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Abstract

An economy consisting of two different types of consumers and one publicly
owned natural monopoly is under consideration. The preferences of the consumers
are assumed to be linear in money and the demand curves are assumed not to cross.
We also suppose that the net utility from consumption is so high that we do not
have to consider the individual rationality constraints. Given these assumptions,
we completely characterize the set of budget-balanced and Pareto efficient nonlinear
pricing schedules. This complete characterization has not been presented in the
literature before.
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1 Introduction

Selecting an appropriate pricing rule for a natural monopoly is a central problem in public

economics. It is often argued that pricing rules for firms operating under increasing

returns to scale should be nonlinear. One motivation for this is the well known argument

by Willig (1978), which states that nonlinear outlay schedules typically Pareto dominate

uniform pricing rules (see also Seade, 1977). A second argument in favor of nonlinear

schedules is that nonlinear tariffs can, in stark contrast to the marginal cost pricing rule,

be designed to cover costs when there are increasing returns to scale, see e.g. Coase (1946)

or Vohra (1990). These two motivations and the observation that nonlinear pricing has

an important role in many natural monopoly industries, such as the electricity and water

industries, justify theoretical studies of nonlinear outlay schedules. In the literature,

theoretical models of nonlinear pricing have received considerable attention, mostly in

economies with a continuum of consumers, see e.g. Roberts (1979) or Spence (1977). In

this paper, we investigate a finite economy, as in e.g. Brito et al. (1990) and Guesnerie and

Seade (1982). We shall also suppose that the natural monopoly operates under a balanced-

budget (zero-profit) requirement. This type of finite economy has been considered in the

literature by e.g. Laffont (1997) and Sharkey and Sibley (1993). Our main objective is

to characterize the set that consists of all Pareto optimal and budget-balanced nonlinear

outlay schedules in an economy with two differing consumer types.

A nonlinear outlay schedule or, equivalently, a menu is a list of consumption-outlay

pairs. The menu is offered to all consumers in the economy and each consumer chooses a

preferred consumption and pays the associated charge. However, if the social planner (or

the monopolist) cannot tell consumers apart, he must take into account the possibility of

personal arbitrage, i.e. the possibility that a consumer, to whom a specific consumption-

outlay pair is directed, picks a consumption-outlay pair that is intended for some other

consumer. In order to prevent this possibility, the nonlinear schedule must be restricted

by a set of no-envy1 constraints. Other restrictions such as non-negative profit constraints

and individual rationality constraints may restrict the nonlinear outlay schedule further.

The normal procedure to derive Pareto optimal nonlinear outlay schedules is to maxi-

mize a social welfare function subject to a set of constraints (e.g. the no-envy constraints).

This procedure is adopted by e.g. Maskin and Riley (1984), Sharkey and Sibley (1993),

Spence (1977) and Roberts (1979) among others. The approach that we adopt in this

1Note that no-envy can be thought of as incentive compatibility or self-selection, see Varian
(1989,p.615).
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paper is, however, somewhat different from the above procedure. Our starting point is the

fairness criterion. An allocation is said to be fair if it is envy-free and Pareto efficient.2

Varian (1976) argues that since the fairness criterion is an internal measure, which de-

pends specifically on the individual tastes of the agents involved, it is possible to identify

fair allocations without the aid of a welfare function and, therefore, the problem of speci-

fying the form of the social welfare function is eliminated. The main disadvantage of the

fairness approach is that it is, in contrast to the welfare function approach, of no use in

comparing two arbitrary allocations. However, the purpose of this paper is to characterize

the set that consists of all fair and budget-balanced nonlinear outlay schedules, and we

are, therefore, not primarily interested in how the social planner orders different nonlinear

schedules. Hence, the fairness approach fits our purposes better and, as a consequence,

we shall adopt it.

In this paper, we investigate fair and budget-balanced nonlinear outlay schedules in

an economy with two differing consumer types a publicly owned natural monopoly that is

operated by a social planner. We shall assume that the planner knows the characteristics

of the consumers but that he is unable tell them apart. The preferences of the consumers

are assumed to be linear in money and the demand curves are assumed not to cross. More-

over, we shall suppose that the net utility from consumption is so high that we do not

have to consider the individual rationality constraints. This assumption can be justified,

for example, in the case when the monopoly supplies water, because it is not unreason-

able to believe that most people, at least in the Western World, can afford to consume

water, and, moreover, receives a strictly positive net utility from their consumption. This

type of environment has been investigated by e.g. Laffont (1997). We contribute to the

nonlinear pricing literature in the following senses. Firstly, this paper provides a complete

characterization of the set of fair and budget-balanced nonlinear pricing schedules in an

economy that is based on the above premises. Our results generalize most of the find-

ings in Sharkey and Sibley (1993) and the second-degree price discrimination results in

Laffont (1997). Secondly, instead of adopting the standard procedure to identify fair and

budget-balanced schedules (i.e. the welfare function approach), we develop a procedure

based on the fairness criterion. Our procedure has, to the best of my knowledge, not been

considered in the nonlinear pricing literature before. Thirdly, our assumption that we

do not have to consider the individual rationality constraints enable us to provide some

2The concept of envy-freeness is attributed to Foley (1967). The existence of fair allocations has been
proved in a number of cases under different assumptions about preferences and commodities, see Panzer
and Schmeider (1978), Schmeider and Vind (1972), Svensson (1983) and Varian (1974,1976) among others.
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results that not has been presented before in the literature. This is, in particular, results

that are concerned with distortions in the consumption. Lastly, we reproduce some well

known results contained in the literature.

