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How to Efficiently Allocate Houses under Price Controls?1

Tommy Andersson,2 Zaifu Yang,3 and Dongmo Zhang4

Abstract: Price controls are used in many regulated markets and well recognized

as the cause of market inefficiency. This paper examines a practical housing market

in the presence of price controls and provides a solution to the problem of how

houses should be efficiently allocated among agents through a system of prices. We

demonstrate that the dynamic auction by Talman and Yang (2008) always finds a core

allocation in finitely many iterations, thus resulting in a Pareto efficient outcome.

Keywords: Ascending auction, assignment market, price control, Pareto efficiency,

core.

JEL classification: C71, D44, D47.

1 Introduction

Price control refers to a situation where a local or central government authority restricts the

prices of goods at specific markets. The intention behind this type of regulation is to make

the goods affordable for the consumers, or to guarantee a minimum income for workers, or to

provide certain necessary goods. A textbook example of such regulation is rent control which is

a common practice in many countries including India, Luxembourg, Sweden, United Kingdom,

and United States among others. In the state of New York, for example, the local government

determines a maximal rent that a landlord can charge a tenant, and the landlords are periodically

allowed to apply for increases within this maximal rent. The exact procedure for determining

and updating the maximal rents differs from one municipality to another within the state but
1Andersson gratefully acknowledges financial support from Ragnar Söderbergs Stiftelse and from the University

of York for his research visit. Yang wishes to thank the University of Western Sydney and ARC (DPDP0988750)

for the hospitality and financial support. We are grateful to Jean-Jacques Herings, Gerard van der Laan and Dolf

Talman for their helpful discussions and also pointing out a gap in the proof of an earlier version.
2Department of Economics, Lund University, Sweden, tommy.andersson@nek.lu.se
3Department of Economics and Related Studies, University of York, York, UK, zaifu.yang@york.ac.uk
4Intelligent Systems Laboratory, University of Western Sydney, Australia, d.zhang@uws.edu.au
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in the city of New York, for example, the maximum rents should be calculated based upon the

“Maximum Base Rent System” (MBRS) according to the “New York City Local Law 30 of

2012”. MBRS is updated every two years to reflect changes in real estate taxes, operating and

maintenance expenses, water and sewer charges, etc.5

In a classical paper, Friedman and Stigler (1946) observed that price controls may lead to an

inefficient allocation of goods in the sense that the goods are not necessarily allocated to those

that value them the most. More recently, similar observations and conclusions have been reached

by Bulow and Klemperer (2012), Gleaser and Luttmer (2003), and Luttmer (2007). For instance,

Bulow and Klemperer (2012) analyze several basic cases of how much consumer surplus can

be lost due to price controls. However, none of these papers offer a solution to the problem of

how the goods should be efficiently allocated among the agents in the presence of price controls.

The main innovation of this paper is to examine a dynamic procedure that efficiently allocates a

number of indivisible items like houses or apartments, to potential agents such as tenants, under

price control. To our best knowledge, the current study is the first of its kind to offer a procedure

that always guarantees to find a Pareto efficient outcome, although there are numerous studies on

economic models under price control.6

The point of departure for the analysis is a practical housing market where several houses

are going to be rented to finitely many potential tenants. Each tenant has a valuation on every

house and is interested in renting at most one house. The landlord of each house has a reservation

rent for her house and is not willing to let the house to any tenant if the rent falls short of this

predetermined reservation rent. A local or central government authority imposes a ceiling rent

on every house. These ceilings may be interpreted as a legislated rent control. The basic problem

to be studied in this paper is how to efficiently allocate the houses among the tenants through a

system of rents that satisfy both the reservation and ceiling rent constraints.

The housing market under price control we address in this paper reduces to the celebrated

5There are pros and cons of the price controls among economists and politicians. But we are not concerned

with whether there should be price controls or not. Rather we accept them as an inescapable political and economic

reality, because price controls including, e.g., laws on minimum wages, do exist in many developed and developing

countries. As the title indicates, our aim is to make the best use of scarce resources in the presence of price controls.
6In the literature, price control, rent control, price rigidities, or regulated prices are often interchangeably used.

