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Abstract

We study the impact of incomplete consumption risk-sharing on land misalloca-
tion in rural economies. We develop a general equilibrium model of land cultiva-
tion choices, where heterogeneous agricultural households face idiosyncratic output
shocks and insure themselves by participating in a risk-sharing arrangement. Incom-
plete insurance distorts households’ choices, leading them away from maximizing
expected incomes and resulting in land misallocation. Using the latest ICRISAT panel
data from rural India, we quantify the losses attributable to limited risk-sharing. Com-
pleting insurance markets leads to output and welfare gains of 19% and 29%, respec-
tively. Improving the functioning of consumption insurance markets within an other-
wise undistorted economy can yield gains comparable to those achieved by removing
distortions in factor markets.
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1 Introduction

Markets in the developing world are plagued by several frictions, and insurance mar-
kets are no exception to this general rule. Barriers to risk-sharing affect the allocation of
consumption (Townsend, 1994; Udry, 1994; Fafchamps, 2011), production choices (Ben-
jamin, 1992), migration decisions (Morten, 2019), and engagement in the non-farm sector
(De Giorgi et al., 2024). Incomplete insurance also diminishes the incentives for acquiring
risky inputs—an argument originally advanced by Arrow (1971), lowering productivity
and increasing consumption inequality among farmers in developing countries (Dono-
van, 2021).

In this paper, we show that imperfections in insurance markets, taking the form of
incomplete consumption risk-sharing, have implications for the allocative efficiency of
land among farmers, resulting in large output and welfare losses. A growing literature
highlights how farm-specific distortions contribute to factor misallocation in agriculture
(Adamopoulos and Restuccia, 2014; Adamopoulos et al., 2022).1 In the presence of limited
consumption risk-sharing, land misallocation can exist even in an economy with other-
wise undistorted markets. Our quantitative findings for rural India imply that complet-
ing insurance markets can substantially reduce land misallocation, leading to output and
welfare gains of 19% and 29%, respectively.

In village economies, shocks from harvest failures, price shifts, illness, and pests leave
households vulnerable to severe hardship. Insurance against idiosyncratic income fluc-
tuations often relies on informal arrangements like gift exchanges and personal loans.2

The literature indicates that imperfections in these arrangements are pervasive: house-
holds are unable to fully insure against idiosyncratic risks (Townsend, 1994; Udry, 1994;
Fafchamps, 2011). This lack of insurance not only affects consumption but can also have
distortionary effects on the allocation of factors of production (Foster and Rosenzweig,
2010; Donovan, 2021). Building on this evidence, we study the impact that limited insur-
ance has on land markets, focusing on allocative efficiency—the potential to redistribute
cultivated plots among farms thereby increasing overall agricultural yields.

To illustrate our line of reasoning, consider a village economy with a fixed supply
of land that is bought and sold (or rented in and out) in an undistorted, competitive
market. Under full insurance, household-farms’ production decisions are separable from
their consumption, ensuring that, in equilibrium, each household chooses how much land

1The literature highlights the impact of various factors, including inheritance laws, tax and subsidies,
and land and tenancy regulations, as potential sources of distortions to the allocation of land across farms
in developing countries. See Subsection 1.1 for a review.

2See Dercon (2002) for a review of the source of idiosyncratic income risks and coping strategies in rural
economies.
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to cultivate to maximize its expected profits. Expected profit maximization drives each
farmer to the familiar condition of equating the expected marginal product of land to its
price. Thus, the expected marginal products of land are equalized across farms, resulting
in an efficient allocation of land and maximal aggregate expected output. Under incom-
plete insurance, the “separation property” breaks apart: households’ equilibrium land
choices are not generally characterized by an expected profit maximization condition,
which prevents the equalization of the expected marginal products of land across farms.
Thus, imperfections in insurance markets lead to land misallocation and lower aggregate
output.

We outline a general equilibrium model of risk-sharing in which household-farms
with heterogeneous productivities insure against idiosyncratic output shocks by sharing
the incomes they generate from operating their farms. Each farmer chooses how much
land to buy before the shocks are realized. We characterize the equilibrium land allocation
across a range of risk-sharing levels, ranging from full to no insurance. Besides decreasing
the expected utility of buying land, lower insurance weakens the link between farm pro-
ductivity and land holdings. Under full insurance, each household-farm’s equilibrium
land choices maximize its expected income, making it impossible to redistribute land
from one farmer to another without lowering aggregate expected income. Incomplete
insurance distorts these choices away from expected income maximization by increasing
the weights that households attach to states of the world in which income is low. These
distortions imply that, in equilibrium, the expected marginal products of land are not
equalized across households—i.e., land is misallocated.

We test our model using the latest ICRISAT monthly panel data (2009–2014) from
the Indian semi-arid tropics, offering evidence linking risk-sharing to land misallocation.
First, we measure risk-sharing across villages and time by estimating the elasticity of
household consumption with respect to idiosyncratic income shocks for each village and
year. We find evidence of limited consumption insurance in rural India, consistent with
the literature: on average, 22.5% of idiosyncratic income fluctuations are passed through
to consumption. Second, we quantify land market misallocation in each village and year
using two metrics of factor misallocation: the correlation between total land cultivated
and household-farm physical productivity, and the variance of the marginal product of
land for each village-year pair. The correlation between productivity and land cultivated
is a well-known measure of allocative efficiency in the land market, where a higher corre-
lation indicates that more productive farms cultivate more land, on average (Chen et al.,
2023). The variance of the marginal product of land quantifies the deviation from a bench-
mark scenario in which land’s marginal products are equalized across farms, indicative
of an efficient allocation of land to production units (Restuccia and Rogerson, 2017). Con-
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sistent with our theory, we find a significant positive correlation between risk-sharing
and the correlation between productivity and land cultivated, and a significant negative
correlation between risk-sharing and the variance of the marginal product of land.

We then leverage the structure of our model to quantify output and welfare gains
resulting from improving the functioning of consumption insurance markets in village
economies. While parsimonious, our model successfully replicates the negative correla-
tion between risk-sharing and land misallocation as an untargeted moment. Armed with
the structural estimates, we conduct a counterfactual analysis to explore the impact of
improving consumption insurance markets in Indian villages. We examine how these
improvements affect the functioning of land markets and contribute to gains in aggregate
output and welfare. Completing insurance markets leads to output and welfare gains of
19%, and 29%, respectively. Agricultural productivity (yields per unit of land) increases
by 45% under full insurance. This figure is comparable to other estimates in the litera-
ture: e.g., Adamopoulos et al. (2022) finds that eliminating farm-specific distortions com-
ing from land market frictions in rural China average farm productivity by 53%. These
results are robust to incorporating both imperfect risk-sharing and household-specific
distortions in the output market: we find that the aggregate output and efficiency gains
from completing insurance remain virtually unchanged even when distortions are mod-
eled. Our counterfactual exercise allows us to conclude that imperfections in consumption
insurance markets can be as important as farm-specific distortions in explaining the gains
from reallocating inputs across farms in developing countries.

1.1 Related literature

Our paper belongs to the growing literature on misallocation of inputs in agriculture.
Gollin et al. (2002) and Restuccia et al. (2008) emphasize the role of the agricultural sec-
tor in economic development and its importance in explaining cross-country productiv-
ity and income differences. The broad theme of factor misallocation and its influence
on cross-country productivity differences is explored in Restuccia and Rogerson (2008),
Restuccia and Rogerson (2013), and Restuccia and Rogerson (2017). Chen et al. (2023)
find that capital and operational land size are essentially unrelated to farm productivity
in Malawi, implying the existence of misallocation in the land market. Chen et al. (2022)
show how land rental market imperfections in Ethiopia lead to land misallocation, high-
lighting the output and welfare gains from land certification reforms. Acampora et al.
(2022) provide experimental evidence that cultivation rights decrease land misallocation
in Kenya. Adamopoulos et al. (2022) argue that within-village frictions in the capital and
land markets, linked to land institutions, disproportionately constrain productive farm-
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ers in rural China.3 This body of literature generally explains factor misallocation as a
consequence of generic distortions in input or output markets (i.e., “wedges”), or institu-
tions that constrain the choices of productive firms. Our research enriches this narrative
by introducing a potential micro-foundation for these wedges, highlighting the role of
incomplete consumption insurance markets.

Deviations from perfect risk-sharing within village economies are well documented
(see Townsend (1994), Udry (1994), and Fafchamps (2011), among others). A body of
work has provided several explanations for imperfect risk-sharing, rationalizing them as
consequences of primitive frictions such as action unverifiability (Ligon, 1998), limited
commitment (Ligon et al., 2002), hidden income (Kinnan, 2021), and localized informa-
tion constraints (Ambrus et al., 2022). The degree of risk-sharing within a village can
affect several aspects of its economy. Morten (2019) studies the interaction between in-
formal insurance and temporary migration as a self-insurance strategy. Mazur (2023) ex-
plores the relationship between risk-sharing and irrigation investments. Pietrobon (2024)
examines how informal insurance impacts fertilizer use when fertilizer is risky and effort-
complementary, and insurance may crowd out effort supply. Donovan (2021) examines
the impact of insurance on the use of agricultural intermediates, and suggests that com-
pleting financial markets allows farmers to invest in risky inputs, leading to significant
increases in labor productivity and input share. We build upon a mechanism similar to
the one in Donovan (2021) to argue that the lack of insurance might distort farmers’ land
cultivation choices. However, our emphasis is distinct: rather than focusing on how im-
perfect insurance can decrease investments in land, we highlight how these imperfections
result in land misallocation.