This paper is organized as follows. Section 2 describes the nonlinear pricing envi-

ronment. In Section 3, we identify and characterize the set of fair and budget-balanced

nonlinear price schedules in the two-type economy. Section 4 concludes the paper.

2 The Model and Basic Definitions

The economy consists of two differing consumer types and one publicly owned (natural)

monopoly. The set of consumers {1, 2} is denoted N . Consumer i ∈ N has preferences

over consumption-outlay bundles xi = (qi, ti) ∈ R
2
+, where qi denote type i’s consumption

of a perfectly divisible good and ti is a monetary transfer from consumer i ∈ N to the

publicly owned firm. We assume that consumer i’s preferences can be represented by a

quasi-linear utility function: ui = φi(qi) − ti, where φi(qi) is supposed to be continuous

and (at least) twice differentiable with: φi(0) = 0, φ′
i(qi) > 0 and φ′′

i (qi) < 0. We shall

also make the sorting assumption that marginal willingness-to-pay for a given quantity is

increasing in type, i.e.:

φ′
2(z) > φ′

1(z) for all z ∈ R++. (1)

Assumption (1) together with the assumption that φi(0) = 0 implies that total

willingness-to-pay is increasing in type, i.e.: φ2(z) > φ1(z) for all z ∈ R++. The cost

of producing output q =
∑

i∈N qi is given by C(q) = βq + F , where β is the constant

marginal cost of production and F is a fixed cost. A social planner operates the publicly

owned monopoly, which is assumed to be restricted by a balanced-budget requirement,

i.e.:
∑

i∈N ti = C(q).

Consumption is said to be first-best for agent i ∈ N if: φ′
i(q

∗
i ) = β. A menu or,

equivalently, a nonlinear outlay schedule x ∈ R
4
+ is a list of two bundles, i.e. x = {xi}2

i=1 =

{(qi, ti)}2
i=1. Agent i ∈ N is said to envy agent j �= i if he prefers agent j’s bundle xj ∈ x

to his own bundle xi ∈ x. x is said to be envy-free if no agent envies any other agent. x is

said to be Pareto efficient if there is no other x̃ such that ui(x̃i) ≥ ui(xi) for all i ∈ N and

ui(x̃i) > ui(xi) for some i ∈ N . x is said to be fair if it is envy-free and Pareto efficient.

We shall, finally, assume, as in e.g. Laffont (1997), that:

φ1(q1) −
C(q)

n
≥ 0, (2)
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for all fair and budget-balanced nonlinear price schedules. This will be the case if the

valuations of the good under consideration are ”sufficiently high”. As we later demon-

strate, the implication of this assumption is that we do not have to consider the individual

rationality constraints, i.e. every consumer i ∈ N obtains a non-negative net utility by

consuming the good.

The main objective of this paper is to characterize the set of fair and budget-balanced

nonlinear pricing schedules. We denote this set X∗. In order to characterize X∗, the

following procedure is adopted. Firstly, we identify the set that consists of all envy-free

and budget-balanced menus. This set is denoted X. We then exclude all menus in X

that are not Pareto efficient, i.e.:

X∗ = {x ∈ X | x is Pareto efficient}. (3)

Note that when we impose the Pareto efficiency criterion, we only consider the set of

nonlinear schedules that is constrained by the envy-freeness criterion and the balanced-

budget requirement (i.e. the menus in X). Therefore, our measure of Pareto efficiency

is, strictly speaking, not Pareto efficiency in the ordinary (first-best) sense but rather

Pareto efficiency in the constrained (or second-best) sense, see e.g. Mas-Colell et al.

(1995,pp.445).

3 The Characterization Results

In this section we characterize the set of fair and budget-balanced nonlinear schedules.

3.1 Envy-free Nonlinear Pricing

In the two-type case, envy-freeness requires that the following two constraints are satisfied:

φ1(q1) − t1 ≥ φ1(q2) − t2, (4)

φ2(q2) − t2 ≥ φ2(q1) − t1. (5)

We shall refer to condition (4) as the upward no-envy constraint and to condition (5) as

the downward no-envy constraint. The upward (downward) no-envy constraint guarantees

that type 1 (type 2) does not pick the bundle that is directed to type 2 (type 1), i.e. the

type that is located just above (below) him.

In Lemma 1, we gather a few results that are well known in the nonlinear pricing

literature (see e.g. Cooper, 1984, or Laffont and Tirole, 1993, pp.299).
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Lemma 1 Suppose that the menu of bundles {(qi, ti)}2
i=1 is envy-free. Then:

(i) q2 ≥ q1.