Fixed prices are the extreme case of price rigidities.
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assignment market that was first investigated by Koopmans and Beckmann (1957) and Shap-

ley and Shubik (1971), when prices are totally flexible and no price controls are imposed. It is

well-known that the assignment market has at least one Walrasian equilibrium (Koopmans and

Beckmann, 1957) and that the set of Walrasian equilibrium price vectors forms a complete lattice

(Shapley and Shubik, 1971). Due to price controls, Walrasian equilibria typically fail to exist.

The traditional solution to such problems would be to consider weaker equilibrium concepts

based on rationing schemes that curb consumers’ demand or seller’s supply on certain goods.7

Even if rationing will help prices to facilitate the allocation of goods among the agents, it is un-

fortunately known that the use of a rationing scheme may generate Pareto inefficient solutions.8

While the literature on price control has focused almost entirely on economic models with

divisible goods, Talman and Yang (2008) have recently studied the assignment market under

price control where items for sale are inherently indivisible, such as houses or apartments. Mod-

ifying the processes of Crawford and Knoer (1981), and Demange, Gale and Sotomayor (1986),

Talman and Yang (2008) propose an ascending auction with rationing (called the Talman-Yang

auction, henceforth) that always generates a constrained equilibrium.9 The constrained equilib-

rium consists of an assignment of items, a price vector and a rationing scheme. In this article,

we adopt a more natural solution concept of a core allocation instead of constrained equilibrium.

There are obvious advantages of this solution over the constrained equilibrium. Firstly, every

core allocation is Pareto efficient and stable against any coalition deviation. Secondly, the core

allocation is conceptually simpler, more intuitive and more straightforward than the constrained

equilibrium as it consists of only an assignment of items and a supporting price vector for the

assignment and does not use any rationing scheme. Thirdly, the core allocation has been widely

used in general exchange economies and game theoretic models (see, e.g., Scarf, 1967, 1973).

The main result of the current paper demonstrates that the Talman-Yang auction always finds a

7See Drèze (1975), Cox (1980), van der Laan (1980), Kurz (1982), Azariadis and Stiglitz (1983), Dehez and

Drèze (1984), Weddepohl (1987), and Herings, Talman and Yang (1996) among many others.
8See, e.g., Böhm and Müller (1977), Herings and Konovalov (2009).
9Andersson and Svensson (2014) examined a similar problem and proposed a different constrained equilibrium

(called a rationing price equilibrium) which depends on an exogenously given priority structure. Given this priority

structure, they define an individual rational, equilibrium selecting and group non-manipulable allocation rule on a

reduced preference domain that contains almost all preference profiles.
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core allocation in finitely many iterations, thus resulting in a Pareto efficient outcome.

The rest of the paper proceeds as follows. Section 2 sets up the model. Section 3 presents the

major results. Section 4 concludes.

2 The Model

A seller wishes to sell n heterogenous and indivisible items, denoted by 1, . . . , n, to m potential

bidders indexed by 1, . . . ,m.10 We use the set N = {0, 1, . . . , n} to represent all items including

a dummy item 0 and the set M = {1, . . . ,m} to stand for all bidders. The dummy item 0 has

no value but does no harm and can be assigned to any number of bidders. Every bidder i ∈ M

has a valuation V i(j) ∈ Z+ in monetary units on each item j ∈ N with V i(0) = 0. The seller

has a reservation price p
j
∈ Z+ for each item j ∈ N below which the item will not be sold.

In addition, a central planner, say, the government imposes price controls. That is, each item

j ∈ N has a ceiling price pj ∈ Z+ above which the item is not permitted to sell. By convention

0 ≤ p
j
< pj for each j ∈ N and p

0
= p0 = 0. A price vector p ∈ IRN

+ indicates a price for every

item, and the set of admissible prices is given by

P = {p ∈ IRN
+ | p0 = 0, p

j
≤ pj ≤ pj, j = 1, . . . , n }.

When there are no price controls, i.e., when pj = +∞ for every j = 1, . . . , n, the model reduces

to the classical assignment market model as studied, e.g., by Koopmans and Beckmann (1957)

and Shapley and Shubik (1971).

A feasible assignment π assigns every bidder i ∈M an item π(i) such that no item inN \{0}

is assigned to more than one bidder. Note that a feasible assignment may assign the dummy item

to several bidders and a real item j 6= 0 may not be assigned to any bidder at all. An item j 6= 0

is unassigned at π if there is no bidder i such that π(i) = j. Let U(π) denote the set of all

unassigned items at π. A feasible allocation (π, p) consists of a feasible assignment π and an

admissible price vector p such that pj = p
j

for every unassigned item j ∈ U(π).