Finally, our paper contributes to the understanding of how land gets allocated to farm-
ers in developing countries. In the semi-arid tropics of India, land markets exhibit a rich
diversity, with many farm households engaging in buying or selling of land, or partici-
pating in the land rental market to some extent (see Ray (1998), Chapter 12). The salience
of rental markets is emphasized in the literature on sharecropping practices (e.g., Lamb
(2003)). Our research intersects with this topic by exploring the interaction between im-
perfect consumption insurance and input allocation in the land market.

3Misallocation of inputs in agriculture extends beyond the markets for capital and land: for example,
Adamopoulos and Restuccia (2022) estimate substantial aggregate productivity gains from the spatial real-
location of crop production.
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2 Model

We analyze a static economy in which households with heterogeneous productivities face
idiosyncratic output shocks and can insure against these shocks by only relying on a risk-
sharing arrangement.4 Each household operates a farm and decides how much land to
purchase for cultivation before its output shock is realized. This choice affects the distri-
bution of the income generated by the farm, which is calculated as the value of agricul-
tural output net of the cost of acquiring land. The risk-sharing pool allows households to
share their incomes to hedge against the idiosyncratic output shocks. We use this model
to illustrate how the degree of risk-sharing affects misallocation in the land market. In
Appendix A, we briefly discuss some modeling choices. Appendix B contains all the
proofs. In the discussion that follows, when we refer to households, we specifically mean
agricultural households that also operate a farm.

Consider a static economy populated by a unit measure of household types indexed
by i. For each type i, there is a unit mass of ex-ante identical households. Each household
type i is characterized by a productivity level, θi, and initial land holdings, ℓ̃i. Let the
total quantity of land available in the economy be L =

∫
ℓ̃idi.5 Households have identi-

cal preferences over consumption, represented by a constant-relative risk averse (CRRA)
utility function with a coefficient of relative risk aversion σ. Households of the same
type, which are ex-ante identical, differ ex-post only with respect to the realization of an
idiosyncratic (household-specific) output shock, ρ, drawn from a cumulative distribution
function Qρ (ρ) and support on some interval

[
ρ, ρ

]
⊂ R++. We assume that ρ is high

enough so that household consumption is bounded away from zero.
A household of type i produces output according to the following decreasing-returns-

to-scale production function:
yiρ = θiρℓ

α
i ,

where ℓi is land cultivated by a household of type i,6 and α ∈ (0, 1) denotes the land
share—the elasticity of agricultural yields with respect to land cultivated.7 Let r be the

4We abstract from modeling borrowing or savings decisions, which are alternative means for house-
holds to self-insure. In the context of rural India, households’ ability to borrow and save appears to be
heavily constrained (Rosenzweig and Wolpin, 1993).

5With a fixed land supply, risk-sharing does not affect aggregate equilibrium land cultivation, as the
land price adjusts to balance supply and demand. In this way, we can theoretically isolate the effect of
risk-sharing on land misallocation.

6Since households of the same type are ex-ante identical and make land cultivation choices before the
output shocks are realized, these choices are identical for all households of the same type. Hence, referring
to ℓi as the land cultivated by a household of type i is unambiguous.

7Our model can be extended to include an output shock with both aggregate and idiosyncratic com-
ponents: since all households receive the same aggregate shock, they can engage in risk-sharing to fully
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price of land, and let πiρ = θiρℓ
α
i − r

(
ℓi − ℓ̃i

)
denote the income of a household of type i

under output shock realization ρ. All the land cultivated by each household is bought and
sold in a land market before the output shocks are realized. Unlike most of the misallo-
cation literature, we assume this market to be competitive and frictionless. Additionally,
there are no distortions or “taxes” in the output market. These assumptions enable us to
distinguish our findings from the more conventional narratives in the misallocation liter-
ature, which typically attribute land misallocation to land or output market distortions.

2.1 Full insurance vs. no sharing

To isolate the impact of insurance on land misallocation, we begin by comparing an econ-
omy with complete markets (full insurance) to one in which households are hand-to-
mouth (no sharing). Starting from the former, let ci(ρ) denote the consumption of a
household of type i when the state of the world is ρ, where ρ represents the collection of
realizations of the output shock for each household in the economy, drawn from the joint
cumulative distribution function Qρ (ρ).8 Moreover, let c (ρ) = (ci (ρ))i and ℓ = (ℓi)i rep-
resent the collections of consumptions (under state of the world ρ) and land cultivation
choices of all household types. To characterize an allocation of resources under complete
markets, we solve the following planner’s problem for a given collection of type-specific
Pareto weights (νi)i:

max
(c(ρ))ρ,ℓ

∫
νi

∫
(ci (ρ))

1−σ

1 − σ
dQρ (ρ)di,

subject to the land availability constraint∫
ℓidi =

∫
ℓ̃idi = L

and the feasibility constraint∫ ∫
ci (ρ)dQρ (ρ)di =

∫ ∫
yiρdQρ (ρ)di.

insure against the output variation that arises from the idiosyncratic components of the shocks. For sim-
plicity, we abstract from modeling farm capital and labor. In the empirical section, we incorporate data on
these other factors of production, land quality, and rainfall shocks to estimate household-farm productivity.
See Subsection 3.3 for further details.

8The careful reader will observe that our notation implies identical household consumption for house-
holds of the same type, conditional on the realization of the output shock. This assumption holds if the
equilibrium allocation of resources under full insurance can be computed as the solution to a planner’s
problem with a weighted utilitarian social welfare function, using type-specific Pareto weights. We invoke
this assumption below.
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Under full insurance, households can completely eliminate the effects of idiosyncratic
output shocks. Each household consumes a fixed fraction of the constant aggregate out-
put, where this fraction is proportional to its Pareto weight. An optimal consumption al-
location satisfies the well-known Borch rule, which states that the ratio of any two house-
holds’ marginal utilities of consumption is constant across all states of the world.

Claim 1. Under full insurance, each household consumes a constant fraction of aggregate output,
with the fraction being proportional to its Pareto weight.

An optimal consumption allocation under full insurance ensures that each house-
hold’s consumption remains constant across all states of the world. Consequently, the
planner can disregard how land cultivation decisions affect the distribution of consump-
tion, implying that an optimal allocation of land across households simply requires each
farmer to cultivate an amount of land where the expected marginal product equals its
shadow price. In a decentralized complete-market economy, this outcome would result
from the separation theorem, which states that each household-farm makes production
decisions to maximize its expected income. (Bardhan and Udry, 1999). Given that the ex-
pected marginal products of land are equalized across households, an allocation of land
under full insurance features no misallocation and maximizes aggregate expected output.

Claim 2. Under full insurance, the expected marginal products of land are equalized across house-
holds and aggregate expected output is maximized.

Next, we consider the allocation of land that obtains in a competitive equilibrium
under no sharing. When risk-sharing is absent, the problem of a household of type i
reads as follows:

max
ci(ρ),ℓi

∫
(ci (ρ))

1−σ

1 − σ
dQρ (ρ)

subject to the budget constraint

ci (ρ) = yiρ − rIM
(
ℓi − ℓ̃i

)
,

where rIM denotes the equilibrium price of land under no sharing (incomplete markets).
Without risk-sharing, each household’s consumption (and marginal utility of consump-
tion) depends on the realization of its output shock. This dependency distorts house-
holds’ land cultivation decisions, implying that an equilibrium land allocation does not
maximize expected income for each household. In particular, because households con-
sider how land cultivation choices impact the distribution of consumption across different
states of the world, it generally will not hold that each household equates the expected
marginal product of land with its market price. When the expected marginal products
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of land do not uniformly match the price of land across different households, there ex-
ists land misallocation—redistributing land across households can increase aggregate ex-
pected output.9

Claim 3. Under no sharing, there is land misallocation.

The key takeaway from Claim 3 is that distortions in consumption insurance markets
(i.e., lack of insurance) alone are sufficient to cause misallocation in the land market, even
when the land market itself operates without any other distortions.

2.2 Partial insurance

More broadly, we can investigate the impact of risk-sharing on land misallocation for any
degree of risk-sharing. More specifically, we explore the relationship between the elastic-
ity of consumption with respect to own income—used as a measure of lack of insurance—
and misallocation in the land market, as measured by the extent to which the marginal
returns of land are distorted away from zero across household types and states of the
world.

We consider an environment with partial insurance, an intermediate situation between
the full insurance and no sharing scenarios discussed in Subsection 2.1. To model partial
insurance, we define the following consumption function for a household of type i:

ci (ρ) = exp

β log
(
πiρ

)
+ (1 − β) log

 ν
1
σ
i∫

ν
1
σ
j dj

∫ ∫
πjρdQρ (ρ)dj


 . (1)

In this formulation, β represents the elasticity of consumption with respect to individual
income, while 1 − β is the elasticity of consumption with respect to aggregate income.
Under full insurance, β = 0; under no sharing, β = 1. Any β value between these
extremes represents varying degrees of partial insurance, with higher β values indicating
worse insurance. The following theorem shows that misallocation in the land market
decreases with the degree of insurance.

Theorem 1. Land market misallocation increases in the elasticity of consumption with respect to
own income, β.

