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Abstract

We derive theoretical discrete time asset pricing restrictions on the within state conditional

mean equations for the market portfolio and for individual assets under the assumptions:

(1) the conditional CAPM holds; (2) asset returns are driven by an underlying unobserved

two-state discrete Markov process. We show that the market risk-premiums in the two

states can be decomposed into a standard CAPM volatility-level premium plus an addi-

tional volatility-uncertainty premium. The latter premium is increasing in the market price

of risk, the uncertainty about the next period’s state and the difference in volatility between

the two states. In an empirical application the model is estimated for the U.S. stock market

1836-2003. We apply a discrete mixture of two Normal Inverse Gaussian (NIG) distributions

to represent the return characteristics in the unobservable states. Our results show that the

high-risk regime has a volatility of 36.28 % on an annual basis while the low-risk regime has

just 14.42%, and the latter is much more frequent. Stock returns display characteristics that

support our specification of within state NIG distributions as an alternative to Normal dis-

tributions. The risk premiums for the two regimes are 2.79% and 17.86% on an annual basis,

but the volatility-uncertainty premium for the two states are shown to give an unimportant

contribution to the estimated risk premium. The most striking result, from a practical point

of view, is that the average sample risk premium of 4% belongs to the highest quintiles of

the estimated conditional risk premiums.

Keywords: asset pricing; state dependent risk premium; discrete mixture distribution

JEL: G12; C22



1 Introduction

CAPM postulates a linear relationship between the expected risk premium of an asset and its

beta value. The first construction of CAPM presumed an unconditional model (Sharpe (1964)).

In empirical applications of this model it is assumed that the risk premium as well as the asset

betas are stationary over a fixed period. However, in a dynamic economy changes in background

factors can imply that the market risk premium may be time varying. Furthermore, changes in

the economic environment may affect firms differently, which may alter the relative role of a firm

in the whole economy and change both its idiosyncratic risk and its comovements of returns with

the market portfolio. In the conditional version of CAPM the expected return of an asset, based

on the information available at the time, is a product of its conditional beta and the conditional

market risk premium, and explicit state variables (factors or factor mimicking portfolios) are

driving return while instrument variables represent information. However, it might be difficult to

identify the true state variables. An alternative is therefore regime-switching models conditional

models with latent factors, where an unobserved state variable governs the switches between

regimes. These models have mainly been used in studies of optimal portfolio selection but not

in an asset pricing context (e.g. Ang and Bekaert (2002)).

In this paper we start with the conditional CAPM and presume a stock return generating

model that incorporates a switching mechanism between two states of the world or stock market

that are assumed to differ in return characteristics. Further, investors have at most partial

information of which state is prevailing in the next period. These assumptions place restrictions

on expected returns within the two states of the world. We show that the expected market return

in the two states, which are consistent with the conditional CAPM, can be decomposed into a

standard conditional CAPM volatility-level premium plus an additional volatility-uncertainty

premium. The expected return equations for individual assets are also derived.

In the empirical part of the paper, a discrete mixture of two Normal Inverse Gaussian (NIG)

distributions represents the unobservable states. The two-state location-scale-shape mixture of

NIG distributions is chosen as an alternative that relaxes the restrictions placed by the Normal

distribution on within state coefficients of skewness and kurtosis (to zero and three, respectively).

In an empirical application of the model to the U.S. stock market for the period 1836 to 2003 our

results are used to calculate both the time-varying (conditional) market risk-premium and the

unconditional market risk-premium that are consistent with our two-state conditional CAPM.

There are several interesting empirical results. The constant price of risk is 1.34 which it
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is much lower than the investigations on smaller samples. The two regimes have very different

risk levels: the high-risk regime has a volatility of 36.28 % on an annual basis while the other

regime has just 14.42%. The estimated expected duration to remain in the same regime is very

different: it is approximately 199 months and 15 months for the low-volatility regime. Stock

returns display statistically significant negative skewness in the low volatility state and are

symmetric in the high volatility state, but in both states returns display statistically significant

excess kurtosis (i.e. above three). These results support our specification of within state NIG

distributions as an alternative to Normal distributions.

The risk premiums for the two regimes are 2.79% and 17.86% on an annual basis. The

estimated risk premiums are mostly around 3%. The sample mean of 4% is in fact quite high

and it belongs to the highest quintile. A really high risk premium of above 16% is very rare and

related to three episodes: the Civil war, the depression of the 1930’s and the oil crises in the

1970’s. The volatility-uncertainty premium for the two states are shown to give an unimportant

contribution to the estimated risk premium.

