
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Enhancing DevOps with Autonomous Monitors: A Proactive Approach to Failure
Detection

Hrusto, Adha

2024

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Hrusto, A. (2024). Enhancing DevOps with Autonomous Monitors: A Proactive Approach to Failure Detection.
Computer Science, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/16456ba3-7482-4846-956c-8cd4782fc557


Enhancing DevOps with Autonomous 

Monitors: A Proactive Approach to 

Failure Detection 
 

 

 

 

 

 

 

 

 

 

 

 

 

Adha Hrusto 

 

 

 

Doctoral Dissertation, 2024 

Department of Computer Science 

Lund University 

 



2

This thesis is submitted to the Research Education Board of the Faculty of
Engineering at Lund University, in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Engineering.

Department of Computer Science
Faculty of Engineering
Lund University

Dissertation 76, 2024
LU-CS-DISS: 2024-03
ISSN: 1404-1219

ISBN 978-91-8104-209-2 (printed version)
ISBN 978-91-8104-210-8 (electronic version)

Printed in Sweden by Tryckeriet i E-huset, Lund, 2024

© Adha Hrusto 2024



ABSTRACT

Software engineering practices, including continuous integration, continuous test-
ing, and continuous deployment, aim to streamline and automate the software de-
velopment process. A cultural and professional movement that builds upon con-
tinuous practices, DevOps, seeks to bridge the gap between development and op-
erations. By fostering a collaborative environment, DevOps supports faster, more
frequent, and reliable software releases, inherently promoting agile methodologies
throughout the software development lifecycle.

By introducing agility, there is a higher risk of operational failures in cloud-
based software systems. Recognizing this challenge, the objective of this thesis
is to understand and present approaches for mitigating the cascading effects of
operational failures across interconnected system components. In collaboration
with two Swedish companies, we investigated how proactive monitoring strategies
inspired by state-of-the-art machine learning (ML) solutions can prevent failure
propagation and ensure seamless system operations.

The conducted research activities span from practice to theory and from prob-
lem to solution domain, including problem conceptualization, solution design, in-
stantiation, and empirical validation. This complies with the main principles of
the design science paradigm mainly used to frame problem-driven studies aiming
to improve specific areas of practice.

The main contributions of this thesis are threefold. First, an in-depth overview
of operational challenges and matching solutions in cloud-based software systems,
focusing on alert management and monitoring data through two case studies and
extensive literature reviews. Second, a proactive alert strategy called autonomous
monitors to enhance early detection and prevention of operational failures. Finally,
the practical applicability of these monitors is confirmed via empirical studies,
highlighting their effectiveness in various industrial contexts.

We demonstrated the practical effectiveness of the proposed ML-based moni-
toring solution to pave the way for its widespread adoption for enhancing DevOps.





POPULAR SUMMARY





THE SECRET TO A SMOOTH
DIGITAL EXPERIENCE

Adha Hrusto, Department of Computer Science, Lund University

In today’s digital world, everyone expects websites and applications to work
seamlessly without any glitches or downtime. But behind every click, swipe, and
tap is a complex infrastructure that needs to run smoothly. However, ensuring this
smooth digital experience is a complex challenge. Imagine this as a bustling city
where data, like people, moves around seamlessly. Yet, just like in any city, things
can go wrong – traffic jams (slowdowns), power outages (crashes), or roadblocks
(errors). My research focuses on creating an intelligent system that acts as the
world’s best city planner and traffic monitor rolled into one, ensuring everything
in our digital city flows perfectly.

Traditional methods wait for a problem to happen before fixing it, like waiting
for a car to break down in the middle of the road before deciding to do regular
maintenance checks. This reactive approach can be costly and frustrating for ev-
eryone relying on these digital services. In my work, I propose and implement a
smarter, proactive strategy. It is a technical solution that predicts where and when
the digital city’s flow might get disrupted, allowing us to fix potential problems
before they even occur and escalate. This is like having sensors and cameras all
over the city that alert the maintenance crew to a potential issue, a flickering street
light or a developing pothole, so they can address it during the night, preventing
any disruption to the city’s daily life.

This innovative approach brings several benefits. For users, it means fewer
interruptions while shopping online, streaming videos, or scrolling through social
media, creating a smoother and more enjoyable digital experience. For businesses,
it translates into higher customer satisfaction and trust, including savings from
avoiding the high costs associated with fixing emergencies and compensating dis-
appointed customers.

Looking forward, the implications of this research extend beyond just keep-
ing our digital experiences smooth. They lead to a future where technology self-



8

adjusts and improves continuously, making our reliance on digital services more
seamless and integrated into our lives. Just as urban planners dream of cities where
traffic flows without congestion and services are always available, my research en-
visions a digital world free from disruptions, where technology anticipates and
meets our needs effortlessly.

As we move towards this future, my research work opens up exciting possi-
bilities for how we design, manage, and interact with the digital landscapes that
have become central to our daily lives. The secret to a smooth digital experience
resides in anticipating and preventing problems before they arise, ensuring our
digital world is as resilient, reliable, and responsive as the best-planned cities.



ACKNOWLEDGEMENTS

This thesis was partially supported by the Wallenberg Artificial Intelligence, Au-
tonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

I express my deepest gratitude and appreciation to Prof. Per Runeson, Dr.
Emelie Engström, and Dr. Magnus C Ohlsson, whose expertise and mentorship
have been invaluable throughout my Ph.D. journey. It has been a privilege to have
you as my supervisors and to collaborate with you on the studies.

I would also like to thank my colleagues from the Department of Computer
Science, especially the SERG members, for inspiring discussions and very pleas-
ant lunches and fikas. Song, Sergio, Matthias, Konstantin, Momina, Ayesha, and
Idriss, thank you for making this journey even more wonderful. Special thanks
to my inspiring colleague and friend Alma Oručević-Alagić for her kindness and
encouragement.

I extend my sincere gratitude to System Verification, the company where I
have always been warmly welcomed, appreciated, and encouraged to pursue my
personal and professional goals. In particular, I would like to thank Kadira Šubo
and Henrik Sällman for initiating and encouraging my application for the doctoral
program, as well as my immediate manager Andreas Axelsson and HR manager
Joanna Doweyko for continuous support in both professional and personal matters.

I had an opportunity to collaborate with the DevOps, development, and test
teams from System Verification and two anonymous case companies. I am thank-
ful for their willingness to share insights and answer my questions. Special ap-
preciation goes to Tobias Anderson for his exceptional guidance in the technical
aspects of the project.

I am extremely grateful to my family and friends for their unconditional love,
unwavering support, and belief in me. Their encouragement and faith have been
my guiding light through challenging times.

Finally, all praises and thanks are due to God, the Almighty, for His blessings
and knowledge granted to me.

Tack så mycket!
Adha Hrusto





LIST OF PUBLICATIONS

This thesis consists of an introduction and a compilation of five papers listed below
and referred to by Roman numerals.

Publications Included in the Thesis

I Closing the Feedback Loop in DevOps Through Autonomous Monitors
in Operations
Adha Hrusto, Per Runeson, Emelie Engström
Springer Nature Computer Science 2, 447 (2021)
doi: 10.1007/s42979-021-00826-y

II Towards Optimization of Anomaly Detection in DevOps
Adha Hrusto, Emelie Engström, Per Runeson
Information and Software Technology, 160 (2023)
doi: 10.1016/j.infsof.2023.107241

III Autonomous Monitors for Detecting Failures Early and Reporting In-
terpretable Alerts in Cloud Operations
Adha Hrusto, Per Runeson, Magnus C Ohlsson
In Proceedings of the 46th International Conference on Software Engineer-
ing: Software Engineering in Practice (ICSE-SEIP 2024)
doi: 10.1145/3639477.3639712

IV Advancing Software Monitoring: An Industry Survey on ML-Driven
Alert Management Strategies
Adha Hrusto, Per Runeson, Emelie Engström, Magnus C Ohlsson
In Proceedings of the 50th Euromicro Conference Series on Software Engi-
neering and Advanced Applications:
Practical Aspects of Software Engineering (SEAA-KKIO 2024)
doi: 10.1109/SEAA64295.2024.00073



12

V Monitoring Data for Anomaly Detection in Cloud-Based Systems: A
Systematic Mapping Study
Adha Hrusto, Nauman bin Ali, Emelie Engström, Yuqing Wang
Submitted to TOSEM.

Related Publications
These papers are referenced in the introduction chapter of this thesis.

VI Optimization of Anomaly Detection in a Microservice System Through
Continuous Feedback from Development
Adha Hrusto, Emelie Engström, Per Runeson
In Proceedings of the 10th ACM/IEEE International Workshop on Software
Engineering for Systems-of-Systems and Software Ecosystems (SESoS 2022).
doi: 10.1145/3528229.3529382



13

Contribution statement

All papers included in this thesis have been co-authored with other researchers.
The authors’ individual contributions to Papers I-V are as follows:

Paper I
Adha Hrusto, Prof. Per Runeson, and Dr. Emelie Engström initiated study and
collaboration with the industry partner. All authors contributed in conducting in-
terviews with the practitioners and formulating identified problem instances. Adha
Hrusto has led the solution design and implementation of the solution prototype
while the decisions and actions taken were critically assessed by Prof. Per Rune-
son and Dr. Emelie Engström. Adha Hrusto was mainly responsible for writing the
paper, while Prof. Per Runeson and Dr. Emelie Engström have also contributed to
writing, reviewing, and editing.

Paper II
Adha Hrusto designed the study and as a lead author, was responsible for writing
the paper. Dr. Emelie Engström initiated very important discussions about the
research approach, while Prof. Per Runeson assisted in refining and formulating
design science concepts of the study. Adha Hrusto proposed reviewing deep learn-
ing approaches for advancing solution design and was responsible for its in-context
implementation and evaluation. Dr. Emelie Engström and Prof. Per Runeson have
also contributed to reviewing and editing the paper.

Paper III
Adha Hrusto initiated collaboration with a new industry partner and was solely
included in all discussions with practitioners in the case company. Adha Hrusto
has also led the design, implementation, and evaluation of the proposed solution.
All questions and decisions were discussed in regular meetings with co-authors.
The paper was written by Adha, while co-authors mainly contributed to reviewing
and editing.

Paper IV
The survey study was initiated by Adha Hrusto, the main author, who has also
entirely contributed to designing and distributing the questionnaire to the target
sample. The questions included in a questionnaire and survey setup were eval-
uated by co-authors before publishing the final version of the survey instrument.
Adha Hrusto analyzed the survey results and wrote the paper, while the co-authors
were responsible for reviewing and editing.



14

Paper V
Adha Hrusto initiated and led the systematic mapping study, taking charge of its
setup and progression. The most important steps regarding methodology, review
process, and data extraction and analysis were collaboratively decided with co-
authors Dr. Emelie Engström, Dr. Nauman bin Ali and Yuqing Wang. All authors
were actively involved in reading selected papers and extracting data, with the
responsibilities evenly shared. Adha Hrusto was in charge of summarizing the
extracted data from the reviewed papers and drafting the manuscript, whereas the
co-authors focused on reviewing and editing the content.



CONTENTS

Introduction 1
1 Background and Related Work . . . . . . . . . . . . . . . . . . . 3
2 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 Validity of research . . . . . . . . . . . . . . . . . . . . . . . . . 29
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Included papers 35

I Closing the Feedback Loop in DevOps Through Autonomous Moni-
tors in Operations 37
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2 Background and Related work . . . . . . . . . . . . . . . . . . . 39
3 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . 42
4 Case Description . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5 Problem Conceptualization . . . . . . . . . . . . . . . . . . . . . 46
6 Solution Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7 Prototype Implementation and Empirical Validation . . . . . . . . 51
8 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . 54

II Towards Optimization of Anomaly Detection in DevOps 59
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2 Background and Related Work . . . . . . . . . . . . . . . . . . . 62
3 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . 63
4 Problem Context . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5 Review of DL Methods for Anomaly Detection in MTS . . . . . . 67
6 Guidance for a Minimum Feasible DL Method . . . . . . . . . . 70
7 Implementation and evaluation of anomaly detection approaches . 73
8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



16 CONTENTS

III Autonomous Monitors for Detecting Failures Early and Reporting In-
terpretable Alerts in Cloud Operations 89
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2 Background and related work . . . . . . . . . . . . . . . . . . . . 91
3 Research approach . . . . . . . . . . . . . . . . . . . . . . . . . 93
4 Problem context . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5 Autonomous monitors . . . . . . . . . . . . . . . . . . . . . . . 95
6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

IV Advancing Software Monitoring: An Industry Survey on ML-Driven
Alert Management Strategies 111
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
2 Background and Related Work . . . . . . . . . . . . . . . . . . . 113
3 Research methodology . . . . . . . . . . . . . . . . . . . . . . . 114
4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . 127

V Monitoring Data for Anomaly Detection in Cloud-Based Systems: A
Systematic Mapping Study 129
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
2 Background and Related Work . . . . . . . . . . . . . . . . . . . 131
3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . 135
4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 142
5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . 160

Bibliography 165
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



INTRODUCTION

Continuous software engineering (CSE) embraces continuous practices such
as continuous integration, continuous testing, continuous deployment, continuous
run-time monitoring, to support and enhance the entire software life-cycle all the
way from the business strategy to the final software product. Another term, closely
related to continuous practices and more often used in industry, DevOps, stands for
cross-functional collaboration between development (Dev) and operations (Ops)
and complements continuous practices by stressing the importance of collabora-
tion and culture in software development environments. Automation and moni-
toring are additional dimensions of DevOps [145], also highly important within
CSE. Thus, automation infrastructure is a means of achieving continuity of CSE
activities while run-time monitoring in operations monitors the health and perfor-
mance of the deployed software through continuous measurements. Accumulated
monitoring data may provide particular insights into development, e.g., timely ex-
posing unusual discrepancies in performance metrics. Accordingly, analyzing and
managing operational data is of high importance for providing fast and valuable
feedback to development, which was the focus of the research we conducted in
this thesis.

While continuous integration and continuous deployment (CI/CD) practices
significantly reduce the time to market for new features by enabling more frequent
releases, they can introduce challenges in maintaining consistent quality due to
insufficient testing [189]. This consideration is even more critical in the context of
complex, cloud-based software ecosystems with possible dependencies on third-
party services. Here, a minor quality issue in one component can trigger a domino
effect, potentially compromising the functionality and reliability of the system as a
whole. Thus, development and operation teams mainly rely on various monitoring
tools and dashboards to discover bugs, glitches, or performance degradation before
they escalate and cause more severe consequences. However, monitoring highly
complex software systems, e.g., consisting of dozens of microservices, might be
challenging as the volume and complexity of monitoring data increase over time
with the software system evolution. Therefore, collected monitoring data in such
systems may burden operations and cause information overflow, e.g., alert flooding
or storm [252] in the feedback loop to development.



2 INTRODUCTION

The main objective of this thesis is to understand and address challenges on
the borderline between development and operations related to monitoring data
overload and alert management with an overarching goal of enhancing DevOps
practices. The solution focus was on applying state-of-the-art machine learning
(ML) approaches in order to achieve proactive monitoring. This included con-
tinuous monitoring of multidimensional cloud-based software systems to identify
and resolve potential issues before they impact performance or availability. For
this purpose, anomaly detection (AD) techniques were employed to discover de-
viations in high-volume data [50, 96] and to identify early signs of operational
failures. This was complemented with the prediction for root cause analysis by
the large language model (GPT-3.5) utilizing log data. All relevant information
regarding detected anomalies in specific performance metrics, including their cur-
rent values, thresholds, and suggestions on how to approach resolving raised is-
sues, were reported in the form of the smart alert to development. In this way, by
timely reporting interpretable alerts, cascading effects of operational failures could
be prevented.

The research was designed to integrate insights from both the practical chal-
lenges faced by the industry and theoretical perspectives from existing literature,
aiming to address these challenges with ML solutions for proactive monitoring.
A valuable aspect of the research project was the collaboration with two Swedish
companies, providing a unique opportunity to conduct the studies in real-world
industrial settings. These companies are referred to as the first case company and
the second case company throughout the introduction for clarity and confidential-
ity. The first case company operates in the public transportation sector, focusing
on ticket management and sales. The system analyzed here exemplifies a mi-
croservice architecture with distributed monitoring capabilities, offering a specific
context to explore monitoring challenges and data management in operational set-
tings. The second case company specializes in developing Product Information
Management (PIM) software solutions. Their system enables customers to manage
product information efficiently, enhancing their online sales and marketing strate-
gies. Despite differences in functionality, this system shares cloud architecture and
environmental similarities with the first, allowing for a comparative analysis that
extends the research’s applicability across different operational contexts.

Through these collaborations, the research was able to bridge theoretical knowl-
edge with practical industrial applications, leading to a comprehensive exploration
of ML-based solutions tailored to proactive monitoring within these two distinct
yet technically interconnected environments. It combines novel frameworks for
advanced alert management with practical engineering implementations to address
monitoring challenges and data overload in continuous software engineering. Con-
tributions of this thesis are threefold:

• C1: A comprehensive understanding of operational challenges in the con-
text of large-scale software systems through two case studies. These studies
led to the definition of problem constructs focusing on alert management



1 Background and Related Work 3

strategies and monitoring data usage, which is crucial for designing match-
ing solutions. Extensive literature reviews enabled a theoretical understand-
ing of the problem domain and provided the foundation for developing cor-
responding solutions.

• C2: A novel proactive alert strategy, named autonomous monitors, inspired
by detailed observations of cloud-based software systems and most recent
academic findings. This strategy aims to detect operational failures early and
ensures continuous monitoring, enhancing the ability to predict and prevent
anomalies before they disrupt operations.

• C3: The effectiveness and applicability of autonomous monitors were val-
idated through empirical evaluations in two case companies and a survey
assessing their use in various industrial settings. This research confirms the
utility and adaptability of the proposed solution, marking a significant con-
tribution to the field by demonstrating its potential benefits in real-world
industrial, cloud-based environments.

1 Background and Related Work

This section provides a comprehensive overview of foundational concepts shap-
ing modern software engineering according to the state-of-the-art literature. The
scope of presented concepts spans from problem to solution domain, as studied in
this thesis. The problem domain includes continuous engineering activities, with
a primary focus on continuous monitoring and the challenges associated with bal-
ancing fast releases and software quality while considering the complexity and
dimensionality of software systems. The solution domain examines proactive alert
strategies based on anomaly detection, emphasizing the significance of early iden-
tification and mitigation of potential failures. This is particularly critical for high-
dimensional software systems, where a failure in one component may trigger a
cascade of issues impacting other components and the system’s overall health. Ac-
cordingly, we present the most recent and relevant solutions in this domain, which
guided our research towards practical implementations and evaluations within the
studied context of two case companies.

1.1 Continuous Software Engineering

Continuous software engineering provides a set of continuous activities needed for
an iterative software development process with accelerated delivery. As shown in
Figure 1 by Fitzgerald and Stol [55], CSE spans across three domains: business
strategy, development, and operations.

The software product creation starts with business strategy and planning, fol-
lowed by technical implementation, deployment, and continuous execution in op-



4 INTRODUCTION

erations. This is accomplished in several cycles, where BizDev and DevOps, con-
necting the three domains, ensure a continuous flow of information between busi-
ness strategy and development, and development and operations, respectively. In
this way, any discontinuities between sales/marketing expectations, development
decisions, and users’ satisfaction are eliminated [55].

DevOps gains more attention than BizDev as it is more frequently used within
both academic and industrial circles. A common interpretation of DevOps [207]
is that it is about culture, tooling, and processes and aims to improve collaboration
and integration between team members, including developers, managers, opera-
tional personnel, and everyone involved in product creation and deployment. This
means that DevOps is defined by four principles: collaboration, automation, mea-
surement, and monitoring [146].

As shown in Figure 1, the three domains are represented with continuous prac-
tices required for planning, developing, and operating software. In the conducted
research work, the focus was on the linkage between development and operations,
thus, the corresponding continuous practices are further explained:

• Continuous Integration (CI) is an automatically triggered process of inter-
connected steps, including code compilation, execution of automated tests

Business Strategy Development Operations

Continuous Improvement

Continuous Exper imentation and Innovation

Continuous Evolution

Continuous Compliance

Continuous Secur i ty

Continuous Testing

Continuous Deliver y

Continuous Integration

Continuous Deployment

Continuous Budgeting

Continuous Planning

Continuous Use

Continuous Trust

Cont inuous Run-Tim e 
Moni tor i ng

BizDev DevOps

Figure 1: A holistic view on the continuous activities adapted from Fitzgerald and
Stol [55]



1 Background and Related Work 5

on unit, integration, system and acceptance level, validating code coverage,
and building deployment packages [208].

• Continuous Testing (CT) is an uninterrupted process of running automated
tests on the latest version of the software. Its main purpose is to help reduce
the time between the introduction of errors and their detection.

• Continuous Deployment (CD) is an automatic process of reliable deliver-
ing software to the customer environments as soon as new code is devel-
oped [208]. According to Rodríguez [177], the CD has roots in Agile Soft-
ware Development (ASD) as agile methodologies are based on the same
principles of delivering valuable software continuously while accelerating
development processes.

• Continuous Delivery ensures that code is always in a deployable state after
automated testing, but the decision to release is manual. Unlike continu-
ous deployment, which automatically releases updates, continuous delivery
allows teams to decide when to release updates [55].

• Continuous Run-Time Monitoring (CM) is a continuous activity of moni-
toring running software services, which may enable tracking their health sta-
tus and timely detection of various malfunctions [55] while collected moni-
toring data may serve for improving development processes [30], generating
or prioritizing test cases [170, 211], or detecting anomalies [96].

• Continuous Improvement is a data-driven activity for improving software
quality and increasing customer satisfaction by utilizing data generated in
the CI/CD pipeline to drive decision-making and eliminate waste.

Another term, mostly used among practitioners, that encompasses the afore-
mentioned continuous activities is continuous integration/continuous deployment
(CI/CD) pipeline. It is considered a set of automated steps designed to streamline
and accelerate the delivery of software. The effectiveness of the CI/CD pipeline
is further enhanced by DevOps principles [207], which promote a shared cultural
mindset among development and operations teams. These principles are essential
for maintaining a seamless and uninterrupted flow of responsiveness within the
pipeline, enabling teams to rapidly address issues and implement changes without
compromising quality or stability. By integrating CI/CD with DevOps, organi-
zations can achieve a higher degree of efficiency, agility, and reliability in their
software development and delivery processes [199].

Implementation of the continuous practices may bring various benefits to soft-
ware development environments such as [177]: 1) shorter time-to-market due to
the higher frequency of release cycles; 2) improved release reliability achieved
with a narrower test focus since each deployment introduces only a limited amount
of code while also relying on rollback mechanisms; 3) instant feedback from auto-
mated infrastructure that enables discovering, locating, and resolving issues more



6 INTRODUCTION

rapidly, utilizing both pre-deployment extensive testing and post-deployment run-
time monitoring; 4) increased developers’ productivity as they can only be oriented
on the development of new features while relying on the automation infrastructure
and feedback from operations for discovering bugs and various anomalies.

In the next subsection, we briefly present various cloud deployment models
and their significance in contemporary software architecture, setting the stage for
understanding the systems analyzed within the case companies studied in this the-
sis. Further, we narrow our focus to continuous run-time monitoring since it has
an important role in the feedback from operations to development and providing
valuable alerting notifications to development in case of detected anomalies, which
was recognized as crucial in addressing identified problem instances in case com-
panies.

1.2 Cloud Deployment Models

In today’s rapidly evolving technological landscape, the adoption of cloud comput-
ing has become increasingly common for modern software systems. Cloud com-
puting offers various deployment models that provide flexibility, scalability, and
cost-effectiveness for organizations. One widely used deployment model is the
public cloud, where services and infrastructure are provided by third-party cloud
providers, such as Amazon Web Services, Microsoft Azure, and Google Cloud
Platform [203]. With public clouds, services are available through a public cloud
service provider that hosts the cloud infrastructure, and customers don’t have any
control over the located infrastructure. Another deployment model is the private
cloud, which is dedicated to a specific organization and hosts applications that are
relevant to its business operations. Private clouds offer organizations more con-
trol over their infrastructure and data, as it is not shared with other organizations.
Community clouds are a shared deployment model between organizations with
similar requirements and business objectives. Community clouds are maintained
and managed by all participating members of the community [178].

In addition to these deployment models, there is also the concept of hybrid
clouds, which combines elements of both public and private clouds. Hybrid clouds
allow organizations to leverage the benefits of both public and private clouds, en-
abling them to utilize public cloud services for scalability and cost-efficiency while
keeping sensitive or critical data on their private cloud for security and compliance
purposes. These different cloud deployment models offer organizations the flex-
ibility to choose the most suitable model based on their specific requirements,
resources, and goals [178].

Organizations can utilize various deployment solutions to implement these
cloud deployment models. Some widely used deployment solutions include [191]:

• Infrastructure as a Service: This solution provides virtualized comput-
ing resources, such as virtual machines, storage, and networks, enabling



1 Background and Related Work 7

organizations to deploy and manage their applications and data in the cloud
infrastructure.

• Platform as a Service: This solution provides a platform for organizations
to build, deploy, and manage their applications without the need to worry
about underlying infrastructure details.

• Software as a Service: This solution allows organizations to access and use
software applications over the internet without the need for installation or
maintenance.

• Serverless Computing: This deployment solution allows organizations to
run their applications without managing the infrastructure. The cloud provider
takes care of all the infrastructure and resource management, allowing orga-
nizations to focus on developing and running their applications.

Overall, the choice of cloud deployment model depends on factors such as
security requirements, resource needs, cost considerations, and organizational ob-
jectives. Additionally, the selection of the deployment model is significantly influ-
enced by the system architecture of the software. Different system architectures
have varying requirements that may align with specific cloud deployment mod-
els [77]. Several software system architectures are widely adopted today, with
microservices, cloud-native, and layered (N-Tier) architectures being particularly
prominent. Microservices architecture is favored for its scalability and flexibility,
aligning well with the dynamic nature of cloud environments [45]. Cloud-native
architecture leverages microservices, containers, and continuous delivery to maxi-
mize cloud benefits, such as elasticity and resilience. Layered architecture is pop-
ular for its modularity and maintainability.

The selection of architecture significantly impacts cloud deployment models.
For instance, microservices and cloud-native architectures are ideal for distributed
cloud environments, facilitating efficient resource use and high availability [10].
In contrast, a monolithic architecture may be better suited for a private cloud
deployment model, providing the organization with full control over the entire
stack [119]. Choosing the right architecture ensures optimal performance, cost
efficiency, and scalability in cloud deployment, aligning with application and or-
ganizational needs. Furthermore, the system architecture also impacts the choice
of deployment solutions within the selected cloud deployment model. For exam-
ple, a system built on microservices architecture might benefit from a serverless
computing deployment solution to offload infrastructure management, whereas a
monolithic architecture may require Infrastructure as a Service for more control
over virtualized computing resources.

It is essential for organizations to carefully analyze their system architecture
and its requirements to make informed decisions about the most suitable cloud
deployment model and deployment solutions. This alignment ensures efficient
utilization of cloud resources and maximizes the benefits offered by cloud.



8 INTRODUCTION

1.3 Continuous Monitoring

The main idea of the term continuity is to ensure an uninterrupted software devel-
opment life cycle, even after deployment. When a software product has been de-
ployed, it is important to continue with post-deployment activities, such as contin-
uous monitoring. Suonsyrja et al. [202] studied the importance of post-deployment
activities and how automatically collected data from operations could be used as
feedback for requirement modifications and further development processes. They
reviewed the literature that relates to the evolution of software development meth-
ods and created a questionnaire to examine if companies are interested in collect-
ing usage data and what they think the data could be used for. The results show
that practitioners are interested in adopting post-deployment activities and that
these activities are important for gathering data about performance, time, and the
way of using the software product but also for discovering system failures. Addi-
tionally, continuous monitoring ensures that software systems remain reliable and
functional after deployment, complementing traditional testing, especially when
time-to-market pressures reduce the scope of pre-deployment testing.

Monitoring data, also referred to as operational data, is a primary means of
achieving full observability. This predominantly abundant data can vary signifi-
cantly in structure and format and take various forms, including logs [101], met-
rics [159], and traces [24]. The use of monitoring tools is crucial for gathering and
interpreting the diversity of data, allowing for the prompt identification of perfor-
mance issues and anomalies. These tools offer powerful capabilities for aggregat-
ing and visualizing data, providing essential insights that support proactive data
management [65]. Monitoring data has a wide range of applications and is crucial
for improving various aspects of the software development life cycle. For example,
using feedback based on monitoring data aggregation, integration, and mapping
for determining analytical and predictive relationships to development processes
has been reported by Cito et al. [29, 30]. The testing phase may also benefit from
monitoring data, such as improving the reliability of testing through iterative esti-
mation of the operational profile, as presented by Pietrantuono et al. [170], or for
the automatic generation of test cases, as reported by Deepika et al. [211]. More-
over, security and privacy issues can be addressed utilizing monitoring data [163].
Thus, monitoring data is essential for identifying and addressing various perfor-
mance, security, and testing concerns in software development.

Beyond improving performance and security, monitoring data plays a key role
in decision-making and operational efficiency. Some operations data has been
used for decision-making and detecting harmful release candidates [20], while Fu
et al. presented how to use clusters of system logs to infer dependencies that are
used for failure prediction and root cause analysis [59]. Additionally, the richness
of log data was leveraged to detect abnormal behavior and performance issues,
as emphasized by Candido et al. [36]. Their Contemporary Logging Framework
categorizes essential aspects of logging and monitoring, emphasizing structured



1 Background and Related Work 9

approaches to manage the vast and heterogeneous data generated by modern soft-
ware systems. Advanced monitoring solutions, such as IntelligentMonitor, inte-
grate real-time data collection, intelligent analytics, and machine learning to en-
hance monitoring capabilities. According to Thantharate [209], these technologies
effectively manage data overload, reduce alert fatigue, and improve system visibil-
ity, thereby enhancing overall system performance and reliability. Hence, continu-
ous monitoring aids in identifying and resolving issues that arise post-deployment
but also provides critical insights that drive ongoing software improvement. The
integration of advanced analytics and machine learning in monitoring practices, as
demonstrated by recent research, highlights the potential for continuous monitor-
ing to significantly improve the resilience and efficiency of software development
and operations.

One of the initial aims when collaborating with the DevOps and CloudOps
teams from the case companies was to understand the current monitoring practices
and specific needs of each company. By engaging closely with these teams, we
wanted to gain a comprehensive overview of the existing monitoring frameworks,
tools, and data collection methods. In this way, we could further explore solutions
for advanced analysis of operational data in order to address identified problem
instances and enhance the monitoring capabilities of the case companies.

Initial insights gained from this collaboration highlighted several critical areas
for improvement. One of the key findings was the need to prioritize anomaly detec-
tion as a primary method for utilizing monitoring data. This focus emerged from
our observations and discussions during the early stages of the project. It became
evident that while the companies had established monitoring systems, there were
significant shortcomings in the way alerting events were reported and managed.
This hindered the effectiveness of the monitoring systems and often led to unnec-
essary disruptions and challenges in identifying relevant issues. As a result, there
was a recognized need for a new and improved approach to discovering unusual
and unexpected deviations in software behavior, specifically through the detection
of anomalies.

1.4 Anomaly Detection

Anomaly detection is a research area with growing attention across numerous
domains such as cybersecurity, healthcare, bioinformatics, industrial fault detec-
tion, genetics, and many more [181]. An observation that significantly and un-
expectedly deviates from the normal pattern in the observation data is considered
an anomaly [14]. However, the concept of anomaly detection may be context-
dependent, and different approaches may be needed for different types of data.
According to Hagemann et al. [75], the three most common approaches to anomaly
detection entail classical machine learning, deep learning, and statistical methods.
The selection of the approaches substantially depends on the available data, its
type, and volume. Moreover, the data available for the learning of normal and



10 INTRODUCTION

anomalous dependencies may define the selection between unsupervised and su-
pervised methods. Labeled data for applications of anomaly detection are rarely
available, and even when there are at least partial annotations, they might be in-
sufficient and unreliable since anomalies in most of the industrial context do not
appear often and periodically [181]. Thus, they are hardly detected and require
special treatment. Moreover, a careful selection of suitable approaches for their
analysis is needed.

In this context, semi-supervised and unsupervised learning methods are par-
ticularly valuable as they minimize the need for labeled data. For example, in
microservice environments, integrating natural language processing (NLP) with
distributed tracing data has proven effective [117]. This approach analyzes spans
within traces, detecting anomalies based on deviations without requiring extensive
labeled datasets. This method demonstrates the flexibility and adaptability of semi-
supervised learning, leveraging the structure of the data to identify performance is-
sues and differences introduced between software releases. Additionally, the use of
large language models (LLMs) to automate the configuration and interpretation of
anomaly detection systems exemplifies the power of unsupervised methods [241].
These models can analyze historical data, extract patterns, and identify anomalies
without explicit labels, simplifying the monitoring process. This approach en-
hances the system’s ability to adapt to new and evolving anomalies, facilitating a
more efficient and robust detection process.

These examples illustrate how semi-supervised and unsupervised methods ef-
fectively address the challenge of limited and unreliable labeled data in anomaly
detection. Our attention was also oriented towards such approaches due to the lack
of annotated data. However, we initially focused on classical machine learning
approaches for labeling the data and predicting anomalies, but due to data com-
plexity and untrustworthiness of the labeling process, we shifted focus towards
advanced unsupervised approaches for anomaly detection such as deep learning.
More specific selection of anomaly detection approaches has been defined by the
software system and environment in case companies. Thus, we focused on ap-
proaches for treating multidimensional time series data as the monitoring data,
indicating the health of the software, consists of multiple numerical observations
captured within a specific time range across multiple services or system compo-
nents. This type of data, known as multivariate time series, is quite challenging
for analysis, especially if there is no ground truth data. Consequently, we relied
on the latest advancements and widely recognized techniques to ensure effective
monitoring and anomaly detection in complex systems within case companies.

1.5 Alerts

Alerts are warning or error notifications reported based on detected software mal-
functions or performance degradation. They are a convenient way of notifying
development teams about the state and the health of the software running in oper-



1 Background and Related Work 11

ations. Alert rules can be configured through a heuristic method involving manual
threshold setting for monitored data or by using advanced algorithms like anomaly
detection to process the raw data. However, there might be some variations de-
pending on the industry domain, such as a large-scale service system of a com-
mercial bank [253], cyber-physical systems [134], process plants e.g., an offshore
oil gas separation plant [144] or large-scale enterprise IT system [131], on how
alerting events are triggered.

Alerts play a crucial role in the timely diagnosis of critical failures. However,
without proper management, they can overwhelm development teams with exces-
sive information, leading to confusion and inefficiency. Ensuring that alerts are
well-calibrated and relevant helps maintain clarity and focus. For instance, Zhao
et al. [253] report a case where the development team had wasted time debugging
non-severe alerts while severe ones were missed. Thus, they propose an effective
ML-based algorithm that utilizes both reported alerts and key performance indica-
tors (metrics) to trigger high-priority alerts more accurately. Similarly, to support
manual alert examination, Lin et al. [131] propose an unsupervised ML approach
for clustering alerts based on their content.

To tackle the challenges posed by excessive and often irrelevant alerts, refining
alert mechanisms in cloud monitoring systems is imperative for maintaining focus
and operational efficiency. One approach, as discussed in research on mitigat-
ing alert fatigue [219], involves leveraging ML techniques to filter and prioritize
alerts, ensuring that only critical notifications reach administrators, thereby alle-
viating the cognitive burden of handling irrelevant alerts. Furthermore, studies on
alert filtering in cloud systems propose a binary classification method to distin-
guish between significant and non-essential alerts, utilizing data-driven models to
enhance the relevance of the alerts presented [218]. Additionally, an investigation
into the anti-patterns of alerts in industrial cloud environments reveals common
issues like unclear descriptions and misleading severity levels, which can compli-
cate diagnosis and delay resolutions [238]. To address these issues, the adoption
of preventative guidelines and the development of personalized alert strategies are
suggested, aiming to tailor alert systems to specific system conditions and user
roles.

These aforementioned combined efforts strive to create a more efficient and
responsive cloud monitoring environment, where practitioners can promptly and
accurately address critical issues without being sidetracked by non-essential in-
formation. Similarly, we aimed to enhance monitoring and alert strategy in case
companies in order to optimize the responsiveness of the DevOps teams and the
reliability of their systems. This new strategy emphasizes a proactive approach,
continuously monitoring the system’s health and identifying anomalies in real-
time monitoring data. These anomalies promptly trigger alert notifications, pro-
viding actionable suggestions for the practitioners to ensure timely awareness and
response.



12 INTRODUCTION

1.6 Operational Failures

A failure denotes the inability of a system or one or more of its components (ser-
vices) to perform one of the functionalities [195]. This is an unwanted epilogue
of any system perturbation we want to avoid. Early detectability of observations
that significantly deviate from the normal pattern, namely anomalies, might be
crucial for preventing the roll-out of severe system failures. Further, an anomaly
detection service that provides early warning of impending failure can reduce the
costs associated with reliability and downtime. Reflecting the need for early fail-
ure detection, Cotroneo et al. [34] present a practical solution by implementing
non-intrusive event analysis and monitoring rules, which significantly improve the
system’s ability to detect and manage anomalies in a timely manner.

By addressing the complexities of monitoring and alerting in DevOps, this the-
sis aims to develop solutions that mitigate the risk of widespread system failures.
The goal is to ensure that potential issues are identified early through anomaly de-
tection, preventing them from escalating into significant failures that could disrupt
multiple parts of the system.

2 Research Approach

This thesis aims to enhance DevOps practices and address the challenges inherent
in fast-paced development environments by applying ML-based solutions. Central
to our research approach is the collaboration with two case companies, providing
a unique opportunity to ground our research in real-world industrial settings. This
partnership enriches our research with practical insights and ensures the relevance
and applicability of our findings to the software industry domain. Our research
is organized into sequential goals, each designed to build on the insights and de-
velopments of the previous through multiple iterations. The research goals are
defined as follows:

• RG1: Understand challenges in the feedback loop from operations to devel-
opment concerning overflow of monitoring data and alert management.

• RG2: Define problem constructs and envision matching solution designs
according to the state-of-the-art literature.

• RG3: Implement and evaluate proposed solution designs in multiple indus-
trial contexts.

• RG4: Examine wider applicability of implemented solution instances and
overall acceptance of ML-based solutions for enhancing DevOps practices.

Accordingly, the overarching goal of this thesis is to understand and improve
certain aspects of the socio-technical industry practice, which aligns with the main



2 Research Approach 13

Paper  I

CASE STUDY 1

Paper  I I

CASE STUDY 2

Paper  I I I

SURVEY STUDY

Paper  IV

MAPPING STUDY

Paper  V

RG1 RG2 RG3 RG4

Figure 2: An overview of conducted research mapped to the research goals and
outcomes

principles of the design science paradigm [82]. To achieve these goals, different
research approaches were employed under the design science frame to understand
problem instances and develop and evaluate design artifacts. The essence of the
design science research contributions is encapsulated in a technological rule [49],
typically expressed in the following format: To achieve <Effect> in <Context>,
apply <Intervention>. This formulation is suitable for matching problem in-
stances and corresponding solutions, offering prescriptive recommendations for
practice [4] that can be applied to similar problems in different contexts. Thus, it
transforms the knowledge gained from the research into a pragmatic, actionable
format that can guide practice and contribute to the broader knowledge base in
software engineering, in our case, the DevOps context. More detailed reflection
on the contributions of this thesis expressed through technological rules, including
their formulation, is given in Section 3.

The overview of conducted research in this thesis is shown in Figure 2, vi-
sualizing the relationship between the studies, papers, and research goals. The
RG1 was mainly investigated in the first case company, studying a microservice
system developed and operated in the DevOps environment and gathering insights
from experienced practitioners. In the subsequent studies, identified problem in-
stances were further examined by reviewing the relevant literature and state-of-the-
art ML-based solutions applicable to identified problem instances. Thus, the sec-
ond research goal, RG2, was investigated in both case studies in order to discover
matching solutions for addressing challenges concerning monitoring data overflow
and alert management in the context of cloud-based software systems. The scarcity
of publications that map corresponding problem contexts (e.g., multivariate metric
data) with matching solutions (e.g., ML techniques for anomaly detection) moti-



14 INTRODUCTION

vated conducting of the mapping study. Thus, this study also played a crucial role
in achieving RG2 by systematically aligning specific challenges in managing high
volumes of different monitoring data types with effective ML solutions.

The second case study extended the validity of the technological rule defined
in the first case study by instantiating an improved version of the solution instance
in a different but similar industrial context. Therefore, the RG3 was addressed in
both case studies, while implementation and evaluation in a new cloud-based envi-
ronment enabled defining more generalizable contributions (see Section 3.6). The
outcomes of the second case study complemented with the survey study results,
led to accomplishing the research goal RG4. This included further examination of
the applicability of the proposed and implemented ML-based solution in diverse
industrial contexts, including different types of cloud-based systems and tools used
for their development and operations. The collective findings from Papers III and
IV contributed to defining a more general technological rule grounded in empirical
evidence and rigorous evaluation (Thesis TR, Section 3.6).

As shown in Figure 3, the design science (DS) frame entails four main ac-
tivities: problem conceptualization, solution design, instantiation, and empirical
validation [182]. Problem conceptualization is a fundamental constituent of de-
sign science research, but it is not necessarily the first step. However, it may be
a starting point of problem-driven research as the problem first needs to be un-
derstood in order to envision potential solutions. Solution design is an activity of
mapping identified problem to a matching solution [49]. Instantiation refers to the
implementation of the solution design in a specific industrial context while empir-
ical validation aims at evaluating the solution instance and examining how well it
addresses identified problem instances [182].

The previously introduced research goals are achieved by conducting the afore-
mentioned DS activities. The first case study resulted in three papers (Paper I, II,
and VI), where Paper VI is not included in the thesis as its main findings were
presented in Paper II. Each of the research approaches in Paper I and Paper II
include activities shown in arrows (see Figure 3) that span from problem to solu-
tion and from practice to theory domain. Interviews and observations were used
in Paper I to explore the problem domain in the first case company to identify
problem instances and formulate a general problem construct considering related
work in the field, which adds to the contribution C1. Further, the matching solu-
tion was designed considering previous research and available solutions to similar
problems. It served as a proof of concept for further work since the complexity of
the industrial context hindered a full-scale implementation. As presented in Paper
I, we managed to execute a partial empirical validation of the initial solution in-
stance, considering time and environment constraints. Thus, the cycle, shown in
Figure 3, is not fully complete and only partially adds to C3.

The outcomes of the first study (Paper I) were complemented by conducting
another cycle of DS activities within the same case, whose results were published
in Paper II. As shown in Figure 3, the problem conceptualization step in the second



2 Research Approach 15

P
ro

b
le

m
 

co
n

ce
p

tu
a

li
za

ti
o

n

P
ra

ct
ic

e
T

h
eo

ry
Problem domain Solution domain

Solut i on design

Technological 
r ule(s)

Em pi r i cal  
val i dat i on

In
sta

n
tia

tio
n

Problem  
instance(s)

Solution 
instance(s)

Problem 
construct(s)

Design 
constr uct(s)

Paper  I

Paper  I I

Paper  I I I

Paper  IV

Paper  V

A
b

st
ra

ct
io

n

Figure 3: Research approach under the design science frame

study (Paper II) was less extensive, including brief discussions with practitioners
and investigation of relevant solutions to formulate a more condensed problem
description. Moreover, in Paper II, we advanced the proposed solution design,
presented in Paper I, with respect to the state-of-the-art deep learning solutions in
order to capture all notions of anomalousness in operations data (C1). The goal
was to provide a more robust and reliable solution than the initial one, which com-
plements contributions from Paper I and adds to C2. These contributions related
to the problem conceptualization and solution design activities in the DS cycles
were presented in both Paper II and Paper VI. However, in Paper VI, the focus was
mainly on the exploration of approaches for advancing the solution design pre-
sented in Paper I. Additionally, actual implementation and empirical validation of
the advanced solution instance in a cloud environment was presented in Paper II,
adding to contribution C3.

Similarly, we employed the design research in Paper III to enhance alert man-
agement practices within a second case company, aiming to extend the validity
of prescriptive recommendations for anomaly detection in multivariate data. The
problem conceptualization phase was shorter according to Figure 3 as we only
needed to confirm hypotheses from previous studies regarding the problem con-



16 INTRODUCTION

text. However, it still required close collaboration with DevOps and CloudOps
teams, including interviews and observations of monitoring and alerting practices
to precisely define the scope of identified operational challenges. The next phase
involved the creation of an automated workflow to enhance monitoring and alert
reporting. The solution leveraged cutting-edge ML technologies, including deep
transformer networks for anomaly detection and GPT-3 models for log interpre-
tation, aimed at producing interpretable alerts from complex multivariate data
streams. The instantiation of the proposed solution was realized through the de-
velopment and deployment of autonomous monitors using Microsoft Azure ser-
vices, ensuring compatibility and integration with the company’s existing cloud
infrastructure. This phase was crucial for transitioning from theoretical designs
to practical applications within the operational environment of the case company.
Finally, empirical validation was conducted to assess the effectiveness of the im-
plemented solution, which contributes to both C2 and C3. Feedback was collected
from the DevOps and CloudOps teams through surveys and direct observations of
alert notifications in the MS Teams channel.

