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Abstract. Accurate temperature control in Printed Circuit Board (PCB) manu-

facturing is essential for maintaining high-quality etching results. Automated 

monitoring using machine vision and deep learning offers an effective approach 

for this task. This study investigated a feature-based transfer learning technique 

for classifying temperature readiness in infrared images of the etching process. 

The captured dataset containing 470 ‘Production-Ready’ and 480 ‘Not-Ready’ 

infrared images of the etchant tank was utilized. Pre-trained Visual Geometry 

Group (VGG) Convolutional Neural Network (CNN) models, specifically 

VGG16 and VGG19, were employed to extract discriminative features from 

these images. Logistic Regression (LR) classifiers were then trained on these fea-

tures to classify the infrared images. The performance of the VGG16-LR and 

VGG19-LR pipelines was evaluated on training, validation, and test sets using a 

60:20:20 split. While both pipelines achieved 100% accuracy on the training sets, 

the VGG19 pipeline showed exceptional performance, achieving a validation ac-

curacy of 95%, and a test accuracy of 99%. The VGG16 pipeline also demon-

strated robust performance, achieving 96% accuracy on both the validation and 

test sets. Considering the dimensions and the overall efficiency of the pipeline, it 

was determined that the VGG19-LR model was appropriate for the captured da-

taset. The high accuracy indicates that transfer learning is suitable for categoriz-

ing temperature fluctuation in infrared thermography, as opposed to training a 

deep neural network from scratch. Computer vision and deep learning provide 

automated and precise temperature management during the etching process, lead-

ing to enhanced efficiency in PCB manufacturing. 
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1 Introduction 

PCB production is the meticulous elimination of undesired copper to form circuit lay-

outs, a task accomplished through chemical etching. Ferric chloride (FeCl3) is fre-

quently employed for this specific purpose. It is essential to maintain the etchant at an 

ideal temperature to achieve high-quality etching results [1]. However, managing the 

temperature of the etchant is challenging since variations can impact both the speed and 

quality of the etching process [2]. 

Typically, etchant tanks are heated at the start of the week and maintained at a warm 

temperature of 45°C during the workweek. During production shifts, fluctuations in 

temperature can cause irregularities in the etching process, leading to flaws such as 

excessive or insufficient etching. Moreover, conventional temperature sensors that rely 

on physical contact are frequently inadequate in this situation as they can be intrusive 

and may not yield precise measurements due to restricted coverage and the possibility 

of being tainted by the etching chemicals [3]. 

Fig. 1 illustrates a complex production setup with two primary production lines of a 

medium-sized chemical etching company, labelled ‘Etching production line 1’ and 

‘Etching production line 2’, and three etching tanks. Tank no.1 is primarily connected 

to production line 1 but also has a secondary connection to production line 2. Tank no.2 

is centrally connected to both production lines. Tank no.3 primarily serves production 

line 2 while maintaining a backup link to production line 1. This configuration ensures 

that each production line can consistently access the etching solution, allowing for op-

erational redundancy and flexibility, thus maintaining continuous production even if 

one tank is offline for maintenance or refilling. 

However, this setup also complicates the task of maintaining the ideal temperature. 

With multiple tanks connected to different production lines, variations in demand and 

usage can cause temperature fluctuations within each tank. These fluctuations can lead 

to inconsistent etching quality if the tanks are not properly monitored and controlled. 

Additionally, the backup connections between tanks and production lines introduce fur-

ther complexity, as the temperature in one tank can be influenced by the operational 

state of another. Therefore, achieving and maintaining an optimal temperature in this 

production setup requires advanced monitoring and control strategies to account for the 

dynamic interactions between tanks and production lines. 
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Fig. 1. Company’s chemical etching line set up 

 

 

In order to tackle these difficulties, it is imperative to employ sophisticated monitoring 

methods such as machine vision and infrared imaging[4, 5]. These technologies offer a 

more precise and non-intrusive way to gauge and manage the temperature of the etchant 

tanks. While conventional temperature sensors often fall short in this context, machine 

vision and infrared imaging can provide comprehensive and accurate temperature data, 

ensuring consistent etching quality. Although these methods are not yet widely adopted 

in the industry, they represent a promising approach to overcoming the current chal-

lenges associated with temperature monitoring in PCB production. Additionally, ad-

vancements in computing technology, such as CNN have significantly improved in per-

formance and capability for processing and extracting features from images. Utilizing 

CNN for defect identification in manufacturing applications has shown significant 

promise in improving quality control and efficiency, such as in additive manufacturing 

[6], surface defect detection [7, 8],  and semiconductor wafer defect detection [9].  