(ii) Conditions (4) and (5) are simultaneously binding if q2 = q1.

(iii) Conditions (4) and (5) cannot be simultaneously binding if q2 > q1.

We next describe the intuition behind Lemma 1. Type 2 values the consumption of

the good higher than type 1, by assumption, and, therefore, he is willing to pay more

than type 1 for any given quantity. As a consequence, type 2 will always pick bundle

x1 = (q1, t1) if q1 > q2. Hence, q2 ≥ q1 in every envy-free menu. We also know that

every envy-free menu must satisfy conditions (4) and (5). But these conditions give us

the following relation between t2 and t1:

φ1(q2) − φ1(q1) ≤ t2 − t1 ≤ φ2(q2) − φ2(q1). (6)

Note first that if condition (4) (condition (5)) is binding, the left (right) inequality

in condition (6) holds with equality. In the case when q2 = q1, condition (6) reduces to

0 ≤ t2− t1 ≤ 0, implying that t2 = t1. So if q2 = q1 then t2 = t1 and, therefore, conditions

(4) and (5) are simultaneously binding. In the case when q2 > q1 it is immediate from

assumption (1) and condition (6) that t2 > t1 and, hence, at least one inequality in

condition (6) must be strict. Using this fact we can rewrite condition (6) to:

t2 − t1 = (1 − k) (φ1(q2) − φ1(q1)) + k (φ2(q2) − φ2(q1)) ⊂ R+, (7)

where k ∈ [0, 1]. In the bounding cases when k = 0 and k = 1 conditions (4) and (5)

are binding, respectively. If k ∈]0, 1[, conditions (4) and (5) hold with strict inequality.

Note next that even if q1 = q2, condition (7) is valid since t1 = t2 for any k ∈ [0, 1] in

this case. We conclude that the set that consists of all envy-free menus is characterized

by condition (7) for k ∈ [0, 1] and q2 ≥ q1.

3.2 Envy-free and Budget-Balanced Nonlinear Pricing

Our next aim is to characterize the set of envy-free and budget-balanced menus. The

balanced-budget requirement is given by:

t1 + t2 = C(q). (8)
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Using conditions (7) and (8) to solve for t1 and t2 yields:

t1 =
1

2
(C(q) − (1 − k) (φ1(q2) − φ1(q1)) − k (φ2(q2) − φ2(q1))) , (9)

t2 =
1

2
(C(q) + (1 − k) (φ1(q2) − φ1(q1)) + k (φ2(q2) − φ2(q1))) , (10)

where k ∈ [0, 1]. From the above two equations, two important conclusions can be drawn.

Firstly, it is clear that the outlays for consumer 1 and 2 can be expressed as functions

of q1 and q2. Hence, ti = ti(q1, q2) for all i ∈ N . Secondly, if the nonlinear schedule is

envy-free and budget-balanced, net utility will always be largest for type 2. To see this,

note that if the outlays are given by conditions (9) and (10), then:

u2 − u1 = (1 − k)(φ2(q2) − φ1(q2)) + k(φ2(q1) − φ1(q1)). (11)

But from assumption (1) it follows that u2 − u1 > 0 for all k ∈ [0, 1] and q2 ≥ q1. We

conclude that no menu, where q2 ≥ q1 and the outlays are given by conditions (9) and

(10), violates the envy-freeness criterion or the balanced-budget rule.

3.3 Fair and Budget-Balanced Nonlinear Pricing

We next study menus that, on top of the envy-freeness criterion and the balanced-budget

rule, satisfy the Pareto efficiency criterion. We demonstrate that this additional require-

ment leads to the facts that (i) more restrictions must be imposed on q1 and q2 and that

(ii) all fair and budget-balanced menus are individual rational when assumptions (1) and

(2) are satisfied. We start by demonstrating the latter result, noticing that assumption

(1), equation (9) and the restriction q2 ≥ q1 imply that: t1 ≤ C(q)
2

. But φ1(q1) − C(q)
2

≥ 0

for all fair and budget-balanced menus, by assumption (2), implying that u1 ≥ 0. Then

since u2 > u1, it follows directly that u2 > 0. Hence, all fair and budget-balanced menus

are individual rational when assumptions (1) and (2) are satisfied.

In the rest of this section, we shall characterize how q1 and q2 must be selected for every

k ∈ [0, 1] in order to guarantee a fair and budget-balanced outcome. This will result in four

lemmas and one proposition. In Example 2, below, these results are illustrated with the

aid of a simple numerical example. The first observation in our characterization process

is that if q1 = q2, then it is possible to make a Pareto improvement and at the same time

respect the envy-freeness criterion and the balanced-budget rule, i.e. a pooling contract

can never be optimal. To see this, suppose that q1 = q2 and recall that t1 = t2 in this case,

i.e. both consumers are offered the same bundle. Moreover, by the balanced-budget rule,

it follows that t1 = t2 = βq1 + F
2
. But this schedule is Pareto dominated by the schedule

7



where qi = q∗i and t∗i = βq∗i + F
2

for all i ∈ N since q∗i = arg maxqi
{φi(qi) − βqi − F

2
} and

q1 �= q∗i for i = 1 and/or i = 2 by condition (1). This conclusion is formally stated in

Lemma 2 and can, for example, be found in Laffont and Tirole (1993,p.299).