An industrial survey study presented in Paper IV focused entirely on empirical
validation and problem conceptualization, which perfectly fits within the DS frame
as shown in Figure 3. The survey study was designed and conducted following the
recommendations and guidelines presented by Molléri et al. [155], Kasunic [112],
and Linåker et al. [136]. The research approach encompassed a comprehensive
sequence of steps, beginning with clear documentation of the research objectives
and questions, focusing on identifying the frequency, mechanisms, and types of
operational failures encountered by software development companies. Sampling a
diverse group from the industry allowed capturing a broad spectrum of experiences
and data practices. As the primary tool, the questionnaire is thoroughly designed
and validated to ensure accuracy and relevance. Following data collection, a de-
tailed analysis enabled uncovering patterns and insights regarding the role of ML-
based anomaly detection and smart alerts, elaborated in Paper III. This step was
crucial in evaluating the practicality and effectiveness of such technologies across
different organizational contexts. Finally, the findings were synthesized and re-
ported, offering a comprehensive overview of current practices and the potential
impact of AI/ML tools on software development and operations, adding to C3.

The final systematic mapping study reported in Paper V significantly con-
tributes to the theoretical aspect of the problem-solution domain as visualized in
the design science framework shown in Figure 3. The study employs a system-
atic approach based on the guidelines of Kitchenham and Charters [116], aiming
to provide a comprehensive overview of the use of monitoring data for anomaly
detection in cloud-based software systems. The methodology involves a rigorous
search and selection process, using a search string optimized through a Quasi-
Gold Standard approach, primarily utilizing the Scopus database for broad litera-
ture coverage. The study includes 104 papers, which are methodically reviewed
to categorize monitoring data types and the tools employed for data collection.



3 Summary of Results 17

The analysis extends to preprocessing techniques and anomaly detection methods,
mapping them to different data categories and assessing their practical applicabil-
ity in real-world scenarios, which overall contributes to C1.

3 Summary of Results

The overall contribution of this thesis is related to the goal of improving feedback
from operations to development in cloud-based and large-scale software systems
developed and operated in DevOps environments. Through detailed case stud-
ies, this research provides a comprehensive understanding of the operational chal-
lenges faced in large-scale software systems, specifically addressing alert man-
agement strategies and monitoring data usage. A novel proactive alert strategy,
named autonomous monitors, has been developed, inspired by both detailed ob-
servations of cloud-based software systems and the latest academic findings in the
field of anomaly detection. This strategy aims to detect operational failures early,
ensuring continuous monitoring and enhancing the ability to predict and prevent
anomalies before they disrupt operations. The effectiveness and applicability of
these autonomous monitors have been validated through empirical evaluations in
two case companies, complemented by a survey assessing their use across various
industrial settings. A more detailed overview of specific results and contributions
per paper is given below.

3.1 Closing the Feedback Loop in DevOps

The research in this thesis was initiated in collaboration with case companies,
which directed the project towards addressing practical challenges and industry-
specific needs. The goal of the first study, presented in Paper I, was to explore the
problem context in the first case company and design a solution for a conceptual-
ized problem, which is later instantiated and evaluated as a proof of concept for
further work. Among the three problem constructs of the general alert flooding
problem, we focused on optimization problem, which we identified as the most
critical and impactful. This problem concerns the difficulty in distinguishing be-
tween high-priority alerts indicating significant system failures, and less critical
alerts that point to temporary, non-disruptive glitches. The lack of clear differen-
tiation often led to an overwhelming volume of alerts, causing unnecessary load
and inefficient resource allocation.

To tackle the optimization problem, we proposed a conceptual design introduc-
ing an additional element, a smart filter, within the feedback loop from operations
to development as shown in Figure 4. As part of our second contribution (C2), this
solution design acts as autonomous monitors that detect performance anomalies
in near-real-time. The smart filter analyzes metrics from multiple systems com-
ponents, triggering alerts based on sophisticated rules created from multiple input



18 INTRODUCTION

Bui ld Test Deploy Moni torRelease

Sm ar t  Fi l ter
Decision r ules

MONITORING DATA
Met r i csALERTS

DEVELOPMENT OPERATIONS

AUTONOMOUS MONITORS

Figure 4: Overview of the solution in Paper I

variables. This approach allows for the identification of unusual system behaviors,
facilitating rapid and accurate responses to the most relevant system issues.

Building on this design, we developed and tested a prototype, contributing to
C3. The prototype utilized basic machine learning techniques, specifically tree-
based methods [56, 61], to generate advanced decision rules. We used a custom
labeling process based on exceeding thresholds for individual features and con-
sidering factors like service vulnerabilities and alert frequency. The evaluation of
our prototype against the existing alert system in the case company, as well as
an unsupervised multivariate anomaly detection (MAD) method [130], revealed
significant improvements. While the MAD model maintained a similar level of
noisy alerts as the existing system, our smart filter greatly reduced false positives.
This enhancement simplified the root cause analysis and refined the alerting pro-
cess, ensuring that only relevant and actionable alerts were communicated, thereby
improving the efficiency of the system’s response to critical failures.

Throughout this study, we identified several challenges that impacted our fur-
ther decision-making about the future work in the case company. A key challenge
was the ongoing uncertainty caused by the lack of a clear resolution path for fired
alerts, which were communicated through both Slack and email without a clear
resolution strategy. Additionally, it became evident that determining the criteria
that trigger developers to respond to alerts was complex, making it difficult to
define a “real anomaly” and evaluate new detection approaches accurately.

The previously presented solution design included a labeling process, which
is, in general, a very thorny process and highly sensitive in case of anomaly detec-
tion problems. Hence, we decided to shift our focus towards unsupervised deep
learning approaches for anomaly detection in multivariate data, governed by the
existing solutions in the state-of-the-art literature. The final aim was to create a
unique technical solution that would overcome all aforementioned challenges and
enable timely reporting of the most relevant alerts to only one of the communica-
tion platforms.



3 Summary of Results 19

3.2 Towards Optimization of Anomaly Detection

In the following study conducted within the same case company, we addressed
shortcomings of the solution design shown in Figure 4 and explored state-of-the-
art deep learning (DL) approaches for its improvement (C1). We were inspired
by the results achieved using the unsupervised DL methods in addressing anomaly
detection tasks [96, 138, 148]. Unsupervised learning does not require data label-
ing, which is preferable due to the ambiguity of fired alerts in the case company,
while deep learning enables capturing highly complex and nonlinear dynamics in
the multivariate data. Furthermore, we decided to explore approaches for the eval-
uation of the ML-based solutions without any ground truth data.

Bui ld Test Deploy Moni torRelease

MONITORING DATA
Met r i cs

ALERTS

EVALUATE AND UPDATE

OPERATIONS
DEVELOPMENT

Sm ar t  Fi l ter
DL model

AUTONOMOUS MONITORS

Figure 5: Overview of the solution in Paper II

Within the next design cycle, we implemented the smart filter using the reconst-
ruction-based deep learning model (C2), specifically LSTM autoencoder (see Fig-
ure 5). This model proved effective in identifying anomalous behaviors in mul-
tivariate time series data without requiring prior data labeling. The key strength
of using autoencoders lies in their ability to learn the distribution of normal ob-
servations and subsequently identify deviations from this norm. By reconstructing
expected system behaviors, the autoencoder model highlighted instances where the
actual system behavior deviated significantly from the reconstructed output, sig-
naling potential anomalies. This technique was robust against parameter changes
and demonstrated consistent performance in detecting both high and low-impact
anomalies.

A significant aspect of our research was the evaluation of this technique (C3)
without labeled data, a common challenge in real-world applications. To address
this, we relied on feedback from development teams to assess the model’s perfor-
mance. During the implementation phase, the smart filter sent alerts to the devel-
opment team, who then provided qualitative assessments of the alerts’ relevance
and impact. This feedback loop, shown in Figure 5, was critical in fine-tuning the



20 INTRODUCTION

detection thresholds, refining the model, and improving its accuracy. We refer to
this process as optimization because it aims to achieve the best-performing model
through multiple iterations. Thus, the feedback supported by expert insights, can
serve as a viable substitute for traditional ground-truth data in model evaluation.

Our findings indicated that the model was particularly effective in reducing
false positives, which are a major source of noise in alert systems. Reduction of
unnecessary alerts allowed development teams to concentrate on resolving relevant
anomalies, enhancing the overall efficiency of the failure response process. The
feedback mechanism also revealed that the smart filter occasionally identified low-
impact anomalies that, while not immediately critical, provided early warnings of
potential issues, offering a proactive approach to system maintenance.

Furthermore, the research recognized the importance of a flexible and scal-
able infrastructure for deploying machine learning models in a DevOps context.
The cloud-based solution we developed facilitated the seamless integration of the
smart filter into existing workflows, enabling real-time data processing and model
updates. This infrastructure is crucial for maintaining the relevance and accuracy
of the ML models as the operational environment evolves.

Contributions of this study expressed as the technological rule:

TR 1.1 To improve alert management in DevOps, integrate a DL-based
solution for anomaly detection in operations and iteratively refine it using
feedback-generated labeled data.

3.3 Detecting Early Signs of Operational Failures

By continuing further research in this thesis, the goal was to examine how identi-
fied problem-solution instances were common in other similar cloud-based indus-
trial contexts. Therefore, we initiated collaboration with the second case company
to confirm the hypothesis that identified challenges in monitoring and managing
operational data are widespread. Additionally, this study aims to develop a more
sophisticated solution that combines deep learning models for anomaly detection
with a powerful language model to interpret logs and generate detailed, actionable
alerts. This approach detects anomalies more accurately but also helps operations
teams understand the root causes and implications of these anomalies, enabling
faster and more effective resolutions. Expressed as the technological rule:

TR 2.1 To report highly relevant and clear alerts in DevOps, integrate a com-
bination of the DL-based solution for anomaly detection with LLMs for gen-
erating interpretable notifications.



3 Summary of Results 21

Bui ld Test Deploy Moni torRelease

OPERATIONS

DEVELOPMENT

LOGS

LLM 
(GPT-3.5) Anom al ies

ALERTS

EVALUATE AND UPDATE

METRICS

Monitor ing data

Sm ar t  Fi l ter
2DLM 

AUTONOMOUS MONITORS

Figure 6: Overview of the solution in Paper III

As shown in Figure 6, the smart filter consists of two DL models, LSTM
Autoencoder (LSTMAE) and Transformer-based Anomaly Detection (TRANAE).
Thus, in addition to the LSTMAE model used in the first case study, there is an
additional model with advanced architecture and the ability to capture complex
temporal dependencies (C2). The TRANAE model demonstrated superior perfor-
mance in detecting both short-term and long-term anomalies. However, it had not
been previously evaluated in industrial contexts. The combination of these models
ensured a comprehensive monitoring solution that could identify a wide range of
anomaly types.

A significant innovation in this study was the integration of the GPT-3.5 Turbo
language model to analyze logs and provide detailed, interpretable alerts. This in-
tegration transformed raw anomaly detection outputs into actionable instructions.
The generated alerts included information about detected anomalies as well as con-
textual information about the potential root causes and suggested resolution steps.
This feature greatly assisted operations teams in understanding the nature of the
detected anomalies, reducing the cognitive load required to interpret the alerts, and
facilitating quicker and more effective responses. The ability to deliver clear, ac-
tionable insights significantly improved the operational workflow, making it easier
for teams to prioritize and address early signs of operational failures. Outlined as
the technological rule:

TR 2.2 To increase developers’ responsiveness to fired alerts, implement in-
tuitive alert interfaces, allowing for immediate interpretation and action.

The evaluation of the autonomous monitors involved both quantitative and
qualitative assessments (C3). The quantitative assessment of the DL models demon-



22 INTRODUCTION

strated their effectiveness in detecting anomalies within multivariate time series
data. The TRANAE model’s higher precision, with a notable 11.5% improvement
over LSTMAE, highlighted its robustness and effectiveness in dynamic threshold-
ing and anomaly detection. Overall, the evaluation confirmed the effectiveness of
both models, with TRANAE showing a considerable advantage in precision and
reliability for real-time monitoring in cloud-based environments.

In parallel, a qualitative evaluation was conducted through feedback collected
from the operations teams who actively assessed reported alerts. The teams pro-
vided insights into the usability of the generated alerts, focusing on their relevance,
clarity, and actionability. While the feedback was predominantly positive, noting
the system’s effectiveness in early detection and response, it also highlighted areas
for improvement, such as further refining threshold settings to enhance the accu-
racy of critical alerts. Overall, the qualitative feedback confirmed the system’s
value in operational contexts and provided a roadmap for future enhancements.

This study demonstrated that the developed solution could be adapted to differ-
ent industrial contexts, provided the monitoring data types and operational require-
ments are similar. This innovative solution represents a significant step forward
in proactive monitoring and management of complex cloud environments. Fu-
ture research will focus on further refining proposed and implemented techniques
and improving the interpretability of detected anomalies, potentially incorporating
more advanced LLM models.

3.4 ML-Driven Alert Management Strategies in Industry

To be able to examine the wider applicability of ML-based solutions for alert man-
agement beyond the scope of the two case studies, we initiated an industrial quan-
titative survey study (C3). We collected the data using a structured questionnaire
as shown in Figure 7. The survey gathered insights from 25 respondents across
11 software companies, aiming to understand current monitoring practices, chal-
lenges, and the future trajectory of ML adoption in this domain. Moreover, the
goals of this study were to assess the current challenges in handling operational
failures, understand the utilization of monitoring data and tools, and evaluate the
readiness of different roles to adopt and rely on AI/ML technologies. This ap-
proach allowed us to gather empirical data that reflects the varied experiences and
insights of practitioners working in different industrial environments.

The study identified a range of operational failures dominant across various
companies, highlighting a critical area of concern in the software development
domain. These failures include system outages, performance degradation, data
integrity issues, and security vulnerabilities. These failures often result from com-
plex interactions within different system components due to integration or compat-
ibility issues. The impact of these operational failures extends beyond immediate
technical setbacks, affecting development time, costs, product quality, and cus-



3 Summary of Results 23

Project title
Research team

Purpose of the survey
Data pr ivacy

Infomation about 
the survey

Questionnaire form

Respondent Profile

Operational Failures and Monitor ing 
Data Usage

ML for Smart Monitor ing &  Aler ts

6 questions

9 questions

8 questions

Adoption of ML-based Solutions 7 questions

Figure 7: Structure of the questionnaire

tomer satisfaction. This diversity and frequency of failures emphasize the critical
importance of developing advanced monitoring solutions.

The survey results revealed that monitoring data is extensively utilized across
various professional roles to ensure system health and diagnose operational issues.
Key data types, such as performance metrics and log files, are important in track-
ing system performance, identifying vulnerabilities, and resolving issues. DevOps
engineers and quality assurance (QA) teams, in particular, rely heavily on this
data to manage continuous integration processes and maintain high software qual-
ity standards. In contrast, managers rely on monitoring data for decision-making,
while CloudOps engineers and software developers (DEV) use it to track perfor-
mance trends and identify vulnerabilities. Among the monitoring tools, Amazon
CloudWatch, Azure Monitor, and Grafana are widely accepted due to their robust
features and seamless integration. The survey also indicated a consistent distri-
bution of different types of monitoring data across various tools, suggesting that
performance metrics and log files are always prioritized regardless of the tool used.

Despite the availability of advanced monitoring tools, many companies still
employ basic alert strategies (threshold-based). Moreover, the survey findings
highlighted varied perspectives among roles regarding the need for advanced ML-
driven monitoring solutions. Some of them are eager to adopt such solutions (DEV
and QA) while others prefer to stick with existing basic monitoring strategies
(DevOps and CloudOps), possibly due to concerns about implementation com-
plexities. However, there is a recognized need for more advanced analysis of



24 INTRODUCTION

monitoring data where the main benefits anticipated from adopting ML include
faster detection of anomalies, reduced manual monitoring efforts, and more ac-
curate root cause analysis. In contrast, challenges such as the integration of ML
solutions with existing systems, the cost of implementation, and concerns over
data privacy and security were emphasized as significant barriers.

Finally, the readiness to adopt AI/ML solutions as well varies across differ-
ent roles and companies. The study found that while there is general optimism
about the future impact of these technologies, current adoption levels are rela-
tively modest. For instance, roles such as software developers and quality assur-
ance practitioners showed a higher degree of openness towards these technologies,
recognizing their potential to streamline processes and improve accuracy in failure
detection. On the other hand, roles more closely tied to infrastructure management,
like DevOps and CloudOps engineers, exhibited a more cautious stance, possibly
due to concerns about the operational complexities involved in integrating these
technologies. The survey revealed a gap between the minimal current impact of
AI/ML tools on development and testing and the anticipated future benefits, such
as faster development cycles and better operational efficiency. This indicates a
transitional phase where companies are beginning to explore AI/ML capabilities
but have yet to fully integrate them into their workflows.

3.5 A Mapping Study of Monitoring Data for Anomaly De-
tection

While working on case studies and exploring anomaly detection techniques for the
types of data identified in case companies, we encountered an unexpected chal-
lenge in identifying techniques that had been evaluated in real-world operational
contexts. Moreover, many studies did not provide sufficiently detailed information
on the data used for training and evaluating the implemented techniques. This lack
of transparency and practical applicability motivated the initiation of this mapping
study (C1), which aims to bridge the gap in existing research. By focusing on the
use of actual operational data and its characteristics, this study seeks to provide
practitioners and researchers with comprehensive insights into the practical appli-
cation of anomaly detection techniques, ensuring their relevance and effectiveness
in real-world cloud environments.

The analysis of 104 papers included in a review revealed that monitoring data
is crucial for maintaining system observability and reliability, with significant em-
phasis placed on the structure, types, and origins of this data. The study identified
the importance of both structured and unstructured data, with a predominant fo-
cus on structured data due to its ease of analysis. Monitoring data encompasses
three primary categories: 1) metrics, providing quantitative performance measure-
ments; 2) logs, capturing a record of events and transactions; 3) traces, illustrating
the path of requests through the system. In terms of data origin, the study showed
a strong preference for primary data from operational environments, utilized by



3 Summary of Results 25

85% of the reviewed studies. This focus ensures that the findings are grounded
in practical, real-world contexts. Secondary data, found in 27% of the papers,
contributes to the research by providing additional validation through publicly ac-
cessible datasets and standardized benchmarks.

In examining the monitoring tools employed in cloud-based systems, we dis-
covered several key tools, such as Prometheus, Sysstat/Perf, and Amazon Cloud-
Watch, each serving vital roles in ensuring system observability. These tools are
widely recognized for their ability to provide real-time data monitoring, system di-
agnostics, and alerting, which are essential for proactive system maintenance and
timely failure resolution. In addition, according to the findings, there is a growing
trend towards the adoption of custom monitoring solutions, which are developed
to meet the specific needs of different cloud environment setups. These custom
tools offer more flexibility for implementing specialized and adaptable monitoring
infrastructures that can handle unique system requirements and complexities.

The findings include various data preprocessing and anomaly detection tech-
niques that are thoroughly cataloged, specifying their application in cloud-based
systems. Preprocessing techniques like normalization, data formatting, feature
selection, and dimensionality reduction were identified as crucial for preparing
data for analysis, ensuring consistency, and improving the performance of ma-
chine learning models. Additionally, the study acknowledges the variability in
data preprocessing needs, specifying that extensive preprocessing is not required
in some cases, particularly when data is already in a suitable format for analysis.

Anomaly detection techniques are systematically mapped and categorized into
statistical, machine learning, and deep learning approaches. The mapping of these
techniques revealed their applicability across different types of data, providing
a comprehensive overview for practitioners and researchers to select appropriate
techniques tailored to specific data characteristics and operational requirements.
This study recognized the importance of aligning preprocessing and anomaly de-
tection techniques with the nature of the data, ensuring effective anomaly detection
and enhancing the reliability and performance of cloud-based systems.

The final results of the mapping study focused on the representativeness of
monitoring data for real-world cloud environments. The findings showed the im-
portance of using data that accurately reflects real-world conditions for evaluating
anomaly detection techniques. According to the results, 71% of the papers utilized
data sources that were more representative of actual operational contexts, coming
from deployed production systems and benchmarks. However, only 27% of the
papers reported usage of labels that were considered more representative, often
lacking expert validation and including artificially generated data or labels result-
ing from common issues like infrastructure problems. This discrepancy shows that
the data itself may be realistic, but the labels used to evaluate anomalies may not
fully capture the complexities of real-world scenarios.

The results of this study also highlighted various anomaly detection techniques
and their application to either more or less representative data. Techniques like



26 INTRODUCTION

custom statistical methods and sequential models (using LSTM, GRU, and RNN)
were more frequently evaluated using representative data, emphasizing their ro-
bustness in practical settings. In contrast, techniques like decision trees and ran-
dom forests were often tested in controlled environments, potentially limiting their
generalizability to real-world conditions. Thus, validating AD techniques with
data and conditions that closely mirror actual operational environments is crucial
for confirming their robustness and applicability in real-world scenarios.

3.6 Synthesis

The research synthesized from the five papers indicates that the challenges related
to monitoring and managing operational failures are common across various cloud-
based industrial contexts. The problem instance of alert flooding, coupled with the
challenge of prioritizing critical alerts over non-critical ones, is the most significant
concern that hinders operational efficiency. This was consistently observed in both
case studies and was confirmed by the survey findings. This synthesis explores
the generalizability of the proposed solution, autonomous monitors, and outlines
the necessary adaptations and efforts required for their implementation in diverse
operational contexts.

Autonomous monitors are designed to automatically detect and alert on anoma-
lies within complex operational environments, primarily in cloud-based systems.
The main functionalities of autonomous monitors include near real-time data mon-
itoring, anomaly detection, and generating actionable alerts that provide clear in-
sights and recommended actions. While the overall concept of autonomous mon-
itors is broadly applicable across various industrial contexts, their successful im-
plementation largely depends on an organization’s readiness to adopt cutting-edge
technologies and its ability to allocate the necessary resources.

In addition, the successful generalization of autonomous monitors requires
consideration of several factors in collaboration with organizations willing to inte-
grate autonomous monitors into their workflows.

Data. When implementing autonomous monitors across different industrial
contexts, the adaptation of data handling processes is crucial. The types and
sources of data can vary significantly between organizations, requiring customized
approaches to data collection, preprocessing, and analysis. Additionally, it is es-
sential to tailor data preprocessing steps, such as formatting, normalization, fea-
ture selection, and dimensionality reduction, to suit the specific nature of data
(format, volume, frequency). Furthermore, organizations may need to address is-
sues related to data quality and completeness, which are important for the accurate
functioning of machine learning models.

Model Adaptability. The adaptability of ML models used for anomaly detec-
tion is key to wider industrial adoption. Required efforts include extensive model
training and validation using representative data sets from the target environment.
Additionally, the parameters and thresholds of anomaly detection models must



3 Summary of Results 27

be fine-tuned to align with the operational patterns and behaviors. This involves
adapting the models to recognize what constitutes normal versus anomalous activ-
ity within the context of that particular environment. Moreover, ongoing monitor-
ing and iterative refinement are necessary to maintain model performance as the
system evolves.

Integration with existing systems. Autonomous monitors must be capable
of interfacing with current monitoring tools, databases, and alerting mechanisms,
such as Amazon CloudWatch, Azure Monitor, or on-premise solutions, to collect
and analyze data effectively. This often requires developing custom connectors or
adapters that facilitate smooth data flow and communication between systems. In
addition, organizations need a scalable and flexible technical infrastructure capable
of supporting real-time data processing and ML model deployment. This includes
investing in cloud-based solutions that can handle dynamic data loads and enable
continuous model updates.

Feedback Loop. The feedback loop for iteratively refining ML models with-
out traditional labeled data has proven to be an effective strategy. This mecha-
nism leverages the expertise of operations and development teams to fine-tune the
ML models used within autonomous monitors. Implementing such a feedback-
driven optimization process in different organizations would require establishing
clear communication channels and protocols for collecting and utilizing feedback.
This collaborative approach also helps address the unique regulatory, privacy, and
security concerns that may arise in different operational contexts. For example,
feedback loops allow teams to monitor how personal data is being used and rec-
ommend changes to limit exposure, such as anonymizing or minimizing sensitive
data used in training or predictions.

Therefore, the implementation of the autonomous monitors requires careful
consideration of the unique aspects of each operational context even though the
core functionalities are broadly applicable. By addressing these factors, autonomous
monitors can provide significant improvements in operational efficiency and reli-
ability across a wide range of cloud-based environments, making them a versatile
addition to the modern DevOps toolkit.

The summary of presented insights and approaches is encapsulated in the the-
sis’s technological rule:

Thesis TR To enhance operational efficiency in DevOps, employ autonomous
monitors to proactively monitor, detect, and alert initial signs of critical fail-
ures.

This rule synthesizes the overarching goal of the research — to create a re-
silient and efficient operational environment through proactive monitoring sys-
tems. By leveraging autonomous monitors, software development companies can
streamline their alerting processes, reduce noise from non-critical alerts, and focus
resources on addressing the most significant anomalies in monitoring data.



28 INTRODUCTION

4 Discussion

In the domain of software engineering research, particularly when engaging with
industrial partners, a critical challenge is balancing the need for realism with the
demands for control and precision [200]. This trade-off is especially relevant in
empirical studies that aim to validate advanced technological solutions in real-
world environments. Our research prioritizes realism by instantiating our studies
within the operational environments of case companies, capturing the complexities
and challenges faced by industry practitioners. For instance, our implementation
and evaluation of the autonomous monitors were carried out in a live production
environment, where the complexity of cloud-based systems and the variability of
operational conditions provided a robust test bed. This approach provided valuable
insights into the operational effectiveness of the proposed monitoring solution,
enabling a wide range of scenarios that would be difficult to achieve in a controlled
laboratory setting.

However, this emphasis on realism introduced challenges related to the vari-
ability of industrial environments, such as fluctuations in system load, diverse data
distributions, and configuration changes, which introduced noise and complexity.
This variability made it challenging to control all conditions and isolate the direct
impact of the implemented monitoring solution. Moreover, the noisy and dynamic
nature of data from real-world environments might have impacted the precision
of the results. Despite these challenges, we successfully balanced the trade-off by
collaborating closely with case companies, refining our solutions based on con-
tinuous feedback, and integrating state-of-the-art solutions for anomaly detection
and log analysis. While the variability in real-world settings may have led to some
inconsistencies, it also provided valuable insights into the performance of our so-
lutions across different operational contexts.

The aspect of realism differentiates our research from many recent publica-
tions in the same domain. Some of them use controlled environments [67, 234] or
simulated operational failures [149, 212] for evaluation purposes. In contrast, our
work exposed the tough realities of conducting empirical evaluation in real-world
settings, where we experienced and addressed challenges related to the shortage
of ground truth data and the interpretability of detected anomalies in monitoring
data. Compared to the most similar solutions, such as MonitorAssistant [241]
and IntelligentMonitor [209], our contributions still stand out with unique find-
ings. MonitorAssistant [241] uses historical failures and their impact on metrics
to guide anomaly detection and provide recommendations based on past patterns.
As such information was not available within our case companies, we developed
the autonomous monitors capable of detecting unforeseen anomalies and report-
ing actionable alerts that are tailored to the current operational context. Although
the IntelligentMonitor [209] successfully addresses data overload and visibility of
system health, our solution goes a step further by addressing the challenge of alert
fatigue through the use of interpretable alerts generated by using LLMs. This en-



5 Validity of research 29

sures that the alerts are issued timely with clear and meaningful guidance, making
them more practical and useful in real-world cloud operations.

Autonomous monitors offer significant advantages over the built-in anomaly
detectors available in commercial monitoring tools [65] by providing a higher
level of customization and precision tailored to the specific needs of a system.
While commercial tools often rely on generic thresholds or basic algorithms, au-
tonomous monitors use advanced ML models specifically trained on the system’s
monitoring data. Additionally, industry practitioners may be uncertain about how
well these generic anomaly detectors will perform in their specific environments.
Therefore, this thesis offers valuable insights into how to build custom solutions
that integrate near-real-time data collection, anomaly detection, and the reporting
of interpretable alerts, thereby providing evidence on how some state-of-the-art
ML models perform in real cloud environments. This may help practitioners and
researchers develop more effective and reliable monitoring systems that are ad-
justed to their operational contexts.

Building on the findings of this thesis, several future research directions can be
pursued to further enhance and refine the proposed solutions. First, expanding the
evaluation of the autonomous monitors across a wider range of industrial contexts
would provide deeper insights into their adaptability and robustness. Additionally,
exploring the integration of different and more advanced machine learning models
could enhance anomaly detection capabilities. Investigating the use of real-time
feedback loops with automated adjustments could improve the accuracy and ef-
ficiency of the monitors over time. Moreover, a deeper exploration of what con-
stitutes an anomaly in different cloud-based contexts is essential, as operational
norms and thresholds can vary significantly across industries and systems. Finally,
addressing the scalability and performance of autonomous monitors in highly dy-
namic cloud environments, as well as ensuring compliance with regulatory and
security standards, will be crucial for their widespread adoption and success in
diverse operational settings.

5 Validity of research

In this section, we discuss the overall limitations of the design research in Papers
I-III, using the assessment criteria of relevance, rigor, and novelty as outlined by
Engström et al. [49]. We focused on balancing all three aspects to produce re-
search that is both credible and practically valuable. The discussion on rigor will
be enriched with an examination of potential threats to validity according to the
definitions used by Feldt and Magazinius [54]. Both Paper IV and Paper V in-
dependently elaborate on their respective validity threats. Moreover, this section
provides a brief reflection on the ethical considerations taken into account through-
out the thesis.



30 INTRODUCTION

5.1 Relevance

The relevance of the research conducted in Papers I-III is evaluated based on its
applicability and benefit to both practitioners and the research community [182].
From the practitioners’ perspective, the contributions offer practical solutions to
real-world problems related to alert management in cloud-based systems. By ad-
dressing specific challenges identified through case studies, the research provides
insights and solutions that can be adapted or directly applied in similar industrial
contexts. The solutions proposed are designed to enhance operational efficiency,
making them highly relevant to organizations facing similar issues. From an aca-
demic standpoint, the relevance is highlighted by the generalizability (see Section
3.6) of the findings, which contribute to the broader body of knowledge on ma-
chine learning applications in software engineering.

Additionally, in each of Papers I-III, the related work section critically ana-
lyzes previous studies that have explored similar research phenomena, identifying
the research gaps. In this way, we demonstrate the significance and relevance of
conducted research by showing how its main contributions build upon and extend
the existing body of knowledge. Moreover, the survey study (Paper IV) conducted
as part of this thesis provides a broad perspective on current monitoring practices,
challenges, and the adoption of ML-based solutions. This study validates the rel-
evance of the autonomous monitors but also highlights the industry’s readiness
and barriers to adopting such innovations, making the findings highly relevant to
practitioners seeking to enhance their cloud-based systems.

5.2 Rigor

The rigor of the design science studies presented in this thesis is determined by
assessing the knowledge-creating activities: problem conceptualization, solution
design, and empirical validation [182]. Regarding the problem conceptualization,
we used interviews, observations, documentation analysis, and informal discus-
sions with practitioners to collect qualitative data and identify the most challeng-
ing problem instances of monitoring data flow and overflow in operations. These
methods were systematically applied, following best practices in qualitative re-
search, to ensure the reliability and validity of the data. Moreover, they provide
direct insights into the studied phenomenon as they require quite close collabora-
tion with the practitioners.

We assess the rigor of the design activity by estimating to which extent the
proposed design builds on the prior designs from state-of-the-art solutions [49]. In
Paper II, we provide an overview of the most relevant deep learning approaches
that we considered for improving the initial version of the smart filter from Paper I.
This involved a comprehensive review of a variety of anomaly detection techniques
and their ability to capture complex, nonlinear relationships in multivariate time
series data in real operational contexts.



5 Validity of research 31

Furthermore, the empirical validation of the proposed solution, the autonomous
monitors, was conducted in a real-world environment using operational data to ver-
ify their effectiveness in a practical context. The feedback loop established with
industry practitioners, who provided qualitative assessments of the smart filter per-
formance, further enhances the rigor by incorporating real-world expertise and
practical insights into the validation process. In addition, the survey findings con-
firmed the practical benefits of this ML-based monitoring solution in real-world
settings.

In addition, we address several key aspects of validity threats to ensure the
credibility of its findings. Internal validity is achieved by employing structured and
systematic research approaches across the thesis, ensuring that observed outcomes
are directly linked to the interventions. This is accomplished through iterative
design cycles and empirical validations that rigorously test the interventions in
real operational environments. However, researcher bias during interviews and
observations poses potential threats, which were mitigated by using triangulation
and incorporating expert (practitioner) feedback.

Construct validity is approached by ensuring that the concepts being investi-
gated and measured, such as “an anomaly” are grounded in theory and practice.
The use of diverse data sources, including interviews, observations, and literature
reviews, ensures that they are accurately captured and assessed. Furthermore, the
design and evaluation of the solutions were iteratively refined based on qualitative
feedback from practitioners. Despite these efforts, we acknowledge that certain
limitations exist, such as the potential for varying interpretations of what consti-
tutes a “real anomaly” across different industrial contexts.

External validity is supported by diverse case studies (Papers I-III) and an in-
dustrial survey (Paper IV), enhancing the generalizability of findings across differ-
ent contexts. Despite potential limitations due to specific company characteristics,
the inclusion of various company sizes and sectors in the survey study aids in
broadening the applicability of the results.

Conclusion validity is ensured through a robust data collection process, empir-
ical validation, and careful documentation of the research methods. The iterative
nature of the design science cycles, particularly in developing and refining the au-
tonomous monitors, strengthens the reliability of the conclusions drawn. However,
threats such as potential biases in the interpretation of qualitative data and the sub-
jective nature of feedback mechanisms are acknowledged. We mitigate these by
employing a systematic approach to data analysis and involving multiple stake-
holders in the feedback process.

5.3 Novelty

The novelty of this research is evident in its innovative approaches and contribu-
tions to the field of cloud-based system monitoring. It particularly stands out for its
fusion of machine learning, natural language processing, and software engineer-



32 INTRODUCTION

ing principles to develop an advanced framework for system monitoring. Unlike
many theoretical studies, this research goes beyond simulations and controlled ex-
periments by deploying the proposed solutions in operational environments. This
practical application allowed a thorough assessment of the models’ performance in
detecting anomalies within actual industrial data, providing concrete evidence of
their utility and robustness. The integration of state-of-the-art solutions into oper-
ational workflows represents a significant innovation in how these models perform
in real-world scenarios.

Additionally, the contributions of design research in the thesis were captured
in technological rules. They provide guidelines that synthesize theoretical insights
with practical applications supported by empirical evidence from case studies.
These rules are designed with an emphasis on contextual relevance, making them
applicable to a wide array of settings by allowing practitioners to adjust the so-
lutions to fit the unique challenges and characteristics of each environment (see
Section 3.6).

5.4 Ethical Considerations of the Thesis

Throughout the research conducted for this thesis, several ethical considerations
were addressed to ensure integrity and ethical rigor. Confidentiality agreements
were established to protect sensitive operational data and proprietary informa-
tion, ensuring strict adherence to data privacy and intellectual property regula-
tions. These agreements were important for maintaining the confidentiality of the
case companies involved, and that all research activities adhered to strict corporate
and academic standards. This included rigorous data protection protocols, ensur-
ing that all collected monitoring data was securely stored and exclusively used
for research purposes. For the qualitative components, including interviews and
observations, informed consent was obtained from all participants. They were as-
sured of confidentiality and anonymity, reinforcing the trust and privacy of those
involved. In the survey component of the research, participants were informed
about data privacy policies directly on the questionnaire form. This included de-
tailed information on how their responses would be used, stored, and protected,
ensuring transparency and securing informed consent. The ethical guidelines fol-
lowed in this thesis reflect a dedication to responsible and respectful collaboration
with all stakeholders.

6 Conclusions

In this thesis, we addressed one of the main challenges identified in DevOps,
alert flooding (RG1). By leveraging available monitoring data and advanced ma-
chine learning solutions, this research has developed smarter alert mechanisms
that provide critical insights into system operations (RG2). The introduction of



6 Conclusions 33

autonomous monitors, which employ both advanced ML and natural language
processing (NLP) techniques, has significantly improved early failure detection.
These autonomous monitors effectively reduce the volume of false positives, thereby
enhancing the efficiency of the system’s response to true anomalies. Through de-
tailed case studies and empirical evaluations, the practical applicability and adapt-
ability of these solutions have been validated across various industrial settings,
showcasing their potential to transform and improve operational workflows in
cloud-based environments (RG3).

The results also revealed a growing yet cautious interest among industry prac-
titioners in adopting AI/ML technologies to enhance DevOps processes (RG4).
While there is a clear recognition of the benefits, such as enhanced detection of
operational failures and reduced manual efforts, concerns around implementation
complexities and integration with existing systems persist. Moreover, the findings
from this thesis highlight the importance of continued exploration and develop-
ment in this field, particularly in refining anomaly detection models and expand-
ing their application across different cloud-based environments. As the industry
evolves, the adoption of advanced monitoring and alerting systems will be crucial
for maintaining robust and reliable software systems, ensuring that DevOps teams
can effectively manage and prevent potential failures. This research provides a
foundational framework for these advancements, offering valuable insights into
the integration of AI/ML in modern system operations.





INCLUDED PAPERS





PAPER I

CLOSING THE FEEDBACK
LOOP IN DEVOPS THROUGH
AUTONOMOUS MONITORS IN

OPERATIONS

Adha Hrusto, Per Runeson, Emelie Engström

Abstract

DevOps represent the tight connection between development and operations. To
address challenges that arise on the borderline between development and opera-
tions, we conducted a study in collaboration with a Swedish company responsible
for ticket management and sales in public transportation. The aim of our study
is to explore and describe the existing DevOps environment, as well as to identify
how the feedback from operations can be improved, specifically with respect to the
alerts sent from system operations. Our study complies with the basic principles
of the design science paradigm, such as understanding and improving design so-
lutions in the specific areas of practice. Our diagnosis, based on qualitative data
collected through interviews and observations, shows that alert flooding is a chal-
lenge in the feedback loop, i.e., too many signals from operations create noise in
the feedback loop. Therefore, we design a solution to improve alert management
by optimizing when to raise alerts and accordingly introducing a new element in
the feedback loop, a smart filter. Moreover, we implemented a prototype of the pro-
posed solution design and showed that a tighter relation between operations and
development can be achieved using a hybrid method that combines rule-based and
unsupervised machine learning for operations data analysis.

Springer Nature Computer Science (2021)



38 CLOSING THE FEEDBACK LOOP IN DEVOPS

1 Introduction

The software industry has gone through several revolutionary changes over the last
decades. A major change is that software is no longer delivered as a box product.
Technological advancements and availability of cloud computing platforms have
enabled continuous delivery of software systems leveraging the flexibility and reli-
ability of various cloud delivery solutions [171]. Moreover, cloud providers offer
an infrastructure for developing and operating large-scale software systems em-
powered by continuous practices and DevOps, the latest industry concept based
on principles of collaboration, automation, measurements, and monitoring [199].
However, it also comes with an abundance of data to be managed as it is considered
to be the fuel of the DevOps process [20].

The software life cycle includes continuous integration, continuous testing,
and continuous deployment practices [55]. During deployment, software systems
are transitioned from development to operations, to be continuously used by end-
users. The connection between development (Dev) and operations (Ops), known
as DevOps, ensures faster development cycles and frequent releases. However,
keeping the same level of software quality becomes challenging due to shorter
testing cycles. Run-time monitoring of services in operations [53], which is the
focus of this study, is of high importance for gaining confidence in a software
system and providing feedback to the development.

Through the run-time monitoring system, a vast amount of data is continuously
collected and saved for manual or automatic analysis. The data analysis serves as
feedback to development teams and provides deep and quick insight into the status
of the software system during operational execution [20]. Consequently, develop-
ers and project managers can act as soon as they are notified about anomalies. The
notification is typically implemented as alerts sent through a messaging platform,
like Slack, triggered by alert rules, which are defined as functions of the opera-
tional data. However, the abundance of data and particularly alerts from minor or
major malfunctions in system components, tend to flood over the developers and
create noise that drowns the important alerts.

In the literature, there are examples of various methods for the analysis of oper-
ations data but only a few are addressing real industrial needs and challenges com-
panies are facing in relation to the feedback from operations to development [252].
Consequently, there is a limited choice of potential solutions available in the liter-
ature for designing more context-specific solution designs based on the identified
industrial needs. Thus, with our research, we aim to fill this gap by addressing
challenges related to the flow – and overflow – of data from operations to devel-
opment. We intend to explore and improve existing solution designs in the context
of the case company’s feedback loop from operations to development. Thus our
study complies with the principles of a design science paradigm [182].

We conducted a study in collaboration with a Swedish company responsible
for ticket management and sales in public transportation. Their main product is



2 Background and Related work 39

the back-end system for ticketing and payments, developed and operated in a Dev-
Ops environment using Microsoft services and tools. Following design science
principles, we explore and describe the existing DevOps environment and identify
the main challenges on the borderline between operations and development, us-
ing qualitative data collected through interviews and observations. To address the
identified challenges, we design a solution for more effective processing of data
available through the monitoring system in operations by introducing a smart filter
in the feedback loop. Thus our research adds to the new research and innovation
discipline called AIOps, artificial intelligence for IT operations [37]. Moreover,
we present a prototype implementation and validation of the proposed design. It
includes a description of the labeling process of unlabeled operations data, us-
ing unsupervised anomaly detection and considering the service vulnerabilities, as
well as learning new advanced alert rules using a supervised, decision tree-based
Python module.

The contributions of our paper are threefold:

C1. Problem conceptualization. We identified alert targeting, signal to noise
optimization, and system interoperability as being three important problem
instances of the general alert flooding problem in the feedback from opera-
tions to development.

C2. Solution design. We present a unique technical solution that combines var-
ious systems’ and applications’ metrics for learning advanced alert rules
within the new element in the feedback loop, a smart filter.

C3. Prototype implementation. We performed a pilot implementation of the
proposed solution in the case environment as a proof of concept for further
work.

The rest of the paper is structured as follows. In Section 2 we present the
background and previous work in this field. In Section 3, we elaborate on the
research approach, while in Section 4, we describe the case company. Identified
problem instances are introduced in Section 5. The solution proposal is presented
in Section 6. Prototype implementation of the proposed solution and empirical
validation are given in Section 7, while Section 8 discusses the contributions and
concludes the paper.

2 Background and Related work
Ståhl et al. [199] conclude in their systematic mapping study on continuous prac-
tices and DevOps, that the concepts of continuous software engineering practices
and DevOps are ambiguous in the literature. We adhere to their proposed definition
that “Continuous deployment is an operations practice where release candidates
evaluated in continuous delivery are frequently and rapidly placed in a production



40 CLOSING THE FEEDBACK LOOP IN DEVOPS

environment”. In contrast, “Continuous release is a business practice where re-
lease candidates evaluated in continuous delivery are frequently and rapidly made
generally available to users/customers”. Depending on the environment, a release
may be achieved through deployment, for example in most SaaS (Software as a
Service) environments. On the contrary, for user-installed software, continuous
deployment is not an applicable concept, as the user must take actions to install a
new version. However, continuous releases may still be offered to the users.

Ståhl et al. [199] find DevOps be a broader term, including culture and mindset.
It also comprises tools, processes, and practices. We adhere to this broad definition
of DevOps, as we want to investigate “the interplay between specific continuous
practices and DevOps principles, processes and methods” [199], which aligns well
with Fitzgerald and Stol’s scoping of continuous software engineering [55].

Despite the observed ambiguity, there are additional research summaries. Lau-
kkanen et al. [122] presented a literature review of problems, causes and solutions,
when adopting continuous delivery. They build on a previous literature review by
Rodriguez et al. [177], and summarize topics related to build design, system de-
sign, integration, testing, release, human and organizations, and resources. How-
ever, the operational aspects are not included. Similarly, Shahin et al. [189] do
not cover practices beyond continuous deployment in their review and Mishra and
Otaiwi [153] only briefly mention operational feedback as contributing to software
quality in DevOps, in their systematic mapping study.

There is, however, research related to post-deployment activities. Suonsyrjä
et al. [202] studied how automatically collected data from operations could be
used as feedback to the development. They reviewed the literature and surveyed
practitioners’ interest in such activities. They conclude that topics related to post-
deployment monitoring appeared in the scientific literature during the 20th century
but, not during the last two decades [202]. As an exception, Orso et al. [164] pre-
sented the GAMMA system 2002, as an approach to support monitoring software’s
behavior during its lifetime.

Monitoring is not only focused on the software. According to Pietrantuono et
al. [170], monitoring of the software product in operation can be used for collect-
ing usage data. The data is afterward analyzed and reused for selecting the most
representative test cases, based on usage profiles, which are used in their approach
to “continuous software reliability testing”.

Moreover, monitoring has also been part of alarm systems used for triggering
warning signals in case of unusual rises in systems’ metrics. Xu et al. [237] pro-
posed a Process-Oriented Dependability (POD)-Monitor for reducing the number
of false alarms focusing on sporadic and infrequent operations. Their approach
utilizes process-context information and the Support Vector Machines (SVM) al-
gorithm for learning when to suppress alarms and reduce the overload on opera-
tors.

Alerts is another term used for denoting the same or similar events as alarms
and according to Zhao et al. [252], they represent a key source of anomalous events



2 Background and Related work 41

in operations. Zhao et al. [252] reported an approach for handling alert storms con-
sisting of alert storm detection using Extreme Value Theory (EVT), alert filtering
using the ML Isolation Forest method, alert clustering using Similarity Matrix
Construction, and representative alert selection. Furthermore, Zhao et al. [253]
published another study on enhancing the quality of services by utilizing the mon-
itoring data. Similarly, they analyzed alerts but with the aim of identifying the
severity level. They proposed a framework AlertRank for extracting severe alerts
based on textual and temporal alert features as well as features extracted from
monitoring metrics. Since there are two different terms in the literature, in the rest
of the paper we use alerts to denote signals of unexpected systems’ behaviors in
operations.

