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Abstract

A time bank is a group of people that set up a common platform to trade services among them-
selves. There are several well-known problems associated with time banks, e.g., high overhead
costs and difficulties to identify feasible trades. This paper constructs a non-manipulable mech-
anism that selects an individually rational and time-balanced allocation which maximizes ex-
changes among the members of the time bank (and those allocations are efficient). The mechanism
works on a domain of preferences where agents classify services as unacceptable and acceptable
(and for those services agents have specific upper quotas representing their maximum needs).

Keywords: market design; time banking; priority mechanism; non-manipulability.
JEL Classification: D82; D47.

1 Introduction

Time banks have now been established in at least 34 countries. In the United Kingdom, for example,
there are more than 300 time banks, and time banks are operating in at least 40 states in the United
States (Cahn, 2011).1 A time bank is a group of individuals and/or organizations in a local community
that set up a common platform to trade services among themselves. Members of a time bank earn time
credit for each time unit they supply to members of the bank and the earned credit can be spent to
receive services from other members of the bank. Very few time banks are not based on a “one-for-
one” time system, meaning that members of the time bank need not get one unit of time back for
each unit of time they supply (see also Footnote 7 or Croall, 1997). Therefore, we consider the most
commonly used “one-for-one” time banks. For example, a gardener who supplies two hours of time
∗We are grateful to four anonymous referees, Michael Ostrovsky (coeditor), Peter Biró, Jens Gudmundsson and Flip

Klijn for many useful and constructive comments. All authors gratefully acknowledge financial support from the Jan
Wallander and Tom Hedelius Foundation. Andersson is also grateful to Ragnar Söderbergs Stiftelse (E8/13) for financial
support. Cseh was supported by the Hungarian Academy of Sciences (KEP-6/2017), its Momentum Programme (LP2016-
3/2016) and its János Bolyai Research Fellowship. Ehlers is grateful to the SSHRC (Canada) and the FRQSC (Québec) for
financial support.
†Lund University, Department of Economics. E-mail: tommy.andersson@nek.lu.se.
‡Hungarian Academy of Sciences, Institute of Economics. E-mail: cseh.agnes@krtk.mta.hu.
§Université de Montréal, Département de Sciences Économiques. E-mail: lars.ehlers@umontreal.ca.
¶Stockholm School of Economics, Department of Economics. E-mail: albin.erlanson@hhs.se.
1A more thorough description of timebanking and time banks will be provided in Section 2.
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may, for example, receive two hours of child care in return for his gardening services. Ozanne (2010)
reported that the most commonly exchanged services included gardening, giving lifts, befriending,
do-it-yourself jobs, dog walking, and computer training. Even if time banks traditionally have had
a very simple organization, most of the nowadays existing time banks take advantage of computer
databases for record keeping and a broker (physical coordinator) that keeps track of transactions and
match requests for services with those who can provide them (Seyfang, 2003, 2004; Williams, 2004).

A critical factor for a time bank to function smoothly is the coordination device that matches re-
quests for services with those who can provide them. Our basic observation is that this type of service
exchange shares many features with some classical markets previously considered in the matching
literature, including, e.g., housing markets (Scarf and Shapley, 1974; Abdulkadiroğlu and Sönmez,
1999; Aziz, 2016b), organ markets (Roth et al., 2004; Biró et al., 2009; Ergin et al., 2017), one-to-one
matching problems (Gale and Shapley, 1962), and markets for school seats (Abdulkadiroğlu and Sön-
mez, 2003; Kesten and Ünver, 2015). In particular, if a time bank is organized as a matching market,
the time bank will have a structure of what in the matching literature is known as a many-to-many
matching market. This follows since any member of a time bank can trade services with any other
member of the very same time bank and there are no obstacles that prevent a member of a time bank
to supply and receive multiple services from members of the very same time bank. Such matching
markets have previously been considered by, e.g., Echenique and Oviedo (2006), Konishi and Ünver
(2006), and Hatfield and Kominers (2016).

The above mentioned classical matching markets are centralized as the agents in the system (e.g.,
tenants, patients, or students) report their preferences over the items to be allocated (e.g., houses,
organs, or school seats) to a clearing house and a mechanical procedure (or mechanism) determines
the final allocation based on the reported preferences and a set of predetermined axioms. As will be
described in more detail in Section 2, even if time banks often take advantage of computer databases,
there is no mechanical procedure that determines the trade of services among the members in the bank
based on reported preferences, and it is exactly in this respect that time banks can learn from insights
in classical matching markets.

By organizing a time bank as a matching market, it is possible to solve a number of problems
which have been associated with time banks. For example, time banks typically encounter long
run organizational sustainability problems since they experience high overhead costs, e.g., as staff
is needed to keep the organization running and, in particular, to help out in the coordination process
(Seyfang, 2004). Moreover, independently of if possible exchanges are identified manually by a bro-
ker or if members propose exchanges through an internet-based software, it is challenging to identify
and coordinate longer trading cycles.2 Time bank members sometimes experience that time credits
are comparatively easy to earn but harder to spend (Ozanne, 2010), i.e., the reverse situation compared
to conventional money which generally is hard to earn, but easy to spend. The consequence of the
latter problem is that potential members never join time banks simply because there is a risk that they
provide more time than they get back.

A computer-based clearing house, e.g., an internet-based interface for reporting needs and requests
together with an algorithm for matching needs and requests, on the other hand, can help in reducing

2In fact, some members have experienced difficulties to understand the mechanism for making trades (Ozanne, 2010;
Seyfang, 2004) and, consequently, the role of the broker is important even when an internet-based software is used.
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costs related to coordination. Such an algorithm can also identify and coordinate longer trading cycles
which in turn will lead to a maximal number of exchanged time units and, consequently, to an efficient
outcome. In addition, problems related to participation concerns can be solved by restricting the
algorithm to only propose individually rational time-balanced exchanges, i.e., exchanges where all
members of the bank only receive services they have requested and get exactly as much time back as
they supply to the bank.

The above discussions and observations also motivate the interest in (time) allocations that are
individually rational, maximal, and time-balanced. A first observation is that such allocations always
exist on the general preference domain. This follows since the allocation in which all agents receive
their initial time endowments is individually rational and satisfies time-balance. The conclusion then
follows directly from the observation that the number of individually rational allocations that satisfy
time-balance is finite and, consequently, that there exists an allocation among those which maximizes
trade in the time bank.

However, even if an allocation satisfying these specific properties can be identified, two new
problems arise. First, it is often natural to require that the algorithm should be designed in such fashion
that it is in the best interest for all agents to report their preferences truthfully (non-manipulability).
This property is incompatible with individual rationality, efficiency and time-balance on a general
preference domain (Sönmez, 1999, Corollary 1).3 Second, because members of a time bank can
exchange multiple time units, it is not clear that it is easy for members to generally rank any two
“consumption bundles”. For example, is two hours of hairdressing, two hours of gardening and one
hour of babysitting strictly better, equally good, or less preferred to one hour of hairdressing, one hour
of gardening and three hours of housekeeping? Hence, it may be an obstacle for members to report
their preferences if multiple time units are on stake and if multiple agents are allowed to be involved
in a longer trade.

We show that if agents’ preferences satisfy certain conditions, the above two problems are no
longer present. In some settings, the considered preference domain is clearly unrealistic (e.g., in the
school choice problem by Abdulkadiroğlu and Sönmez, 2003). In the case of timebanking, however,
they provide a reasonable approximation as will be explained below. The considered restricted domain
is an extension of the dichotomous domain popularized by Bogomolnaia and Moulin (2004).4 In the
considered domain, individual preferences are completely described by (i) partitioning the members
of the bank (or, equivalently, the services that the members provide) into two disjoint subsets con-
taining acceptable and unacceptable members, and by (ii) specifying a member specific upper time
bound for each acceptable member. The former condition reflects that an agent is not necessarily
interested in all services provided in the bank (an agent’s “horizontal” preference) whereas the latter
condition captures the idea that an agent may, for example, be interested in at most one haircut but
can accept up to 10 hours of babysitting (an agent’s “vertical” preference). One advantage of adopting
this preference domain is that it facilitates for agents to report their preferences as they just need to
report all unacceptable members and all acceptable members with their upper bounds in contrast to

3This impossibility should come as no surprise given the results in, e.g., Hurwicz (1972), Green and Laffont (1979),
Roth (1982), Alcalde and Barberà (1994), Barberà and Jackson (1995), or Schummer (1999).

4In fact, Bogomolnaia and Moulin (2004) and a series of subsequent papers, argue that it is natural to consider a dichoto-
mous domain in problems involving “time sharing”.
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reporting a ranking over all possible bundles.5 Agents then strictly prefer receiving more time units
from acceptable services to receiving fewer time units from acceptable services (without exceeding
upper bounds or receiving unacceptable services). In this sense, an agent may have many different
indifference classes and preferences are dichotomous over single services and polychotomous over
bundles of services.

We define and apply a priority mechanism to solve the problem of exchanging time units between
members in a time bank. It is demonstrated that the priority mechanism can be formulated as a min-
cost flow problem (Proposition 1). Consequently, it is not only possible to identify time-balanced
trades, it is also computationally feasible. The definition of the priority mechanism is flexible as it
can be adopted on the restricted preference domain or the general domain. Our main result shows
that the priority mechanism is non-manipulable on the restricted preference domain and that it always
makes a selection from the set of individually rational, maximal, and time-balanced allocations (The-
orem 1). To prove this result, a number of novel graph theoretical techniques are needed. In particular,
Appendix B demonstrates an equivalence result between the min-cost flow problem and a circulation-
based maximization problem.6 Using graph theoretical tools and in particular min-cost/max-weight
formulations to solve matching problems is common in the literature. In the house allocation problem
with dichoutomous preferences Aziz (2016b) formalizes a bipartite graph and solves for a max-weight
matching. His graph construction is based on having houses on one side and agents on the other side.
This is in contrast to our approach where we make copies of agents. Furthermore, our graph construc-
tion and the solution is more intricate since agents’ can have more than one object. Because finding a
maximal alloaction is more involved in our problem and a potential manipulation is more complex we
use the graph theoretical tools in proving non-manipulability of the mechanism. This is not needed in
Aziz (2016b) because of the less complex optimization problem.

A variety of real-life problems have previously been considered in the matching literature in-
cluding the above mentioned house allocation problem, kidney exchange problem and school choice
problem. There are, however, several differences between these problems and the time banking prob-
lem. For example, in the time banking problem, an agent may receive and supply multiple time units.
In the school choice problem and the kidney exchange problem, on the other hand, students are allo-
cated at most one school seat and a patient is involved in at most one kidney exchange, respectively.
Furthermore, in many matching problems including, e.g., the school choice problem and the house
allocation problem, agents’ (reported) preferences are typically strict and indifference relations are
consequently not allowed (while the kidney exchange problem is often defined on a dichotomous
domain). Generalizations to allow for a weak preference structure have recently been proposed by
Alcalde-Unzu and Molis (2011) and Jaramillo and Manjunath (2012). However, both these papers
only allow agents to trade at most one object.

The papers closest to the model investigated in this paper are Athanassoglou and Sethuraman
(2011), Aziz (2016a), Biró et al. (2017) and Manjunath and Westkamp (2018), which we describe
below.

5The strict preference domain is often considered in the matching literature. However, the dichotomous domain is much
smaller in size than the strict preference domain, but is not a subset of the strict domain since indifference relations are
allowed in the former but not in the latter domain.