9Our model assumes homogeneous land quality for the sake of simplification, but the main results
of the paper would remain valid even if land parcels had heterogeneous productivities. However, when
estimating households’ agricultural production functions in Subsection 3.3, we account for heterogeneous
land quality based on observable characteristics.
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In the full-insurance benchmark, where each household’s consumption is constant
across all states of the world, the expected marginal products of land are equalized across
households. As we deviate from this benchmark, the distribution of each household’s
marginal utility of consumption increasingly reflects the impact of its realized output
shocks. Amplifying the variability in households’ marginal utilities of consumption across
different states of the world is isomorphic to imposing distortions that affect the marginal
return on land in each state. Thus, as households’ marginal utilities become increasingly
tied to their realized output shocks, land allocation decisions deviate further from the full
insurance benchmark.10

3 Risk-sharing and misallocation in Indian villages

3.1 Background and data

We use household panel data collected under the Village Dynamics in South Asia (VDSA)
project by the International Crop Research Institute for the Indian Semi-Arid Tropics
(ICRISAT). The data are derived from detailed survey interviews conducted between 2009
and 2014 in 18 villages in the Indian semi-arid tropics. Some components of the survey
were administered monthly, while others were administered annually. As discussed in
Subsection 3.5, these data allow us to construct monthly measures of consumption and in-
come for households in different villages.11 This feature offers the advantage of estimat-
ing the level of risk-sharing specific to each village and year. We exploit this possibility
in Subsections 3.5 and 3.6, where we relate the level of risk-sharing in each village and
year to land misallocation at the village-year level. The data include information from 40
randomly selected households in each village, stratified by landholding size. Specifically,
the 40 households include 10 landless laborers, 10 small farmers, 10 medium farmers,
and 10 large farmers.12 For our empirical exercise, we require data on the households’
agricultural inputs and corresponding outputs. We are particularly interested in farm
output, farm capital, and land. These data fit our needs because they provide detailed in-
formation on households’ farming activities: for each plot and each operation performed

10Our model shows that enhancing risk-sharing reduces land misallocation in equilibrium, but it is silent
about the distributional implications of such improvements. While a reduction in risk-sharing could the-
oretically cause land to shift from less to more productive households, this situation would still lead to
greater misallocation. This result follows from the fact that under full insurance, the expected marginal
products of land are equalized. Therefore, any distortion in households’ choices due to decreased risk-
sharing would lead to deviations from this benchmark, exacerbating misallocation.

11As in Section 2, the term ‘household’ refers to an agricultural household operating a farm.
12This classification is based on operational landholdings, which equals the size of own land plus that of

land leased/shared in and minus that of land leased/shared out.
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in a plot, the data reports the quantity and value of all inputs used by the household
cultivating the plot. The data also contains comprehensive information on expenditures
and incomes, which we use to construct variables for consumption and income at the
household-month level. We refer to Townsend (1994), Mazzocco and Saini (2012), and
Morten (2019) for more detailed descriptions of the data.13 Section C in the Appendix
reports a detailed description of the variables used in the analyses.

Table 1: Farm size distributions (% of farms by size)

2009-2014 ICRISAT 1990 World Census of Agriculture
Farm size (hectares) India Malawi Belgium United States

≤ 1 17.93 77.7 14.6 0.0
1–2 23.88 17.3 8.5 0.0
2–5 38.26 5.0 15.5 10.6
5–10 13.45 0.0 14.8 7.5
≥ 10 6.49 0.0 46.6 81.9
Average 3.819 0.7 16.1 187.0

Notes: This table presents the percentage distribution of farm sizes in hectares for India, Malawi,
Belgium, and the United States. Data for India are derived from our computations based on the
2009-2014 ICRISAT panel data from the Indian semi-arid tropics. Data for Malawi, Belgium, and
the United States are from the 1990 World Census of Agriculture, as documented in Adamopou-
los and Restuccia (2014).

3.2 Land distribution

Table 1 presents the distribution of cultivated land, measured in hectares, for each farmer
with positive amounts of cultivated land. This table compares these figures with those
from Malawi, Belgium, and the United States, as documented in the 1990 World Census
of Agriculture (Adamopoulos and Restuccia, 2014).14

13As pointed out by Mazzocco and Saini (2012), it can be difficult to compare some of the information
contained in the data (e.g., expenditures) across households and over time, since (1) the frequency of the
interviews varies, and (2) the interview dates differ across respondents. Some recall periods can be longer
than a month (e.g., a household in Aurepalle reported the amount spent on rice from July 1 to November
8, 2009). Hence, it is impossible to determine how the information provided is distributed over the months
that make up recall periods longer than a month. Fortunately, from 2010 onward, the survey gives infor-
mation on the month to which every piece of information refers. Therefore, we drop the observations that
pertain to the year 2009.

14In the World Census of Agriculture, “[a]n agricultural holding is an economic unit of agricultural
production under single management comprising all livestock kept and all land used wholly or partly for
agricultural production purposes, without regard to title, legal form or size” (https://www.fao.org/4/
x0187e/x0187e01.htm). Given this definition, when comparing the ICRISAT data to the World Census of
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Compared to Belgium and the United States, the distribution of land cultivated is
more left-skewed. In our sample, around 80% of farms cultivate less than 5 hectares of
land, and nearly 95% of the farmlands are under 10 hectares. The average land size in
our sample is 3.8 hectares, against a value of 0.7 hectares for Malawian farms, and much
larger values of 16.1 and 187.0 hectares for Belgian and American farms, respectively.

3.3 Physical productivities across households and years

For our analysis, it is essential to accurately estimate each farmer’s physical productivity,
also known as TFP-Q. To achieve this, we propose and estimate an agricultural produc-
tion function that incorporates additional sources of variability from observable charac-
teristics compared to the one presented in Section 2. Specifically, following Chen et al.
(2023), we posit the following agricultural production function:

yiτ = eκt eϑrainvτ θiρiτ(k
γ
iτh1−γ

iτ )1−α(qiτℓiτ)
1−α, α, γ ∈ (0, 1), (2)

where yiτ denotes the agricultural output of household-farm i in year τ;15 κτ capture com-
mon year-specific factors; rainvτ denotes the amount of rain (in millimeters) in village v
and year τ;16 θi denotes household i’s time-invariant productivity; ρiτ is a multiplicative,
idiosyncratic output shock, which we define below (see Equation (4)); kiτ is capital, mea-
sured by the total value of farm equipment owned by the household; hiτ denotes total
hours of family labor dedicated to farming activities; ℓiτ represents total land cultivated,
measured in hectares; and qiτ is land quality, which we define below (see Equation (6)).
We assume that

θi = eµi , (3)

Agriculture, it is more appropriate to consider farm size in terms of cultivated land rather than owned area.
We also maintain that cultivated area is inherently a more accurate measure of farm size because it avoids
measurement errors arising from not including plots that are cultivated but not owned including plots that
are owned but not cultivated.

15In the ICRISAT data, information on agricultural yields is available only at an annual frequency. On
the other hand, information on some inputs used in agricultural production, such as labor, is available at a
monthly frequency. To estimate households’ physical productivities, we aggregate these higher-frequency
variables to an annual frequency.

16Rainfall shocks are major sources of transitory variation in agricultural output in semi-arid tropical
India, where the vast majority of land plots are rain-fed. To measure them, we use daily recordings of
rainfall levels at the nearest weather station to each village and derive the total annual rainfall for each
village by summing these daily measurements over the year.
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where µi represents permanent unobserved heterogeneity specific to household i. Simi-
larly, we let the shock to output, ρiτ, to be equal to

ρiτ = eεiτ , (4)

where εiτ is an unobserved error term. Our approach involves treating the idiosyn-
cratic output shock, ρiτ, as a residual after accounting for farm-specific fixed effects and
other variation in output originating from observable sources. After taking logs and re-
arranging terms, Equation (2) becomes

log (πiτ) = (1 − α) log(kγ
iτh1−γ

iτ ) + α log(qiτℓiτ) + κτ + ϑrainvτ + µi + εiτ. (5)

As for land quality, we posit that

log qiτ = δ1depthiτ + δ2slopeiτ + δ3fertilityiτ + δ4degradationiτ, (6)

where depthiτ, slopeiτ, fertilityiτ, and degradationiτ represent measures of the average
soil depth, slope, fertility, and degree of degradation, respectively, for the plots cultivated
by household i in year τ (see Appendix C for additional details on the construction of
these variables). Finally, we assume that µi and εiτ are independent of each other.

Table 2: TFP-Q dispersion across farms and manufacturing firms

Farms Manufacturing firms
India Malawi US India China US

2010-2014 2010-2011 1990 1987 1998 1977

St.dev., log 1.08 1.18 0.80 1.16 1.06 0.85
75-25 log ratio 1.02 1.39 1.97 1.55 1.41 1.22
90-10 log ratio 2.50 2.89 2.50 2.77 2.72 2.22

Notes: The first column reports statistics of the estimated farm productivity using the
2009-2014 ICRISAT panel data for the Indian semi-arid tropics The second column re-
ports statistics of farm productivity in Malawi from Chen et al. (2023). The third column
reports statistics of farm productivity in the United States from the calibrated distribu-
tion in Adamopoulos and Restuccia (2014) to U.S. farm-size data. The third and fourth
columns report statistics of manufacturing plants’ productivities in Hsieh and Klenow
(2009). St.dev. refers to the standard deviation of log productivity; 75-25 is the log dif-
ference between the 75 and 25 percentile; 90-10 is the log difference between the 90 and
10 percentile.