Monitoring in operations can be utilized even without alert rules, thus con-
sidering raw operations data. Cito et al. [30] identified three main categories of
operations data: system metrics, application metrics, and application system met-
rics [30]. Recently, researchers and practitioners have devoted significant effort
to the analysis of aforementioned operations data considering, among others, ma-
chine learning techniques and the development of various applications. Anomaly
detection is one of the available applications for early detection of a system’s ab-
normal behavior. It has been used for detecting deviations in software releases
based on the data generated by a DevOps toolchain [19]. Further, Du et al. [46]
presented DeepLog, a model based on deep learning for natural language process-
ing, which is used for learning patterns in logs and detecting anomalies in log
data. More thorough research on anomaly detection has been undertaken by He et
al. [80] where they provide an overview of supervised and unsupervised machine
learning techniques used for log analysis. In addition, logs have been studied
for several other applications. Clustering log sequences into groups, identifying
causal dependencies, and creating failure rules are the main steps in the root cause
analysis and failure prediction approach proposed by Fu et. al. [59].

More attempts at problem identification by log analysis can be found in papers
by He et al. [79] and Lin et al. [133] where KPI (Key Performance Indicators) are
used in combination with logs. In both papers, the authors deal with clustering-
based techniques, but their solutions differ in the second phase of the proposed
approaches. In the solution by He et al. [79], the second phase consists of corre-
lation analysis of identified clusters with system KPIs, while the second phase by
Lin et al. [133] includes extracting most representative logs from clusters and com-
parison of clusters created in test and production environment for simpler problem
identification. Furthermore, feedback from operations has been used for decision
making and improving feature planning [30] as well as for feedback-driven devel-
opment where monitoring data has been used for improving developer’s tools [29].

In summary, operations data has been studied and analyzed for different pur-
poses but still, there is more to be explored in DevOps contexts, to improve the
feedback from operations to development. State-of-the-art solutions [19, 96, 252]
address relevant challenges in managing operations data. However, situations of



42 CLOSING THE FEEDBACK LOOP IN DEVOPS

P
ro

b
le

m
 

co
n

ce
p

tu
al

iz
at

io
n

P
ra

ct
ic

e
T

h
eo

ry

Designing a solution 
construct 
Smart filter

Identifying problem 
instances

Problem domain Solution domain

Solution design

Solution instance
Implementation of the

prototype solution

Problem construct
Alert flooding as a 
challenge in the 
feedback loop

Technological 
rule(s)

Empirical validation

In
stan

tiatio
n

Figure 1: Overview of the design science approach

alert flooding in DevOps environments are not extensively explored. Thus, we aim
to contribute to the design of solutions that better manage alerts in DevOps.

3 Research Approach

Our study, as shown in Figure 1, is a problem-driven design science approach [182].
Thus our starting point was to gain deeper insights into the specific challenges of
our case company. As a first step, we explored how the general problem of in-
corporating feedback from operations in the development manifests as a problem
instance in the industrial context under study. For that purpose, we conducted six
interviews and performed observations in the case company to identify and articu-
late the main problem instances on which to focus further improvements.

To obtain a comprehensive overview of the issues, we selected interviewees in
senior positions with different responsibilities within the team, including a product
owner, a test manager, a test developer, a system architect, and two developers.
During the interviews, we asked general as well as more specific questions related



3 Research Approach 43

to the DevOps cycle. The interviews were semi-structured since we wanted to
flexibly explore the interviewee’s opinions and let them speak about their main
issues. Focus areas and examples of questions used in the interviews are shown
in Table 1. All collected qualitative data, notes, and video records were analyzed
using the NVivo tool. Furthermore, we observed their processes in operations and
the way they were handling operations data. This enabled uncovering insights and
defining problem instances.

In the problem conceptualization step, we described three identified problem
instances (Section 5) through the lens of envisioned matching solutions, i.e., we
formulated three high-level technological rules. However, in this paper, we refined
only one of them in the conceptual solution design. Hence, we improve the feed-
back loop from operations to development by introducing a new element, a smart
filter, for optimization of alert to noise ratio. In the design process, we considered
the insights gained through interviews, results of the intensive discussions with the
development team, and state-of-the-art solutions for alert management [252, 253].

Table 1: Topic areas and examples of questions used in the semi-structured inter-
views

Focus area Examples of questions

CI/CD pipeline
- Could you describe the CI/CD pipeline?
- What are the shortcomings and how can they be addressed?

Continuous
monitoring

- Which parts of the system are monitored?
- Which signals are the most critical and good candidates for monitoring?

Alerts
- How does the current alert system look like?
- In which periods do you experience the highest number of alerts?

Accessibility of
operations data

- Which types of operations data are available for analysis?
- Which types of operations data are used for setting the alert rules?

Potential
improvements - How/what would you improve in your current monitoring system?

Moreover, alongside the proposed solution design, we implemented a proto-
type instance to get a better understanding of the opportunities of the available op-
erations data, its type and characteristics as well as the constraints of the context.
In the implementation of the prototype solution, we used unsupervised anomaly
detection throughout the labeling process of unlabeled operations data while also
considering the service vulnerability and observed metrics frequency. Further, for
generating new advanced alert rules, a supervised tree-based machine learning
technique was used. Regarding the empirical validation, there were time and en-
vironment constraints that hindered a full evaluation of the implemented solution.
However, we were able to perform a partial evaluation using a limited data set
for the implementation of the multivariate anomaly detection in a prototype envi-
ronment. In this way, we were able to compare the results obtained by using the



44 CLOSING THE FEEDBACK LOOP IN DEVOPS

Development

Source 
Code 

Management 
(MS Azure)

Trigger 
build

Continuous 
Testing

Production 
Environment 

2

Unit testing

API testing

UI testing

Bugs free

Merge to 
Master 
Branch

Bugs free

Code 
Review

Acceptance 
testing (only 
for specific 

features)

Improve code based on PR comments

Bugs

Hardening 
process

API testing

UI testing

Unit testing

Production  
Environment 

1

Production 
Environment 

3

Unit testing

PR approved

Bugs

Figure 2: CI/CD pipeline

smart filter in the feedback loop with the results of using the pure unsupervised
ML technique for predicting alerts based on the multivariate unlabeled data set.

4 Case Description

The system under study is a backend system of an application for ticketing and
payments used in public transportation. It is a cloud-based system developed and
operated in a DevOps environment using Microsoft tools and services. The system
architecture is leaning towards a microservice architecture, which consists of 20
services that are highly maintainable, testable, and independently deployable.

Throughout the entire CI/CD cycle, shown in Figure 2, new features or up-
dates of each service are tested on: 1) unit level, every time the build process of
the system under test with its dependencies is triggered; 2) API and UI level, every
time the master branch is updated as well as every night on the latest build version



4 Case Description 45

Table 2: Types of operations data mapped with configured alerts

Operations data Configured alerts

Logs
Exceptions /
Traces /
Requests /

Application metrics

Dependency Failures
An unusual rise in the rate

of dependency failures
Exceptions /
Failed Requests /
Server Exceptions /

System Metrics

CPU Time /

Errors Http 4xx
An unusual rise in the rate of

failed HTTP requests

Server Errors 5xx
Whenever there is
a server error 500

Response Time /
Requests /

from the master branch. Moreover, the candidate version for the release is used as
a reference version by other teams in the company for a week, which is called the
“hardening process”. If necessary, the latest version is tested in the acceptance-test
environment, which serves as a production-like environment. The release cycle is
weekly and ends by deploying to three production environments. Hence, the exis-
tence of several independent environments enables smooth development, testing,
and deployment activities but also multiplies the complexity of the entire system.

The health status of each service is monitored using the Microsoft data plat-
form, Azure Monitor. Azure Monitor collects the data from several sources, such
as applications or Azure resources, into a common platform to be used for anal-
ysis, alerting, and visualization. Within this data platform, two types of data are
available, metrics and logs. Metrics are numerical values denoting specific sys-
tem’s observations captured within a defined timestamp. Logs are represented by
both numerical and textual values, and they describe specific events that happened
at a particular moment in time. Both metrics and logs can be used for setting alert
rules that signalize that something unexpected is detected in the observations of
the targeted resources. The case company has implemented simple rules for de-
tecting failed requests with error 500 and unexpected raises of dependency calls
and failed Http requests, as shown in Table 2. When these rules are satisfied, alerts
are triggered, and alert notifications are sent either to a dedicated Slack channel or
via email.

Operations data shown in Table 2 represent only a small portion of all avail-
able data in Azure Monitor, but in this paper, we focus on the selected logs and



46 CLOSING THE FEEDBACK LOOP IN DEVOPS

metrics. Among all accessible observations of different system components, we
chose metrics and logs related to the data types used for setting current alert rules
and the ones used in debugging in case of detected anomalies. Alert rules, shown
in Table 2, are configured for all 20 services, and notifications about raised alerts
are sent on two different platforms. Alerts that detect internal server error 500 are
sent to the Slack channel, while unusual rises in the rate of dependency failures
and failed requests are sent via email.

The development team has already reported various challenges in managing
and responding to fired alerts with this configuration. Moreover, their everyday
development tasks are filled with the uncertainty that every alert brings into their
development environment due to an overload of non-relevant alerts. Consequently,
this might cause a bottleneck in the information flow from operations to develop-
ment. The flaws identified within the monitoring and alert system are elaborated
in the next section.

5 Problem Conceptualization

In this section, we present three main problem instances, identified in the problem
conceptualization step, with respect to the general goal of better incorporating
feedback from operations into development. Based on observations made in the
case company, alert flooding is identified as the main cause of all three problems.
Alert flooding is a phenomenon that appears in the case of a high number of alerts
that are not properly managed. In this paper, we focus on the specific aspects of
this phenomenon namely, targeting, optimization, and interoperability problems.

5.1 Alert flooding as targeting problem

The first problem is defined as a targeting problem. This means that the distribution
of alerts to target recipients, between the teams and individual assignment of a
single or group of alerts within the team, is not fully transparent. Moreover, a lot
of time is spent on discussions on how to resolve alerts and who is going to take
the responsibility. Currently, three teams can be assigned when an alert is fired.
Each team consists of four or five members, mainly developers, and every team
is responsible for one of the domains, which consist of multiple services. Alert
notifications are sent to a dedicated Slack channel, but no one is tagged or directly
assigned to the raised alerts. Individual responsibilities within the team are not
clear and team members usually discuss specific alerts in the same Slack channel.
Sometimes they tag each other and ask if that person has already looked into raised
alerts. As acknowledgment, they usually write that they will look at it right away
or later. If they agree that an action should be taken, a ticket is created and added
to a backlog of the board in Azure DevOps. Hence, two different platforms for
communicating alerts are used but the information is not synchronized.



5 Problem Conceptualization 47

While observing the team and their current practices, we noticed that some
team members showed more interest than others in resolving alerts and that some
look into alerts that are related only to services they are developing or they are
familiar with. Consequently, there is an increasing number of alert notifications
because no one takes full responsibility for looking into alerts that frequently ap-
pear every day. After talking to some team members, it was clear that they would
like to see some structured way of alert management and assignment but they also
pointed out that acting on every alert would take too much time since their main fo-
cus is development. Because of that, designing a solution for the targeting problem
becomes even more challenging.

5.2 Alert flooding as optimization problem

The second problem instance represents an optimization problem, which addresses
optimization of a signal to noise ratio. In this case, the signal consists of high pri-
ority alerts while the noise represents low priority alerts, which frequently appear
every day. Hence, the main question is how to differentiate between alerts that
cause failures and alerts that cause temporary glitches that don’t affect the sys-
tem’s performance.

While observing the current practices in alert management, we noticed that all
alert notifications come to the Slack channel with the same priority. Over time,
developers learned which alerts are reoccurring occasionally, and they consider
them as “normal alerts”. Normal alerts are mostly caused by glitches in an external
or internal service or represent a consequence of a failure related to the central
service. The central service represents the heart of the system and all alerts related
to this service have the highest priority. This priority is not specified as a part of
an alert notification, but is something that developers know since they developed
the system and they know how vulnerable each of the services is. “Normal alerts”
are not normal since they signalize that something might be wrong in the specific
service, but they are normal as they occur frequently, and the team got used to
them. They also produce noise in the channel used for communicating alerts and
because of that some critical things may pass unnoticed. The team raised concerns
about this and agreed that addressing and solving this particular problem might
help in faster and better response to other more important alerts. One more reason
to do so is because they currently do not act upon normal alerts unless there is a
high number of occurrences.

The majority of current alert rules aim at discovering internal server errors
with error code 500 while a significantly higher number of logs still remain unex-
plored, Table 2. Hence, there is a need for adding more alert rules. However, the
team decided to stick with the existing alert rules since the current ones are not
successfully managed. Recently, the team reported that they missed over 20 000
failed Http requests with error code 400. They did not notice this anomaly because
they were overwhelmed with other alert notifications but also due to the fact that



48 CLOSING THE FEEDBACK LOOP IN DEVOPS

they do not usually analyze logs or fix issues before they cause severe problems.
Hence, designing new or redesigning existing alert rules to optimize the signal to
noise ratio, is another challenge that they are facing while at the same time it is
important that the number of non-relevant alerts is not increased and that the most
critical alerts are prioritized.

5.3 Interoperability flaws between developed system and
external systems

Many large-scale software systems depend on external services developed by third
parties. In this way, the original system can offer more features to their end cus-
tomers. This seems to be a huge benefit but may also increase the vulnerability
of the entire system since even the smallest glitches in an external service might
cause serious deviations in the original system. Similar issues are experienced
in the case company as their backend system also depends on external payment
providers, Azure databases, and other software projects developed in their com-
pany. There is a special Slack channel where RSS (Really Simple Syndication)
feeds and emails from external services are forwarded. However, many problems
are still discovered through customer service and user complaints. So, they get
notified when something has already failed and is visible to end-users instead of
in advance. Moreover, the uncertainty of potential disruptions makes developers
even more confused. It is their responsibility to decide if a raised issue is some-
thing temporary or it really represents an issue they should look into and report.
They usually make a decision based on the alert frequency and side effect ap-
pearance. There are no statistics that can prove developers’ claims, but a huge
number of alerts are caused due to interoperability flaws with external services.
The existence of failed Http responses with unknown and unexpected error codes
complicates root cause analysis even more. It is important to address this problem,
otherwise the system stability will be degraded.

6 Solution Design

As stated in Section 3, we provide a conceptual design for the second problem in-
stance, alert flooding as an optimization problem. This problem causes the highest
information overflow in the feedback loop. By addressing this specific instance,
the scope of the first and the third problem instances will be reduced, and indi-
vidual solutions simplified. The first and the third problem instances will not be
individually treated in this paper but will be considered in our future work.

Hence, we propose one solution design and focus on the following challenges
related to the second problem instance: 1) reduce the number of noisy alerts with-
out missing the critical ones; 2) increase the number of alert rules without causing
an overload of alert notifications; 3) improve developer’s responses to the fired



6 Solution Design 49

Target Resource Type

Application 
Insights

Signal Type

Log Search

Microservices

Stored 
Operations 

Data

Metrics
Azure 

MonitorApp Services

Updated 
every 
30 days

Alert 
notifications in 
Slack channel 

Offline 
learning 

whenever 
new data is 
available

      

Smart Filter

1. Learning 
thresholds for single 
features
2. Generating labels
3. Learning logical 
and interpretable 
alert rules

Decision rules for 
alert notifications

Figure 3: Overview of the proposed solution for the second problem instance

alerts while minimizing interference with their development related tasks. Ac-
cordingly, we present the overview of the proposed solution for the second prob-
lem instance in Figure 3.

The upper part of Figure 3, illustrates the previously explained architecture of
the software system, consisting of 20 microservices and Azure Monitor, that mon-
itors real-time application performance (Application Insights) and performance of
Http-based services for hosting applications (App Services). The lower part of
Figure 3, visualizes the enhanced alert system with a new addition, representing
the bridge between MS Azure Monitor and Slack, the platform where alert no-
tifications are sent. The new box, the smart filter, serves as a middle-ware and
provides additional features to the existing alert management.

The main task of the introduced box is to generate alert rules for sending alert
notifications to the messaging platform. Hence, we temporally disregard current
alert notifications and instead focus directly on the most important data, specif-
ically metrics shown in Table 3, holding information about the system’s perfor-
mance. The reason for such an approach is that the current alert rules only catch
a limited number of system glitches and failures while at the same time not being
able to differentiate noisy alerts from important ones. The smart filter will analyze
more data and learn over time to identify new dependencies that may generate new
and better decision rules. In this way, we will reduce the risk of omitting important
alert notifications while keeping the Slack channel clean from noisy information.
Therefore, in our proposed solution design, new decision rules are learnt based
on the features representing the systems’ and applications’ performance metrics



50 CLOSING THE FEEDBACK LOOP IN DEVOPS

Table 3: Overview of the selected data, service vulnerabilities, and desired deci-
sion rules

Selected application
and system metrics

- CPU Time
- Number of failed requests
- Number of exceptions
- Number of dependency failures
- Http 4xx errors
- Internal server errors
- Total number of requests
- Response time

Services with known
vulnerabilities

- Service B –>buying tickets on vending machines
- Service G –>service for validating selected locations
- Service M –>main service for ticketing
- Service P –>bridge to an external payment service

Example of
a decision rule

IF num_of_failed_requests_SG >threshold_1
AND response_time_SB >threshold_2
AND num_of_Http500_SB >threshold_3
THEN send_notification

of the mostly affected services. The output of the smart filter is binary, meaning
that new decision rules are able to determine when to send and when not to send
alert notifications. As shown in Figure 3, the smart filter involves preprocessing
and labeling of the data required for the learning process. The exact procedure is
presented in Section 7.

All things considered, the proposed approach of generating new decision rules
aims at filtering the incoming performance data and sending only relevant alert
notifications to the Slack channel. Newly learnt alert rules should not increase the
number of alert notifications in the Slack channel since the learning process also
involves learning about the noisy data.

Therefore, the proposed solution design addresses the aforementioned chal-
lenge regarding the insufficient alert rules. The purpose of the enhanced alert
management is to provide more insights into correlations between alerts and op-
erations data and at the same time enable forwarding more details about potential
failures within the alert notifications. In this way, the development team could have
all information needed to discover the root causes of potential failures. Moreover,
it is expected that developer’s awareness of raised alerts will increase and that they
will need less time for resolving critical systems behaviors. Therefore, the pro-
posed solution design intends to resolve the previously listed challenges related to
the second problem instance.



7 Prototype Implementation and Empirical Validation 51

7 Prototype Implementation and Empirical Val-
idation

In this section, we present technical details of the prototype implementation1 as
well as the effects of the implemented solution prototype in the identified prob-
lem context. Prototype implementation includes data selection, tools and methods
selection, threshold detection for each of the features, labeling process, training
process and testing. While working on the implementation of a solution prototype,
we have decided to stick with basic machine learning techniques since we primar-
ily wanted to examine the limitations of the suggested design. Hence, using deep
learning or reinforcement learning for identified problem instances is beyond the
scope of this paper.

Data selection. For the prototype implementation, we have chosen to only
work with numerical values representing the various systems’ and applications’
performance metrics, to keep the simplicity. Logs are not included in the pre-
liminary data selection due to their complex structure and due to the fact that the
observed logs including traces, types of exceptions, or failed requests could only
help with the explainability of potential failures. The metrics and services selected
to be part of the training data (see Table 3) are chosen based on the observations
made in the messaging and monitoring platform focusing on metrics frequency and
service vulnerability. Therefore, we selected 8 metrics for each of the 11 services,
which makes in total 88 features. Every feature vector has 8623 samples collected
during a period of one month with a time granularity of 5 minutes, which was
selected based on the current practice within the project.

Tools and method selection. The presented solution design involves learn-
ing new decision rules in the form of logical expressions “IF conditions THEN
response” and for such an approach the first choice of ML methods are tree based
methods, such as bagging and random forest. Therefore, for implementation, we
use Skope-rules [61], a Python machine learning module for extracting rules from
the tree ensemble as suggested by Friedman and Popescu [56]. The classification
is binary, thus, if an instance representing the combination of multiple features sat-
isfies conditions of the rule, then it is assigned to one of two output classes, “send_-
notification” or “dont_send_notification”. Using this Python module requires la-
beled data for the learning process, thus making this approach even more challeng-
ing since the monitoring data platform collects only raw data and the knowledge
about the expected outcomes is unknown.

Identifying thresholds. Therefore, we decided to generate labels based on the
known service vulnerabilities and desired level of contamination. The first step
of the labeling process is to identify thresholds for single features using machine
learning for anomaly detection (see Figure 3, step 1). For that purpose, we used a
Python toolkit PyOD [255] consisting of 30 different detection algorithms. Hence,

1https://github.com/adha7/smart-alert-filter, available upon request

https://github.com/adha7/smart-alert-filter


52 CLOSING THE FEEDBACK LOOP IN DEVOPS

the thresholds are predicted for each of the 88 features where the outliers are ex-
pected to be extremely high values. By applying one of the algorithms from the
PyOD module on a feature vector, we get anomaly scores for each of the values
within a feature vector. Larger anomaly scores are assigned to outliers and the
threshold is simply determined by picking a value from a sorted feature vector
with a large enough score. The score value on the borderline between inliners
and outliers is chosen so that the level of contamination of the entire training data
equals 0.05. The contamination is determined by the number of outlying objects
in the data set, in our case alert notifications that need to be sent to the messaging
platform. Selected level of contamination corresponds to the 13 alert notifications
per day and represents three times less of the current number of alert notifications.
Since there is no optimal number of alert notifications per day we consider this
decrease significant and at the same time large enough to not miss the important
system failures.

Labeling process. After determining the thresholds for each of the features,
the warnings are raised in the cases where the features reach values above these
border values. Based on these warnings, we generate labels (see Figure 3, step 2)
considering a fixed number of raised warnings in a time slot of 5 minutes as well
as capturing for which services warnings are raised, targeting services shown in
Table 3. Accordingly, the output class is labeled as 1, if there are more than 8 raised
warnings in the same time slot, which means that there are at least two services
affected considering that 8 warnings can be related to one service. Further, the
output is also denoted as anomalous or 1, if there are warnings raised for the most
vulnerable services, as shown in Table 3, no matter the number of raised warnings.
When the labeling process is completed, learning logical and interpretable alert
rules can be activated (see Figure 3, step 3).

Training process. Through the training process, Skope-rules generated 120
rules for the class “dont_send_notification” and 43 rules for the class “send_no-
tification”. The rules are generated by fitting single estimators, decision trees,
with predefined precision and recall as input parameters. The precision and recall
reached during the training phase are between 0.92 and 0.99 for the output class
“dont_send_notification”. The precision score for the output class “send_notifica-
tion” is evenly high as for the opposite class but the recall was significantly lower
due to very low contamination, the number of outliers, in the training data set.
A low recall score makes the algorithm “picky” when selecting outlying samples
which might be good for filtering the noise but on the other hand, it might miss
single and isolated outliers.

Testing. On this account, we analyze how the implemented prototype scales
the number of predicted alert notifications per day to the actual number of raised
alerts. We use test data collected within the 7 days (March 3, 20:35 – March 10,
19:40) for predicting outlying objects, alerts, and present the results in Figure 4.

We conclude that the smart filter produces half the number of alerts in a period
of 7 days, 108 compared to 211. Regarding the distribution of alert notifications



7 Prototype Implementation and Empirical Validation 53

(a) Smart filter

(b) Multivariate anomaly detection

Figure 4: Number of alerts per day in the test data. RED color: alerts raised
with current alert rules; GREEN color: alerts raised with a) the smart filter and b)
multivariate anomaly detection

per day, the number of predicted alerts during the weekend (March 6 and 7) is very
low which is expected due to lower stress on the ticketing and payments system.
During the workdays, the number of predicted alerts is less than actual except when
there are issues in the system that the current alert system is not able to capture.
This was the case on March 5, when there was a problem with buying tickets on
the vending machines. The smart filter raised an alert 30 minutes earlier than it



54 CLOSING THE FEEDBACK LOOP IN DEVOPS

was reported by customers, which means that this specific failure could have been
caught before it was noticed by users.

The implemented prototype reduces the overall overload on the development
team but also gives space for further improvement by introducing prioritization of
alerts and sending the alerts on different Slack channels based on their priority for
even better and clearer differentiation.

Empirical validation. In addition to the smart filter implementation, we also
implemented multivariate anomaly detection (MAD) to validate our prototype by
comparing it with the pure unsupervised ML technique for detecting outliers, rep-
resenting alerts, in multivariate unlabeled data set. We used the same Python
toolkit PyOD [255] for the MAD implementation and selected the COPOD model,
copula-based outlier detection introduced by Li et al. [130]. The COPOD model
was trained using the same training data but without labels. The predictions, shown
in Figure 4 (b), using the same test data set, revealed that the MAD trained model
does not scale very well the number of predicted alerts. It predicts almost the same
number of alerts as the actual alert system, making the same level of noise. Both
models, trained using the smart filter and MAD respectively, reach the F1-score,
a harmonic mean of precision and recall denoting a model’s accuracy, above 0.9.
However, the pure unsupervised ML might not be able to capture the imbalance
between the target classes and the importance of specific services and their met-
rics. To clarify this, we look at the alert distribution over the metrics of highly
affected services shown in Figure 5 (a) and (b). We noticed that the smart filter
produces less noise around the actual failures, such as the one marked with the
black arrow from March 5. This means that the actual failure can be more easily
identified among the alerts that appear close to the selected alert on the graph. The
predicted alerts using multivariate anomaly detection are grouped and based on the
graph, they produce several alert floods which is the opposite to what we want to
achieve. On the other hand, the smart filter predicts isolated alerts in case of short
system’s glitches and smaller groups of alerts when there is a larger issue rolling
out.

There are still some individual events that passed unnoticed but since this is
only a prototype version, imperfections and shortcomings are expected. Further-
more, we used a limited data set collected within one month, which could have
also affected the training process and learning when to send alert notifications due
to a low number of outlying objects. We aim to address this in our future work by
considering the larger data set.

8 Discussion and Conclusion
The synergy between development and operations in DevOps is important for de-
veloping and releasing high-quality software systems, but even more for gaining
insights into the system’s behavior in the production environment. In order to en-
sure the latter, raw operations data, collected through runtime monitoring tools, is



8 Discussion and Conclusion 55

(a)

(b)

Figure 5: Distribution of raised alerts in the test data using a) the smart filter and b)
multivariate anomaly detection. BLUE color: selected performance metric; RED
color: raised alerts



56 CLOSING THE FEEDBACK LOOP IN DEVOPS

analyzed to discover valuable feedback information. Our results have shown that
monitoring and utilizing data available in the production may help developer teams
to more easily identify, understand and communicate issues in the operations. Fur-
ther, it helps present the valuable information in an actionable manner and reduces
the pressure and overload.

The results obtained, following design science principles, directly relate to
three main contributions mentioned in the introduction section, problem concep-
tualization (C1), solution design (C2), and prototype implementation (C3). We
started with the problem conceptualization since the first step in solving a par-
ticular problem is understanding its causes and effects. Before our attempt to
identify the main challenges on the borderline between development and oper-
ations, the everyday routine work at the case company obscured shortcomings
in the information flow between operations and development. During the initial
stage of interviews and observations, we managed to identify targeting, optimiza-
tion and interoperability problem instances related to alert flooding. The problem
conceptualization (C1) helped both the development team in acknowledging ex-
isting issues and the research team, in creating a solution design, which is our
second contribution. After presenting our findings, the development team seemed
relieved since they finally understood what was hindering them from making full
use of operational data and how data overload in operations could be prevented.

The solution design (C2), as previously mentioned, addresses the problem of
alert flooding with the emphasis on reducing the number of noisy alerts. The
presented conceptual model includes a new element in the feedback loop, respon-
sible for learning new advanced alert rules capable of reducing the total number of
alerts and increasing their relevance. The smart filter addresses challenges in the
alert management such as insufficient number of alert rules, noisy alert notifica-
tions, and slow developer’s response on fired alerts. Therefore, this addition in the
feedback loop improves the information flow from operations to development by
introducing alert rules which combine various systems’ and applications’ metrics
and services with the aim of capturing unexpected and faulty system’s behaviors
and providing more detailed insights to the development team.

The third contribution (C3) includes implementation of the solution prototype
and validation in a specific context, i.e. our case, the ticketing and payment sys-
tem operated in the DevOps environment. We successfully implemented a proto-
type version of the smart filter using a hybrid method consisting of unsupervised
anomaly detection and supervised decision tree-based Python toolkit while also
considering the importance of highly vulnerable services in the labeling process.
The prototype was validated using a limited test data set collected through the
monitoring system in the production environment. Accordingly, we demonstrated
that a severe failure could have been caught if the smart filter was integrated in
the feedback loop instead of the current alert system. Furthermore, we compared
the implementation of our prototype with the pure unsupervised ML technique for
multivariate anomaly detection. We showed that the customized hybrid method



8 Discussion and Conclusion 57

better captures the systems’ unbalanced operations data and system-specific char-
acteristics needed for catching both systems’ glitches and severe failures. Hence,
the feedback information obtained as a final result has tightened the connection
between operations and development. There have been several attempts at ad-
dressing similar challenges using state of the art solutions based on deep learn-
ing [46,96,252], while our solution proposal reach promising results while keeping
simplicity of the ML approach.

The smart filter in the feedback loop improves the connection between opera-
tions and development but at the same time raises more challenges that need to be
addressed in the future. Even though it reduces the total number of alerts, it could
still be improved by increasing the level of differentiation between the raised alerts
by introducing several levels of priorities and target recipients. We plan for further
work to address the raised challenges by considering deep learning and other ma-
chine learning techniques as well as implementing the smart filter in the production
environment. Consequently, the smart filter will be fully integrated and automated
in the feedback loop and will require minimum human assistance. In this way, we
would be able to get immediate feedback and insights from developers involved
in the alert management, which is needed for obtaining a complete evaluation of
the smart filter. Moreover, since our study provides prescriptions for problems in
a very specific industrial context, in the future we aim to validate our solution in
other similar contexts.

Acknowledgments
This work was partially supported by the Wallenberg Artificial Intelligence, Au-
tonomous Systems and Software Program (WASP) funded by Knut and Alice Wal-
lenberg Foundation. We thank the DevOps teams for their willingness to share
insights and respond to our questions.





PAPER II

TOWARDS OPTIMIZATION OF
ANOMALY DETECTION IN

DEVOPS

Adha Hrusto, Emelie Engström, Per Runeson

Abstract

DevOps has recently become a mainstream solution for bridging the gaps between
development (Dev) and operations (Ops) enabling cross-functional collaboration.
The DevOps concept of continuous monitoring may bring a lot of benefits to de-
velopment teams, such as early detection of run-time errors and various perfor-
mance anomalies. We aim to explore deep learning (DL) solutions for detection
of anomalous systems behavior based on collected monitoring data that consists
of applications’ and systems’ performance metrics. Moreover, we specifically ad-
dress a shortage of approaches for evaluating DL models without any ground truth
data. We perform a case study in a real DevOps environment, following the prin-
ciples of the design science paradigm. The research activities span from practice
to theory and from problem to solution domain, including problem conceptualiza-
tion, solution design, instantiation, and empirical validation. We proposed and
implemented a cloud solution for DL model deployment and evaluation empow-
ered by feedback from the development team. The labeled data generated through
the feedback was used for evaluation of current and training of new DL models
in several iterations. The overall results showed that reconstruction-based mod-
els, such as autoencoders, are quite robust to any parameter modification and
are among the preferred for anomaly detection in multivariate monitoring data.
Leveraging raw monitoring data and DL-inspired solutions, DevOps teams may
get critical insights into the software and its operation. In our case, this proved to
be an efficient way of discovering early signs of production failures.

Information and Software Technology (2023)



60 TOWARDS OPTIMIZATION OF ANOMALY DETECTION IN DEVOPS

1 Introduction

The complexity and dimensionality of software systems are continuously increas-
ing to meet higher market demands and customer expectations. Developing such
systems is even more empowering in DevOps environments where collaboration,
automation, measurement, and monitoring [145] are the main principles for elim-
inating the barriers between development and operations teams. DevOps is an
emerging cultural and organizational practice that enables adoption of new and
modern software architectures for developing scalable and reliable applications.
The recent and popular architectural style entails microservices as an approach to-
wards developing applications as a suite of small services [6]. The main advantage
of those services is that they are independently developed, tested, deployed, and
maintained [210].

In this paper, we report a case study of a microservice system for ticket and
payment management in public transportation, in a DevOps environment. We
specifically focus on infrastructure automation for building, deploying, and op-
erating microservices, known as Continuous Integration / Continuous Deployment
(CI/CD) pipelines [210]. The overall popularity of microservices has increased
with the availability of various cloud platforms and solutions that enable building
such infrastructures, required for flexible and frequent releases. Fast releases and
their quality are the priority in DevOps environments. The DevOps concept of
continuous monitoring in operations assists in revealing unexpected and unwanted
system behavior. In our study, we focus on the detection of anomalous system
behavior in monitoring data and timely reporting alerts to development, providing
all details needed for fast response.

We perform the case study, adhering to the principles of the design science
paradigm [182], as a continuation of our previous work [89], which conceptual-
ized the problem and proposed a solution, expressed as technological rules, i.e.,
grounded recommendations for practice [182]. The initial results of the case study
were presented at the workshop SESoS 2022 [87], which we in this paper ex-
tend by refining the technological rule and implementing and evaluating proposed
solutions. Specifically, we aim to dig deeper into performance vulnerabilities of a
microservice system and how they may be discovered early by raising alerts before
they turn into a problem with severe consequences. For that purpose, monitoring
in operations provides direct insights into the status of the running software sys-
tem, while all monitoring data is continuously saved for potential further analysis.
According to experiences from the industry and reported challenges in managing
monitoring data [171], many software companies are still struggling to select the
right set of tools for storing, visualizing, and processing the data. Having a unique
solution for monitoring data management would enable timely identification of
any potential deviations in data and reporting them as alert notifications.

Additionally, the health status of the entire system depends not only on the
health of individual services but also on their relation and coexistence in a software



1 Introduction 61

system as a whole. This means that the entire software system is based on the
interaction between the services, which may not only be dependent on each other
but even on another external service, hosted on a different cloud platform. To
address this complexity, we treat the data from different services as multivariate
time series (MTS) data represented by an ordered set of multidimensional vectors,
recorded at a specific timestamp [27]. There have been several attempts at dealing
with multivariate time series data with the aim of identifying anomalous systems
behavior [96,123,148]. However, only a few discuss the evaluation of the proposed
methods in contexts without known ground truth data. Evaluation of the learning
model is a required step to achieve a reliable AI solution [120]. Thus, we aim
to fill this gap and explore approaches for evaluation of deep learning solutions
for filtering out anomalies in unlabeled multivariate time series. The novelty of
the conducted research is in the adaptation to the real industrial context. More
specifically, we defined and implemented guidelines for selecting and evaluating
DL solutions in the aforementioned context. Expressed as a technological rule:

TR: To improve alert management in DevOps environments, integrate a smart
filter based on DL for anomaly detection in operations, and iteratively evaluate
and update it utilizing generated labeled data through feedback from develop-
ment.

The technological rule (TR) above is a refinement of the one identified in our
initial exploratory study [89]. The initial solution design included an additional
element in the feedback loop for anomaly detection, a smart filter, implemented
using a basic ML approach based on decision rules [89]. The continuation of this
work was published in our most recent paper [87], where we considered advancing
the design of the proposed solution using unsupervised deep learning methods
to meet the complexity of the studied system and the unavailability of annotated
anomalous data. Contributions of the most recent work [87], (C0 and C1 listed
bellow) are also included in this paper to keep the coherent structure. Thus, this
study is an extension of the previous work [87] with an additional contribution C2,
where we investigate six different variations of the unsupervised DL methods for
anomaly detection in multivariate time series. Furthermore, we iteratively evaluate
and update the best-performing DL models in the same DevOps environment (see
Section 4), which we refer to as optimization.

The contributions of our paper are threefold, which strengthen the grounding
of our technological rule by being field tested in our case study:

• C0: A conceptualization of the problem of applying and evaluating deep
learning methods in a challenging industrial context that includes multidi-
mensional time series data with unknown ground truth anomalies.

• C1: A brief overview of unsupervised deep learning methods for anomaly
detection in multivariate time series representing performance metrics of a



62 TOWARDS OPTIMIZATION OF ANOMALY DETECTION IN DEVOPS

microservice system as well as guidelines for selecting minimum feasible
DL methods for anomaly detection in the same or similar contexts.

• C2: A cloud solution for deployment of the DL method for anomaly de-
tection in multivariate time series and its in-context implementation, eval-
uation, and optimization through continuous feedback from development.

The rest of the paper is structured as follows. In Section 2 we present back-
ground and related work in the field of monitoring large-scale cloud applications
and anomaly detection. Next, in Section 3 we give an overview of the research
approach while in Section 4 we describe the case company and the system under
study. We present an overview of unsupervised deep learning methods for multi-
variate time series in Section 5 and give guidance on selection minimum feasible
DL methods in Section 6. An overview of the cloud solution used for deployment
and integration of the DL model into the feedback loop with the implementation
details and results is given in Section 7. Finally, we discuss limitations of proposed
solution design, conclude and briefly discuss future work in Section 8.

2 Background and Related Work
Continuous monitoring is a very important post-deployment activity that provides
insights into software usage and health. Collecting and inspecting the raw moni-
toring data is highly significant for diagnosing potential failures. Identifying and
resolving prospective issues on time, improves overall quality and reliability, and
reduces potential technical debt [6]. Surveying state-of-the-art literature, Gall and
Pigni [60] identified the benefits of using monitoring such as quick incident re-
sponse, transparency, and quality of services. These goals are achievable through
analysis of fine-grained metrics and end-to-end correlation, highly significant for
microservice architectures and capturing the multidimensional view of the soft-
ware [60].

Regarding the monitoring of microservices, the general background may be
found in publications that explicitly treat this type of systems [28, 104] as well
as in papers that rather focus on cloud monitoring while implicitly introducing
challenges on monitoring microservice architectures [75, 171], due to their very
strong synergy. Ying et al. [104] claim that monitoring has an important role in
a microservice system and that it can be conducted on several levels: hardware,
network, system, application, and service access level. They propose a monitoring
scheme that consists of the following platforms: 1) Logstash for data collection
and filtering; 2) Elasticsearch for storage analysis; 3) Kibana for visualization. In
a broader overview on monitoring of microservices, Waseem et al. [229] introduce
monitoring practices such as exception tracking, health check API, and log man-
agement instead of monitoring levels. Moreover, they bring reasons for having
a monitoring infrastructure for microservices, including diagnosing and reporting
errors, failures, and performance issues, which is also the aim of our study.



3 Research Approach 63

From a slightly different perspective, focusing on monitoring cloud systems,
Pourmajidi et al. [171] present a similar monitoring framework as Ying et al. [104]
with an additional suggestion that includes a stack of InfluxDB and Grafana, open-
source time series database, and analytics and interactive visualization web appli-
cation, respectively. Moreover, one of the challenges they are concerned with is
that the monitoring frameworks provide the health status of individual components
instead of the overall system [171], which is a concern we are partially addressing
in this study.

Further, there is a need for a unified monitoring framework to replace a stack
of different tools as in the aforementioned examples. Larger companies providing
cloud services, such as Microsoft and IBM [89,96], have already started offering a
unified platform that enables version control, building, deploying, and monitoring
of applications.

Data collected through the monitoring system may take different forms, but
we specifically focus on multivariate time series, mainly denoting various applica-
tions’ and systems’ performance metrics. Mining the time series data aims at ex-
tracting meaningful knowledge using tasks such as classification, clustering, fore-
casting, and anomaly detection [27]. Anomaly detection is the process of identify-
ing unusual and unexpected events across time [14]. Hagemann and Katsarou [75]
summarize anomaly detection methods for cloud computing environments into
three categories: machine learning, deep learning, and statistical approaches. Re-
cent studies [96, 148] show that the researchers were mainly interested in deep
learning methods due to their ability to learn highly complex and non-linear cor-
relations with no prior assumptions about the data. For instance, Islam et al. [96]
argued that Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
autoencoders have the strongest predictive power. Among other researchers, there
is the same tendency when selecting anomaly detection methods for multivariate
time series [3, 96, 148]. Another method attracting growing attention is Genera-
tive Adversarial Networks (GANs) [12, 123] that belongs to reconstruction-based
methods like the aforementioned autoencoders. Similar to autoencoders, GANs
aim at reconstructing the normal behavior of time series and detecting anomalies
based on how much the reconstructed data points deviate from the normal behav-
ior. In Section 5, we provide an in-depth review of deep learning methods for the
studied context.

3 Research Approach

We conducted a case study in the context of a larger research project using the
conceptual framework of the design science paradigm [182], as shown in Figure 1.
Our previous work [87], (in blue, Figure 1) and current work (in green, Figure 1)
are part of the same case study. The starting point of this case study is the bot-
tom left quadrant (I), with an identified problem instance of alert flooding and



64 TOWARDS OPTIMIZATION OF ANOMALY DETECTION IN DEVOPS

outcomes from the design science cycle conducted in our initial study [89]. In
this study, we aim to further investigate one of the technological rules, that maps
the problem of alert flooding to a solution that optimizes alert to noise ratio, by
adding a smart filter to the feedback loop from operations to development. We
revisited the previously published initial, basic version of the smart filter [89] by
gathering observations of its limitations from the DevOps practitioners, and sur-
veying relevant literature. In a design science cycle [182], this step corresponds
to the problem conceptualization activity and constitutes contribution C0 listed in
Section 1. As shown in Figure 1 (quadrant II), we reduced our challenging indus-
trial context to a problem of learning from multidimensional time series data with
unknown ground truth anomalies.

Towards optimization

P
roblem

 
conceptualization

Pr
ac

tic
e

T
he

or
y

Problem domain Solution domain

Solution design

Empir ical validation

Instantiation

Aler t flooding
Limitations of the 

basic ML version of 
the smart filter

Anomaly detection in 
multidimensional time 

series data with unknown 
ground truth data

A review of DL 
unsupervised anomaly 
detection approaches
including guidelines 

for selection

DL model deployed 
Cloud solution for  

anomaly detection and 
evaluation of different 

approaches

Future work

Previous work Current work

I

III

IV

II

Figure 1: Overview of the research approach in the design science framework
(blue: previous work; green: current work)



3 Research Approach 65

Next, we investigate solutions for an upgrade since the initial implementa-
tion of the smart filter [89] relied on a supervised anomaly detection method and
manually labeled data, which was insufficient to fully characterize all notions of
anomalousness [181]. Hence, we wanted to explore unsupervised deep learning
approaches that are capable of learning the complex dynamics with no prior as-
sumptions about the anomalous and non-anomalous data distribution. Thus, in
this step we design an upgraded solution of the smart filter, inspired by available
solutions in the literature, which is stated in contribution C1 in Section 1 (see Fig-
ure 1, quadrant III). Hence, we approach the literature with the following research
questions:

• RQ1: What unsupervised deep learning methods are mostly used for anomaly
detection in multivariate time series?

• RQ2: What unsupervised deep learning methods for anomaly detection in
MTS may be used in the studied context?

Eighteen techniques were compared through a 3D lens proposed by Choi et al. [27].
The details of this analysis are reported in Section 5 and summarized as generic
guidelines in Section 6. As shown in Figure 1, these two research questions were
already addressed in our previous work [87]. Unchanged findings are included in
this paper.

The next step is towards optimization, and we continue from the cloud solution
plan that is also presented in our most recent work [87]. It presents the parts of a
cloud infrastructure needed for integration of the upgraded deep learning version
of the smart filter in the feedback loop from operations to development. In this pa-
per, we expand this section and provide details of the in-context implementation,
including deployment of DL models, generating labels, and evaluation of several
approaches (see Figure 1, bottom right quadrant). This was mainly empowered by
the first author’s practical experience and through the support of the practitioners
in the case company. Still, reaching the best-performing ML solution requires a
few more iterations to confirm the robustness of the selected ML model, which is
marked as future work in Figure 1. Furthermore, we plan future steps for address-
ing limitations identified throughout the optimization process. Thus, we intend to
answer the following research questions related to contribution C2 in Section 1:

• RQ3: What capabilities of the cloud infrastructure are required to imple-
ment the proposed solution design for optimization of anomaly detection in
a microservice system?

• RQ4: Which unsupervised deep learning method for anomaly detection per-
formed the best in the studied context?

• RQ5: What are the limitations of the proposed solution and how to address
them?



66 TOWARDS OPTIMIZATION OF ANOMALY DETECTION IN DEVOPS

In Section 7 we present the proposed solution design, in-context evaluation,
and results from the optimization cycles. While mentioned design steps enabled
experimentation and evaluation of state-of-the-art DL approaches, the final selec-
tion of the DL approach with the highest precision in detecting anomalies will be
carried out in future work.

4 Problem Context

This study is conducted in collaboration with a Swedish company, developing and
operating the backend system of an application for ticket and payment manage-
ment in public transportation. It is an example of a system that utilized benefits
from both a cloud platform and a microservice architecture. The entire system
is developed using Microsoft tools and cloud solutions, following the aforemen-
tioned DevOps principles. The health status of each of the 20 microservices is
monitored using Microsoft Azure Monitor that collects data, including perfor-
mance metrics and logs from various sources, such as applications and Azure re-
sources. Collected data is mainly used for analysis, visualization, and alerting. For
further analysis of anomaly detection, we consider only metrics – numerical repre-
sentations of specific systems’ observations taken within a predefined timestamp.
Logs are disregarded as their analysis is out of scope of this study.