The outline of the paper is as follows: section 2 presents conditional CAPM while section 3

presents the proof our discrete state conditional CAPM; section 4 gives the empirical specifica-

tion; the data is presented in section 5 and the empirical results in section 6 and there is finally

a conclusion in section 7.

2 The Conditional CAPM

The conditional version of the Sharpe (1964) CAPM states that

Et−1 [Rit]−Rft =
covt−1(Rit, RMt)

vart−1(RMt)
(Et−1 [RMt]−Rft) , (1)

where Rit is the nominal return on asset i between time t − 1 and t, Rft is the return on a

risk-free asset and RMt is the return on the market portfolio. All moments are conditional on

the information set Ωt−1, available to investors at time t − 1. The asset pricing equation can

be rewritten as

Et−1 [Rit]−Rft = γt−1covt−1(Rit, RMt), (2)

where

γt−1 ≡
Et−1 [RMt]−Rft

vart−1(RMt)
(3)
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is interpreted as the (time-varying) price of covariance risk with the market portfolio. In em-

pirical applications it is often assumed that the price of covariance risk is stable over time.

A standard empirical specification of the conditional CAPM is therefore (see e.g. Glosten,

Jagannathan and Runkle (1993) and De Santis and Gérard (1997))

rit = γσiMt + εit ; εit|Ψt−1 ∼ φ (θ) (4)

where rit is excess return on asset i, σiMt is the conditional covariance of asset i with the market

portfolio and φ generically denotes any probability density function with parameter vector θ.

Also, Ψt−1 is the information set available to the econometrician at time t−1, which is assumed

to be a subset of Ωt−1.

3 The Two-State Conditional CAPM

We assume that there are two distinct states of the world (or the economy) and that the investor

only has at most partial information of which state is prevailing in the next period. The states

are allowed to differ in terms of return and risk characteristics, i.e. asset returns follow different

conditional mean and conditional variance-covariance processes within the two different states

of the world. We also assume that the overall CAPM asset pricing equation holds, i.e. that

Equation (2) holds. These two assumptions on the underlying return generating process and the

overall asset pricing equation place restrictions on the within state conditional mean equations.

For example, if we naively specify ”one CAPM in each state” for the asset prices, this will

violate the assumption that Equation (2) holds.1 Next, we derive the theoretical restrictions on

the conditional means within states for the overall conditional CAPM asset pricing equation to

hold. We restrict the derivation to a two-asset discrete state conditional CAPM. We show later

that adding more assets is theoretically straightforward.

Rewriting Equation (2) slightly, we thus assume that the following overall asset pricing

equations hold

1To see this, let γvar1t−1(rMt) and γvar2t−1(rMt) be the conditional CAPM for the market in the first and

second states, respectively. Then, the overall asset pricing equation is a weighted average of the two within

state CAPM equations. This weighted average is however not equal to the overall CAPM asset pricing equa-

tion γvart−1(rMt), i.e. Equation (2), because vart−1(rMt) is in general not equal to the weighted average of

var1t−1(rMt) and var2t−1(rMt) for a discrete mixture distribution.
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Et−1 [r1t] = γcovt−1(r1t, r2t) (5)

Et−1 [r2t] = γvart−1(r2t), (6)

where r1t is excess return on ”asset 1”, r2t is excess return on the market portfolio.

The assumption that there are two distinct states of the world and that the investor only

has partial information of which state is prevailing implies that the overall conditional mean of

the asset return for asset 1 and the market portfolio are

m1t ≡ Et−1 [r1t] = λt|t−1µ11t +
¡
1− λt|t−1

¢
µ21t (7)

m2t ≡ Et−1 [r2t] = λt|t−1µ12t +
¡
1− λt|t−1

¢
µ22t, (8)

where λt|t−1 and 1 − λt|t−1 are the forecasted (ex ante) probabilities for each state the next

time-period and µsit is the within state conditional mean for states s = 1, 2 and assets i = 1, 2.