6The min-cost flow problem is considered in the main part of the paper since it is more intuitive and, moreover, can be
introduced using minimal notation.
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Athanassoglou and Sethuraman (2011) and Aziz (2016a) consider a housing market where ini-
tial endowments as well as allocations are described by a vector of fractions of the houses in the
economy. The fractional setting makes it possible to analyze, e.g., efficiency based on (first-order)
stochastic dominance, and it is demonstrated that the efficiency and fairness notions of interest con-
flict with non-manipulability. Even if a similar impossibility is present in the model considered in this
paper, the fractional setting is analyzed using different axioms and mechanisms. In addition, Athanas-
soglou and Sethuraman (2011) and Aziz (2016a) are unable to find any positive results related to
non-manipulability in their considered reduced preference domains.

Biró et al. (2017) consider, as this paper, a model where agents are endowed with multiple units of
an indivisible and agent-specific good, and search for balanced allocations. In their reduced preference
domain, agents have responsive preferences over consumption bundles. On this reduced domain, they
demonstrate that, for general capacity configurations, no mechanism satisfies individual rationality,
efficiency, and non-manipulability. Given this negative finding, they characterize the capacity con-
figurations for which individual rationality, efficiency and non-manipulability are compatible. They
also demonstrate that for these capacity configurations, their defined Circulation Top Trading Cycle
Mechanism is the unique mechanism that satisfies all three properties of interest. Hence, the main dif-
ference between this paper and Biró et al. (2017) is that they consider a different preference domain
and, consequently, need a different mechanism to escape the impossibility result.

Manjunath and Westkamp (2018) have independently considered a model closely related to the
one considered here. In their model, an agent can supply distinct services but at most one time unit of
each service (recall that agents in our model supply one service but, possibly, several time units of it).
They also require time-balance and consider a preference domain classifying services as unacceptable
and acceptable (there is no need to specify upper bounds on services since each service is available
in one unit). Given this, Manjunath and Westkamp (2018) define a priority mechanism over the set
of individually rational and efficient allocations. The main differences between their work and ours
is that (i) they allow agents having distinct services whereas each agent in our model has a specific
service that comes in multiple copies, (ii) their priority mechanism chooses from the set of individu-
ally rational and efficient allocations whereas ours chooses from the set of individually rational and
maximal allocations (and as we show in Example 3, any priority mechanism may choose different
allocations in their setting and in ours), and (iii) for the non-manipulability result they use a bipartite
graph approach whereby capacities for unacceptable services are reduced one-by-one (following the
priority order) whereas we use a direct circulation based graph with upper capacities on edges (where
the min-cost flow corresponds to the allocation chosen by the priority mechanism).

The remaining part of the paper is outlined as follows. Section 2 gives a more detailed introduction
to timebanking and provides some descriptive statistics of the time banks associated with TimeBanks
USA. Section 3 introduces the theoretical framework and some basic definitions. The priority mech-
anism is presented in Section 4. The main results are presented in Section 5. Section 6 discusses
the main findings of the paper and some extensions of the considered timebanking model. Section 7
concludes the paper. All proofs are relegated to the Appendix.
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2 Timebanking

As already explained in the Introduction, a time bank is a group of individuals and/or organizations in
a local community that set up a common platform to trade services among themselves. This section
gives a more detailed description of the fundamental ideas underlying time banks and how time banks
attempt to integrate in a larger society. This section also provides some details of TimeBanks USA (the
largest time bank operating in the United States).

2.1 Time Banks and the Society

Even if concepts closely related to timebanking dates back to the 19th century, timebanking was
popularized and pioneered in the 1990s by Edgar Cahn and Martin Simon in the United States and
the United Kingdom, respectively. One of the fundamental ideas in timebanking is that one hour of
service generates one time credit regardless of the provider or the nature of the service performed.
This rule is deeply rooted in the philosophical view that even if services are valued differently, human
beings share fundamental equality.7

Because time bank members exchange services among themselves in local communities, potential
positive external welfare effects of timebanking includes resilient local communities, extended social
networks and informal neighbourhood support (this is also part of the core values of timebanking,
see footnote 7). Even if there is limited research on timebanking, there exists empirical evidence
that time banks indeed help in building strong local networks. For example, in a UK based case
study, Boyle et al. (2006) showed that time banks not only help their members to extend their social
networks but also that time banks are an effective way of developing reciprocal relationships between
members in the bank. In another UK based case study, Seyfang and Smith (2002) demonstrated that
time banks are successful in attracting participants both from socially excluded groups (people on
benefit programs, from low income households, etc.) and from groups that normally not are involved
in traditional volunteering. For example, 16 percent of traditional volunteers have an annual income
below £10, 000 but the corresponding number for the time bank members in their survey was 58
percent. Furthermore, 40 percent of traditional volunteers are not in formal employment compared to
72 percent of the time bank members.

The above findings show that a majority of the time bank members belong to socially excluded
groups and low income communities are also supported in other studies in both the United Kingdom
(Seyfang, 2003) and the United States (Collom, 2007).8 This could explain the existence of time
banks in a world where monetary transfers are available. Namely, because most members have small
social networks and in many cases also lack both income and employment, timebanking is one way
to be included in a social network and to increase welfare. Collom (2007) also finds that the single
most important reason for joining a time bank is to expand purchasing power through an alternative

7The philosophy of timebanking rests on five core values: assets, redefining work, reciprocity, social networks, and
respect. The idea that one hour of service always generates one time credit, the so-called one-for-one time system, is
embedded in these core values, see Cahn (2000). It should also be noted that a small minority of all time banks are not
based on a one-for-one time system, meaning that members of the time bank need not get one unit of time in return for each
unit of time they supply (Croall, 1997). This paper, however, restricts attention to one-for-one time systems.

8Most of the studies in the literature, consequently, focuses focus on socially excluded and low income groups. An
exception is Ozanne (2010) where it is demonstrated that time banks has provided high benefits in the form of social,
human, physical and cultural capital also within affluent groups.
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currency. Seyfang (2003) found that persons also join time banks, e.g., to meet other participants, to
help other members and to get more involved in the local neighbourhood. Similar motives are recoded
by Collom (2007) and Caldwell (2000). Joining a time bank may also have other positive spill-overs.
For example, when the concept of time banking was used within health care provisions, it was found
that there were tangible benefits, both practical and motivational, to health services users (Boyle and
Bird, 2014; Simon, 2003).

2.2 Organization and Descriptive Statistics

In most time banks, a broker is employed to manage the bank, maintain the database, record transac-
tions, recruit new members, etc. (Seyfang, 2004; Williams, 2004). A “matching mechanism” helps
the broker to coordinate requests for services with those who can provide them. In some time banks,
this mechanism is simple and the broker manually matches requests with offers (Seyfang, 2003). The
obvious drawback for such a mechanism is the difficulty to identity and coordinate longer trading cy-
cles. Hence, this type of matching device naturally restricts trade to bilateral exchanges. A few large
time banks, e.g., TimeBanks USA and Timebanking UK, have developed their own computer software
where members can see what other members offer and keep track of their own activity. As will be de-
scribed below, the members themselves then make requests and offers through the computer software.
Also in this case, however, it is difficult to coordinate longer trading cycles as members only can see
their own activity.

An example of computer software for timebanking is Community Weaver 3 which is the most
recent software launched by TimeBanks USA. This software allows members to register their talents
in 11 different categories including, e.g., education, transportation, business services, recreation, and
companionship.9 Each of these categories also have subcategories. The category “education”, for
example, contains, e.g., the subcategories advocacy, computers, languages, finances, and tutoring.
When a member have registered her talents, she can formally offer her services and start making
requests. An offer is essentially a registration on the online platform that enables other members to
see and request her talents. If a member approves a request, she receives the agreed amount of time
credits and the member that receives the service is credited by the same amount of time credits. The
software also keeps track of the time credit balance for each member.

Even if the first time banks saw the light of the day in the 1990s, it took another 20 years before
the concept of timebanking had a serious impact in society. Dash and Sandhu (2018) report that the
first time bank in the United Kingdom was set up in 1996 but that only 2,200 persons had joined a
time bank in 2003. Eight years later after additional experimentation, learning, and expansion, there
were around 30,000 registered members in the United Kingdom, 30,000 registered members in the
United States and an additional 100,000 members scattered across 34 countries (Cahn, 2011). This
number has continued to grow. In 2014, there were around 35,000 members in the United Kingdom
and even more in the United States.10

To the best of our knowledge, there exists no public database that provides detailed informa-
tion about time banks worldwide. Instead, this section will end with some descriptive statistics of
TimeBanks USA (the largest time bank operating in the United States). This bank currently has 107

9All data and documentation related to TimeBanks USA stated in this section is available in the Online Appendix.
10These figures are from Boyle and Bird (2014) and www.timebanks.org (retrieved 2019–02–05).
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branches in the United States spread out over 33 states, and it also operates in Australia, Canada,
France, Greece, Guatemala, Israel, New Zealand, South Africa, South Korea, and United Kingdom
(see Table 1). Even if not all registered branches are active, Table 2 provides some more detailed in-
formation about the active branches. As can be seen from the table, a time bank located in the United
States have on average around 100 members and have on average performed 1,958 trades since April
2015. These trades involved on average 7,736 time units meaning that each time exchange was on
average for 3.95 hours. As also can be seen from Table 2, the average time bank in the United States
had 115.1 registered active offers and 115.5 active requests on January 15, 2019. The US figures from
Table 2, therefore, roughly translates to that each member, in an active branch, on average had one
active offer and one active request on January 15, 2019.

Table 1: Descriptive data of TimeBanks USA.

Country Number of branches Active branches Represented in states/provinces/regions
USA 107 84 33 out of 50
New Zealand 30 28 7 out of 16
Canada 11 9 5 out of 10
Other countries 8 7 –

∗ The data was collected from www.timebanks.org on 2019–01–15 and it is available in the Online Appendix.

Table 2: Mean summary statistics for the active time banks in Table 1.

Country Number of members Number of exchanges Number of hours exchanged Active offers Active requests
USA 98.9 (105.9) 1,957.8 (5,034.9) 7,736.0 (25,509.6) 115.1 (748.9) 115.5 (746.6)
New Zealand 158.7 (189.7) 1,913.4 (2,798.6) 10,568.9 (29,138.0) 25.9 (23.7) 28.2 (28.1)
Canada 64.1 (64.9) 187.1 (255.3) 600.9 (1,019.7) 34.4 (41.6) 27.9 (38.9)
Other countries 113.7 (233.5) 1,464.3 (3,623.4) 5,401.7 (13,694.3) 1.6 (2.1) 2.0 (3.0)

∗ All values are mean values (standard deviation within brackets).

3 The Model and Basic Definitions

This section introduces the time banking problem together with some definitions and axioms.

3.1 Agents, Bundles, and Allocations

Let N = {1, . . . , n} denote the finite set of agents. Each agent i ∈ N is endowed with ti ∈ N units of
time which can be used to exchange services with agents in N . Let t = (t1, . . . , tn) denote the vector
of time endowments. Because the exact nature of the services is of secondary interest, the problem
will be described in terms of the time that an agent receives from and provides to other agents in
N . Let xij denote the time that agent i ∈ N receives from agent j ∈ N , or, equivalently, the time
that agent j provides to agent i. Here, xii represents the time that agent i ∈ N receives from or,
equivalently, spends with himself. It is assumed that xij belongs to the set N0 of non-negative integers
(including 0) representing standardized time units (e.g., 0 minutes for zero units, 30 minutes for one
unit, 60 minutes for two units, etc.)

