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Abstract

This paper explores the situation when tenants in public houses, in a specific neighborhood,
are given the legislated right to buy the houses they live in but can choose to remain in
their houses and pay the regulated rent. This type of legislation has been passed in many
European countries in the last 30–35 years (U.K. Housing Act 1980 is a leading example).
The main objective with this type of legislation is to transfer the ownership of the houses
from the public authority to the tenants. To achieve this goal, the selling prices of the
public houses are typically heavily subsidized. The legislating body then faces a trade-off
between achieving the goals of the legislation and allocating the houses efficiently. This
paper investigates this specific trade-off and identifies an allocation rule that is individual
rational, equilibrium selecting, and group non-manipulable in a restricted preference domain
that contains “almost all” preference profiles. In this restricted domain, the identified rule
is the equilibrium selecting rule that transfers the maximum number of ownerships from the
public authority to the tenants. This rule is also weakly preferred to the current U.K. system
by both the existing tenants and the public authority. Finally, a dynamic process that finds
the outcome of the identified rule, in a finite number of steps, is provided.
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1 Introduction

Public housing is a common form of housing tenure in which the property is owned by a
local or central government authority. This type of tenure has traditionally referred to a
situation where the central authority lets the right to occupy the units to tenants. In the
last 30–35 years, however, many European countries have experienced important changes
in their policies. In United Kingdom, for example, the “Right to Buy” was implemented
in the U.K. Housing Act 1980. As indicated by its name, the legislation gave existing
tenants the right to buy the houses they were living in (a tenant could, however, choose
to remain in the house and pay the regulated rent).1 The U.K. Secretary of State for the
Environment in 1979, Michael Heseltine, stated that the main motivation behind the Act
was:

“... to give people what they wanted, and to reverse the trend of ever increasing
dominance of the state over the life of the individual”.2

In other words, the main objective of the Act was to transfer the ownership of the houses
from the local or central authority to the existing tenants. To cope with this objective,
the Act also specified that tenants could buy the houses at prices significantly below the
market price and that resale not is allowed within five years after purchasing the houses.
In the latest update of the Act from 2012, this “discount” was specified to a maximum of
£75000 or 60 percent of the house value (70 percent for an apartment) depending on which
is lower.3 As can be expected, the result of the Act was that the proportion of public
housing in United Kingdom fell from 31 percent in 1979 to 17 percent in 2010.4 Similar
legislations, with similar effects, has been passed in several European countries, including
Germany, Ireland, and Sweden, among others.

An important feature of the above type of legislation is that existing tenants always
have the option to continue renting the houses at the regulated rents (“Right to Stay and
Rent”). This option also highlights an important trade-off between allocative efficiency and
achieving the objectives of the legislation when existing tenants cannot afford to buy the
houses at the market prices (which is the typical case, and also the reason for discounting
the sales prices of the houses in the first place). More precisely, if the discount is “large”,
there will be allocation inefficiencies as there are buyers that are willing to buy the houses
at the market prices. On the other hand, if the prices of the houses not are discounted at
all (i.e., if market prices prevail), the existing tenants prefer to continue renting, and, in

1In United Kingdom, local authorities have always had legal possibilities to sell public houses to tenants,
but until the early 1970s such sales were extremely rare.

2“Housing Bill – Provisions and Enactment” in Keesing’s Contemporary Archives v.27, January, 1981,
p.30644.

3“Reforming the Right to Buy in 2012 and 2013”, Commons Library Standard Note, U.K. Parliament
(retrieved June 12, 2013).

4“Housing Europe Review 2012 – The nuts and bolts of European social housing systems”, European
Federation of Public, Cooperative and Social Housing (Brussels).
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this case, the legislation will not achieve what it was designed to do. This trade-off is also
the starting point of this paper.

The formal model considered in this paper has its most direct application to the above
type of housing market,5 and the main practical implication of the model is an extension of
the U.K. Housing Act 1980 and its European equivalents. This extension generates a more
efficient allocation of the houses among the tenants without compromising with the main
aim of the legislation. The formal model considers a pre-specified geographic area, called
a neighborhood, and all existing tenants in the neighborhood are, by the public authority,
asked to report their preferences over pairs of houses and prices. Given these reports,
an allocation rule, which can be interpreted as a direct auction mechanism, identifies
equilibrium prices for the “internal market” which consists only of the set of neighboring
houses and their tenants, given the prerequisite that a tenant can buy any house in the
neighborhood, including the one that he currently is possessing, or continue renting the
house he currently is occupying. In the model, the public authority defines a fixed lower
bound for the equilibrium prices, i.e., reservation prices, and in case an existing tenant
buys the particular house he currently is living in, the tenant pays only the reservation
price. One can think of these reservation prices as exogenously given and specified in the
law as explained in the above. Hence, the only significant difference between the U.K.
Housing Act 1980, and its European equivalents, and the model considered in this paper
is that we extend the situation from the case where only an existing tenant can buy the
house that he currently is occupying to a situation where houses can be reallocated among
all existing tenants in a neighborhood.

A few remarks about the interpretation of the model and its relation to the U.K.
Housing Act 1980, and similar legislations, are in order here. First, as a tenant in our
framework always can choose to continue renting the house they live in or to buy it at the
reservation price, exactly as in the prevailing U.K. system, but have the opportunity to buy
some other house in the neighborhood, all tenants are weakly better off in the considered
model compared to the current U.K. system. Second, because all sold houses in the current
U.K. system are sold at the reservation prices, but all sold houses in the considered model
are sold at prices weakly higher than the reservation prices, the public authority is weakly
better off in the considered model compared to the current U.K. system.6 Third, the
extension of the current U.K. system, captured in the formal model, is realistic as “mutual
exchange” between tenants already is allowed in many of the European countries with a
legislated “Right to Buy” option, e.g., Ireland, Sweden, and United Kingdom.7 Forth, the

5There are also other interpretations, e.g., a housing market where the owner of a house and the person
living in the house coincides, and where a local or central government authority imposes taxes on trade of
the houses.

6This argument is, of course, only valid if the houses that are sold in the current U.K. system also are
sold in the considered model. This is always the case as later illustrated in Proposition 7.

7Mutual exchange refers to a situation where two (or more) tenants in the public housing sector swap
their houses when they rent their houses from a public authority. Typical requirements for a mutual
exchange to take place are that none of the tenants included in the swap owes rent, is in the process of
being evicted, and is moving to a home that the landlord believes is too big or small for their circumstances.
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considered model captures the idea that housing needs may change over time, e.g., a family
gets more children or some children moves out. In such cases, a family may want to change
house but not housing area. This is not allowed in the prevailing U.K. system as resale not
is allowed within 5 years after purchasing the house.

To solve the above described house allocation problem, it is natural to search for a price
mechanism that is individual rational, equilibrium selecting, and non-manipulable. This
type of rule guarantees that no tenant can loose by participating, that no further rationing
mechanism is needed, and that the reported information is reliable which means that the
central authority can be certain that the houses are allocated to the tenants in the neigh-
borhood who value them the most. Given the interest in these three specific axioms, the
perhaps most natural candidate for an allocation rule is based on a “minimum equilibrium
price vector” as this type of rule previously has been demonstrated to satisfy these specific
axioms in a variety of different contexts, including, e.g., single-item auction environments
(Vickrey, 1961), assignment markets (Demange and Gale, 1985), and housing markets with
rent control (Andersson and Svensson, 2014). Another natural price mechanism for the
above described housing market is an individual rational, equilibrium selecting, and “trade
maximizing” rule. The latter axiom guarantees that the maximum number of houses are
transferred to the tenants in equilibrium in perfect accordance with the U.K. Housing Act
1980 and its European equivalents.

Even if one would suspect that the above two rules always recommend the same selection
as lower prices intuitively should increase trade, it turns out that this is generally not the
case.8 In fact, it is not even clear what any of the above two rules recommend due to
the non-uniqueness of a minimum equilibrium price vector and the non-uniqueness of an
allocation that maximizes trade. The non-uniqueness property of the two rules is a direct
consequence of the fact that agents can block the trade of a house through the “Right
to Stay and Rent” option. The multiplicity of a minimum equilibrium price vector have
the severe consequence that any allocation rule based on minimum equilibrium prices is
manipulable in the full preference domain. Similarly, the multiplicity of an allocation
that maximizes trade have the consequence that any allocation rule based on maximum
trade is manipulable in the full preference domain. However, by considering the preference
domain where no two houses are “connected by indifference”9, it turns out that a minimum
equilibrium price vector is unique for each preference profile in the domain, and that it is
possible to base an individual rational, equilibrium selecting, and group non-manipulable
allocation rule on this unique price vector. This rule also turns out to be a maximum trade
rule in the restricted domain, and it, therefore, guarantees that the maximum number
of houses are transferred from the public authority to the tenants. The minimum price
mechanism also recommends an outcome that is weakly preferred to the current U.K.
system by both the existing tenants and the public authority.

8These two rules make the same selection for any profile in the preference domain if and only if there
are at most two houses in the neighborhood. See Proposition 2.

9This type of domain restriction is very mild as “almost all” preference profiles are included in the
reduced domain. See Andersson and Svensson (2014) for a thorough discussion of a similar domain re-
striction.
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Because the minimum price mechanism satisfies several nice properties in the restricted
preference domain, as explained in the above, it is natural to search for a dynamic price
process that identifies the outcome of it. This is especially true if one is interested in
implementing its outcome on an existing housing market. For this reason, this paper also
provides a dynamic price process that always locates the minimum equilibrium price vector
in a finite number of steps.

The main results of the paper is not only of interest because of their practical relevance,
they also contribute to the existing matching literature in a deeper sense. More explicitly,
and to the best of our knowledge, this paper is the first to provide an individual rational,
equilibrium selecting, trade maximizing, and non-manipulable allocation rule for a housing
market with initial endowments (initial ownership) where monetary transfers are allowed.
We also remark that the main results presented in this paper are non-trivial extensions of
similar and previously known results because most of the previous literature either consider
the case with no initial endowments and where monetary transfers are allowed, or initial
endowments but where monetary transfers not are allowed. In the following, we explain
in more detail how the theoretical findings of this paper contributes to the existing and
related literature.