Note that Equations (5) and (6) are the asset pricing relations according to the conditional

CAPM, while Equations (7) and (8) follows directly from our assumption of an underlying

discrete mixture of distributions for the returns. From the latter assumption it also follows that

the elements of the overall conditional variance-covariance matrix are given by

vart−1 (r1t) = λt|t−1
h
σ111t + (µ11t −m1t)

2
i
+
¡
1− λt|t−1

¢ h
σ211t + (µ21t −m1t)

2
i
(9)

vart−1 (r2t) = λt|t−1
h
σ122t + (µ12t −m2t)

2
i
+
¡
1− λt|t−1

¢ h
σ222t + (µ22t −m2t)

2
i
(10)

covt−1 (r1t, r2t) = λt|t−1 [σ112t + (µ11t −m1t) (µ12t −m2t)] (11)

+
¡
1− λt|t−1

¢
[σ212t + (µ21t −m1t) (µ22t −m2t)]

where σsijt is the within state conditional variance or covariance for states s = 1, 2 and for

assets i, j = 1, 2.

Consequently, by identifying terms in Equations (5) and (6), after substituting Equations

(10) and (11), with terms in Equations (7) and (8), it follows that for the conditional CAPM

to hold, the following equations must be satisfied by µ11t, µ21t, µ12t and µ22t at each point in
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time:

µ11t = γ [σ112t + (µ11t −m1t) (µ12t −m2t)] (12)

µ21t = γ [σ212t + (µ21t −m1t) (µ22t −m2t)] (13)

µ12t = γ
h
σ122t + (µ12t −m2t)

2
i

(14)

µ22t = γ
h
σ222t + (µ22t −m2t)

2
i
, (15)

which is a non-linear system of four equations and four unknowns. This system can be solved

recursively, i.e. first we solve for µ12t and µ22t in Equations (14) and (15) (the equations for

the market portfolio) and then use these solutions in Equations (12) and (13) (the equations

for the individual asset) to solve for µ11t and µ21t.

The solution for the market portfolio is given by

µ12t =
γ¡

2λt|t−1 − 1
¢ hλ2t|t−1σ122t − ¡1− λt|t−1

¢2
σ222t

i
(16)

+

¡
1− λt|t−1

¢2 ³
1−

q
1 + 4γ2 (σ122t − σ222t)

¡
2λt|t−1 − 1

¢´
2γ
¡
2λt|t−1 − 1

¢2
µ22t =

γ¡
2λt|t−1 − 1

¢ hλ2t|t−1σ122t − ¡1− λt|t−1
¢2
σ222t

i
(17)

+
λ2t|t−1

³
1−

q
1 + 4γ2 (σ122t − σ222t)

¡
2λt|t−1 − 1

¢´
2γ
¡
2λt|t−1 − 1

¢2 .

The feasible solution presented above is the only solution that has a well defined limit as

λt|t−1 → 1/2.2 Equations (16) and (17) show that the market risk-premiums in the two states

are equal if and only if the market variances, σ122t and σ222t, are equal. This result is intuitive

as market risk is defined as variance risk in the conditional CAPM. Similarly, it follows from

the solutions for asset 1 given in Appendix B that the risk-premiums for asset 1 are equal across

states if and only if the covariances with the market, σ112t and σ212t, are equal. It is also clear

that the conditional means for additional assets must obey equations identical to Equations

(12) and (13), which makes it theoretically straightforward to expand the universe of assets

considered.

To facilitate further economic interpretation of the solution for the market portfolio we use a

series expansion (approximation) of the exact solution in Equations (16) and (17).3 Imposing the

restriction | 4γ2 (σ122t − σ222t)
¡
2λt|t−1 − 1

¢
| ≤ 1, a third order series expansion of the solutions

2The limiting model as λt|t−1 → 1/2 is given by Equations (18) and (19) below for λt|t−1 = 1/2.

3We use the power series expansion
√
1 + x ≈ 1 + x/2− x2/8 + x3/16 with interval of convegence | x | ≤ 1.
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show that the within regime conditional means for the market portfolio can be restated as

µ12t = γσ122t (18)

+
¡
1− λt|t−1

¢2
γ3 (σ122t − σ222t)

2 − 2
¡
1− λt|t−1

¢2 ¡
2λt|t−1 − 1

¢
γ5 (σ122t − σ222t)

3

µ22t = γσ222t (19)

+λ2t|t−1γ
3 (σ122t − σ222t)

2 − 2λ2t|t−1
¡
2λt|t−1 − 1

¢
γ5 (σ122t − σ222t)

3 .