Lemma 2 Let the outlays be given by equations (9) and (10) for k ∈ [0, 1] and note that

ti = ti(q1, q2) for all i ∈ N . Then x /∈ X∗ if q1 ≥ q2.

We next observe that every nonlinear price schedule where total utility (i.e. u1 + u2)

is maximized is Pareto efficient. This conclusion follows trivially by definition of Pareto

efficiency, since there exists no other nonlinear schedule where one type is strictly better off

and the other type (at least) is not worse-off. We next note that total utility is maximized,

by definition, when consumption is first-best for both types. But if consumption is first-

best for both types and if the outlays are given by equations (9) and (10), it follows that

total utility is maximized for all k ∈ [0, 1]. The latter conclusion follows directly from the

solution to the maximization problem:

max
q1,q2

{φ1(q1) − t1 + φ2(q2) − t2}, (12)

since t1 + t2 = C(q) = β(q1 + q2)+F for all k ∈ [0, 1] by the balanced-budget rule. Hence,

q1 = q∗1 and q2 = q∗2 solve the above maximization problem for all k ∈ [0, 1].

Lemma 3 Let the outlays be given by equations (9) and (10) for k ∈ [0, 1] and note that

ti = ti(q1, q2) for all i ∈ N . Then x ∈ X∗ if q1 = q∗1 and q2 = q∗2.

Our next observation is that the envy-free and budget-balanced nonlinear price sched-

ule that maximizes utility for type i ∈ N is Pareto efficient. The reason for this is that

when utility is maximized for type i, he will be worse-off by any other nonlinear price

schedule and, as a consequence, no Pareto improvements are possible. A natural question

is then: what are the characteristics of the type i utility maximizing schedule? Two con-

clusions can be drawn immediately. Firstly, the envelope theorem reveals that net utility

for type 1 (type 2) is increasing (decreasing) in k. Therefore, it must be true that k = 1

(k = 0) in the type 1 (type 2) utility maximizing schedule. Secondly, if k = 1 (k = 0),

so the downward (upward) incentive constraint is binding, type 2 (type 1) consumes the

first-best quantity. The reason for this is that the upward (downward) incentive con-

straint is made inactive, by Part (iii) of Lemma 1, since q2 > q1, by Lemma 2, and, as a

consequence, there is no reason to distort ”on the top” (”on the bottom”). Hence, q2 = q∗2
(q1 = q∗1). We will, however, demonstrate that qi �= q∗i in the type i utility maximizing

programme. This conclusion follows directly from our next definition.
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Definition 1 Let the outlays be given by equations (9) and (10) for k ∈ [0, 1] and note

that ti = ti(q1, q2) for all i ∈ N . Define qmin
1 as the solution to maxq1

{φ1(q1) − t1} for

k = 1 and qmax
2 as the solution to maxq2

{φ2(q2) − t2} for k = 0, i.e.:

φ′
1(q1) − β − (φ′

2(q1) − φ′
1(q1)) = 0 if q1 = qmin

1 , (13)

φ′
2(q2) − β + (φ′

2(q2) − φ′
1(q2)) = 0 if q2 = qmax

2 . (14)

Note first that it is clear from the definition of first-best and the sorting condition

(1) that: qmin
1 < q∗1 and qmax

2 > q∗2. We next illustrate Definition 1 for the type 1 utility

maximizing schedule. Suppose first that both individuals are offered consumption of the

first-best quantity. This situation is illustrated in the left panel of Figure 1, where the

demand curves of the two consumers are given by D1 and D2. Note first that since the

budget is balanced and individual 2 is indifferent between the bundle that is designed for

him and the bundle that is intended for type 1, by the above arguments (i.e. since k = 1),

the outlays must be given by: t1 = A− B
2

and t2 = A+ C+ D+ B
2
.3 However, this schedule

does not maximize type 1 utility. To see this, consider the right panel of Figure 1 where

q∗1 is reduced to the new level q′1. This reduction will affect the net utility for type 1 in

the following manner. Firstly, utility decreases by area F + G due to the reduction in

Figure 1. The Type 1 Utility Maximizing Policy
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�

�

�
�

�
β

q∗L q∗H q∗L q∗Hq′Lqmin
L

DL

DH

∆u+
L

∆u−
L

qi qi

A

B
C

D

B
C

D

E

F

G

3In this example, the fixed cost is set to zero. If the fixed cost is positive, half of the fixed cost should
be added to both outlays.
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consumption. Secondly, it is possible to reduce the outlay for individual 1 by area
1
2
(E+F)+G without risking that individual 2 picks the bundle that is directed to individual

1. Hence, type 1 is better off if 1
2
(E + F) + G > F + G or, equivalently, if E > F. From

the figure it is clear that E > F. Hence, individual 1 is best off when he consumes a

quantity which is strictly lower than the first-best. Continuing in this way, the planner

will reduce consumption for type 1 until the marginal gain from a reduced consumption,

∆u+
1 , is equal to the marginal loss from a reduced consumption, ∆u−

1 . In the right panel

of Figure 1, we see that ∆u+
1 = ∆u−

1 when q1 = qmin
1 .