The time that agent i ∈ N receives from the agents in N can be described by the bundle (or
vector) xi = (xi1, . . . , xin). The bundle where agent i ∈ N spends all time with himself is denoted
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by ωi (where ωii = ti and ωij = 0 for j 6= i). An allocation x = (x1, . . . , xn) is a collection of n
bundles (one for each agent in N ). An allocation is feasible if

n∑
j=1

xij = ti for all i ∈ N, (1)

n∑
j=1

xji = ti for all i ∈ N. (2)

This means any agent i receives the same amount of time from other agents that the agent supplies to
other agents (recall that an agent can receive time from and spend time with himself). In this sense,
any feasible allocation satisfies the time-balance conditions (1) and (2). In the remaining part of the
paper, it is understood that any allocation is feasible.

3.2 Preferences and Preference Domains

A preference relation for agent i ∈ N is a complete and transitive binary relation Ri over feasible
bundles such that xiRix′i whenever agent i finds bundle xi at least as good as bundle x′i. Let Pi
and Ii denote the strict and the indifference part of Ri, respectively. Let Ri denote the set of all
preference relations of agent i ∈ N . A (preference) profile R is a list of individual preferences
R = (R1, . . . , Rn). The general domain of profiles is denoted by R = R1 × · · · × Rn. A profile
R ∈ R may also be written as (Ri, R−i) when the preference relation Ri of agent i ∈ N is of
particular importance.

A restricted preference domain R̃ = R̃1 × · · · × R̃n ⊂ R will be considered for our main
results. As explained in the Introduction, this restricted domain is based on the idea that any preference
relation Ri ∈ R̃i:

(a) partitions the set of agents N\{i} into two disjoint sets containing acceptable and unacceptable
agents, denoted by Ai(Ri) ⊆ N \ {i} and Ui(Ri) = N \ (Ai(Ri) ∪ {i}), respectively, and;

(b) associates with each acceptable agent j ∈ Ai(Ri) an upper bound t̄ij ∈ N0 on how much time
agent i at most would like to receive from agent j.

Here, one may interpret (a) as agent i’s “horizontal preference” over acceptable and unacceptable
services and (b) as agent i’s “vertical preference” of how much agent i needs at most of each service.
Then, for agent i ∈ N , the preference relation Ri belongs to R̃i if for any allocations x and y:

(i) ωiPixi if xik > 0 for some k ∈ Ui(Ri) or xij > t̄ij for some j ∈ Ai(Ri),

(ii) xiIiyi if both ωiPixi and ωiPiyi,

(iii) yiPixi if yiRiωi, xiRiωi and
∑

j∈Ai(Ri)
yij >

∑
j∈Ai(Ri)

xij , or

(iv) yiIixi if yiRiωi, xiRiωi and
∑

j∈Ai(Ri)
yij =

∑
j∈Ai(Ri)

xij .

The first condition states that an agent strictly prefers not to be involved in any trade rather than re-
ceiving time from an unacceptable agent or exceeding his upper bound from an acceptable agent. The
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second condition means that an agent is indifferent between any two bundles containing an unaccept-
able agent or exceeding his upper bound from an acceptable agent. The last two conditions reflect a
monotonicity property and state that an agent weakly prefers bundles with weakly more acceptable
agents whenever bundles do not contain any unacceptable agents and as long as the time bounds t̄ij
are not exceeded for acceptable agents.

In the Introduction we motivate the preference domain further. Our assumptions captures certain
aspects of existing time banks, such as that you can classify your services supplied in various cate-
gories and then the other agents can request a certain services. There are clearly other assumptions on
preferences that one can make, and eventually it is a matter of whether a particular application fits to
the model or not. In Section 7 we also discuss two other applications different from the timebanking
one. One being shift-exchange among workers, for instance at a hospital, and the second is seminar
exchange for PhD students.

Remark 1. For the restricted domain R̃, a report Ri for agent i ∈ N is given by a set of acceptable
agents Ai(Ri) together with an upper time bound t̄ij for each j ∈ Ai(Ri). An equivalent formulation
of the reported preference for agent i ∈ N is a vector t̄i = (t̄i1, . . . , t̄in) ∈ Nn0 where t̄ii = ti. Then
t̄ij = 0 stands for j ∈ Ui(Ri), i.e., agent i is willing to accept at most zero time units from agent j.
Whether the first or the second formulation is used is just a matter of choice. �

Remark 2. For any agent i ∈ N and Ri ∈ R̃i, the preference Ri is dichotomous over single services
because they are partitioned into acceptable services and unacceptable services. The preference Ri is
polychotomous over bundles of services in the following way: for any h = 0, 1, . . . ,min{ti,

∑
j∈Ai(Ri)

t̄ij} =

m, all allocations x and y such that for all j ∈ Ai(Ri) xij ≤ t̄ij and yij ≤ t̄ij for all j ∈ Ai(Ri),
xik = 0 = yik for all k ∈ Ui(Ri) and

∑
j∈Ai(Ri)

yij = h =
∑

j∈Ai(Ri)
xij are ranked indifferent by

Ri. Let I(h) denote this indifference class. Then under Ri all allocations in I(m) are strictly pre-
ferred to all allocations in I(m−1), and in general, for h = 1, . . . ,m, underRi all allocations in I(h)

are strictly preferred to all allocations in I(h−1). Thus,Ri containsm+2 indifference classes (where
I(0) = {ωi} and ωi is strictly preferred to all allocations which are positive for some unacceptable
service or exceeds the time bound for an acceptable service). In this sense, preferences belonging to
R̃i are polychotomous over bundles of services (where the upper bounds are incorporated) and at the
same time dichotomous over single services. �

3.3 Axioms and Mechanisms

Let F(R) denote the set of all feasible allocations at profile R ∈ R̃. Allocation x ∈ F(R) is
individually rational if, for all i ∈ N , xiRiωi. Allocation x ∈ F(R) Pareto dominates allocation x′ ∈
F(R) if xiRix′i for all i ∈ N and xjPjx′j for some j ∈ N . An allocation is efficient if it is not Pareto
dominated by any feasible allocation. An allocation x is maximal at R if

∑
i∈N

∑
j∈Ai(Ri)

xij ≥∑
i∈N

∑
j∈Ai(Ri)

x′ij for all individually rational allocations x′. All individually rational and maximal
allocations at profileR ∈ R̃ are gathered in the setX (R) ⊂ F(R). Note thatX (R) 6= ∅ for allR ∈ R̃
and that any x ∈ X (R) is efficient.11

11If x is not efficient, then there exists an individually rational allocation x′ such that x′iRixi for all i ∈ N and x′jPjxj

for some j ∈ N . But then
∑

i∈N
∑

j∈Ai(Ri)
xij <

∑
i∈N

∑
j∈Ai(Ri)

x′ij meaning that x is not maximal, a contradiction.
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A mechanism ϕ with domain R̃ chooses for any profile R ∈ R̃ a feasible allocation ϕ(R) ∈
F(R). Mechanism ϕ is manipulable at profile R ∈ R̃ by an agent i ∈ N if there exists R′i such that
R′ = (R′i, R−i) ∈ R̃, and for x = ϕ(R) and x′ = ϕ(R′) we have x′iPixi. If mechanism ϕ is not
manipulable by any agent i ∈ N at any profile R ∈ R̃, then ϕ is non-manipulable (on the domain R̃).

4 Priority Mechanisms

Often in real life, the chosen allocation is based on a priority mechanism: any such mechanism uses a
priority-ordering, which may be deduced from a lottery or from a schematic update based on previous
allocation rounds. Let π : N 7→ N be an exogenously given priority-ordering where the highest
ranked agent is i ∈ N with π(i) = 1, the second highest ranked agent is i′ ∈ N with π(i′) = 2, and
so on.

Given R ∈ R̃, i ∈ N and Z∗ ⊆ X (R), allocation x ∈ Z∗ belongs to the set X i,Z∗(R) if xiRix′i
for all x′ ∈ Z∗, i.e., if allocation x is weakly preferred to any allocation in the setZ∗ under preference
Ri. In the special case where the set Z∗ is based on the choice made by some agent i′ 6= i for some
profile R ∈ R̃, i.e., where Z∗ = X i′,Z∗∗(R) for some Z∗∗ ⊆ X (R), the set X i,Z∗(R) is denoted by
X i,i′(R).

Definition 1. An allocation x ∈ X (R) is agent-i-optimal at profile R ∈ R̃ if x ∈ X i,X (R)(R).

Note the difference between the sets X i,X (R)(R) and X i,Z∗(R). The former set contains all agent i’s
most preferred allocations in the set X (R) whereas the latter set contains all agent i’s most preferred
allocations in a subset Z∗ of X (R).

Definition 2. Let π be a priority ordering and N = {i1, . . . , in} be such that π(ik) = k for all
k = 1, . . . , n. Then x ∈ X (R) is a π-priority allocation at profile R ∈ R̃ if:

(i) x belongs to X i1,X (R)(R),

(ii) x belongs to X ik,ik−1(R) for all k = 2, . . . , n.

One way to think about the set of priority allocations is the following. First, the highest ranked agent
identifies all his most preferred allocations in the set X (R). Then the agent with the second highest
priority identifies all his most preferred allocations in the set identified by the highest ranked agent,
then the agent with the third highest priority identifies all his most preferred allocations in the set
identified by the second highest ranked agent, and so on. Formally, this means that if x is a π-priority
allocation, then:

x ∈ X in,in−1(R) ⊆ X in−1,in−2(R) ⊆ . . . ⊆ X i2,i1(R) ⊆ X i1,X (R)(R) ⊆ X (R). (3)

Note that a priority allocation is agent-i-optimal for the agent i ∈ N with π(i) = 1. Moreover, all
agents in N are, by construction, indifferent between all allocations in the set X in,in−1(R).

Definition 3. A mechanism ϕ is a priority mechanism if there exists a priority ordering π such that
for all profiles R ∈ R̃ the mechanism ϕ selects a π-priority allocation from the set X (R).

Since a priority mechanism always makes a selection from the set X (R), it chooses an individually
rational, maximal, and time-balanced allocation (which is efficient).
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5 Results

As we show in Section 6, it is impossible to construct an individually rational, efficient, and non-
manipulable mechanism on the general domainR. Our first main result demonstrates that this impos-
sibility can be avoided on the restricted domain R̃ if trades are based on a priority mechanism.

Theorem 1. Any priority mechanism with domain R̃ is non-manipulable.

In most settings proving non-manipulability of a priority mechanism is rather straight forward, e.g.,
Svensson (1994). In our setting with multiple objects and potentially different number of objects
the scope for manipulation is much larger. The maximal set of allocations changes in a complex
manner if one agent reports something slightly different. To prove non-manipulability we formulate
a circulation flow network corresponding to the allocation in the priority mechanism. This enables
us to keep track of changes from potential manipulations using the network formulation. The proof
boils down to showing that no agent can ever gain by reducing the number of desired copies from an
acceptable agent. For details of the argument and the construction of the network see Appendix B.

In Proposition 1 below, it is demonstrated that a priority mechanism can be formulated as a min-
cost flow problem. To formulate this problem, a bipartite graph needs to be defined and specific values
must be attached to the vertices and the edges in the graph.

Definition 4. For any profile R ∈ R̃, the bipartite graph g = (N,M,E, u) is defined by two disjoint
sets of vertices, N and M , a set of edges, E, and a profile of upper bounds u = (u(i, l))(i,l)∈E on the
flow between any two edges, defined by:

(i) N = {1, . . . , n},

(ii) M = {n+ 1, n+ 2, . . . , n+ n},

(iii) E = {(i, n+ j) ∈ N ×M : j ∈ Ai(Ri) or j = i}, and

(iv) for all i ∈ N and each edge (i, n + j) ∈ E where j ∈ Ai(Ri) we set u(i, n + j) = t̄ij and
u(i, n+ i) = ti.