The first term in each equation represents the standard conditional CAPM volatility risk-

premium in the two states of the world, while the remaining terms are related to the uncertainty

of which state of the economy will prevail in the next period. Only if the investor is certain

about the state in the next period, i.e. when the ex ante probabilities are either λt|t−1 = 0

or λt|t−1 = 1, the investor is certain about the volatility in the next period. In this case only

the standard volatility risk-premium (the first term) is present, i.e. the conditional mean is

either γσ122t or γσ222t. Therefore, we introduce the terminology ”volatility-level premium” and

”volatility-uncertainty premium” for the first term and the remaining terms in Equations (18)

and (19), respectively. It can be seen that the latter premium is increasing in the market price

of risk, the uncertainty about the next period’s state and the difference in volatility between

the two states. The relative magnitudes of the two premiums is an empirical question that will

be examined below.

4 Empirical specification

The theoretical derivation in the previous section does not in itself suggest how to estimate the

model; especially the question of how to estimate the probabilities λt|t−1 and 1 − λt|t−1 must

be addressed. We assume that the unobserved state variable st follows a time homogenous first

order discrete Markov chain. This assumption implies that the transition probabilities are given

by

pkc = Pr (st = c|st−1 = k) , (20)

where st is the state variable and k, c = 1, 2. To estimate such a model, Hamilton (1988,

1989) suggests to iterate through a non-linear filter of the data to make inference about the

unobserved state starting with an initial value λ1|0.
4 The filter can be described by the updating

4We start the Hamilton filter by setting λ1|0 equal to the unconditional (ergodic) probability of state 1, i.e.

λ1|0 = (1− p22) /(2− p11 − p22).
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and prediction equations

λt|t = λt|t−1φ (θ1) /
£
λt|t−1φ (θ1) +

¡
1− λt|t−1

¢
φ (θ2)

¤
(21)

λt+1|t = p11λt|t + (1− p22)
¡
1− λt|t

¢
, (22)

where θ1 and θ2 are the parameter vectors within each state and the updated probabilities of

which state that will prevail the next time period are denoted λt|t and 1−λt|t for state 1 and 2,

respectively. The log-likelihood function for observation t is the denominator in Equation (21)

and the global log-likelihood function for T asset return observations

lnL =
TX
t=1

ln
£
λt|t−1φ (θ1) +

¡
1− λt|t−1

¢
φ (θ2)

¤
, (23)

can therefore be evaluated given values of the predicted probabilities.5

In our empirical application, we assume that the within state probability density function

for the error term is the Normal Inverse Gaussian (NIG) distribution (see e.g. Barndorff-Nielsen

(1997, 1998) for discussions of the NIG distribution)

φ
¡
εt; ᾱ, β̄, µ∗, δ∗

¢
=

ᾱ

δ∗π
exp

µq
ᾱ2 − β̄

2
+ β̄z

¶ K1 ³ᾱ√1 + z2
´

√
1 + z2

, (24)

where K1 (·) is the hyperbolic Bessel function of third order and index one. To approximate

K1 (x), we use the expansion in terms of Chebyshev polynomials given in Abramowitz and

Stegun (1972), Chapter 9, page 379. For convenience, the location-scale invariant parameters

ᾱ = αδ∗ and β̄ = βδ∗ have been introduced. It can be shown that ᾱ and β̄ are shape parameters

controlling steepness and asymmetry, respectively, while µ∗ is a location parameter and δ∗ a

scale parameter. The NIG parameter vector
¡
ᾱ, β̄, δ∗

¢
satisfies the restrictions ᾱ >

¯̄
β̄
¯̄
and

δ∗ > 0, while µ∗ is unrestricted. For the special case β̄ = 0, the NIG distribution is symmetric

with mean equal to µ∗. The Normal distribution is a limiting case as ᾱ→∞ and β̄ = 0. These

properties imply that we can test for symmetry by the hypothesis H0: β̄ = 0 and for normality

by the joint hypothesis H0: β̄ = 0 and ᾱ−1 = 0. Finally, to facilitate the interpretation of

the estimated parameters in the asset pricing model, we will make use of the location-scale

transformation described in Appendix A.

We estimate the model using the series expansion in Equations (18) and (19) for the con-

ditional means and assume that the conditional variances are constant within regimes. Max-

imization of the log-likelihood function is carried out with a simulated annealing algorithm

5See Hamilton (1994) for a thorough textbook treatment of Markov-switching models.
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implemented in C++. We rely on the parameter proposal mechanism given in Ingber (1993,

1996), but otherwise follow Goffe, Ferrier and Rogers (1994).