In Table 2, we report the dispersion of the estimated farm (log) productivity, µ̂i. We
compare the dispersion of TFP-Q among Indian household-farms with the dispersion
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of TFP-Q across farms in Malawi (Chen et al., 2023) and in the US (Adamopoulos and
Restuccia, 2014), as well as with the dispersion of TFP-Q across manufacturing plants
in the US and India, as reported by Hsieh and Klenow (2009). The dispersion of physical
productivity across Indian farms is large: the standard deviation of log productivity (1.08)
is comparable to that of farms in Malawi (1.18) and significantly larger than that of farms
in the US (0.80).17

3.4 Land misallocation

We present direct evidence of the degree of misallocation of land among households in ru-
ral India. To do so, we employ data on operation (cultivated) landholdings, ℓiτ, together
with our estimates of physical productivity, θ̂i, and construct two measures of allocative
efficiency in the land market. The first is the village-year unconditional correlation be-
tween the log of operational land size, ℓiτ, and the log of farm productivity:

corr.vτ

[
log ℓiτ, log θ̂i

]
.

Larger misallocation implies a lower correlation between farm size and TPF-Q. The sec-
ond measure is the dispersion in the marginal product of land in each village-year pair:

st.dev.vτ [log MPLiτ] ,

where MPLiτ is constructed using the production function specified in Equation (2). Large
misallocation implies a higher dispersion of the marginal product of land across farms
(Restuccia and Rogerson, 2017).

There is a large variation in land misallocation across villages and years. Panel A in
Figure 1 displays the distribution of corr.vτ

[
log ℓiτ, log θ̂i

]
across villages and years. The

correlation ranges from negative values in some village-year pairs to nearly 1 in others.
That is, while in certain village-year pairs more productive household-farms cultivate, on
average, less land than less productive households, in other village-year pairs, there is an
almost one-to-one relationship between operational landholdings and physical produc-
tivity, indicating minimal land misallocation. Panel B in Figure 1 reports the distribution
st.dev.vτ [log MPLiτ] across villages and years. Similarly to Panel A, this dispersion is
small in certain village-year pairs, indicating little misallocation, while much greater in
others.

What accounts for the variation in land misallocation across villages and years? The

17In Appendix D, Table 7, we show that differences in TFP-Q largely account for differences in agricul-
tural output across Indian farms.
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Figure 1: Land misallocation in each village

(A) Land size-TPF-Q correlation (B) Dispersion in the (log) MPL

Source: VDSA survey (ICRISAT) and own calculations.

theory developed in Section 2 suggests that misallocation in the land market is negatively
correlated with the degree to which households are able to share idiosyncratic risks. In
the following subsection, we present evidence on imperfect risk-sharing and how house-
holds’ ability to share risks varies across different villages and years. In Subsection 3.6,
we show that our estimates of risk-sharing across villages and years are negatively cor-
related with misallocation in the land market within those villages and years, as implied
by our model.

3.5 Risk-sharing

A commonly acknowledged fact is that risk-sharing within villages in developing coun-
tries tends to be incomplete. This holds true for the ICRISAT villages as well. To see this,
consider the following model:

log cit = ψ + β log πit + µi + ζvt + ϵit. (7)

In Equation (7), log cit and log πit denote the log per-capita consumption and log per-
capita income, respectively, for household i in month t; µi are household fixed effects;
and ζvt represents village-month fixed effects that capture the average resources avail-
able to each village in each month. We can interpret 1 − β as the level of risk-sharing
in village economies, where a higher β means a higher elasticity of consumption to id-
iosyncratic income shocks (indicating a lower degree of risk-sharing). Under perfect
risk-sharing, household income should not affect household consumption, conditional
on total resources at the village-month level. In Appendix E, we present the results of
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estimating equation (7). Full risk-sharing is rejected. On average, 22.5% of idiosyncratic
income fluctuations are passed through to consumption. These values are aligned with
what the literature has already documented for Indian villages using alternative empiri-
cal specifications (Townsend, 1994; Ravallion and Chaudhuri, 1997; Morduch, 2005).

The average elasticity of consumption with respect to idiosyncratic income shocks in
equation (12), hides considerable variation in risk-sharing across villages and years. To
uncover this variation, we estimate the degree of risk-sharing across households within
each village separately. More specifically, we estimate the following equation indepen-
dently for each village v and year τ:

log cit = βvτ(t) log πit + µi + κt + ϵit. (8)

Here, with two slight abuses of notation, index i denotes households within village v,
and index t corresponds to the months within year τ (t), where τ (t) specifies the year
associated with month t.18 As usual, cit and πit indicate the consumption and income,
respectively, of household i during month t, and µi and κt are household and month fixed
effects (where, again, note that ‘months’ here refers to the months within the specific year
τ (t)). A high estimate of βv(t) indicates that within village v during year τ (t), the elasticity
of household consumption in response to idiosyncratic shocks to household income is
high—i.e., risk-sharing is low in village v and year τ (t).

Figure 2 plots the distribution of the estimated elasticities of consumption with respect
to idiosyncratic income shocks, β̂vτ, for each village-year pair. The average estimated β̂vτ

across villages and years is 0.223, indicating that, on average, a 1% idiosyncratic increase
in income results in a 0.223% increase in consumption. As shown in the figure, there is
considerable variation in risk-sharing across villages and years, with our estimates rang-
ing from full insurance (β̂vτ ≈ 0) to several others showing very high elasticities of con-
sumption with respect to idiosyncratic income shocks (β̂vτ > 0.6).

According to the model in Section 2, villages in years with a low degree of risk sharing
face larger land misallocation. In the following subsection, we test this hypothesis.

3.6 Linking land misallocation to risk-sharing

We are now ready to test whether a higher degree of risk-sharing within villages and
years is associated with better allocative efficiency in the land market. To do so, we re-
late our two measures of misallocation in each village and year (obtained in Section 3.4),
which we denote by ωvτ, to our estimates of the elasticities of consumption with respect

18For example, if t corresponds to October of the year 2010, then τ (t) = 2010.
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Figure 2: Estimated degrees of risk-sharing in each village

Notes: This figure reports the distribution of risk-sharing parameters estimated for each village and year
using equation (8), β̂vτ , for each v and τ. Source: VDSA survey (ICRISAT) and own calculations.

to idiosyncratic income shocks at the village-year level (obtained in Section 3.5), β̂vτ. In
particular, we estimate the following equation:

ωvτ = ϱ + γβ̂vτ + µv + µτ + φv × τ + εvτ, (9)

where µv and µτ are village and year fixed effects, and φv × τ are village-specific linear
year trends.

Figure 3 binscatters the unconditional relation between the estimated degrees of risk-
sharing, β̂vτ, and

1. the correlation between log farm size and log TFP-Q, corr.vτ

[
log ℓiτ, log θ̂i

]
, in Panel

A;

2. the standard deviation of the log marginal product of lands, st.dev.vτ [log MPLiτ], in
Panel B.

For each dot, the x-axis shows the average estimated risk-sharing for village-year pairs
within a given percentile bin, while the y-axis gives the average measure of land misallo-
cation. As we move from village-year pairs with no risk-sharing (β̂vτ = 1) to pairs with
full insurance (β̂vτ = 0), land misallocation decreases: the correlation between farmer
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Figure 3: Risk-sharing and land misallocation

(A) Land size-TPF-Q correlation vs. risk-sharing (B) Dispersion in the MPL vs. risk-sharing

Notes: Panel A scatters the unconditional relation between the degree of risk-sharing, β, and the correlation
between log farm size and log TFP-Q. Panel B scatters the unconditional relation between the degree of risk-
sharing, β, and the standard deviation of the log marginal product of land. In both panels, each dot refers
to the average village-year pair in a given 4 percent bin of the estimated risk-sharing. Source: VDSA survey
(ICRISAT) and own calculations.

TFP-Q and land holdings rises from 0.3 to around 0.7, while the dispersion of MPL drops
from 0.8 to approximately 0.4.

Table 3 reports the estimation outcomes for different specifications of Equation (9).
Columns (1) to (4) refer to corr.vτ

[
log ℓiτ, log θ̂i

]
, and (5) to (8) to st.dev.vτ [log MPLiτ].

Standard errors (in parentheses) are computed using village-level clustered bootstrap
with 5,000 replications.

There is a negative correlation between land misallocation and the degree of risk-
sharing. For example, column (4) indicates that moving from village-year pairs with full
insurance (β̂vτ = 0) to no risk-sharing (β̂vτ = 1) reduces the correlation between farm
size and productivity by approximately 0.229 points, after controlling for village fixed ef-
fects, year fixed effects, and a village-specific linear time trend. In terms of magnitudes,
the effect is equal to 0.82 times the standard deviation of the correlation between land
size and farm productivity across villages and years (Figure 1, Panel A). The dispersion
of the marginal product of land is negatively correlated with the degree of risk-sharing.
The estimates in column (8) suggest that moving from full insurance to no risk-sharing is
associated with an increase of approximately 0.192 points in the standard deviation of the
log of MPLiτ. Similarly to before, this increase represents 0.83 times the standard devia-
tion in the dispersion of the marginal product of land across villages and years (Figure 1,
Panel B).19

19In Appendix F, we report the estimates from an IV strategy that exploits variation in caste diversity
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Table 3: Risk-sharing and land misallocation

corr.vτ

[
log ℓiτ, log θ̂i

]
st.dev.vτ [log MPLiτ]

(1) (2) (3) (4) (5) (6) (7) (8)

β̂vτ -0.648*** -0.675*** -0.163** -0.229*** 0.732*** 0.749*** 0.161*** 0.192***
(0.226) (0.228) (0.080) (0.109) (0.178) (0.245) (0.063) (0.076)

Observations 90 90 90 90 90 90 90 90
R2 0.106 0.118 0.897 0.942 0.218 0.223 0.902 0.948

Village FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Village time trends ✓ ✓

Notes: The unit of analysis across all columns is a village-year pair. The first four columns present the results of regressing our
first measure of land misallocation on the estimated village-and-year-specific consumption elasticities to idiosyncratic income
shocks. The following four columns show the results using our second measure of land misallocation. Standard errors in
parentheses are computed using village-level clustered bootstrap (5,000 replications) following the procedure in Cameron et al.
(2008).