10Note that the results in this paper are independent of the assumption that there is one seller. All results would

continue to hold even if there are multiple sellers, because each buyer demands only one item. We will also, without

loss of generality, use seller, bidder, item and price, instead of landlord, tenant, house, and rent, respectively, in the

rest of the paper.
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The demand set of bidder i ∈M at a price vector p ∈ IRN
+ is given by

Di(p) = {j ∈M | V i(j)− pj ≥ V i(k)− pk for every k ∈ N}.

A Walrasian equilibrium consists of a feasible assignment π and a price vector p ∈ IRN
+ such that

π(i) ∈ Di(p) for all i ∈M and pj = p
j

for every unassigned item j ∈ U(π).

It is well-known from Koopmans and Beckmann (1957) and Shapley and Shubik (1971) that

a Walrasian equilibrium exists in the economy when there are no price controls. In the case of

price control, a Walrasian equilibrium may not exist since the equilibrium price vector may not

be admissible. This can be easily seen from the following example. Suppose that a seller wishes

to sell one item, called item 1, to two bidders, called 1 and 2. The seller’s reservation price is

zero and the ceiling price is p1 = 3. Bidder 1’s valuation of item 1 is 5 and bidder 2’s valuation

of item 1 is 7. It is clear that at any admissible price, item 1 is in excess demand as both bidders

demand it. Therefore it is impossible to find a Walrasian equilibrium.

To deal with price rigidities which fail the existence of a Walrasian equilibrium, we adopt

the notion of core to the current model. This concept is more general than that of Walrasian

equilibrium and is a widely used solution for general exchange economies and non-transferable

utility games (see, e.g., Scarf, 1967, 1973).

Definition 2.1 A feasible allocation (π, p) is a core allocation if there do not exist a coalition

S of bidders besides the seller and another feasible allocation (ρ, q) such that ρ(i) = 0 for every

i ∈M \ S, and V i(ρ(i))− qρ(i) > V i(π(i))− pπ(i) for every i ∈ S, and
∑

h∈N qh >
∑

h∈N ph.

Clearly, every core allocation is Pareto efficient and robust against any possible coalition de-

viation. Such allocation is free of any rationing scheme. In the next section we will give a

constructive proof of the existence of core allocation in the model via a dynamic auction.

3 The Talman-Yang Dynamic Auction

Talman and Yang’s auction works roughly as follows: The auctioneer starts the auction at the

reservation prices of the items for sale. Then the bidders respond with their demand sets. The

auctioneer accordingly eliminates overdemanded items by increasing their prices or by a lottery
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to determine who should be assigned the item when its price has reached its ceiling price. The

auction stops when there are no overdemanded items at which a core allocation will be shown

to exist. To give a more precise description of the auction, some basic concepts must first be

introduced.

For a set of real items T ⊆ N \ {0}, and a price vector p ∈ IRN
+ , define the lower inverse

demand set of T at p by

D−T (p) = {i ∈M | D
i(p) ⊆ T},

i.e., this is the set of bidders who demand only items in T at p. We also define the upper inverse

demand of T at p by

D+
T (p) = {i ∈M | D

i(p) ∩ T 6= ∅},

i.e., this is the set of bidders that demand at least one of the items in T at p. Clearly, the lower

inverse demand set is a subset of the upper inverse demand set at given prices.

A set of real itemsO ⊆ N \{0} is overdemanded at a price vector p ∈ IRN
+ if |D−O(p)| > |O|.

So for an overdemanded set O, the number of bidders who demand only items in O is strictly

greater than the number of items in O. An overdemanded set O is said to be minimal if no strict

subset of O is an overdemanded set. A set of real items T ⊆ N \ {0} is underdemanded at price

vector p ∈ IRN
+ if T ⊆ {j ∈ N \ {0} | pj > p

j
} and |D+

T (p)| < |T |. In other words, a set of real

items T ⊆ S is underdemanded at p if the price of every item j in T is strictly greater than its

reservation price p
j

and the number of bidders who demand at least one item in T is strictly less

than the number of items in T .