The idea to use a minimum equilibrium price vector as a key ingredient in an individual
rational, equilibrium selecting, and non-manipulable allocation rule was first advocated by
Vickrey (1961) in his single-unit sealed-bid second-price auction. His principle was later
generalized by Demange and Gale (1985) to the case where multiple heterogenous houses
are to be sold. The main differences between this paper and the paper by Demange and
Gale (1985) is that they consider a pure two-sided market in the sense that buyers cannot
block sales. Hence, their model cannot handle the case with existing tenants or initial
ownership, and, consequently, not the case when buyers can block the trade of a house
through the “Right to Stay and Rent” option. However, both the allocation rule considered
in this paper and the one in Demange and Gale (1985) share the property that the outcome
of the rule is“envy-free”(Foley, 1967) in the sense that no agent wishes to swap consumption
bundle with another agent once the houses are allocated and the prices are determined by
the rule.10

A model with existing tenants and prices is studied by Miyagawa (2001). In his setting,
each tenant owns precisely one house and is a seller as well as a buyer, so money and houses
are reallocated through a price mechanism exactly as in this paper. Unlike this paper (and,
e.g., Vickrey, 1961; Demange and Gale, 1985), Miyagawa (2001) requires the mechanism
to be “non-bossy” (Satterthwaite and Sonnenschein, 1981) which roughly means that no
tenant can change the assignment for some other tenant without changing the assignment
for himself. The assumption of non-bossiness has dramatic consequences on any non-
manipulable allocation rule in this setting. Namely, any individual rational, non-bossy,
and non-manipulable allocation rule is a fixed price mechanism. This also means that the

10Equilibrium and no-envy has been investigated previously in a two-sided setup with indivisibilities
by, e.g., Alkan, Demange, and Gale (1991), Gale (1984), Quinzii (1984), Svensson (1983), Sun and Yang
(2003), and Tadenuma and Thomson (1991).
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outcome of his fixed price mechanism typically is not envy-free. Because we do not require
non-bossiness, our allocation rule is not a fixed price mechanism and it always selects an
envy-free outcome.

Individual rational and non-manipulable mechanisms for housing markets with existing
tenants has been considered previously in the literature also in the case when monetary
transfers not are allowed. Most notably is the Shapley and Scarf (1974) Top-Trading Cycles
Mechanism, further investigated by, e.g, Ma (1994) and Postlewaite, and Roth (1977,1982).
This mechanism always selects an outcome in the core, and has later been generalized by
Abdulkadiroğlu and Sönmez (1999) to allow for the case when there is a set of potential
tenants that currently do not have a house. However, the allocation rules in these papers
will, in similarity with Miyagawa (2001), not generally select an envy-free outcome, neither
can they handle the case with monetary transfers.

Finally, a recent and intermediate proposal is due to Andersson and Svensson (2014)
where houses are allocated among a set of potential tenants on a two-sided market where
prices are bounded from above by price ceilings imposed by the government or a local
administration. They define an individual rational, stable and group non-manipulable
allocation rule that, in its two limiting cases, selects that same outcomes as the rule in
Demange and Gale (1985) and the Deferred Acceptance Algorithm (Gale and Shapley,
1962). However, even if their mechanism is based on a minimal (rationing) equilibrium
price vector, their allocation rule can neither handle existing tenants, nor will it generally
select an envy-free outcome.

The remaining part of this paper is organized as follows. Section 2 introduces the
formal model and some of the basic definitions that will be used throughout the paper.
The allocation rules are introduced in Section 3 where also the main existence and non-
manipulability results of the paper are stated. Section 4 provides a dynamic process that
identifies the outcome of the considered allocation rule in a finite number of steps. Section
5 contains some concluding remarks. All proofs are relegated to the Appendix.

2 The Model and Basic Definitions

The agents and the houses are gathered in the finite sets A = {1, . . . , n} and H =
{1, . . . , n}, respectively, where n = |A| is a finite natural number. Note that the num-
ber of agents and houses coincide as we assume that there is an existing tenant in each
house. Agent a is the existing tenant of house h if h = a. It is often natural to assume
that there are several owners of the houses, but since our results do not require this, it is
assumed that there is a single owner of all houses.11 We also remark that the owner of the
houses is not an existing tenant in the current interpretation of the model.12

Each house h ∈ H have a price ph ∈ R+. These prices are gathered in the price vector
p ∈ Rn

+ which is bounded from below by the reservation prices p ∈ Rn
+ of the owner. The

11Our results extend with only a few notational modifications to the case with multiple owners.
12It is, however, possible to allow for this case, see footnote 5.
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reservation prices are arbitrary but fixed and define a feasible set of prices Ω according to:

Ω = {p ∈ Rn
+ : p ≥ p}.

One can think of the reservation prices as exogenously given and specified in the law as
explained in Section 1.

Agent a ∈ A can continue renting house h = a to the given fixed rent or buy the house
he currently is living in at the owner’s reservation price p

a
. Agent a can also buy house

h 6= a at price ph. For notational simplicity, and without loss of generality, the fixed rents
will not be introduced in the formal framework. Formally, each agent a ∈ A consumes
exactly one (consumption) bundle, xa, in his consumption set Xa = (H×R+)∪{a} where:

xa =


a if agent a continues to rent house h = a,
a if agent a buys house h = a at price p

a
,

(h, ph) if agent a buys house h at price ph.

Note that xa = a if agent a continue renting or buys the house he currently is living in. The
agent’s choice between these two options does not affect the other agents. For technical
reasons, an agent a can also buy his own house at the price pa, but that will not be the
choice of a utility maximizing agent if pa > p

a
. For simplicity, a bundle of type (h, ph) will

often be written as (h, p), i.e., (h, p) ≡ (h, ph). It is then understood that (h, p) means
house h ∈ H with price ph at the price vector p.

Each agent a ∈ A has preferences over bundles. These preferences are denoted by Ra

and are represented by a complete preorder on Xa. The strict and indifference relations are
denoted by Pa and Ia, respectively. Preferences are assumed to be strictly monotonic. This
means that the agents strictly prefer a lower price to a higher price on any given house,
i.e., (h, ph)Pa(h, p

′
h) if ph < p′h for any agent a ∈ A and any house h ∈ H. It is further

assumed that each house in H is bounded desirable. This means that if the price of a house
is “sufficiently high”, the agents will strictly prefer to keep the house they currently are
living in rather than buying some other house, i.e., aPa(h, ph) for each agent a ∈ A and
for each house h ∈ H for ph “sufficiently high”. All preference relations Ra satisfying the
above properties for agent a ∈ A are gathered in the set Ra. A (preference) profile is a list
R = (R1, . . . , Rn) of the agents’ preferences. This list belongs to the set R = R1×· · ·×Rn.
We also adopt the notational convention of writing a profile R ∈ R as R = (RC , R−C) for
some nonempty subset C ⊆ A.

A state is a triple (µ, ν, p), where µ : A → H is a mapping assigning houses to the
agents, ν : A→ {0, 1} is an assignment indicating if an agent a ∈ A is renting, νa = 0, or
buying, νa = 1, and p ∈ Rn is a price vector. If agent a ∈ A is assigned house µa ∈ H and
νa = 1, he pays:

pµa =

{
pµa if µa 6= a,
p
a

if µa = a.

The assignment function µ is a bijection with the restriction µa = a if νa = 0. This means
that an agent cannot rent a house that he currently not is living in. Agent a is also the
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only agent that can buy house h = a to the reservation price. We will use the simplified
notation x = (µ, ν, p) for a state, where x ∈ Πa∈AXa and xa = (µa, p) if νa = 1 and µa 6= a,
and xa = a if µa = a and νa ∈ {0, 1}. Here it is understood that νa = 0 only if aPa(a, pa).

The norm |ν| of the assignment ν indicates the number of agents that are buying a
house at state (µ, ν, p), and it is defined as |ν| = Σa∈Aνa.

Definition 1. For a given profile R ∈ R, a price vector p ∈ Ω is an equilibrium price
vector if there is a state x = (µ, ν, p) such that the following holds for all agents a ∈ A: (i)
xaRaa, and (ii) xaRa(h, p) for all h ∈ H. If, in addition, the norm of the assignment ν is
maximal, the state x is an equilibrium state.

A state is therefore an equilibrium state if any agent weakly prefers his bundle to the
house that he currently is renting (individual rationality) and to all other other houses at
the given prices, and, if, in addition, trade is maximal. The latter condition reflects the
fact that the owner of the houses prefers to sell the houses rather than keeping existing
tenants (recall from Section 1 that this is the main goal of U.K. Housing Act 1980 and
similar legislations). We also remark that any equilibrium state is envy-free (Foley, 1967)
in the sense that each agent weakly prefers his own bundle to the bundles assigned to the
other agents.13

For a given profile R ∈ R, the set of equilibria is denoted by ER. Let also ΠR be the
set of equilibrium prices at profile R ∈ R, i.e.:

ΠR = {p ∈ Rn : (µ, ν, p) ∈ ER for some assignments µ and ν}.

An equilibrium price vector p′ is a minimum equilibrium price vector, at a given profile
R ∈ R, if p′ ∈ ΠR, p ≤ p′, and p ∈ ΠR only if p = p′.

Finally, a state (µ, ν, p) is a maximum trade equilibrium, at a give profile R ∈ R, if
(µ, ν, p) ∈ ER and |ν| ≥ |ν ′| for all (µ′, ν ′, p′) ∈ ER.

3 Manipulability and Non-Manipulability Results

As already explained in Section 1, it is natural to let a minimum equilibrium price vector
be a key ingredient in an allocation rule for the considered house allocation problem as
this type of rule previously has been demonstrated to be individual rational, equilibrium
selecting, and non-manipulable in various economic environments. Another natural price
mechanism is based on individual rationality, equilibrium selection, and maximal trade.
Here, the latter axiom guarantees that the rule maximizes the number traded houses, i.e.,
that it achieves the objectives of the U.K. Housing Act 1980 and similar legislations. These
two rules are next formally defined.

Consider the preference domain R∗ ⊆ R, and let E∗ =
⋃
R∈R∗ ER. A rule is a function

f : R∗ → E∗ where, for each profile R ∈ R∗, the rule f selects an equilibrium state

13Formally, if (h, p)Paxa for some agent a ∈ A at state x = (µ, ν, p), agent a is said to envy the agent
j ∈ A with µj = h. If no agent a ∈ A envies any agent a′ ∈ A at state x = (µ, ν, p), the state x is envy-free.
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(µ, ν, p) ∈ ER. A rule is called a minimum price mechanism if it, for each profile R ∈ R∗,
selects an equilibrium state (µ, ν, p) ∈ ER where p is a minimum equilibrium price vector.
A rule is called a maximum trade rule if it, for each profile R ∈ R∗, selects an equilibrium
state (µ, ν, p) ∈ ER that, in addition, is a maximum trade equilibrium.