Example 1. Let N = {1, 2, 3, 4}, t1 = t2 = 1 and t3 = t4 = 2. Let R ∈ R̃ be such that
A1(R1) = A2(R2) = {3, 4} (with t̄13 = t̄14 = t̄23 = t̄24 = 1) and A3(R3) = A4(R4) = {1, 2}
(with t̄31 = t̄32 = t̄41 = t̄42 = 2). The constructed graph g is depicted in Figure 1. �

The interpretation of the graph g is that the agents in M should be regarded as copies of the agents
in N and in particular, agent n + i ∈ M is the copy of agent i ∈ N . Furthermore, agents i ∈ N

and n + j ∈ M are connected by an edge if agent j is acceptable for agent i or if j = i. Because
an allocation will be defined by the flows between the agents in N and M , the above construction
guarantees that n+j ∈M can only provide time for an agent i ∈ N if agent i finds agent j acceptable
or if agent j is his own copy. Finally, the upper bound on flow from n + j to i where j ∈ Ai(Ri) is
equal to the upper bound of how much time agent i wants from agent j. A flow x specifies for each
(i, l) ∈ E a non-negative integer xil ∈ N0.12 Any flow x is equivalent to an allocation in the usual
sense: xii = xi(n+i), xij = xi(n+j) for all j ∈ Ai(Ri), and xij = 0 for all j ∈ Ui(Ri).

12In general, flows may assign real numbers to edges, but for our purpose we restrict flows to assign integers.

12



3 421

5 6 7 8

Figure 1: Edge capacity 1 is color-coded by gray, while capacity 2 is denoted by black edges. The
edges connecting two copies of the same agent are marked by dashed lines.

Recall that the time-balance conditions (1) and (2) must hold for any allocation. In the language of
min-cost flow problems, this means that the required flow (between the vertices in the bipartite graph
g) is dictated by equations (1) and (2) which must be reformulated for the bipartite setting as follows:∑

j∈Ai(Ri)∪{i}

xi(n+j) = ti for all i ∈ N, (1’)

∑
i∈Aj(Rj)∪{i}

xj(n+i) = ti for all i ∈ N. (2’)

A natural interpretation of the bipartite graph is therefore that agents inM supply time to the demand-
ing agents in N . To obtain a maximal outcome, it is important to prevent flows between agents in N
and their own copies in M whenever there are other feasible flows or, equivalently, to prevent agents
to supply time to their own copies whenever it is feasible to supply time to other distinct agents (by the
time-balance conditions, any agent supplying time to other agents also receives in return more time
from acceptable agents). This can be achieved by introducing an artificial cost whenever agents sup-
ply time to themselves. Let, for this purpose, cil denote the cost associated when l ∈ M is supplying
time to agent i, and let, in particular, for each (i, l) ∈ E:

cil =

{
−1 if l = n+ i

0 otherwise.
(4)

For a given profile R ∈ R̃, a given graph g = (N,M,E, u) and given costs c = (cil)(i,l)∈E , the
(artificial) cost is minimized at any allocation x ∈ F(R) that solves the following maximization
problem:13

max
∑

(i,l)∈E

cilxil s.t. conditions (1’), (2’), xil ∈ N0 and xil ≤ u(i, l) for all (i, l) ∈ E. (5)

An allocation x ∈ F(R) is a maximizer if it is a solution of the maximization problem (5). Let
V(R, c) ⊆ F(R) denote the set of all maximizers at profile R ∈ R̃ for given costs c = (cil)(i,l)∈E .

13Note that costs of edges are non-positive and the max-cost flow problem is equivalent to the usual min-cost flow
problem.
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For notational convenience, the value of an allocation x at cost c is given by V (x, c) =
∑

(i,l)∈E cilxil.

Lemma 1. If allocation x belongs to V(R, c) at profile R ∈ R̃, then x ∈ X (R).

The set of maximizers V(R, c) is non-empty for any profile R ∈ R̃ since V(R, c) ⊆ X (R) and X (R)

is non-empty and finite for all R ∈ R̃. However, as stated above, agents need not be indifferent
between all allocations in the set V(R, c) since V(R, c) ⊆ X (R). Hence, in order to define a priority
mechanism based on a solution to maximization problem (5), a refined selection from the set V(R, c)

is necessary which will be based on the priority-ordering π.
We will modify the costs c in order to take the priority-ordering π into account, let ε0 ∈ (0, 1) and

εi−1 = (1 + ti)εi for each i ∈ {1, . . . , n}. By construction of εi, it follows that:14

1 > ε0 ≥ εi >
n∑

k=i+1

tkεk > 0 for all i ∈ {0, . . . n− 1}. (6)

To guarantee a larger flow to agents with higher priorities, the value associated with a flow will be
monotonically increasing with higher priorities. More specifically, let for each (i, l) ∈ E:

c̃il =

{
−1 if l = n+ i

επ(i) otherwise.

The above construction means that the agent with the highest priority (i.e., the agent with π(i) = 1)
will receive the highest edge weight (for edges (i, l) ∈ E\{(i, n + i)}), the agent with the second
highest priority (i.e., the agent with π(i) = 2) will receive the second highest edge weight, and so on.

Our second main result demonstrates that a mechanism that selects an allocation from the set
of maximizers for each profile in R̃ and any given priority-ordering is a priority mechanism. From
Theorem 1, it is already known that such a mechanism is non-manipulable on the domain R̃.

Proposition 1. For a given priority-ordering π, a mechanism ϕ selecting for each profile R ∈ R̃ an
allocation from V(R, c̃) is a priority mechanism based on π.

6 Discussion and Extensions

This section discusses essentially single-valued cores and random mechanisms under two separate
headings.15

6.1 Essentially Single-Valued Cores

Theorem 1 establishes that, in the considered time bank problem, there exist mechanisms which are
individually rational, efficient, and non-manipulable on the domain R̃. This is surprising as a number
of previous impossibility results for the combination of these axioms have been established by apply-
ing a essentially single-valued cores result by Sönmez (1999). Below we connect his result to time
banking.

14To see this, note that εn−1 = (1 + tn)εn > tnεn since εn > 0 and, consequently, εn−2 = (1 + tn−1)εn−1 =
εn−1 + tn−1εn−1 > tnεn + tn−1εn−1. Condition (6) then follows by repeating these arguments.

15We are grateful to the referees and the coeditor for bringing our attention to random mechanisms.
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Given R ∈ R̃, the core of R, denoted by C(R), consists of all feasible allocations x ∈ F(R)

which are not dominated via some coalition and some allocation meaning that there exists no ∅ 6=
S ⊆ N and y ∈ F(R) such that (i) yiRixi for all i ∈ S, (ii) yjPjxj for some j ∈ S and (iii)
{j ∈ N : yij 6= 0} ⊆ S for all i ∈ S. The core of R is essentially single-valued if for all x, y ∈ C(R)

we have xiIiyi for all i ∈ N . Note that if C(R) = ∅, then the core of R is essentially single-valued.
Let R̃1 denote the set of all profiles R ∈ R̃ such that for all i ∈ N and all j ∈ Ai(Ri) we

have t̄ij = 1 and ti = 1 (i.e., any agent demands at most one time unit of any acceptable service
and any agent provides at most one unit of time). This corresponds to the classical dichotomous
domain by Bogomolnaia and Moulin (2004). Then it is easy to check that the domain R̃1 satisfies
Assumption A and B of Sönmez (1999).16 Hence, his main result applies, which shows the following:
if there exists an individually rational, efficient, and non-manipulable mechanism, then for any profile
where the core is non-empty we have (i) the core is essentially single-valued and (ii) the mechanism
chooses a core allocation. However, here for any R ∈ R̃1, if the core of R is non-empty, then
the set of individually rational and efficient allocations is essentially single-valued (and the core is
essentially single-valued).17 But then any priority mechanism chooses a core allocation. Note that
Proposition 1 of Sönmez (1999) shows that when the core of each profile is externally stable, then any
selection from the core correspondence is non-manipulable.18 External stability implies that the core
is non-empty for any profile, but here, if the core is non-empty, then the set of individually rational
and efficient allocations is essentially single-valued. As this is often not the case, the core is often
empty and Proposition 1 of Sönmez (1999) cannot be used to show the non-manipulability of priority
mechanisms.

Once non-unitary endowments are allowed (as it is the case for time banks), the domain R̃ does
not satisfy Assumption B of Sönmez (1999). This is illustrated in the next example.

Example 2. We use the instance introduced in Example 1, i.e., N = {1, 2, 3, 4}, t1 = t2 = 1,
t3 = t4 = 2, and R ∈ R̃ is such that A1(R1) = A2(R2) = {3, 4} (with t̄13 = t̄14 = t̄23 = t̄24 = 1)
and A3(R3) = A4(R4) = {1, 2} (with t̄31 = t̄32 = t̄41 = t̄42 = 2). If agent 3 comes before agent 4

in the priority order π, then (3, 3, 12, 0) is the unique π-priority allocation (where this stands for agent
1 receiving one time unit from agent 3, agent 2 receiving one time unit from agent 3, agent 3 receiving
one time unit from both agent 1 and agent 2, and agent 4 keeping his endowment). If agent 4 comes
before agent 3 in the priority order π, then (4, 4, 0, 12) is the unique π-priority allocation. Note
that (3, 3, 12, 0)P3(3, 4, 1, 2)P3ω3 but there exists no R′3 such that (3, 3, 12, 0)P ′3ω3P

′
3(3, 4, 1, 2).

The latter conclusion follows since (3, 3, 12, 0)P ′3ω3 implies 1 ∈ A3(R′3) and t̄′31 ≥ 1, and thus
(3, 4, 1, 2)P ′3ω3. Hence, Assumption B is violated for the domain R̃ and at the same time any priority
mechanism is individually rational, efficient and non-manipulable. �

16In our framework (without externalities), Assumption A says that for any allocation x we have xiIiωi if and only if
xi = ωi and Assumption B says that whenever for two allocations x and y with xiPiyi and xiRiωi, there exists a preference
relation R′i such that xiR

′
iωiR

′
iyi.

17Note that for any R ∈ R̃1, if the set of individually rational and efficient allocations is not essentially single-valued,
then any two individually rational and efficient allocations, which are not regarded indifferent by all agents, dominate (via
some coalition) each other and the core must be empty: more formally, for R ∈ R̃ and any two individually rational and
efficient allocations x and y for which not xiIiyi for all i ∈ N , for S = {i ∈ N : xii = 0} we have for all i ∈ S, xiRiyi,
and for some j ∈ S, xjPjyj , i.e., x dominates y with the coalition S (and the same argument applies for y in the role of x
and x in the role of y). Thus, the core of R is empty.

18See also Demange (1987) for an important study of non-manipulable cores.
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The above example also shows that in general we do not have dichotomous preferences in the domain
R̃. We may have many distinct indifference classes for preferences in the domain R̃ and yet by
Theorem 1, there exists an individually rational, efficient, and non-manipulable mechanism.

Finally, we show that a priority mechanism with the same order may select different allocations
when choosing from the set of individually rational and efficient allocations (as in Manjunath and
Westkamp, 2018).