Now we are ready to describe the Talman-Yang dynamic auction under price rigidities. Note

that in the auction process, since the set of bidders and the set of items are weakly shrinking, the

demand set of each bidder and the overdemanded sets need to be adapted accordingly.

The Talman-Yang Auction

Step 1: The auctioneer announces the set of items N0 = {0, 1, . . . , n} for sale, the reser-

vation price vector p and the ceiling price vector p. The bidders, denoted by M0 =

{1, . . . ,m}, come to bid. Set the iteration counter to t := 0 and let pt := p. Go to

Step 2.
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Step 2: The auctioneer asks each bidders i ∈M t to report their demand sets Di(pt) for the

items in the set N t and checks whether there is any overdemanded set of items in N t at

pt. If there is no overdemanded set of items, the auction stops. Otherwise, there is at least

one overdemanded set in N t. The auctioneer first chooses a minimal overdemanded set

O ⊆ N t of items and next checks whether the price of any item in the set O has reached

its ceiling price. Let O := {j ∈ O | ptj = pj}. If O is empty, the auctioneer increases the

price of each item in O by one unit and keeps the prices of all other items unchanged. Set

t := t+ 1 and return to Step 2. If O is nonempty, go to Step 3.

Step 3: The auctioneer picks an item at random from O and asks all bidders i ∈ M t with

Di(pt) ⊆ O who demand the item to draw lots for the right to buy the item. Then the

(unique) winning bidder i∗ gets the item j∗ by paying its current price and exits from the

auction. Set M t+1 = M t \ {i∗} and N t+1 = N t \ {j∗}. If M t+1 = ∅ or N t+1 = ∅, the

auction stops. Otherwise, set t := t+ 1 and return to Step 2.

We remark that in the special case of this model when pj = +∞ for all j as in the classical

assignment market of Koopmans and Beckmann (1957) and Shapley and Shubik (1971), no

bidder will demand any item with a price equal to the upper price limit as valuations are finite

and because the dummy item 0 can be assigned to any number of bidders, i.e., O = ∅ at any

iteration. In this special case, the Talman-Yang auction is identical to the auction mechanism in

Demange, Gale and Sotomayor (1986) and the outcome will always be a Walrasian equilibrium

with the unique minimal equilibrium price vector.

Before stating the main result, we illustrate by means of an example how the auction actually

operates, and after the example we provide some intuition behind the fact that the outcome of the

auction is a core allocation.

Example 1: Suppose that there are five bidders and four real items, i.e., M0 = {1, 2, 3, 4, 5}

and N0 = {0, 1, 2, 3, 4}. The reservation and ceiling price vectors are given by p = (0, 5, 4, 1, 5)

and p = (0, 6, 6, 4, 7). Bidders’ values of the items are given in Table 1. The auction starts at

the price vector p0 = (0, 5, 4, 1, 5). The reported demand sets are given by: D1(p0) = {3},

D2(p0) = {3}, D3(p0) = {3}, D4(p0) = {3} and D5(p0) = {3}. The set O = {3} is a

minimal overdemanded set and the auctioneer adjusts p0 to p1 = (0, 5, 4, 2, 5). The demand sets
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and price vectors and other relevant data generated by the auction are illustrated in Table 2. In

iteration 3, the price of item 3 has reached its upper bound, i.e., p33 = 4. The auctioneer assigns

randomly item 3 to the bidders that demands it, i.e., bidders 1, 2, 3, 4 and 5. Say, that bidder

1 is assigned the item in the lottery and, therefore, pays 4 dollars and leaves the auction. Then,

p4 = (p40, p
4
1, p

4
2, p

4
4) = (0, 5, 4, 5), M4 = {2, 3, 4, 5} and N4 = {0, 1, 2, 4}. Proceeding in this

way, the auction terminates in iteration 6 when there is no overdemanded set of items. In the

final outcome, bidder 1 gets item 3 and pays 4; bidder 2 gets item 2 and pays 5; bidder 3 gets

item 0 and pays nothing; bidder 4 gets item 1 and pays 6; bidder 5 gets item 4 and pays 7. Hence,

auction ends up with the allocation (π∗, p∗) where p∗ = (0, 6, 5, 4, 7) and π∗ = (3, 2, 0, 1, 4). �

Table 1: Bidders’ values on each item.