Throughout this paper, we shall assume, as e.g. Sharkey and Sibley (1993), that

there exist unique solutions to equations (13) and (14) and that the necessary first-order

conditions for a maximum are also sufficient conditions. In the following example, we

specify a few assumptions on φi(qi) that guarantee the existence of unique maximum

solutions to equations (13) and (14). Note also that this is just one example. The class

of utility functions where the necessary first-order conditions for a unique maximum also

are sufficient conditions is, of course, much larger.

Example 1. Assume that φi(qi) = θiγ(qi) is a continuous function with γ′(qi) > 0,

γ′′(qi) < 0 for all qi ∈ R++. Suppose also that lim γ′(qi) → ∞ as qi → 0, lim γ′(qi) → 0

as qi → ∞ and that θi is a constant parameter in R++, where θ2 > θ1 by condition (1).

Let ϕ(q1) = θ1γ
′(q1) − β − (θ2 − θ1)γ

′(q1), so the first order condition (13) is given by

ϕ(q1) = 0. Note next that if θ1 ≤ θ2

2
, then ϕ(q1) < 0 for all q1. In this case, there is no

solution to equation (13). If, however, θ1 > θ2

2
it is immediate from the above properties

of γ(q1), together with the definition of first-best consumption, that ϕ(q1) > 0 as q1 → 0

and ϕ(q1) < 0 when q1 = q∗1. Then since γ(q1) is a continuous function, it follows from the

intermediate-value theorem that there exists a qmin
1 ∈]0, q∗1[ such that ϕ(qmin

1 ) = 0. This

solution is a unique maximum since ϕ′(q1) < 0 for all q1 ∈ R++. Hence, there is a unique

maximum to equation (13) if and only if θ2 > θ1 > θ2

2
. This condition is also sufficient for

the existence of a unique maximum to equation (14). �

Lemma 4 Let the outlays be given by equations (9) and (10) for k ∈ [0, 1] and note that

ti = ti(q1, q2) for all i ∈ N . Then x ∈ X∗ if x is the type i ∈ N utility maximizing

nonlinear outlay schedule.

The results in Lemma 4 can e.g. be found in Laffont (1997). From Lemmas 3 and 4 we

know that if k = 1, q2 = q∗2 and q1 ∈ {qmin
1 , q∗1}, then the menu is fair and budget-balanced.

As our next lemma establishes, this conclusion is not only true for q1 ∈ {qmin
1 , q∗1}, it is in

fact true for all q1 ∈ [qmin
1 , q∗1].
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Lemma 5 Let the outlays be given by equations (9) and (10) for k ∈ [0, 1] and note that

ti = ti(q1, q2) for all i ∈ N .

(i) In the case when k = 1, then x ∈ X∗ if and only if: q1 ∈ [qmin
1 , q∗1] and q2 = q∗2.

(ii) In the case when k = 0, then x ∈ X∗ if and only if: q1 = q∗1 and q2 ∈ [q∗2, q
max
2 ].

Part (i) of Lemma 5 states that if the downward no-envy constraint is binding, the

nonlinear outlay schedule is fair and budget-balanced if and only if q1 ∈ [qmin
1 , q∗1] and

q2 = q∗2. The intuition behind this result is as follows. Since the upward no-envy constraint

is made inactive, by Part (iii) of Lemma 1, there is no reason to distort ”on the top”.

Hence, q2 = q∗2. But since q2 is first-best it is not possible to make a Pareto improvement,

and at the same time respect the envy-freeness criterion and the balanced-budget rule

by adjusting q2. The same argument goes for q1 in the case when q1 = q∗1. To see

that the nonlinear schedule is fair and budget-balanced when q1 ∈ [qmin
1 , q∗1[ consider

Figure 2, where the indifference curves, vi, of the two consumers are represented in the

consumption-outlay space. Net utility is increasing in the south-east direction and the

indifference curves are parallel-shifted since utility is linear in money. The downward

incentive constraint is binding and, therefore, type 2 is indifferent between bundle (q1, t1)

and bundle (q∗2, t2), i.e. both (q1, t1) and (q∗2, t2) lie on the same indifference curve, v2.