To be certain that the above two rules are well-defined, we need to establish that the
equilibrium set ER is nonempty for all profiles in R because in this case, ΠR will also be
nonempty for all profiles in R by definition. The existence of a minimum equilibrium price
vector then follows directly as the set of equilibrium prices is bounded from below by p and
closed since preferences are continuous, and the existence of a maximum trade equilibrium
follows by the non-emptiness of the equilibrium set.

Proposition 1. The set of equilibria ER is nonempty for each profile R ∈ R and for any
vector of reservation prices p.

We will next, in a series of examples and propositions, investigate the similarities and
differences between the above defined rules. The first example demonstrates that the
selection of a minimum price mechanism and the selection of a maximum trade rule need
not be identical in the full preference domain R. This result is a bit counterintuitive as
one would suspect that these rules always recommend the same selection as lower prices
intuitively should increase trade.

Example 1. Let A = {1, 2, 3} and H = {1, 2, 3} be the sets of agents and houses, respec-
tively, where agent a ∈ A is the existing tenant of house h = a. Let also p = (0, 0, 0). For
each agent a ∈ A, preferences over bundles (h, p) are represented by a quasi-linear utility
function uah(p) = vah − ph where the values vah are represented by real numbers. Let the
utility for agent a ∈ A of renting house h = a formally be represented by va0, and:

V = (vah) =

 −2 −2 3 2
−2 1 1 −2
0 0 0 −2

 .

In this case, p = (0, 0, 0) is the unique minimum equilibrium price vector as x = (µ, ν, p) is
an equilibrium state for µ = (2, 1, 3) and ν = (1, 1, 0). Note next that x is the only possible
selection of a minimum price mechanism and, moreover, that x′ = (µ′, ν ′, p′) is a possible
selection of a maximum trade rule for µ′ = (3, 2, 1), ν ′ = (1, 1, 1), and p′ = (0, 1, 0). Hence,
|ν ′| > |ν| which demonstrates that a minimum price mechanism and a maximum trade rule
need not make identical selections. �

The observation from Example 1 is in fact more general than in appears. This is revealed
in the following proposition.

Proposition 2. Let f be a minimum price mechanism with domain R. Then f is a
maximum trade rule if and only if 1 ≤ |A| ≤ 2.

We also remark that a maximum trade rule need not be a minimum price mechanism for
any |A| ≥ 1 on the domainR. This can intuitively be understood by considering the special
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case when all agents always strictly prefer to buy the house they currently are living in to
renting it or to buying some other house, i.e., (a, p

a
)Paa and (a, p

a
)Pa(h, ph) for all a ∈ A,

all h 6= a, and all p ≥ p. In this case, a minimum price mechanism will have maximal trade,
as all agents buy the house they are living in, and the unique minimum equilibrium price
vector is given by p = (p

1
, . . . , p

n
). In this special case, however, maximal trade will be

the outcome of any equilibrium selecting rule for any price vector p ≥ p, i.e., a maximum
trade rule need not necessarily recommend the same state as a minimum price mechanism
as the price vector may differ between the two rules.

The following example demonstrates that neither a minimum price mechanism nor a
maximum trade rule need to make a unique selection on the full preference domain R.

Example 2. Let A = {1, 2, 3, 4} and H = {1, 2, 3, 4} be the sets of agents and houses,
respectively. As in Example 1, it is assumed that preferences are represented by quasi-linear
utility functions. Let also:

V = (vah) =


0 0 −2 0 −2
0 −2 0 0 −2
0 2 −2 −2 1
0 −2 2 −2 1

 .

In this case, both p′ = (1, 0, 0, 0) and p′′ = (0, 1, 0, 0) are minimum equilibrium price
vectors. This follows since both x′ = (µ′, ν ′, p′) and x′′ = (µ′′, ν ′′, p′′) are equilibrium states
for µ′ = (1, 3, 4, 2), ν ′ = (1, 1, 1, 1), µ′′ = (3, 2, 1, 4), and ν ′′ = (1, 1, 1, 1). Note also that
trade is maximized at states x′ and x′′ since |ν ′| = |ν ′′| = |A|. �

The multiplicity of a minimum equilibrium price vector and a maximum trade equilibrium
is a direct consequence of the fact that agents can block the trade of a house through the
“Right to Stay and Rent” option. It also have the severe consequence that any minimum
price mechanism and any maximum trade rule is manipulable on the full preference domain,
at least if there are more than three houses on the housing market. The following notion
of group manipulability and group non-manipulability is employed.

Definition 2. A rule f with domain R∗ ⊆ R is manipulable at a profile R ∈ R∗ by a
nonempty group of agents C ⊆ A if there is a profile R′ = (R′C , R−C) ∈ R∗, and two states
f(R) = x = (µ, ν, p) and f(R′C , R−C) = x′ = (µ′, ν ′, p′) such that x′aPaxa for all a ∈ C.
If the rule f is not manipulable by any group C ⊆ A at any profile R ∈ R∗, it is group
non-manipulable.

Proposition 3. A minimum price mechanism f is non-manipulable on the domain R if
and only if 1 ≤ |A| ≤ 3.

The result in Proposition 3 does not generally carry over to maximum trade rules. It is
indeed true that any maximum trade rule can be manipulated if |A| > 3 (see Proposition
4) but due to the large number of possible maximum trade rules, it depends on the specific
maximum trade rule if it is manipulable or not in the interval 1 ≤ |A| ≤ 3. For example,

10



as a minimum price mechanism is a maximum trade rule in the interval 1 ≤ |A| ≤ |2|, by
Proposition 2, it follows from Proposition 3 that a maximum trade rule that, in addition,
is a minimum price mechanism is non-manipulable if 1 ≤ |A| ≤ 2. On the other hand, a
maximum trade rule that avoids to make the same selection as a minimum price mechanism
for any profile in R whenever possible is non-manipulable on the domain R if and only if
|A| = 1.14

Proposition 4. A maximum trade rule f is manipulable on the domain R if |A| > 3.

The implication from Propositions 3 and 4 is that if one searches for non-manipulable
rules on the full preference domain, one cannot search in the class of minimum price
mechanisms or the class of maximum trade rules, at least, if one is interested in housing
markets containing more than three houses. Of course, there are non-manipulable rules
also on the full preference domain, e.g., a rule which, for any profile, sets prices “sufficiently
high” so that all agents prefer either renting or buying the house they currently occupy. As
this rule always recommends an identical outcome as the rule which currently is used in
United Kingdom, it will not be of any interest to a public authority that aims to transfer
more houses to tenants compared to the prevailing U.K. system.

In the following, we will demonstrate that by excluding some profiles from the domain
R and instead consider the reduced preference domain R̃ ⊂ R where no two houses are
“connected by indifference” at any price vector p ∈ Ω, a minimum equilibrium price vector
is unique for all profiles in the reduced domain, and that this price vector is a key ingredient
in an individual rational, equilibrium selecting, and group non-manipulable rule, which, in
addition, maximizes trade.

Definition 3. For a given profile R ∈ R, two houses, h and h′, in H are connected by
indifference if there is a price vector p ∈ Ω, a sequence of distinct agents (a1, . . . , aq), and
a sequence of distinct houses (h1, . . . , hq+1) for q ≥ 1 such that:

(i) h = h1 = a1, and h′ = hq+1 = aq,

(ii) a1Ia1(h2, p), and aqIaq(hq, p),

(iii) (hj, p)Iaj(hj+1, p) for 2 ≤ j ≤ q − 1 if q > 2.

The subset of R where no two houses are connected by indifference is denoted by R̃.

14The interested reader may consult the following example which is the key in a formal proof. Suppose, as
in Example 1, that preferences are represented by quasi-linear utility functions, and that A = H = {1, 2},
v10 = v11 = v20 = −2, v12 = 0, v21 = 1, and v22 = 0. In this case, a maximum trade rule that do not make
the same selection as a minimum price mechanism (whenever possible) will select the state x = (µ, ν, p)
where µ = (2, 1), ν = (1, 1), and p = (α, 0) for some 0 < α ≤ 1. However, if agent 2 misrepresents
and instead reports ṽ21 = 0, agent 2 will still be assigned house 1 but at price 0. Hence, the gain by
misrepresenting is α > 0.
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We remark that the above type of domain restriction contains “almost all” preference
profiles.15 In fact, one can argue that the restriction of profiles to R̃ ⊂ R is an assumption
of the same character as assuming strict preferences in the absence of monetary transfers,
as, e.g., Abdulkadiroğlu and Sönmez (1999), Gale and Shapley (1962), and Ma (1994)
among others, as also this assumption is mild if preferences are chosen randomly since
the probability of an indifference then is zero. The following example illustrates a natural
preference domain satisfying Definition 3.

Example 3. Consider the domain Ṙ ⊂ R where “indifference with the endowment” is
excluded, i.e., R ∈ Ṙ if and only if either aPa(h, ph) or (h, ph)Paa for all a ∈ A and
all (h, ph).

16 Exclusion of indifference with the endowment arises naturally when agents
have a “status-quo bias” meaning that once an agent is indifferent between keeping the
house he currently is living or buying some other house, the agent keeps his original house.
Assumptions with a similar meaning has previously been made by, e.g., Sönmez (1999,
Assumption A) in a generalized indivisible goods allocation problem, and by Erdil and
Ergin (2006, NI∅ assumption) in a two-sided matching model without side payments. �

The first main result of the paper demonstrates that the set of equilibrium prices ΠR

has a unique minimum equilibrium price vector at any profile R ∈ R̃. This result also
offers the explanation to the fact that there are two minimum equilibrium price vectors in
Example 2. More precisely, houses h = 1 and h′ = 3 are connected by indifference at prices
p′ = (1, 0, 0, 0). To see this, consider agents 1 and 2 and the sequence of houses (1, 3, 2). In
this case, q = 2, a1 = 1, a2 = aq = 2, 1I1(3, 0), and 2I2(3, 0) so all conditions of Definition
3 are satisfied (note that the last condition in the definition is irrelevant because q = 2),
i.e., houses h = 1 and h′ = 3 are connected by indifference at prices p′ = (1, 0, 0, 0).

Theorem 1. There is a unique minimum equilibrium price vector p∗ ∈ ΠR for each profile
R ∈ R̃.

From Theorem 1, it is clear that the non-uniqueness problem, previously illustrated in
Example 2, not is a problem on the restricted domain R̃. What may not be so obvious, in
the light of Proposition 2, is that a minimum price mechanism always is a maximum trade
rule on the restricted domain R̃.

Proposition 5. Let f be a minimum price mechanism with domain R̃. Then f is a
maximum trade rule.