Items 0 1 2 3 4

Bidder 1 0 4 3 10 7

Bidder 2 0 7 6 20 3

Bidder 3 0 5 5 40 7

Bidder 4 0 9 4 40 2

Bidder 5 0 6 2 40 10

We now provide a simple argument showing why the outcome from the above example, (π∗, p∗),

is a core allocation. At (π∗, p∗), the seller’s revenue is 22, bidder 1’s profit (in terms of monetary

units) is 6, bidder 2’s profit is 1, bidder 3’s profit is 0, bidder 4’s profit is 3, and bidder 5’s profit is

3. Suppose to the contrary that (π∗, p∗) is not a core allocation. Then there must exist a blocking

coalition consisting of the seller and some bidders who can make themselves better off. In order

for the seller to be better off, her revenue must be greater than 22. Notice that all prices in p∗

except p∗2 have reached the ceiling prices. So the seller has to sell her items at a new price vector

q = (q0, q1, q2, q3, q4) that must satisfy q0 = 0, q1 = p∗1 = 6, p∗2 = 5 < q2 ≤ 6, q3 = p∗3 = 4, and

q4 = p∗4 = 7. It means that all items must be sold and the possible blocking coalition must have

at least 4 bidders. Observe that item 2 can be sold only to bidder 2. But then bidder 2’s profit

will be less than what he gets from (π∗, p∗). This shows that (π∗, p∗) cannot be blocked by any

coalition and thus must be a core allocation.
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Table 2: The data generated by the auction for Example 1.

t pt N t M t O D1(pt) D2(pt) D3(pt) D4(pt) D5(pt)

0 (0, 5, 4, 1, 5) N M {3} {3} {3} {3} {3} {3}

1 (0, 5, 4, 2, 5) N M {3} {3} {3} {3} {3} {3}

2 (0, 5, 4, 3, 5) N M {3} {3} {3} {3} {3} {3}

3 (0, 5, 4, 4, 5) N M {3} {3} {3} {3} {3} {3}

4 (0, 5, 4, 5) N \ {3} M \ {1} {4} – {1, 2} {4} {1} {4}

5 (0, 5, 4, 6) N \ {3} M \ {1} {1, 2, 4} – {1, 2} {2, 4} {1} {4}

6 (0, 6, 5, 7) N \ {3} M \ {1} ∅ – {1, 2} {0, 2, 4} {1} {4}

To formally prove that the outcome of the Talman-Yang auction is a core allocation, we need

to invoke two previous results from the literature. The first lemma is due to van der Laan and

Yang (2008, Lemma 3.2) and states that a set of items O is minimal overdemanded at prices p if

it is overdemanded and if the number of items in each strict subset T of O is strictly smaller than

the number of bidders that demand some item in T and in addition only demand items in O.

Lemma 3.1 Let O be a minimal overdemanded set of items at a price vector p. Then, for

every nonempty subset T of O, we have

|D+
T (p) ∩D

−
O(p)| > |T |.

The second lemma is due to Mishra and Talman (2010, Theorem 1) and gives a necessary and

sufficient condition for the existence of a Walrasian equilibrium in the assignment market.

Lemma 3.2 There is a Walrasian equilibrium at p ∈ IRN
+ if and only if there is neither

overdemanded set of items nor underdemanded set of items at p.

The next lemma shows that the Talman-Yang auction does not generate any underdemanded set

of items at any iteration.

Lemma 3.3 There is no underdemanded set of items in each iteration of the Talman-Yang

auction.
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Proof: Observe that there is no underdemanded set of items at p0 = p ∈ IRN
+ as the set {j ∈

N \ {0} | pj > p
j
} is empty. Suppose next that there is no underdemanded set of items at pt for

t > 0. Without loss of generality, we may assume that ptj > p
j

for all j ∈ N \ {0}. We will

prove that there is no underdemanded set of items at pt+1. Let O be the minimal overdemanded

set of items at pt chosen by the auctioneer. We need to consider the following two cases:

Case 1. Suppose that no item j in the set O has reached its ceiling price pj at iteration t.