Example 3. LetN = {1, 2, 3, 4} and t1 = t2 = t3 = t4 = 1. LetR ∈ R̃ be such thatA1(R1) = {2},
A2(R2) = {3}, A3(R3) = {1, 4}, and A4(R4) = {3} (with t̄12 = t̄23 = t̄31 = t̄34 = t̄43 = 1).
Then X (R) = {(2, 3, 1, 0)}, i.e., there is a unique individually rational and maximal allocation which
is chosen by any priority mechanism. However, the allocation (0, 0, 4, 3) is individually rational and
efficient which is selected by any priority mechanism which chooses from the whole set of individually
rational and efficient allocations and where agent 4 occupies the first position in the priority order (and
such a priority mechanism would not necessarily result in a maximal allocation). Note that the same
argument applies if a priority mechanism chooses from the set of all feasible allocations. �

6.2 Random Mechanisms

Priority mechanisms are unfair in the sense that the agent in first position of the priority ordering
receives for any profile R his most preferred bundle among all allocations in X (R) (but this is not the
case for the agent in last position of the priority ordering). To establish fairness, one may consider
random allocations and random mechanisms, which we define briefly below.

A random allocation for R is a probability distribution p over F(R). For all x ∈ F(R), let p(x)

denote the probability of allocation x. The support of p is given by the allocations which are chosen
with positive probability by p, i.e. supp(p) = {x ∈ F(R) : p(x) > 0}. Then p is ex-post individually
rational for R if for all x ∈ supp(p), x is individually rational. Analogously, ex-post maximality
and ex-post efficiency are defined. For two random allocations p and q, we say that p stochastically
Ri-dominates q (where we write equivalently pi stochastically Ri-dominates qi), denoted by piRsdi qi,
if for all y ∈ F(R) we have∑

x∈F(R):xiRiyi

p(x) ≥
∑

x∈F(R):xiRiyi

q(x).

Then piP sdi qi if piRsdi qi and not qiRsdi pi. A random mechanism φ chooses for any profile R ∈ R̃ a
random allocation for R. The random mechanism φ is ex-post individually rational if for any profile
R the random allocation is ex-post individually rational for R. Analogously, ex-post maximality and
ex-post efficiency are defined for random mechanisms.

Now let ϕπ denote a deterministic priority mechanism using π as a priority ordering and Π denote
the set of all priority orderings. Then let RP =

∑
π∈Π

1
n!ϕ

π denote the random priority mecha-
nism putting equal priority on each priority ordering. Because determinstic priority mechanisms are
individually rational, maximal and efficient, the random priority mechanism is ex-post individually
rational, ex-post maximal and ex-post efficient.

For random mechanisms, often axioms are defined in terms of stochastic dominance. The random
mechanism is sd-non-manipulable if for all R,R′ ∈ R̃ such that R′ = (R′i, R−i) for some i ∈ N we
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have φi(R)Rsdi φi(R
′). The random mechanism is sd-efficient if for all R ∈ R̃ there exists no random

allocation p for R such that piRsdi φi(R) for all i ∈ N and pjP sdi φj(R) for some j ∈ N . The random
mechanism is sd-fair if for all R ∈ R̃ and all i, j ∈ N , φi(R)Rsdi φj(R).

Now from our results we obtain the following corollary.

Corollary 1. The random priority mechanism is sd-non-manipulable, sd-efficient and sd-fair.

In Corollary 1 sd-non-manipulability and sd-fairness are quite obvious, whereas sd-efficiency is more
surprising and relies on the fact that preferences are dichotomous over single services (see also Bo-
gomolnaia and Moulin, 2004). Besides random priority mechanisms, it would be interesting whether
there are any other “nice” random mechanisms which are not simply a mixing of deterministic mech-
anisms. This question is left for future research.

6.3 Extensions

This section contains discusses three possible extensions of the considered model.19

6.3.1 More General Preferences

One may argue that the upper bounds on how much time agent i at most would like to receive from
agent j is extreme in the following sense. Suppose that there are two agents 1 and 2 such that t1 =

t2 = 3. Now if for profile R we have t̄12 = 2, then (22, 11)P1w1P1(222, 111) meaning that agent 1
would strictly prefer his endowment to receiving three time units of service from agent 2. One may
argue that agent 1 has a preference such that (22, 11)P1(222, 111)P1w1, i.e., receiving two time units
of service from agent 2 is optimal, but receiving three time units is still better than his endowment.
This would correspond to agent 1 having a peak at two time units and a maximum at three time units.

It is easy to see that including such preferences would result in a manipulable mechanism (if the
mechanism is maximal and individually rational). If both agents have a peak at two time units and the
maximum consumption at three time units, then the unique maximal allocation is (222, 111). Now
if agent 1 reduces his maximal consumption to two, then the unique maximal allocation is (22, 11),
which is strictly preferred by agent 1 to (222, 111). This impossibility is not surprising, see for
instance Konishi et al. (2001) where agents are endowed with multiple types of indivisible goods and
have more general preferences.

Another possibility is that agents possess more general preferences but are only allowed to report
profiles belonging to R̃ to the priority mechanism. Then non-manipulability becomes meaningless
as agents cannot report their true preferences and one would have to consider games induced by the
mechanism and the general preferences. For instance, if all agents report no services as acceptable,
then this is a Nash equilibrium outcome which is in general neither efficient nor maximal for the true
preferences.

6.3.2 Non-Integer Endowments and Upper Bounds

Our analysis can easily accommodate endowments and upper bounds given by rational numbers.
Without going into the details, for any profileR (where for any i ∈ N , ti and t̄ij are rational numbers),

19We thank the referees and the coeditor for suggesting these extensions.
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let d denote the greatest common denominator of all constraints. Then for the profile R in terms of
unit d, agent i is endowed with dti time units and dt̄ij is agent i’s upper bound for services from agent
j. Our construction applies to the profile R in terms of unit d to obtain a priority allocation which is
individually rational and maximal. For non-manipulability, for two profilesR andR′, letR be in terms
of unit d and R′ in terms of unit d′. But then we can express R in terms of unit dd′ and the priority
allocation for R in terms of unit d is also a priority allocation in terms of unit dd′. Similarly, we can
expressR′ in terms of unit dd′ and the priority allocation forR′ is also a priority allocation in terms of
unit dd′. Because the same priority ordering is used, then non-manipulability follows from Theorem
1. Moreover, the algorithm computing a maximum weight circulation is strongly polynomial (Orlin,
1993), and thus, the running time does not depend on d or d′.20

6.3.3 Embedding in Trading Networks

We show that our model can be embedded in the general framework of trading networks by Hatfield
et al. (2018).

In any allocation x, for any i, j ∈ N , the number xij can be viewed as a contract between agent
i and agent j where j provides xij units of service to i. For later purposes, the number xij is de-
composed into separate units 1ij , 2ij , . . . , xij where kij stands for the kth unit of service provided by
agent j to agent i. Then i is the buyer in contract kij and j is the seller in contract kij . We write
i = b(kij) and j = s(kij). We ignore prices and set them implicitly equal to one. We denote the set
of all contracts by:

Y = {kij : i, j ∈ N with i 6= j and k ∈ {1, . . . , tj}}.

An allocation is then simply a subset of contracts Y ⊆ Y . Let Y→i = {y ∈ Y : b(y) = i} denote
the set of contracts in Y where i is a buyer and Yi→ = {y ∈ Y : s(y) = i} the set of contracts in Y
where i is a seller. Let Yij = Y→i ∩ Yj→ denote the set of contracts in Y where i is the buyer and j is
the seller. Let Yi = Y→i ∪ Yi→.

Given R ∈ R̃, a set of contracts Y is feasible (for R) if (i) for all i ∈ N , |Y→i| = |Yi→| ≤ ti,
(ii) for all i, j ∈ N , if kij ∈ Y and k > 1, then (k − 1)ij ∈ Y , and (iii) for all i, j ∈ N , if kji ∈ Y
and k > 1, then (k − 1)ji ∈ Y . Note that (i) corresponds to equations (1) and (2), and (ii) says that
if agent j provides to agent i the kth unit of time, then agent j provides to agent i the k − 1th unit of
time (and similarly for (iii)). We say that Yi is feasible for i if (i), (ii) and (iii) hold for agent i. Note
that any feasible allocation Y corresponds to an allocation y in the original model by setting for all
i, j ∈ N with i 6= j, yij = |Yij | and yii = ti − |Yi→| (and vice versa as above).

Given profileR ∈ R̃, agent i’s utility function over subsets of contracts Y ⊆ Yi which are feasible
for i is given by (i) Ui(Y ) = |Yi→| if Yij = ∅ for all j ∈ Ui(Ri) and |Yij | ≤ t̄ij for all j ∈ A(Ri),
and (ii) Ui(Y ) = −∞ otherwise. Then an allocation Y is feasible if for all i ∈ N , Ui(Y ) 6= −∞.
Note that Ui(∅) = 0.

Then agent i’s choice correspondence for subsets of contracts is defined as follows. For all Y ⊆
20We leave the incorporation of irrational constraints for future research.
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Yi, let:

Ci(Y ) = {X ⊆ Y : X is feasible for i and Ui(X) ≥ Ui(X ′) for all X ′ ⊆ Y feasible for i}.

We then write for Y ⊆ Y , Ci(Y ) = Ci(Yi).
Then allocation Y is individually rational if for all i ∈ N , Yi ∈ Ci(Y ). The allocation Y is

maximal if Y is individually rational and there exists no other individually rational allocation W such
that

∑
i∈N Ui(W ) >

∑
i∈N Ui(Y ). Then allocation Y is stable if Y is individually rational and there

exists no Z ⊆ Y\Y such that for all i ∈ N(Z) = {i ∈ N : Zi 6= ∅} and all W ∈ Ci(Y ∪ Z),
Zi ⊆Wi.

Corollary 2. If Y is individually rational and maximal, then Y is stable.

Thus, our results establish that there exists a stable and non-manipulable mechanism. Again this is
surprising as often there does not exist any stable and non-manipulable mechanism.

Below we verify that agents’ preferences satisfy monotone substitutability. Hence, by Theorem
1 of Hatfield et al. (2018), stability is equivalent to “chain stability”. Moreover, one may verify in
Example 3 that (0, 0, 4, 3) is stable, and the set of individually rational and maximal allocations is in
general a strict subset of the set of stable allocations.

Then agent i’s choice function is monotone substitutable if (1) for all Y,Z ⊆ Yi such that Yi→ =

Zi→ and Y→i ⊆ Z→i, for every Y ∗ ∈ Ci(Y ) there exists Z∗ ∈ Ci(Z) such that (i) Y ∗i→ ⊆ Z∗i→,
(ii) (Y→i\Y ∗→i) ⊆ (Z→i\Z∗→i), and (iii) |Z∗→i| − |Z∗i→| ≥ |Y ∗→i| − |Y ∗i→|; and (2) for all Y,Z ⊆ Yi
such that Y→i = Z→i and Yi→ ⊆ Zi→, for every Y ∗ ∈ Ci(Y ) there exists Z∗ ∈ Ci(Z) such that (i)
Y ∗→i ⊆ Z∗→i, (ii) (Yi→\Y ∗i→) ⊆ (Zi→\Z∗i→), and (iii) |Z∗i→| − |Z∗→i| ≥ |Y ∗i→| − |Y ∗→i|

Lemma 2. For all i ∈ N and all R ∈ R̃, agent i’s choice function Ci is monotone substitutable.

7 Concluding Remarks

This paper has modeled a time bank as a matching market. On a restricted but yet natural preference
domain, it has been demonstrated that a priority mechanism can be formulated as a min-cost flow
problem and, furthermore, that such mechanism is non-manipulable and always makes a selection
from the set of individually rational, efficient, and time-balanced allocations. No mechanism with
these properties exists on the general preference domain (Sönmez, 1999, Corollary 1).