5 Data

In our empirical application we estimate the model for the U.S. excess market returns measured

by the Siegel-Schwert index 1836-2003 (see Figure 1).6 The sample has an average annualized

excess return of 4.0% and the annualized standard deviation is 17.15%, which gives a Sharpe-

ratio of 0.23 (see Table 1). The sample skewness is quite small and negative (-0.51) while excess

kurtosis is relatively large (8.98). This suggests that the unconditional return distribution is

relatively close to symmetric but that the probability of returns close to the mean and far

away from the mean (extreme returns) are more common than what is implied by the Normal

distribution. These properties support our specification with a mixture distribution that is able

to capture both non-zero skewness and excess kurtosis.

Table 1: Descriptive statistics excess return 1836-2003.
Mean Std. Sharpe Skew. Kurt.
4.001 17.149 0.233 −0.508 8.978

Note: The table reports annualized mean and standard deviation and coefficients of skewness and kurtosis.

6 Estimation of the U.S. market risk premium

The constant price of risk is 1.34 (see Table 2) which it is much lower than the investigations

on smaller samples e.g. Mayfield (2004) estimates a value of 2.7 (see also French, Schwert and

Stambaugh (1987) and Brown and Gibbons (1985)). Pastor and Stambaugh (2001), for more

or less the same period, has a prior distribution for the price of risk with a mean of 1.98 and

the 1st and the 99th percentiles are 1.07 and 3.20 respectively. Our value of 1.34 is more than

one standard deviation below their mean.

The transition probabilities for the two states implies that the estimated expected duration

to remain in the same regime is very different: it is approximately 199 months and 15 months

for the low-volatility regime and the high-volatility regime respectively. The unconditional

probabilities are 0.92 and 0.08, respectively. A graph of the estimated NIG distributions together

6See Siegel (1992) and Pastor and Stambaugh (2001) for details on the construction of the data set.
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with the unconditional mixture distribution, i.e. calculated using the unconditional probability

for each state, can be found in Figure 9.

Table 2: Estimated model parameters.
Low volatility (state 1) High volatility (state 2)

γ (x100) 1.341
[0.004]

pss 0.995
[0.000]

0.939
[0.000]

1/αs 0.521
[0.000]

0.681
[0.028]

βs −0.519
[0.000]

0.009
[0.974]

σs 4.162
[0.000]

10.473
[0.000]

Note: p-values are reported within brackets.

The results for the conditional risk premium and the conditional volatility are presented in

Table 3.7 The two regimes have very different risk levels: the high-risk regime has a volatility

of 36.28 % on an annual basis while the other regime has just 14.42%. These results are close

to the estimates in Mayfield’s investigation, which are 38.4% and 13.0% respectively for the

period 1926 to 1997. We can see that the high volatility state is almost symmetric while the

low volatility state has a negative skewness. But both states have a high kurtosis. These

results support our specification of within state NIG distributions as an alternative to Normal

distributions.8 The evolution of conditional volatility over time is shown in Figure 2: there are

two longer periods with high volatility: the period before and after the Civil war and the decade

following the collapse on Wall Street in 1929. Then there are a few spikes of very high volatility

e.g. during the oil crises in the 1970’s and the crash in October 1987.

Table 3: Estimated conditional (i.e. within state) and unconditional
risk-premium, volatility, skewness and kurtosis.

Low volatility (state 1) High volatility (state 2)

Conditional risk-premium (annualized) 2.787 17.861
Unconditional risk-premium (annualized) 3.930

Conditional volatility (annualized) 14.416 36.278
Unconditional volatility (annualized) 17.121
Conditional coefficient of skewness −0.464 0.012
Unconditional coefficient of skewness −0.044
Conditional coefficient of kurtosis 4.252 4.392
Unconditional coefficient of kurtosis 8.827

Note: The unconditional moments are calculated using the unconditional probability of each state.

7A more detailed description of how the different moments of the discrete mixture are calculated can be found

in Appendix C.

8A LR-test rejects the hypothesis of Normal within state distributions at any conventional level of significance.