Our results show a clear negative correlation between the degree of risk-sharing in
village economies and the misallocation in the land markets of those villages. What does
this negative correlation imply in terms of output and welfare gains from improving risk-
sharing in Indian villages? In the following section, we leverage the structure of our
model to address these questions in detail.

4 The gains from full insurance

In this section, we employ the model described in Section 2 to quantify the aggregate
gains from completing village consumption insurance markets. In what follows, we as-
sume that households exhibit constant relative risk aversion; i.e.,

u (ci) =
c1−σ

i
1 − σ

.

where σ denotes the (common) coefficient of relative risk aversion. To proceed, we must
specify values for the model parameters: the land share α, the aggregate (fixed) supply
of land L, the level of risk-sharing 1 − β, and the coefficient of relative risk aversion σ. In
addition to this, we must also define the distributions of farmer physical productivity, θi,
and the output shock, ρi. Below we describe in detail what we do.

We fit the model to the average village in our data. Some parameters are externally
calibrated without solving the model. These parameters are listed in Table 4. We set

across villages to address potential endogeneity in the relation between risk-sharing and misallocation.
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the output elasticity of land, α, to 0.282, based on estimates obtained from Equation (5).
The aggregate land supply, L, is set to the average farm size of 3.819 hectares (Table 1).
The elasticity of consumption to idiosyncratic income shocks, β, is set to 0.223, which
is the estimate obtained from Equation (7). The estimates from Equation (5) are used
to derive values for household-farms’ physical productivities, θi, and output shocks, ρi.
The distributions of these parameters are calibrated to match the empirical frequencies
observed across households and years.20

Table 4: Parameters calibrated externally

Parameters Description Value Source

α Land share 0.282 Equation (5)
L Aggregate land supply (hectares) 3.819 Table 1
β Elasticity of consumption to idiosyncratic income shocks 0.223 Equation (7)

Notes: This table reports the parameters that are externally calibrated without solving the model and their sources.

We are left with only one parameter, the coefficient of relative risk aversion, σ, which
we estimate using the simulated method of moments (SMM). In particular, we look for
values of σ to match the average correlation between log farm size and log productivity,
which we denote by

corr.
[
log ℓiτ, log θ̂i

]
=

∑vτ corr.vτ

[
log ℓiτ, log θ̂i

]
VT ,

where V and T denote the numbers of villages and years in the data. We obtain an
estimate of σ̂ = 1.6, indicating moderate risk aversion. This estimate aligns with the
findings in Holden and Quiggin (2017), who estimate a coefficient of relative risk aversion
of 1.73 (Table A.4) for a sample of farmers in Malawi.21

Table 5: Estimated risk aversion

Parameters Description Value Target Data Model

σ Relative risk aversion 1.600 corr.
[
log ℓiτ, log θ̂i

]
0.461 0.469

Notes: This table reports the value of the coefficient of relative risk aversion that is estimated to
match the average correlation between log farm size and log productivity.

20To solve the model, we discretize the possible values of physical productivities and output shocks into
100 and 50 bins, respectively, each corresponding to different percentiles within their distributions.

21As shown in Equation (1), solving the model requires us to take a stance on the households’ Pareto
weights, (νi)i. In all the exercises performed in this section, we assume that νi = 1, for each i.
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Figure 4: Risk-sharing and misallocation: Model vs. data

Source: VDSA survey (ICRISAT) and own calculations.

To validate the model, we assess its ability to replicate the observed correlation be-
tween the estimated levels of risk-sharing, β̂vτ, and the correlation of farm size and pro-
ductivity across villages and years, corr.vτ

(
log ℓiτ, log θ̂i

)
. To accomplish this, we solve

replicas of our model that differ only in the values of β. Figure 4 plots the equilibrium
correlation between log farm size and log productivity for different levels of risk-sharing
(blue dots) against the corresponding empirical estimates from Figure 3A (red dots). Our
model can replicate the negative correlation between risk-sharing and land misalloca-
tion observed in the data, even though this correlation was not explicitly targeted in the
model’s estimation. This suggests that the model effectively captures the relationship be-
tween land misallocation and the degree of consumption insurance across villages and
years.

4.1 Counterfactual exercise

How would households’ choices and the allocation of resources differ if village insurance
markets were complete? To what extent does full insurance enhance allocative efficiency
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Figure 5: Partial (baseline) vs. full risk-sharing

(A) Land cultivated (B) Farm production

(C) Household income (D) Household welfare

Source: VDSA survey (ICRISAT) and own calculations.

in the land market? We answer these questions with a counterfactual exercise where
we improve the functioning of consumption insurance markets in village economies.
Completing the market for insurance against shocks to agricultural output is a natural
benchmark of “financial deepening” (see Townsend and Ueda (2006) on this concept). In
particular, we examine a counterfactual scenario within the model where β = 0, which
represents perfect risk-sharing. We contrast this scenario with the baseline model setting,
where β is set to 0.223, the estimated elasticity of consumption to idiosyncratic income
shocks obtained from Equation (7). We keep all the other parameters at their baseline
values, including the overall land supply.

Figure 5 plots the amount of land cultivated (Panel A), farm output (Panel B), house-
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hold income (Panel C), and household expected utility (Panel D) on the y-axes against
(log) farm productivity (on the x-axis) for both the baseline (blue line) and full-insurance
economies (black line). As we move from partial to full risk-sharing, land reallocates
from low- to high-productivity farms (Panel A). Under full insurance, the most produc-
tive household cultivates more than four times as much land compared to what it does
under partial insurance, increasing its cultivated area from just over 5 hectares to nearly
35 hectares. Conversely, those with low productivity cultivate less land under full insur-
ance than under partial insurance. Improved risk-sharing decreases land misallocation,
leads to greater output dispersion across farms (Panel B), and simultaneously reduces the
dispersion in household income (Panel C). Panel D shows that most households, particu-
larly those with low productivity, experience substantial welfare gains under full sharing
compared to partial insurance. Conversely, the most productive households face welfare
losses when participating in the full sharing arrangement rather than the partial insurance
scheme.

Table 6: Counterfactual exercise

Baseline Counterfactual
(partial insurance) (full risk-sharing)

(1) (2)

β 0.223 0
corr.

[
log ℓiτ, log θ̂i

]
0.469 0.914

Share of land, top 1% productive farms 0.017 0.086
Share of land, top 10% productive farms 0.155 0.627
Land dispersion (st.dev.[log ℓiτ]) 0.399 2.589

Aggregate efficiency (output per hectare) 1 1.415
Aggregate output 1 1.186
Aggregate welfare 1 1.286

Source: VDSA survey (ICRISAT) and own calculations.

Table 6 offers a comparative analysis of two different economies: one featuring partial
insurance (the baseline) and the other characterized by full risk-sharing, evaluated across
various dimensions. In the counterfactual economy with full insurance, land misalloca-
tion is sizably reduced, as evidenced by the correlation between log farm size productiv-
ity and log productivity nearly doubling compared to the baseline. Under full insurance,
the distribution of cultivated land becomes significantly more unequal: the share of to-
tal available land allocated to the top 1% of farms, based on productivity, increases by
approximately six times, while the share going to the top 10% of farms increases by ap-
proximately four times. The variance in the distribution of (log) cultivated land increases
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approximately ninefold. Improved insurance leads to an increase in output of 18.57%,
while the overall welfare gains, measured in consumption-equivalent terms, are equal to
28.75%.22 These figures are comparable to those quantifying the welfare gains from elim-
inating distortions in the land markets (e.g., Adamopoulos et al. (2022)). Thus, our coun-
terfactual analysis suggests that inefficiencies in consumption insurance markets may be
as significant as land market distortions in explaining the potential gains from improv-
ing land allocation across households. This result is confirmed by the 41.51% increase in
output per unit of land associated with improved risk-sharing.

5 Conclusions

This paper bridges the gap between the literature on risk-sharing and resource misallo-
cation. We begin with two key observations. First, insurance markets in rural villages are
often incomplete, leading to significant impacts of household income shocks on consump-
tion. Second, there is substantial misallocation of factors of production among farmers,
which reduces overall productivity in the agricultural sector of developing countries. We
argue that these two phenomena are deeply interconnected. Specifically, we see the lim-
ited functioning of consumption insurance markets in village economies as a key factor
contributing to land misallocation in these communities.

We explore how imperfections in insurance markets affect land misallocation. Our
theoretical results show that incomplete consumption insurance can increase land misal-
location, even when land markets operate without distortions. Empirically, we quantify
the losses attributable to limited risk-sharing using the latest ICRISAT data from rural
India. Our findings suggest that fully developed insurance markets could significantly
enhance the allocation of land, resulting in output and welfare gains of 19% and 29%,
respectively. Thus, improving risk-sharing within an otherwise undistorted economy can
yield gains comparable in magnitude to those achieved by removing distortions in factor
or output markets (Adamopoulos et al., 2022).