Figure 2. A Fair and Budget-Balanced Policy

�

�

t2

t′2
t′′2

t1

t′1

q∗1

t′′1

ti

qiq1 q′1 q∗2

v2

v′
2

v1
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Let now q1 ∈ [qmin
1 , q∗1[ and note that, in this case, Pareto improvements that respect the

envy-freeness criterion and the balanced-budget rule may only be possible for increases in

q1. Suppose, therefore, that q1 is increased to the ”new” level q′1 ≤ q∗1. Type 2 is indifferent

between the ”new” bundles (q∗2, t
′
2) and (q′1, t

′
1), since the downward no-envy constraint

is binding (i.e. k = 1). Total net utility is increasing since we are moving toward the

first-best frontier, and net utility for type 1 is, by Definition 1, negatively affected by the

change in q1. Hence, type 2 must, by the balanced-budget rule, compensate type 1 so that

type 1 is (at least) indifferent to the change in q1. In Figure 2, the compensating bundles

are denoted (q∗2, t
′′
2) and (q′1, t

′′
1). But these bundles can not be envy-free because condition

(5) was binding before type 1 was compensated, t′1 > t′′1 and t′′2 > t′2, which implies that

type 2 strictly prefers bundle (q′1, t
′′
1) over (q∗2, t

′′
2). This is also obvious from the figure.

If on the other hand q1 /∈ [qmin
1 , q∗1], the menu can not be fair and budget-balanced. To

see this, note first that if the downward no-envy constraint is binding, type 2 is best off

when q1 = q∗2 and type 1 is best off when q1 = qmin
1 .4 Hence, by applying Lemma 2, we

need only demonstrate that the menu can not be fair and budget-balanced if q1 ∈]q∗1, q
∗
2[.

Figure 3. A Pareto Improving Policy

�

�

t2
t′2

t′′1

t1

t′1

ti

qiq∗1 q′1 q1 q∗2

v2

v′
2

v1

Suppose, therefore, that q1 ∈]q∗1, q
∗
2[ and reduce q1 to the new level q′1 ≥ q∗1. Condition (5) is

unaffected by the reduction in q1 and is still binding, so type 2 is indifferent between bundle

4The first conclusion follows directly from the first-order condition: ∂u2
∂q1

∣∣∣
k=1

= −∂t2(q1,q2)

∂q1

∣∣∣
k=1

=
1
2 (β − φ′

2(q1)) = 0. The second conclusion follows from Definition 1.
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(q∗2, t
′
2) and bundle (q′1, t

′
1). Total utility increases but type 2’s utility decreases, so type 2

must receive a compensation from type 1 in order to remain on the original indifference

curve, v2. The compensating bundles are given by (q∗2, t2) and (q′1, t
′′
1). In contrast to

the above case, this ”new” schedule is Pareto improving, envy-free and budget-balanced

since t′′1 > t′1, t2 < t′2 and condition (5) was binding before type 2 was compensated. The

intuition behind Part (ii) of Lemma 5 is the same.

The results from Lemma 1-5 are gathered in Proposition 1, where we completely

characterize the set of fair and budget-balanced nonlinear outlay schedules in the two-

type case in an economy that is based on the premises in Section 2.

Proposition 1 Let the outlays be given by equations (9) and (10) for k ∈ [0, 1] and note

that ti = ti(q1, q2) for all i ∈ N .

(i) In the case when k = 1, then x ∈ X∗ if and only if: q1 ∈ [qmin
1 , q∗1] and q2 = q∗2.

(ii) In the case when k ∈]0, 1[, then x ∈ X∗ if and only if: q1 = q∗1 and q2 = q∗2.

(iii) In the case when k = 0, then x ∈ X∗ if and only if: q1 = q∗1 and q2 ∈ [q∗2, q
max
2 ].

We shall end this section with a simple numerical example that illustrate the results

of this paper.

Example 2. Assume that the marginal and the fixed costs are given by β = 1 and

F = 7, respectively, and that:

φi(qi) = θi

√
qi, (15)

where θ1 = 5 and θ2 = 7. Straightforward calculations yields qmin
1 = 2.25, q∗1 = 6.25,

q∗2 = 12.25 and qmax
2 = 20.25. We first calculate u1 and u2 for every possible combination

of qi ∈ {1, 2, ..., 25} and k ∈ {0, 0.25, 0.5, 0.75, 1}, subject to the restrictions that (i)

q2 ≥ q1 and (ii) that the outlays are given by equations (9) and (10). The resulting utility

pairs are marked with a small dot (.) in Figure 4. The utility pairs in the figure are related

to the results in Lemma 2-5 in the following manner:

- The utility pairs that correspond to the menus where q1 = q2 ∈ [1, 25] are displayed

along the curve ABCD. It is clear from the figure that every utility pair on the curve

ABCD is Pareto dominated by utility pair E, where qi = q∗i and t∗i = βq∗i + F
2

for all

i ∈ N . Hence, if q1 = q2 the nonlinear schedule can not be fair and budget-balanced.

This conclusion is formally stated in Lemma 2.

13



- The utility pairs that correspond to the menus where q1 and q2 are first-best are

displayed along the line FEG. Lemma 3 reports that these utility pairs are fair and

budget-balanced. This is also obvious from the figure.

- The utility pairs that correspond to the type 1 and type 2 utility maximizing sched-

ules are marked with H and I, respectively. From Lemma 4, we know that these

schedules are fair and budget-balanced. This is also apparent from the figure.

- The utility pairs that correspond to the menus where q1 ∈ [qmin
1 , q∗1] and q2 = q∗2 are

located along the curve HF. Part (i) of Lemma 5 reports that these utility pairs are

fair and budget-balanced. This is also clear from the figure. Similarly, the utility

pairs that correspond to Part (ii) of Lemma 5 are located along the curve GI.