This is also the case for a LR-test of symmetric within state distributions (i.e. symmetric NIG distributions).
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The risk premiums for the two regimes are 2.79% and 17.86% on an annual basis. The

unconditional risk premium is 3.93%, which is slightly below the sample average excess return

of 4.00%. The main result is the estimated risk premiums for each period, which are shown in

Figure 3, and the premium is certainly time-varying. Mostly the risk premium hovers around

3%, which is close the unconditional risk premium of the low-volatility regime, but sometimes

it is interrupted by risk premiums above 6%. Notice that the sample mean of 4% may be

considered to be quite high and it belongs to the middle of the 8th decile (see Figure 8). The

results of Pastor and Stambaugh (2001) falls between 4% and 6% and is therefore also quite

high. A really high risk premium of above 16% is very rare and related to three episodes: the

Civil war, the depression of the 1930’s and the oil crises in the 1970’s.9 However, even during

the first two episodes there are shorter periods with a low risk premium. Among these three

episodes the 1930’s stand out by its duration. Schwert (1990) considers this period to be so

unusual that empirical tests including this period are suspect. However, in our two-state model

this extreme period has not such an important effect on the conditional risk premium unless

there is a very high predicted probability for the high volatility state.

The volatility-uncertainty premium for the two states are shown in Figure 4: for the risky

state it varies roughly between zero and 0.25% while for the tranquil state the variation is

between zero and 0.20%. Hence, if the predicted probability of the tranquil state is low then

0.20% should be added to 2.78% i.e. the constant risk premium for this state. However the

actual contribution to the estimated risk premium from this state uncertainty is very low: it

is at most 0.06% (see Figure 5). Thus, from an empirical point of view this premium has not

been a very important part of the estimated risk premium.

In Figure 6 we present the forecasted probability for the tranquil state and quite often the

probability is close to one. This regime is much more frequent than the high-volatility state, in

fact the predicted probability for the tranquil state is over 0.9 for 87% of the observations (see

Figure 7). Thus, there is most of the time a quite strong belief in the low-risk regime and the

high-risk regime has almost only a very high probability around the three episodes mentioned

above.

9These events are close to to the periods with high posterior break probabilities in Pastor and Stambaugh

(2001).

11



7 Conclusions

We have developed the within state expected return formulas that are consistent with condi-

tional CAPM when the return generating process is a two-state switching process that is only

partially observed by investors. Under these assumptions the market risk-premiums in the two

states can be decomposed into a standard CAPM volatility-level premium plus an additional

volatility-uncertainty premium. The latter premium is increasing in the market price of risk,

the uncertainty about the next period’s state and the difference in volatility between the two

states.

In the empirical specification of the model we presumed that the unobserved state variable

follows a time homogenous first order discrete Markov chain. A discrete mixture of two Normal

Inverse Gaussian (NIG) distributions was applied to represent the return characteristics in

the unobservable states. This two-state location-scale-shape mixture of NIG distributions was

chosen as an alternative that relaxes the restrictions placed by the Normal distribution on within

state coefficients of skewness and kurtosis.

In an empirical application of the model, i.e. presuming conditional CAPM and a two-state

mixture return generating process, we estimated the time varying risk premium for the U.S.

market index during the period 1836 to 2003. The high-risk regime has a volatility of 36.28 %

on an annual basis while the other regime has just 14.42%. The low-volatility regime is much

more frequent than the high-volatility state according to the predicted probabilities. Stock

returns display statistically significant negative skewness in the low volatility state and are

symmetric in the high volatility state, but in both states returns display statistically significant

excess kurtosis. These results support our specification of within state NIG distributions as

an alternative to Normal distributions. The risk premiums for the two regimes are 2.79%

and 17.86% on an annual basis, but the volatility-uncertainty premium for the two states are

shown to give an unimportant contribution to the estimated risk premium. The estimated risk

premiums vary quite a lot but they are mostly around 3%. The most striking result, from a

practical point of view, is that the average sample risk premium of 4% is above the estimated

conditional risk premiums for almost 90% of the months.
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Appendix A

A general time-series specification for the excess return rt within state s can be written

rt = µst + σstεst (A1)

where µst and σst are time-varying parameters within state s (measurable w.r.t. the information

set Ψt−1). We assume that εst = (rt − µst) /σst is distributed as

εst|Ψt−1, st = s ∼ NIG
¡
ᾱs, β̄, µs∗, δs∗

¢
(A2)

for some parameters µs∗ and δs∗, where ᾱs = αsδs∗ and β̄s = βsδs∗ are location-scale invariant

steepness and asymmetry parameters. Further, we require that

E [rt|Ψt−1, st = s] = µst (A3)

var (rt|Ψt−1, st = s) = σ2st, (A4)

which facilitates an interpretation of µst as the within state conditional mean and σ2st as the

within state conditional variance of rt. From the distributional assumption Equation (A2) it

follows that (see Equations (C4) and (C5) in Appendix C)