To construct a resilient model with dependable decision-making capabilities, a con-

ventional approach based on CNN necessitates a substantial amount of input data, 

which frequently entails a lengthy training period. Weimer et al. [10] introduced a CNN 

based system for automatic feature extraction. The program is trained using a dataset 

of 1.3 million images and the training process takes 24 hours. An issue commonly en-

countered with classic CNN models, which are developed from scratch, is the lack of 

sufficient labeled data necessary to develop a strong algorithm. Therefore, researchers 

predominantly turn to transfer learning as a means of transferring information between 

other domains, which presents a promising approach to address the aforementioned is-

sue [11]. These models excel at extracting features due to their training on a huge data-

base [12]. For example, Singh et al. developed an efficient image-based framework 

using a pre-trained CNN (ResNet-101) and multi-class Support Vector Machine (SVM) 

for detecting surface defects in manufacturing, requiring minimal training data and 

computational resources. Damacharla et al. [13] demonstrated the utilization of transfer 
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learning models, specifically U-Net combined with ResNet and DenseNet, to extract 

features from images for the purpose of detecting fault locations in steel sheets. 

Huangpeng et al. [14] proposed an alternative approach for detecting defects on steel 

surfaces. In those research, AlexNet and VGG models were used to extract features and 

incorporated deep sparse coding to enhance memory usage and computational perfor-

mance. There are researchers that exploited the use of pre-trained VGGNet models for 

feature extraction, followed by SVM [15] or k-Nearest Neighbour (kNN) [16] classi-

fier, which can significantly improve classification accuracy. It could be seen that ma-

chine learning classifiers do pair up well with the CNN-based feature extraction 

method. Nevertheless, very limited study has been done on the real-time, fine control 

of temperature for chemical etching process. However, it is crucial to acknowledge that 

domain differences with different models can impact the success of transfer learning. 

To mitigate this, the domains used in this project are carefully selected to ensure simi-

larity. Although the pre-trained VGGNet models were originally trained on general im-

age databases, their robust feature extraction capabilities are leveraged to handle infra-

red images.  

This study aims to tackle the challenges associated with the accurate measurement 

and control of etching fluid temperatures in PCB manufacturing by evaluating the effi-

cacy of different VGG pre-trained CNN models with the LR model in classifying in-

frared images for optimised large industrial etching temperature control. By focusing 

on the thermal characteristics and temperature patterns in these infrared images, trans-

fer learning can be effectively applied. This approach enhances the model's perfor-

mance in temperature monitoring applications, reducing the need for extensive labeled 

data specific to the infrared domain. 

2 Method 

The experimental setup depicted in Fig. 2 consists of a chemical etching process com-

bined with a real-time infrared sensor monitoring system. The primary components in-

clude: 

1. A tank containing the etching solution, ferric chloride, utilized in the PCB 

manufacturing process. 

2. The tank is connected to an etching chamber that belongs to production line 

1, where the actual etching of the metal plates occurs.  

3. Xenics Gobi+ infrared sensor utilizes an uncooled microbolometer detector 

with a resolution of 640 x 480 pixels and frame speeds of up to 60 Hz, is 

positioned to monitor the temperature of Tank No. 1.  

4. The infrared sensor is connected to a data logging system that captures and  

processes the temperature image in real-time. 

 

This setup employs machine vision and infrared imaging techniques to ensure pre-

cise temperature control of the etching solution, enhancing the consistency and quality 

of the etching process. 
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Fig. 2. Schematic of the experimental Setup 

 

During eight hours of operation, the system captured 4,200 images. In this study, the 

sample size was reduced to 950 images, which were randomly selected from the larger 

dataset to ensure a representative sample. Each image was downsized to dimensions of 

224 by 224 pixels to ensure compatibility with the pre-trained models. This resizing 

facilitates consistent feature extraction across all images, aligning with the input re-

quirements of the VGGNet models, which were originally trained on images of this 

size. The dataset is classified into two categories: Production-Ready and Not-Ready as 

exemplified in Fig. 3 which displays sample infrared images representing these two 

groups. The dataset was partitioned using a 60:20:20 hold-out cross-validation proce-

dure for the purposes of training, validation, and testing, respectively. 

 

 

  
 

Production-Ready 
 

Not-Ready 
 

Fig. 3. Sample infrared image of Production-Ready, Not-Ready 
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The process of extracting features from infrared images was carried out using pre-

trained VGG architectures, specifically VGG16 and VGG19, with 16 and 19 layers 

respectively. These models belong to the VGGNet family of designs, known for their 

simplicity and effectiveness in handling deep learning tasks. VGG models use a series 

of convolutional layers followed by fully connected layers, which allow for deep fea-

ture extraction. The fully connected layers in the VGG models were removed to enable 

the extraction of high-level features. The extracted features were then utilized to build 

a LR classifier with the purpose of differentiating between the two temperature classi-

fications: ‘Production-Ready’ and ‘Not-Ready’. 

The performance assessment of the classification pipeline was carried out using met-

rics such as accuracy, precision, recall, and F1 score. The assessments were conducted 

using the Spyder Integrated Development Environment (IDE) with Python version 3.9. 

The pre-trained VGG16 and VGG19 models were acquired using the Keras and Ten-

sorFlow libraries, and the LR classifier was constructed using the sklearn package. In 

this specific investigation, the LR model is utilized with its default hyperparameters. 