As stated in Section 1, it is important to take into account performance met-
rics of all monitored microservices and analyze dependencies over a time axis but
even more importantly dependencies on other variables’ observations from other
microservices. Hence, we consider application metrics (dependency failures, ex-
ceptions, failed requests) across 14 services and system metrics (status codes Http
2xx, errors Http 4xx, errors Http 5xx, number of requests, response time) across 13
different services. We selected those services based on their vulnerability and sig-
nificance identified during the initial study [89]. In total, we get a 120-dimensional
vector consisting of 120 real-valued observations denoting specific performance
metrics, which is an instance of a multivariate times series (see Appendix 1). The
training data set is composed of samples recorded at a specific time during a period
of 12 months. Moreover, the training data set is contaminated with approximately
1% of undetected anomalies which makes the two classes of anomalous and non-
anomalous data highly imbalanced. This is an estimated contamination level based
on observations from the DevOps team and the number of alerts they were receiv-
ing before we started this case study.

We have already attempted at analyzing smaller data set consisting of the afore-
mentioned performance metrics in order to address reported challenges in manag-
ing alerts, that notify the developer team about strange and unusual system’s be-
havior. However, creating new advanced decision rules [89] that combine metrics
across different services is a prototype solution used for exploring the limits of this
very complex industrial context. Therefore, we aim to explore deep learning meth-



5 Review of DL Methods for Anomaly Detection in MTS 67

ods, since they can learn highly complex dynamics with no assumptions about the
data distributions and underlying patterns. A detailed analysis of deep learning
methods applicable for the multivariate time series is presented in the following
section.

5 Review of DL Methods for Anomaly Detec-
tion in MTS

We reviewed eighteen recent studies proposing deep learning methods for anomaly
detection in time series. Inspired by a review by Choi et al. [27], we analyze
and present a condensed overview of unsupervised DL methods across three di-
mensions: 1) inter-correlation between variables, 2) temporal context modeling,
and 3) anomaly score criteria. The first dimension covers the various methods
that may be employed for calculating the correlation between multiple variables,
such as dimensional reduction, 2D matrix, or graphs [114, 125, 249]. Thus, high-
dimensional monitoring data may be represented with fewer feature representa-
tions in order to reduce the dimensionality problem and the number of computing
resources needed for the analysis of the raw data. The second dimension consid-
ers the temporal context of the time series and it is defined by the selection of the
neural network architectures, such as Recurrent Neural Networks (RNN) [115],
Long Short Term Memory (LSTM) [249], Gated Recurrent Unit (GRU) [251], or
Convolutional Neural Networks (CNN) [103]. The third dimension relates to the
calculation of the anomaly score that indicates the levels of anomalousness. The
greater the score is, the more likely it is that the observed time series sequence
is abnormal. The anomaly score can be calculated based on the reconstruction
error [96], prediction error [249] or dissimilarity [103]. The mapping of DL meth-
ods for anomaly detection in multivariate time series across the aforementioned
dimensions is shown in Table 1.

The first group of columns in Table 1 classifies DL methods based on the recon-
struction error along the inter-correlation between variables and different neural
networks for modeling temporal context. The reconstruction-based anomaly de-
tection methods leverage the encoder-decoder architecture, namely autoencoders
(AE), to reconstruct input time series and measure how much the reconstructed
time series deviate from the original samples. An encoder is a fully connected neu-
ral network that encodes a time series sequence into a lower dimension to obtain
the most representative features. A decoder uses the output from the encoder to
reconstruct the encoded time series into the original dimensions. An autoencoder
aims to reproduce the input time series with noise and anomalies removed, since
the hidden layers learn to generalize the distribution of the normal data [115]. This
architecture has been used as a single solution for addressing anomaly detection
problems [91] as well as in combination with Generative Adversarial Networks
(GANs) [64] or anomaly likelihood functions, as introduced by Ahmad et al. [3].



68 TOWARDS OPTIMIZATION OF ANOMALY DETECTION IN DEVOPS

Ta
bl

e
1:

R
ev

ie
w

of
un

su
pe

rv
is

ed
de

ep
le

ar
ni

ng
m

et
ho

ds
fo

rm
ul

tiv
ar

ia
te

tim
e

se
ri

es
ac

ro
ss

th
re

e
di

m
en

si
on

s:
1)

A
no

m
al

y
cr

ite
ri

a
(r

ec
on

st
ru

ct
io

n
er

ro
r,

pr
ed

ic
tio

n
er

ro
r,

di
ss

im
ila

ri
ty

);
2)

In
te

r-
co

rr
el

at
io

n
(d

im
en

si
on

al
re

du
ct

io
n,

2D
m

at
ri

x,
gr

ap
h)

;3
)

M
od

el
in

g
te

m
po

ra
lc

on
te

xt
(L

ST
M

,G
R

U
,C

N
N

,R
N

N
)

A
N

O
M

A
LY

C
R

IT
E

R
IA

R
ec

on
st

ru
ct

io
n

er
ro

r
Pr

ed
ic

tio
n

er
ro

r
D

is
si

m
ila

ri
ty

IN
T

E
R

-C
O

R
R

E
L

A
T

IO
N

L
ST

M
G

R
U

C
N

N
R

N
N

C
N

N
+L

ST
M

L
ST

M
G

R
U

C
N

N
R

N
N

C
N

N

D
im

en
si

on
al

re
du

ct
io

n
[1

25
],

[2
6]

[2
49

]
[2

49
]

[1
90

]
[1

38
]

2D
m

at
ri

x
[1

14
]

[1
03

]
[2

43
],

[2
54

]

G
ra

ph
[2

51
]

[2
51

]

O
th

er
[6

4]
,[

91
]

[9
6]

[1
15

]
[1

09
],

[2
42

]
[4

4]
[1

59
]



5 Review of DL Methods for Anomaly Detection in MTS 69

Autoencoders have been widely used in various setups. Kieu et al. [115] pro-
posed autoencoder ensembles by building a set of RNN autoencoders that may
be trained in an independent framework or in a shared framework, where all au-
toencoders in an ensemble interact through a shared layer. In this example, the
anomaly score is calculated as the median of all reconstruction errors obtained by
applying the Euclidean norm to the original and reconstructed time series. This
approach successfully deals with the problem of overfitting to the original time
series [115]. Zhang et al. [243] and Zhao et al. [254] presented similar solu-
tions that include constructing 2D feature matrices needed for representing the
inter-correlations between the pairs of time series before applying convolutional
encoders and decoders for reconstructing the input time series. Benefits of com-
bining CNN and LSTM layers in autoencoders for learning spatial and temporal
features have inspired many researchers [109, 242]. Unlike the aforementioned
solutions, Chevrot et al. [26] explored using several decoders, one per mini batch.
The mini batches were created by separating the original batch of data based on the
discrimination feature, which simplifies the solution but provides better accuracy
and timely anomaly detection.

As already stated, the encoder-decoder structure has been used in GANs solu-
tions, mainly to model a Generator. Hence, the generator also aims at reconstruct-
ing time series data and generating samples that possibly could have been drawn
from the original data set. In addition to the Generator, GANs consist of another
sub-model, a Discriminator. The Discriminator learns to distinguish the real sam-
ples from the original data set and fake samples obtained from the Generator. The
two GAN sub-models are trained together with the objective of minimizing the
adversarial loss to match the distribution of the generated time series to the data
distribution of original samples [64]. Geiger et al. [64] applied the GAN approach
on normalized raw data while calculating the anomaly score as a linear combina-
tion of reconstruction errors and outputs from the Discriminator.

Differently from the aforementioned approach, Khoshnevisan et al. [114] and
Wenqian et al. [103] used a 2D correlation matrix to capture inter-correlation be-
tween multiple time series and explore the most representative features before
applying the GAN method. Both approaches use the same Generator structure,
encoder-decoder-encoder, to optimize the input reconstruction in original and la-
tent space. The approaches differ in modeling the temporal context and calculat-
ing the anomaly score. Khoshnevisan et al. [114] built the corresponding neural
networks out of the convolutional-LSTM layer in order to learn spatial and tem-
poral dependencies while Wenqian et al. [103] relied only on the convolutional
layers. In the testing phase, Wenqian et al. [103] used both the apparent and la-
tent loss, a L1 distance between the real and generated time series, and Euclidean
distance between latent representations of the original samples and encoded gener-
ated samples, respectively. Differently, Khoshnevisan et al. [114] determined the
anomalous samples based on the reconstruction errors as a measure of differenti-
ation between the original and reconstructed time series. Although the results of



70 TOWARDS OPTIMIZATION OF ANOMALY DETECTION IN DEVOPS

the GAN approaches seem remarkable as in previous and similar examples [125],
simultaneous training of two competing sub-models may lead to a failure mode.
Thus, a very unstable training process may cause a collapsing mode in which the
Generator will always output the same value for any input time series.

The second group of columns in Table 1 lists the DL methods for anomaly
detection based on prediction error. These methods predict the values of the time
series for the next time steps and calculate residuals between the predicted val-
ues and the actual observations. Examples of such methods were reported by
Munir et al. [159] and Ding et al. [44] with a slightly different choice of neu-
ral networks, CNN and LSTM respectively, and different selection of the metrics
for calculating the anomaly score. In addition to the prediction models, Zhao et
al. [251] and Zhang et al. [249] consider prediction and reconstruction errors mu-
tually in their model architectures. Zhang et al. [249] proposed a Convolutional
Autoencoding Memory (CAE-M) built of a convolutional encoder whose feature
representations were fed into the predictive network. Zhao et al. [251] used the
feature-oriented and time-oriented graph attention layer to model the relationship
between the features and time steps, respectively, before simultaneous optimiza-
tion of the reconstruction and predictive model. By combining reconstruction and
predictive models, the aforementioned solutions bypass the shortcomings of the
individual models [251].

Dissimilarity-based methods have been less appealing to the researchers, thus,
the third group of columns in Table 1 contains fewer DL methods in comparison
to the other columns. However, the examples of dissimilarity-based methods have
shown promising results in tackling anomaly detection in multivariate time series
[138,190]. The core idea behind these methods is to measure the distance between
the value obtained by the DL model and the distribution or cluster of the original
data set [27]. In particular, Liu et al. [138] proposed an architecture that consists of
a feature extractor and anomaly detector. The feature extractor is a stack of CNN
layers used for extracting a low-dimensional feature vector while the anomaly de-
tector uses Mahalanobis distance to calculate how far the current observation exists
from the distribution of normal and abnormal data. Similarly, Shen et al. [190]
used feature extractor in their temporal hierarchical one-class (THOC) model but
differently, cosine similarity to measure the distance between the features and the
cluster obtained by deep support vector data description.

In the next section we discuss the selection of the minimum feasible DL method
in terms of simplicity and applicability for our and similar problem contexts, while
mainly reflecting on the methods and classification presented in this section.

6 Guidance for a Minimum Feasible DL Method

Most of the currently available deep learning approaches for anomaly detection in
multivariate time series are context-specific and their implementation may seem



6 Guidance for a Minimum Feasible DL Method 71

overwhelming for researchers or practitioners that are novices in the field. More-
over, there is no single solution that fits all use cases. Thus, in this section, we aim
to give guidance for the selection of a minimum feasible deep learning method for
anomaly detection, specifically applicable to multivariate time series. This means
that the suggested method may be used as the starting point when exploring the
specific context and limitations of the available data set. Further, the method may
be adjusted or optimized to be used for larger and more complex data sets.

Type of anomaly. The anomaly in time series data may be represented by one
or more data points that significantly deviate from previous time steps. We con-
sider a point and subsequent anomaly [14], as two types of anomalies relevant for
our problem context. The point anomaly is a data point that significantly deviates
from either its neighboring data points (local anomaly) or other points in the time
series (global anomaly). The subsequent anomaly refers to a set of data points
whose mutual behavior diverges from the rest of the time series [14]. Both types
of anomalies may affect one or more time-dependent variables in time series. To
detect either of these two anomaly types, the DL methods listed in Table 1 may be
applied with an additional modification for detecting subsequent anomalies since
the history of detected anomalies must be maintained. Thus, the methods including
sliding windows may be explored when detecting subsequent anomalies [96,243].

Dimension of the data set. Dimensionality in time series refers to a number of
attributes measured in each time step. A multivariate time series is an ordered set
of n-dimensional vectors recorded at a specific time, where n denotes the number
of attributes, which can be equal or greater than two [27]. As presented in Section
5, various methods for dimensional reduction, including autoencoders (AE) [249]
and convolutional feature extractor [138], may be employed for extracting features
based on the relationship among attributes and reducing the dimensionality of the
problem context.

Temporality. A time series is a collection of data points measured and in-
dexed in time order. The observations are recorded at equal time intervals and
each data point is dependent on its prior values. Based on the review in Section 5,
LSTM layers are mostly used for modeling the temporal context since they have
ability of keeping the information about previous states for long periods of time.
This enables learning of the long-term dependencies. Further, CNN layers were
a favoured selection for extracting spatio-temporal dependencies in multivariate
time series with a spatial dimension as in [243, 254], which is usually not the case
with the performance monitoring data.

Selection of the DL method. For the selection of the minimum feasible meth-
ods, we exclude solutions based on GANs since they may require more develop-
ment time and computing resources for their implementation but still do not guar-
antee satisfactory results due to their unstable training process. Thus, we rather
focus on reconstruction- and prediction-based methods to be the first methods to
explore when tackling the anomaly detection problems in time series. Further, we
present three variations of the DL methods that could be explored as the starting



72 TOWARDS OPTIMIZATION OF ANOMALY DETECTION IN DEVOPS

Method 1
Reconstruction-based 

method

Method 2
Reconstruction- and 

prediction-based method

Method X
Best performing ML 

method

Deploy, collect 
feedback

Evalute M1, tune M2 
and validate, deploy 

Collect
 feedback

Figure 2: Overview of process for the method selection

point when addressing anomaly detection tasks.

• Method 1: A pure reconstruction-based method utilizing the encoder-decoder
architecture for obtaining a reconstruction of the input data. For modeling
the temporal context, LSTM layers are preferred while anomaly scores may
be calculated as the Euclidean distance between original and reconstructed
data points. Moreover, one could use a fixed window size to capture subse-
quent anomalies while keeping track of the previously detected anomalous
data points as suggested by Hsieh et al. [91].

• Method 2: A combination of reconstruction- and prediction-based methods
as proposed by Zhao et al. [251]. Inter-correlation may be applied in the
case of high dimensionality [114] with previous data normalization. The
suggestion is still to stick with the LSTM layers and use the Euclidean norm
to calculate the difference between reconstructed and predicted values, and
actual observations at the corresponding time steps.

• Method 3: A dissimilarity-based method with prior feature extraction using
one of the approaches for discovering inter-correlations between attributes,
such as LSTM autoencoders [27] or CNN feature extractor as in a solution
proposed by Liu et al. [138]. The next step is to determine how far actual
observed values are from the clusters or distribution of anomalous and non-
anomalous samples using any clustering method, such as K-Means [181] or
Gaussian Mixture Models [138].

We suggest exploring the methods for advancing the smart filter in the order
they are presented. The three presented methods will be considered for advancing
the smart filter, one at a time. This means that they will be deployed to the pro-
duction environment one by one and evaluated. In each iteration, the development
team will be assessing the precision of reported alerts. When the labeled data is
obtained based on the feedback, we aim to explore the feasibility and accuracy of
alternative approaches which may include second and third methods with no or
minor adjustments. We continue this process until we reach the method with the
highest accuracy as shown in Figure 2. In this paper, we present two iteration cy-
cles. The details of the in-context implementation and evaluation of the proposed



7 Implementation and evaluation of anomaly detection approaches 73

solution design for anomaly detection in multivariate time series are presented in
the next section.

7 Implementation and evaluation of anomaly de-
tection approaches

In this section, we present the details of the in-context implementation of deep
learning models and their deployment and integration in the feedback loop, uti-
lizing the cloud infrastructure. This also includes a description of the model se-
lection, data preprocessing, and the process of anomaly detection, as well as an
overview of the results accomplished during the initial optimization step. Ad-
ditionally, we provide a comparison of different unsupervised DL approaches in
order to select the best-performing model for the next optimization cycle. We
conclude the section by discussing the challenges and future improvements of the
presented DL solutions.

7.1 Overview of the cloud solution for in-context imple-
mentation

As mentioned in Section 1, we aim to address a shortage of approaches for eval-
uating DL methods in the DevOps context where ground truth data on anomalous
system’s behavior is unknown. Hence, we present a cloud infrastructure used for
implementation and optimization of the DL model, shown in Figure 3. When
investigating examples of cloud infrastructure, we were mainly inspired by Mi-
crosoft tools and services since the system under study is implemented and de-
ployed using this platform. A detailed explanation of each of the numbered parts
in Figure 3 is given below.

1. Model training – It relates to the training process of the selected model
within Method 1, introduced in Section 6. Depending on the size of the
training data set and the model complexity, the training process can be per-
formed either on the local machines or the cloud computing resources, such
as Microsoft Azure ML Studio. The trained model is registered to the Azure
Machine Learning workspace, which is needed to deploy and load the model
when required.

2. Cloud solution – The overall solution is implemented using the Azure Logic
Apps, a cloud-based platform for developing and running automated work-
flows. With this service, we automate fetching of monitoring data in near-
real-time, predicting anomalies, sending an alert notification to the Slack
channel, and saving the feedback from the development team to a shared
storage. This is enabled through built-in triggers and actions that can be



74 TOWARDS OPTIMIZATION OF ANOMALY DETECTION IN DEVOPS

Fetch new
 

data every 5 
m

in

L
ogic A

pp

F
eature vector

Stored 
operations 12 
m

onth-data

Training M
L 

m
odels

Training data 
represented as 

m
ultivariate tim

e 
series w

ith 120 
features

-
M

L m
odel 

deployed as a 
real tim

e 
service

T
rigger sending alert notifications 

B
lob shared 
storage

Tow
ards optim

ization

-
E

valuate current 
m

odel
-

R
etrain existing 

m
odels and/or train 

new
 m

odels

-
M

odel M
1

 SM
A

R
T

  F
ILT

E
R

-
Post-processing 
of M

L m
odel 

predictions
-

D
eployed as 

Function A
pp

M
L Studio 

W
orkspaces

R
egister M

L
 m

odel

-
Feedback from

 
developers

R
egister best perform

ing M
L

 m
odel

T
here is an issue w

ith follow
ing services:

-
Service A

, Failed D
ependecies

-
value: 180 w

ith threshold: 40.125
-

Service B
, Failed R

equests
-

value: 45 w
ith threshold: 5.896

-
D

etails
P

lease asses this alert to teach the A
I:

ST
 A

nom
aly D

etector 

A
lert

N
ot sure

W
arning

A
lert but no im

pact

2:00 P
M

3

1

2

4

5

6
7

Figure
3:O

verview
ofthe

proposed
solution

design
foroptim

ization
ofanom

aly
detection



7 Implementation and evaluation of anomaly detection approaches 75

executed sequentially or in parallel. A trigger represents the first step in
any workflow and defines the condition for running any further steps, while
actions are steps in a workflow and are executed after the trigger.

3. Workflow clocking – The automated workflow is triggered every five min-
utes to avoid overlap since the monitoring data is also fetched with time
granularity of five minutes. This was in turn selected based on the current
practice within the project. The data is collected through sequential loops
iterating over performance metrics and services, thus the data is received in
the same order every time. This process may take up to two or three minutes.
The output of this action is a feature vector consisting of 120 performance
metrics forwarded to the smart filter.

4. Smart filter implementation – The smart filter consists of two parts, the
ML model deployed as a real-time web service to an Azure Container In-
stance (ACI) and a Function App where the rest of the logic is implemented.
The Function App is a cloud solution for running even the smallest code
snippets in the cloud on-demand, and in this case, we use it for post-processing
of predictions, calculating anomaly scores, and decision making. Once de-
ployed, the real-time web service can be accessed through its REST in-
terface. To consume the web service, one could determine the endpoint
of a deployed service and use an HTTP POST request with JSON data
to call the service. The input to the service, the JSON data, contains a
multidimensional feature vector, while the service should return the ML
model prediction (e.g., reconstruction error in the case of the reconstruc-
tion model). Afterwards, this output is used to determine if a feature vector
is non-anomalous or anomalous based on the calculated anomaly score. In
case there is an observation that significantly deviates from a normal learned
pattern, an alert notification with all needed details will be sent to the devel-
opment team.

5. Notifications – Sending notifications to the development team is imple-
mented within another Function App, which is triggered if the smart filter
has previously detected an anomaly. For each reported alert during the learn-
ing period, the developer is required to provide feedback by selecting one
of the available options: 1) alert; 2) alert but no impact 3) warning; 4) not
sure. The feedback on the reported alerts will be continuously collected and
saved in shared storage.

6. Storage – This is a shared storage mainly used for storing the trained DL
models and feedback from developers. We utilize the benefits of the Azure
Blob storage, a Microsoft object storage solution that is optimized for stor-
ing unstructured data in the cloud.

7. Update – In this part, we use the labeled data, generated through the feed-
back process, for evaluating and updating the current ML model and training



76 TOWARDS OPTIMIZATION OF ANOMALY DETECTION IN DEVOPS

new ML models while selecting the best-performing one for the next opti-
mization step. First iterations of optimization may be manually executed as
they require extensive experimentation in order to select the model with the
highest accuracy. When the desired accuracy is reached, then maintaining
the DL model can be automated in a separate Logic App. For instance, the
ML model may be updated every month since the Azure Monitoring plat-
form keeps the metrics in the memory for up to one month.

The core idea of this cloud solution is to utilize feedback from the development
team to evaluate and update the DL model based on generated labeled data denot-
ing true positive alerts, true negative alerts, warnings, and unspecified alerts. The
first selected method, Method 1, is evaluated after approximately two months of
usage in the production environment against the feedback from the development.
Further, collected labeled data is used for exploring and evaluating other DL meth-
ods, e.g., the Method 2 or Method 3 or variations thereof as suggested in Section 6.
The method that gives the best accuracy is selected as the new best choice and will
be deployed and periodically updated based on the feedback that is continuously
collected and saved. In every iteration, more and more labeled anomalous data is
collected and used to improve the unsupervised DL model and possibly learn new
supervised models that will be optimized separately or in an ensemble with un-
supervised DL models. When the best-performing model is selected after several
iterations, further maintenance of the ML model(s) may continue in an automated
workflow.

7.2 Results of the initial optimization step

Model selection

The initial optimization step includes implementing one of the state-of-the-art ML
models, e.g., the ones suggested in Section 6. Thus, we selected the reconstruction-
based method as one of the widely used approaches for addressing unsupervised
anomaly detection problems. The neural network architecture capable of learn-
ing the identity function is shown in Figure 4. The model, namely autoencoder,
contains encoder and decoder components, designed to compress the input x to
low dimensional representation z = gϕ(x), and to decompress it back to the orig-
inal size in order to get the reconstructed input x′ = fθ(gϕ(x)). The parameters
(θ, ϕ) are learned together during a training process to output the reconstructed
data samples as close as possible to the original input, x ≈ fθ(gϕ(x)). We used
mean square error (MSE) as a loss function in order to quantify the difference
between two vectors.

The encoder and decoder neural networks consist of a stack of hidden Long
Short Term Memory (LSTM) layers, specifically designed to learn dependencies in
an ordered data set such as time series. The architecture of the autoencoder model



7 Implementation and evaluation of anomaly detection approaches 77

X Z X'

X ? X'
Input  Reconstructed input

Encoder
g?

Decoder
f?

1 x latent dimension

hidden LSTM layers hidden LSTM layers 

1 x number of 
features 

1 x number of 
features 

Figure 4: Illustration of the reconstruction autoencoder architecture

is implemented using Keras, an open-source software library with a Python inter-
face that enables designing artificial neural networks. After varying several param-
eters in consecutive training runs, the lowest training loss (0.0036) is reached with
input dimension 512, latent dimension 4, 5 hidden layers, tanh activation func-
tion, and 0.01 as a learning rate (see Appendix 2). Due to a shortage of ground
truth data, the implemented model could not be evaluated before deployment. The
results achieved with this model are assessed by the development team and pre-
sented in Section 7.2.

Data preprocessing

As described in Section 4, the training data set consists of observations indexed in
time order and collected throughout the period of 12 months, a total of 104 256
samples. Before the training process, data is normalized to fit in a range of 0 to 1,
which gives equal importance to each feature and, as a consequence, may improve
model accuracy. Initial training runs were executed with a total of 120 features.
It was noticeable that certain features contain seasonal variation, a change that
repeats regularly over time (see Figure 5). Examples of time series shown in Fig-
ure 5 are referred to as non-stationary, and many anomaly detection algorithms are
not robust to such seasonal behavior. Instead, specifically designed approaches are
needed, such as Seasonal ARIMA (SARIMA) [230], where separate models are
created for different seasonal time lags [18, 31]. For the system under study, the
peaks and troughs are expected for certain features (CPU time or number of HTTP
requests) and it is important that their existence does not degrade the performance
of the ML model. Thus, in order to keep data closest to the seasonal stationary,
without any seasonal components, the features with periodic fluctuations are re-



78 TOWARDS OPTIMIZATION OF ANOMALY DETECTION IN DEVOPS

2022-03-29 2022-03-312022-04-01 2022-04-03 2022-04-05 2022-04-07 2022-04-09 2022-04-11 2022-04-13 2022-04-15
Time

0

50

100

150

200

250

CPU Time - Service A

(a)

2022-03-29 2022-03-312022-04-01 2022-04-03 2022-04-05 2022-04-07 2022-04-09 2022-04-11 2022-04-13 2022-04-15
Time

0

500

1000

1500

2000

2500

3000
Number of requests - Service B

(b)

Figure 5: Examples of the features with the seasonal variation: (a) CPU Time and
(b) Number of HTTP requests

moved from the training data set. Thus, the resulting training data set used in the
final training run consisted of 83 features.

Anomaly detection

In order to detect anomalies, we need to define the criteria to be used for estimating
if an observation is anomalous or not. We used Root Mean Square Error (RMSE)
to calculate the reconstruction error, the difference between the original input and
reconstructed input sample. As suggested by Islam et al. [96, 97] and Ahmad et
al. [3], we keep a history of reconstruction errors on short-term (W’) and long-term
(W) intervals and measure how their mean and standard deviation vary over time.
Thus, we calculate the likelihood of anomaly at time t asAt = 1−Q( µ̃t−µt

σt
), At ∈

(0, 1) [3], where Q is a Gaussian tail probability [110], µ̃t is the mean of short-term
interval, while µt and σt are the mean and standard deviation of long-term interval,
retrospectively. If At ≥ 1 − ϵ, then the observation at time t is considered as an
anomaly, for predefined user threshold ϵ. Since the approximate contamination in
the training data is around 1%, we selected ϵ as 0.01 while W (long-term interval)
is 36 and W’ (short-term interval) is 3 which corresponds to 180 (36*5) min and
15 (3*5) min, retrospectively. The length of the intervals is configured based on
how long the glitches and severe performance deviations persist in operations.



7 Implementation and evaluation of anomaly detection approaches 79

Results

The smart filer was implemented according to the cloud solution design presented
earlier, where the autoencoder model was deployed as a real-time web service
while post-processing and anomaly detection was deployed within a Function App.
Whenever a new anomaly was detected, an alert notification was sent to the devel-
opment team through a Slack channel. This implementation ran in operations for
50 days from 16th of May to 5th of July, which produced 14 400 samples in total.
During that period, one of the developers was responsible for assessing the fired
alerts and labeling them as alerts with high or low impact. Additionally, it was
possible to label detected anomaly as a warning while there was also a category
for detected deviations that are either potential false positives or don’t belong to
any of the three categories mentioned above.

The following describes each of the alert types, which is also an insight into
how the qualitative assessment was done.

• High impact: The most important alert type to detect as they may affect
several services simultaneously and end users. In most cases, there is an in-
cident followed by this alert type, which indicates that end users reported an
issue to customer service. When there are severe issues rolling out, multiple
alerts of this type are reported.

• Low impact: This type may precede the alerts with high impact and sig-
nalize that temporary deviations in performance metrics may escalate into
severe issues if not timely addressed. Low impact implies that only a few
services are affected at the same time and they might self-heal but still cau-
tion is needed.

• Warning: A temporary glitch in the performance metrics or a few errors
causing the latency of the affected services. In general, these issues should
not be noticeable to any end user. They might however be worth tracking
retrospectively to understand trends.

• Unspecified: The type of alerts that might represent false positives. How-
ever, they still signalize some kind of disturbance in a system even though
any of the single services might not be affected. That is a reason for their
troublesome classification under the three categories described above.

The number of detected alerts per category is presented in Table 2. In total,
there were only 3 false negatives alerts, on one particular day, missed by the smart
filter. It was one isolated event that was supposed to be detected with three con-
secutive alerts. However, the change caused in the performance metrics did not
significantly affect the mean and standard deviation of the reconstruction error
distribution. False negatives or reported alerts that falsely indicate that there is an
anomalous observation, are among unspecified alerts. Considering the fact that
unsupervised models can be retrained only in an unsupervised way, thus without



80 TOWARDS OPTIMIZATION OF ANOMALY DETECTION IN DEVOPS

Table 2: Results of the initial optimization step based on the feedback from the
development team (false positives are hidden within unspecified category)

Type of alert High impact Low impact Warning Unspecified

Number of true
positives 7 29 59 27

Number of false
negatives 3 0 0 0

labels, the presented autoencoder may be complemented with a supervised model
to improve its precision. Building a classification model, using the generated la-
beled data, might improve the sensitivity of the smart filter to the high-priority
alerts. Further improvements and challenges are presented in subsection 7.4.

The distribution of reported alerts is shown in Figure 6. Alerts with low im-
portance occurred as isolated events during the observed period. Even though
their criticality is not as high, it may evolve very quickly. There is a significantly
large number of unspecified alerts that were reported as single events or, before
or after warnings. Those are mostly alerts that were reported based on detected
perturbations in the system but only a few or no data points in the single services
were detected as anomalous. Since some of them also might be false positives,
we set the second goal for the next optimization cycle: to reduce the number of
unspecified alerts.

Even though the initial ML reconstruction-based model is already able to find
most or at least the most serious alerts, we want to explore more variations of the
same model and other ML techniques to check if higher precision can be reached.
That we explore in the next optimization cycle.

2022-05-15 2022-05-22 2022-06-01 2022-06-08 2022-06-15 2022-06-22 2022-07-01
Time

Assesment of reported alerts from 16th of May to 5th of July

Alert high impact
Alert low impact
Warning
Unspecified

Figure 6: Distribution of assessed alerts from 16th of May to 5th of July 2022.



7 Implementation and evaluation of anomaly detection approaches 81

X Z

X'
Input

 Reconstructed input

Encoder
g?

Decoder
f?

1 x latent dimension

hidden LSTM layers 

hidden LSTM layers 

1 x number of 
features 

1 x number of 
features 

Predicted input

Predictor
h?

hidden LSTM layers 

X' (t+1)

Figure 7: Illustration of the composite autoencoder architecture

7.3 Towards next optimization cycle: Evaluation and com-
parison of different unsupervised DL approaches

The purpose of the next optimization cycle is to evaluate different unsupervised
ML approaches before selecting the one to be used in the final deployment. As
proposed in Section 6, we further explore the combination of reconstruction- and
prediction-based models. The architecture of such a model is shown in Figure 7.
It is a composite LSTM autoencoder with a single encoder and two decoders with
different roles, one is used for reconstruction while the other one is used for pre-
diction. In addition to the reconstructed input, x′ = fθ(gϕ(x)), there is one more
output from the predictor representing the prediction of the input in the next time
step, x(t+1)′ = hψ(gϕ(x)). Similarly to the original autoencoder, all the param-
eters (θ, ϕ, ψ) are learned together during the training process. In this case, we
have two types of errors, calculated as Root Mean Square Error (RMSE) between
original input, and reconstructed or predicted input. The total error is a linear
combination of these errors, etotal = λerec + (1 − λ)epred, where λ ∈ (0, 1)
and it gives equal, higher, or lower priority to either of them. Regarding the data
preprocessing and calculating the anomaly likelihood score, we followed the same
procedure as for the initial optimization step.

Alongside this model, we evaluated the autoencoder designed in the initial



82 TOWARDS OPTIMIZATION OF ANOMALY DETECTION IN DEVOPS

optimization step with different setups of parameters. Thus, for the two models,
we altered the type of neural network, activation function, batch size, input, and
latent dimension to observe their performance. Selected results of the multiple
executed runs are presented in Table 3. Furthermore, for the composite autoen-
coder, the effect of different λ values was examined to see if either reconstruc-
tion or prediction error has a higher impact on the accuracy of anomaly detection.
For each new set of parameters, we measured the total number of prospective
alerts and how many of each alert type (high impact, low impact, warning, or
unspecified) would be detected. Average accuracy of the model is obtained as
AverageAcc = 1

3 (
Corrhigh

Totalhigh
+ Corrlow

Totallow
+

Corrwarning

Totalwarning
), where each of the sum-

mands represents the ratio of correct predictions to the total number of samples
in a single alert category. We disregarded unspecified alerts for calculating the
accuracy as this is not the preferred category to be detected. The goal was just to
reduce the number of unspecified alerts in each iteration as the anomaly detector
improves over time.

The overall results showed that autoencoder architecture is quite robust to
any parameter modification and that for both types, the training loss converges to
0.0038 and 0.0072 for original autoencoder and composite autoencoder architec-
tures, retrospectively. The parameters considered in Table 3 are chosen to reflect
the main characteristics of the neural network layers and learning process. The se-
lected combinations of values were determined according to the initial setup (see
Section 7.2). Hence, we selected the next higher or lower values of parameters or
different type of neural network layers or activation functions that are commonly
used for such solutions [8,135,141]. We did not consider all possible combinations
since we obtained very consistent results after a few executed runs.

A slight difference may be noticed in the total number of alerts while there
is almost no change for the different types of alerts. Unclassified alerts are the
ones that did not fall under any of the categories. However there were only a
few of these alerts and the reconstruction- and prediction-based model demon-
strated slightly higher precision by detecting almost all alerts within the defined
categories. Average accuracy did not drastically change either, being around 0.9
for different combinations of parameters. In most of the training runs, the learn-
ing rate was set to 0.01, while lower or greater values just affected how fast the
minimum of the loss function was reached. In all the cases, also regardless of the
number of training examples in one iteration (batch size) or which function is used
for activating neighboring neurons (activation function), the loss always converged
around the same values.

One specific fact is that in all observed cases, there was a greater number of
low-impact alerts than expected. The reason is that some of the alerts were de-
tected five or ten minutes earlier before an actual alerting event, which is a desired
characteristic since we want to detect any performance disturbance as earliest. The
aforementioned parameter λ, which may prioritize either prediction or reconstruc-
tion error, did not significantly change the final results.



7 Implementation and evaluation of anomaly detection approaches 83

Ta
bl

e
3:

Se
le

ct
ed

ev
al

ua
tio

n
re

su
lts

of
di

ff
er

en
tM

L
ap

pr
oa

ch
es

fo
ra

no
m

al
y

de
te

ct
io

n

D
iff

er
en

tv
ar

ia
tio

ns
of

M
L

m
od

el
s

R
ec

on
st

ru
ct

io
n-

ba
se

d
m

od
el

s
R

ec
on

st
ru

ct
io

n-
an

d
pr

ed
ic

tio
n-

ba
se

d
m

od
el

s

A
le

rt
ty

pe
s

L
ST

M
la

ye
rs

(a
ct

iv
at

io
n=

se
lu

,
in

pu
td

im
=1

02
4,

la
te

nt
di

m
=8

,
ba

tc
h

si
ze

=1
28

)

G
R

U
la

ye
rs

(a
ct

iv
at

io
n=

re
lu

,
in

pu
td

im
=5

12
,

la
te

nt
di

m
=8

,
ba

tc
h

si
ze

=6
4)

G
R

U
la

ye
rs

(a
ct

iv
at

io
n=

si
gm

oi
d,

in
pu

td
im

=1
02

4,
la

te
nt

di
m

=8
,

ba
tc

h
si

ze
=2

56
)

G
R

U
la

ye
rs

(a
ct

iv
at

io
n=

si
gm

oi
d,

in
pu

td
im

=5
12

,
la

te
nt

di
m

=4
,

ba
tc

h
si

ze
=1

28
,

λ
=

0.
8)

L
ST

M
la

ye
rs

(a
ct

iv
at

io
n=

re
lu

,
in

pu
td

im
=1

02
4,

la
te

nt
di

m
=8

,
ba

tc
h

si
ze

=2
56

,
λ
=

0.
1)

L
ST

M
la

ye
rs

(a
ct

iv
at

io
n=

ta
nh

,
in

pu
td

im
=5

12
,

la
te

nt
di

m
=8

,
ba

tc
h

si
ze

=2
56

,
λ
=

0.
5

)

H
ig

h
im

pa
ct

(e
xp

ec
te

d
10

)
8

8
8

8
8

8

L
ow

im
pa

ct
(e

xp
ec

te
d

29
)

29
(+

6)
29

(+
6)

29
(+

6)
29

(+
4)

29
(+

4)
29

(+
4)

W
ar

ni
ng

(e
xp

ec
te

d
59

)
53

55
55

54
55

54

U
ns

pe
ci

fie
d

(e
xp

ec
te

d
27

)
22

22
23

23
22

23

Av
er

ag
e

ac
cu

ra
cy

0.
9

0.
91

0.
91

0.
9

0.
91

0.
9

U
nc

la
ss

ifi
ed

al
er

ts
5

6
2

0
2

1

To
ta

l
12

3
12

6
12

3
11

8
12

0
11

9



84 TOWARDS OPTIMIZATION OF ANOMALY DETECTION IN DEVOPS

Thus, using only reconstruction or prediction components would lead to the same
outcome. If we consider the worst case scenario, where alerts with high and low
impact and warnings are true positives and unspecified alerts false negatives, the
precision and recall are (0.73, 0.96) and (0.76, 0.97) for original and composite
autoencoder, retrospectively. However, due to the uncertainty of unspecified alerts,
the initial goal was to reduce their quantity, which was partially achieved in this
iteration.

This optimization cycle continues by selecting the new model for deployment,
which will be used in operations for a certain period while also being evaluated by
the development team. We select the reconstruction- and prediction-based model
for deployment, differently than in the initial optimization step.

Even though this evaluation indicates no or little difference, we want to evalu-
ate the model that combines two types of errors. After the new evaluation phase,
we will then decide which model we want to use as the final option.

7.4 Further improvements and challenges

Throughout the optimization cycles, we focused on the selection of the best-performing
unsupervised approach. However, as already stated, unsupervised models can be
retrained only with unlabeled data. Generated labeled data through feedback from
development may only be used for evaluation of unsupervised and training new
supervised models, such as classification models. If we want to further increase
the precision of the anomaly detector, we may do it by building a new supervised
ML model, that will complement the existing unsupervised model and increase its
sensitivity to high-impact alerts.

There are plenty of examples of how such a classifier could be implemented [143,
204]. Furthermore, we may look for classical machine learning or deep learning
approaches for multi-classification as we have four categories (three types of alerts
and normal samples) where samples are not necessarily indexed in time order. For
instance, the AdaBoost classifier is an ensemble learning method that combines
numerous and usually weak classifiers and turns them into strong ones through
sequential learning [143]. Other examples are K-Nearest neighbours [158], which
uses proximity to make classifications, CNN-based transfer learning using pre-
trained models [48], or another ensemble method, random forest classifier [108].
With multiple applications in various fields [108, 143, 158, 204], these types of
classifiers could also fit in our context.

In a few trial runs, we evaluated some of the aforementioned classifiers us-
ing 50-days of labeled data but encountered the challenge of imbalanced classes.
This means that our training data set consists of one majority class of normal sam-
ples (99% of data) and three minority classes denoting alerts (only 1% of data).
State-of-the-art ML approaches with default setups might not be sufficient to ad-
dress such skew data. Instead, more advanced and custom approaches are needed
and they are about to be explored in future work. Possible directions are under-



8 Conclusion 85

sampling, reducing the size of the abundant class, or over-sampling for increasing
the size of rare samples by generating synthetic data [239]. However, more thor-
ough research is needed as both suggestions may lead again to conflicting results.

7.5 Threats to validity

In order to increase the validity in general, we surveyed state-of-the-art and widely
adopted machine learning techniques, applicable to our industrial context. Addi-
tionally, we closely collaborated with our industry partner (interviews and regular
discussions) to identify relevant needs and evaluate implemented solution. Po-
tential validity threats are discussed in terms of conclusion, internal, and external
validity.

Conclusion validity. Drawn conclusions about the effectiveness of the imple-
mented solutions might be affected by the duration of the evaluation period (50
days) and the fact that only one practitioner was available for assessing reported
alerts. Time and resource constraints are quite common and sometimes inevitable
for academia–industry collaborations. To overcome this, our solution for anomaly
detection in operations will be used by the DevOps team even after study comple-
tion, while we also plan for future reflections with practitioners after much longer
usage.

Internal validity. Selection of the features described in Section 4 might be
biased, which could also affect the overall results. They were selected based on
the very detailed observations of the practices within the team specifically focusing
on the services and metrics that were usually examined in case of severe failures.
Further, we also tended to select some typical measures of software health and
performance according to DevOps experts and insights from the literature.

External validity. Our implementation and evaluation are currently dependent
on the studied industrial context, which restricts external validity and the scope of
validity of our technological rule presented in Section 1. However, our ML solu-
tions are based on state-of-the-art techniques that are evaluated in other contexts.
With this, we assume that the results are generalizable and that the same or similar
solutions could be used in different contexts, which will be further examined in
future work.

8 Conclusion

In this paper, we address how continuous monitoring in DevOps contributes to
revealing unexpected and unwanted failures. We specifically focus on distributed
software systems, such as microservices, as their complexity additionally increases
vulnerability in operations.

Our first contribution (C0) is to conceptualize problems related to the con-
tinuous monitoring practice. In addition to our previous observation of the alert



86 TOWARDS OPTIMIZATION OF ANOMALY DETECTION IN DEVOPS

flooding problem [89], we now conclude that it is essential to analyze monitor-
ing data across multiple services, namely multivariate data, to capture the overall
health of the operating software.

Searching for a solution to this problem, we present our next contribution (C1)
which is an overview of unsupervised deep learning approaches for anomaly de-
tection in order to identify potential discrepancies in multivariate monitoring data
(RQ1). Furthermore, we provide generic guidelines for the selection of the three
minimum feasible methods for anomaly detection in time series, based on the re-
view in Section 5 (RQ2).

Our last contribution (C2) is the deployment in a real-world DevOps context,
using the Microsoft Azure cloud platform. Thereby we identified the needed capa-
bilities of the cloud infrastructure (RQ3) which were met by the standard platform.

In this setting, we evaluated the DL models. The labels were generated through
the same infrastructure, based on the feedback from development. Moreover, we
investigated if other versions of DL methods, suggested in Section 6, may per-
form better on the data set used for evaluation. Both versions of the autoencoder
and their variations showed stable and constant accuracy for different parame-
ters (RQ4). However, we suggested using a composite autoencoder in the next
optimization cycle as the prediction component might enable earlier detection of
anomalies.

Still, there are opportunities for improvement, which include training new su-
pervised models based on generated labels that may assist in revealing the category
of the alerts and reducing the number of false positives. To proceed with this im-
provement, we first need to address the challenge of imbalanced classes (RQ5).
Section 7 provides details about possible improvements.

This study refines and adds validity to the technological rule of alert flood-
ing as an optimization problem, identified in our initial work [89]. Specifically,
we have demonstrated that the additional element in the feedback loop is an ef-
ficient concept for discovering early signs of production failures. With the smart
filter, multivariate monitoring data keeping the information about the health of
operating software can be processed in real-time and declared as anomalous or
non-anomalous. Thus, we have strengthened the grounding of our overall techno-
logical rule (TR) through the field test in our case study.

We used state-of-the-art deep learning algorithms to implement the smart fil-
ter and showed that such solutions can be used for addressing challenges in real
industrial DevOps contexts such as alert flooding. Moreover, presented cloud so-
lution (Section 7.1) can be used for generating labels to address one of the biggest
struggles in the ML community, the shortage of labeled or ground truth data [15].

Overall, with timely anomaly detection through operation monitoring in Dev-
Ops, severe failures in operations might be prevented. The presented results are
currently dependent on the implementation in this case context, but we aim to
broaden our research by evaluating our proposed solution design in different con-
texts to demonstrate the generalizability of the solution. This is planned for future



8 Conclusion 87

work in addition to the new optimization cycle for obtaining the best-performing
model.

Acknowledgments
This work was partially supported by the Wallenberg Artificial Intelligence, Au-
tonomous Systems and Software Program (WASP) funded by Knut and Alice Wal-
lenberg Foundation. We thank the DevOps teams for their willingness to share
insights and respond to our questions.

Appendix 1: Training data
This supplementary material provides an example of a feature vector (an instance
of training data) and can be found online at https://ars.els-cdn.com/
content/image/1-s2.0-S0950584923000952-mmc1.xlsx.

Appendix 2: Jupyter Notebook
This supplementary material provides Jupyter Notebook with python code for
loading data, preprocessing data, and training ML models used in this paper. It
can be found online at https://ars.els-cdn.com/content/image/
1-s2.0-S0950584923000952-mmc2.zip.