Even if the considered priority mechanism has been demonstrated to satisfy all properties of in-
terest on a restricted preference domain, the mechanism can be criticized from a fairness perspective
as it discriminates low priority agents (see the discussion in Section 6.2). For this reason, it is impor-
tant to characterize the entire class of mechanisms that satisfies the axioms of interest to see if such
discrimination can be avoided or not. Moreover, even if the considered domain restriction is natural
for the time banking problem, it may also be of importance to find a maximal domain result where
the above mentioned impossibility can be escaped as this will give important information about how
much more detailed preferences that may be reported to a time bank. Both these open problems are
left for future research.

We would also like to point out that the model considered in this paper is not restricted to the
timebanking problem. As already described, the model considered by Manjunath and Westkamp
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(2018) is almost identical to the one considered in this paper. However, their leading example is
shift-reallocation. This application is motivated by the fact that millions of people, in many different
professions, engage in shift work (e.g., physicians, retail workers, etc.) but that shift workers some-
times are dissatisfied with their assigned time slots. Another problem that recently has been solved,
using a version of the priority mechanism proposed in this paper, is the seminar exchange problem.
This problem was initiated in Scandinavia in the fall of 2018 (by one of the authors of this paper)
to help final year PhD students to practice their job market talks at external departments. To solve
this problem, Economics departments classified 11 different research field as acceptable and unac-
ceptable. Job market candidates, on the other hand, classified themselves by one of the 11 different
research fields and all departments as either acceptable or unacceptable. A specific construction guar-
anteed that the job market candidates also played the role of their departments and could, therefore,
be engaged in time-balanced seminar exchanges with other students. In total, 10 departments and 21
job market candidates from Denmark, Norway and Sweden participated in the centralized market for
seminar exchange. In the end, all candidates were matched to some department in a balanced sense
(i.e., each department organized exactly as many seminars as their own students was invited to).21

Appendix A: Proofs

Appendix A contains the proofs of all results except Theorem 1, which is in Appendix B.

Proof of Lemma 1. Suppose that allocation x belongs to V(R, c). The fact that x is feasible and
individually rational follows directly from the construction of the graph g = (N,M,E, u) and by
definition of the maximization problem (5), i.e., n + j ∈ M is only connected to an agent i ∈ N if
agent j ∈ Ai(Ri) ∪ {i}, all flows are between connected agents and the flow never exceeds the upper
bounds t̄ij on any edge (i, n+ j) ∈ E.

To show that allocation x is maximal, it will be demonstrated that x minimizes the total flow
between agents i ∈ N and their respective clones i + n ∈ M . Because x ∈ V(R, c) is a maximizer,
it follows that:∑

(i,l)∈E

cilxil ≥
∑

(i,l)∈E

cilx
′
il for any feasible allocation x′ in program (5). (7)

Given the construction of the costs in condition (4), it now follows from condition (7) that:

n∑
i=1

ci(n+i)xi(n+i) ≥
n∑
i=1

ci(n+i)x
′
i(n+i).

Because ci(i+n) = −1 for all i ∈ N , by condition (4), the above inequality can be rewritten as:

n∑
i=1

x′i(n+i) ≥
n∑
i=1

xi(n+i).

But this condition means that allocation x minimizes the total flow between agents i ∈ N and their
21All details of the seminar exchange market are described at the Swedish Economics blog Ekonomistas. See

https://ekonomistas.se/2018/12/03/en-skandinavisk-matchningsmarknad-for-doktorandseminarier/.
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respective clones i+ n ∈M among all feasible allocations, which is the desired conclusion. �

Proof of Proposition 1. It is first demonstrated that V(R, c̃) ⊆ V(R, c) for each profile R ∈ R̃.
Suppose now that x ∈ V(R, c) but x′ /∈ V(R, c) for some x′ that is feasible in the optimization
program defined in (5). To reach the conclusion, it is sufficient to show x′ /∈ V(R, c̃).

Note that x ∈ V(R, c) and x′ /∈ V(R, c) imply V (x, c) > V (x′, c). This conclusion together with
cil ∈ {−1, 0} and xil ∈ N0 for all (i, l) ∈ E and ε0 < 1 gives V (x, c) > V (x′, c) + ε0. Because
c̃il ≥ cil for all (i, l) ∈ E by construction, it holds that V (x, c̃) ≥ V (x, c). This together with
the above inequalities imply V (x, c̃) > V (x′, c) + ε0. To complete this part of the proof, we show
that V (x′, c) + ε0 ≥ V (x′, c̃), since this condition together with the above conclusions then show
V (x, c̃) > V (x′, c̃), i.e., that x′ /∈ V(R, c̃).

To demonstrate V (x′, c) + ε0 ≥ V (x′, c̃), we partition E into two disjoint sets, E1 and E2, where
the former set contains all edges (i, l) in E where l 6= i + n and the latter contains all edges (i, l) in
E where l = i + n. Consequently, cil = 0 < c̃il = εi for all (i, l) ∈ E1 and cil = c̃il = −1 for all
(i, l) ∈ E2. Hence, the inequality V (x′, c) + ε0 ≥ V (x′, c̃) can be rewritten as:

V (x′, c) + ε0 =
∑

(i,l)∈E

cilx
′
il + ε0,

=
∑

(i,l)∈E1

cilx
′
il +

∑
(i,l)∈E2

cilx
′
il + ε0,

=
∑

(i,l)∈E2

c̃ilx
′
il + ε0,

≥
∑

(i,l)∈E

c̃ilx
′
il

=
∑

(i,l)∈E1

c̃ilx
′
il +

∑
(i,l)∈E2

c̃ilx
′
il,

=
∑

(i,l)∈E1

εix
′
il +

∑
(i,l)∈E2

c̃ilx
′
il,

= V (x′, c̃).

or, equivalently, as:

ε0 ≥
∑

(i,l)∈E1

εix
′
il. (8)

Conditions (6) and (1’) together with the fact that εixil ≥ 0 for all (i, l) ∈ N ×M now give:

ε0 >
∑
i∈N

εiti ≥
∑

(i,l)∈E1

εix
′
il.

But then condition (8) must hold. Hence, V(R, c̃) ⊆ V(R, c). Thus, by Lemma 1 ϕ(R) ∈ X (R).
To conclude the proof, it needs only to be demonstrated that ϕ is a priority mechanism. But this

follows directly from the construction of the weights εi. To see this, recall from condition (6) that
εi >

∑n
k=i+1 tkεk for all i ∈ {1, . . . , n − 1}. Hence, assigning one additional time unit to agent i
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in maximization problem (5) is strictly preferred to assigning tj time units to each agent j ∈ N with
π(i) < π(j). Thus, V(R, c̃) is a selection from V(R, c) ⊆ X (R) that first maximizes the number
of time units that agent i1 ∈ N with π(i1) = 1 exchanges with acceptable agents (i.e., a selection
from the set Z i1,V(R,c)(R)), and then maximizes the number of time units that agent i2 ∈ N with
π(i1) = 2 exchanges with acceptable agents (i.e., a selection from the set Z i2,i1(R)), and so on. This
is the definition of a priority mechanism. �

Proof of Corollary 1. Because any deterministic priority mechanism ϕπ is non-manipulable, for all
R,R′ ∈ R̃ such thatR′ = (R′i, R−i) for some i ∈ N , we have ϕπi (R)Riϕ

π
i (R′). But then the random

priority mechanism is sd-non-manipulable.
For sd-efficiency, note that φ(R) is ex-post maximal, and for all x, y ∈ supp(φ(R)) we have:∑
i∈N

∑
j∈Ai(Ri)

xij =
∑
i∈N

∑
j∈Ai(Ri)

yij ≡ m.

Now if for some random allocation p for R we have piRsdi φi(R) for all i ∈ N and pjP sdi φj(R) for
some j ∈ N , then p is ex-post individually rational. But then it follows that:∑

i∈N

∑
x∈supp(p)

∑
j∈Ai(Ri)

xij > m.

But then there must exist y ∈ supp(p) such that
∑

i∈N
∑

j∈Ai(Ri)
yij > m, which is a contradiction

to ex-post maximality of φ(R). Thus, φ is sd-efficient.
For sd-fairness, note that for any i, j ∈ N , the probability that i occupies the first position in a

priority ordering is equal to the probability that j occupies the first position in a priority ordering.
Similarly, for any l ∈ N\{i, j}, the probability that i occupies the second position after l in a priority
ordering is equal to the probability that j occupies the second position after l in a priority ordering,
and so on. But then it follows that the random priority mechanism is sd-fair. �

Proof of Corollary 2. Suppose that Y is not stable. As Y is individually rational, there exists
Z ⊆ Y\Y such that for all i ∈ N(Z) = {i ∈ N : Zi 6= ∅} and all W ∈ Ci(Y ∪ Z), Zi ⊆ Wi. But
then for all i ∈ N(Z), Yi /∈ Ci(Y ∪ Z) and Ui(Y ∪ Z) > Ui(Y ). Thus, Z 6= ∅. Let Ẑ = {kij ∈ Z :

(k − 1)ij /∈ Z}. Thus, Ẑ collects the “additional” time units provided in Z compared to Y .
Because Z 6= ∅ and Z ∩ Y = ∅, we have Ẑ 6= ∅. Thus, there exist i, j ∈ N(Z) such that i 6= j

and kij ∈ Ẑ. If Ẑ→j = ∅, then Z→j = ∅ and Yi ∈ Ci(Y ∪ Z) (as j does not get additional services
in Z), a contradiction. Thus, Ẑ→j 6= ∅ and hjl ∈ Ẑ for some l ∈ N(Z), and so on. But then we
must a find a cycle i1, . . . , im such that k1

i1i2
∈ Ẑ, . . . , kmimi1 ∈ Ẑ. But now Y ∪ {k1

i1i2
, . . . , kmimi1} is

a feasible and individually rational allocation, a contradiction to the maximality of Y . �

Proof of Lemma 2. We only show (1) and (2) can be shown similarly. Let Y, Z ⊆ Yi be such that
Yi→ = Zi→ and Y→i ⊆ Z→i. Let Y ∗ ∈ Ci(Y ). Then (iii) is trivially satisfied as |Y ∗→i|− |Y ∗i→| = 0 =

|Z∗→i| − |Z∗i→| for all Z∗ ∈ Ci(Z).
If for some Z∗ ∈ Ci(Z), Ui(Y ∗) = Ui(Z

∗), then Y ∗ ∈ Ci(Z) and (i) and (ii) hold trivially.
Otherwise, for some Z∗ ∈ Ci(Z), Ui(Y ∗) < Ui(Z

∗). But then choose Ui(Z∗) − Ui(Y ∗) contracts
from Z∗\Y ∗, say the set Ẑ, such that |Ẑ→i| = |Ẑi→|, kij ∈ Ẑ with k > 1 implies (k−1)ij ∈ Ẑ∪Y ∗,
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and kji ∈ Ẑ with k > 1 implies (k − 1)ji ∈ Ẑ ∪ Y ∗. Then we obtain Y ∗ ∪ Ẑ ∈ Ci(Z) (because
Ui(Y

∗ ∪ Ẑ) = Ui(Z
∗)), and (i), (ii) and (iii) holds for Y ∗ and Y ∗ ∪ Ẑ. �

Appendix B: Proof of Theorem 1

This Appendix first introduces a graph theoretical tool, referred to as the circulation-based model (Ap-
pendix B.1). It will then be demonstrated that the circulation-based model, without loss of generality,
can replace the min-cost flow problem when analysing the priority mechanism (Appendix B.2). These
insights enable us to prove Theorem 1 (Appendix B.3).