From the perspective of the misallocation literature, we offer an alternative explana-
tion for land misallocation beyond the well-known land market frictions or farm-specific
distortions that disproportionately affect more productive farmers. Our explanation is
grounded in the observation that village-level risk-sharing is incomplete, and our analy-

22In Appendix G, we study whether efficiency and welfare gains from ensuring full risk sharing are
robust to incorporating farm-specific distortions in the model, as seen in more traditional misallocation
literature (Chen et al., 2023). Specifically, we extend our model by introducing farm-specific distortions in
the form of output wedges that are correlated to farm productivity. We then conduct a comparative analysis
of i) completing insurance markets versus ii) removing distortions. We find that the efficiency and welfare
gains from achieving perfect risk-sharing remain large and are equal to 39% and 14%, respectively.
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sis quantifies how imperfect risk-sharing contributes to land misallocation in rural Indian
communities. From a policy perspective, our emphasis on imperfect risk-sharing as a
cause of misallocation highlights the potential of financial deepening as a way to enhance
the allocation of factors of production.
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A Brief discussion of modeling assumptions

Household types. Our model features household types that encode their “permanent”
productivity, making households ex-ante heterogeneous. We adopt this approach because
the production decisions we model are naturally considered ex-ante choices: the decision
of how much land to cultivate is typically made before any shocks to agricultural yields,
such as rainfall or pests, occur. Thus, our analysis focuses on the relationship between
risk-sharing and misallocation in the ex-ante chosen factors of production. Alternatively,
we could model an economy where households are ex-ante homogeneous, receive pro-
ductivity shocks, and make land cultivation decisions ex-post (after their productivity is
revealed). This framework would still allow us to analyze the impact of insurance on
misallocation; however, the misallocation would be contingent on the realization of those
shocks.

Land markets. Our model maintains the assumption of undistorted land markets through-
out the analysis. This modeling choice allows us to distinguish our findings from most of
the results in the misallocation literature, where land misallocation typically stems from
land market frictions. We relax this assumption in Appendix G.

The economy with no risk sharing introduced in Subsection 2.1 features an environ-
ment where households initially possess land endowments and engage in trading these
endowments within a competitive land market before production occurs. Alternatively,
we may imagine that competitive moneylenders initially own all the plots and sell them
to households before farming takes place. Our findings apply in both contexts.

Land ownership and tenancy. In our model, purchasing (respectively, selling) land is
essentially equivalent to renting in (respectively, renting out) land; i.e., there is no differ-
ence between ownership and tenancy. A dynamic model may feature channels through
which imperfect risk-sharing influences the decision to sell versus rent land. In a fric-
tionless environment, a standard arbitrage condition dictates that the selling price of land
should equal the net present value of its expected future rental earnings. Missing insur-
ance markets, borrowing constraints, and imperfections in the saving technology might
deter farmers from selling land, which serves as a buffer stock. Indeed, the presence
of these frictions implies that the cash obtained from selling land cannot be perfectly
smoothed over time or states of the world and that a farmer who sells land may be sub-
sequently forced to engage in renting. In this context, the insurance value of owning land
may contribute to land misallocation by affecting the relationship between a landowner’s
productivity and the amount of land owned. Our empirical analysis closely mirrors our
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theoretical framework by focusing on misallocation in operational landholdings, encom-
passing both owner-cultivators and renters.

Consumption functions. Our approach to modeling the dependence of consumption
on income, based on the existence of the consumption functions detailed in Equation (1),
is well in line with the literature on exogenously incomplete markets.23 These functions
formalize the idea that households participate in a risk-sharing arrangement, allowing
them to pool their agricultural incomes to insure against idiosyncratic shocks and are
flexible enough to capture a whole range of possible risk-sharing arrangements, from no
sharing to full insurance.24 Note that risk-sharing does not have to be egalitarian: the
Pareto weights (νi)i allow different types of households to receive different fractions of
the constant aggregate output. We deliberately sidestep detailed explanations of the un-
derlying reasons for the specific forms of the consumption functions, which determine the
level of insurance in the economy, focusing instead on how different degrees of insurance
influence the equilibrium in the land market.

23Contrast the approach where (ci)i are primitives of the model with the perspective taken in the litera-
ture on optimal risk-sharing (Townsend, 1994) and endogenously incomplete markets (Sleet, 2006), where
agents’ consumption functions are derived from optimal consumption allocation problems featuring deeper
primitive constraints on monitoring or enforcement technologies.

24While our empirical exercise assumes that the village is the relevant risk-sharing unit, we may think
of it as a caste or kinship network at this point.
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B Proofs

Proof of Claim 1. The first-order conditions for ci (ρ) read as follows:

νi (ci (ρ))
−σ − λ = 0,

or, equivalently,

ci (ρ) = λ− 1
σ ν

1
σ
i , (10)

where λ is the Lagrange multiplier attached to the feasibility constraint. Thus, each
farmer’s consumption is constant across states of the world ρ. Integrating the last equa-
tion over all farmer types j and states of the world ρ, we get that

∫ ∫
cj (ρ)dQρ (ρ)dj =

∫ ∫ (
νj

λ

) 1
σ

dQρ (ρ)dj = λ− 1
σ

∫
ν

1
σ
j dj.

Combine this equation with the feasibility constraint to obtain

λ− 1
σ =

∫ ∫
yjρdQρ (ρ)dj∫

ν
1
σ
j dj

.

Substituting this expression back into Equation (10), we get

ci (ρ) =
ν

1
σ
i∫

ν
1
σ
j dj

∫ ∫
yjρdQρ (ρ)dj.

Proof of Claim 2. The first-order conditions for ℓi read as follows:

ι + λ
∫ ∂yiρ

∂ℓi
dQρ (ρ) = 0, (11)

where ι is the Lagrange multiplier attached to the land availability constraint. Thus, the
expected marginal products of land are equalized across households. To maximize aggre-
gate expected output, we can solve the following programming problem:

max
ℓ

∫ ∫
yiρdQρ (ρ)di

s.t.
∫

ℓidi = L.
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The first-order conditions for ℓi and ℓj imply that:

∫ yiρ

∂ℓi
dQρ (ρ) =

∫ yjρ

∂ℓj
dQρ (ρ) ;

i.e., an allocation of land that maximizes aggregate expected output is such that the ex-
pected marginal products of land are equalized across households.

Proof of Claim 3. Under no sharing, the first-order conditions for ℓi read as follows:

∫
(ci (ρ))

−σ
(

∂yiρ

∂ℓi
− rIM

)
dQρ (ρ) = 0.

Thus, unless the households are risk neutral (σ = 0), the expected marginal products of
land are not necessarily equalized across households.

Proof of Theorem 1. For each β ∈ (0, 1], the first-order conditions for ℓi are

∫
(ci (ρ))

−σ ∂ci (ρ)

∂πiρ

(
∂yiρ

∂ℓi
− rP

)
dQρ (ρ) = 0,

where

∂ci (ρ)

∂πiρ
= exp

β log
(
πiρ

)
+ (1 − β) log

 ν
1
σ
i∫

ν
1
σ
j dj

∫ ∫
πjρdQρ (ρ)dj


 β

πiρ
.

Letting

Tiρ = (ci (ρ))
−σ ∂ci (ρ)

∂πiρ

we can rewrite these first-order conditions as∫
Tiρ

(
∂yiρ

∂ℓi
− rP

)
dQρ (ρ) = 0.

This equation shows that the effect of partial insurance on optimal land cultivation choices
can be interpreted as the introduction of type- and state-specific distortions, affecting the
marginal return of land in each state of the world. These distortions imply that the ex-
pected marginal returns of land are not equalized to zero across farms. Instead, they vary
in proportion to the type- and state-specific distortions. Notice that these distortions be-
come more pronounced the further Tiρ deviates from being constant across states of the
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world. Since

log

 ν
1
σ
i∫

ν
1
σ
j dj

∫ ∫
πjρdQρ (ρ)dj


is a constant, an increase in β amplifies the variance of Tiρ across states of the world.
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C Data

We use information from the “Village Dynamics Studies in South Asia” (VDSA) project
by ICRISAT, a widely used panel data set (Townsend (1994), Mazzocco and Saini (2012),
and Morten (2019), among many others). The data is collected through different modules
(general endowment, cultivation schedule, rainfall schedule, among others) containing
questions on different topics generally asked to the household head. Questions asked
only to the household head generally refer to information about the whole household.
Some modules ask questions to a greater subset of the household members (e.g., the ques-
tions in the employment schedule are asked to all members who completed 6 years of
age).

Most modules are collected at a monthly frequency (e.g., the employment schedule)
while others only come at a yearly frequency (for instance, the general endowment sched-
ule, and the questions in the cultivation schedule that refer to agricultural output). We
use data from July 2010 to June 2015. We aggregate the individual-level data to the house-
hold level. We end up with monthly household-level panel data, containing information
on farming, expenditure, and income for families in 18 villages in the Indian semi-arid
tropics.