15Informally, this can be understood by considering any profile R ∈ R, and any sequence of distinct
agents (a1, . . . , aq) and any sequence of distinct houses (h1, . . . , hq+1) with h1 = a1 and hq+1 = aq.
Suppose now that a1Ia1

(h2, p) and (hj , p)Iaj
(hj+1, p) for 2 ≤ j ≤ q − 1. In this case, phq

will be uniquely
determined by continuity and monotonicity of the preferences. However, if preferences are chosen randomly,
the probability is zero that aqIaq (hq, p), i.e., that houses h and h′ are connected by indifference. Hence,

very few profiles are excluded in R̃ compared to R. See Andersson and Svensson (2014) for a thorough
analysis of a similar domain restriction.

16For technical purposes, we also need to assume that the set {ph ∈ R : (h, ph)Rha} is closed for all
h ∈ H. This assumption guarantees that for a decreasing convergent equilibrium price sequence, the
assignment converges as well.
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The last result of this section demonstrates that a minimum price mechanism, defined on
the domain R̃ ⊂ R, is group non-manipulable for all profiles in R̃. Note also that this
mechanism always selects an individual rational equilibrium outcome that maximizes trade
at each profile in R̃ by the definition of the rule and Proposition 5.

Theorem 2. Let f be a minimum price mechanism with domain R̃. Then f is group
non-manipulable.

4 A Dynamic Price Process

This section provides a dynamic process for identifying a minimum equilibrium price vector
in a finite number of steps. As an arbitrary but fixed profile R ∈ R is considered throughout
the section, we will for notational simplicity drop the profile notation R in the equilibrium
sets ER and ΠR, and instead write E and Π, respectively.

The key in the dynamic process a sequence of minimum equilibrium price vectors
(p1, . . . , pT ) consistent with a sequence of fixed assignments (ν1, . . . , νT ). This type of
sequence is called a “Dutch price sequence”, and to define it in more detail, some addi-
tional notation needs to be introduced. For this purpose, consider a fixed assignment ν
(i.e., an assignment where, for each agent, is it exogenously given whether or not they rent
a house), and let Πν be the set of equilibrium prices consistent with the fixed assignment ν.
Such a set of equilibrium prices is called a price regime. Formally, for any fixed assignment
ν, a set Πν ⊂ Π is defined to be a price regime if:

Πν = {p ∈ Ω : there is an assignment µ such that p ∈ Π for x = (µ, ν, p)}.

For each assignment ν, the price regime Πν is a semi-lattice that is closed and bounded
below and, hence, has a unique minimum equilibrium price vector pν∗ ∈ Πν . Let x =
(µ, ν, p) ∈ E be an equilibrium state and define a price function π : E → Ω according
to π(x) = pν∗. Hence, π(x) is the unique minimum equilibrium price in the price regime
defined by the assignment ν at the state x. Further, define a correspondence ξ from
minimum price vectors pν∗ to equilibrium states according to:

ξ(pν∗) = {x′ ∈ E : x′ = (µ′, ν ′, pν∗) for some assignments µ′ and ν ′}.

Definition 4. A (possibly infinite) price sequence (pt)Tt=1 of equilibrium prices is a Dutch
price sequence if:

(i) p1 = π(x0) for some equilibrium state x0 = (µ0, ν0, p0) with µ0
a = a for all a ∈ A,

(ii) there is a supporting sequence (xt)Tt=1 of equilibrium states such that for some xt ∈
ξ(pt), it holds that pt+1 = π(xt),

(iii) pT = π(xT−1) and for each x ∈ ξ(pT ) and p = π(x), it holds that p = pT whenever
the price sequence (pt)Tt=1 ends at a finite step T .
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Figure 1: The left panel of the figure illustrates that a Dutch price sequence need not be unique for a given profile in R,
and the right panel of the figure illustrates a Dutch price sequence (p1, p2, . . . , pt, . . .).

To get a better understanding of a Dutch price sequence, consider Figure 1 and the price
vector p0 where all agents prefer to keep the house they currently are living in by either
renting or buying it. Such a price vector always exists as this always will be the case for
“sufficiently high” prices. But then there is an equilibrium state x0 = (µ0, ν0, p0) as defined
in Definition 4(i). Recall next that for the price vector p0, there is a corresponding price
regime Πν0 with a unique minimum equilibrium price vector. This vector is denoted by
p1 = π(x0). Now, given prices p1, there is a corresponding supporting equilibrium state
x1 = (µ1, ν1, p1). Note that this state is not necessarily unique. In the left panel of Figure
1, for example, there are two supporting equilibrium states, x̂1 = (. . . , x̂1

i , x̂
1
j , . . .) and

x̃1 = (. . . , x̃1
i , x̃

1
j , . . .), with corresponding minimum equilibrium price vectors p̂2 = π(x̂1)

and p̃2 = π(x̃1). Any of these price vectors may be chosen and the arguments can be
repeated in the exact same fashion. In this way, a Dutch price sequence, (p1, p2, . . . , pt, . . .),
as illustrated in the right panel of Figure 1, will be obtained (disregard the dotted path
that connects the price vector in the Dutch price sequence for the moment, it will be
explained later in this section). What may not be so obvious is that such a sequence
always contains a finite number of equilibrium price vectors. This is demonstrated in the
following proposition.17

Proposition 6. For any given profile R ∈ R, a Dutch price sequence (pt)Tt=1 contains only
a finite number of price vectors, i.e., T <∞.

We next remark that any Dutch price sequence satisfies two important properties. First,
pt+1 ≤ pt and pt+1 6= pt for any t in the sequence. This follows since pt ∈ Πνt , and pt+1 is
the minimum price vector in the price regime Πνt . Second, the norm of the assignment ν is
weakly increasing in the sequence, i.e., if the number of agents that are buying houses at t
and t+1 are denoted by |νt| with |νt+1|, respectively, it must be the case that |νt+1| ≥ |νt|.
This follows since, at an equilibrium state, the number of buying agents is always maximal

17Note also that the above arguments can be use to construct a Dutch price sequence for any profile in
R and any vector of reservation prices. Hence, there always exists a Dutch price sequence.
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at the given price vector. A change from the price regime Πνt to the price regime Πνt+1

entails a change of agents that are buying, but the number of buying agents cannot decrease.
As is clear from the above description, there may be several Dutch price sequences for

a given profile R and a given initial start prices p0 (see, e.g., the left panel of Figure 1).
However, if the profile is selected from the domain R̃ where no two houses are “connected
by indifference”, there will be exactly one Dutch price sequence for the given profile. Even
more strikingly, the end point of the sequence must be the, by Theorem 1, unique minimum
equilibrium price vector p∗ ∈ Π for the given profile R ∈ R̃. Both these results are formally
stated in the last theorem of the paper.

Theorem 3. For any given profile R ∈ R̃, a Dutch price sequence (pt)Tt=1 is unique, and
pT is the unique minimum equilibrium price vector in ΠR.

A final observation is that the price vectors in the a unique Dutch price sequence can be
identified and connected by applying the “Vickrey-Dutch Auction” (Mishra and Parkes,
2009) in the case when preferences are quasi-linear, and by the Dutch counterpart of the
“SA Auction” in Morimotoy and Serizawa (2014) in the more general case. More explicitly,
for any given profile in R̃, the unique minimum equilibrium price vector can be obtained
by adopting the following dynamic price process.

The Dynamic Price Process. Initialize the price vector to “sufficiently high” prices p0

in the sense that each agent prefers not to buy any house they currently are not living in,
i.e., x0

a = a for all a ∈ A. Then for each Step t := 0, . . . , T :

Step t. For the given pt and the fixed assignment νt, identify the unique minimum equi-
librium price vector pt+1 = π(xt) in the corresponding price regime Πνt . If pt+1 = pt, stop.
Otherwise set t := t+ 1 and continue. �

If one adopts the Vickrey-Dutch Auction or the Dutch counterpart of the SA Auction to
identify the unique minimum equilibrium price vector in the corresponding price regime
Πνt , it follows directly from the above findings and the convergence results in Mishra and
Parkes (2009, Theorem 2), and Morimotoy and Serizawa (2014, Proposition 5.1) that the
above process is well-defined and that it will converge to the unique minimum equilibrium
price vector, for the given profile R ∈ R̃, in a finite number of steps. In the right panel
of Figure 1, the above procedure will generate the finite path which is represented by the
dotted line.

5 Concluding Remarks

In the special case of the formal model when the set A contains exactly one agent, the
situation in which the U.K. Housing Act 1980 and its European equivalents are applicable
will be fully reflected in the formal framework. That is, the single tenant is given a take-
it-or-leave-it offer either to buy the house at a fixed and discounted price, or to continue
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renting the house. If the agent would report his preferences to the local or central ad-
ministration, the minimum equilibrium price mechanism would recommend the real-world
outcome. Hence, the model considered in this paper can be seen as a representation of
the public housing market in United Kingdom today where each tenant is regarded as a
“separate housing market”. This situation will most likely cause allocative inefficiencies
as the houses not necessarily are allocated to the tenants who value them the most. The
compromise proposed in this paper is to merge some of these “separate housing markets”
into a new and larger housing market (e.g., all houses in a specific neighborhood). In this
way, the houses can be more efficiently allocated among the tenants but the tenants are,
at the same time, protected against “too high” living costs.

As a tenant always have the option to buy the particular house that he is living in at
the fixed reservation price or to continue renting it at the regulated rent, in the formal
framework, it is clear that all agents weakly prefer the outcome of the investigated rule to
the prevailing U.K. system. In fact, also the public authority weakly prefers the outcome
of the minimum equilibrium price mechanism to the prevailing U.K. system as the revenue
from the sales always is weakly higher in the suggested rule. This result is formally stated
in the last proposition of the paper.

Proposition 7. For any profile R ∈ R, the minimum price mechanism generates a weakly
higher revenue to the public authority compared to the current U.K. system.

We have left a number of interesting research questions for future research, and we believe
that two of them stand out more than the others. First, is the domain where no two houses
are “connected by indifference” at any price vector, the maximal domain under which a
minimum price mechanism is non-manipulable? Second, is the minimum price mechanism
the only individual rational, equilibrium selecting, trade maximizing, and non-manipulable
rule on the domain R̃? Currently, we do not have an answer to these two questions but
it would be interesting to know them, especially since the results of this paper have some
very relevant policy implications.

Appendix: Proofs

This Appendix contains the proofs of all results in the paper. It also contains some addi-
tional lemmas, definitions, and concepts. All results are proved in the same order as they
are presented in the main text of the paper, except the proof of Proposition 3 which is
proved directly after Theorem 2.

Proposition 1. The set of equilibria ER is nonempty for each profile R ∈ R and for any
vector of reservation prices p.