The above conclusions are gathered in Proposition 1, which states that a nonlinear

outlay schedule is fair and budget-balanced if and only if the corresponding utility pair is

located along the curve HFEGI. �

Figure 4. The Utility Pairs from Example 2

�

�
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4 Conclusions

In this paper, we have characterized the set of fair and budget-balanced nonlinear price

schedules in an economy with two differing consumer types. We have not been concerned

with welfare functions. Instead, the set of fair and budget-balanced nonlinear pricing

schedules has been characterized from the viewpoint of the fairness criterion. To my

knowledge, a nonlinear pricing environment has never been subject to an investigation

from this perspective before.

Some of the results that we have presented are well known in the literature. These

include the characterization of the type 1 and type 2 utility maximizing schedules, see

e.g. Laffont (1997). We have also demonstrated that the marginal price facing the largest

consumer (i.e. type 2) need not be equal to marginal cost. This result is not ”standard” in

the literature, but has e.g. been demonstrated by Sharkey and Sibley (1993). Our compete

characterization has, however, not been presented in the literature before. Apart from our

characterization results, the main contribution to the literature is the procedure that we

have developed in order to analyze fair and budget-balanced nonlinear outlay schedules.

Throughout this paper we have assumed that there exist unique solutions to the first

order conditions and that the necessary conditions for a maximum are also sufficient

conditions. A neglected but important topic for future research is to explore these as-

sumptions in a finite economy. For the continuous case with one-dimensional types, see

e.g. Guesnerie and Laffont (1984). Moreover, the characterization results in this paper

depend on the properties of the utility functions. Future research should include charac-

terization results that do not depend on specific assumptions of the utility functions. A

good starting point is Brito et al. (1990). It would also be desirable to generalize these

results to an finite economy, consisting of n ≥ 2 differing consumer types.

Appendix

In this appendix, we prove Lemma 5 and Proposition 1.

Proof Lemma 5. In the proof, we consider a change in qi with a ”small” ε ∈ R, so

dqi = ε, dui =
(
φ′

i(qi) − ∂ti
∂qi

)
ε and duj = −∂tj

∂qi
ε for j �= i and i, j ∈ N .5

Part (i) ”if”. Suppose that the outlays are given by equations (9)-(10) for k = 1.

We need demonstrate that if q1 ∈ [qmin
1 , q∗1] and q2 = q∗2, then x ∈ X∗. Note first that since

5This procedure is also adopted in e.g. Laffont and Tirole (1993,pp.299) and Salanié (1999,p.23). Note
also that the lemma is of type ”A if and only if B”. To prove a lemma of this type, we first prove that
B ⇒ A (”if”) and then prove that not B ⇒ not A (”only if”).
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k = 1, condition (5) is binding. But then since q2 > q1, the upward no-envy constraint (4)

is satisfied and non-binding for ”sufficiently small” changes in qi, by Part (iii) of Lemma 1.

Hence, type 1 will always pick the bundle that is intended for him when ε is ”sufficiently

small”. Note next that, by the standard argument, it is not possible to make a Pareto

improvement and at the same time respect the envy-freeness criterion and the balanced-

budget rule by adjusting qi when qi = q∗i . As a consequence, we need only demonstrate

that it is not possible to make a Pareto improvement that respects the envy-freeness

criterion and the balanced-budget rule by adjusting q1 when q1 ∈ [qmin
1 , q∗1[.

If the outlays are given by equations (9) and (10) for k = 1 then: ∂u1

∂q1
≥ 0 if and only

if q1 ≤ qmin
1 and ∂u2

∂q1
≥ 0 if and only if q1 ≤ q∗2. Thus, if we increase q1 ∈ [qmin

1 , q∗1[ by a

”small” ε ∈ R++, it follows that: du1 < 0, du2 > 0 and
∑2

i=1 dui = (φ′
1(q1) − β) ε > 0.

Since condition (5) holds with equality, type 2 is indifferent between bundle (q2, t2) and

(q1 + ε, t1). But du1 < 0 and, therefore, type 1 must be compensated in order to be (at

least) indifferent to the change in q1. Type 1 is indifferent to the change in q1 if the menu

is given by: {(q1 + ε, t1 + du1), (q2, t2 − du1)}. But this menu can not be envy-free since

du1 < 0, i.e. type 2 prefers bundle (q1 + ε, t1 + du1) over bundle (q2, t2 −du1). Hence, it is

not possible to make a Pareto improvement that respects the envy-freeness criterion and

the balanced-budget rule by adjusting q1 when q1 ∈ [qmin
1 , q∗1[.