Appendix 3: Poster for practitioners
This supplementary material provides a summary of the contributions from this pa-
per in a form more adapted for practitioners. It can be found online at https://
ars.els-cdn.com/content/image/1-s2.0-S0950584923000952-mmc3.
pdf.

https://ars.els-cdn.com/content/image/1-s2.0-S0950584923000952-mmc1.xlsx
https://ars.els-cdn.com/content/image/1-s2.0-S0950584923000952-mmc1.xlsx
https://ars.els-cdn.com/content/image/1-s2.0-S0950584923000952-mmc2.zip
https://ars.els-cdn.com/content/image/1-s2.0-S0950584923000952-mmc2.zip
https://ars.els-cdn.com/content/image/1-s2.0-S0950584923000952-mmc3.pdf
https://ars.els-cdn.com/content/image/1-s2.0-S0950584923000952-mmc3.pdf
https://ars.els-cdn.com/content/image/1-s2.0-S0950584923000952-mmc3.pdf




PAPER III

AUTONOMOUS MONITORS
FOR DETECTING FAILURES

EARLY AND REPORTING
INTERPRETABLE ALERTS IN

CLOUD OPERATIONS

Adha Hrusto, Per Runeson, Magnus C Ohlsson

Abstract

Detecting failures early in cloud-based software systems is highly significant as
it can reduce operational costs, enhance service reliability, and improve user ex-
perience. Many existing approaches include anomaly detection in metrics or a
blend of metric and log features. However, such approaches tend to be very com-
plex and hardly explainable, and consequently non-trivial for implementation and
evaluation in industrial contexts. In collaboration with a case company and their
cloud-based system in the domain of PIM (Product Information Management),
we propose and implement autonomous monitors for proactive monitoring across
multiple services of distributed software architecture, fused with anomaly detec-
tion in performance metrics and log analysis using GPT-3. We demonstrated that
operations engineers tend to be more efficient by having access to interpretable
alert notifications based on detected anomalies that contain information about im-
plications and potential root causes. Additionally, proposed autonomous monitors
turned out to be beneficial for the timely identification and revision of potential
issues before they propagate and cause severe consequences.

ICSE-SEIP (2024)



90 AUTONOMOUS MONITORS FOR DETECTING FAILURES IN CLOUDOPS

1 Introduction

Maintaining cloud-based system operations free from failures is increasingly chal-
lenging, considering the complexity of software architectures and the wide vari-
ety of cloud deployment options used for developing and operating modern soft-
ware systems. Streamlining the software development cycles by applying agile
and DevOps practices partially addresses this ever-rising concern. Since modern
applications rely heavily on underlying cloud infrastructures, managing and mon-
itoring corresponding cloud resources has become essential in providing resilient
large-scale software systems. Thus, cloud operations (CloudOps) [7] is another
critical component of digital transformation together with DevOps that helps pro-
vide more reliable software systems. Reliability can be achieved with run-time
monitoring of key performance indicators (KPI) and timely detection of devia-
tions that signalize either a software bug or performance degradation of the cloud
platform.

One of the widely used approaches for detecting abnormalities in monitoring
data is anomaly detection [33]. Early detectability of observations that signifi-
cantly deviate from the normal pattern might be crucial for preventing the roll-out
of severe software failures. Further, an anomaly detection service that provides
early warning of impending failure can reduce the costs associated with reliabil-
ity and downtime [195]. To tackle this, many software development companies
nowadays rely on commercial monitoring tools [205] for tracking and visualizing
monitoring data, while reporting anomalies as alerts via email or communication
platforms (e.g., MS Teams or Slack). This is often implemented with manually set
alert rules or anomaly detectors provided by the monitoring tool. The approach,
however, risks causing information overload for operators due to the diversity and
abundance of metric indicators and detection mechanisms that can usually be con-
figured only for single metrics (univariate data). Additionally, generated alert no-
tifications are often not intuitive as they lack clarity and actionable information,
making it difficult for operators to understand the underlying issues. This charac-
teristic, which we refer to as interpretability, may be enhanced by providing more
clear and concise insights on how to approach raised alerts.

Our recent paper [88] partially deals with this concern, where we proposed
and implemented an approach for optimization of anomaly detection in multivari-
ate data. The solution based on LSTM autoencoders is validated in the context
of a microservice-based system. In this paper, we extend the scope of validity by
collaborating with a new case company and implementing the solution in a new
industrial context. The case company is responsible for developing and operating
a Product Information Management (PIM) system using Microsoft Azure tools
and services. The new system under study has a different software architecture
but is distributed in nature and is cloud-based. Moreover, inspired by the latest
advancements in the machine learning area, we enhance our solution with an addi-
tional deep learning (DL) model based on transformers [214] to be able to capture



2 Background and related work 91

broader temporal trends in data.
The two DL models, which we refer to as LSTMAE and TRANAE, are the main

part of the autonomous monitors, i.e., the cloud solution used for near-real-time
monitoring and detecting deviations in metrics, numerical observations of specific
aspects of Azure resources. In addition to metrics, logs can provide significant in-
sights into various activities and events in operations. However, the large amount
of available logs is not usually favorable for in-depth analysis, considering their
complex structure. Further, existing approaches are not applicable to different
contexts due to a lack of standardized logging procedures [17]. Instead of com-
bining metrics and log features together for anomaly detection [124,175], we stick
with only metrics analysis while leveraging the pre-trained large language model
GPT-3 [162] to support the interpretation of logs and to generate interpretable
alerts.

The solution approach was inspired by the practices of the CloudOps teams
and the way they were handling and resolving alerts. Detecting deviations in met-
rics was the first line of defense and then digging deeper into the logs was the next
step to find clues for root cause analysis. We designed the autonomous monitors
to mimic this behavior by using two DL models to simultaneously detect discrep-
ancies in metrics and the GPT-3 model [162] to give suggestions for root cause
analysis, which is crucial for preventing the roll-out of severe failures. The out-
put of the autonomous monitors is an interpretable alert notification, providing a
detailed status report, to which we refer as a smart alert.

Contributions of the paper are threefold:

• C1: A novel approach for monitoring metrics and reporting interpretable
alerts based on two state-of-the-art anomaly detection DL techniques and
the GPT-3 language model, which is evaluated in a real-world setting.

• C2: Implementation and evaluation of a deep transformer network [214]
in an industrial context, which was previously evaluated only on publicly
available datasets.

• C3: Case-based generalization of two case studies resulted in assessing op-
portunities for smart alerts in multiple contexts.

2 Background and related work
Commercial cloud providers gained tremendous popularity in the last decade, es-
pecially among software development companies that seek scalable and flexible
platforms for the deployment of their software. This means that such cloud re-
sources can be dynamically allocated to accommodate varying workloads, provid-
ing enhanced performance when needed. However, cloud infrastructures are not
immune to failures due to increasing computing demands, growing complexity
of system architectures, and cost-effective but low-quality commodity hardware



92 AUTONOMOUS MONITORS FOR DETECTING FAILURES IN CLOUDOPS

used in cloud data centers [149]. Consequently, software systems relying on these
cloud resources are also at risk of underperforming in operations [212]. Run-time
failures in cloud-based software systems can be identified on the application level
(e.g., service unavailability or slow response times), platform level (e.g., errors in
deployment configuration settings), or infrastructure level (e.g., physical servers
within a data center fail) [205]. This multilayer failure source makes it even more
challenging to timely identify and resolve any potential threat to performance and
reliability degradation [33].

Continuous monitoring is thus of high importance for tracking the health sta-
tus of each system component in the cloud. Tamburri et al. [205] conducted a
survey in over 70 different organizations, searching for monitoring practices in the
industry. The key findings revealed that software development organizations are
not fully aware of the potential benefits of monitoring data analysis, while 90%
of respondents identified that one of the main challenges is the lack of standard-
ization in the realm of monitoring tools. This implies that many organizations use
a minimum of two or more different monitoring tools as they struggle to find a
unified tool to fulfill all their needs regarding collecting, transferring, processing,
storing, and visualizing monitoring data [205]. The same study reports that most
adopted monitoring tools include Google Analytics, Nagios, Grafana, Amazon
CloudWatch [201], Microsoft Azure Monitor [88], and ELK (Elastic, Logstash,
Kibana) [105]. Many of these tools include some alert mechanism for current or
forecasted observations with predefined thresholds [217].

Existing approaches for detecting failures based on monitoring data are mainly
inspired either by anomaly- or signature-based strategies [149]. Signature-based
approaches identify behavior associated with specific faults, aiming to detect simi-
lar faults during runtime, while anomaly-based approaches identify normal system
behavior and aim to detect deviations from these norms. Since faulty behavior is
unknown and hard to reproduce in many industrial contexts, anomaly detection
approaches gained wider acceptance and usage. Thus, in this paper, we further fo-
cus only on anomaly detection techniques, designed for unlabeled data and based
on machine learning.

The metrics, as an essential part of monitoring data, are usually represented
as a time series, a sequence of data points recorded at specific time intervals. For
this type of data, many anomaly detection techniques were implemented and eval-
uated in the context of cloud computing systems [96, 99, 139, 184]. However,
as time series are widely used to model data in various domains (e.g., finance or
healthcare), a number of approaches for anomaly detection were also proposed and
evaluated on publicly available datasets or benchmarks. Some of the approaches
that gained wide popularity include autoencoders [148], deep convolutional neural
network (CNN) [159], GANs [125], and lately very attractive transformers-based
networks [214]. In practice, the choice of which technique to use depends on the
specific characteristics of the data and anomaly detection tasks. Often, a combina-
tion of these methods or hybrid models can yield better results. Logs, as the other



3 Research approach 93

significant part of monitoring data, were also of interest for analysis and detecting
anomalies, standalone or in combination with metrics [124, 175].

There is still a significant number of anomaly detection approaches that were
not evaluated in industrial contexts of cloud-based systems. Thus, we take that
opportunity to deploy TRANAE in operations and integrate it into the monitoring
platform of the system under study. Additionally, we implement a custom monitor
as we want to perform inference periodically and report interpretable alerts, which
provide more valuable information than just a binary value, usually provided by
inbuilt anomaly detectors within a monitoring platform [217].

3 Research approach

Similar to our previous work [88], we use the design science paradigm [182] to
frame our research at the case company as it aims to improve an area of practice.
The main contributions of such research are technological rules, i.e., prescriptive
recommendations for practice. Since they are context dependent, our goal in this
study is to extend the validity of already validated prescription for practice, which
maps the challenge of alert management to the solution for anomaly detection in
multivariate data [88]. By alert management, we refer to any activity related to
reporting, interpreting, or resolving alerts. Insufficient engagement in regard to
these activities will eventually cause alert flooding and burden operations teams.
To avoid this undesirable consequence, we explore possibilities of improving alert
management in a new industrial context while also considering the latest scientific
contributions in the area of ML to advance the solution design for more efficient
monitoring.

To reach our goals, we conducted four main activities of the design science
cycle [182]:

• Problem conceptualization — By closely collaborating with the DevOps
and CloudOps teams, which included interviews and observations of their
practices, we managed to confirm that alert management and consequently
alert flooding was one of the main issues in operations. Thus, we continued
with a more detailed analysis of monitoring data used for designing the alert
mechanism. Surveying literature and previous experience in similar studies
enabled the formulation of problem constructs. Metrics and logs represent-
ing multivariate time series and a chronological record of events from op-
erations were identified as critical data for which we needed to envision a
matching solution.

• Solution design — We design a solution for monitoring and reporting in-
terpretable alerts by replicating the current practices of the team and creat-
ing an automated workflow that consists of monitoring, detection, and in-
terpretation. The monitoring part includes pulling the data from different



94 AUTONOMOUS MONITORS FOR DETECTING FAILURES IN CLOUDOPS

Azure resources periodically and creating a feature vector, formatted for use
with DL models. Following the latest advancements in the machine learn-
ing world, we use deep transformer network [214] for anomaly detection,
simultaneously with LSTM autoencoders, which was the only DL model
in our previous work [88]. Since logs were used by the CloudOps teams
in later stages to investigate detected anomalies, similarly, we employ the
GPT-3 model [162] to analyze and interpret the logs whenever an anomaly
is detected. These procedures of monitoring, detection, and interpretation
of alerts are integrated into the monitoring system, which we refer to as the
autonomous monitors.

• Instantiation — The proposed solution design of the autonomous monitors
is implemented using Microsoft Azure services since the system under study
is also developed and operated using the same cloud platform. We leveraged
solutions for registering and deploying ML models, building and deploying
event-driven code, and automating workflows.

• Empirical validation — For validation of implemented solutions, we used
feedback from DevOps and CloudOps teams on reported alert notifications
in the MS Teams channel. We draw conclusions by analyzing qualitative
data collected in a survey using questionnaires and quantitative data repre-
senting the performance of the ML models for anomaly detection.

4 Problem context

This study is conducted in collaboration with the case company in Sweden, which
specializes in developing and operating Product Information Management (PIM)
software solutions. The architecture of the PIM system is highly distributed and
built of multiple macro services. The functionality of the PIM software is used
by businesses to manage and centralize product information, such as descriptions,
specifications, pricing, and imagery, to ensure consistency and accuracy across
various sales channels, such as e-commerce websites. It enables businesses to
streamline their product data management processes and ensure that the right prod-
uct details are available to customers. The system is continuously monitored using
Microsoft Azure Monitoring service, where all monitoring data goes through ei-
ther Application Insights (traces, exceptions, log messages, different performance
indicators) or Log Analytics Workspace (database metrics, performance counters).
Additionally, the most important monitoring data is visualized using Grafana,
where simple alert rules are configured using manually set thresholds to detect
and report anomalies in specific performance counters. Detected alerts are sent
either via email or the communication platform, MS Teams.

At the beginning of our collaboration with the case company, the current prac-
tices within the operations teams were still insufficient to timely identify alerts



5 Autonomous monitors 95

with the highest priority. Severe failures were mainly identified by customers
when they had already experienced slowness or outage of some services. This
is an undesired consequence that we mutually agreed to address, by exploring and
identifying key performance indicators (KPIs) that require more efficient monitor-
ing. In this step, which we refer to as problem conceptualization in the research
approach, the following types of monitoring data are identified as crucial: (1) DTU
(database transaction unit) and storage usage of elastic pools, containers that hold
multiple databases; (2) CPU percentage, available memory and number of threads
for three types of Service Fabric nodes (individual virtual machines responsible
for hosting, running, and managing the services); (3) selection of performance
metrics for frontend parts of the system deployed using App Services and queued
long-running jobs; (4) selection of standard metrics available in Application In-
sights, including different indicators of service performance. The aforementioned
data types are used for designing the solution for proactive monitoring across dif-
ferent parts of the system, anomaly detection, and creating more comprehensive
and actionable alert reports.

5 Autonomous monitors

The main idea of proactive monitoring is to motivate operations teams to inspect
and resolve alerts before they cause a chain reaction of undesired events within
a monitored system. For this purpose, more actionable alerts are needed with as
many details as possible regarding detected anomalies. In this section, we present
the solution design (as introduced in Section 3) of the autonomous monitors for
detecting and reporting smart alerts, that enables proactive monitoring.

5.1 Implementation

The main goal of the autonomous monitors shown in Figure 1 is to retrieve a pre-
selected set of metrics periodically and utilize ML models for anomaly detection
to detect deviations that significantly deviate from the normal pattern. The most
critical metrics are identified with the Peak Over Threshold (POT) method [192],
used for learning threshold values for anomaly scores. In case of an anomaly, the
next step in the workflow is pulling logs and predicting possible root causes with
a GPT-3 language model. The final output of the autonomous monitors is an inter-
pretable alert notification, shown in Figure 2. We refer to this step as instantiation,
as described in Section 3. The detailed description of each step in the workflow
shown in Figure 1 is given below.

1. Automated workflow — The overall solution design of the proposed au-
tonomous monitors is implemented using a Logic App in Azure, a cloud-
based service for creating, scheduling, and automating workflows. With its



96 AUTONOMOUS MONITORS FOR DETECTING FAILURES IN CLOUDOPS

 

Stored 
m

onitoring 
3-m

onth data

Training data represented as m
ultivariate 

tim
e series w

ith 127 features

L
ST

M
A

E
 

m
odel

C
alculating anom

aly scores and thresholding

M
L Studio 

W
orkspaces

3

2

1

4

5

T
R

A
N

A
E

 
m

odel
T

raining 
M

L
 m

odels

R
egister M

L m
odels

Pull new
 m

etrics every 
15 m

in

O
nline

 endpoitns

IF anom
aly

N
o

Pull logs

Y
es

A
ffected 

m
etrics

6

7

8

L
ogic A

pp

Suggestions for root 
cause analysis

15 m
in

G
PT

 3.5 
Turbo

M
S Team

s 
A

lerts C
hannel

Figure
1:A

n
overview

ofthe
autonom

ous
m

onitors
fordetecting

and
reporting

sm
artalerts



5 Autonomous monitors 97

inbuilt triggers and actions, it is possible to define the condition or frequency
of the execution and implement and connect each step.

2. Training ML models — We used 3-month data of metrics for training both
LSTMAE and TRANAE models. A more detailed overview of data and pre-
processing is explained in Section 5.1. Considering the size of this training
dataset, we decided to perform training on our local machine. However,
in the case of larger datasets and more complex ML models, the training
can be performed on some cloud computing resources. The models were
developed in Python using Pytorch library [168]. LSTMAE was developed
by authors while TRANAE is an open source solution developed by Tuli et
al. [214]. After the training, the models were registered in Azure ML Studio
Workspace, for easier managing and deploying.

3. Pulling metrics — In agreement with the team in the case company, we
configured the frequency of the automated workflow to be fifteen minutes.
The first triggered step is the execution of the four Function Apps, respon-
sible for fetching selected metrics. Azure Functions are lightweight cloud
solutions for building and deploying code written in various programming
languages. Thus, we developed and deployed Python scripts for accessing
metrics via Azure Monitor Metrics and Query APIs and pulling all required
data from Application Insights and Log Analytics.

4. Deploying ML models — Both models, LSTMAE and TRANAE are de-
ployed as online endpoints in Azure ML Workspace. In this way, the models
are accessible for real-time inference via REST APIs and can be seamlessly
integrated into production workflows. We consumed deployed endpoints
by sending the HTTP POST request to the endpoint’s URL and provid-
ing the necessary input data. The request body included the feature vector
contacting metrics, obtained in the previous step. Since both models are
reconstruction-based, the output of each model is a reconstruction of the in-
put data. To calculate the difference between the original and reconstructed
input sample, the reconstruction loss, we used Mean Square Error (MSE)
as a common metric in machine learning. Thus, the response to the HTTP
request contains reconstruction losses from two ML models as a measure of
anomalousness.

5. Thresholding — We used different approaches for each model to determine
if reconstructed losses are anomalous. For the LSTMAE model we calculate
anomaly likelihood as suggested by Islam et al. [96] and Ahmad et al. [3].
For the TRANAE model, we use the statistical method, Peak Over Threshold
(POT), as it was originally proposed by Tuli et al. [214]. This method is
used in extreme value analysis, and it’s particularly valuable for detecting
rare or extreme values, that are unusually high or low.



98 AUTONOMOUS MONITORS FOR DETECTING FAILURES IN CLOUDOPS

6. Pulling logs — Similarly as metrics, the logs are also pulled from the same
sources using Azure Functions. This step is triggered only when an anomaly
is identified in order to control the costs associated with the number of ex-
ecutions of the entire workflow (Logic App). Additionally, we agreed that
analysis of logs is not necessary in the normal state as the logs will most
probably contain only warnings and not errors.

7. GPT-3 predictions — We leveraged the latest advancements in the ML
world by using the pre-trained language model GPT-3 [162] (GPT-3.5 Turbo)
for the logs analysis. The main goal was to discover some implications of
the identified anomaly in metrics and predict the clues for root cause anal-
ysis. The model was deployed within the Azure AI Studio. The input to
the model was structured as a series of messages formatted for API com-
munication. The first message contained the 15-minute history of log data,
while the second message included a query asking the model to suggest the
top two debugging strategies based on the logs, specifically highlighting the
affected applications.

8. Alerts in MS Teams — The final step of the autonomous monitors is send-
ing an alert notification to the MS Teams channel. An example of such smart
alert notification is shown in Figure 2 where some sensitive information re-
lated to the case company is hidden and replaced with some arbitrary values.
However, the main design of alert notification is unchanged and presents a
real example of an alert sent to the operations team.

Data

As described in Section 4, the training set consists of metrics that we sorted into
four categories. The total number of features considering all categories is 127,
where a detailed overview of each category is presented in Table 1. The train-
ing data set consists of 8640 samples recorded every fifteen minutes within three
months. Some of the features contained null entries, thus we replaced them with
zeros to maintain data structures and avoid bias. The next necessary step before
the training process is to equalize the scales of features to prevent domination
of one of them during the learning process. For the LSTMAE model, we used
Scikit-Learn’s normalizer, which performs row-wise normalization on a dataset,
independently scaling each row to have a specified norm, typically L1 or L2. For
TRANAE model, we used a two-step normalization process [214]. Firstly, the data
is scaled to a range [-1, 1] by dividing each element (feature) by the maximum
absolute value across columns. Then, these values are scaled again to the range
[0, 1] by dividing by 2 and adding 0.5. The goal of both approaches is to bring
all features on a common scale, allowing ML algorithms to work more effectively
and produce reliable and accurate results.



5 Autonomous monitors 99

10:05 AM

- Elastic pool 1 with max storage usage (%): 71
- Elastic pool 2 with max storage usage (%): 86
- Node_04 with min available GBytes: 5.34
- Node_01 with max CPU usage (%): 96
- Node_09 with max CPU usage (%): 89
- ABCApi with the Http4xx error count: 12572
- AppInsights Metrics Failed-requests count: 215872

 Check dashboards in GRAFANA

The GPT-3 model analyzed logs in the last 15 min, 
check out following predictions:
Application Insights Traces
Based on these logs, the top two suggestions for debugging 
would be to investigate the azureblobstorageconnection 
and uri issues that are affecting multiple applications such 
as app1, app2, and app3. It may also be helpful to check 
for any authentication or subscr iption errors, as they are 
also present in the logs.
Check more info HERE

Service Fabr ic Logs
Based on the logs, the following node(s) may require 
attention: node_01, node_02 and node_03. 
1. Look into the null reference exception thrown by the 
actors of services SE1 and SE2.
2. Investigate the cause of frequent actor activation and 
deactivation on various nodes.
Check more info HERE

Hey Team!

An anomaly is detected and following metr ics are affected:
Time interval: 15 min

Figure 2: An example of the smart alert notification in MS Teams

ML models

The LSTMAE model, presented in our recent work [88], consists of two compo-
nents built of LSTM (Long Short Term Memory) stack of layers which makes
them suitable for capturing temporal dependencies. However, potentially, this can
be computationally intensive for longer sequences. From the two components,
the encoder compresses the input sequence into a fixed-size latent representation
while the decoder reconstructs the original sequence from this representation. In
this way, the encoder filters out noise while retaining the most relevant information
and learning the normal model. The entire LSTMAE is implemented in Python us-
ing Pytorch, a library for building and training deep neural networks. By adjusting



100 AUTONOMOUS MONITORS FOR DETECTING FAILURES IN CLOUDOPS

Table 1: Overview of the four metric categories and the corresponding number of
features used for model training

Description Metrics Features

Blended metrics of
elastic pools

DTU
Storage usage 16

Performance characteristics
of Service Fabric nodes

CPU
Available memory

Threads count
87

Selection of metrics representing
the health of internal and
customer-facing services

Exceptions
Http 4xx errors
Http5xx errors

12

Standard metrics

Failed requests
Failed dependencies

Server exceptions
Requests count

Different performance
counters

12

multiple parameters in several consecutive training runs, the lowest training loss
(0.0049) is reached with input dimension 512, latent dimension 4, and 0.01 as a
learning rate (see Appendix 2).

The TRANAE model, developed by Tuli et al. [214], is a deep transformer net-
work with adjusted architecture for the task of anomaly detection in multivariate
time series. It consists of two encoders and two decoders and leverages attention
mechanisms for capturing complex temporal trends. In the first of the two adver-
sarial training phases, the model aims to generate an approximate reconstruction
of the input window. Deviations between this initial reconstruction and the actual
input are used as a focus score in the second phase. Thus, this focus score is used
to modify attention weights, giving higher importance to specific sub-sequences
in the input data to extract short-term temporal trends. In this way, the TRANAE
model is able to amplify deviations and capture anomalies more effectively. A
more detailed description of the model is presented in the original paper [214].
The model was trained using the same environment, with the same programming
language and libraries as LSTMAE model. We used the original architecture of the
TRANAE model and varied only the number of epochs and learning rate during
several training runs. We reached the convergence and the training loss of 0.0073
with the 10 epochs while keeping the learning rate at 0.0001.

The choice between the LSTM autoencoders and transformer networks often
depends on the training data distribution and the complexity of the anomaly de-
tection task. In this study, we evaluate both models for detecting anomalies in



5 Autonomous monitors 101

multivariate metrics representing monitoring data of the cloud-based distributed
system. Since the case company could not provide the ground truth data, the per-
formance of models was only partially evaluated prior to deployment. For in-depth
evaluation, the operations teams needed to review each reported alert and respond
to the questionnaire regarding the overall functionality of the autonomous moni-
tors. The results are elaborated in the following section.

Detecting anomalies

We calculated the anomaly likelihood for LSTMAE model as suggested by Islam et
al. [96] and Ahmad et al. [3]. Thus, we maintain a record of reconstruction errors
over short-term (W’) and long-term (W) intervals and monitor how their mean and
standard deviation change over time. Consequently, we calculate the likelihood
of an anomaly occurring at time t using the formula At = 1 − Q( µ̃t−µt

σt
), At ∈

(0, 1) [3]. In this equation, Q represents a Gaussian tail probability [110], µ̃t
represents the mean of the short-term interval, while µt and σt denote the mean
and standard deviation of the long-term interval, respectively. If At is greater than
or equal to 1− ϵ, then the observation at time t is classified as an anomaly. Given
that the approximate contamination in the training data is 5%, we set ϵ to be 0.05.
The long-term interval (W) is set to 30, corresponding to 450 minutes (30 ∗ 15),
while the short-term interval (W’) is set to 3, corresponding to 45 minutes (3∗15).
The choice of interval lengths is based on the duration of glitches and significant
performance deviations in operations. We aim to investigate the effect of shorter
window lengths (15 minutes) as a part of our future work, as well as using a smaller
time granularity (5 minutes) for data samples.

For the TRANAE model, anomalies are detected using the POT statistical method,
used in extreme value analysis to assess and model rare events that exceed a cer-
tain threshold. Thus, only data points exceeding a predetermined threshold value
are analyzed and used to estimate the distribution of extreme values. More specifi-
cally and as proposed by Siffer et al. [192], the POT method fits Generalized Pareto
Distribution (GDP) to the excesses, the difference between the observed value and
threshold. In the initialization step of this method, we assumed that the excesses
can be identified in the 5% of the data, which corresponds to the initial assumption
about the contamination of the training data set. Thus, the initial threshold equals
95% of the maximum value observed within each feature. The output of this step
is the first threshold zq , computed based on the fitted distribution of excesses and
fixed risk q. The objective here is to calculate the threshold value zq such that
the probability of the observed value exceeding it is smaller than q. For this step,
we used the reconstruction losses from the training dataset. Further, we used the
losses from the test data set to update the distribution parameters and the current
threshold zq if new values (test losses) exceed the initial threshold t. The value for
the fixed risk q is determined experimentally after executing multiple runs of the
POT method and trying to match the number of detected anomalies in the test data



102 AUTONOMOUS MONITORS FOR DETECTING FAILURES IN CLOUDOPS

set to predetermined contamination (5%). By using this method, we managed to
compute thresholds for reconstruction losses obtained for each of the 127 features,
as well as the threshold for the mean value of losses across the columns (features).

5.2 Evaluation

We conducted two stages of evaluation, pre- and post-deployment. The pre-deploy-
ment evaluation aimed at assessing the alert predictions and thus includes a brief
comparison of the performance of two ML models, LSTMAE and TRANAE. The
post-deployment evaluation aimed at assessing the whole concept of autonomous
monitors, and thus comprises quantitative and qualitative data analysis based on
feedback from the operations team.

Pre-deployment evaluation

A shortage of ground truth data prevented the evaluation of both models before
deployment. Nevertheless, we compared the model outputs and corresponding
thresholding methods on the subset of the dataset used for testing, which included
864 (10%) samples. Reconstruction losses calculated on the test data for each
model are shown in Figure 3, where red and orange shading corresponds to data
points showing anomalies. Anomalies detected with LSTMAE model and by calcu-
lating anomaly likelihood are highlighted in red, whereas those detected using the
TRANAE model and POT method are highlighted in orange. The two reconstruc-
tion curves shown in Figure 3 appear very comparable, following similar patterns
in certain regions with the MSE (mean square error) of 2.25 · 10−5. However,
due to different models’ architecture, weights, and biases, the LSTMAE loss has
a slightly higher amplitude than the TRANAE corresponding values. Even though
reconstruction losses look alike, we could not deduce whether each of them has
better reconstruction accuracy and thus better captures anomalous samples. More-
over, we used different methods for thresholding and detecting anomalies, which
resulted in anomalous regions that differ to some degree. As shown in Figure 3,
there is an overlap between four shaded anomalous segments detected by both ap-
proaches. Additionally, the LSTMAE and anomaly likelihood detected two isolated
anomalous events, which were not detected with the fixed threshold obtained with
the POT method. The anomaly likelihood method better adapts to changes in the
data distribution over time, making it potentially more robust to varying anoma-
lies. However, depending on the window sizes, this approach may introduce some
delay in detecting anomalies compared to fixed thresholding. The POT method
could eventually update the threshold based on newly detected anomalies in the
time series. This would require computing the threshold in real-time, and due to
its complexity, we decided to follow the original implementation [214]. By setting
the threshold parameters to detect approximately 5% anomalies in streaming time



5 Autonomous monitors 103

04-06-2023 05-06-2023 05-06-2023 05-06-2023 05-06-2023 06-06-2023 06-06-2023 06-06-2023 06-06-2023
Time

0.006

0.008

0.010

0.012

0.014

0.016

0.018

Lo
ss

es
 fo

r L
ST

M
AE

 an
d 

TR
AN

AE
 m

od
els

LSTMAE
Anomaly likelihood
TRANAE
POT threshold

Figure 3: Anomaly detection with models LSTMAE and TRANAE: Regions in red
show anomalies detected with LSTMAE and anomaly likelihood, while regions in
orange show anomalies detected with TRANAE and the POT method

series (metrics), we approached the evaluation phase, where the operations team
helped with the evaluation process.

Post-deployment evaluation

Due to time constraints, the evaluation period of the autonomous monitors de-
ployed in the operations environment of the system under study was only three
weeks. However, we used the first week for tuning parameters and verifying that
all components shown in Figure 1 work as expected. Thus, the operations teams
reviewed reported alert notifications during the remaining two weeks. The results
of this evaluation period are shown in Figure 4.

The main criterion for reviewing reported alerts was the applicability of GPT-3
predictions to underlying issues based on log inputs. Even though both the LST-
MAE and TRANAE models would identify a deviation in metrics, this perceived ap-

2023-09-15 2023-09-17 2023-09-19 2023-09-21 2023-09-23 2023-09-25 2023-09-27 2023-09-29
Time

Di
str

ib
ut

io
n 

of
 d

ete
cte

d 
an

om
ali

es

Temporary glitch (LSTMAE)
Temporary glitch (TRANAE)
Undetected anomaly (LSTMAE)
Undetected anomaly (TRANAE)
Detected anomaly (LSTMAE)
Detected anomaly (TRANAE)

Figure 4: Overview of results based on the feedback from the operations team



104 AUTONOMOUS MONITORS FOR DETECTING FAILURES IN CLOUDOPS

plicability of GPT-3 predictions ultimately determined whether the detected event
was an anomaly or just a temporary glitch. The total number of detected anoma-
lies is 26, where 17(65.4%) were detected by LSTMAE and 20(76.9%) of them
by the TRANAE model, with an overlap of 11 alerts. Temporary glitches are iden-
tified whenever there was a vague or recurring prediction by GPT-3. As shown
in Figure 4, these false positive predictions appear in most cases before or after
actual anomalies, even though there were some single events. This indicates that
the thresholds need to be adjusted upward to meet the requirements of the case
company. However, a positive observation is that an anomalous event was always
detected by one of the deployed models, where the TRANAE model demonstrated
slightly higher precision by 76.9− 65.4 = 11.5%. Given that none of the anoma-
lies are missed, the F1 score equals 0.64, representing the balanced measure of the
performance of smart alerts. This result is still sufficiently good considering the
customized definition of the anomaly construct, elaborated in Section 6.2.

To get a comprehensive overview of usage and user experience for the smart
alerts in a new MS Teams Alert Channel, we conducted a survey among members
of the operations teams. We created a questionnaire using Microsoft Form, includ-
ing a list of eight questions that can be found in Appendix 1. We present results
from five unique perspectives based on the seven received responses.

General insights. All respondents had very positive reactions regarding the
new alert channel. They stated that the new way of reporting alerts is very useful
and provides easy access to important information regarding the health of their
system. Additionally, one respondent highlighted that smart alerts allow dynamic
notifications for unexpected spikes in usage outside the regular daily patterns. This
is a significant improvement compared to Microsoft’s alerting system (IF/THEN
rules with predefined thresholds).

Functionality. According to the respondents, the smart alerts provide a com-
plementary view of the health state compared to the existing dashboards in Grafana.
Moreover, they offer a better overview of components that should be further in-
vestigated, including various factors that could be of interest from an operational
perspective. Overall, the combination of metrics and logs analysis for detecting
deviations and predicting root cause suggestions proved to be a good match for
identifying and resolving critical issues that affect customers.

GPT3-predictions. All respondents shared the same opinion regarding the
GPT-3 suggestions for root cause analysis. They agree that suggestions are quite
reasonable and offer clear and actionable guidelines on how to approach specific
issues. However, the quality of predictions differs for some alert notifications de-
pending on the input logs. Thus, predictions can sometimes be vague, requiring
additional efforts to understand and resolve detected deviations in metrics.

Usage. The majority of respondents pointed out that they would use smart
alerts for initial investigation before temporary anomalies roll out to severe issues
that might affect customers. Additionally, one of the respondents brought up an
interesting remark that the new alert channel would be helpful in the QA envi-



6 Discussion 105

ronment for preventing failures during releases. However, they also shared their
concern regarding the GTP-3 predictions, as they could overwhelm the operations
team with the same or similar predictions. Even though they are related to recur-
ring errors that are not immediately resolved, they could lower the overall usage
of smart alerts.

Improvements. Even though some of the respondents were satisfied with the
visual and functional aspects of smart alerts, we still received some very useful
recommendations. They highlighted that the upper part of the notification should
contain a better summary that stands out visually. In this way, they could scroll
through the list of reported alerts without expanding the notification to conclude
about the alert severity. Moreover, a few respondents pointed out that reported
alerts should include only the most critical metrics, which correspond to setting
the higher thresholds. One interesting comment is that an improved version of
alert notification should include customer impact analysis. These recommenda-
tions will be considered in our future work.

Implementing and evaluating machine learning models in an industrial setting
remains a challenging task. The difficulty increases even more when ground truth
data is unavailable, as in our case. A priori assumptions and tuned parameters
might not hold after deployment in operations and thus will require adaptations
and fine-tuning. As suggested in our recent work [88], several iterations might be
needed to reach an optimal version of the solution that meets the demands of the
industrial context.

6 Discussion
In this section, we discuss the main findings of this study, their alignment with the
contributions outlined in Section 1, and identified threats to validity and related
mitigation actions.

6.1 Findings
As mentioned in Section 3, the goal of this study was to extend the validity of
the technological rule implemented and evaluated in the context of the microser-
vice system for ticket and payment management in public transportation (TPM
system) [88]. The new context introduced a different cloud-based system in terms
of functionality but similar in regards to the cloud architecture and environment.
Having the same cloud provider of services for deployment and monitoring, Mi-
crosoft Azure, enabled an easy transition between the contexts. However, the
monitoring data characterizing the health of both systems partially differed, as
some parts of the systems were implemented and deployed using different cloud
services. Additionally, the distinct functionalities of the systems contributed to
prioritizing different data types, such as database-related metrics for the PIM sys-
tem, since managing customer data was one of the main functionalities. Regarding



106 AUTONOMOUS MONITORS FOR DETECTING FAILURES IN CLOUDOPS

the source of the monitoring data, the TPM system mainly relied on performance
metrics accessible in Applications Insights, while obtaining critical observations
of the PIM system required executing customized queries in Applications Insigts
and Log Analytics. These custom queries targeted specific parts of the system and
environments and were defined by operations teams. This was a slightly undesired
circumstance as fetching the data in near-real-time needed to be implemented with
four Azure Functions. On the contrary, for the TPM system, the specific perfor-
mance counters were accessed by running simple HTTP requests against Azure
Metrics APIs.

By working on these two case studies, we confirmed a well-known principle
stating there is no one-size-fits-all solution. The purpose of the implemented au-
tonomous monitors was to improve reporting and managing alerts, consequently
making it highly dependent on the available monitoring data. Thus, the moni-
toring data types, their source, and accessibility define the level of generalizabil-
ity. Regarding ML solutions (LSTMAE and TRANAE or other ML models), they
require the number of input features and tuning of parameters in each context.
Hence, training ML models is straightforward if data collection and preprocessing
are correctly carried out. Automating the entire workflow shouldn’t be trouble-
some either in different contexts. Using different cloud solutions might eventually
require a few more lines of code or a different mechanism for pulling the data
from monitoring platforms. Thus, the case-based generalization of the proposed
autonomous monitors is feasible for cloud-based systems that share compatible
monitoring data types and tools for monitoring. For other incompatible systems
and environments, additional efforts are required to understand the distribution of
available data and preprocessing methods. However, we conclude that opportu-
nities for smart alerts in multiple contexts are tremendous, but different levels of
engagement might be needed depending on the data complexity and availability.
We refer to this observation as contribution C3.

Besides case-based generalization, which included implementing and evaluat-
ing the autonomous monitors in another case context, we aimed to improve the
proposed solution design in terms of functionality. We were mainly inspired by
the observation from the previous case study [88], where we identified that op-
erations teams were not sufficiently motivated to examine reported alerts, as they
could not conclude the severity level based on the provided information. They
required additional information upon which they could take action. Accordingly,
we decided to include logs in the analysis and propose a novel approach for re-
porting interpretable alerts (contribution C1). Based on the qualitative feedback,
the smart alerts containing actionable guidelines for root cause analysis seemed
very appealing to the operations engineers. However, minor adjustments might be
needed regarding the visual aspect to enable smooth analysis and investigation of
reported alert notifications.

Even though our initial solution [88] included the widely adopted method for
detecting anomalies in multivariate time series (LSTMAE model), we decided to



6 Discussion 107

enrich the original design of the autonomous monitors considering the latest ad-
vancements in the ML field. Thus, the solution by Tuli et al. [214] seemed like a
perfect fit as it showed very promising results on the publicly available datasets and
only needed to be instantiated and evaluated in an industrial setting. We refer to
this validity extension as contribution C2. Industrial contexts without ground truth
data are always challenging, as testing selected ML models before deployment is
not feasible. Furthermore, the distribution of data used for training might affect
the learning process and bring even more uncertainty to the evaluation phase. In
our case, the TRANAE model showed solid performance and higher precision rate
by 11.5% compared to the LSTMAE model. It can be used to detect both short-
and long-term anomalies, as shown in Figure 3. Due to its high potential, it will
be used for similar solutions in our future work.

6.2 Threats to validity

To increase the overall validity and relevance of the proposed autonomous moni-
tors, we considered the latest advancements in the ML world during the design de-
velopment. For this purpose, we surveyed state-of-the-art machine learning tech-
niques and explored recent innovations. Furthermore, we established a close re-
lationship with our industry partner, involving interviews and recurrent dialogues.
Potential threats to validity are discussed in the context of construct, conclusion,
internal, and external validity.

Construct validity. The central construct of this study is the notion of anomaly.
It is hard to precisely define and distinguish from other events that indicate varia-
tions, but are still within the range of what characterizes a healthy system. In our
approach, we move away from the threshold-based definitions of anomalies and
train ML models. These models are no perfect representation of the anomaly con-
struct, but our additional GPT-3 analysis helps the operators to analyze the events
in depth and judge whether they are anomalous or not.

Conclusion validity. The duration of the evaluation period (which spans 14
days) could potentially have an impact on drawn conclusions. Additionally, re-
ported alert notifications were reviewed by only two engineers from the operations
team, thus, the final results might be biased. To address this challenge, the opera-
tions team will continue using our anomaly detection solution even after the study
concludes. Additionally, we are preparing for more comprehensive evaluations
and discussions with practitioners following a considerably longer period of use in
the future.

Internal validity. Selection and preprocessing of the features can significantly
impact the performance of ML models and overall results. The 127 features de-
scribed in Section 4 were carefully selected based on the very thorough observa-
tions of monitoring data visualized in Grafana and inputs we received from the
operations team. We mainly focused on data types (features) that were usually
monitored and examined when some severe failures were detected. However, con-



108 AUTONOMOUS MONITORS FOR DETECTING FAILURES IN CLOUDOPS

sidering the system dimensionality and the volume of available monitoring data,
the selected set of features could be adjusted in the future by adding new or re-
moving some of the existing features. This will, however, require training new
ML models, but revising the existing and exploring new features is necessary for
building trustworthy and reliable machine learning solutions.

External validity. With this study, we extend the validity of our solution to
another industrial context. However, this still limits the scope of the solution to
cloud-based systems deployed and monitored using MS Azure. Considering the
similarity between different providers of cloud solutions, we assume that the same
solution could be implemented using matching cloud tools like Amazon Cloud-
Watch and corresponding cloud services. This will be further investigated in our
future studies initiated with other industrial partners.

7 Conclusion

Using ML-inspired solutions for improving software engineering environments
and different quality aspects of cloud-based systems has become a standard nowa-
days. The possibilities are endless and yet to be explored. In this paper, we report
one of the applied solutions that leverage state-of-the-art ML models and cloud-
based services for the timely detection of anomalies and reporting of interpretable
alerts. To remain at the forefront of recent research, we included ML models
(TRANAE [214] and GPT-3 [162]) based on deep transformer networks in the de-
sign of the solution, the autonomous monitors. Thus, we extended the validity
scope for the TRANAE model as it has not been evaluated previously in the indus-
trial context of the cloud-based system. Additionally, the validity was extended
for the overall solution for improving alert management, expressed in the form of
the technological rule in our recent work [88]. The solution design for reporting
smart alerts proved to be efficient in proactive monitoring and early investigation
of raised issues before they escalate and cause severe consequences.

Acknowledgments

This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foun-
dation. We thank the DevOps and CloudOps teams for their willingness to share
insights and respond to our questions.

Appendix 1: Questionnaire form

The DevOps and CloudOps teams were asked to fill in a questionnaire form, where
we provided a detailed description of the autonomous monitors and the following



7 Conclusion 109

questions:

1. What is your general opinion regarding the ML Channel and new alert re-
ports?

2. Does ML Channel provide more (useful) information than the current one
(General)?

3. Is it easier to understand current health state of different parts of the system?

4. Does GPT-3 give reasonable suggestions for root cause analysis?

5. Would you use ML Channel for investigation of raised issues (by customers)?

6. Does ML Channel produce more alerts than DevOps and CloudOps teams
are able to handle during the day?

7. Is there anything you would like to change in the visual representation or
functionality?

8. Would you be willing to provide additional details or clarification if needed
regarding your response?

Appendix 2: Online Resources
All Python scripts and Jupyter notebooks used in the study are available upon
request at https://github.com/adha7/inAlerts-icse due to privacy
concerns of the case company. Implementation of the TRANAE model by Tuli
et al. [214] can be found at the https://github.com/imperial-qore/
TranAD.

https://github.com/adha7/inAlerts-icse
https://github.com/imperial-qore/TranAD
https://github.com/imperial-qore/TranAD




PAPER IV

ADVANCING SOFTWARE
MONITORING: AN INDUSTRY

SURVEY ON ML-DRIVEN
ALERT MANAGEMENT

STRATEGIES

Adha Hrusto, Per Runeson, Emelie Engström, Magnus C Ohlsson

Abstract

With the dynamic nature of modern software development and operations environ-
ments and the increasing complexity of cloud-based software systems, traditional
monitoring practices are often insufficient to timely identify and handle unexpected
operational failures. To address these challenges, this paper presents the findings
from a quantitative industry survey focused on the application of Machine Learn-
ing (ML) to enhance software monitoring and alert management strategies. The
survey targets industry professionals, aiming to understand the current challenges
and future trends in ML-driven software monitoring. We analyze 25 responses from
11 different software companies to conclude if and how ML is being integrated into
their monitoring systems. Key findings revealed a growing but still limited reliance
on ML to intelligently filter raw monitoring data, prioritize issues, and respond to
system alerts, thereby improving operational efficiency and system reliability. The
paper also discusses the barriers to adopting ML-based solutions and provides
insights into the future direction of software monitoring.

Euromicro SEAA-KKIO (2024)



112 ML IN SOFTWARE MONITORING: A SURVEY

1 Introduction

Large-scale cloud computing systems can fail in various unpredictable ways, with
faults cascading across components, leading to service outages or degraded per-
formance. Understanding how these systems behave under failure conditions is
crucial for planning effective failure management and prevention strategies [33].
Effective monitoring plays a vital role in detecting these operational failures. Soft-
ware development companies rely heavily on monitoring tools [65] that collect
and analyze vast amounts of operational data. However, the large volume and
complexity of monitoring data pose challenges in identifying meaningful patterns
and extracting actionable insights. Traditional monitoring systems often strug-
gle to effectively manage data overload, leading to alert fatigue and the potential
overlooking of critical alerts. Moreover, there is a lack of standardization and
an overabundance of different monitoring tools, which leads to inconsistent and
ineffective monitoring practices [205].