Proof. Since each house is bounded desirable for each agent a ∈ A at each profile R ∈ R,
by assumption, there is a price vector p > p such that aPa(h, p) for all a ∈ A and all h ∈ H.
But then, x = (µ, ν, p) constitutes an equilibrium state if µa = a for all a ∈ A, νa = 1 if
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(a, p
a
)Raa, and νa = 0 if aPa(a, pa). Hence, x ∈ ER, and, consequently, ER 6= ∅ for each

profile R ∈ R.

Proposition 2. Let f be a minimum price mechanism with domain R. Then f is a
maximum trade rule if and only if 1 ≤ |A| ≤ 2.

Proof. We first prove that f is a maximum trade rule if 1 ≤ |A| ≤ 2. For |A| = 1, this
follows directly as the single agent is given a take-it-or-leave-it offer to either to buy the
house at price p

1
or to continue renting it, and the fact that the agent will continue to rent

only if 1P1(1, p
1
). Suppose now that |A| = 2 but that f is not a maximum trade rule on the

domain R. This means that there exists a profile R ∈ R and two states, x = (µ, ν, p) ∈ ER
and x′ = (µ′, ν ′, p′) ∈ ER, where the former state is selected by a minimum price mechanism
and the latter by a maximum trade rule and |ν| < |ν ′|. Because |ν ′| > |ν|, there must be
an agent al ∈ A with µal = al, νal = 0, and ν ′al = 1. Consequently, µal = al, µak = ak,
µ′al = ak and µ′ak = al for l 6= k as |A| = 2. Note next that xalRalxak and xakRakxal
as x is an equilibrium state. Because µaj = aj for j = 1, 2, it must be the case that
pµj ≤ p′µj for j = 1, 2 otherwise x′ cannot be an equilibrium state. Now, pµj < p′µj for
some j contradicts that p is a minimum equilibrium price vector in ΠR. Hence, pµj = p′µj
for j = 1, 2, and, consequently, xalIalxak and xakIakxal as x′ is an equilibrium state. But
then x′′ = (µ′′, ν ′′, p′′) = (µ′, ν ′, p) is an equilibrium state at the minimum equilibrium price
vector p with |ν ′′| > |ν| contradicting that the norm |ν| is maximal at state x. Hence, state
x cannot be an equilibrium.

The proof that f is a maximum trade rule on the domain R only if 1 ≤ |A| ≤ 2 follows
directly from Example 1. To see this, note that in order to prove the result, it suffices
to find a profile R ∈ R for an arbitrary |A| ≥ 3 where the rule can be manipulated by
some agent. Consider now Example 1, and suppose that we add an arbitrary but finite
number of agents to the set A = {1, 2, 3}, and that vj0 = 0 and vjk = −2 for j = 4, . . . , n,
and all k ∈ A∗ where A∗ = {1, . . . , 3, 4, . . . , n}. Suppose, in addition, that vjk = −2 for
j = 1, 2, 3 and k = 4, . . . , n. The added agents will always rent the house they currently live
in and will not affect the outcome of the rule f for agents 1, 2, and 3. Because Example
1 demonstrates that a minimum price mechanism need not make an identical selection
as a maximum trade rule when |A| = 3, the result will then carry of to the case when
|A| ≥ 3.

Proposition 4. A maximum trade rule f is manipulable on the domain R if |A| > 3.

Proof. We will prove the proposition by identifying a profile R ∈ R where some agent
can manipulate the outcome of an arbitrary maximum trade rule f when |A| > 3. Using
the same arguments as in the proof of Proposition 2, it is sufficient to demonstrate the
result for |A| = 4. As in Example 1, let preferences be represented by quasi-linear utility
functions where:

V = (vah) =


0 0 −2 0 −2
0 −2 −2 0 −2
0 2 −2 −2 1
0 −2 2 −2 1

 .
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In the remaining part of the proof, we let the profile R ∈ R denote the preferences that
are represented by the above values. Note first that x = (µ, ν, p) is an equilibrium state for
µ = (1, 3, 4, 2), ν = (1, 1, 1, 1), and p = (1, 0, 0, 0). Note, in particular, that |v| = 4. This
also means that any selection x′ = (µ′, ν ′, p′) of a maximum trade rule f at profile R must
have the property that |ν ′| = 4. But then it must also be the case that µ′2 = 3 and p′3 = 0
at any selection x′ of a maximum trade rule. This follows because if µ′2 6= 3, then it must
be that case that µ′2 = 2 and ν ′2 = 0 otherwise agent 2 will envy the agent a with µ′a = 2
at any feasible price vector. This contradicts that x′ is an equilibrium. But µ′2 = 2 and
ν ′2 = 0 contradicts that x′ is selected by a maximum trade rule at profile R as this implies
that |ν ′| < 4. Hence, µ′2 = 3 and p′3 = 0. By using similar arguments, it is clear that
µ′1 = 1 and ν ′1 = 1. As a consequence, µ′3 = 4, ν ′3 = 1, p′1 − p′4 ≥ 1, and p

4
= 0 ≤ p′4 ≤ 1.

But if µ′3 = 4 and 0 ≤ p′4 ≤ 1 at any selection x′ = (µ′, ν ′, p′) of a maximum trade rule f
at profile R, the maximal utility that agent 3 can obtain at profile R equals v34 − 0 = 1.

Consider next the profile R̃ ∈ R where all agents except agent 3 have the same values
as in profile R, and:

ṽ3h = (0, 0,−2,−2,−2),

i.e., agent 3 misrepresents his values. Note first that |v′′| ≤ 3 for all x′′ ∈ ER̃. To see this,
suppose that |v′′| = 4 for some x′′ ∈ ER̃. By using the similar arguments as in the above,
it must then be the case that µ′′2 = 3, µ′′3 = 1, and p′′1 = p′′3 = 0. But then agent 1 must
be assigned house 2 or 4 and will, consequently, envy agents 2 and 3 at any feasible price
vector. This contradicts that x′′ is an equilibrium. Hence, |v′′| ≤ 3 for all x′′ ∈ ER̃.

We next remark that |v′′| = 3 for any maximum trade rule f at profile R̃. This
follows directly as x′′ = (µ′′, ν ′′, p′′) is an equilibrium state at profile R̃ for µ′′ = (3, 2, 1, 4),
ν ′′ = (1, 0, 1, 1), and p′′ = (0, 1, 0, 0).

The final part of the proof demonstrates that µ′′3 = 1 and p′′3 = 0 for any selection x′′

made by a maximum trade rule f at profile R̃. This completes the proof of the proposition
as the utility of agent 3 when misrepresenting and when reporting truthfully then equals
u31(p′′) = 2 − 0 = 2 and (at most) v34 − 0 = 1, respectively. Suppose first that µ′′3 6= 1.
Then it must be the case that µ′′3 = 3 and v′′3 = 0 because if this is not the case, then agent
3 will envy the agent a with µ′′a = 3 at any feasible price vector contradicting that x′′ is an
equilibrium. But if µ′′3 = 3 and v′′3 = 0, it must be the case that µ′′2 = 2 and ν ′′2 = 0 because
if this is not the case, then agent 2 will envy the agent a with µ′′a = 2 at any feasible price
vector contradicting that x′′ is an equilibrium. But if ν ′′2 = ν ′′3 = 0, then |ν ′′| < 3 which
contradicts that x′′ is selected by a maximum trade rule f . Hence, µ′′3 = 1. But if µ′′3 = 1,
then it must be the case that p′′3 = 0 because if this not is the case, then agent 3 will envy
the agent a with µ′′a = 3 at any feasible price vector contradicting that x′′ is an equilibrium.
Hence, µ′′3 = 1 and p′′3 = 0 as desired.

To prove the subsequent results, some consequences of the domain restriction (stated as
lemmas) are derived for which some additional concepts are needed.

Let q > 1 and aj ∈ A for 1 ≤ j ≤ q. Given two assignments µ and µ′, a trading cycle
from µ to µ′ is a sequence G = (a1, . . . , aq) of distinct agents such that µ′aj = µaj+1

, for
1 ≤ j < q and µ′aq = µa1 . For simplicity, we will use the same notation for the sequence

18



G and the corresponding set G = {a1, . . . , aq}. Note that the complete trade from µ to µ′

can be decomposed uniquely into a number of trading cycles.
Let R,R′ ∈ R̃ be two profiles such that R′ = (R′C , R−C) for some C ⊆ A (where

possibly C = ∅ and R = R′), and consider two equilibrium states x = (µ, ν, p) ∈ ER and
x′ = (µ′, ν ′, p′) ∈ ER′ where x′aPaxa for all a ∈ C. Let H1, H2, and H3 be defined as:

H1 = {h ∈ H : p′h < ph},
H2 = {h ∈ H : p′h = ph},
H3 = {h ∈ H : p′h > ph}.

Lemma 1. Let R and R′ = (R′C , R−C) be two profiles in R̃, and x = (µ, ν, p) ∈ ER and
x′ = (µ′, ν ′, p′) ∈ ER′ be two equilibrium states. Let also G = (a1, . . . , aq) be a trading
cycle from µ to µ′, and (µa1 , . . . , µaq) the corresponding set of houses.

(i) If ak ∈ G and x′akPakxak , then µ′ak ∈ H1.

(ii) If µa ∈ H1, µ′a ∈ H2 ∪H3 and a /∈ C, then xa = a, µ′a ∈ H2, and xaIax
′
a.

Proof. Part (i) of the lemma is proved by contradiction. Assume that ak ∈ G and
x′akPakxak , but that µ′ak /∈ H1. Note first that ν ′ak = 1. To see this, suppose that ν ′ak = 0
or, equivalently, that x′ak = ak. Because x is an equilibrium state, it must be the case that
xakRakak. But then xakRakx

′
ak

, which contradicts the assumption that x′akPakxak . Hence,
ν ′ak = 1. Note next that xakRak(µ′ak , p) and (µ′ak , p)Rak(µ′ak , p

′) because x is an equilibrium
state and µ′ak /∈ H1, respectively. But then xakRak(µ′ak , p

′). Now, x′ak = (µ′ak , p
′) because

ν ′ak = 1. Consequently, xakRakx
′
ak

which, again, contradicts the assumption that x′akPakxak .
Hence, µ′ak ∈ H1.

To prove prove Part (ii) of the lemma, note that because µa ∈ H1 and µ′a ∈ H2 ∪H3,
by assumption, it follows that µa 6= µ′a and that agent a must belong to some trading cycle
from µ to µ′. Since a /∈ C we have R′a = Ra. Thus, xaRa(µ

′
a, p)Rax

′
a as µ′a ∈ H2 ∪H3 and

x′a = (µ′a, p
′). Suppose that µ′a ∈ H3. If xa = a, then aRa(µ

′
a, p)Pax

′
a, which contradicts

that x′ is individual rational. If x 6= a, then xaPax
′
a, which is a contradiction to x′ ∈ ER′ .