General endowment schedule. This schedule provides annual, individual-level data on
various characteristics of household members, including age, sex, education, and primary
and secondary occupations. Additionally, it offers household-level details on landhold-
ings, such as ownership status, total and irrigable areas, and various soil characteristics.
We leverage the data on these characteristics to build the measures of average soil depth,
slope, fertility, and degree of degradation introduced in Subsection 3.3. The schedule also
contains yearly household-level data on livestock, farm equipment, buildings, durable
consumption goods. stocked items (like crops, cooking fuel, and agricultural inputs), as-
sets, liabilities, gender roles, and coping strategies employed in response to self-reported
negative income shocks.

We employ the individual-level demographic data in this schedule to construct an age-
sex index at the household-year level, following the methodology described in Townsend
(1994). Specifically, we assign individual weights based on age and sex as follows: 1
for males over 18 years, 0.9 for females over 18 years, 0.94 for males aged 13 to 18, 0.83
for females aged 13 to 18, 0.67 for children aged 7 to 12, 0.52 for children aged 4 to 6,
0.32 for toddlers aged 1 to 3, and 0.05 for infants under one year. We then calculate the
household-year age-sex index by aggregating these weights for each household annually.
In Subsection 3.5, we utilize this index to adjust household-level consumption and income
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variables to per capita terms.
The general endowment schedule provides detailed information on each household’s

landholdings annually, with the plot as the unit of observation. This includes data on
ownership status—whether owned, leased, shared, or mortgaged—and identifies the
household members associated with each plot. It also details both total and irrigable
areas, proximity to the house, irrigation sources and their distances. Additionally, the
schedule provides information on plot attributes such as soil type (e.g., red, shallow
black, medium black, deep black), fertility (an ordered scale from 0 to 4), slope (an or-
dered categorical variable indicating the degree of the plot’s slope), soil degradation (a
categorical variable indicating whether the plot is subject to soil degradation and specify-
ing its type), and average soil depth in centimeters. The schedule also notes the presence
of bunds, number of trees, if the plot is owned or leased, potential sale revenue, actual
rent paid or received, and an imputed rental value for owned plots. We utilize the de-
tailed information on plot attributes to construct measures of average soil depth, slope,
fertility, and degree of degradation, which we use to construct a measure of land qual-
ity used in the estimation of household-farms’ physical productivities (see SubSection
3.3). Specifically, define fertilitypit, slopepit, degradationpit, and depthpit as the fertility,
slope, degradation, and soil depth for plot p cultivated by household i in year τ. For each
x ∈ {fertility, slope, degradation, depth}, we define

xit = ∑
p∈P(it)

ℓpit

∑p′∈P(it) ℓp′it
xpit,

where P (it) is an index set for the set of plots cultivated by household i in year τ.
Finally, we leverage the farm equipment section of the general endowment schedule

to construct a measure of farm capital. Each year, the household head is asked to report
the names and values of all farm equipment items owned by the household, including
plows, sprayers, dusters, electric motors, diesel pumps, bullock carts, tractors, trucks,
threshers, pipelines, rice mills, and flour mills, among others. We aggregate this data at
the household-year level to create a measure of farm capital for each household annually.
We use this variable in the estimation of household-farms’ physical productivities, as
detailed in Subsection 3.3.

Cultivation schedule. The cultivation schedule is divided into two main sections: in-
puts and outputs. We start with an overview of the input section. This part of the sched-
ule gathers detailed monthly data on the inputs utilized by each household for every
operation conducted on each plot they farm. Specifically, interviewers asks the house-
hold head to detail all operations carried out on each cultivated plot in each month. For
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every operation, they collect data on the quantities and costs of the inputs used. Thus, the
unit of analysis for this section is the operation conducted on each plot by each household
each month.

One fundamental piece of information we can obtain from the input section of the
cultivation schedule is the household’s labor supply to their farm, which we use in the
estimation of household-farms’ physical productivities, as detailed in Subsection 3.3. This
section meticulously details the total labor hours devoted to each farming operation, cate-
gorizing them by family, hired, and exchange labor—specifically distinguishing contribu-
tions from females, males, and children—as well as labor provided by bullocks, motors,
and other sources. To calculate the total labor supplied by a household to their farm, we
aggregate the labor hours contributed by family members to each operation across all
plots at the household-month level.

The output section gathers data differently, focusing not on individual operations each
month but on crop production each season for each plot. Specifically, interviewers collect
information from household heads regarding the quantity (in kilos) and value of each
crop harvested during the defined agricultural seasons: Rabi, Kharif, annual, perennial,
and summer. A critical measure derived from this section is the total annual output quan-
tity per household, which serves as the dependent variable in Equation (2). To obtain this
variable, we compute the total output produced by each household across all cultivated
plots and each season throughout the year, aggregating this data at the household-year
level. Another crucial variable compiled from the output section of the cultivation sched-
ule is the total size of the plots cultivated by each household annually. We use this variable
as a measure of land size in the estimation of household-farms’ physical productivities,
as explained in Subsection 3.3. An advantage of this variable is that it reflects the total
land cultivated by the households, independent of ownership title, legal status, or other
formal distinctions (see Subsection 3.2).

Transaction schedule. This schedule meticulously chronicles every monetary in-flow
and out-flow for each household on a monthly basis. The expenditure segment collects
information on both food and non-food purchases, enabling us to compile a measure of
total monthly household consumption by aggregating the values of these purchases. To
derive a measure of monthly household income, we adopt Mazzocco and Saini (2012)’s
budget-constraint approach. Specifically,

• We use the section on financial transactions to track monthly household cash flows
from lending and borrowing activities.

• The section on loans allows us to keep track of monthly inflows from loans and
repayments by the household.
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• From the section on government benefits, we determine monthly receipts of state-
provided aid to households.

• The section on product and livestock sales allows us to measure the monthly rev-
enue households earn from agricultural and livestock sales.

• The section on asset sales and purchases allows us to monitor the households’ monthly
financial activities related to the trading of capital goods.

We construct our measure of total monthly household income, we compute:

Incomeit = Consumptionit − Cash receivedit + Cash lentit

− Loans receivedit + Loans repaidit − Government benefits receivedit.

We use the age-sex index defined above to convert the household-level monthly con-
sumption and income variables to per capita terms. These variables are employed in
Subsection 3.5 to test for the presence of full insurance at the village level.

Rainfall schedule. The rainfall schedule provides detailed information on rainfall lev-
els (measured in millimeters) for each village daily, derived from readings at the nearest
weather station. We aggregate these daily measurements over a year, to generate total
village-specific annual rainfall. This aggregation yields the total annual rainfall for each
village, denoted as rainvt. We utilize this variable to parameterize the impact of observ-
able environmental shocks on output, as specified in Equation (4).
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D Agricultural output decomposition

In Table 7, we decompose the variance of agricultural output into its different sources. We
employ two measures. In column (1) we report the R-squared from regressing household-
farms’ annual physical output on various production inputs separately, one by one. The
R-squared suits our purpose as it indicates the proportion of variance in the dependent
variables explained by the regressors.

In column (2) we report the Shapley value (expressed in %) of each production input.
The Shapley value quantifies the average marginal contribution of each variable to the
explained variance in agricultural output, considering all possible combinations of the
explanatory variables. Each Shapley value is computed by averaging the incremental
changes in R-squared when an explanatory variable is added to a subset of other variables
across all possible subsets.

Table 7: Input contributions to agricultural output

Variable R-squared Shapley value (%)
(1) (2)

Rainfall shocks: Var
[
ϑ̂rainvτ

]
0.004 0.160

Land quality, Var [log q̂iτ] 0.103 3.480
Household-farms’ physical productivities: Var

[
log θ̂i

]
0.614 41.68

Family labor: Var [log hiτ] 0.382 19.07
Capital: Var [log kiτ] 0.292 10.10
Landholdings: Var [log ℓiτ] 0.277 10.05

Notes: Column (1) reports the R-squared from regressing household-farms’ annual physical output on vari-
ous production inputs separately, one by one. Column (2) reports the Shapley value (expressed in %) of each
production input.

Differences in estimated physical productivity stand as the major sources of variation
in production yield across household-farms. Using the R-squared, differences in esti-
mated physical productivity can explain around 60% of the variation in annual yields
across households. Using the Shapley value, more than 40% of total output variation
across farms can be attributed to differences in estimated physical productivity.
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E Imperfect risk-sharing in the ICRISAT villages

Table 8 reports our estimates for equation (7). To complement these results, we also es-
timate the following regression for household i within village v in month t (following
Townsend (1994)):

∆ log cit = ψ + β∆ log πit + ζvt + ϵit (12)

Here, ∆ log cit and ∆ log πit denote changes in log per-capita consumption and log per-
capita income, respectively, for household i between two consecutive months. We esti-
mate equation (12) through ordinary least squares and using the first three lags of the
change of log income as an instrument to correct for measurement error.25

Table 8: Risk-sharing in the ICRISAT villages

ln cit ∆ ln cit
OLS OLS IV
(1) (2) (3)

ln πit 0.223***
(0.0181)

∆ ln πit 0.206*** 0.230***
(0.0194) (0.00483)

Household FE ✓
Village-month FE ✓ ✓ ✓

Observations 46369 41263 29601
R-squared 0.681 0.319 0.193
First-stage F-statistic 574.54

Notes: The unit of analysis across all columns is the house-
hold year. The first column presents the results of regressing
monthly consumption on monthly log income while controlling
for village-month fixed effects. The second column presents a
regression analysis where the monthly change in log consump-
tion is regressed against the monthly change in log income, con-
trolling for village-month fixed effects. The third column shows
the second-stage results of an instrumental variable regression,
where the first three lags of the monthly change in log income
serve as instruments for the contemporaneous change in log
income. Standard errors (in parentheses) are clustered at the
village-year level across all columns.