Then, pt+1
k = ptk + 1 for every k ∈ O and pt+1

k = ptk for every k ∈ N t \ O by the rules of the

auction. Because there is no underdemanded set of items at pt, we have |D+
T (p

t)| ≥ |T | for any

set T of real items in N t. For any T ⊆ O, by Lemma 3.1 the number of bidders in the lower

inverse demand set D−O(p
t) that demand at least one item of T at pt is at least one more than the

number of items in T . Since the valuations are integers and the increment for items in O is one,

the number of bidders that demand at least one item of T at pt+1 will be the same as the number

of bidders that demanded at least one of T at pt. In all other cases, for any T ⊆ N t \ {0}, the

number of bidders that demand at least one item of T at pt+1 will be at least as big as the number

of bidders that demanded at least one item of T at pt. So there is no underdemanded set of items

at pt+1.

Case 2. Suppose that some item j∗ in the set O has reached its ceiling price pj . Then by

the rules of the auction, the winning bidder i∗ ∈ M t with j∗ ∈ Di∗(pt) ⊆ O leaves the market

with the item j∗ by paying ptj∗ = pj∗ . As pt+1
j = ptj for all items in N t+1 by the rules of the

auction, we can draw the following three conclusions. First, for any bidder i ∈ M t+1 with

j∗ /∈ Di(pt), it holds that Di(pt+1) = Di(pt). Second, for any bidder i ∈M t+1 with j∗ ∈ Di(pt)

and |Di(pt)| > 1, it holds that Di(pt+1) = Di(pt) \ {j∗}. Third, for any bidder i ∈ M t+1 with

Di(pt) = {j∗}, it holds thatDi(pt+1) ⊆ N t\{j∗} (note that there can be at most one such bidder

by Lemma 3.1 and the definition of a minimal overdemanded set). As the demand-set of bidder

Di∗(pt) is a subset of O by the rules of the auction, it follows from the above three conclusions

that if a subset T of N t+1 is underdemanded at prices pt+1, then T must be a subset of O \ {j∗}

where i∗ ∈ D+
T (p

t).

Let O′ = O \ {j∗} and consider an arbitrary subset T of O′ at pt+1 where i∗ ∈ D+
T (p

t).

Note that bidder i∗ does not belong to M t+1 by the rules of the action. From the above three

conclusions it is then clear that all bidders except i∗ that demand some item in T at pt also

10



demand some item from the set T at pt+1. Hence

D+
T (p

t+1) ∩D−O′(p
t+1) = (D+

T (p
t) ∩D−O(p

t)) \ {i∗}. (3.1)

Since T is a subset of O at pt, it follows from Lemma 3.1 that

|D+
T (p

t) ∩D−O(p
t)| > |T |. (3.2)

The above observations and the fact that |D+
T (p

t+1)| ≥ |D+
T (p

t+1) ∩D−O′(pt+1)| give

|D+
T (p

t+1)| ≥ |D+
T (p

t+1) ∩D−O′(p
t+1)| (3.3)

= |D+
T (p

t) ∩D−O(p
t)| − 1 (3.4)

> |T | − 1. (3.5)

Hence, |D+
T (p

t+1)| ≥ |T |. But then the set T cannot be underdemanded at pt+1 by definition. 2

The main theorem establishes that the allocation found by the Talman-Yang auction is always in

the core.

Theorem 3.4 The Talman-Yang auction always finds a core allocation in a finite number of

iterations.

Proof: We first show that the auction terminates in finitely many iterations. This follows imme-

diately from the fact that the auction is ascending and the valuation of every bidder on each item

is finite. Let t∗ be the iteration when the auction terminates. Because there is no underdemanded

set of items and no overdemanded set of items when the auction terminates by the construction

of the auction and Lemma 3.3, there is a Walrasian equilibrium (π∗, pt
∗
) for the bidders in M t∗

and items in N t∗ by Lemma 3.2. Together with their winning items and those bidders who paid

ceiling prices before iteration t∗, we obtain a feasible allocation (π, p).

It remains to prove that (π, p) is a core allocation. Suppose to the contrary that (π, p) were

not a core allocation. Then there would exist a coalition S of bidders besides the seller and an

allocation (ρ, q) blocking (π, p). So for the seller, we have∑
j∈N q(j) =

∑
i∈S qρ(i) +

∑
j∈U(ρ) pj

>
∑

i∈M pπ(i) +
∑

j∈U(π) pj

=
∑

j∈N pj.
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It is clear that there exists some j∗ ∈ N such that

qj∗ > pj∗ . (3.6)

This means that some bidder i∗ ∈ S must be assigned item j∗ at ρ, i.e., ρ(i∗) = j∗. On the other

hand, for every bidder i ∈ S, we have

V i(ρ(i))− qρ(i) > V i(π(i))− pπ(i). (3.7)

For bidder i∗, it follows from conditions (3.6) and (3.7) that

V i∗(j∗)− pj∗ > V i∗(j∗)− qj∗

> V i∗(π(i∗))− pπ(i∗).