To address these challenges, Machine Learning (ML) techniques have emerged
as a promising approach to enhance the analysis and management of monitoring
data [149, 212]. ML can significantly improve system observability and enable
extensive system performance analysis to identify anomalies that could indicate a
potential failure as shown in our previous case studies [88–90]. However, despite
significant research and commercial solutions for advanced monitoring using ML,
many organizations have yet to utilize these capabilities fully. Current monitoring
methods primarily depend on alert thresholding for key performance indicators
(KPIs) or log querying, with limited use of ML-based solutions due to uncertain-
ties about their usefulness, reliability, and cost-effectiveness [174].

To advance understanding of the aforementioned challenges in monitoring
cloud computing systems and adopting ML-based approaches, our industry-academia
collaboration research team conducted a national quantitative survey among indus-
try practitioners. We targeted companies responsible for developing, testing, and
operating cloud-based software systems. By engaging with practitioners who are
directly involved in the lifecycle of such systems, we obtained a comprehensive
understanding of the current monitoring practices, their limitations, and the poten-
tial impact of incorporating advanced ML techniques for more efficient monitoring
strategies. More details about the survey setup can be found in Section 3.

Despite the growing interest in ML technologies and their potential applica-
tions [33, 193], there is a scarcity of comprehensive survey studies specifically
focusing on how industries are implementing ML for monitoring purposes and de-
tecting operational failures. Most recent and relevant surveys [195, 205] provide
valuable insights, but each from unique and differing viewpoints regarding cloud
monitoring practices and the adoption of machine learning in the industry, par-
ticularly for software failure prediction. Thus, there is a need for more focused
research in this area that integrates both perspectives, to understand the benefits,
practical challenges, and the extent of ML adoption in industrial monitoring and



2 Background and Related Work 113

proactive alert management. Therefore, this study aims to contribute to this area
by providing empirical insights into the current state of ML usage in industrial
monitoring and exploring the factors influencing its adoption and effectiveness for
early detection of operational failures.

2 Background and Related Work

Recent studies have significantly advanced software monitoring, particularly through
ML-driven approaches, highlighting the challenges and innovations in this area.
The review by Giamattei et al. [65] explores a variety of monitoring tools for large-
scale systems like microservices, noting challenges in their selection and usage.
Research by Candido et al. [36] addresses complexities in log data and introduces
AIOps for improving operational workflows. The IntelligentMonitor study [209]
discusses an adaptive system that reduces data overload and alert fatigue through
ML, enhancing monitoring efficiency. Additionally, Gill and Hevary [66] identify
major challenges in cloud monitoring, including issues in technology, virtualiza-
tion, and performance, emphasizing the need for innovative solutions.

According to the recent survey by Tamburri et al., [205], it is evident that
monitoring practices are crucial for detecting operational failures. Additionally,
monitoring should be recognized as a strategic asset for improving system observ-
ability [205]. There are examples of successful intentions to address the early de-
tection of failures by leveraging data accessible through monitoring tools. Mariani
et al. [149] introduce PreMiSE, a method that predicts failures in multi-tier dis-
tributed systems. This approach, tested on a telecommunication system prototype,
showcases high precision in failure prediction with minimal false positives. Simi-
larly, Cotroneo et al. [33] propose a method for analyzing failure data in cloud sys-
tems, leveraging Deep Embedded Clustering to classify failures efficiently without
manual feature engineering.

However, despite the availability of numerous monitoring tools, Tamburri et
al. [205] find that adopting advanced monitoring technology in the industry is still
in its early stages due to required substantial investments and lack of industry
standards. To investigate this further, our survey study aims to understand to what
extent the companies leverage monitoring tools and data to detect operational fail-
ures and perform root-cause analysis, beyond single case studies.

Hrusto et al. have undertaken two case studies in collaboration with indus-
trial partners [88–90]. They reveal current alert management practices and the
limitations of existing monitoring solutions. Interviews and observations in the
case studies highlight specific challenges, such as undetected operational failures,
alert flooding, difficulty in interpreting alerts, and the need for more efficient alert
mechanisms, such as autonomous monitors [90]. To address these, they devel-
oped and evaluated a cloud-based solution for monitoring, detecting anomalies,
and reporting interpretable alerts.



114 ML IN SOFTWARE MONITORING: A SURVEY

Additionally, it is crucial to understand the integration of AI and ML in the in-
dustry, as these technologies play a significant role in enhancing productivity and
decision-making. Surveys by Rana et al. [174] and Holmström [83] offer insights
into the factors influencing AI/ML adoption. Our study adds a practical perspec-
tive by evaluating the real-world applicability of AI/ML in software development,
helping to bridge the gap between theoretical frameworks and industry implemen-
tation.

3 Research methodology

We conduct an industrial quantitative survey study following the recommenda-
tions and guidelines from three key publications on designing and conducting sur-
veys in software engineering authored by Molléri et al. [155], Kasunic [112], and
Linåker et al. [136]. The survey process involves several key steps [155], detailed
in subsequent subsections, including reflections on threats to validity important for
ensuring the reliability and credibility of research findings.

3.1 Research objective

The survey aims to describe challenges in handling operational failures and mon-
itoring data in a set of Swedish software development companies. Since our aim
is to observe the existence of challenges and assess the validity of proposed solu-
tions, we conduct a judgment study with experts rather than a sample survey [200].
We report the occurrence, detection mechanisms, and types of failures while con-
sidering the use of monitoring data for better understanding and designing preven-
tion mechanisms. Further, we evaluate the benefits and limitations of ML-based
anomaly detection and alert tool [90], assessing its broader industry applicability.
Additionally, we analyze the impact of AI/ML solutions on developing, testing,
and operating cloud-based software systems and the organizations’ capability to
adopt these tools.

3.2 Research questions

We defined the research questions based on a synthesis of the authors’ industry
experiences and the latest contributions in the field, as outlined in Section 2 as
follows:

• RQ1: How do different types of operational failures impact software devel-
opment environments, considering their occurrence and consequences?

• RQ2: To what extent are monitoring data and its specific types used for
detecting and analyzing operational failures?



3 Research methodology 115

• RQ3: Are there recognized needs for more advanced detection (alert) mech-
anisms in operations based on state-of-the-art machine learning approaches?

• RQ4: What is the current level of readiness and attitude of software de-
velopment, testing, and operations teams towards adopting and relying on
ML-based solutions, given the latest advancements in AI?

3.3 Defining and sampling the population
We target a population of Swedish software companies that develop and operate
software systems deployed in the cloud, referred to as software development com-
panies. Their names are not disclosed on their request to remain anonymous. The
target audience consists of intended respondents from these companies, to whom
we refer as software practitioners.

The first and fourth authors are employed at a global software quality assurance
(GSQA) company with headquarters in Sweden that offers a wide range of services
within the Software Development Life Cycle (SDLC). The company has a signifi-
cantly large network of loyal customers across Sweden who focus on high-quality
software products and processes, which we aim to examine in our study. We used
a non-probabilistic sample from this customer network, combining convenience
and purposive sampling, as discussed by Baltes and Ralph [11]. To minimize bi-
ases, we expand the sample with the authors’ LinkedIn connections, specifically
targeting software practitioners from companies that prioritize software quality in
their businesses.

3.4 Designing and validating the instrument
We used a structured questionnaire as a survey instrument for data collection. The
questionnaire was carefully designed to include closed-ended questions, which
offered respondents both single- and multiple-response options [155]. This for-
mat was chosen to simplify the response process and to ensure consistency and
comparability in the collected data. We utilized a specialized survey design tool
provided by our university to develop the questionnaire, ensuring a rigorous and
systematic approach to data collection. We formulated questions with predefined
categorical responses specifically designed based on the authors’ experiences and
considering definitions of quality characteristics standardized by ISO1. The survey
assesses software quality across usability (user roles and experience), reliability
(operational failures, detection methods, and alerts), and maintainability (moni-
toring tools and data analysis), while also evaluating the impact of ML solutions
on efficiency and functionality of cloud-based systems.

The questionnaire form, openly available2, begins with an overview section
that includes the project title, the research team involved, the purpose of the survey,

1https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
2https://doi.org/10.5281/zenodo.10986352

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://doi.org/10.5281/zenodo.10986352


116 ML IN SOFTWARE MONITORING: A SURVEY

and information on data privacy. This part sets the context for the respondents
and assures them of the confidentiality of their responses. The questionnaire is
structured into distinct sections corresponding to our research questions:

• Respondent Profile: This section comprises six questions designed to gather
respondents’ demographic and professional background information.

• Operational Failures and Monitoring Data Usage: It consists of nine ques-
tions, targeting RQ1 and RQ2 to collect respondents’ experiences and per-
ceptions regarding operational failures and monitoring practices in their re-
spective environments.

• ML for Smart Monitoring & Alerts: This segment includes eight questions
focused on using ML in smart monitoring and alert management (RQ3).

• Adoption of ML-based Solutions: The final section, with seven questions,
explores the attitudes and readiness of respondents towards adopting ML-
based solutions in their work processes (RQ4).

To ensure the validity of our survey, our team leveraged its expertise to align
the survey questions accurately with the research questions. One author with in-
depth domain knowledge designed the initial questionnaire. Three other authors,
with academic and industrial insights, reviewed it thoroughly. This review iden-
tified several concerns, leading to collaborative discussions that refined and vali-
dated the questions.

3.5 Managing participants and responses

In managing participant engagement and responses, our approach involved the dis-
tribution of the online questionnaire through three primary digital channels: email,
Microsoft Teams, and Viva Engage. To effectively reach potential respondents,
we shared the survey URL along with a brief context description, explaining the
purpose of the study and its significance. We directly reached out to 30 poten-
tial respondents through our professional network, including consultants at GSQA
company and contacts on LinkedIn, and relied on them to further distribute the
questionnaire among their respective teams and companies. Throughout the sur-
vey period of four weeks, we actively monitored the response rate to gauge par-
ticipant involvement. Based on these observations, we regularly reached out to
all previously contacted individuals to check on the status of their participation,
as well as to express our gratitude and encourage their ongoing involvement, ac-
knowledging their valuable contributions. This strategy of regular communication
and appreciation played a crucial role in maintaining a good response rate.



3 Research methodology 117

3.6 Analyzing and reporting results

We initially exported the results into an Excel file to analyze and report our survey
results. We manually inspected the file and determined the most efficient approach
for detailed analysis. To facilitate this, we divided the results into five separate
CSV files corresponding to the respondent profile and the four research questions.
Each question and its corresponding answers were coded systematically (e.g., F1
for a question and F1A1 for its answer related to operational failures), stream-
lining the process of data handling. This structured coding system enabled us to
efficiently write Python code snippets for loading, analyzing, and extracting rele-
vant information that directly addressed our constructs and survey objectives. For
comprehensive transparency and reference, the auto-generated report from the sur-
vey tool, encompassing all the detailed results, is openly available3.

3.7 Threats to validity

Addressing potential threats to validity is crucial for ensuring the accuracy and
credibility of our survey findings [155]. We considered the following threats to
validity:

• Internal Validity – We ensured through internal reviews that questions were
designed to minimize misunderstanding or ambiguity and that the survey
was distributed to a representative sample of the target population.

• Construct Validity – The brief description of the ML-based anomaly de-
tection tool in the questionnaire could have affected respondents’ ability to
accurately answer related questions, thereby impacting the reliability of our
findings. We assumed that respondents would have sufficient background
knowledge to understand the main goal of the described tool, given the
widespread adoption and growing use of AI in the software industry. How-
ever, we also included a question regarding their experience in AI to gauge
their familiarity.

• External Validity – Given that our sample was non-probabilistic and drawn
entirely from Sweden, the generalizability of our findings to a global context
is limited. However, we aimed to expand upon our previous findings from
two Swedish case companies, focusing on generalizing to a broader, but yet
limited, population of similar companies. To achieve this, we included par-
ticipants from different software engineering subfields in Sweden to capture
diverse population characteristics.

• Conclusion Validity – We ensured this by employing a systematic approach
that combined manual data inspection with automated analysis using a Python

3https://doi.org/10.5281/zenodo.10986352

https://doi.org/10.5281/zenodo.10986352


118 ML IN SOFTWARE MONITORING: A SURVEY

script. This approach enabled us to thoroughly examine the data while effi-
ciently extracting information relevant to our research questions.

4 Results

This section presents the outcomes of our quantitative survey, structured to ad-
dress each of our four research questions in Section 3.2. Each subsection provides
a comprehensive analysis of the survey responses, offering a detailed understand-
ing of the current state and future directions in operational failure management and
machine learning adoption in software development environments. The results are
analyzed based on 25 responses across 11 different software development com-
panies, out of 30 invitations. We examined the data from both the company and
software practitioner perspectives.

4.1 Respondent profiles

The respondent profiles, shown in Table 1, include a diverse spectrum of positions
primarily in the software industry. Quality assurance is the most prevalent role
within the target audience (10/25 from 8/11 companies), but DevOps engineers
(6/25 from 6/11 companies) and software developers (5/25 from 4/11 companies)
are also dominant positions. The range of roles also includes two CloudOps engi-
neers, one test manager, and one project manager.

These practitioners are sourced from a diverse range of companies, where the
number of companies corresponding to each position follows a similar distribution.
In terms of professional experience, there’s a wide range, from those with less than
a year to those with over a decade in their field. The experience with AI tools
varies, with a significant number of respondents having engaged with AI either a
few times or moderately, indicating a growing interest in using AI to enhance their
working processes.

Table 1: Overview of the respondent profiles

Position No. of respondents
per position

No. of unique
companies

Quality Assurance 10 8
DevOps Engineer 6 6

Software Developer 5 4
CloudOps Engineer 2 2

Test Manager 1 1
Project Manager 1 1



4 Results 119

4.2 RQ1: Operational failures

The main objective of this research question was to investigate one of the criti-
cal aspects of software development related to the types, occurrence, and conse-
quences of operational failures. The results showed that the occurrence of opera-
tional failures varies across companies, reflecting the differing resilience and vul-
nerability of systems in the industry. With seven companies experiencing weekly
failures and three of them encountering them monthly, it’s evident that operational
failures are a common and recurrent challenge. Interestingly, respondents in dif-
ferent roles within the same company often reported different occurrences of oper-
ational failures, indicating role-specific challenges and perspectives on issues. To
address this discrepancy, we considered the worst-case scenario as the reference.
This means that when respondents from a single company reported different oc-
currences of failures, we considered the more frequent instance as the baseline. In
this way, we focused on addressing the most significant and recurrent operational
failures.

The reported methods for detecting operational failures show the industry’s re-
liance on technology and human oversight. Companies are increasingly integrating
technology-driven methods, such as automated alert systems, used by all eleven
surveyed companies, with human-centric approaches like manual monitoring and
user reports, employed by eight companies each. Interestingly, some companies
employ a mix of these methods to create a more robust and comprehensive detec-
tion strategy. These blended strategies for detecting operational failures highlight
the need for more comprehensive monitoring and detection mechanisms.

Continuing the analysis, the collected data from the surveyed companies re-
vealed that the most frequent problems arise from the interaction between different
software components. This was reported by nine companies, indicating the impor-
tance of the integration or compatibility issues. Following closely are performance
issues, signalizing the difficulties the companies face in maintaining optimal sys-
tem performance and response times. System outages or crashes also represent
a major concern, as they were experienced by six companies. This demonstrated
an urgent need for robust infrastructure and proactive maintenance to minimize
downtime. Although data-related issues and security vulnerabilities are less fre-
quent among operational failures, their relevance is still highly important. Data
corruption or loss can have severe consequences for data integrity and reliabil-
ity, while even a single security incident can cause data breaches, financial losses,
and damage to a company’s reputation. Considering the broad range of potential
failures, their early identification is crucial for maintaining overall system health.

An additional overview of operational failures per company is given in Fig-
ure 1. It becomes evident that certain operational failures are more prevalent
in specific companies, indicating potentially unique challenges or vulnerabilities
within their operational environments. For instance, the results suggest that many
companies should direct their improvement efforts to address performance issues.



120 ML IN SOFTWARE MONITORING: A SURVEY

AL BO EN EW II IK IR KN LO NB VC
Company

0

1

2

3

4

5

6

7

8
Nu

m
be

r o
f e

ac
h 

fa
ilu

re
 ty

pe

1

3 3
2

1 1

4
1

3
4

2

3 1
2

1

11

2

1

1

1

1 1

1

2

1

1

1

1

Failure Types
System outages or crashes
Performance issues
Security breaches or vulnerabilities
Data-related issues
Integration or compatibility issues

Figure 1: Distribution of different failure types per company

Complementing these findings, the results also indicate consequences of op-
erational failures, shown in Figure 2. It was evident that several companies ex-
perienced a range of failure consequences simultaneously. Among the closely
distributed four responses (blue, green, purple, and yellow), the highest rate of
companies, 9/11 (81.8%), reported increased development time and costs due to
operational failures, highlighting a burden on resource allocation and project time-
lines. A comparable rate of 8/11 (72.7%) experienced impacts on both product
quality and customer satisfaction, indicating the extended effects on business rep-
utation and profitability. An increase in technical debt, reported by 7/11 (63.3%),
points to the accumulating challenges in software maintenance and development
efficiency. These insights collectively revealed the complex nature of operational
failures yet nearly even distribution of consequences affecting various aspects of
business.

The findings of RQ1 highlight the extensive and persistent challenges regard-
ing operational failures in the software industry. This indicates an urgent need
for proactive and effective mitigation strategies. The diversity of these failures,
as shown in Figure 1, emphasizes the necessity for robust monitoring solutions
capable of addressing a wide range of issues.

4.3 RQ2: Usage of monitoring data
With RQ2, we aimed to understand the evolving landscape of monitoring data
management, which is crucial in detecting and analyzing operational failures. Fur-



4 Results 121

AL BO EN EW II IK IR KN LO NB VC
Company

0

2

4

6

8

10

Nu
m

be
r o

f e
ac

h 
fa

ilu
re

 co
ns

eq
ue

nc
e

3

1 1
2 2 2 2

1
2

4

2

2 2 2
3

1

2

1

2

3

1

3

3

1 1

1

1

3

3

2

1

1

1

1

Consequences
Increased development time and costs
Reduced product quality and reliability
Negative impact on customer satisfaction
Compromised data security and privacy
Increased technical debt

Figure 2: Distribution of different types of failure consequences per company

thermore, we examined the utilization of diverse monitoring tools and alert mech-
anisms and considered their impact in providing real-time insights and proactive
responses to operational anomalies.

The data reveals how different organizational roles utilize monitoring data.
DevOps engineers and quality assurance teams primarily engage with it for con-
tinuous integration and quality checks, focusing on system vulnerabilities and in-
tegration issues. Managers, though less represented, primarily rely on data for
decision-making and oversight. In contrast, CloudOps engineers and software de-
velopers use data to track performance trends and identify vulnerabilities, aligning
with their responsibilities in cloud infrastructure and software development. These
patterns highlight the tailored applications of monitoring data to meet specific role-
based demands.

Next, we analyze the results related to the usage of different monitoring tools
and types of monitoring data, shown in Figure 3. Among the monitoring tools,
Amazon CloudWatch, Azure Monitor, and Grafana emerge as the organizational
leaders, signaling their widespread acceptance likely due to robust features and
seamless integration capabilities with respective cloud environments. In contrast,
tools like Prometheus and Kibana, while still utilized, show a relatively lesser
degree of adoption, which may reflect preferences based on specific organizational
needs or system compatibility.

When analyzing the types of monitoring data, performance metrics, particu-
larly focusing on CPU and memory usage, stand out as the most monitored data
type in Figure 3. This dominant usage highlights the critical importance of sys-



122 ML IN SOFTWARE MONITORING: A SURVEY

Am
azon CloudW

atchAzure M
onitor

Google Cloud
Grafana

Prom
etheus

Dynatrace
Kibana

M
onitoring Tools

0 5 10 15 20 25 30 35 40

Count per respondent

10
9

1

9
5

1
6

11
12

1

10

5

1

6

4
5

4

2

1

1

4
5

4

3
4

3
3

3

2

1

2

6
7

5

4
5

Types of M
onitoring Data

Perform
ance M

etrics (e.g., CPU usage, m
em

ory usage)
Log Files (e.g., system

 logs, application logs, error logs)
User Activity (e.g., user sessions, transactions)
Network Traffic (e.g., bandwidth usage, network requests)
Security Alerts (e.g., unauthorized access attem

pts) 
Resource Utilization (e.g., database operations, disk usage)

Figure
3:O

verview
ofm

onitoring
tools

and
types

ofm
onitoring

data
perrespondentoutof25



4 Results 123

tem performance and cloud infrastructure optimization in maintaining operational
efficiency. Log files, comprising system, application, and error logs, demonstrate
a slightly higher usage compared to performance metrics, highlighting their im-
portance in diagnosing issues and gaining insights into operational failures. We
have additionally identified that there is a consistent distribution of different types
of monitoring data across a range of monitoring tools. This uniformity suggests
that irrespective of the specific monitoring tool employed, the aforementioned data
types are always prioritized.

In comparison, resource utilization, user activity, and network traffic, although
integral to comprehensive system monitoring, appear to be less prioritized. This
may suggest an area for increased focus, especially considering the insights they
can provide into user behavior and network efficiency. Security alerts remain a sig-
nificant concern even though they don’t dominate in usage, indicating a relatively
limited emphasis on identifying and mitigating potential security risks. The data
collectively illustrates diverse monitoring approaches using various tools tailored
to specific system health and security needs, emphasizing strategic organizational
choices.

Many commercial monitoring tools offer the possibility to configure different
alert mechanisms, which can be highly significant for timely identification of op-
erations failures. The survey results reveal that a larger proportion of companies
reported having basic or limited alert systems, compared to those with fully inte-
grated systems, suggesting a trend towards incremental adoption of sophisticated
monitoring tools and alert strategies. Interestingly, most of these companies con-
sider their systems to be very effective, indicating a positive reception towards the
existing alert mechanisms despite their varying levels of complexity. However,
fewer companies are in the process of implementing or planning to implement
alert systems. This shows a growing awareness and need for advanced monitor-
ing solutions. This industry shift towards proactive, efficient monitoring strategies
underscores the growing importance of effective alert systems for organizational
resilience and efficiency.

4.4 RQ3: ML for advanced monitoring and alerting

The survey findings revealed a diverse perspective among different organizational
roles, as shown in Figure 4. Quality assurance practitioners mainly reported a
moderate need, with a few noting a strong need, which may denote a balanced per-
spective on integrating advanced technologies and the possible benefits for quality
assurance processes. DevOps and CloudOps engineers, with the majority per-
ceiving little and moderate need, expressed satisfaction with current monitoring
systems or possible concerns associated with implementing and maintaining such
ML-driven solutions. On the contrary, developers recognized a strong need for ad-
vanced monitoring, most likely because they are usually impacted by operational
failures and are mainly responsible for their resolution. Interestingly, manager



124 ML IN SOFTWARE MONITORING: A SURVEY

CloudOps
Engineer

DevOps
Engineer

Project
Manager

Quality
Assurance

Software
Developer

Test
Manager

0

2

4

6

8

10

Nu
m

be
r o

f R
es

po
ns

es

100.0%
50.0%

33.3%

16.7%

100.0% 10.0%

60.0%

20.0%

10.0%

20.0%

60.0%

20.0%

100.0%

Level of need
Little Need
Moderate Need
Strong Need
Unsure

Figure 4: Need for advanced analysis of monitoring data perceived by different
organizational roles

roles pointed towards a strong and moderate need for ML-driven monitoring so-
lutions, which may reflect their prioritization of efficiency and risk management
in project delivery. These varied responses highlight the complexity of organiza-
tional readiness for advanced ML monitoring solutions, emphasizing the relevance
of our study to understanding current and future trends.

As previously explained in Section 2, one of the reasons for examining the
applicability of ML-based monitoring solutions was inspired by the authors’ re-
cent work [90]. For this purpose, we specifically constructed questions to target
the benefits and challenges of such solutions. Table 2 highlights the top three
benefits and challenges identified in our analysis. Among the benefits, the fastest
detection of operational failures stands out as the most acknowledged advantage,
marked by 23 out of 25 respondents, highlighting its significance. This suggests
a strong agreement on the importance of ML in quickly identifying operational
issues, which is crucial for timely problem-solving and efficiency. The second
most frequent answer, the reduction in manual monitoring efforts, indicates a sig-
nificant awareness of ML capabilities, highlighting its role in easing the workload
of human operators. More accurate root cause analysis, although rated lower, is
still notably recognized as a benefit, pointing to the analytical strengths of ML in
diagnosing issues.

The top three identified challenges, including integration with existing systems,



4 Results 125

Table 2: Top three benefits and challenges of ML solution for reporting inter-
pretable alerts

Benefits # respondents

Faster detection of operational failures 23
Reduction in manual monitoring efforts 19
More accurate root cause analysis 15

Challenges # respondents

Integration with existing systems 15
Cost and resource allocation 15
Data privacy and security concerns 15

cost and resource allocation, and data privacy and security concerns, shared the
highest score, with each receiving 15 responses. This uniformity in responses
suggests a balanced perception of these challenges, emphasizing that while ML
implementation is promising, it comes with a set of equally important consider-
ations. These include technical integration complexities, significant investment
requirements, and the critical need to maintain data integrity and security. The
balanced view on these challenges reflects a well-rounded understanding of what
implementing such a solution entails, emphasizing the need for strategic planning
and resource management.

The aforementioned ML-based solution for proactive monitoring [90] utilized
the capabilities of the GPT3.5 Turbo model for getting interpretations of the log
data. Therefore, we aimed to understand how confident different organizational
roles are in the predictions from such a large language model. A significant per-
centage of participants found GPT suggestions somewhat effective and primarily
helpful for basic alerts and routine tasks. A relatively smaller group acknowledged
the effectiveness of GPT in accurately identifying issues and suggesting solutions.
However, only a few respondents rated GPT as highly effective, pointing to its po-
tential for delivering in-depth analysis and actionable solutions, while a minimal
number perceived it as not effective, highlighting limitations in certain contexts.
In terms of confidence in GPT’s predictions, a similar pattern emerges. Many par-
ticipants trust GPT for routine tasks but remain cautious about its use in critical
decisions. This disparity underscores the necessity of continually assessing GPT’s
reliability and effectiveness in diverse operational contexts.

4.5 RQ4: Overall adoption of ML-based solutions

The current level of readiness towards adopting AI/ML-based solutions is a crucial
indicator of how these cutting-edge technologies are currently being integrated into
various software environments. The collected survey data, as shown in Table 3, re-



126 ML IN SOFTWARE MONITORING: A SURVEY

Table 3: Readiness to adopt new AI/ML-based solutions

Organizational role Not ready
or hesitant

Somewhat ready,
facing constraints

From cautious
to proactive

CloudOps Engineer 0 2 0
DevOps Engineer 4 1 1
Project Manager 0 0 1
Test Manager 0 1 0
Quality Assurance 3 4 3
Software Developer 0 1 4

flects varied levels of readiness among different organizational roles. For instance,
a significant number of quality assurance practitioners and software developers in-
dicated cautious readiness or somewhat readiness, facing constraints. This implies
a recognition of the potential benefits of AI/ML but with a raised awareness of the
challenges and constraints involved. The data also indicates a hesitancy among
some roles, particularly DevOps engineers, who showed a mix of hesitation and
cautious readiness. These results could be related to potential concerns regarding
the technical complexities, integration challenges, or possible disruption to estab-
lished workflows and processes. Overall, the distribution of answers highlights the
need for tailored strategies in AI/ML integration, considering the unique needs and
constraints of each role within the software development and operations.

Another significant observation from the survey results shown in Table 4 is the
contrast between the current and forecasted impacts of AI/ML-based solutions. A
major percentage (56%) of respondents reported no significant impact from re-
cent AI advancements on their development and testing processes. However, there
are positive expectations about the future, with an equal proportion of respondents
(56%) anticipating a noticeable increase in development cycle speed due to AI/ML
solutions. Therefore, while the immediate benefits of AI are not yet widely rec-
ognized across organizational units, there is strong optimism in its potential to
enhance efficiency and delivery pace in the near future.

Even though practitioners in the majority of organizational units do not per-
ceive the immediate effects of AI/ML tools on the software development life-cycle,
a significant percentage (60%) have already started using some of the basic tools,
such as chatbots and simple analytics. This captures a typical transitional phase
in the adoption of new technology. Industry professionals acknowledge the po-
tential of AI in enhancing software development and operations, as they are keen
to explore widely used tools on the market. However, their practical outcomes in
software development environments are still not apparent but are enthusiastically
awaited.



5 Discussion and conclusion 127

Table 4: The current and forecasted impact of AI/ML-based tools

Current impact on DevOps Answers (%)

No significant impact 56%
Slightly improved processes 20%
Moderately improved processes 20%

Forecasted impact on delivery pace Answers (%)

Noticeable increase in speed 56%
Minor increase in speed 36%
No effect on pace 4%

5 Discussion and conclusion

In this section, we discuss the main findings of this survey study, focusing on the
implications and future directions of each research question.

The diversity of identified operational failures and their occurrences across dif-
ferent organizational units and roles (RQ1) highlights the dynamic and complex
nature of software development environments. A need for more advanced moni-
toring solutions is evident to ensure operational resilience and efficiency in such
environments. This may include interpretable monitoring strategies that detect
issues and provide natural language suggestions for addressing them. This evolu-
tion towards systems that can interpret operational failures and propose solutions
in a human-readable format represents a significant step forward. It merges the
efficiency and precision of technology with the intuitive understanding of human
experts, aiming to enhance decision-making and streamline the resolution process
in software development environments.

Detailed insights into the use of monitoring data revealed its significance for
investigating underlying issues and maintaining software quality (RQ2). The di-
verse usage of tools like Amazon CloudWatch and Microsoft Azure, favored for
their comprehensive features and ease of integration, highlights the need for tai-
lored approaches to meet varied operational demands. Commonly analyzed data
includes performance metrics and log files, with operational teams prioritizing
system performance monitoring and issue diagnosis. Organizations adopt alert
systems of varying sophistication to enhance effectiveness, and there is industry
consensus on the value of alert strategies for the early detection of operational
failures.

Even though some organizational roles are currently confident in existing mon-
itoring solutions, there is still a growing interest in integrating advanced technolo-
gies to enhance alert detection (RQ3). This is crucial for minimizing downtime
and resolving issues proactively. Additionally, the potential reduction in manual
monitoring efforts through ML suggests an important shift towards automation,



128 ML IN SOFTWARE MONITORING: A SURVEY

freeing up human resources for more complex tasks. However, the possibilities of
ML in monitoring and alerting are approached with caution. There are concerns
about integration, costs, and data security, as well as the varied levels of confidence
in ML predictions, particularly in critical operational tasks. This indicates a need
for further validation and refinement of these ML-enabled systems. The common
perspective leans towards a gradual, thoughtful integration of ML, with a focus on
balancing innovation with practicality, efficiency with reliability, and automation
with human oversight.

Regarding RQ4, the findings showed a cautious but growing readiness among
different organizational roles towards adopting AI/ML solutions. The varied readi-
ness levels indicate a recognition of the potential benefits and challenges associ-
ated with these technologies. The contrast between the current limited impact and
the optimistic future outlook for AI/ML in software development suggests an on-
going transition phase. As practitioners start to engage with basic AI/ML tools,
there is a growing expectation for these technologies to considerably enhance op-
erational efficiency and development processes in the future. This points to a pe-
riod of exploration and gradual integration, where the full potential of AI/ML in
software environments is yet to be realized.

The collective findings from our survey study offer valuable insights into the
evolving dynamics of software development and monitoring, particularly in the
context of operational failures, monitoring practices, alert strategies, and the in-
tegration of AI/ML technologies. The results revealed a combination of complex
challenges and emerging opportunities where organizations increasingly recognize
the potential of advanced technologies to enhance efficiency and problem-solving
capabilities. Given their source in a survey of selected experts, we do not claim
our findings to be generally valid, but rather indicate variation among a set of
quite homogeneous companies to be addressed in further research and implemen-
tation. The anticipated impact of AI/ML on software development and operations
promises a new era of innovation and productivity, considering that the challenges
of integration, cost, and data security will be effectively addressed in the near fu-
ture.

Acknowledgments
This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foun-
dation. We thank all the industry practitioners who participated in this survey,
whose invaluable insights and expertise have greatly contributed to the success
and depth of this research.



PAPER V

MONITORING DATA FOR
ANOMALY DETECTION IN

CLOUD-BASED SYSTEMS: A
SYSTEMATIC MAPPING

STUDY

Adha Hrusto, Nauman bin Ali, Emelie Engström, Yuqing Wang

Abstract

Anomaly detection is key to maintaining cloud systems, allowing early failure de-
tection. With ongoing advances and complex industrial applications, a review of
techniques using real-world operational data is needed. This study aims to com-
plement existing research with an extensive catalog of the techniques and monitor-
ing data used for detecting anomalies affecting the performance or reliability of
cloud-based software systems that have been developed and/or evaluated in a real-
world context. We perform a systematic mapping study to examine the literature
on anomaly detection in cloud-based systems, particularly focusing on the usage
of real-world monitoring data. Based on a review of 104 papers, we categorize
monitoring data by structure, types, and origins and the tools used for data collec-
tion and processing. We offer a comprehensive overview of data preprocessing and
anomaly detection techniques mapped to different data categories. Our findings
highlight practical challenges and considerations in applying these techniques in
real-world cloud environments. The findings help practitioners and researchers
identify relevant data categories and select appropriate data preprocessing and
anomaly detection techniques for their specific operational environments.

Submitted to TOSEM



130 DATA FOR ANOMALY DETECTION: A MAPPING STUDY

1 Introduction

The widespread adoption of cloud-based software solutions in various industries is
driven by their scalability, reliability, and cost-effectiveness [75]. However, main-
taining the operational health of these systems presents significant challenges [39].
Detecting anomalies in system behavior is a critical issue, as these deviations from
normal operational patterns often serve as early indicators of underlying prob-
lems that could compromise the reliability and performance of cloud-based sys-
tems [244]. Thus, anomaly detection (AD) plays a crucial role in maintaining the
operational health of systems deployed in cloud environments.

In practical scenarios where cloud systems operate under diverse conditions
and varying workloads, monitoring data is essential for understanding system
behavior and creating robust anomaly detection strategies. Such data gathered
from cloud operations provides critical insight into the dependencies and interac-
tions between hardware and software components. This information is crucial in
root cause analysis and proactive fault management frameworks for cloud appli-
cations [220]. Furthermore, the use of operational data in the development and
evaluation of AD techniques indicates the likely practical applicability of such
techniques in real cloud environments. Therefore, leveraging data from cloud
operations is critical for developing more resilient and fault-tolerant cloud sys-
tems [212].

Existing literature studies that aggregate anomaly detection research have of-
ten not made a distinction between synthetic datasets and monitoring data from
real-world systems. However, synthetic data or data from lab deployments does
not accurately reflect the complexities and nuances of real-world cloud environ-
ments. Similarly, the existing literature often falls short of providing compre-
hensive insights into the application of anomaly detection using data collected
from cloud operations, leading to a gap in practical, empirical evidence. In-
stead, existing reviews on anomaly detection focus on other and specific aspects
of cloud computing systems, such as cloud infrastructure, or on characteristics
of detection techniques without paying attention to the operational context or
data [22, 32, 36, 66, 75, 100, 156, 161, 223].

To address this gap, we explore and synthesize the data used for anomaly de-
tection with a particular focus on its application and evaluation in cloud-based
systems. We conducted an extensive systematic mapping study, focusing on dif-
ferent data characteristics and corresponding techniques for processing the data
and detecting anomalies.

Based on information extracted from the reviewed papers, we provide catalogs
of data based on type, structure, and origin; tools used for monitoring; and data
preprocessing and anomaly detection techniques. We further provide reflections
on the contexts in which these techniques have been applied. Our catalogs are de-
signed to aid practitioners in prioritizing relevant operational data and developing
effective anomaly detection strategies tailored to their specific contexts. By using



2 Background and Related Work 131

monitoring data from real industrial settings, anomaly detection techniques can be
trained and tested on datasets that accurately reflect the complexities and dynam-
ics of cloud-based software systems. Highlighting the practical aspects of anomaly
detection in cloud environments, we aim to contribute to the body of knowledge
with actionable insights that can be readily implemented in real-world scenarios.

This paper makes several key contributions to the field of anomaly detection in
cloud-based systems:

• C1: A catalog of monitoring data collected from operational environ-
ments. This classification helps in understanding the diverse nature of mon-
itoring data, their properties, and their relevance to anomaly detection in
real-world cloud environments.

• C2: An overview of monitoring tools. We compile a list of monitoring
tools used in various cloud environments for collecting and storing monitor-
ing data while discussing their strengths and limitations.

• C3: Comprehensive overview of data preprocessing and anomaly detec-
tion techniques. This contribution is a valuable resource for practitioners
seeking to enhance their anomaly detection in cloud environments. Addi-
tionally, we provide a detailed mapping of anomaly detection techniques to
various monitoring data categories, aiding in selecting suitable techniques
based on data characteristics.

• C4: Analysis of real-word aspect. This analysis reveals which anomaly
detection techniques are directly applicable and relevant to industry prac-
tices and real-world challenges.

By addressing these areas, we aim to provide a solid foundation for the devel-
opment and implementation of effective anomaly detection strategies in real-world
cloud environments. By focusing on real-world data and providing comprehen-
sive catalogs, we offer valuable guidance to practitioners seeking to enhance their
anomaly detection capabilities.

2 Background and Related Work
In this section, we briefly introduce the task of anomaly detection and its impor-
tance in cloud-based systems. In addition, we provide an overview of existing
reviews on anomaly detection techniques applied in these environments and out-
line our unique contributions to the field.

2.1 Anomaly detection
In the field of software engineering, anomaly detection is the process of identifying
deviations from the expected or normal behavior within a software system [21]. It



132 DATA FOR ANOMALY DETECTION: A MAPPING STUDY

involves continuously analyzing monitoring data, which provides observability to
identify potential anomalies that require further investigation or action. Monitor-
ing data exist in different modalities, such as logs, metrics, and traces [63].

Cloud-based systems generate vast amounts of monitoring data from various
components, such as servers, services, databases, load balancers, and virtual ma-
chines [1]. Anomalies can occur in any of these components. Manually analyz-
ing monitoring data from different components to detect anomalies for the cloud-
based system can be time-consuming and error-prone. Modern anomaly detection
leverages automation techniques to continuously monitor and analyze monitoring
data from various components [1, 75]. Automated anomaly detection can help to
quickly identify and remediate potential anomalies, optimize system performance,
and reduce operational overhead [21].

2.2 Existing reviews
We systematically searched1 for related literature reviews or mapping studies on
anomaly detection in cloud-based systems. We identified seven relevant papers [32,
36, 66, 75, 100, 161, 223].

An overview of these reviews on anomaly detection in cloud-based systems
is presented in Table 1 and Table 2. These reviews focus primarily on the under-
lying cloud infrastructure and analysis of its characteristics, challenges, or most
relevant topics with regard to cloud monitoring or management. Only three re-
views [36, 75, 100] cover anomaly detection in cloud computing environments.
Hagemann and Katsarou focus their review on anomaly detection techniques in
cloud environments. Cândido et al. identify relevant research with regards to
software monitoring in general and introduce anomaly detection as one of the ap-
plication areas for log analysis. The most recent review by Jayaweera et al. [100]
identified only 21 relevant papers published between 2017 and 2023, despite em-
ploying an extensive search string (see Table1).

These reviews present an overview of anomaly detection techniques and their
areas of application, but they offer little to no attention to the context in which these
techniques were applied. Furthermore, none of the identified literature reviews
specifically focus on the types of data used and how these data are mapped to the
reviewed anomaly detection techniques, which is the primary goal of our review.

2.3 Our contribution
We identify the need for a review of publications that report case studies concern-
ing data and techniques for anomaly detection in cloud-based software systems.

1We used the following search string to identify potentially relevant literature reviews on anomaly
detection in cloud-based systems. TITLE-ABS-KEY ("anomaly detection" OR "monitoring") AND
TITLE-ABS-KEY ("cloud" OR "microservices" OR "software system*") AND TITLE-ABS-KEY ("sys-
tematic" AND ("mapping" OR "review" OR "map")) . The approach for the construction of the search
string and identifying relevant reviews is described in Appendix 1



2 Background and Related Work 133

Ta
bl

e
1:

O
ve

rv
ie

w
of

re
la

te
d

lit
er

at
ur

e
re

vi
ew

s

Pa
pe

r
A

im
C

on
te

xt
Se

ar
ch

pe
ri

od
Se

ar
ch

st
ri

ng
s

C
os

ta
et

al
.[

32
]

Ta
xo

no
m

y
de

si
gn

E
dg

e/
fo

g
co

m
pu

tin
g

20
12

-2
02

2
(F

og
O

R
E

dg
e)

A
N

D
(M

on
ito

r*
O

R
O

bs
er

va
bi

lit
y)

H
ag

em
an

n
an

d
K

at
sa

ro
u

[7
5]

C
om

pr
eh

en
si

ve
ov

er
vi

ew
of

an
om

al
y

de
te

ct
io

n
te

ch
ni

qu
es

an
d

ar
ea

s
of

ap
pl

ic
at

io
n

in
cl

ou
d

co
m

pu
tin

g
in

fr
as

tr
uc

tu
re

s

A
no

m
al

y
de

te
ct

io
n

fo
rc

lo
ud

co
m

pu
tin

g
en

vi
ro

nm
en

t
20

10
–2

02
0

("
C

lo
ud

C
om

pu
tin

g"
O

R
"C

lo
ud

M
on

ito
ri

ng
")

A
N

D
"A

no
m

al
y

D
et

ec
tio

n"

O
du

n-
A

yo
et

al
.[

16
1]

A
vi

su
al

m
ap

of
pu

bl
ic

at
io

ns
in

cl
ou

d
m

on
ito

ri
ng

an
d

m
an

ag
em

en
t

co
ns

id
er

in
g

th
e

to
pi

cs
,c

on
tr

ib
ut

io
ns

,
an

d
re

se
ar

ch
ty

pe

C
lo

ud
m

an
ag

em
en

t
an

d
m

on
ito

ri
ng

20
04

–2
02

0

(T
IT

L
E

(“
C

L
O

U
D

m
an

ag
em

en
t”

)O
R

T
IT

L
E

(s
er

vi
ce

le
ve

la
gr

ee
m

en
t“

)O
R

T
IT

L
E

(“
SL

A
”)

A
N

D
(T

IT
L

E
(a

da
pt

iv
e)

O
R

T
IT

L
E

(m
on

ito
ri

ng
)O

R
T

IT
L

E
(a

ut
on

om
ic

)
A

N
D

K
E

Y
(C

L
O

U
D

)O
R

K
E

Y
(S

L
A

)

G
ill

an
d

H
ev

ar
y

[6
6]

Id
en

tif
y

an
d

sy
nt

he
si

ze
th

e
ch

al
le

ng
es

of
vi

rt
ua

lC
PU

ut
ili

za
tio

n
m

on
ito

ri
ng

da
ta

C
lo

ud
co

m
pu

tin
g

en
vi

ro
nm

en
t

20
08

–2
01

6

((
“v

ir
tu

al
pr

oc
es

so
r”

)O
R

(“
vi

rt
ua

lC
PU

”)
)

A
N

D
((

“m
on

ito
ri

ng
to

ol
*”

)O
R

(“
m

on
ito

ri
ng

te
ch

ni
qu

e*
”)

)a
nd

((
“c

lo
ud

co
m

pu
tin

g*
”)

);

C
ân

di
do

et
al

.[
36

]
Id

en
tif

y
re

le
va

nt
re

se
ar

ch
,c

at
eg

or
iz

e
an

d
su

m
m

ar
iz

e
ke

y
re

se
ar

ch
re

su
lts

in
lo

g-
ba

se
d

so
ft

w
ar

e
m

on
ito

ri
ng

D
ev

O
ps

,m
od

er
n

so
ft

w
ar

e
an

d
op

er
at

io
ns

en
vi

ro
nm

en
ts

19
92

–2
01

9

lo
g

A
N

D
(t

ra
ce

O
R

ev
en

tO
R

so
ft

w
ar

e
O

R
sy

st
em

O
R

co
de

O
R

de
te

ct
O

R
m

in
in

g
O

R
an

al
ys

is
O

R
m

on
ito

ri
ng

O
R

w
eb

O
R

te
ch

ni
qu

e
O

R
de

ve
lo

p
O

R
pa

tte
rn

O
R

pr
ac

tic
e)

W
an

g
et

al
.[

22
3]

(1
)c

la
ss

if
y

ex
is

tin
g

re
se

ar
ch

ba
se

d
on

ap
pl

ic
at

io
n

fie
ld

s
an

d
te

ch
no

lo
gy

(2
)d

es
cr

ib
e

th
e

cu
rr

en
ts

ta
te

of
re

se
ar

ch
in

te
rm

s
of

lo
ad

ba
la

nc
in

g,
fa

ul
td

et
ec

tio
n

an
d

au
to

-s
ca

lin
g

M
ic

ro
se

rv
ic

e
ar

ch
ite

ct
ur

e
sy

st
em

s
20

09
–2

02
1

N
o

se
ar

ch
st

ri
ng

s
ar

e
re

po
rt

ed
;

So
m

e
of

th
e

us
ed

ke
yw

or
ds

:
Fa

ul
tm

on
ito

r;
D

is
tr

ib
ut

ed
m

on
ito

r;
Fa

ul
td

ia
gn

os
is

;F
au

lt
lo

ca
liz

at
io

n;
C

lo
ud

co
m

pu
tin

g;
M

ic
ro

se
rv

ic
e

m
on

ito
r;

Ja
ya

w
ee

ra
et

al
.[

10
0]

Id
en

tif
y

m
ac

hi
ne

le
ar

ni
ng

ap
pr

oa
ch

es
fo

r
an

om
al

y
de

te
ct

io
n

us
in

g
ne

tw
or

k
da

ta
C

lo
ud

en
vi

ro
nm

en
t

20
17

–2
02

3

(“
an

om
al

y”
O

R
“

ir
re

gu
la

ri
ty

”
O

R
“a

bn
or

m
al

ity
”

O
R

“d
ev

ia
tio

n”
O

R
“m

al
fo

rm
at

io
n”

)
A

N
D

(“
de

te
ct

”
O

R
“

m
on

ito
r”

O
R

“r
ec

og
ni

tio
n”

O
R

“u
nc

ov
er

in
g”

)
A

N
D

(“
cl

ou
d”

)



134 DATA FOR ANOMALY DETECTION: A MAPPING STUDY

Ta
bl

e
2:

O
ve

rv
ie

w
of

re
la

te
d

lit
er

at
ur

e
re

vi
ew

s

Pa
pe

r
D

at
ab

as
es

Se
le

ct
io

n
cr

ite
ri

a
N

o.
of

in
cl

ud
ed

pa
pe

rs
M

ai
n

re
su

lts

C
os

ta
et

al
.[

32
]

-

W
or

ks
th

at
pr

es
en

ts
ol

ut
io

ns
,

ar
ch

ite
ct

ur
al

m
od

el
s,

te
ch

ni
qu

es
or

m
et

ho
ds

ap
pl

ie
d

to
m

on
ito

ri
ng

in
fo

g
co

m
pu

tin
g

-
Ta

xo
no

m
y

of
a

fo
g

m
on

ito
ri

ng
so

lu
tio

n

H
ag

em
an

n
an

d
K

at
sa

ro
u

[7
5]

Sp
ri

ng
er

L
in

k,
W

eb
O

fS
ci

en
ce

(W
oB

),
op

en
-a

cc
es

s
ar

ch
iv

e
A

rX
iv

In
cl

ud
e

w
or

ks
th

at
be

lo
ng

to
a

re
le

va
nt

fie
ld

su
ch

as
co

m
pu

te
rs

ci
en

ce
or

en
gi

ne
er

in
g;

A
no

m
al

y
de

te
ct

io
n

sh
ou

ld
be

fo
cu

s
of

th
e

w
or

k;
21

6

T
hr

ee
m

ai
n

cl
us

te
rs

of
an

om
al

y
de

te
ct

io
n

m
et

ho
ds

(m
ac

hi
ne

le
ar

ni
ng

,d
ee

p
le

ar
ni

ng
,a

nd
st

at
is

tic
al

m
et

ho
ds

);
T

hr
ee

m
ai

n
ar

ea
s

of
ap

pl
ic

at
io

n
(i

nt
ru

si
on

de
te

ct
io

n,
pe

rf
or

m
an

ce
m

on
ito

ri
ng

,f
ai

lu
re

de
te

ct
io

n)

O
du

n-
A

yo
et

al
.[

16
1]

IE
E

E
X

pl
or

e,
Sp

ri
ng

er
,

Sc
ie

nc
e

D
ir

ec
t,

A
C

M
,

Sc
op

us

T
he

ab
st

ra
ct

ex
pl

ic
itl

y
m

en
tio

ns
m

an
ag

em
en

t
an

d
m

on
ito

ri
ng

;
A

bs
tr

ac
ts

th
at

re
la

te
s

to
SL

A
an

d
au

to
no

m
ic

;

10
5

–
to

pi
c

an
d

co
nt

ri
bu

tio
n

ca
te

go
ry

;
13

6
–

to
pi

c
an

d
re

se
ar

ch
ty

pe
ca

te
go

ry

5
to

pi
cs

(S
L

A
m

on
ito

ri
ng

,S
ec

ur
ity

,A
ut

on
om

ou
s

m
an

ag
em

en
t,

Se
lf

-a
da

pt
iv

e
SL

A
,A

rc
hi

te
ct

ur
es

)m
ap

pe
d

ac
ro

ss
co

nt
ri

bu
tio

ns
of

pr
im

ar
y

st
ud

ie
s

(m
et

ri
c,

to
ol

,m
od

el
,m

et
ho

d,
pr

oc
es

s)
an

d
re

se
ar

ch
ty

pe
s(

ev
al

ua
tio

n,
va

lid
at

io
n,

so
lu

tio
n,

ph
ilo

so
ph

ic
al

,
ex

pe
ri

en
ce

,o
pi

ni
on

)

G
ill

an
d

H
ev

ar
y

[6
6]

W
eb

of
Sc

ie
nc

e,
IE

E
E

,G
oo

gl
e

Sc
ho

la
r,

G
ar

tn
er

,S
co

pu
s

1)
Ti

tle
==

se
ar

ch
ke

yw
or

ds
2)

A
bs

tr
ac

t=
=

C
PU

or
V

ir
tu

al
C

PU
or

V
C

PU
3)

Te
xt

C
O

N
TA

IN
S

V
ir

tu
al

C
PU

O
R

M
on

ito
ri

ng
To

ol
or

C
lo

ud
C

om
pu

tin
g

24
Fi

ve
m

aj
or

ch
al

le
ng

es
of

cl
ou

d
m

on
ito

ri
ng

da
ta

id
en

tifi
ed

:
m

on
ito

ri
ng

te
ch

no
lo

gy
,v

ir
tu

al
iz

at
io

n
te

ch
no

lo
gy

,e
ne

rg
y,

av
ai

la
bi

lit
y

an
d

pe
rf

or
m

an
ce

.