Part (i) ”only if”. Suppose that the outlays are given by equations (9)-(10) for

k = 1. We need demonstrate that if q1 /∈ [qmin
i , q∗1] or q2 �= q∗2 then x /∈ X∗. Note first that

if k = 1 and if the outlays are given by equations (9)-(10) then: ∂u1

∂q2
= ∂u2

∂q2
= 1

2
(φ′

2(q2)−β),

i.e. both types are best off when q2 = q∗2, so if q2 �= q∗2 then x /∈ X∗. From the properties

of the partial derivatives, it is also clear that if q1 < qmin
1 or q1 > q∗2 then x /∈ X∗. Thus, if

we can demonstrate that q1 ∈]q∗1, q
∗
2] imply that x /∈ X∗, the conclusion follows. Suppose

that q1 ∈]q∗1, q
∗
2] and adjust q1 with a ”small” ε ∈ −R++. It follows that: du1 > 0, du2 < 0

and
∑2

i=1 dui = (φ′
1(q1) − β) ε > 0. Since condition (5) holds with equality, type 2 is

indifferent between bundle (q2, t2) and bundle (q1 + ε, t1). But du2 < 0 and, therefore,

type 2 must be compensated in order to be (at least) indifferent to the change in q1. Type

2 is indifferent to the change in q1 if the menu is given by: {(q1+ε, t1−du2), (q2, t2+du2)}.
We next note that this menu is envy-free, budget-balanced and Pareto improving since

du2 < 0 and condition (4) is inactive. Hence, if q1 ∈]q∗1, q
∗
2] then x /∈ X∗.

Part (ii) ”if”. Suppose that the outlays are given by equations (9) and (10) for

k = 0. We need demonstrate that if q1 = q∗1 and q2 ∈ [q∗2, q
max
2 ] then x ∈ X∗. In this case,

condition (4) is binding since k = 0 and it follows from Part (iii) of Lemma 1 that the

downward no-envy constraint (5) is satisfied but non-binding since q1 < q2. Hence, type 2

will always pick the bundle that is intended for him when ε is ”sufficiently small”. By the
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same arguments as in Part (i) of this proof, we need only establish that it is not possible

to make a Pareto improvement and at the same time respect the envy-freeness criterion

and the balanced-budget rule by adjusting q2 when q2 ∈]q∗2, q
max
2 ].

If the outlays are given by equations (9) and (10) for k = 0 then: ∂u1

∂q2
≥ 0 and ∂u2

∂q2
≥ 0

if and only if q2 ≤ q∗1 and q2 ≤ qmax
2 , respectively. Hence, if we adjust q2 ∈]q∗2, q

max
2 ] with

a ”small” ε ∈ −R++ it follows that: du1 > 0, du2 < 0 and
∑2

i=1 dui = (φ′
2(q2) − β) ε > 0.

Type 1 is indifferent between bundle (q1, t1) and bundle (q2 + ε, t2) due to the fact that

k = 0. But since du2 < 0, type 2 must be compensated. If the menu is given by:

{(q1, t1 − du2), (q2 + ε, t2 + du2)}, type 2 is indifferent to the change in q2. However,

du2 < 0 and thus type 1 chooses bundle (q2 + ε, t2 + du2) over bundle (q1, t1 + du2) so

this menu can not be envy-free. Hence, it is not possible to make a Pareto improvement

and at the same time respect the envy-freeness criterion and the balanced-budget rule by

adjusting q2 when q2 ∈]q∗2, q
max
2 ].

Part (ii) ”only if”. Suppose that the outlays are given by equations (9)-(10) for

k = 0. We need demonstrate that if q1 �= q∗1 or q2 /∈ [q∗2, q
max
2 ] then x /∈ X∗. We first

observe that if the outlays are given by equations (9)-(10) for k = 0, then: ∂u1

∂q1
= ∂u2

∂q1
=

1
2
(φ′

1(q1) − β). Hence, if q1 �= q∗1 then x /∈ X∗. Using the same arguments as in Part

(i) of this proof, we need only demonstrate that if q2 ∈ [q∗1, q
∗
2[ then x /∈ X∗. For this

purpose, assume that the outlays are given by equations (9) and (10) for k = 0 and

that q2 ∈ [q∗1, q
∗
2[. Next, increase q2 by a ”small” ε ∈ R++. It is clear that: du1 < 0,

du2 > 0 and
∑2

i=1 dui = (φ′
2(q2) − β) ε > 0. Because condition (4) is binding, type 1

is indifferent between bundle (q1, t1) and bundle (q2 + ε, t2). But since du1 < 0, type 1

must be compensated. If the menu is given by: {(q1, t1 + du1), (q2 + ε, t2 − du1)}, type

1 is indifferent to the increase in q2. We next note that this menu is envy-free, budget-

balanced and Pareto improving since du1 < 0 and condition (5) is inactive. Hence, if

q2 ∈ [q∗1, q
∗
2[ then x /∈ X∗. �

Proof Proposition 1. The proof of Part (i)-(iii) of the proposition follows from Lemma

5. To see that Part (ii) follows from Lemma 5, note that if k ∈]0, 1[, conditions (4) and

(5) are non-binding and, therefore, none of the ”small” changes considered in Lemma

5 will violate the envy-freeness criterion. Hence, it is always possible to make a Pareto

improvement when k ∈]0, 1[ and at the same time respect the envy-freeness condition and

the balanced-budget rule, unless, of course, q1 and q2 are first-best. �
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