cε, x) /∈ F(u). Then

vixi
+ cεxi

< vixj
+ cεxj

for some i, j ∈ N . (9)

From the definition of cε we obtain that

vixi
+ cixi

− ε < vixj
+ cjxj

− ε,
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i.e. (using cjxi
≤ cixi

from (7)):

vixi
+ cjxi

≤ vixi
+ cixi

< vixj
+ cjxj

,

which contradicts (cj, x) ∈ F(u). Hence, (cε, x) ∈ F(u), the desired conclusion.

The envy-free rule described in the previous proof can be related to the constrained equal
losses rule (Aumann and Maschler, 1985; Hokari and Thomson, 2003; Thomson, 2003). To
see this connection, suppose that all agents in N are asked by the mechanism designer to
select an envy-free allocation at profile u ∈ UN

q . Obviously, each agent k ∈ N would suggest
(or claim) an allocation (ck, xk) ∈ ϕk(u), i.e., an envy-free allocation that maximizes agent
k’s utility. Again, as above we can fix an assignment x. Obviously (ck, x) ∈ ϕk(u) and,
without loss of generality, we may set xk = x for all k ∈ N . Now we simply let for all
k ∈ N :

cxk
= ckxk

− λ(u) and λ(u) is chosen so that
∑
k∈N

(ckxk
− λ(u)) = m.

In this sense each agent incurs an equal loss of λ(u) between the chosen envy-free allocation
and the allocations that maximize his utility among all envy-free allocations. Setting
ϖ(u) = λ(u) for any u ∈ UN

q , Theorem 4 implies that the above rule is least manipulable
in the class of envy-free rules on the domain of quasi-linear preferences.

5 Replication of Economies

Roberts and Postlewaite (1976) have shown as when a small finite economy is replicated,
then under certain assumptions, any competitive mechanism becomes limiting incentive
compatible. More precisely, for any given ε > 0, there is a large enough economy such that
the gains from manipulation do not exceed ε. Several subsequent papers have examined
different qualifications of the result by Roberts and Postlewaite (1976).6

In our model, Svensson (1983) introduced a connection between envy-free allocations
and competitive allocations in the following sense: For an envy-free allocation (c, x), the
vector −c = (−cj)j∈M is interpreted as prices which means that agent i pays the price
−cxi

for receiving object xi. Then envy-freeness readily translates to the fact that given
the prices −c, agent i weakly prefers object xi to any other object.

One of our motivations for our paper was that replicating the economy does not alter the
gains from manipulation of envy-free allocation rules. In other words, even as the economy
becomes large leaves the manipulation possibilities unchanged and in determining the least
manipulable envy-free rules we need to do this for small economies. To formalize this point,
let E = (N,M, u) denote the original economy. Let E<t> denote the t-replica of E with
tN agents (each agent i ∈ N is replicated t times), with tM objects (each object j ∈M is
replicated t times) and each replica of agent i has i’s utility function ui (where agents have

6Among others, Jackson (1992), Manelli and Jackson (1997), Cordoba and Hammond (1998) and Ko-
valenkov (2002).

12



identical utilities for an object j and its replicas). Similarly, for an allocation (c, x) of E,
let (c, x)<t> stand for the allocation of E<t> where any replica of agent i ∈ N receives the
replica of i’s consumption bundle (xi, cxi

) in (c, x) (and i receives (xi, cxi
)).

The following observations are straightforward: if (c, x) is an envy-free allocation in
E, then (c, x)<t> is an envy-free allocation in E<t>. Thus, for any agent k, the utility
of his maximizing envy-free allocations in E is smaller than or equal to the utility of his
maximizing envy-free allocations in E<k>. In fact, these utilities must be equal as the
following argument shows7:

Consider E and E<2> and suppose that some allocation (c, x) in E<2> maximizes
agent k’s utility among all envy-free allocations in E<2>. Note that (c, x) does not need
to be a 2-replica of some allocation in E. Since (c, x) is envy-free, now any two agents
who receive the replica of the same object must receive identical compensations. Setting
2M = M ∪ {j′ : j ∈ M}, we have cj = cj′ for all j ∈ M . But then by budget-balance of
(c, x) we must have

∑
j∈M cj = m. Now we construct from (c, x) an allocation for E as

follows (again setting 2N = N ∪ {i′ : i ∈ N}): for any agent i ∈ N , if his replica receives
the same consumption bundle as i, then just drop i′ and his consumption bundle; otherwise
choose the agent (l or l′) who receives the same consumption bundle as i′ and assign to
l the consumption bundle of i′ and drop l′ and one consumption bundle of i′; now l or l′

received an object different than i′ and we repeat the procedure for this object; at some
point there will be a cycle (going back to i) and we simply keep i’s consumption bundle
unchanged. Now this gives us an allocation for E which is envy-free. Since we chose an
allocation with maximal utility of agent k in the set of envy-free allocations in E<2>, now
this utility must be identical as in ϕk(u).

Of course, the above argument is true for E, E<2>, E<4>, E<8>, . . . , E<2t>, . . ., i.e.
using the first fact, in E and in all replicas E<t> the maximal utility of agent k among all
envy-free allocations is identical. Hence, Theorem 2 applies and the gains from manipula-
tion remain unchanged for envy-free rules in E and E<t>.
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