E [εt|Ψt−1, st = s] = µs∗ +
δs∗ρ̄sp
1− ρ̄2s

(A5)

var (εt|Ψt−1, st = s) =
δ2s∗

ᾱs(
p
1− ρ̄2s)

3
(A6)

where ρ̄s = β̄s/ᾱs = βs/αs. The solution to E[εt|Ψt−1, st = s] = 0 and var(εt|Ψt−1, st = s) = 1

is therefore given by

µs∗ = − δs∗ρ̄sp
1− ρ̄2s

(A7)

δs∗ = αs(
p
1− ρ̄2s)

3. (A8)

From this result and the location-scale invariance property it follows that

rt|Ψt−1, st = s ∼ NIG
¡
ᾱs, β̄s, µst + µs∗σst, δs∗σst

¢
. (A9)

From this re-parameterization it follows that we can interpret µst as the within state conditional

mean and σ2st as the within state conditional variance. The estimated parameters are therefore

the transition probabilities p11 and p22, the market price of risk γ, the steepness and skewness

parameters α1, α2, β1 and β2 in the two states together with any additional parameters in the

specifications of the within state conditional variances.
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Appendix B

In this Appendix the within state mean equations for asset 1 consistent with the conditional

CAPM is derived, i.e. the within state asset pricing equations for all assets in the economy.

This is the multivariate extension of the univariate within state asset pricing equations for the

market portfolio derived in Section 3. Using the solution for the market portfolio, i.e. Equations

(16) and (17), the solution for asset 1 is given by

µ11t =
γσ112t"

1− (
1−
q
1+4γ2(σ122t−σ222t)(2λt|t−1−1)

2 )

# (B1)

− γ¡
2λt|t−1 − 1

¢
h
λ2t|t−1σ112t −

¡
1− λt|t−1

¢2
σ212t

i "1−q1+4γ2(σ122t−σ222t)(2λt|t−1−1)
2

#
"
1− (

1−
q
1+4γ2(σ122t−σ222t)(2λt|t−1−1)

2 )

#
µ21t =

γσ212t"
1− (

1−
q
1+4γ2(σ122t−σ222t)(2λt|t−1−1)

2 )

# (B2)

− γ¡
2λt|t−1 − 1

¢
h
λ2t|t−1σ112t −

¡
1− λt|t−1

¢2
σ212t

i "1−q1+4γ2(σ122t−σ222t)(2λt|t−1−1)
2

#
"
1− (

1−
q
1+4γ2(σ122t−σ222t)(2λt|t−1−1)

2 )

# .

These expressions are more complicated than for the market portfolio since they involve both

the market variances, σ122t in state 1 and σ222t in state 2, and the covariances of asset 1 with the

market, σ112t in state 1 and σ212t in state 2. It can be noted that the within state risk-premiums

are not necessarily equal even if the market risk is equal across states. This is a consequence of

the fact that a higher covariance between the asset and the market within one state implies a

higher risk-premium in that state according to Equations (B1) and (B2).10

10If the market risk is equal across states, then the within state conditional means reduces to µ11t = γσ112t
and µ21t = γσ212t.
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Appendix C

This appendix derives the mean, variance, skewness and kurtosis of a stochastic variable dis-

tributed as a discrete mixture of Normal Inverse Gaussian distributions. Assuming that R has

a probability density function f (·) in the form of a discrete mixture of NIG distributions (with

S states), the corresponding moment generating function is by definition

MR (u) =

+∞Z
−∞

eurf (r) dr =

+∞Z
−∞

eur

"
SX
s=1

psφs (r)

#
dr =

SX
s=1

psM
NIG
s (u) (C1)

where ps is the weight (probability) attached to state s, φs (·) is the NIG distribution in state

s and and MNIG
s (·) the moment generating function for the NIG distribution in state s. The

moment generating function for the NIG distribution in terms of the location-scale invariant

parameters ᾱ and β̄ is given in Barndorff-Nielsen (1997, 1998) and Jensen and Lunde (2001) as