But then this inequality would imply that at prices p, bidder i∗ should have rejected item π(i∗) in

favor of item j∗, yielding a contradiction. Observe that this argument is valid, because item j∗

cannot be any item that has reached its upper price level pj∗ and has been sold before the auction

stops, for otherwise, then we would have qj∗ = pj∗ = pj∗ which then contradicts inequality (3.6).

This demonstrates that (π, p) is indeed a core allocation. 2

4 Conclusion

The present paper has examined an assignment market under price control and has thereby ex-

tended the classical assignment market as studied by Koopmans and Beckmann (1957), Shapley

and Shubik (1971), Crawford and Knoer (1981), and Demange, Gale and Sotomayor (1986)

among many others. Like the classical assignment market, the current model allows every buyer

to have different valuations for the items and the buyers are interested in acquiring at most one

item, but unlike the classical assignment market, the presence of price rigidities often fails the

existence of a Walrasian equilibrium. As well-recognized in the literature (see Friedman and

Stigler (1946), Dreze (1975), van der Laan (1980), Kurz (1982), and more recently Bulow and

Klemper (2012)), a central issue with price rigidities is that they can always cause the loss of

market efficiency. In this paper, we have demonstrated somehow surprisingly that the dynamic

auction proposed by Talman and Yang (2008) can resolve this issue.
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As shown in Theorem 3.4, the Talman-Yang auction always finds a core allocation in finitely

many iterations, thus yielding a Pareto efficient outcome. This result can be seen as a novel

generalization of the celebrated equilibrium theorem of Koopmans and Beckmann (1957) and

Shapley and Shubik (1971) in the new context with price rigidities. This dynamic auction works

in an intuitive way and is based on a familiar ascending auction format with several new fea-

tures. Starting with the reserve price of each item, in each round the auctioneer asks each bidder

to report his demand at the current prices and increases the price of each item in a minimal

overdemanded set or assigns by a lottery an item to a bidder if the price of the item reaches its

ceiling price and the bidder demands the item. The auction terminates with a core allocation

when there is no overdemanded set. The core allocation consists of an assignment of items and

its supporting price vector. It is interesting to point out that the speed of the auction’s conver-

gence to a core allocation can actually be improved by using the “maximal set in excess demand”

instead of the more familiar notion of minimal overdemanded set. The maximal set in excess de-

mand set is explored in Andersson, Andersson and Talman (2013) and is shown to be unique and

can be found in polynomial time.

The current study leaves us with some open questions. As mentioned earlier, we have focused

on the efficiency problem but ignored the incentive problem. Both problems are important and

difficult. As often is the case, an analysis of the case with price-taking agents is the first important

and necessary step towards the study of the case with strategic agents. As pointed out previously,

in the absence of price rigidities the Talman-Yang auction coincides with the well-known auction

of Demange, Gale and Sotomayor (1986) and thus terminates at the unique minimal Walrasian

equilibrium price vector which will induce every bidder to act truthfully. In the presence of

price rigidities, the Talman-Yang auction will typically end up with a price vector even below the

minimal Walrasian equilibrium price vector of the assignment market without price rigidities and

should therefore intuitively create less incentives for bidders to misrepresent their bids. However,

the issue is far more difficult to analyze as it might appear otherwise, because the price rigidities

and the lottery in the auction will create too many ‘final’ price vectors and thus lose the existence

of a unique “minimal supporting price vector” which is crucial for the incentive compatibility

property for the assignment market model; see Demange and Gale (1985), and Demange, Gale

and Sotomayor (1986). A second open question concerns how to generalize the current core
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existence result to the more general models where each bidder is allowed to demand multiple

items but the price of each item may not be completely flexible. Such models have previously

been studied by Kelso and Crawford (1982), Gul and Stacchetti (2000), Milgrom (2000, 2004),

and Ausubel (2004, 2006) in the absence of price controls.
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