Appendix B.1: The Circulation-Based Model

Let Z denote the set containing all integers. For any profile R ∈ R̃, construct a weighted directed
graph DR = (V,A) with capacities c : A 7→ N0 and weights w : A 7→ Z on its arcs. For ease of
notation, we write D instead of DR whenever the profile R is unambiguous. Each agent i ∈ N is
represented by two vertices, denoted by iin and iout. These 2n vertices build the vertex set V of the
graph D. We draw a directed arc between each pair of type (iin, iout), pointing to iout and refer to
this arc as the inner arc of agent i ∈ N . The inner arc has capacity c(iin, iout) = ti. If agent i finds
agent j acceptable, then (jout, iin) belongs to the (directed) arc set A of the graph D. Any such arc is
called regular and has capacity c(jout, iin) = t̄ij , i.e., the upper time bound on how much time agent
i wants from agent j. Note also that the vertices of type iin have incoming regular arcs and a single
outgoing inner arc, while vertices of type iout have outgoing regular arcs and a single incoming inner
arc. We define in Appendix B.2 the weights w : A 7→ Z using a priority order. An instance of the
model is illustrated in Figure 2 (the figure contains some concepts which only are explained later in
the Appendix).

Definition 5. A circulation is a function C : A 7→ N0 where:

(i) C(u, v) ≤ c(u, v) for every (u, v) ∈ A,

(ii)
∑

(u,v)∈AC(u, v) =
∑

(v,w)∈AC(v, w) for every vertex v ∈ V .

Condition (i) is a capacity constraint which ensures that agents do not exchange services beyond their
time endowment ti = c(iin, iout), and that the upper time bound t̄ij on how much time agent i wants
from agent j is not exceeded. Condition (ii) is the classical flow conservation rule, stating that the
total flow of the incoming arcs of a vertex equals the total flow of the outgoing arcs, i.e., that an agent
provides and receives the same amount of time. The latter condition can also be formulated as:

C(iin, iout) =
∑

(jout,iin)∈A

C(jout, iin) =
∑

(iout,kin)∈A

C(iout, kin) for every agent i ∈ N .

We call C(iin, iout) the flow value at agent i. Circulations in a graph D are in one-to-one correspon-
dence with allocations in the time banking problem, e.g., for an allocation x the corresponding flow
value of the inner arc at agent i is C(iin, iout) = ti−xii and the flow value of any regular arc at agent
i is C(jout, iin) = xij for all j ∈ N . The allocation value for agent i is defined as ti − xii. Another
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way of expressing this is that the allocation value ti − xii of agent i in the time banking problem
equals the flow value C(iin, iout) at agent i in the circulation model.

Appendix B.2: Replacement Result

This section demonstrates that by placing appropriate weights on the arcs in the graph D, the max-
imum weight circulations correspond to the outcome of the min-cost flow problem used in Sec-
tion 5 to identify the outcome of the priority mechanism (Proposition 2). This result implies that
the circulation-based model can be adopted in the proof of Theorem 1. We remark that both max-
imum weight circulations and min-cost flows can be computed efficiently, or more precisely, in
O(|E|2 log |V |) time in a graph with |V | vertices and |E| arcs , which is strongly polynomial time (Or-
lin, 1993).

Let π be a priority ordering. Let tmax be the largest time endowment of any agent inN , and define
the weight w(u, v) on each arc (u, v) in the directed graph D = (V,A) by:

w(u, v) =

{
t
2(n+1−π(i))
max if (u, v) = (iin, iout),

0 otherwise.
(9)

We now illustrate our transformation from the priority mechanism to the circulation-based model by
means of a simple example.

Example 4. Agents are denoted by i, j, k and l. The upper bounds on the needed services are as
follows: t̄ki = 1, t̄ji = 2, t̄kj = 2, t̄lj = 1, t̄ik = 3, t̄il = 1, t̄jl = 3. All other upper bounds are set
to 0. Each agent has an endowment of 3, and their priority order is alphabetic.

In the circulation-based model, there are two vertex copies to each agent, connected by an inner
arc. The amount of service each agent is willing to accept from another agent translates into an upper
capacity on the regular arc connecting the out-vertex of the provider and the in-vertex of the receiver.
In Figure 2, inner arcs are marked by horizontal lines, while regular arcs are bent and colored. Arc
weights and capacities are written above and below each arc, respectively. Due to the alphabetic
priority order and tmax being 3 units, the arc weights of agents i, j, k and l on the inner arcs are given
by 38, 36, 34 and 32, respectively. All arc weights on regular arcs are set to zero.

The max weight circulation in the network can be computed efficiently and it has weight 3 · 38 +

3 · 36 + 3 · 34 + 1 · 32. It saturates all edges except the dotted (lout, iin) which is left empty, and the
dashed (lout, jout) and (lin, iout), both of which carry one unit of flow. More precisely, agent i sends
2 time units to agent j and 1 time unit to agent k, agent j sends 2 time units to agent k and 1 time unit
to agent l, agent k sends 3 time units to agent i, and agent l sends 1 time unit to agent j. �

Let w(C) denote the weighted sum of flow values of the agents in N at circulation C, i.e., w(C) =∑
i∈N C(iin, iout) · w(iin, iout).

Proposition 2. For any given profile R ∈ R̃, let C be a maximum weight circulation where the
weights are defined by condition (9). Let C ′ be the circulation corresponding to an allocation x′

selected for R by a priority mechanism ϕ based on π. Then C ′(iin, iout) = C(iin, iout) for each
i ∈ N .

24



iin iout jin jout kin kout lin lout

3
38

3
36

3
34

3
32

2
0

2
0

1
0

3
0

1
0

1
0

3
0

Figure 2: The circulation-based model for the instance in Example 4.

Proof. As in the statement of the proposition, let C be a maximum weight circulation and let C ′ be
the circulation corresponding to an allocation x′ selected by a priority mechanism. Suppose, to obtain
a contradiction, that C ′(jin, jout) 6= C(jin, jout) for some j ∈ N . Let agent i be the agent with the
highest priority in π where this holds. Suppose also, without loss of generality, that π(k) = k for all
k ∈ N . To reach the desired contradiction, we consider two cases.

Case (i): C ′(iin, iout) < C(iin, iout). In this case, the maximum weight circulation C assigns
a higher allocation value to agent i than the priority mechanism. We show by induction that this
contradicts the rules of the priority mechanism. Suppose first that agent i is the highest ranked agent
according to the priority order π and recall that the priority mechanism, by construction, restricts
the set of maximal allocations to those that maximize the allocation value of i (see condition (3) in
Section 4). Thus there is no allocation that assigns agent i a higher allocation value than the allocations
in this chosen set, and, consequently, no circulation that assigns agent i a higher value. Hence, agent
i cannot be the agent with the highest priority. Suppose now that agent i is the second highest ranked
agent according to the priority order π. Again, by condition (3) this agent restricts the set of allocations
further. And so, the maximum weight circulation C is still in the chosen set when agent i restricts the
set of allocations further, and it can, consequently, not have a higher allocation value for agent i than
C ′. This argument can be repeated inductively to reach the conclusion that it cannot be the case that
C ′(iin, iout) < C(iin, iout).

Case (ii): C ′(iin, iout) > C(iin, iout). Note first that both C and C ′ are feasible circulations at
profileR. Because agent i is the agent with the highest priority in π whereC ′(iin, iout) 6= C(iin, iout),
by assumption, it follows that C ′(kin, kout) = C(kin, kout) for all agents k = 1, . . . , i − 1. It will
be demonstrated that agents i+ 1, . . . , n cannot make up for the loss C suffered on arc (iin, iout) and
thus C cannot be of maximum weight since C ′ is a feasible circulations at profile R. Recall first that
the set N0 contains only positive integers, so the difference between C ′(iin, iout) and C(iin, iout) is at
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least 1. By construction of the weights on the inner arcs, defined by condition (9), it then follows that:

[C ′(iin, iout)− C(iin, iout)] · t2(n−i+1)
max ≥ t2(n−i+1)

max . (10)

Note next that, in the the extreme case, all agents with lower priorities than agent i have flow value
zero in C ′ and a flow value of tmax in C. This means that the weighted sum of the flow values at
agents i+ 1, . . . , n at circulation C is at most:

tmax ·
n∑

j=i+1

t2(n−j+1)
max . (11)

Now, the value of the sum (11) is strictly lower than the right hand side of inequality (10). Conse-
quently, even in the the extreme case when all agents with lower priorities than agent i have flow value
zero in C ′ and a flow value of tmax in C, it holds that w(C ′) > w(C). However, this contradicts that
C is a maximum weight circulation since C ′ is a feasible circulation at graph DR.

Appendix B.3: The Proof

Let ϕ be the priority mechanism based on π where π(i) = i for all i ∈ N . To obtain a contradiction,
suppose that ϕ can be manipulated by some agent i ∈ N at a profile R ∈ R̃. This means that there
are two profiles R ∈ R̃ and R′ = (R′i, R−i) ∈ R̃ such that for x = ϕ(R) and x′ = ϕ(R′) we have
x′iPixi. Note that R′i 6= Ri. Let C1 and C2 be the maximum weight circulations for the graphs DR

and DR′ induced by the profiles R and R′ = (R′i, R−i), respectively.
The next lemma shows that we may suppose that the set of acceptable agents reported by agent

i at preference relation R′i is a proper subset of the set of acceptable agents reported by agent i at
preference relation Ri.

Lemma 3. Without loss of generality, we may suppose Ai(R′i) ⊆ Ai(Ri).

Proof. We first show Ui(Ri) ⊆ Ui(R
′
i). To see this, suppose j ∈ Ui(Ri) but j /∈ Ui(R′i), i.e., that

agent j is unacceptable underRi but acceptable underR′i. Since x′iPixi, it must then hold that x′ij = 0

by definition of the preferences in R̃i. Hence, any regular arc of type (jout, iin) where j /∈ Ui(R′i)
in the graph DR′ but j ∈ Ui(Ri) in the graph DR will not be active in the solution C1 at profile R′.
Hence, Ui(Ri) ⊆ Ui(R

′
i) ∪ {j ∈ Ai(R

′
i) : x′i(n+j) = 0}. But then we may choose R′′i such that

Ai(R
′′
i ) = Ai(R

′
i)\{j ∈ Ai(R′i) : x′i(n+j) = 0} and t̄′′ik = t̄′ik for all k ∈ Ai(R′′i ), and C1 remains

a solution for R′′ = (R′′i , R−i) ∈ R̃. But for x′′ = ϕ(R′′) this implies x′′i Iix
′
i and x′′i Pixi. Hence,

Ai(R
′′
i ) ⊆ Ai(Ri) and x′′i Pixi.

Recall now that, for any profile inR ∈ R̃, each agent k ∈ N reports a set of acceptable agentsAk(Rk)
together with an upper bound on how much time t̄kj agent k ∈ N at most would like to receive from
each acceptable agent j ∈ Ak(Rk). By Remark 1, the report Rk is equivalent to the vector t̄k where
t̄kk = tk and t̄kj = 0 for all j ∈ Uk(Rk). This together with the conclusion in Lemma 3 imply that
there exists at least one agent j that is acceptable for agent i under Ri where agent i reports a strictly
lower or higher time bound t̄′ij at profile R′ than under profile R (i.e., t̄′ij < t̄ij or t̄′ij > t̄ij ). In
general, a manipulation R′i by agent i can consist of both underreporting and overreporting t̄ij’s for
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acceptable agents. There are two possible cases for manipulations: one with overreporting and the
other with only underreporting time bounds.