MNIG (u) = exp

∙
ᾱ

µp
1− ρ̄2 −

q
1− (ρ̄+ (δ/ᾱ)u)2

¶
+ µu

¸
. (C2)

The first four moments (about the mean) can then be calculated as

m(n) =
∂n

∂un
MNIG (u) |u=0 (C3)

for n = 1, 2, 3, 4. The mean, variance, skewness and kurtosis of a NIG distributed variable are

m(1) = µ+
δρ̄p
1− ρ̄2

(C4)

m(2) =
δ2

ᾱ
³p

1− ρ̄2
´3 (C5)

m(3) =
3δ3ρ̄

ᾱ2
³p

1− ρ̄2
´5 (C6)

m(4) =
3δ4

³
ᾱ
p
1− ρ̄2 + 4ρ̄2 + 1

´
ᾱ3
³p

1− ρ̄2
´7 , (C7)

where ρ̄s = β̄s/ᾱs = βs/αs. It can be seen that if β̄ = 0, thenm
(3) = 0, and hence the coefficient

of skewness is equal to zero. Assuming again that β̄ = 0, then m(4)/
£
m(2)

¤2
= 3

¡
1 + ᾱ−1

¢
,

which illustrates that the coefficient of kurtosis can be arbitrarily high. It follows from Equations

(C1) and (C2) that the cumulant generating function for the discrete mixture is given by

lnMR (u) = ln
SX
s=1

ps exp

∙
ᾱs

µp
1− ρ̄2s −

q
1− (ρ̄s + (δs/ᾱs)u)2

¶
+ µsu

¸
(C8)
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and hence all moments are readily available. After some tedious algebra the first four cumulants

for the stochastic variable R is found to be

κ
(1)
R =

SX
s=1

psm
(1)
s (C9)

κ
(2)
R =

SX
s=1

ps

∙
m(2)

s +
³
m(1)

s

´2¸
−
Ã

SX
s=1

psm
(1)
s

!2
(C10)

κ
(3)
R =

SX
s=1

ps

∙
m(3)

s + 3m(2)
s m(1)

s +
³
m(1)

s

´3¸
(C11)

−3
SX
s=1

ps

∙
m(2)

s +
³
m(1)

s

´2¸
·

SX
s=1

psm
(1)
s + 2

Ã
SX
s=1

psm
(1)
s

!3

κ
(4)
R =

SX
s=1

ps

∙
m(4)

s + 4m(3)
s m(1)

s + 6m(2)
s

³
m(1)

s

´2
+
³
m(1)

s

´4¸
(C12)

−4
SX
s=1

ps

∙
m(3)

s + 3m(2)
s m(1)

s +
³
m(1)

s

´3¸
·

SX
s=1

psm
(1)
s

+12
SX
s=1

ps

∙
m(2)

s +
³
m(1)

s

´2¸
·
Ã

SX
s=1

psm
(1)
s

!2

−3
Ã

SX
s=1

ps

∙
m(2)

s +
³
m(1)

s

´2¸!2
− 6

Ã
SX
s=1

psm
(1)
s

!4

where m
(n)
s is the n:th moment about the mean within state s presented in Equations (C4)-

(C7) above and κ
(1)
R and κ

(2)
R are by definition the mean and variance of R. The coefficients of

skewness and kurtosis are calculated as

η
(1)
R =

κ
(3)
Rh

κ
(2)
R

i3/2 (C13)

η
(2)
R =

κ
(4)
Rh

κ
(2)
R

i2 + 3 (C14)

where η
(1)
R is the coefficient of skewness and η

(2)
R is the coefficient of kurtosis.
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Figure 1: Realized monthly U.S. excess market return 1836-2003.
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Figure 2: Estimated standard deviation (annualized) for U.S. stock market
1836-2003.
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Figure 3: Estimated risk-premium (annualized) for U.S. stock market 1836-2003.
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Figure 4: Volatility-uncertainty premium in the two states. The solid line

represents the tranquil state.
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Figure 5: Total volatility-uncertainty premium.
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Figure 6: Forecasted (ex ante) probability of the tranquil state (state 1).
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Figure 7: Distribution of forecasted probabilities for the two states. The solid line

represents the tranquil state.
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Figure 8: Distribution of estimated conditional risk premium. The solid straight

line is the excess return sample mean.
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and the unconditional mixture distribution is solid.
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