25This strategy was inspired by (Ravallion and Chaudhuri, 1997), who instrument changes in household
income using year dummies and the changes in the components of household income from sources other
than agricultural cultivation. Our approach is similar to Anderson and Hsiao (1981)’s instrument in panel
data econometrics.
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F Instrumental variable strategy

We claim that risk-sharing reduces misallocation in the land market. In Section 3, we
provide evidence that risk-sharing is negatively correlated with land misallocation at the
village-year level. In this section, we propose an instrumental variable strategy that may
get us closer to identifying the causal effect of risk-sharing on land misallocation. Specif-
ically, we exploit information on the caste composition of each village as an instrument
for risk-sharing. We propose that villages with a more homogeneous caste structure are
better able to provide insurance to their villagers. Considering relevance first, several
studies (Munshi and Rosenzweig (2016), Mazzocco and Saini (2012), Munshi (2019)) ar-
gue that caste networks play an important role in providing credit and insurance to its
members. Secondly, exclusion restriction requires caste composition to be uncorrelated
with land misallocation once we control for risk-sharing. To satisfy this criterion, we must
ask whether caste networks tend to be more homogeneous in villages that have less land
misallocation, irrespective of the capacity of more homogeneous networks to enhance
the functioning of credit and insurance markets. A possible concern is that households
permanently migrate between villages to capitalize on the benefits of operating in more
efficient rural land markets. Even though permanent migration from one rural area to
another is not completely uncommon in India, caste composition in our villages is very
persistent, with an average coefficient of variation below 0.10. Thus, it seems unlikely that
differences in the ability of village factor markets to efficiently allocate production factors
among households would affect caste composition through permanent migration. On the
other hand, although the caste structure of a village may certainly influence its ability to
access resources (e.g., members of upper castes may have better access to financial prod-
ucts, such as loans), we believe there is no clear reason to suggest that it directly impacts
the extent to which the community manages to efficiently allocate factors of production.
Certainly, one could argue that taste-based discrimination could influence how factors of
production are allocated among competing uses, thus suggesting a direct role for caste
diversity in the extent of land misallocation in village economies. However, the avail-
able evidence, particularly in urban labor markets, indicates that caste discrimination is
statistical (Munshi (2019)), and there is no compelling evidence to suggest that discrimi-
nation patterns would differ significantly in other factor markets, including those in rural
economies.

Below we highlight our instrumental variable strategy in detail. The ICRISAT data
records each household head’s caste (jati), sub-caste, and caste group (backward caste,
forward caste, nomadic tribe, other backward caste, scheduled tribe, and special back-
ward caste). Although we share Munshi (2019)’s concerns regarding the analysis of caste
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networks based on broad caste groups rather than jatis, our limited sample size necessi-
tates the use of these broader categories. Let J be an index set for the set of caste groups,
where j denotes a typical element in this set. Let njv be the number of households be-
longing to a caste group j in village v, with ∑jv njv = nv. We construct a measure of caste
diversity in village v as 1 minus the Simpson’s Diversity Index:

zv = 1 −
∑j∈J njv

(
1 − njv

)
nv (1 − nv)

.

Because of the very limited variation over time in caste composition, we let our instru-
mental variable vary across villages only.

Finally, we estimate the following equation independently for each village v and year
τ

log cit = βvτ log πit + µi + κt + ϵit.

Then, we relate our two measures of misallocation in each village and year, denoted by
ωvτ, to the elasticities of consumption with respect to idiosyncratic income shocks at the
village level, β̂vτ:

ωvτ = ϱ + γβ̂vτ + µτ + ϵτ,

where we use zv as an instrumental variable for β̂vτ.
Figure 6 scatters the first-stage regression: caste diversity is significantly and posi-

tively correlated with the estimated elasticity of consumption with respect to income at
the village and year level. Table 9 reports first and second-stage IV estimates together
with F-stat. A one-unit increase in our measure of caste diversity results in a 0.440-point
increase in the village-specific elasticity of consumption with respect to idiosyncratic in-
come shocks. Our instrumental-variable strategy suggests that a one-unit increase in this
elasticity results in a 1.331-point decrease in the correlation between farm size and pro-
ductivity and a 2.095-point increase in the dispersion of the marginal product of lands.
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Figure 6: Risk-sharing and caste diversity

Source: VDSA survey (ICRISAT) and own calculations.

Table 9: Land misallocation and risk-sharing

corr.v
[
log ℓiτ, log θ̂i

]
st.dev.v [log MPLiτ]

(1) (2)

β̂v -1.331** 2.095***
(0.574 ) (0.579)

Observations 90 90
R2 0.783 0.8584

β̂v
First-stage regression (1)

zv 0.415***
(0.126 )

Observations 90
F-statistics 10.87

Notes: Standard errors are robust. Source: VDSA survey (ICRISAT) and own calcu-
lations.
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G Risk-sharing vs. output distortions

In this appendix, we discuss the robustness of our results to the inclusion of generic
household-specific distortions (wedges) in the output market. To do so, we assume house-
hold of type i are subject to an “output tax” τi that is correlated to its productivity, θi, and
equal to

τi = 1 − θ
−ζ
i , (13)

where ζ governs the correlation between output distortions and farmer productivity.
Then, the output of a farmer of type i is

yiρ = (1 − τi) θiρℓ
α
i = θ

1−ζ
i ρℓα

i .

Notice that when ζ > 0, distortions are positively correlated with household produc-
tivities, meaning high-productivity households face relatively higher output taxes. Con-
versely, when ζ < 0, high-productivity households face relatively lower output taxes.
When ζ = 0, there are no output distortions in the economy, and output production re-
verts to the scenario described in the main text.26

To quantify the gains from full insurance using the model described in this appendix,
we estimate two parameters: the coefficient of relative risk aversion, σ, and the correla-
tion between productivity and output wedges, ζ. All other parameter values are as in
Section 4. As in Section 4, we estimate σ by matching the average correlation between log
farm size and log productivity, while ζ is estimated by targeting the share of households
operating land smaller than 5 hectares.

Table 10: Estimated parameters

Parameters Description Value Target Data Model

σ Relative risk aversion 1.647 corr.
[
log ℓiτ, log θ̂i

]
0.461 0.452

ζ Distortion correlation 0.052 Land ≤ 5 hectares, share of households 0.801 0.810

Notes: This table reports the estimates for the coefficient of relative risk aversion and the correlation between output distor-
tions and farm productivity, and the targets used in estimation; i.e., the average correlation between log farm size and log
productivity and the share of households operating with land smaller than 5 hectares. Source: VDSA survey (ICRISAT) and
own calculations.

Table 10 presents the estimates of σ and ζ, together with the empirical and simulated
values of their respective targeted moments. The estimated coefficient for σ is slightly

26For some combination of ζ and θi, τi can be negative. In this case, distortions take the form of an
output subsidy towards household i. For further applications of function (13) to describe firm-level output
distortions in developing countries, see Guner and Ruggieri (2022), among others.
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Figure 7: Estimated distortions

Source: VDSA survey (ICRISAT) and own calculations.

higher than the value obtained in the model without distortions, at 1.65 compared to
1.60. We estimate ζ at 0.052, which implies a positive correlation between distortions τi

and (log) productivity θi across households of about 0.9. Figure 7 shows this pattern:
distortions take the form of an output tax as big as 30% for households with the highest
productivity and of a subsidy of 1.5% for households with the lowest productivity.

Table 11 reports the outcomes of the same counterfactual exercise described in Section
4 but in a model with output distortions. Column 1 refers to a baseline scenario where
consumption insurance is partial, (β = 0.223), and households’ land decisions are dis-
torted by wedges that are correlated to their productivity (ζ = 0.052). Columns 2 refer to
a counterfactual scenario where risks sharing is perfect (β = 0), keeping everything else
equal. Columns 3 refer to a counterfactual scenario where risks sharing is perfect (β = 0)
and distortions are absent (ζ = 0).

As shown, the aggregate output gains from improving risk-sharing in an economy
with output distortions are 18%, nearly identical to the 19% gains in an economy without
these wedges, as presented in Section 4. The welfare and efficiency gains of full insurance,
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Table 11: Counterfactual exercise

Baseline Counterfactual
(1) (2) (3)

β 0.223 0 0
ζ 0.052 0.052 0

Aggregate efficiency (output per hectare) 1 1.393 1.896
Aggregate output 1 1.186 1.614
Aggregate welfare 1 1.137 1.158

Source: VDSA survey (ICRISAT) and own calculations.

when accounting for output distortions, are 13% and 39%, respectively, compared to 29%
and 45% in the results presented in Section 4. Thus, while neglecting output distortions
may slightly overstate the welfare gains from improving risk-sharing, the aggregate out-
put and efficiency gains remain virtually unchanged, whether or not these wedges are
considered.

45


	Introduction
	Related literature

	Model
	Full insurance vs. no sharing
	Partial insurance

	Risk-sharing and misallocation in Indian villages
	Background and data
	Land distribution
	Physical productivities across households and years
	Land misallocation
	Risk-sharing
	Linking land misallocation to risk-sharing

	The gains from full insurance
	Counterfactual exercise

	Conclusions
	Brief discussion of modeling assumptions
	Proofs
	Data
	Agricultural output decomposition
	Imperfect risk-sharing in the ICRISAT villages
	Instrumental variable strategy
	Risk-sharing vs. output distortions