C
ân

di
do

et
al

.[
36

]

A
C

M
D

ig
ita

lL
ib

ra
ry

,
IE

E
E

X
pl

or
e,

Sp
ri

ng
er

L
in

k,
Sc

op
us

an
d

G
oo

gl
e

Sc
ho

la
r

C
1:

It
is

an
E

ng
lis

h
m

an
us

cr
ip

t;
C

2:
It

is
a

pr
im

ar
y

st
ud

y;
C

3:
Pe

er
-r

ev
ie

w
ed

pa
pe

r;
C

4:
T

he
pa

pe
ru

se
s

th
e

te
rm

“l
og

”
in

a
so

ft
w

ar
e

en
gi

ne
er

in
g

co
nt

ex
t;

10
8

Pu
bl

ic
at

io
n

tr
en

ds
in

re
se

ar
ch

on
lo

g-
ba

se
d

m
on

ito
ri

ng
ov

er
th

e
ye

ar
s;

ov
er

vi
ew

of
re

se
ar

ch
co

pe
s

in
th

e
lif

e-
cy

cl
e

of
lo

g
da

ta
(l

og
gi

ng
,l

og
in

fr
as

tr
uc

tu
re

an
d

lo
g

an
al

ys
is

)

W
an

g
et

al
.[

22
3]

IE
E

E
X

pl
or

e,
A

C
M

D
ig

ita
lL

ib
ra

ry
,

Sp
ri

ng
er

-L
in

k,
W

eb
of

Sc
ie

nc
e,

G
oo

gl
e

Sc
ho

la
r

R
el

at
ed

pa
pe

rs
of

SO
A

,d
is

tr
ib

ut
io

n
an

d
cl

ou
d

co
m

pu
tin

g;
R

el
at

ed
pa

pe
rs

of
op

er
at

io
n

an
d

m
ai

nt
en

an
ce

go
ve

rn
an

ce
;

14
4

in
ab

st
ra

ct
13

9
in

in
tr

o

M
ai

n
re

se
ar

ch
di

re
ct

io
ns

fo
rr

es
ea

rc
h

in
th

e
op

er
at

io
ns

an
d

m
ai

nt
en

an
ce

go
ve

rn
an

ce
of

m
ic

ro
se

rv
ic

es
ar

ch
ite

ct
ur

e
sy

st
em

s
ar

e:
1)

lo
ad

ba
la

nc
in

g,
(2

)f
au

lt
de

te
ct

io
n,

an
d

(3
)a

ut
os

ca
lin

g

Ja
ya

w
ee

ra
et

al
.[

10
0]

IE
E

E
X

pl
or

e,
A

C
M

D
ig

ita
lL

ib
ra

ry
,

Sp
ri

ng
er

-L
in

k,
Sc

ie
nc

e
D

ir
ec

t,
R

es
ea

rc
h

G
at

e

Pa
pe

rs
ab

ou
tt

he
us

e
of

m
ac

hi
ne

le
ar

ni
ng

fo
ra

no
m

al
y

de
te

ct
io

n
in

th
e

cl
ou

d
en

vi
ro

nm
en

t;
21

L
is

ts
fiv

e
ca

te
go

ri
es

of
te

ch
ni

qu
es

an
d

11
da

ta
se

ts
us

ed
in

an
om

al
y

de
te

ct
io

n
re

se
ar

ch



3 Research Methodology 135

Hagemann and Katsarou [75] take a rather broader overview of all anomaly de-
tection techniques in cloud computing or monitoring. We aim to complement this
review, broadening the scope to specify the type of systems and context for which
anomaly detection techniques may be applied, but also looking deeper into the
importance of such techniques for improving the performance characteristics of
the software in operations. Moreover, our focus is on monitoring data as a source
of valuable information regarding failures, performance issues, or anything that
could degrade the reliability of large-scale software systems in cloud operations.
We also aim for an extensive overview of anomaly detection techniques applied
to different categories of monitoring data. In addition, we include an analysis of
the tools for managing data and a discussion on the techniques evaluated with data
representative of real-world scenarios.

3 Research Methodology
We conducted a systematic mapping study following the guidelines proposed by
Kitchenham and Chaters [116]. The aim of this mapping study is to present an
overview of the published literature reporting applications of anomaly detection,
particularly using real-world data collected through the monitoring of cloud-based
software systems in real industrial contexts.

3.1 Research questions

The following research questions outline our study on the use of monitoring data
for anomaly detection in cloud-based software systems:

• RQ1: What are the main categories of monitoring data in terms of structure,
types, and origin used for anomaly detection in the operational environment
of cloud-based software systems?

• RQ2: Which monitoring tools are used to collect, store, and process moni-
toring data?

• RQ3: What types of data preprocessing and anomaly detection techniques
are used in different monitoring data categories?

• RQ4: Which anomaly detection techniques have been evaluated using data
representative of real-world cloud environments?

3.2 Data sources and search strategy

The selection of databases can significantly influence the scope and depth of a
literature review. Kitchenham and Chaters [116] recommend using a comprehen-
sive set of digital libraries, including IEEE Explore, ACM Digital Library, Scopus,



136 DATA FOR ANOMALY DETECTION: A MAPPING STUDY

SpringerLink, and ScienceDirect, to ensure a wide coverage of relevant academic
literature in systematic reviews. In our context, Scopus emerges as a particularly
effective digital library due to its extensive coverage of peer-reviewed literature
across diverse publishers. In a comparative analysis conducted by Valente et
al. [215], findings suggested that the inclusion of IEEE Explore alongside Sco-
pus did not significantly improve the coverage of the literature, as IEEE Xplore
content was already included in Scopus. This redundancy indicates that Scopus
alone may be sufficient for comprehensive literature searches, especially in fields
well represented in its database, such as computer science. Furthermore, Scopus
is acknowledged for its broader interdisciplinary coverage and updates, which in-
clude journals and conference proceedings from both ACM and IEEE, making it a
singularly efficient source in the context of maximizing both the breadth and depth
of literature exploration without compromising the quality or relevance of selected
studies [51]. Given these attributes, we relied solely on Scopus for this systematic
mapping study.

Regarding the search strategy, we started with trial searches, while preliminary
search strings were derived from research questions with the following features:

• Task: Monitoring and anomaly detection. Keywords: anomaly detection,
outlier detection, cloud monitoring, runtime monitoring, or software moni-
toring.

• Data: Related to quality attributes. Keywords: performance or reliability.

• System type: Software systems deployed and operating in the cloud. Key-
words: cloud system, cloud application, cloud platform, cloud computing,
edge computing, fog computing, microservice, or software system.

• Context: Real cloud and software environments. Keywords: real-world or
case study.

The keywords within each feature category were joined using the Boolean op-
erator OR, and the four categories were joined using the Boolean operator AND.
Four different variations of preliminary search strings (PSS1-PSS4) were created
as shown in Table 3, combining keywords from different categories to examine the
search scope from very broad to narrow. To objectively validate the effectiveness
of these four search strings, we relied on a Quasi-Gold Standard [42].

3.3 Quasi-Gold Standard (QGS)

A quasi-gold standard [42] refers to a curated benchmark collection of papers
known to be highly relevant to a specific research question or topic. The “quasi”
aspect acknowledges that while the QGS is carefully selected to be as comprehen-
sive and relevant as possible, it may not be exhaustive or perfectly representative



3 Research Methodology 137

Table 3: Overview of search strings (PSS2 was initially selected, while FSS is the
final search string obtained after refining PSS2)

PSS1
TITLE-ABS-KEY(("anomaly detection" OR "outlier detection" OR "monitoring")
AND ("reliability" OR "performance")
AND ("cloud" OR "edge computing" OR "fog computing" OR "microservice*" OR "software system*"))

PSS2

TITLE-ABS-KEY(("anomaly detection" OR "outlier detection" OR "cloud monitoring" OR "runtime monitoring"
OR "software monitoring")
AND ("reliability" OR "performance")
AND ("cloud system*" OR "cloud application*" OR "cloud platform*" OR "cloud computing"
OR "microservice*" OR "software system*"))

PSS3

TITLE-ABS-KEY(("anomaly detection" OR "outlier detection" OR "cloud monitoring" OR "runtime monitoring"
OR "software monitoring")
AND ("reliability" OR "performance")
AND ("cloud system*" OR "cloud application*" OR "cloud platform*" OR "cloud computing"
OR "microservice*" OR "software system*") AND ("real world" OR "case study")

PSS4

TITLE("anomaly detection" OR "outlier detection" OR "cloud monitoring" OR "runtime monitoring"
OR "software monitoring")
AND TITLE-ABS-KEY("reliability" OR "performance")
AND TITLE("cloud system*" OR "cloud application*" OR "cloud platform*" OR "cloud computing"
OR "microservice*" OR "software system*")

FSS

TITLE-ABS-KEY("anomal*" OR "outlier*" OR "cloud monitoring" OR "runtime monitoring"
OR "software monitoring")
AND TITLE-ABS-KEY("reliability" OR "performance" OR "health" OR "failure*")
AND TITLE-ABS-KEY("cloud system*" OR "cloud application*" OR "cloud platform*"
OR "computing platform*" OR "cloud computing" OR "microservice*" OR "software system*")

of all possible relevant literature due to inherent limitations such as the subjective
selection of papers or incomplete database indexing.

To develop the Quasi-Gold Standard (QGS) for this study, we systematically
analyzed references from the systematic review by Hagemann and Katsarou [75],
which included 216 references. Furthermore, we analyzed ten papers and their 62
citations (February 2023), which were selected based on our prior knowledge and
expertise in the field. After the exclusion of duplicates and incomplete references,
a pool of 237 papers was formed. The titles and abstracts of these papers were
reviewed considering our selection criteria presented in Section 3.5. The relevance
of each article was assessed by at least two authors. We had an average inter-rater
reliability of 83.55%. The rigorous selection process resulted in forming a QGS
comprised of 36 papers, which was intended to serve as a benchmark for evaluating
the effectiveness of our search strategies.

3.4 Selection of the search string

An overview of the steps in the process of selecting the search string is illustrated in
Figure 1. The left part of Figure 1 shows the selection of the QGS, while the right
part corresponds to the evaluation of search string proposals with this established
benchmark of relevant papers. Thus, we designed and tested four preliminary
search strings (PSS1-PSS4, see Table 3) to explore the effectiveness of each search
strategy in capturing the key literature included in the QGS.



138 DATA FOR ANOMALY DETECTION: A MAPPING STUDY

PSS1

PSS2

PSS3

PSS4

Selection 
criteria

References from 
Hagemann and 
Katsarou (216)

10 papers from prior 
knowledge including 

citations (72)

QGS
 (36 papers)

Evaluate search strings

Titles 
and 
abstracts

Analysis of missed 
QGS papers based on 

the word count

22

20

3

6

Updated search string
FSS (28 from QGS)

Search result in Scopus

1127 pr imary 
studies

Overlap 
with 
QGS

Excluding 
duplicates and 

incomplete 
references

237 papers

Figure 1: Overview of the steps in the selection of the search string (PSS1-4 rep-
resent preliminary search strings while FSS is a final search string)

The results of this testing phase indicated different levels of overlap between
the retrieved documents and the QGS. Specifically, PSS1 demonstrated the highest
level of overlap, retrieving 22 relevant papers from 6021 hits. This was closely
followed by PSS2, which identified 20 relevant papers from 501 hits. In contrast,
PSS4, with 49 hits, retrieved 6 relevant papers, while PSS3, with 61 hits, identified
the fewest relevant papers, only 3. We decided to proceed with PSS2 due to its
highest balance between precision and recall. While PSS1 retrieved a slightly
higher number of relevant papers, it produced an excessively large number of hits,
making it less efficient and more cumbersome for manual review. PSS2, with its
higher precision and manageable number of hits, ensured comprehensive coverage
of relevant literature without overwhelming the review process.

To further improve the search string PSS2, we performed a detailed analysis
of the papers that were missed by the initial searches, particularly examining the
most frequent keywords. This led to minor updates in the search string PSS2 and
creating the final search string FSS (see Table 3). We identified two additional
keywords related to data and quality attributes (failure and health) that we decided
to include in the final search string FSS to achieve a more comprehensive search



3 Research Methodology 139

mechanism. This updated search string was then used to conduct a search in the
Scopus database, which resulted in identifying 1127 potentially relevant primary
studies, including 28 papers from QGS. This iterative refinement of the search
strings, guided by the insights from the QGS, helped us to maximize both the
coverage and relevance of the identified literature.

The following is the resulting search string FSS:
(TITLE-ABS-KEY("anomal*" OR "outlier*" OR "cloud monitoring" OR "runtime
monitoring" OR "software monitoring")
AND TITLE-ABS-KEY("reliability" OR "performance" OR "health" OR "failure*")
AND TITLE-ABS-KEY("cloud system*" OR "cloud application*" OR "cloud plat-
form*" OR "computing platform*" OR "cloud computing" OR "microservice*" OR
"software system*"))

The proximity operator was used to enhance the relevance of search results
while also allowing variations in terminology used by different authors to describe
specific features associated with the categories outlined in Section 3.2. This ap-
proach improves the precision of our search strategy, increasing the likelihood of
retrieving contextually related documents that are more relevant to our research
focus.

3.5 Study selection criteria and procedure

The selection of primary studies was carried out in two phases:
First phase. In this phase, we screened the titles and abstracts of the papers to

check for relevance. We divided the papers among four reviewers (1st – 4th author)
and filtered them according to our exclusion criteria, which are presented below.
Note that 51 papers were excluded from this phase as 28 belong to QGS, and
23 had been previously identified as irrelevant during the QGS selection process.
Before applying the exclusion criteria specific to our review, all search results were
initially filtered through a search string FSS that incorporated generic exclusion
criteria, including:

• Publications in non-peer-reviewed venues such as books, master’s or Ph.D.
theses, keynotes, tutorials, and editorials.

• Documents not available in English.

• Publications where research contributions belong to fields other than com-
puter science or software engineering.

Or translated to Scopus sytnax: (LIMIT-TO (DOCTYPE , "ar") OR LIMIT-
TO(DOCTYPE , "cp" )) AND (LIMIT-TO(LANGUAGE , "English")) AND (LIMIT-
TO( SUBJAREA , "COMP") OR LIMIT-TO(SUBJAREA , "ENGI"))

Thus, the exclusion criteria were applied to 1076 primary studies after generic
exclusion. The exclusion criteria are as follows:



140 DATA FOR ANOMALY DETECTION: A MAPPING STUDY

• Duplicates. The paper is a duplicate. In this first phase, we did not treat the
subsequent publication of a conference paper as a journal article as a dupli-
cate. However, this aspect was addressed later during the full-text review of
the articles. Excluding duplicates is important to avoid double-counting of
evidence [16].

• Task. The main focus of the paper is not on monitoring sub-tasks, primarily
on anomaly detection or similar.

• Quality attribute. The anomaly detection is not focused on the perfor-
mance or reliability aspects of the cloud-based software system.

• System. The research focus is not on a cloud-based software system (at
the application, platform, or infrastructure level). Papers focusing only on
data centers or public clouds in general without clear reference to a software
system under study were disregarded.

• Data. The study does not utilize monitoring data derived from real-world
environments. Monitoring data refers to metrics, logs, traces, or other data
types actively collected through monitoring or passively gathered, such as
archived data.

To ensure a rigorous and efficient review process, we implemented a stream-
lined single review approach, as justified by the very high inter-rater reliability
discussed in Section 3.3. In this process, each paper was labeled as relevant, un-
clear, or irrelevant. Following the initial phase of screening titles and abstracts, 111
papers were identified as relevant, 104 as unclear, and 861 as irrelevant. Based on
a cost-benefit analysis, we decided to focus solely on the 111 relevant papers for
further selection and data extraction.

Second Phase. The final selection of papers was based on the full-text review
of papers identified as relevant during Phase 1 (111) applying the same exclusion
criteria. To streamline the review process, this full-text assessment was conducted
concurrently with data extraction. The final dataset comprises 104 papers, which
includes 24 papers from the Quasi-Gold Standard (after removing 4 duplicates
from the original 28 papers).

3.6 Data extraction

We used a random sample of five papers from selected primary studies to design
the draft of the data extraction form. The first author proposed an initial version
of the data extraction form based on the four research questions, utilizing a shared
spreadsheet. Then, all authors reviewed and piloted this initial version during
data extraction from the five sample papers. Throughout this process, the form
was incrementally developed and improved through several consecutive meetings.
The spreadsheet integrates a classification scheme, where the first column lists all



3 Research Methodology 141

relevant papers, and subsequent columns are dedicated to research questions and
corresponding categories 2.

Specifically, the first research question (RQ1) focuses on extracting types of
monitoring data and relevant properties in the context of anomaly detection for
cloud-based software systems. Our primary emphasis is on monitoring data uti-
lized for the evaluation of proposed anomaly detection techniques, as these data
typically represent real-world usage scenarios. For RQ1, we capture several key
data properties: the entity (e.g., infrastructure, cloud application), quality attributes
(e.g., performance), base measures (e.g., CPU time, response time), and the data’s
source (e.g., metrics, logs, traces). Additionally, we classify the data structure as
either structured or unstructured, noting structured data’s organized nature, often
stored in databases, versus unstructured data’s more complex, formatless nature.
We also examine the origin of the monitoring data and labels, distinguishing be-
tween primary data actively collected for the study and secondary data, which
includes previously collected data sets used for evaluation.

Subsequent research questions expand on this extraction framework. RQ2
specifically targets the tools used in monitoring operational data critical to anomaly
detection in cloud-based systems. RQ3 expands further into the technical as-
pects of anomaly detection by focusing on the data processing techniques and
the specific anomaly detection algorithms employed. This question explores the
entire data pipeline from initial data collection to the final detection of anomalies.
We extract detailed information about data preprocessing steps, such as clean-
ing, normalization, and augmentation, which are critical to ensuring data quality
and reliability before applying detection techniques. In addition, we catalog the
anomaly detection techniques associating them with various data categories. With
RQ4, we assess the representativeness of real-world scenarios in monitoring data
and anomaly labels, noting whether data or labels are more representative when
sourced from operational environments or less so when derived from simulated
conditions or public archived datasets. Furthermore, we use this information to
argue which of the anomaly detection techniques are more or less applicable to
real-world settings.

3.7 Data analysis
To further streamline the data analysis process based on the extracted data, we
performed a standardization across all the papers included in the review process.
This standardization involved identifying general categories for the data in each
column, tagging the data accordingly, and augmenting the data extraction form to
include additional columns for these categories. Each of these new columns rep-
resents a standardized category to which a paper can be mapped. We marked the
mapping between a paper and a category with an ’X’. This systematic structuring
allows for the straightforward aggregation and quantification of data belonging to

2Data extraction form

https://docs.google.com/spreadsheets/d/1nPlfRMINqOUizAp4mnC311XVMWjRgx3f73KmUg37otg/edit?gid=1942921684


142 DATA FOR ANOMALY DETECTION: A MAPPING STUDY

each category. Note that not all of these categorizations are mutually exclusive,
which means that a paper may report several types of results.

3.8 Threats to validity
This section discusses potential threats to the validity of our systematic mapping
study.

Internal validity. One potential threat to internal validity is the bias intro-
duced during the selection of primary studies. While we employed a rigorous se-
lection process involving multiple reviewers and resolving disagreements through
discussions, the analysis of extracted data, as explained in Section 3.7, was mainly
reviewed by one author. This could introduce personal biases and inconsistencies.
To mitigate this, we attempted to align the data extraction process with the specific
backgrounds of the authors, leveraging their expertise to ensure more accurate and
relevant categorizations. However, this approach may still lead to inconsistencies
due to subjective interpretations. In addition, out of the 1127 search hits, we ex-
cluded 104 papers because their relevance was unclear (after reading the titles and
abstracts of the papers), which might have led to missing some important stud-
ies in our review. Our decision was made to ensure the review process remained
manageable as we had identified a large number of papers (i.e., 111 papers) that
we considered relevant according to our selection criteria. Given the large sample
size, we consider that the threat of missing relevant papers among the 104 excluded
papers does not risk the conclusions of this mapping study.

Construct validity. Given the vast scope of cloud-based systems and the rapid
evolution of technologies and methodologies, there is a risk that some relevant
studies or important aspects of anomaly detection may not have been fully captured
within the final search string. Additionally, variations in the quality of reporting
in primary studies may have affected how well we identified and categorized the
constructs. Inconsistent or incomplete reporting could lead to misinterpretation of
the data or failure to capture all relevant aspects of the measured construct. To
address this, we carefully reviewed and cross-validated the information from the
primary studies during data analysis whenever we encountered doubts.

External validity. The generalizability of our findings may be limited by the
specific focus on cloud-based systems. Although our study encompasses a wide
range of cloud environments and operational contexts, the results may not be di-
rectly applicable to other domains, such as hybrid cloud environments. Neverthe-
less, the principles and catalogs developed in this study provide a foundation that
can be adapted and extended to other areas.

4 Results and Analysis
In this section, we present the results of our systematic mapping study on anomaly
detection in cloud computing systems, ensuring a thorough overview of the current



4 Results and Analysis 143

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Year

2

4

6

8

10

12

14

Nu
m

be
r o

f p
ap

er
s

1
2

5

3
4

9

4

10
9

12

9 9

12

15

Figure 2: Distribution of publications over the years

state of research and highlighting significant areas of interest and ongoing devel-
opment. We begin by analyzing publication years to identify research trends and
review the venues of these studies, including conferences and journals. Next, we
explore the study context, covering various system types and architectures. Finally,
we address the results related to each of our research questions, offering in-depth
analysis regarding the main findings from 104 papers included in our review.

4.1 Publication years

Figure 2 presents a line graph illustrating the distribution of primary studies on
anomaly detection in cloud computing systems published over a span of years
from 2010 to 2023. The data reveal a clear upward trend in the number of studies
published, reflecting growing interest and increasing research activity in this field.
Interestingly, the earliest publication in the reviewed set of papers dates back to
2010. This may indicate that, while the broader field of anomaly detection has
existed for longer, its application, specifically within cloud computing systems,
began to gain attention around this time. This specific starting point marks a pe-
riod when cloud computing was becoming more prevalent, requiring specialized
research in anomaly detection to address unique challenges within cloud environ-
ments. Over the years, there has been a significant increase in publications, with
notable peaks in 2019 and 2023, where the number of published studies reached 12
and 15, respectively. The increase in publications highlights a growing interest in
anomaly detection in cloud environments, indicating an expanding and important
research field.



144 DATA FOR ANOMALY DETECTION: A MAPPING STUDY

4.2 Publication venues
Additionally, the distribution of publications across leading conferences and jour-
nals further supports this upward trend, as shown in Table 4. Among the 104 pa-
pers reviewed, 37 were published in journals and 67 in conferences. Table 4 lists
venues with at least two publications, while there is a total of 79 unique venues,
which shows the diversity and broad interest in this research area. The IEEE In-
ternational Conference on Cloud Computing (CLOUD) stands out with eight pub-
lications, highlighting its significance as a leading platform for research dissemi-
nation. Other notable conferences with multiple publications are closely related to
cloud computing and software engineering research areas. With regard to journals,
four stand out, each with three publications. The spread of studies across numer-
ous prestigious venues indicates a well-established and rapidly growing research
community focused on tackling anomalies in cloud computing environments.

Table 4: An overview of the leading publication venues based on included papers

Venue type Venue name Count

Conference

IEEE International Conference on Cloud Computing (CLOUD) 8
IEEE International Symposium on Software Reliability Engineering (ISSRE) 3
IEEE International Conference on Cloud Computing Technology and Science (CloudCom) 2
USENIX Annual Technical Conference (USENIX ATC) 2
International Conference on Software Engineering (ICSE) 2
IFIP/IEEE International Symposium on Integrated Network Management (IM) 2
International Conference on Cloud Computing and Services Science 2
The ACM Web Conference 2

Journal

Journal of Systems and Software 3
IEEE Transactions on Network and Service Management 3
Future Generation Computer Systems 3
Concurrency and Computation: Practice and Experience 3
Journal of Cloud Computing 2
Software: Practice and Experience 2

4.3 System context
All included primary studies are framed within the overarching context of cloud
computing, as shown in Table 5. However, within this broad context, some studies
focused particularly on specific layers or architectures, offering deeper insights and
solutions for a narrower scope. For example, multiple papers specifically address
the cloud application layer and enhance application performance, scalability, and
reliability in order to adapt to varying workloads and user demands. On the other
hand, a larger number of studies concentrate on the cloud infrastructure layer,
which serves as the backbone for cloud services and applications. These papers
examine the core elements that ensure the robust and efficient operation of cloud
infrastructure to support increasingly complex and demanding cloud applications.

Moreover, according to Table 5, there are various types and architectures within
the cloud computing ecosystem. However, the included papers are mainly focused



4 Results and Analysis 145

on microservice architectures. This attention to microservices may reflect a shift
towards modular and flexible service design, which enables the development of
more agile and resilient cloud applications.

Table 5: Overview of different system contexts (Note that some papers reported
only a general context, while others report instantiating studies in specific single
or multiple contexts)

General Layer Type/Architecture

Cloud
Computing

Systems

Cloud
Application

Cloud
Infrastructure

Virtualized
systems

Large-scale
complex
systems

Microservice Distributed

Count of papers 25 38 6 6 24 4

4.4 RQ1: Main categories of monitoring data

Observability in cloud-based software systems is essential to ensure the reliabil-
ity, performance, and overall health of applications deployed in distributed and
dynamic cloud environments. According to Kosińska et al. [118], observability is
defined as the ability to accurately capture, analyze, and present information on
the performance of a cloud system. A key component of observability is mon-
itoring data, which serves as the foundation for understanding the behavior of
complex, multi-layered cloud systems, including infrastructure resources and the
applications they support [205]. Monitoring data provides direct insights into sys-
tem operations, enabling proactive monitoring and timely intervention in case of
severe disruptions. Thus, by systematically collecting, organizing, and analyzing
monitoring data, organizations can achieve a higher level of operational resilience
in their cloud applications. We present a detailed overview of monitoring data used
for anomaly detection, including the structure, types, and origins as identified in
the reviewed papers.

Structure

The structure of monitoring data refers to the way in which input data is organized
and formatted. It impacts how efficiently monitoring data can be processed and
utilized for observability purposes [118].

Structured data is typically well-defined and easily searchable, often organized
in tabular formats or databases. Moreover, JSON (JavaScript Object Notation) is
frequently used for structured data (mainly traces) due to its clear and organized
key-value pair format. This type of data allows for straightforward searching,
filtering, and aggregation, facilitating quick and efficient analysis. We found that
approximately 92% (96/104) of papers reported that data was structured. This



146 DATA FOR ANOMALY DETECTION: A MAPPING STUDY

indicates that most anomaly detection efforts rely on this data, likely because of
its ease of use and the straightforward nature of the analysis it enables.

In contrast, 12% (13/104) of papers used unstructured data, which requires
more advanced techniques for effective processing and use. This smaller propor-
tion reflects the additional complexity and effort required to analyze unstructured
data. Despite being less prevalent, unstructured data remains crucial for compre-
hensive observability, as it can provide deeper insights into system behavior and
interactions that structured data alone cannot capture.

Types

A comprehensive catalog of monitoring data is crucial for evaluating various as-
pects of performance and reliability in cloud-based systems. The classification
of monitoring data into metrics, logs, and traces is presented in Tables 6 and 7,
together with references to the papers that utilized these data types for anomaly
detection. These types of monitoring data encompass various base measures col-
lected to evaluate different aspects of system performance and reliability. These
include:

• Metrics: Quantitative measures that provide insights into system perfor-
mance are reported in 76% (79/104) of papers. They include: 1) system
data like CPU statistics, disk usage, and memory usage; 2) infrastructure
data such as Kubernetes and container metrics; 3) application/service data
like response times and service faults; 4) network data encompassing web
traffic flows and latency across network layers; 5) database data covering
read/write throughput and MySQL metrics. The prevalence of system, ap-
plication, and network data metrics can be attributed to their critical roles in
ensuring system health. System data metrics maintain infrastructure stabil-
ity and capacity by monitoring hardware and operating systems. Infrastruc-
ture metrics play a key role in managing the underlying platforms that run
applications, supporting container orchestration, scaling, and cloud resource
optimization. Further, application data metrics ensure high-quality user ex-
periences by tracking service performance, and network data metrics ensure
seamless communication and data flow between system components, which
is vital for the efficiency and reliability of distributed cloud environments.

• Logs: Records of events that occur within the system, which can be used to
trace the sequence of actions leading up to an issue. System logs and appli-
cation/service logs, identified in 18% (19/104) of papers, provide a compre-
hensive view of operations and are vital for diagnosing issues.

• Traces: Detailed records of the flow of requests through the system, useful
for identifying bottlenecks and understanding system interactions. Traces
reported in 16% (17/104) of papers, capture the execution paths of requests



4 Results and Analysis 147

Table 6: A catalog of monitoring data for evaluating various aspects of perfor-
mance and reliability in cloud-based systems

Types of monitoring data in cloud-based software systems Percentage

Metrics

System data
CPU Statistics

Disk Usage
Memory usage

76%

Infrastructure data
Kubernetes metrics
Container metrics
Resource metrics

Application/Service data

Response time:
Service faults (e.g., number of
HTTP errors or failed requests)

Processing time
Application latency

Network data

Traffic metrics
RPC execution times
Web traffic metrics

API Response Time and Throughput
Communication latency

Database data DB Read/Write Throughput
MySQL Metrics

Logs System data System logs 18%
Application/Service data Executions logs and log events

Traces Structured data capturing the execution paths of
requests through the system’s components 16%

through the system’s components, offering a structured view of how differ-
ent parts of the system interact.

Interestingly, 5% of the papers did not specify the types of monitoring data
used, suggesting the need for a more comprehensive and standardized approach to
documenting monitoring data in research.

Origin

The origin of monitoring data refers to the source and method of data collec-
tion. Data can be actively collected from the operational environment through
instrumentation and monitoring tools, or passively obtained from publicly avail-
able datasets. Understanding the origin of monitoring data is crucial for assess-
ing its accuracy and reliability. Active data collection provides real-time insights,
whereas passive data may offer historical context.



148 DATA FOR ANOMALY DETECTION: A MAPPING STUDY

Table 7: Types of monitoring data mapped to corresponding papers

Types of monitoring data Papers

Metrics

System data

[206], [72], [231], [212], [149], [154], [121], [78], [68], [157],
[35], [245], [147], [43], [197], [69], [81], [76], [41], [234],
[216], [183], [126], [169], [198], [167], [24], [111], [179], [86],
[227], [94], [113], [248], [40], [25], [232], [228], [194], [71],
[88], [180], [73], [176], [246], [99], [188], [38], [85], [186],
[201], [2], [236], [185], [47], [5], [187], [95], [221], [247],
[224], [165], [150], [13], [70], [84], [52]

Infrastructure data [212], [149], [24], [179], [233], [99], [5]

Application/Service data

[149], [137], [121], [157], [147], [160], [81], [76], [240], [41], [234],
[216], [183], [126], [169], [235], [129], [142], [225], [9], [180], [107],
[73], [140], [188], [226], [151], [196], [166], [101], [23], [150], [13],
[34], [152], [117], [98]

Network data

[206], [72], [149], [213], [68], [74], [35], [245], [147], [43], [197],
[81], [183], [126], [169], [198], [167], [24], [111], [227], [40],
[25], [232], [228], [194], [71], [57], [58], [222], [73], [176], [186],
[201], [47], [187], [221], [224], [165], [70], [52]

Database data [188], [95]

Logs [127], [137], [78], [102], [76], [126], [169], [179], [172],
[113], [106], [99], [166], [201], [2], [5], [101], [52], [152]

Traces [213], [160], [240], [129], [24], [233], [250], [9], [180],
[140], [226], [151], [196], [23], [150], [34], [117]

Table 8 presents a catalog of the origin of data monitoring in cloud-based sys-
tems, categorizing them into primary and secondary data sources. Primary data,
corresponding to active collection methods, includes predominantly data from pro-
duction systems, research and experimental systems, and benchmarking systems.
Production systems are a significant source, providing real-world data from com-
panies like IBM [206] and Google [231]. These datasets are essential for tuning
performance and diagnosing failures in actual operational settings. Research and
experimental systems, including lab environments and testbeds, offer controlled
conditions for experimenting and validating new techniques, as seen in studies
by Jia et al. [101] and Liu et al. [140]. Benchmarking systems, such as Acme-
Air [102] and Hipster-shop [197], provide standardized environments to assess
the performance and reliability of various cloud-based solutions. Furthermore,
large-scale distributed systems [206], IP Multimedia subsystems [149], web and
database servers/applications [121], and web and e-commerce systems [129] fur-
ther enrich the variety of primary data sources by offering insights from specific
and often complex operational contexts. Notably, 85% of the reviewed papers uti-
lized primary data, reflecting the importance of active data collection for real-time
monitoring and reliability assessment.

Secondary data sources, corresponding to passive collection methods, encom-
pass a wide range of preexisting datasets. Cloud service metrics from providers
like IBM [102], Windows Azure [179], and Alibaba [180] are vital for develop-
ing and testing new algorithms without needing extensive data collection infras-
tructure. Benchmark datasets, including those from Yahoo, RUBIS, and NAB
[92, 206], offer robust, standardized data for performance evaluation and anomaly



4 Results and Analysis 149

Table 8: A catalog of monitoring data origins in cloud-based systems

Origin of monitoring data Papers

Pr
im

ar
y

da
ta

Production
systems

Public

IBM [206], [38], [166]; Google [231]; Microsoft [88], [248]
Amazon [227], [52], [201], [2]; OpenStack [106], [165], [34]
Huawei Cloud [25]; AppScale [98]; Alibaba Cloud [151], [152]
Once Cloud [99], [224]; Other or not specified [121], [78], [76],
[216], [169], [235], [94], [188]

Private

[212], [149], [245], [160], [129], [250], [176], [85], [185], [47], [187],
[101], [221], [117], [197], [81], [240], [233], [58], [73], [140], [226],
[186], [150], [70], [72], [127], [102], [234], [198], [167], [24], [86], [113],
[128], [40], [194], [71], [5], [132], [13], [84]

Research and
experimental systems

Lab environment
[212], [245], [160], [129], [106], [188], [166], [101], [183], [9],
[107], [186], [154], [102], [234], [111], [86], [246], [23], [84]

Testbeds
[140], [70], [72], [127], [68], [157], [35], [147], [69], [198],
[167], [113], [128], [40], [232], [194], [71], [5], [132], [13]

Benchmarking systems
(*not open-source)

Acme-Air [102]; Hipster-shop [197], [81], [129]
Trainticket [24], [9], [226], [140], [240]; E-Shopper [213]
SockShop [231], [73], [226]; TPC-W [41], [183]
PiggyMetrics [226]; Social Network [150]
Bench4Q [227], [225], [224], [150]
Trade6* [38]; RuBBoS [107], [38]; RUBiS [70]
Other or not specified [78], [176], [166], [57], [58], [111], [222]

Large-scale/distributed (backend) system [206], [76], [250], [88], [151], [85], [95], [52], [117], [23]
IP Multimedia subsystem Clearwater [149], [185], [47], [187]

Web and database servers/applications [121], [201], [2], [221], [165], [152], [98], [186], [246], [34]

Web and e-commerce systems [129], [142], [188], [197], [81], [41], [233], [227], [225], [58],
[73], [224], [213], [222], [99]

Se
co

nd
ar

y
da

ta

Cloud service metrics,
logs, traces

IBM
Windows Azure

Alibaba
[179], [180], [188], [247], [236], [102]

Benchmark datasets
Yahoo
RUBIS
NAB

[206], [92], [25], [93], [2], [173], [74], [43], [62], [248], [196], [40]

Datasets from AIOps Challenge Events [129], [25], [173], [240], [126], [62]
Web Logs [137]

Synthetic dataset [179], [233]

Public datasets

HDFS
BGL

Thunderbird
SMD

[172], [228], [234], [24], [128]

detection, ensuring consistency in research outcomes. Data from AIOps Challenge
Events offers another source of secondary data, often used to test advanced oper-
ational solutions in controlled scenarios [25, 129]. Public datasets, such as HDFS
and BGL [172], contribute to the pool of resources available for researchers, en-
abling extensive testing and validation of new methods across diverse scenarios.
The reliance on secondary data, used in 27% of the papers, may stem from re-
searchers lacking access to real cloud environments, necessitating the use of pub-
licly available datasets to validate their methods. This use of secondary data en-
sures that research can progress even without direct access to operational systems,
enabling the development and testing of new anomaly detection techniques that
can later be applied in real-world settings. It can also facilitate benchmark com-
parisons and replicability of research.

The overlap in the usage of primary data (85%) and secondary data (27%) in
research indicates that some papers leverage both types of data to enhance the ro-
bustness of their studies. This dual approach allows researchers to validate their



150 DATA FOR ANOMALY DETECTION: A MAPPING STUDY

findings in diverse datasets, increasing the reliability and generalizability of their
results. Primary data offers real-time, context-specific insights crucial for accu-
rate performance assessment and anomaly detection in cloud-based systems. This
data is invaluable as it reflects the actual operational environment, ensuring that
research findings and developed algorithms are grounded in reality. For example,
data from Microsoft production systems [88] and Huawei Cloud [25] provide cru-
cial insights for researchers to develop and test algorithms that are practical and
effective in real-world conditions. The granularity and relevance of primary data
enable researchers to address specific issues and challenges encountered in live
environments, enhancing the robustness and reliability of cloud-based solutions.

4.5 RQ2: Overview of monitoring tools

As shown in Figure 3, the frequency of monitoring tools used across various re-
search papers highlights the diverse functionality required to maintain robust ob-
servability in modern cloud computing environments. Prometheus, Sysstat/Perf,
and Jaeger emerge as frequently used tools due to their comprehensive capabilities
in metrics collection, performance analysis, and distributed tracing, respectively.
Prometheus [24, 197, 212, 231, 232, 234, 245] is particularly valued for its power-
ful metrics collection and alerting system, which enables real-time monitoring and
alerting of system performance. Sysstat/Perf [68–72, 194, 198] provides perfor-
mance analysis with detailed insights into system resource usage and application
performance. Jaeger [9,113,150,226,250], on the other hand, provides distributed
tracing, allowing a user to trace the flow of requests across microservices and iden-
tify performance bottlenecks and latency issues.

Figure 3: Overview of monitoring tools



4 Results and Analysis 151

The diversity of tools reflected in the data also indicates a trend toward special-
ized monitoring solutions tailored to specific use cases and technological stacks.
For instance, cAdvisor [24,47,197,231] and Node-exporter [231,232] are pivotal
in containerized environments, providing detailed insights into the performance
and resource usage of individual containers. Istio [197, 231, 232, 240], another
frequently used tool, offers comprehensive service mesh observability, enabling
traffic management, security, and microservice monitoring. Additionally, Zip-
kin [34,150,160,213,226] is particularly useful for distributed tracing, helping in
the collection and analysis of trace data from complex microservice architectures,
thus identifying latency issues and performance bottlenecks across services. Gan-
glia [111, 185, 186] is essential for monitoring large clusters and grids, offering
scalable distributed monitoring solutions.

Leading commercial tools including Amazon CloudWatch [2, 52, 137, 188,
201] and MS Azure MT [88] also provide scalable monitoring and logging ser-
vices, useful for maintaining the health and performance of cloud-based applica-
tions. Moreover, Grafana [47,73,212] is widely used to visualize metrics, provid-
ing a powerful platform to build dashboards and alerts. This trend highlights the
increasing complexity of IT environments and the need for specialized monitoring
tools to ensure comprehensive observability and proactive system management
across heterogeneous infrastructures.

However, the dominance of custom monitoring tools (MT) reflects the unique
and diverse requirements of modern monitoring infrastructure. Custom tools are
designed to meet specific needs that off-the-shelf solutions may not fully address,
offering flexibility and precision in data collection and processing. Examples
include custom monitoring infrastructures integrating SNMPv2c for application-
level monitoring, Ceilometer for IaaS level monitoring, and Linux OS agents for
operating system-level monitoring [149]. These specialized setups ensure compre-
hensive coverage across different layers of the IT infrastructure, capturing a wide
range of metrics and performance indicators. Other custom setups reported include
the use of Docker stats for live container data, mpstat for CPU utilization, vmstat
for memory usage, Heapster for data aggregation, and InfluxDB for time-series
data storage [183].