Hence, µ′a /∈ H3, i.e., µ′a ∈ H2. It now follows directly that if xa = a then xaIax
′
a, and if

xa 6= a then (µa, p
′)Pax

′
a, which is a contradiction to x′ ∈ ER′ . Hence, xa = a, µ′a ∈ H2,

and xaIax
′
a.

Lemma 2. Let R and R′ = (R′C , R−C) be two profiles in R̃, and x = (µ, ν, p) ∈ ER and
x′ = (µ′, ν ′, p′) ∈ ER′ be two equilibrium states where x′aPaxa for all a ∈ C. Let also
G = (a1, . . . , aq) be a trading cycle from µ to µ′, and (µa1 , . . . , µaq) the corresponding set
of houses. Then µak ∈ H1 for some ak ∈ G implies that µaj 6∈ H3 for all aj ∈ G.

Proof. For notational simplicity, let hj = µaj for all 1 ≤ j ≤ q. To obtain a contradiction,
suppose that hk ∈ H1 but hl ∈ H3 where, without loss of generality, k < l. A first
observation is that aj /∈ C for k ≤ j < l. This follows directly from Lemma 1(i) as
µ′aj ∈ H2 ∪H3 for all k ≤ j < l by construction. Hence, R′aj = Raj for all k ≤ j < l. We
will consider the cases when k + 1 = l and k + 1 < l. By Lemma 1(ii), xak = ak = hk
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and hk+1 ∈ H2, implying that k + 1 = l is impossible. Thus, in the latter case, we may
suppose, without loss of generality, hj ∈ H2 for k < j < l.

A second observation is that x′ajIxaj for k ≤ j < l. For j = k this follows from Lemma
1(ii). For all k < j < l − 1, it follows from the facts that hj, hj+1 ∈ H2, R′aj = Raj , and
that x and x′ are equilibrium states. For j = l − 1, we have al−1 /∈ C, µal−1

∈ H2 and
µ′al−1

∈ H3. Applying Lemma 1(ii) to R′ now yields x′al−1
= al−1 and (hl−1, p)I

′
al−1

al−1.
Now, because k + 1 < l and both xak = ak and x′al−1

= al−1, there exist l′ and l′′ where
k ≤ l′ < l′′ ≤ l − 1 such that for all l′ < j < l′′ we have xj 6= aj 6= x′j and both xal′ = al′
and x′al′′ = al′′ . But then:

(a) x′al′ = (hl′+1, p), al′Ial′ (hl′+1, p) and R′al′ = Ral′
,

(b) (hj, p)Iaj(hj+1, p) and R′aj = Raj for all l′ < j < l′′,

(c) (hl′′ , p)I
′
al′′
al′′ (where R′al′′ = Ral′′

if l′′ < l).

Now by (a)–(c), houses al′ and al′′ are connected by indifference at profile R′ which con-
tradicts that the profile R′ belongs to R̃.

An immediate consequence of Lemma 2 is that the set of trading cycles from µ to µ′ can
be partitioned into two disjoint groups as explained in the following definition.

Definition 5. Let R and R′ = (R′C , R−C) be two profiles in R̃, and x = (µ, ν, p) ∈ ER and
x′ = (µ′, ν ′, p′) ∈ ER′ be two equilibrium states where x′aPaxa for all a ∈ C. Let A+ ⊆ A be
such that a ∈ A+ precisely when there is a trading cycle G from µ to µ′ such that a ∈ G
and µa′ ∈ H1 for some a′ ∈ G. Let A− = A \ A+.

The notations A+ and A− are chosen because all agents in A+ are weakly better off at the
equilibrium state x′ than at the equilibrium state x, while no agent in A− is strictly better
off at the equilibrium state x′ than at the equilibrium state x. This is demonstrated in the
next lemma.

Lemma 3. Let R and R′ = (R′C , R−C) be two profiles in R̃, and x = (µ, ν, p) ∈ ER and
x′ = (µ′, ν ′, p′) ∈ ER′ be two equilibrium states where x′aPaxa for all a ∈ C. Let G ⊆ A be
a trading cycle from µ to µ′. If x′aPaxa for some agent a ∈ G, then G ⊆ A+ and x′âRâxâ
for all â ∈ G.

Proof. Note first that Lemma 1(i) implies that µ′a ∈ H1 since x′aPaxa. Hence, G ⊆ A+ and
µâ ∈ H1 ∪H2 for all â ∈ G by Lemma 2 and by the fact that G is a trading cycle from µ
to µ′. Note next that either x′âPâxâ or xâRâx

′
â for all â ∈ G. In the latter case, â /∈ C and

R′â = Râ. But then from µâ ∈ H1 ∪ H2 we obtain x′âRâ(µâ, p
′)Râ(µâ, p) because x′ is an

equilibrium state. If xâ = (µâ, p), then x′âRâxâ. Otherwise, xâ = â from the fact that x′ is
an equilibrium state, x′âRââ. Hence, x′âRâxâ for all â ∈ G.

Theorem 1. There is a unique minimum equilibrium price vector p∗ ∈ ΠR for each profile
R ∈ R̃.
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Proof. Let R ∈ R̃, and let x′ = (µ′, ν ′, p′) ∈ ER and x′′ = (µ′′, ν ′′, p′′) ∈ ER be two
equilibrium states. We will demonstrate that x = (µ, ν, p) ∈ ER for some assignments µ
and ν if ph = min{p′h, p′′h} for each h ∈ H. The proof of the theorem then follows directly
since the set ΠR is closed and bounded from below.

Consider the equilibrium states x′ = (µ′, ν ′, p′) and x′′ = (µ′′, ν ′′, p′′), and the trading
cycles from µ′ to µ′′. Let the sets A+ and A− be defined as in Definition 5 with the
restriction R = R′, and define ph = min{p′h, p′′h} for each h ∈ H. Let:

µa =

{
µ′′a if a ∈ A+,
µ′a if a ∈ A−.

Note that the assignment µ defined in this way becomes bijective because no agent a ∈ A+

belongs to a trading cycle containing an agent in A− by Lemma 2. Let now xa = x′′a and
νa = ν ′′a for all a ∈ A+, and xa = x′a and νa = ν ′a for all a ∈ A−. To prove the theorem, we
need to demonstrate that x = (µ, ν, p) is an equilibrium state. Now, the following is true
for any a ∈ A+ (recall that R = R′):

(a) x′′aRaa because of individual rationality,

(b) x′′aRa(h, p
′′) for all h ∈ H as x′′ is an equilibrium state,

(c) x′′aRax
′
a by Lemma 3 since a ∈ A+,

(d) x′aRa(h, p
′) for all h ∈ H as x′ is an equilibrium state.

From (a)–(d) in the above and the construction that xa = x′′a and νa = ν ′′a for all a ∈ A+, it
now follows that xaRaa and xaRa(h, p) for all a ∈ A+ and all h ∈ H. Symmetric arguments
now give that xaRaa and xaRa(h, p) for all a ∈ A− and all h ∈ H. Hence, x = (µ, ν, p) is
an equilibrium state if the assignment ν implies maximal trade (see Definition 1). If this
condition not is satisfied, it only remains to change the assignment ν so trade becomes
maximal. Hence, x = (µ, ν, p) is an equilibrium state.

Proposition 5. Let f be a minimum price mechanism with domain R̃. Then f is a
maximum trade rule.

Proof. To obtain a contradiction, suppose that f is a minimum price mechanism but not a
maximum trade rule. Let also the state x′ = (µ′, ν ′, p′) ∈ ER be selected by the minimum
price mechanism, i.e., p′ is the unique minimum equilibrium price vector in ΠR by Theorem
1. From Theorem 1 and the assumption that f not is a maximum trade rule, it then follows
that there is a state x = (µ, ν, p) ∈ ER where p′ 6= p, p′h ≤ ph for all h ∈ H, and |ν ′| < |ν|.

Recall next that the complete trade from µ to µ′ can be decomposed uniquely into a
number of trading cycles. Because |ν ′| < |ν|, by assumption, this means that there must be
a trading cycle G = (a1, . . . , aq) from µ to µ′ where Σa∈Gνa > Σa∈Gν

′
a, and, consequently,

an agent al ∈ G with µ′al = al and ν ′al = 0. Note also that µaj ∈ H1 ∪H2 for all j ∈ G as
p′h ≤ ph for all h ∈ H.
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Let now agent al ∈ G be defined as in the above, and let aj ∈ G for all indices 1 ≤ j ≤ q.
We will next demonstrate that µal ∈ H2 and alIal(µal , p). As µal ∈ H1 ∪H2, it suffices to
show that µal /∈ H1 to prove the first part of the statement. To obtain a contradiction,
suppose that µal ∈ H1. Because µal ∈ H1, µal 6= al, and (µ, ν, p) ∈ ER, it follows that:

(µal , p
′)Pal(µal , p)Ralal.

But then state (µ′, ν ′, p′) cannot belong to ER since x′al = al. Hence, µal ∈ H2. But if
µal ∈ H2 and x′al = al, it is immediately clear that x′alIalxal as both x and x′ belong to ER.
Note that the latter condition may also be written as alIal(µal , p) since x′al = al.

Let again agent al ∈ G be defined as in the above. Given the above findings, we next
remark that either (i) µaj ∈ H2 for all k < j ≤ l and µak ∈ H1 for some ak ∈ G, or (ii)
µaj ∈ H2 for all aj ∈ G. We will demonstrate that both these cases lead to the desired
contradiction.

Case (i). Suppose first that xak 6= ak. Because (µ, ν, p) ∈ ER, µak ∈ H1, and µ′ak =
µak+1

∈ H2 it follows that:
(µak , p

′)Pak(µak , p)Rakx
′
ak
,

which contradicts that (µ′, ν ′, p′) ∈ ER. Hence, xak 6= ak cannot be the case. Suppose
instead that xak = ak, and note that xajIajx

′
aj

for all k ≤ j ≤ l − 1. This follows as both
x and x′ belong to ER and µaj ∈ H2 for all k < j ≤ l. But then houses ak and al are
connected by indifference at prices p as akIak(ak+1, p) and alIal(µal , p). Hence, xak = ak
cannot be the case.