3 Results and discussion 

The bar charts in Fig. 4 illustrates the classification accuracy of two VGG architectures 

(VGG16 and VGG19) when combined with the LR classifier. The accuracy is assessed 

by evaluating performance on training, validation, and test datasets. The VGG16-LR 

pipeline exhibited a perfect training accuracy of 100%, suggesting an exceptional align-

ment with the training data. The validation accuracy, however, reduced to 96%, indi-

cating a minor case of overfitting as the performance on the validation set was slightly 

lower. The test accuracy closely matched the validation accuracy at 96%, indicating  

 

 
 

Fig. 4. Evaluated pipelines performance on detecting the etchant temperature con-

ditions 
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consistent performance on separate data, albeit with a slight decrease compared to the 

training accuracy. 

Similarly, the VGG19-LR pipeline obtained a perfect training accuracy of 100%, 

much as VGG16. The validation accuracy of VGG19 was marginally lower, standing 

at 95%, suggesting a modest overfitting problem like the VGG16. Nevertheless, 

VGG19 had a superior test accuracy of 99%, indicating a greater ability to generalize 

to unfamiliar data in comparison to VGG16. 

The comparative findings suggest that both VGG16 and VGG19, when combined 

with the LR classifiers, provide excellent accuracy in classifying various datasets. How-

ever, VGG19-LR exhibits somewhat superior performance in generalizing to the test 

data. 

The confusion matrices for the VGG16 and VGG19 models combined with LR clas-

sifiers are shown in Fig. 5, which provide a comparative evaluation of their perfor-

mance in classifying temperature readiness. 

The VGG16-LR pipeline performs well but shows slightly more misclassifications. 

It correctly classifies 95 ‘Production-Ready’ and 87 ‘Not-Ready’ instances. However, 

it has one false positive and seven false negatives, indicating occasional misclassifica-

tion of temperature states. This could lead to more frequent interruptions in the produc-

tion process due to incorrect temperature status predictions, resulting in increased pro-

duction downtime. Specifically, a false positive might cause an unnecessary halt in pro-

duction, while false negatives could result in continuing production with suboptimal 

temperatures, potentially affecting the quality of the etched products. 

In contrast, the VGG19-LR pipeline demonstrates superior performance, with 96 

correct ‘Production-Ready’ classifications and 92 correct ‘Not-Ready’ classifications. 

It has a minimal error rate, with only two instances of ‘Production-Ready’ misclassified 

as ‘Not -Ready’ and no false positives. This high level of accuracy and precision sug-

gests that VGG19-LR is highly reliable for real-time temperature classification, ensur-

ing minimal errors in a production environment. 

 

  
 

VGG16-LR 

 

VGG19-LR 

 

Fig. 5. Confusion Matrix of the VGG16 and VGG19 pipelines on the test dataset. 
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Comparatively, VGG19-LR demonstrates better overall performance and reliability 

than VGG16-LR. The higher accuracy and fewer misclassifications make VGG19-LR 

a more robust choice for ensuring precise temperature control in the etching process. 

The lower false negative rate in VGG19-LR minimizes the risk of proceeding with pro-

duction when the temperature is not actually ready, thereby enhancing both efficiency 

and safety in the manufacturing process. 

4 Conclusion 

This study explored the use of VGG architectures in conjunction with the LR classifier 

to classify temperature readiness in industrial chemical etching applications. A com-

parative analysis was conducted on the performance of VGG16 and VGG19 models in 

accurately detecting temperature conditions from infrared images. 

The VGG19 pipeline demonstrated the highest overall accuracy and the best ability 

to generalize to new data, particularly excelling in distinguishing between ‘Production-

Ready’ and ‘Not-Ready’ temperatures. The VGG16 pipeline also showed strong per-

formance, though it was slightly less accurate than the VGG19 pipeline in classifying 

temperature readiness. However, the perfect training accuracy of both pipelines raises 

a potential concern for overfitting, where the models may be memorizing the training 

data rather than learning generalizable features. 

To address this concern, further investigation should include thorough validation and 

testing using separate datasets to evaluate the models’ performance. Additionally, em-

ploying techniques such as regularization, dropout, and data augmentation will help 

mitigate overfitting and ensure that the models generalize well to new, unseen data. 

These steps will enhance the robustness and reliability of the temperature monitoring 

system, ultimately contributing to more accurate and efficient manufacturing processes. 

In conclusion, this study highlights the potential of using advanced feature-based 

transfer learning techniques to improve the precision and reliability of temperature con-

trol in etching processes, thereby enhancing the efficiency and consistency of PCB pro-

duction. Future research could explore optimizing the hyperparameters of the classifier, 

integrating other machine learning models, and extending this approach to different 

types of manufacturing processes. Additionally, investigating the long-term stability 

and performance of these models in continuous production environments could provide 

further insights into their practical applications and potential improvements. 
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