First, consider the case where there is overreporting. If there exists j ∈ N\{i} such that x′ij > t̄ij ,
then by definition of R̃i, ωiPix′i and since x is individually rational under R, we have xiPix′i, a
contradiction. Otherwise x′ij ≤ t̄ij for all j ∈ N\{i} and we can just replace t̄′i with t̄′′i such that
t̄′′ij = min{t̄ij , t̄′ij} for all j ∈ N\{i}. Let R′′i denote i’s preference associated with t̄′′i . Then x′ is still
a maximizer for the profile (R′′i , R−i) and therefore the manipulation only consists of underreporting
upperbounds which are below t̄i.

Second, it remains to establish that agent i cannot manipulate by underreporting time bounds
for acceptable agents, i.e., t̄′ij ≤ t̄ij for all j ∈ N\{i}. Below we are going to show that agent i
cannot gain by underreporting one time bound for an acceptable agent. This is enough to establish
that agent i never can gain by reporting a lower bound for several agents at the same time. Because
any such misreport can be decomposed into a sequence of manipulations in which at each step only
one upper bound t̄ij is changed at the time and agent i is never made better off at any step. Formally,
let k ∈ Ai(Ri) for which t̄′ik < t̄ik and consider the misreport t̄(1)

i where t̄(1)
ij = t̄ij for all j 6= k

and t̄(1)
ik = t̄′ik. Let x(1) be the allocation chosen by the priority mechanism when i reports t(1).

Below we show that agent i cannot gain by reporting t̄(1)
i instead of t̄i. In particular,

∑
j∈Ai(Ri)

xij ≥∑
j∈Ai(Ri)

x
(1)
ij . Thus, xiRix

(1)
i . If there is another agent ` 6= k such that t̄(1)

i` 6= t̄′i` then consider t̄(2)

where t̄(2)
ij = t̄

(1)
ij for all j 6= ` and t̄(2)

i` = t̄′i`. Suppose again that agent i cannot gain by reporting

t̄
(2)
i instead of t̄(1)

i . This means again that
∑

j∈Ai(Ri)
x

(1)
ij ≥

∑
j∈Ai(Ri)

x
(2)
ij . Thus, by transitivity

xiRix
(2). This argument can be repeated inductively until the point that t̄(p)i = t̄′i, and if in each

step agent i never gains by reporting t̄(j)i instead of t̄(j−1) we have shown that agent i cannot gain by
reporting t̄′i instead of t̄i. Hence, to complete the proof of Theorem 1, it is enough to show that agent
i cannot gain by misreporting t̄′ij for one agent j ∈ Ai(Ri).

It only remains to rule out that agent i cannot gain by reporting a strictly lower time bound t̄ij .
Translating this into the terminology of the circulation-based model, this can equivalently be expressed
as the flow value C(iin, iout) at agent i in a maximum weight circulation cannot be increased by
reducing the capacity on a regular arc (jout, iin). Given this insight, a large part of the remaining
proof will focus on a regular arc (jout, iin).

Recall now that C1 denotes the maximum weight circulations for the true preferences R induced
by the graph DR, and that C2 denotes the maximum weight solution for the misrepresented pref-
erences R′ induced by the graph DR′ . Furthermore, by the assumption that agent i can manipu-
late the priority mechanism, it follows that C2 has a larger flow value at agent i than C1 does, i.e.,
C2(iin, iout) > C1(iin, iout). By construction of the weights in condition (9), the circulation value
of C2 cannot be the same as the circulation value of C1 if the flow value differs for at least one
agent. Thus, the circulation value of C2 must be strictly smaller than the circulation value of C1, i.e.,
w(C2) < w(C1). Note also that the circulation C2 is a feasible circulation in DR since the flows re-
main below the capacity on each arc and it preserves flow conservation. However, the circulation C2

is not optimal in the graph DR since the circulation value of C2 is strictly smaller than the circulation
value of C1 and the circulation C1 is optimal in DR.

Consider next the function defined by the circulation C1 − C2 where C1(u, v) − C2(u, v) ∈ Z
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for each arc (u, v) in the graph DR. This function assigns a negative value to the arc (u, v) if the
flow through the arc is larger in circulation C2 than in circulation C1. For convenience, one can think
of these “negative” arcs as arcs turned backwards, with the usual positive flow value on them. Since
both C1 and C2 are circulations in the graph DR, their difference also obeys flow conservation and as
such, it can be decomposed into cycles.

A cycle decomposition is a collection of directed cycles in the graph so that the flow value on all
edges of a specific cycle in the decomposition is the same, and the sum of flow values in all cycles
containing an arc (u, v) equals the flow value on (u, v). The capacity or the weight on the edges plays
no role in the decomposition. It is known that any feasible circulation has a cycle decomposition (Ford
and Fulkerson, 1956). In the next paragraph, we will construct such a cycle decomposition of the
circulation C1 − C2. For simplicity, we will decompose our circulation into cycles of flow value 1.

Note first that a cycle decomposition of C1 − C2 need not be unique for the profiles R and
R′. To obtain one such decomposition, we use a simple inductive algorithm that produces a cycle
decomposition of C1 − C2 in a finite number of iterations. This algorithm uses the flow value of
C1 − C2 on each arc (u, v) in the graph DR but will not use any information about the arc capacities
or weights (arc weights are only considered below). First, identify any directed cycle, say C, based on
the circulation C1 − C2 and take its forward or backward arc with a lowest absolute flow value on it.
Suppose that the lowest absolute flow value at some agent in the cycle C is q, then q feasible cycles of
type C can be identified. These cycles represent the first q cycles in the decomposition of C1 − C2.
Then, reduce the flow value on each arc included in the cycle C by q. This will give an “updated”
circulation, based on the “original” circulation C1−C2. Notice that the updated circulation is indeed
a circulation, preserving flow conservation at each vertex, but compared toC1−C2, it is guaranteed to
have at least one more arc with zero flow value. We proceed in this manner until the whole circulation
C1 − C2 is decomposed into cycles. Note also that since N0 is restricted to a set of positive bounded
integers, this procedure ends in a finite number of iterations. Moreover, the absolute flow value on an
arc monotonically (but not strictly monotonically) decreases in each inductive step, until it reaches 0.

Note that the cycles in the decomposition are not necessarily arc-disjoint from each other (i.e.,
several distinct cycles in the decomposition can pass through the same arc), but due to the inductive
argument above, each arc in the cycle decomposition is either a forward arc or a backward arc, de-
pending on the sign ofC1(u, v)−C2(u, v). More precisely, forward arcs are positive, while backward
arcs are negative. Thus, it cannot be the case that one cycle in the decomposition uses an arc with
positive value, while another cycle uses the same arc with negative value.

Consider now the cycle decomposition of the circulation C1 − C2 as constructed above. We now
turn towards arc weights: the total weight of a cycle in the decomposition is defined as the sum of
weights on each arc in the cycle. Based on the sign of the total weight of a cycle, we distinguish
positive, zero and negative weight cycles in our decomposition. A positive weight cycle is called an
augmenting cycle. Note that all augmenting cycles pass through (jout, iin), because any augmenting
cycle which does not pass through (jout, iin) would increase the circulation value ofC2 inDR′ , which
is impossible since C2 is optimal in the graph DR′ .

Lemma 4. Suppose that C1−C2 is decomposed into cycles using the inductive decomposition algo-
rithm from above. Then:

(i) there exists an augmenting cycle,
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(ii) a cycle of weight zero consists exclusively of arcs of weight zero,

(iii) there are no negative weight cycles.

Proof. The proof of Part (i) follows directly since w(C1) > w(C2) and w(C1) equals w(C2) plus
the weight of each cycle in the cycle decomposition of C1 − C2. Part (ii) follows by construction
of the weights, i.e., a cycle of weight zero consists exclusively of arcs of weight zero (obviously, no
combination of the weights on inner arcs with coefficients in the open interval between 0 and tmax
can add up to zero).

Part (iii) is proved by contradiction. Suppose that there is a cycle C of negative total weight in the

cycle decomposition of C1 − C2. Let the reverse of C be denoted by
←
C . The reverse

←
C has positive

total weight and preserves the sign of C2 − C1 on each of its arcs by construction of the inductive

decomposition algorithm. Moreover, we will show that,
←
C can be added to C1 without violating flow

conservation or any capacity constraint in DR. Thus, C1 +
←
C is a circulation of larger weight than

C1. Let now (u, v) be an arbitrary arc in the reverse cycle
←
C . It will be demonstrated that:

0 ≤ C1(u, v) +
←
C (u, v) ≤ c(u, v). (12)

Condition (12) implies that C1 cannot be a maximum weight circulation in the graph DR which

contradicts our assumption. We need to consider two cases. Suppose first that
←
C (u, v) ≥ 0. Then:

C1(u, v) +
←
C (u, v) ≤ C1(u, v) + [C2(u, v)− C1(u, v)] = C2(u, v) ≤ c(u, v).

Note also that because C1(u, v) and
←
C (u, v) are non-negative at the arc (u, v), it follows directly

that C1(u, v) +
←
C (u, v) ≥ 0. Hence, condition (12) holds when

←
C (u, v) ≥ 0. Suppose next that

←
C (u, v) < 0. In this case:

C1(u, v) +
←
C (u, v) < C1(u, v) ≤ c(u, v).

Furthermore:

C1(u, v) +
←
C (u, v) ≥ C1(u, v) + [C2(u, v)− C1(u, v)] = C2(u, v) ≥ 0.

Hence, condition (12) also holds when
←
C (u, v) < 0.

Lemma 4 thus demonstrated that all cycles in the cycle decomposition ofC1−C2, which pass through
an inner arc, are augmenting cycles. However, we do not know whether these cycles use the arc
(jout, iin) as a forward arc or as a backward arc. The following lemma sheds light on this.

Lemma 5. Suppose that C1−C2 is decomposed into cycles using the inductive decomposition algo-
rithm from the above, and let (jout, iin) be an arbitrary arc in some cycle in the cycle decomposition
of C1 − C2. Then (jout, iin) is a forward arc.

Proof. Note first that C2(jout, iin) is bounded from above by the decreased capacity of (jout, iin) in
DR′ . IfC1(jout, iin) ≤ C2(jout, iin), thenC1 is feasible in the graphDR′ and has a larger weight than

29



C2, which contradicts the optimality of C2 in the graphDR′ . Thus, C1(jout, iin)−C2(jout, iin) > 0,
which implies that (jout, iin) is a forward arc in all cycles in the decomposition of C1 − C2.

Finally, consider the flow value C1(iin, iout) − C2(iin, iout). To prove Theorem 1, we only need to
establish that C1(iin, iout) − C2(iin, iout) ≥ 0 because this contradicts the assumption that x′iPixi.
For this condition to be false, the arc (iin, iout) must be a backward arc in at least one cycle in the
cycle decomposition of C1 − C2. However, as concluded in the above, being a backward arc in one
cycle also implies being a backward arc in all cycles. From Lemma 4 we know that all cycles that
passes through (iin, iout) are augmenting cycles. Lemma 5 then states that the augmenting cycles use
(jout, iin) as a forward arc, and they must, consequently, leave iin either as a forward arc, along the
only outgoing arc (iin, iout), or as a backward arc, along any of the regular arcs running to iin. Neither
of these two cases allows (iin, iout) to be a backward arc. This concludes the proof and shows that
agent i cannot manipulate the priority mechanism ϕ at any profile R ∈ R̃.
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