Case (ii). If µaj ∈ H2 for all aj ∈ G, it follows, by the same arguments as in Case
(i), that xajIajx

′
aj

for all aj ∈ G. Now, if µal′ = al′ for some al′ ∈ G and µaj 6= aj for all
l′ < j ≤ l, houses al′ and al are connected by indifference at prices p as al′Ial′ (al′+1, p) and
alIal(µal , p). On the other hand, if µal′ 6= al′ for all al′ ∈ G, then the trade at state x′ can
be increased since µ′al = al and ν ′al = 0, which contradicts that x′ ∈ ER.

The following lemma is the key in the proofs of Theorems 2 and 3.

Lemma 4. Let R,R′ ∈ R̃ be two profiles such that R′ = (R′C , R−C) for some C ⊂ A.
Let also x = (µ, ν, p) ∈ ER and x′ = (µ′, ν ′, p′) ∈ ER′ be two equilibrium states such that
x′aPaxa for all a ∈ C. If H1 6= ∅, then there is a subset S ⊂ H1 such that AS = ∅ where:

AS = {a ∈ A : µa /∈ S and xaIa(h, p) for some h ∈ S}.

Proof. Note first that it is safe to assume that C = {a ∈ A : x′aPaxa} as R′a = Ra is an
allowed report for all agents a ∈ C. To obtain a contradiction, suppose that AS 6= ∅ for
each S ⊂ H1. Then there is a subset S ⊂ H1 and an agent a0 ∈ A with µa0 /∈ H1 and
xa0Ia0(h, p) for some h ∈ S. Now, xa0Ra0a0 by individual rationality and (h, p′)Pa0(h, p)
as preferences are strictly monotonic and p′h < ph. Hence, (h, p′)Pa0(h, p)Ia0xa0Ra0a0 and,
obviously, a0 ∈ C and µ′a0 ∈ H1.

Note next that agent a0 belongs to some trading cycle G = (at, at−1, . . . , a1, a0) from
µ to µ′. Since µ′a0 ∈ H1, it follows from Lemma 2 that µaj ∈ H1 ∪ H2 for all 0 ≤ j ≤ t,
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and µa0 ∈ H2 because µa0 /∈ H1. Let 0 < l ≤ t be minimal such that µal ∈ H1, and
note that such an index exists because µ′a0 ∈ H1. But then µ′al ∈ H2 and, consequently,
al /∈ C by Lemma 1(i). Because µal ∈ H1 and µ′al ∈ H2, Lemma 1(ii) yields xal = al
and alIal(µal−1

, p). Furthermore, for 0 < j < l, we have µ′aj ∈ H2, aj /∈ C, xajIajx
′
aj

and

x′aj 6= aj because R belongs to R̃.
It is next established that xajPaj(al, p) for all j ∈ {a0, a1, . . . , al}. To obtain a con-

tradiction, suppose that xa0Ia0(al, p). Then it is possible to define an assignment µ′′ such
that µ′′a = µa for a ∈ A\{a0, a1, . . . , al}, µ′′aj = µaj−1

for 0 < j ≤ l, and µ′′a0 = al. Fur-
ther, let ν ′′a = νa for a ∈ A\{a0, a1, . . . , al} and ν ′′a = 1 for a ∈ {a0, a1, . . . , al}. Note that
ν ′′a = 1 for a ∈ {a0, a1, . . . , al} is a utility maximizing choice for agent a since for a = aj,
xaRaa, xaRa(h, p) for all h ∈ H, xajIaj(µaj−1

, p), and both x′aj 6= aj and ν ′aj = 1. Then
the triple (µ′′, ν ′′, p) satisfies the requirements of Definition 1. However, by comparing
x′′ = (µ′′, ν ′′, p) and x = (µ, ν, p), we see that trade is larger at x′′ than at x, i.e, νal = 0
while ν ′′al = 1. This contradicts that x is an equilibrium state. Similar argument can be
used to derive a contradiction if xajIaj(al, p) for some 0 < j < l. Hence, xajPaj(al, p) for
all j ∈ {a0, a1, . . . , al}.

Recall next that AS 6= ∅ for each S ⊂ H1 by assumption. Then because al ∈ H1, it
follows that A{al} 6= ∅. Let â0 ∈ A{al}, and note that â0 /∈ {a0, a1, . . . , al} as xajPaj(al, p)
for all 0 ≤ j < l by the above conclusion. Consider next the following two cases:

(I) Suppose that µâ0 /∈ H1. Then, again, â0 belongs to some trading cycle Ĝ =
(ât, ât−1, . . . , â1, â0) from µ to µ′. Again â0 ∈ C and µâ0 ∈ H2, and there exists
0 < k ≤ t such that µâk ∈ H1 and both µâj ∈ H2 and x′âj 6= âj for all 0 < j < k.

Again xâk = âk and âkIâk(µ′âk , p). Because G and Ĝ are trading cycles, we have
âj /∈ {a0, a1, . . . , al} for all 0 ≤ j ≤ k. Now if (a) âk = µ′a0 or (b) for some 0 ≤ j < k,
xâjIj(âk, p) or (c) for some 0 ≤ j ≤ l and 0 ≤ j′ ≤ k, we have xajIaj(µâj , p), then,
in all cases (a), (b) and (c), we can construct similarly as above from x an equilib-
rium state x′′ where trade is larger at x′′ compared to x, which is a contradiction.
Thus, suppose that (a), (b) and (c) are not true, in particular, xajPaj(âk, p) for all
0 ≤ j ≤ l, and xâjPâj(âk, p) for all 0 ≤ j < k. By âk ∈ H1 and the above assumption
that AS 6= ∅ for each S ⊂ H1, it then follows that A{âk} 6= ∅. Let a′0 ∈ A{âk}. Now
we have a′0 /∈ {â0, â1, . . . , âk} ∪ {a0, a1, . . . , al}.

(II) Suppose that µâ0 ∈ H1. Now, if xajIaj(µâ0 , p) for some 0 ≤ j ≤ l, it is possible to
construct, in a similar fashion as in the above, an equilibrium state x′′ where trade
is larger at x′′ compared to x, which is a contradiction. Thus, xajPaj(µâ0 , p) for all
0 ≤ j ≤ l. By µâ0 ∈ H1 and the above assumption that AS 6= ∅ for each S ⊂ H1, it
then follows that A{µâ0} 6= ∅. Let a′0 ∈ A{µâ0}. Since xajPaj(µâ0 , p) for all 0 ≤ j ≤ l,

we have a′0 /∈ {â0, a0, a1, . . . , al}.

We next observe that if µa′0 /∈ H1, then as in (I) we can find another sequence a′0, a
′
1, . . . , a

′
o

where xa′o = ao ∈ H1, µa′j ∈ H2, µa′j = µa′j−1
, x′a′j

6= a′j for 0 < j < o, and µ′a′o = µa′o−1
;

and otherwise as in (II) µa′0 ∈ H1. Then either we can use similar arguments as above to
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construct another equilibrium state x′′ from x where trade is larger at x′′ compared to x or
otherwise we continue to construct another (disjoint) sequence as in (I) or (II) (where in
(II) the sequence consists of one agent) which eventually leads to a contradiction because in
any such sequence there is a new agent a ∈ A, who does not belong to any of the previously
identified sequences, with µa ∈ H1. The contradiction then follows as H1 is finite.

Theorem 2. Let f be a minimum price mechanism with domain R̃. Then f is group
non-manipulable.

Proof. To obtain a contradiction, suppose that some nonempty group C ⊆ A can ma-
nipulate the minimum price mechanism f at a profile R ∈ R̃ by reporting preferences
R′ = (R′C , R−C) ∈ R̃. More precisely, let x = (µ, ν, p) ∈ ER and x′ = (µ′, ν ′, p′) ∈ ER′ be
two equilibrium states such that x′aPaxa for all a ∈ C. As in the proof of Lemma 4, we
will, without loss of generality, assume that C = {a ∈ A : x′aPaxa}. Then µ′a ∈ H1 for all
a ∈ C by Lemma 1(i) as x′aPaxa for all a ∈ C and C 6= ∅. Hence, H1 6= ∅ and ph > p′h ≥ p

h
for all h ∈ H1. Let now:

AS = {a ∈ A : µa /∈ S and xaIa(h, p) for some h ∈ S}.

From Lemma 4, it follows that there exists a nonempty set S ⊆ H1 such that AS = ∅. But
then it is possible to decrease ph for all h ∈ S (since ph > p′h ≥ p

h
for all h ∈ S) and obtain a

new equilibrium state by the Perturbation Lemma in Alkan et al. (1991) which contradicts
that state x is selected by f at profile R. Hence, f is group non-manipulable.

Proposition 3. A minimum price mechanism f is non-manipulable on the domain R if
and only if 1 ≤ |A| ≤ 3.

Proof. We first prove that a minimum price mechanism is non-manipulable if 1 ≤ |A| ≤ 3.
We will, however, only prove the result for |A| = 3 as the proof for 1 ≤ |A| ≤ 2 is a
special case of the proof for |A| = 3. To obtain a contradiction, suppose that |A| = 3 and
that some nonempty group C ⊆ A can manipulate a minimum price mechanism f at a
profile R ∈ R̃ by reporting preferences R′ = (R′C , R−C) ∈ R̃. Let also x = (µ, ν, p) and
x′ = (µ′, ν ′, p′) represent the selections of f at profiles R and R′, respectively. As in the
proof of Lemma 4, we will, without loss of generality, assume that C = {a ∈ A : x′aPaxa}.
Note also that µ′a ∈ H1 for all a ∈ C by Lemma 1(i) as x′aPaxa for all a ∈ C.

We need to demonstrate that |H1| = 3. The conclusion then follows by the Perturbation
Lemma in Alkan et al. (1991) in the same fashion as in the proof of Theorem 2. Note first
that |H1| ≥ 1, by the above observation, as C 6= ∅. To obtain a contradiction to |H1| = 3,
suppose that |H1| = 2. This also means that there is an agent a ∈ A with µ′a /∈ H1.
Suppose next, without loss of generality, that a = 3, and note that 3 /∈ C. If µ3 = µ′3, then
it must be the case that x3P3(µj, p) for j = 1, 2, otherwise x′ cannot be an equilibrium
since µj ∈ H1 for j = 1, 2. But in this case, is possible to decrease the prices of houses
µ1 ∈ H1 and µ2 ∈ H1 at state x, by the Perturbation Lemma in Alkan et al. (1991), and
obtain a new equilibrium which contradicts that p is a minimum equilibrium price vector
at profile R. Hence, µ3 6= µ′3, and consequently, µ3 ∈ H1 as µ′3 /∈ H1 and |H2| = 2. But
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this also means that µ3 = 3, µ′3 ∈ H2, and x3I3(µ′3, p), otherwise, state x′ cannot be an
equilibrium as µ3 ∈ H1.

Suppose next, without loss of generality, that µ′3 = 2, i.e., that 1, 3 ∈ H1. Hence,
x3I3(2, p), by the above conclusion, and x3P3(1, p) otherwise x′ cannot be an equilibrium
at profile R as 1 ∈ H1. But then it must be the case that xjIj(1, p1) for the agent j 6= 3
with µj 6= 1 otherwise it is possible to decrease p1 ∈ H1 and obtain a new equilibrium
which contradicts that p is a minimum equilibrium price vector at profile R. By identical
arguments, it must also be the case that xkIk(3, p3) some agent k 6= 3. If µk = 2, agents
k and 3 can swap houses at allocation x and a new equilibrium is obtained, but it is
also possible to decrease the prices of all houses but 2 and obtain a new equilibrium, by
the Perturbation Lemma in Alkan et al. (1991), which contradicts that p is a minimum
equilibrium price vector at profile R. If µk = 1, a new equilibrium can be obtained at
prices p and for µ′′j = 1, µ′′k = 3, and µ′′3 = 2, and it is again possible to decrease the prices
of all houses but 2 to obtain a new equilibrium at profile R. Hence, in both cases it is
possible to obtain a contradiction to |A| = 2. Hence, |H1| = 3 as desired.

We next prove that a minimum price mechanism f is non-manipulable on the domainR
only if 1 ≤ |A| ≤ 3, i.e., that f can be manipulated by some agent, at some profile R ∈ R,
whenever |A| > 3. The proof is based on Example 2, and by using the same arguments as
in the proof of Proposition 2, it is sufficient to demonstrate the result for |A| = 3.

Consider now the state x̂ = (µ̂, ν̂, p̂) ∈ ER and suppose that p̂ is a minimum equilibrium
price vector. We first demonstrate that p̂ = p′ or p̂ = p′′. From Example 2, it is clear that
either p̂1 < 1 or p̂2 < 1 as p̂ is a minimum equilibrium price vector. Suppose that p̂1 < 1.
Then µ̂3 = 1 by envy-freeness as x̂ is an equilibrium. Consequently, µ̂1 = 3, p̂3 = 0 by
individual rationality for agent 1, and it then follows that µ̂2 = 2 by individual rationality
for agent 2. But then it must be the case that µ̂4 = 4 and p̂2 ≥ 1 because otherwise agent
4 will envy agent 2 at state x̂. Hence, p̂ ≥ p′′. But then p̂ = p′′, by definition, as p̂ is a
minimum equilibrium price vector by assumption. Analogous arguments can be used to
show that p̂ = p′ if p̂2 < 1.

Let now f be minimum price mechanism on domain R. Then f chooses either p′ or p′′.
If f chooses p′, then agent 3’s utility is equal to v34 − p′4 = 1. Let R′ denote the profile of
quasi-linear preferences where the entry v32 in the matrix V from Example 2 is replaced
by v′32 = 2. Obviously, x′ /∈ ER′ because (2, p′2)P ′3x

′
3. On the other hand, it is easy to

check that x′′ ∈ ER′ . Also, p′′ is the unique minimum equilibrium price vector at profile R′.
To see this, suppose that x̂ = (µ̂, ν̂, p̂) ∈ ER′ and that p̂ 6= p′′ is a minimum equilibrium
price vector at profile R′. Then p̂2 < 1, which implies that µ̂4 = 2 and µ̂3 = 1. But then
individual rationality cannot be satisfied for both agents 1 and 2 at state x′′. Thus, p′′

must be chosen by f for profile R′. Then, by individual rationality for agents 1 and 2, it
follows that agent 3 must receive house 1. Because R′ = (R′3, R−3) and agent 3’s utility
from (1, p′′) under R3 is equal to v31 − p′′1 = 2 > 1, agent 3 can profitably manipulate f at
R.

If f chooses p′′, it can be shown, by identical arguments as in the above, that agent 4
can manipulate the rule by replacing the entry v41 in the matrix V from Example 2 is by
v′41 = 2.
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Proposition 6. For any given profile R ∈ R, a Dutch price sequence (pt)Tt=1 contains a
finite number of price vectors, i.e., T <∞.

Proof. To obtain a contradiction, suppose that (pt)Tt=1 is a Dutch price sequence with T =
∞. Let also (xt)Tt=1 be a supporting sequence of equilibrium states, where xt = (µt, νt, pt).
Because there is only a finite number of assignments, there is an infinite subsequence (tj)

∞
j=1

of steps such that for some finite number j′ and some assignments µ′ and ν ′, it holds that
µtj = µ′ and νtj = ν ′ for all j ≥ j′. Let also pt → pe as t→∞. We will demonstrate that
pe ∈ Πν′ , which contradicts that T =∞ since νtj′ = ν ′.

Consider now the states xtj = (µtj , νtj , ptj) = (µ′, ν ′, ptj) for j ≥ j′. Because xtj ∈ E ,
the following holds for all a ∈ A:

xtja Raa and xtja Ra(h, p
tj) for all j ≥ j′ and for all h ∈ H.

Moreover, by continuity, the following holds for all a ∈ A:

(µ′, ν ′, pe)Raa and (µ′, ν ′, pe)Ra(h, p
e) for all h ∈ H.

But then pe ∈ Πν′ .

Theorem 3. For any given profile R ∈ R̃, a Dutch price sequence (pt)Tt=1 is unique and
pT is the unique minimum equilibrium price vector in ΠR.

Proof. We first prove that a Dutch price sequence is unique. To do this, consider the profile
R ∈ R̃, and let x′ = (µ′, ν ′, p) ∈ ER and x′′ = (µ′′, ν ′′, p) ∈ ER be two equilibrium states
with a common price vector p (recall from Theorem 1 that the minimum price vector is
unique on the domain R̃). We need to demonstrate that ν ′ = ν ′′ to complete the proof.
To see this, consider the correspondence ξ from the definition of a Dutch price sequence.
If ν ′ = ν ′′, then there is just one state in ξ(p). This also means that, for a given profile
R ∈ R̃, there is just one Dutch price sequence.

Suppose now that ν ′ 6= ν ′′, and consider a trading cycle G = (a1, . . . , aq) from µ′ to µ′′

such that ν ′a1 = 0. Such a trading cycle exists since ν ′ 6= ν ′′ by assumption. For each agent
aj in the trading cycle G, let rj = (v′aj , v

′′
aj

). Then rj is equal to (0, 1), (1, 1) or (0, 1), but
not (0, 0) as agent aj is included in G. Moreover, r1 = (0, 1) by assumption. Consider then
the sequences (rl, rl+1, . . . , rq′) for 1 ≤ l ≤ q′ ≤ q. Assume first that rj 6= (1, 0) for all j,
i.e., that rj = (0, 1) or rj = (1, 1) for all j. This means that trade is not maximal at the
state x′. Note also that x′ajIajx

′′
aj

for all j since prices are the same at the two states x′

and x′′. Hence, there must be a q′ such that rq′ = (1, 0). But since r1 = (0, 1), there must
also be an l such that rl = (0, 1) and rj = (1, 1) for l < j < q′. In that case, houses µ′al
and µ′′aq′ are connected by indifference, contradicting our assumption that R ∈ R̃. Hence,

ν ′ = ν ′′ must be the case, and, consequently, a Dutch price sequence is unique.
We next prove that pT is the unique minimum equilibrium price vector p∗ in ΠR. From

the first part of this theorem and Proposition 6 we know that a Dutch price sequence
is unique and finite. Suppose that it converges to the price vector pe, but that p∗ ≤ pe

and p∗ 6= pe. Let xe = (µe, νe, pe) and x∗ = (µ∗, ν∗, p∗) be two corresponding equilibrium
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states in ER. Then H1 6= ∅, so A(S) = ∅ for some S ⊂ H1 by Lemma 4. Note also that
S 6= ∅ and pe ∈ Πνe . Consider now the set of houses S and the set of agents Â that are
assigned houses in S, i.e., Â = {a ∈ A : µa ∈ S}. Let also A0 = {A ∈ Â : νe = 0} and
A1 = {A ∈ Â : νe = 1}.

Since p∗ ≤ pe and p∗ 6= pe, for each ε > 0, there is a state xε = (µε, νε, pε) ∈ ER such
that pm ≤ pε ≤ pe, pm 6= pε 6= pe. Moreover, since A(S) = ∅, xεa = xea can be chosen for
a ∈ A \ Â for “sufficiently small” ε. Since there is only a finite number of assignments ν,
there is an infinite and increasing sequence (εj)

∞
j=1 such that νεj = ν∗ is constant for all j,

and εj → 0 as j → ∞. Hence, xεj = (µεj , ν∗, pεj). But then x∗ = (µ∗, ν∗, pe) ∈ ξ(xT−1)
for some µ∗ by continuity of preferences. But then there is a p ∈ Πν∗ such that p ≤ pe,
p 6= pe. This means that the Dutch price sequence cannot stop at T , which contradicts our
assumptions. Hence, pe = p∗ must be the case.

Proposition 7 For any profile R ∈ R, the minimum price mechanism generates a weakly
higher revenue to the public authority compared to the current U.K. system.

Proof. The current U.K. system can, for any profile R ∈ R, be represented by a state
x = (µ, ν, p) where ph =∞ for all h ∈ H as the interpretation of this situation, due to the
assumption that each house in H is bounded desirable, is that each tenant a ∈ A is given
a take-it-or-leave-it offer either to buy house h = a at price ph = p

h
, or to continue renting

house h = a.
Suppose now that the state x′ = (µ′, ν ′, p′) is selected by the minimum price mechanism

at profile R ∈ R. Note first that if νa = 1, then ν ′a = 1. This follows trivially because
if νa = 1 but ν ′a = 0, then (a, p

a
)Raa and aPa(a, pa), respectively, which is a logical

contradiction. This also means that all agents a ∈ A that buy a house at state x also buy
a house at state x′. Furthermore, all agents that buy a house at state x belong to one of
the following two sets:

S = {a ∈ A : µa = µ′a and νa = 1},
T = {a ∈ A : µa 6= µ′a and νa = 1}.

It is clear that the revenue for the public authority from the sales to the agents in S is
identical at states x′ and x since µa = a in this case. However, because each agent in T
must be involved in a trading cycle and p′ ≥ p, it is clear that the revenue for the public
authority from the sales to the agents in T is weakly higher at state x′ than at state x.
This also proves the statement. (Note also that there may be agents a ∈ A with νa = 0
but ν ′a = 1. This will further increase the revenue for the public authority by switching
from state x to state x′.)
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