In research, the widespread use of custom-built monitoring tools can be at-
tributed to the unique and specific requirements of experimental setups and the
flexibility needed to accommodate evolving research questions. Custom tools of-
fer researchers the ability to tailor their monitoring infrastructure precisely to their
needs, ensuring comprehensive data collection and accurate analysis. For example,
some setups use the CloudSim simulation environment [154]. The variety of cus-
tom tools and techniques, such as those used in Performance Anomaly Detector
(PAD) [169], SHoWA testbed [147], and CloudDoc framework [151], underline
the need for tailored solutions that can adapt to specific environments and work-
loads, providing granular insights that are crucial for optimizing performance and
ensuring system reliability.



152 DATA FOR ANOMALY DETECTION: A MAPPING STUDY

4.6 RQ3: Data preprocessing and anomaly detection tech-
niques

In the analysis of data preprocessing techniques employed across the reviewed
studies, distinct techniques have been identified as particularly suited to different
types of data, whether derived from metrics, logs, or traces. These techniques are
categorized based on their application to textual data, categorical data, numeri-
cal data, general-purpose tasks, and graph-based data, as shown in Figure 4. It
should be noted that this classification is not exhaustive, as some techniques may
be applied to multiple data types. The categories are derived on the basis of the
techniques used in the reviewed studies.

Parsing
10

Tokenization
4

Semantic embedding creation
4

Graph-based
6

Sliding window
6

Normalization
12

Statistic-based
10

One-hot encoding
4

Feature selection
9

Missing value imputation
6

Dimensionality reduction
11

Data aggregation
3

Data formatting
12

Textual data
Graph data
Numerical data
Categorical data
General purpose

Figure 4: Overview of data preprocessing techniques and their categories with the
number of papers employing each technique

Textual data processing techniques

In cloud-based systems, textual data is usually derived from logs and traces. This
data often requires detailed preprocessing to extract meaningful insights and pat-
terns.

Parsing transforms unstructured raw data (e.g., text) into structured formats or
templates by breaking it down into manageable components like words or phrases.
For instance, in log analysis, parsing might involve identifying key fields such as



4 Results and Analysis 153

log messages, timestamps, event types, and error codes, which can then be used
for further processing. Multiple studies demonstrate its widespread use [76, 101,
102, 106, 117, 127, 140, 160, 172, 194].

Tokenization is a preprocessing step in NLP that involves splitting raw text
into smaller, manageable units known as tokens. These tokens typically repre-
sent words, phrases, or even individual characters, depending on the specific re-
quirements of the analysis. Given the abundant amount of data generated by logs
and traces, tokenization helps in reducing the complexity of the data, making it
more manageable and easier to process in real-time, as highlighted in several stud-
ies [127, 140, 160, 172].

Semantic embedding creation transforms textual data into dense vector rep-
resentations. These vectors, often referred to as embeddings, capture the seman-
tic meaning of the text, enabling more advanced text analysis. For example, if
two logs are semantically similar, meaning they describe similar system states
or events, their embeddings will be close in the vector space. Several studies
have shown the effectiveness of semantic embedding creation in cloud-based sys-
tems [78, 127, 140, 172].

Categorical data processing techniques

Categorical data in cloud-based systems are typically derived from structured rep-
resentations such as service types, event sequences, or status codes, primarily
found in logs and traces.

One-hot encoding is a technique used to convert categorical data into binary
vectors, where each unique category is represented by a distinct binary feature.
This technique could be applied to represent different services, events, or call
paths as binary vectors, indicating their presence or absence in a trace. It can
also be adapted to structured data in microservice environments, where the goal
is to transform categorical attributes like service types or event keys into a format
suitable for ML models [24, 117, 140, 240].

Numerical data processing techniques

Numerical data, which are abundant in metrics and traces, require specific prepro-
cessing techniques to ensure that they can be used effectively by ML models.

Normalization is a widely used technique for preparing numerical data by
scaling it to a specific range, depending on the requirements of the analysis. Nor-
malization helps reduce the potential for bias in ML models by preventing any
single feature from dominating others due to its scale. Studies in our review have
shown that normalization is a critical step in preprocessing pipelines, leading to
improved model accuracy [2, 69, 76, 88, 106, 111, 113, 121, 160, 173, 187].

Statistical techniques [86,101,106,111,113,129,151,201,216] are frequently
applied to numerical data from metrics and traces. The development of these tech-
niques often involves sophisticated mathematical modeling and a deep understand-



154 DATA FOR ANOMALY DETECTION: A MAPPING STUDY

ing of the underlying data structures. Custom statistical techniques are essential for
pushing the boundaries of conventional data analysis, providing tailored solutions
that enhance the depth and accuracy of insights derived from complex datasets.

Sliding window is specifically used in time-series analysis of metrics and
traces to create overlapping segments of data or "windows". This technique cap-
tures temporal dependencies crucial for understanding data dynamics over time,
as shown in some of the studies [41, 69, 74, 81, 173, 240].

Graph data processing techniques

In cloud-based systems, data involving network structures or relationships are usu-
ally represented as graphs and are primarily derived from logs and traces.

Graph-based techniques [24, 102, 113, 196, 232, 233] are essential for rep-
resenting data in graph form. In cloud environments, data is often highly inter-
connected, with numerous dependencies between different components, such as
microservices, network devices, or user sessions. Graph-based techniques allow
this interconnected data to be visualized and analyzed in a way that highlights
these relationships, making it easier to identify patterns, dependencies, and poten-
tial issues.

General purpose processing techniques

Broadly applicable to different types of data such as metrics, logs, and traces, these
general-purpose preprocessing techniques are valuable tools for data analysis.

Data formatting is essential for ensuring that data from different sources are
aligned to a common format. Each of these sources may have different data struc-
tures, formats, units of measurement, and levels of granularity. Without proper
formatting, comparing or combining these datasets for analysis would be chal-
lenging. This technique is frequently used in studies dealing with heterogeneous
data [24, 43, 72, 74, 81, 106, 147, 173, 185, 227, 231, 233].

Feature selection is used to identify and retain the most important and relevant
features within a dataset. In cloud environments, datasets often contain numerous
features, many of which may be redundant, irrelevant, or noisy. Feature selection
helps to streamline the dataset, ensuring that only the most informative features
are retained for analysis. The importance of this technique is well-documented in
various studies [62, 72, 111, 132, 187, 212, 231, 234, 247].

Dimensionality reduction techniques [41,68,71,72,76,167,198,212,221,224,
234] aim to transform the entire dataset into a lower-dimensional space while still
preserving its essential characteristics. This transformation is critical in scenarios
where the original data contains a large number of features.

Missing value imputation [71, 72, 95, 121, 194, 212] is particularly used for
handling incomplete datasets, where some data points may be missing. Imputation
techniques work by filling in these gaps with estimated values, ensuring that the
dataset remains as complete as possible.



4 Results and Analysis 155

Data aggregation involves the process of combining and summarizing data
from various sources into a single, unified dataset. This technique is particularly
useful when dealing with large volumes of data that originate from different com-
ponents of a system, each of which might generate data at different granularities
or with different formats [147, 187, 233].

It is interesting that 38 papers did not report any data preprocessing techniques,
and 11 papers explicitly stated that no preprocessing was needed. This variation
highlights the context-dependent nature of data preprocessing. In some cases, raw
data (e.g., numerical data) may already be in a suitable format for analysis, or the
research focus might be on methods that inherently handle raw data without the
need for extensive preprocessing. Thus, the choice of data preprocessing tech-
niques is highly influenced by the nature of the dataset and the specific require-
ments of the analysis.

Anomaly detection techniques

Regarding the second part of this research question, Figure 9 provides a compre-
hensive overview of various anomaly detection techniques and their applicability
to different types of monitoring data. This classification is essential for researchers
and practitioners aiming to select the most appropriate technique for their specific
anomaly detection tasks, ensuring that the chosen technique aligns with the data
characteristics and requirements of the task. The techniques are broadly catego-
rized into statistical, machine learning, and deep learning, each offering unique
advantages and areas of application based on the data involved.

According to Figure 9, statistical techniques, such as SPOT, VAR, and ARIMA,
are fundamental methods effective in handling time-series data like metrics and
system data. Bayesian methods, known for their probabilistic approach, are widely
applicable across various data types, including logs and network data. Custom
statistical methods demonstrate versatility by being applicable to nearly all data
types. These techniques are particularly beneficial in scenarios where the underly-
ing data distribution is either known or can be estimated, allowing for straightfor-
ward implementation and effective anomaly detection.

The next category, including machine learning techniques, enhances capabil-
ities for more complex and dynamic data patterns. Ensemble-based methods,
including decision trees and random forests, excel in handling heterogeneous data
sources such as logs, application data, and network data. These techniques ag-
gregate multiple models to improve robustness and accuracy, making them suit-
able for environments with varied data characteristics. Isolation trees are also
an ensemble-based anomaly detection technique that isolates anomalies by recur-
sively partitioning the data. This method relies on the concept that anomalies,
being few and different, are easier to isolate and thus require fewer partitions. This
technique is particularly well-suited for high-dimensional datasets and is com-



156 DATA FOR ANOMALY DETECTION: A MAPPING STUDY

Table 9: A catalog of anomaly detection techniques mapped to data types

AD techniques M
et

ri
cs

L
og

s

Tr
ac

es

Sy
st

em
da

ta

In
fr

as
tr

uc
tu

re
da

ta

A
pp

lic
at

io
n

da
ta

N
et

w
or

k
da

ta

D
at

ab
as

e
da

ta

ST
AT

IS
T

IC
A

L SPOT [166]; VAR [76] ✓ ✓ ✓

ARIMA [187] ✓ ✓ ✓

Bayesian methods [72], [43], [94], [113], [194], [71], [47] ✓ ✓ ✓ ✓

Custom statistical [212], [149], [137], [35], [147], [197], [169], [179], [142], [227],
[113], [225], [57], [58], [222], [180], [73], [99], [236], [132], [13], [52], [152], [98] ✓ ✓ ✓ ✓ ✓ ✓

M
A

C
H

IN
E

L
E

A
R

N
IN

G

Ensemble-based

Decision tree [41], [198], [111], [113], [71] ✓ ✓ ✓ ✓ ✓

Random forest [62], [113], [185], [47] ✓ ✓ ✓ ✓

Isolation trees [154] ✓ ✓

Distance-based Nearest Neighbors [47] ✓ ✓ ✓

Margin-based SVM [41], [167], [201], [47] ✓ ✓ ✓ ✓ ✓

Linear variation [41], [234], [221] ✓ ✓ ✓ ✓

Neural-network ELM [245] ✓ ✓ ✓

Clustering

Distance-based [231], [240],
[113], [232], [246], [52], [152] ✓ ✓ ✓ ✓ ✓ ✓

Centroid-based [213] ✓ ✓

Incremental algorithm [212], [68], [227] ✓ ✓ ✓ ✓

Data stream algorithm [186] ✓ ✓ ✓

Density-based Density Spatial Clustering [93], [247] ✓ ✓

(Local Outlier Factor) LOF [76] ✓ ✓ ✓ ✓

Dimensionality
reduction

PCA [74], [69], [106], [38], [2], [224], [23], [152] ✓ ✓ ✓ ✓ ✓ ✓

SVD [92] ✓

SOM [121], [78] ✓ ✓ ✓ ✓

Matrix sketching [23] ✓ ✓

Similarity-based Similarity measure algorithm [150] ✓ ✓ ✓

kTail Algorithm [151] ✓ ✓

Hierarchical Models HTM, HMM [43], [183],
[86], [176], [85], [34], [84] ✓ ✓ ✓ ✓ ✓

Pattern sketching ADSketch [25] ✓ ✓ ✓

Median-based PMAD [216] ✓ ✓ ✓

D
E

E
P

L
E

A
R

N
IN

G Feed-forward MLP [113] ✓ ✓

Sequential
LSTM, GRU, RNN [127], [173], [74], [160], [81],

[40], [88], [9], [188], [95], [117] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Transformers [128] ✓ ✓ ✓

Autoencoder variations [74], [81], [233], [94], [250], [88], [9], [140] ✓ ✓ ✓ ✓ ✓ ✓

Graph-based GNN, TCFG [81], [196], [101], [102] ✓ ✓ ✓ ✓ ✓ ✓

monly applied to metrics and system data, where they efficiently detect outliers
across various data dimensions.

Distance-based methods like nearest neighbors are effective for metrics, sys-
tem, and network data due to their ability to detect anomalies based on proximity
measures. Margin-based methods such as Support Vector Machines (SVM) are



4 Results and Analysis 157

advantageous for binary classification and can detect anomalies in high-dimensional
data, often found in system and application data, as they can effectively clas-
sify anomalies by creating hyperplanes that separate normal and abnormal in-
stances [201].

Clustering techniques are particularly useful for unsupervised anomaly de-
tection tasks. Distance-based clustering methods group similar data points and
identify outliers that do not conform to any cluster, making them ideal for traces
and system data where labeled anomalies are scarce. Centroid-based clustering,
such as k-means, is effective in identifying central points in data clusters and rec-
ognizing anomalies as deviations from these centers. Incremental algorithms and
data stream clustering methods are designed to handle continuously evolving data,
making them suitable for real-time anomaly detection in dynamic environments.

Density-based anomaly detection techniques identify anomalies by analyzing
the density of data points in a given space. The core idea is that normal data points
typically belong to dense regions, while anomalies lie in sparser regions. Tech-
niques like Density Spatial Clustering and Local Outlier Factor (LOF) are com-
monly used. These techniques are particularly effective for detecting anomalies in
complex datasets, including metrics, system data, and application data, which may
have varying shapes and densities.

Dimensionality reduction techniques like Principal Component Analysis (PCA)
and Singular Value Decomposition (SVD) reduce the complexity of high-dimensional
data, facilitating anomaly detection in metrics and network data by isolating sig-
nificant patterns. These techniques facilitate anomaly detection in metrics and
network data by reducing noise and highlighting key features that distinguish nor-
mal from abnormal behavior. Techniques like PCA can also help in visualizing
complex data structures, making it easier to identify and interpret anomalies.

Similarity-based techniques identify anomalies by comparing data points to
each other, looking for those that deviate significantly from the norm. Techniques
like the Similarity Measure Algorithm and kTail Algorithm work by calculating
similarity scores or distances between data points, flagging those with low simi-
larity to others as anomalies. These methods are particularly effective in scenar-
ios where consistent patterns are expected, making them well-suited for detecting
anomalies in traces, system data, and application data. Additionally, Hierarchi-
cal models, such as Hidden Markov Models (HMM) and Hierarchical Temporal
Memory (HTM), are effective for sequential data like traces, capturing temporal
dependencies to identify anomalies over time.

The third category of deep learning techniques are increasingly popular due
to their ability to model complex, non-linear relationships in large datasets. Feed-
forward neural networks, such as Multi-Layer Perceptrons (MLP), are effective for
logs and system data, capturing intricate relationships between features. Sequen-
tial models, including Long Short-Term Memory (LSTM) networks and Trans-
formers, are highly effective for time-series data like metrics as well as for logs
and traces due to their proficiency in capturing temporal patterns and long-term



158 DATA FOR ANOMALY DETECTION: A MAPPING STUDY

dependencies. Autoencoder variations, including denoising and variational au-
toencoders, are versatile in learning data representations, making them suitable for
traces, system data, and application data. Graph-based techniques, such as Graph
Neural Networks (GNN), excel in handling data with complex interdependencies,
often found in logs and network data, by leveraging graph structures to model
relationships and detect structural anomalies.

It is important to note that the type of learning (supervised, unsupervised, or
semi-supervised) was not specified in the table, as it depends heavily on the avail-
ability of labels and the specific context of the application. For example, LSTM
networks can be used in a supervised manner when it is trained with labeled data
to predict specific anomalies, as demonstrated by Qiu et al. [173]. However, in
some frameworks, LSTM may only be used to model sequences in monitoring data
without utilizing labels [74,81]. For instance, in unsupervised settings, LSTM net-
works can be employed to capture and learn the inherent patterns and dependencies
within sequential data. In this context, LSTM networks act as feature extractors
that understand the temporal structure of the data, which can then be used as input
for other unsupervised models like autoencoders or clustering algorithms. Addi-
tionally, semi-supervised approaches are common, where representations of logs
or traces are generated using unsupervised models, and then sequence models or
graph-based models are used for prediction or classification [24].

The flexibility in learning types ensures that the selected anomaly detection
technique can be adapted to the specific context and data characteristics, providing
a robust solution for identifying and mitigating anomalies across various domains.
Understanding the relationship between data types, anomaly detection techniques,
and learning frameworks is crucial for developing effective AD solutions tailored
to the unique challenges of different datasets. This comprehensive catalog serves
as a valuable guide for selecting the most appropriate AD techniques based on
specific data characteristics and application requirements.

4.7 RQ4: Representativeness of real-world operational
environments

This section describes the categories of representativeness identified in reviewed
papers regarding monitoring data and labels in cloud operational contexts. By
representativeness, we refer to how well the data and labels used for training
and evaluating anomaly detection techniques mirror real-world scenarios, captur-
ing the complexities and authentic conditions encountered in operational environ-
ments. More representative data typically originates from systems deployed in
production, encompassing actual usage patterns and the anomalies that occur in
practice. This category also includes benchmark datasets from real systems, of-
ten used as standards for evaluating anomaly detection techniques due to their
relevance and realism. More representative labels are those verified by domain



4 Results and Analysis 159

experts to ensure that the detected anomalies are considered valid and significant
to practitioners.

In contrast, less representative data is often collected from emulated usage of
systems, testbeds, or simulated environments. While useful for preliminary test-
ing and development, these data sources lack the complexity and unpredictability
of real-world scenarios. Consequently, models trained on such data may perform
well under controlled conditions but struggle when deployed in production. Sim-
plified or synthetic data do not capture a range of factors that influence real-world
systems, leading to models that may not generalize well.

In our analysis, we found that 71% of the papers used more representative data
sources, while 29% used less representative data sources. The high percentage of
more representative data indicates a strong focus on using realistic data sources to
validate anomaly detection techniques, ensuring their relevance in real operational
contexts. However, when we examined the representativeness of the labels used, a
different picture emerged. We found that 73% of papers used labels that were less
representative, being either artificially generated, labeled by researchers, injected
without verification by domain experts, or resulting from common issues such
as infrastructure problems and performance degradation. Thus, while the data
used for training and evaluation are increasingly realistic, the labels often lack
the same level of representativeness. This discrepancy can lead to models that
are well-calibrated to detect anomalies in realistic data, but may still suffer from
inaccuracies due to the less reliable labeling.

Therefore, we used the categorization of more and less representative data to
assess the relevance of anomaly detection techniques and their likely applicability
to real industrial contexts. Figure 5 provides an overview of anomaly detection
techniques evaluated in more and less representative cloud environments based on
the data used for training and evaluation, serving as a guide for researchers and
practitioners.

Accordingly, techniques evaluated with data from deployed production sys-
tems are often tailored to handle the complexities of actual operational environ-
ments, ensuring their robustness and practical applicability. Such thorough eval-
uation with real-world data provides confidence that these techniques are likely
to deliver reliable performance in industrial settings, i.e., reducing the risk of
false positives or missed detections, which can be costly in operational environ-
ments. Furthermore, using more representative data in several evaluations shows
that these techniques are tailored to handle the actual challenges found in produc-
tion settings. This makes them more useful and easier to apply in different sce-
narios, giving practitioners a strong starting point to tailor the models according
to their specific operational needs. Examples of these techniques include custom
statistical models, clustering, sequential models (LSTM, GRU, and RNN), autoen-
coder variations, and PCA.

On the other hand, techniques evaluated with less representative data might
perform well under controlled conditions but may struggle to generalize to the



160 DATA FOR ANOMALY DETECTION: A MAPPING STUDY

5 0 5 10 15
Number of papers

SPOT
VAR

ARIMA
Bayesian methods
Custom statistical

Decision tree
Random forest

Nearest neighbors
SVM

Linear variation
ELM

Clustering
Density-based

PCA
SVD
SOM

Similarity-based
Hierarchical models

ADSketch
PMAD

Sequential LSTM, GRU, RNN
Autoencoder variations

Graph-based

More representative
Less representative

Figure 5: Overview of anomaly detection techniques trained and evaluated with
more and less representative data

complexities of real-world operations. This lack of exposure to realistic scenarios
indicates that these techniques are less mature and may not be fully reliable when
deployed in operations. For instance, while decision trees and random forests
may be useful, their current evaluation in primarily less complex environments
means that they may not perform as well in real-world scenarios. Similarly, as
hierarchical models and isolation trees are often tested in simulated settings, there
is a need for their further validation in real-world environments to ensure their
maturity and effectiveness.

5 Discussion and Conclusion

This study may significantly advance the understanding and practice of anomaly
detection in cloud-based systems by offering a structured and empirical approach
to the topic. A key contribution of this study is the classification of monitoring data
collected from operational environments. This classification aids in understanding
the diverse nature of the monitoring data, their properties, and their relevance to
anomaly detection in real-world cloud environments (C1). Furthermore, the study
provides an extensive overview of monitoring tools used across various cloud en-
vironments. This resource is invaluable for practitioners looking to implement or
enhance their monitoring infrastructures (C2). The diversity of tools presented in



5 Discussion and Conclusion 161

this study reflects the complexity and varied requirements of modern cloud sys-
tems, emphasizing the need for flexible and adaptable monitoring solutions.

One interesting observation is that there is a lower use of commercial mon-
itoring tools in research, which may be due to their predefined features, limited
flexibility, and potentially high costs that may not align with the specialized needs
of research projects. Instead, researchers might prioritize custom-built tools for
their ability to integrate seamlessly with experimental workflows and address spe-
cific research challenges. A similar pattern emerges when comparing DevOps and
microservices monitoring tools identified in a recent review of grey literature [65]
to the tools identified in our study. Both sources identified widely adopted tools
(custom/research and commercial/industry) like Prometheus, Jaeger, Zipkin, and
Elasticsearch, which are crucial for metrics collection, distributed tracing, and log
management in cloud-based systems. However, the review of the grey literature
includes a larger number of tools primarily from the industry, such as Nagios, Zab-
bix, and Dynatrace, underscoring the importance of advanced and multipurpose
monitoring solutions, while our findings emphasize the need for more customized
tools tailored to specific monitoring and research requirements.

Moreover, the detailed examination of data preprocessing and anomaly detec-
tion techniques in our mapping study offers practical guidance for selecting suit-
able methods based on specific data characteristics. This comprehensive overview
includes an in-depth analysis of different preprocessing techniques, such as nor-
malization, log parsing, and feature selection, which are critical for preparing the
data before applying anomaly detection algorithms. Additionally, the mapping
of anomaly detection techniques to various categories of monitoring data helps
practitioners understand which techniques are most effective for different kinds of
data, such as metrics, logs, and traces. This detailed understanding enables the
optimization of anomaly detection workflows, as practitioners can select the most
appropriate techniques for their specific datasets, thus improving the accuracy and
reliability of detecting operational anomalies (C3).

A critical component of this study is its analysis of real-world aspects, ex-
amining the extent to which monitoring data and labels reflect actual operational
and cloud contexts. This insight is essential to ensure the practical applicability
of anomaly detection techniques (C4). Understanding the representativeness of
the data and labels used in evaluating anomaly detection techniques is crucial for
developing robust, reliable models that perform effectively in production environ-
ments. By focusing on more representative data and striving for higher-quality
labels, researchers and practitioners can ensure the development of solutions that
are truly applicable to real-world industrial contexts.

In summary, this study makes significant contributions to the field of anomaly
detection in cloud-based systems by addressing the multifaceted challenges of
real-world scenarios, including diverse data sources, system architectures, and dy-
namic operational conditions. The structured approach, with its comprehensive
catalogs and detailed analyses, offers researchers and practitioners the necessary



162 DATA FOR ANOMALY DETECTION: A MAPPING STUDY

tools and knowledge to develop effective anomaly detection frameworks appli-
cable to real operational environments. Additionally, comprehensive catalogs of
monitoring data enable straightforward identification and prioritization of critical
health indicators in a cloud-based system. By focusing on real-world applicabil-
ity, our study bridges the gap between theoretical research and practical imple-
mentation, providing actionable insights that can improve operational resilience in
industrial contexts.

Furthermore, our emphasis on leveraging empirical data from actual cloud op-
erations offers insights beyond the limitations of synthetic datasets typically used
in existing research. By grounding our findings in real-world data, we ensure that
the recommendations are both relevant and immediately applicable, making a di-
rect impact on the reliability and performance of cloud environments. This dual fo-
cus on advancing academic knowledge and offering practical guidance contributes
to the development of more resilient and efficient cloud-based systems.

Acknowledgments

The authors thank Prof. Kai Petersen, Hochschule Flensburg, Germany, for in-
sightful discussions and input on the design of the study. This work was par-
tially supported by the Wallenberg Artificial Intelligence, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Founda-
tion. Furthermore, this work was supported by ELLIIT, the Swedish government-
funded Strategic Research Area within IT and Mobile Communications, and a re-
search grant for the GIST project (reference number 20220235) from the Swedish
Knowledge Foundation. The work was also supported by a grant from the Re-
search Council of Finland (grants n. 349487- MuFAno).

Appendix 1: Search to establish the need for re-
view

The first step of our review process involved conducting a search within electronic
databases to identify existing systematic reviews relevant to our research ques-
tions. We limited the search only to the Scopus library as argued in Section 3.2.
Accordingly, we aimed to identify the need and research gap for conducting our
systematic mapping study. In our search, we relied on keywords derived from
our research questions and the Quasi-Gold Standard (QGS), whose selection is
discussed in Section 3.3. The search for relevant secondary studies is conducted
using the following search string:

TITLE-ABS-KEY (("anomaly detection" OR "monitoring") AND ("cloud" OR
"microservices" OR "software system*") AND ("systematic" AND ("mapping" OR
"review" OR "map"))) AND (LIMIT-TO ( DOCTYPE , "ar") OR LIMIT-TO (DOC-



5 Discussion and Conclusion 163

TYPE , "re") OR LIMIT-TO (DOCTYPE , "cp") OR LIMIT-TO (DOCTYPE , "sh"))
AND (LIMIT-TO (SUBJAREA , "COMP")) AND (LIMIT-TO (LANGUAGE , "En-
glish"))

Thus, our search is limited to English-language, peer-reviewed conference pa-
pers, articles, reviews, or short surveys in the field of computer science. In to-
tal, this search strategy returned 139 hits. After reading the titles, only seven
papers [22, 32, 66, 75, 100, 156, 161] were selected as related reviews.





BIBLIOGRAPHY





BIBLIOGRAPHY

[1] Giuseppe Aceto, Alessio Botta, Walter De Donato, and Antonio Pescapè.
Cloud monitoring: A survey. Computer Networks, 57(9):2093–2115, 2013.

[2] Bikash Agrawal, Tomasz Wiktorski, and Chunming Rong. Adaptive real-
time anomaly detection in cloud infrastructures. Concurrency and Compu-
tation: Practice and Experience, 29(24):e4193, December 2017.

[3] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsu-
pervised real-time anomaly detection for streaming data. Neurocomputing,
262:134–147, 2017.

[4] Joan E. van Aken. Management research based on the paradigm of the de-
sign sciences: The quest for field-tested and grounded technological rules.
Journal of Management Studies, 41(2):219–246, 2004.

[5] Ahmad Alnafessah and Giuliano Casale. A Neural-Network Driven
Methodology for Anomaly Detection in Apache Spark. In 11th Interna-
tional Conference on the Quality of Information and Communications Tech-
nology (QUATIC), pages 201–209, Coimbra, September 2018. IEEE.

[6] Ahmad Alnafessah, Alim Ul Gias, Runan Wang, Lulai Zhu, Giuliano
Casale, and Antonio Filieri. Quality-aware devops research: Where do we
stand? IEEE Access, 9:44476–44489, 2021.

[7] Juncal Alonso, Leire Orue-Echevarria, and Maider Huarte. Cloudops: To-
wards the operationalization of the cloud continuum: Concepts, challenges
and a reference framework. Applied Sciences, 12(9), 2022.

[8] Andrea Apicella, Francesco Donnarumma, Francesco Isgrò, and Roberto
Prevete. A survey on modern trainable activation functions. Neural Net-
works, 138:14–32, 2021.

[9] Laigang Bai and Cheng Zhang. Trace-based microservice anomaly detec-
tion through deep learning. In Second International Conference on Elec-
tronic Information Engineering, Big Data, and Computer Technology (EIB-
DCT 2023), page 126422T, Xishuangbanna, China, May 2023. SPIE.



168 References

[10] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microservices
architecture enables DevOps: an experience report on migration to a cloud-
native architecture. IEEE Software, 33:1–1, 05 2016.

[11] Sebastian Baltes and Paul Ralph. Sampling in software engineering re-
search: A critical review and guidelines. Empirical Softw. Engg., 27(4), jul
2022.

[12] Md Abul Bashar and Richi Nayak. TAnoGAN: Time Series Anomaly De-
tection with Generative Adversarial Networks. In IEEE Symposium Series
on Computational Intelligence (SSCI), pages 1778–1785, Canberra, ACT,
Australia, December 2020. IEEE.

[13] Souhila Benmakrelouf, Cédric St-Onge, Nadjia Kara, Hanine Tout, Claes
Edstrom, and Yves Lemieux. Abnormal behavior detection using resource
level to service level metrics mapping in virtualized systems. Future Gen-
eration Computer Systems, 102:680–700, January 2020.

[14] Ane Blázquez-García, Angel Conde, Usue Mori, and Jose A. Lozano. A
Review on Outlier/Anomaly Detection in Time Series Data. ACM Comput-
ing Surveys, 54(3):1–33, June 2021.

[15] Olimar Borges, Julia Couto, Duncan Ruiz, and Rafael Prikladnicki. Chal-
lenges in using machine learning to support software engineering. In Pro-
ceedings of the 23rd International Conference on Enterprise Information
Systems (ICEIS 2021), pages 224–231, 01 2021.

[16] Jürgen Börstler, Nauman Bin Ali, and Kai Petersen. Double-counting in
software engineering tertiary studies - an overlooked threat to validity. Inf.
Softw. Technol., 158:107174, 2023.

[17] Nathan Bosch and Jan Bosch. Software Logs for Machine Learning in a
DevOps Environment. In 46th Euromicro Conference on Software Engi-
neering and Advanced Applications (SEAA), pages 29–33, August 2020.

[18] Rodrigo N. Calheiros, Kotagiri Ramamohanarao, Rajkumar Buyya,
Christopher Leckie, and Steve Versteeg. On the effectiveness of isolation-
based anomaly detection in cloud data centers. Concurrency and Computa-
tion: Practice and Experience, 29(18):e4169, 2017.

[19] Antonio Capizzi, Salvatore Distefano, Luiz J. P. Araújo, Manuel Mazzara,
Muhammad Ahmad, and Evgeny Bobrov. Anomaly detection in DevOps
Toolchain. In Jean-Michel Bruel, Manuel Mazzara, and Bertrand Meyer,
editors, Software Engineering Aspects of Continuous Development and New
Paradigms of Software Production and Deployment, pages 37–51. Springer
International Publishing, 2020.



BIBLIOGRAPHY 169

[20] Antonio Capizzi, Salvatore Distefano, and Manuel Mazzara. From DevOps
to DevDataOps: Data management in devops processes. In Jean-Michel
Bruel, Manuel Mazzara, and Bertrand Meyer, editors, Software Engineer-
ing Aspects of Continuous Development and New Paradigms of Software
Production and Deployment, pages 52–62. Springer International Publish-
ing, 2020.

[21] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection:
A survey. ACM computing surveys (CSUR), 41(3):1–58, 2009.

[22] Bhavana Chaurasia, Anshul Verma, and Pradeepika Verma. An in-depth and
insightful exploration of failure detection in distributed systems. Computer
Networks, 247, 2024.

[23] Hongyang Chen, Pengfei Chen, and Guangba Yu. A Framework of Virtual
War Room and Matrix Sketch-Based Streaming Anomaly Detection for Mi-
croservice Systems. IEEE Access, 8:43413–43426, 2020.

[24] Jian Chen, Fagui Liu, Jun Jiang, Guoxiang Zhong, Dishi Xu, Zhuanglun
Tan, and Shangsong Shi. TraceGra: A trace-based anomaly detection
for microservice using graph deep learning. Computer Communications,
204:109–117, April 2023.

[25] Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xiao Ling,
Yongqiang Yang, and Michael R. Lyu. Adaptive performance anomaly de-
tection for online service systems via pattern sketching. In Proceedings of
the 44th International Conference on Software Engineering, pages 61–72,
Pittsburgh Pennsylvania, May 2022. ACM.

[26] Antoine Chevrot, Alexandre Vernotte, and Bruno Legeard. DAE : Discrim-
inatory Auto-Encoder for multivariate time-series anomaly detection in air
transportation. arXiv:2109.04247 [cs], September 2021.

[27] Kukjin Choi, Jihun Yi, Changhwa Park, and Sungroh Yoon. Deep Learning
for Anomaly Detection in Time-Series Data: Review, Analysis, and Guide-
lines. IEEE Access, 9:120043–120065, 2021.

[28] Marcello Cinque, Raffaele Della Corte, and Antonio Pecchia. Advancing
monitoring in microservices systems. In IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), pages 122–123,
Berlin, Germany, 2019. IEEE.

[29] Jürgen Cito, Philipp Leitner, Harald C. Gall, Aryan Dadashi, Anne Keller,
and Andreas Roth. Runtime metric meets developer: Building better cloud
applications using feedback. In ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software,
pages 14–27, Pittsburgh, PA, USA, 2015. ACM Press.



170 References

[30] Jürgen Cito, Johannes Wettinger, Lucy Ellen Lwakatare, Markus Borg, and
Fei Li. Feedback from Operations to Software Development—A DevOps
Perspective on Runtime Metrics and Logs. In Jean-Michel Bruel, Manuel
Mazzara, and Bertrand Meyer, editors, Software Engineering Aspects of
Continuous Development and New Paradigms of Software Production and
Deployment, volume 11350, pages 184–195. Springer International Pub-
lishing, 2019.

[31] Andrew A. Cook, Göksel Mısırlı, and Zhong Fan. Anomaly detection for
iot time-series data: A survey. IEEE Internet of Things Journal, 7(7):6481–
6494, 2020.

[32] Breno Costa, João Bachiega, Leonardo Rebouças Carvalho, Michel Rosa,
and Aleteia Araujo. Monitoring fog computing: A review, taxonomy and
open challenges. Computer Networks, 215:109189, October 2022.

[33] Domenico Cotroneo, Luigi De Simone, Pietro Liguori, and Roberto Natella.
Enhancing the analysis of software failures in cloud computing systems
with deep learning. Journal of Systems and Software, 181:111043, Novem-
ber 2021.

[34] Domenico Cotroneo, Luigi De Simone, Pietro Liguori, Roberto Natella, and
Nematollah Bidokhti. Enhancing Failure Propagation Analysis in Cloud
Computing Systems. In IEEE 30th International Symposium on Software
Reliability Engineering (ISSRE), pages 139–150, Berlin, Germany, October
2019. IEEE.

[35] Adam R. Currie, Sally I. McClean, Philip Morrow, Gerard P. Parr, and
Kashaf Khan. Using Correlations for Application Monitoring in Cloud
Computing. In 14th International Symposium on Pervasive Systems, Algo-
rithms and Networks & 11th International Conference on Frontier of Com-
puter Science and Technology & Third International Symposium of Creative
Computing (ISPAN-FCST-ISCC), pages 211–217, Exeter, June 2017. IEEE.

[36] Jeanderson Cândido, Maurício Aniche, and Arie van Deursen. Log-based
software monitoring: a systematic mapping study. PeerJ Computer Science,
7:e489, May 2021. Publisher: PeerJ Inc.

[37] Yingnong Dang, Qingwei Lin, and Peng Huang. AIOps: Real-World
Challenges and Research Innovations. In IEEE/ACM 41st International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), pages 4–5, Montreal, QC, Canada, May 2019. IEEE.

[38] Salvador DeCelles, Tingshan Huang, Matthew C. Stamm, and Nagarajan
Kandasamy. Detecting Incipient Faults in Software Systems: A Com-
pressed Sampling-Based Approach. In IEEE 9th International Conference



BIBLIOGRAPHY 171

on Cloud Computing (CLOUD), pages 303–310, San Francisco, CA, USA,
June 2016. IEEE.

[39] Pratyush Kr. Deka, Yash Verma, Adil Bin Bhutto, Erik Elmroth, and
Monowar Bhuyan. Semi-supervised range-based anomaly detection for
cloud systems. IEEE Transactions on Network and Service Management,
20(2):1290–1304, 2023.

[40] Pratyush Kr. Deka, Yash Verma, Adil Bin Bhutto, Erik Elmroth, and
Monowar Bhuyan. Semi-Supervised Range-Based Anomaly Detection for
Cloud Systems. IEEE Transactions on Network and Service Management,
20(2):1290–1304, June 2023.

[41] Pierangelo Di Sanzo, Alessandro Pellegrini, and Dimiter R. Avresky. Ma-
chine Learning for Achieving Self-Properties and Seamless Execution of
Applications in the Cloud. In IEEE Fourth Symposium on Network Cloud
Computing and Applications (NCCA), pages 51–58, Munich, Germany,
June 2015. IEEE.

[42] Oscar Dieste, Anna Grimán, and Natalia Juristo. Developing search strate-
gies for detecting relevant experiments. Empirical Software Engineering,
14(5):513–539, October 2009.

[43] Nan Ding, Huanbo Gao, Hongyu Bu, Haoxuan Ma, and Huaiwei Si.
Multivariate-Time-Series-Driven Real-time Anomaly Detection Based on
Bayesian Network. Sensors, 18(10):3367, October 2018.

[44] Nan Ding, HaoXuan Ma, Huanbo Gao, YanHua Ma, and GuoZhen Tan.
Real-time anomaly detection based on long short-term memory and gaus-
sian mixture model. Computers & Electrical Engineering, 79:106458,
2019.

[45] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel
Mazzara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microser-
vices: Yesterday, today, and tomorrow. In Present and Ulterior Software
Engineering, pages 195–216. Springer International Publishing, 2017.

[46] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. DeepLog:
Anomaly Detection and Diagnosis from System Logs through Deep Learn-
ing. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, pages 1285–1298, Dallas Texas USA, October
2017. ACM.

[47] Qingfeng Du, Tiandi Xie, and Yu He. Anomaly Detection and Diagnosis for
Container-Based Microservices with Performance Monitoring. In Jaideep



172 References

Vaidya and Jin Li, editors, Algorithms and Architectures for Parallel Pro-
cessing, volume 11337, pages 560–572. Springer International Publishing,
Cham, 2018. Series Title: Lecture Notes in Computer Science.

[48] Walid El-Shafai, Iman Almomani, and Aala AlKhayer. Visualized malware
multi-classification framework using fine-tuned cnn-based transfer learning
models. Applied Sciences, 11(14), 2021.

[49] Emelie Engström, Margaret-Anne Storey, Per Runeson, Martin Höst, and
Maria Teresa Baldassarre. How software engineering research aligns with
design science: a review. Empirical Software Engineering, 25(4):2630–
2660, July 2020.

[50] Tolga Ergen and Suleyman Serdar Kozat. Unsupervised Anomaly Detection
With LSTM Neural Networks. IEEE Transactions on Neural Networks and
Learning Systems, 31(8):3127–3141, August 2020.

[51] Matthew E. Falagas, Eleni I. Pitsouni, George A. Malietzis, and Geor-
gios Pappas. Comparison of pubmed, scopus, web of science, and google
scholar: strengths and weaknesses. The FASEB Journal, 22(2):338–342,
2008.

[52] Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber, and John Grundy. Met-
ric selection and anomaly detection for cloud operations using log and met-
ric correlation analysis. Journal of Systems and Software, 137:531–549,
March 2018.

[53] Michael Felderer, Barbara Russo, and Florian Auer. On testing data-
intensive software systems. In Stefan Biffl, Matthias Eckhart, Arndt Lüder,
and Edgar R. Weippl, editors, Security and Quality in Cyber-Physical Sys-
tems Engineering, pages 129–148. Springer, 2019.

[54] Robert Feldt and Ana Magazinius. Validity threats in empirical software
engineering research - an initial survey. In SEKE - Proceedings of the 22nd
International Conference on Software Engineering and Knowledge Engi-
neering, page 374 – 379, 2010.

[55] Brian Fitzgerald and Klaas-Jan Stol. Continuous software engineering: A
roadmap and agenda. Journal of Systems and Software, 123:176–189, Jan-
uary 2017.

[56] Jerome H. Friedman and Bogdan E. Popescu. Predictive learning via rule
ensembles. The Annals of Applied Statistics, 2(3):916 – 954, 2008.

[57] Senbo Fu, Hyong Kim, and Rui Prior. FlowBox: Anomaly Detection Using
Flow Analysis in Cloud Applications. In IEEE Global Communications
Conference (GLOBECOM), pages 1–6, San Diego, CA, USA, December
2015. IEEE.



BIBLIOGRAPHY 173

[58] Senbo Fu, Rui Prior, and Hyong Kim. DMFD: Non-Intrusive Dependency
Inference and Flow Ratio Model for Performance Anomaly Detection in
Multi-Tier Cloud Applications. In IEEE 12th International Conference on
Cloud Computing (CLOUD), pages 164–173, Milan, Italy, July 2019. IEEE.

[59] Xiaoyu Fu, Rui Ren, Sally A. McKee, Jianfeng Zhan, and Ninghui Sun.
Digging deeper into cluster system logs for failure prediction and root cause
diagnosis. In IEEE International Conference on Cluster Computing (CLUS-
TER), pages 103–112, Madrid, Spain, September 2014. IEEE.

[60] Michael Gall and Federico Pigni. Taking devops mainstream: a critical re-
view and conceptual framework. European Journal of Information Systems,
31(5):548–567, 2022.

[61] Florian Gardin, Ronan Gautier, Nicolas Goix, Bibi Ndiaye, and
Jean-Matthieu Schertzer. Machine learning with logical rules in
Python. https://github.com/scikit-learn-contrib/
skope-rules, 2020.

[62] Rameshwar Garg, Chandana Kiran Ambekar, Kaustuv Saha, and Girish Rao
Salanke N S. PROFCAD: An Algorithm to Detect Anomalies in Cloud Ap-
plications for KPI Monitoring Systems. In IEEE International Conference
on Computation System and Information Technology for Sustainable Solu-
tions (CSITSS), pages 1–7, Bangalore, India, December 2021. IEEE.

[63] Radoslav Gatev. Observability: Logs, metrics, and traces. Introducing dis-
tributed application runtime (dapr) simplifying microservices applications
development through proven and reusable patterns and practices, pages
233–252, 2021.

[64] Alexander Geiger, Dongyu Liu, Sarah Alnegheimish, Alfredo Cuesta-
Infante, and Kalyan Veeramachaneni. TadGAN: Time Series Anomaly
Detection Using Generative Adversarial Networks. In IEEE International
Conference on Big Data (Big Data), pages 33–43, Atlanta, GA, USA, De-
cember 2020. IEEE.

[65] L. Giamattei, A. Guerriero, R. Pietrantuono, S. Russo, I. Malavolta, T. Is-
lam, M. Dînga, A. Koziolek, S. Singh, M. Armbruster, J.M. Gutierrez-
Martinez, S. Caro-Alvaro, D. Rodriguez, S. Weber, J. Henss, E. Fernandez
Vogelin, and F. Simon Panojo. Monitoring tools for DevOps and microser-
vices: A systematic grey literature review. Journal of Systems and Software,
208:111906, February 2024.

[66] Asif Qumer Gill and Sarhang Hevary. Cloud Monitoring Data Challenges:
A Systematic Review. In Neural Information Processing, volume 9947,
pages 72–79. Springer International Publishing, 2016.

https://github.com/scikit-learn-contrib/skope-rules
https://github.com/scikit-learn-contrib/skope-rules


174 References

[67] L. Girish and Sridhar K. N. Rao. Anomaly detection in cloud environment
using artificial intelligence techniques. Computing, 105(3):675–688, March
2023.

[68] Qiang Guan, Chi-Chen Chiu, Ziming Zhang, and Song Fu. Efficient and
Accurate Anomaly Identification Using Reduced Metric Space in Utility
Clouds. In IEEE Seventh International Conference on Networking, Archi-
tecture, and Storage, pages 207–216, Xiamen, China, June 2012. IEEE.

[69] Qiang Guan and Song Fu. Adaptive Anomaly Identification by Explor-
ing Metric Subspace in Cloud Computing Infrastructures. In IEEE 32nd
International Symposium on Reliable Distributed Systems, pages 205–214,
Braga, Portugal, September 2013. IEEE.

[70] Qiang Guan, Song Fu, Nathan DeBardeleben, and Sean Blanchard. Explor-
ing Time and Frequency Domains for Accurate and Automated Anomaly
Detection in Cloud Computing Systems. In 2013 IEEE 19th Pacific Rim
International Symposium on Dependable Computing, pages 196–205, Van-
couver, BC, Canada, December 2013. IEEE.

[71] Qiang Guan, Ziming Zhang, and Song Fu. Proactive Failure Management
by Integrated Unsupervised and Semi-Supervised Learning for Dependable
Cloud Systems. In Sixth International Conference on Availability, Reliabil-
ity and Security, pages 83–90, Vienna, Austria, August 2011. IEEE.

[72] Qiang Guan, Ziming Zhang, and Song Fu. Ensemble of Bayesian Predictors
and Decision Trees for Proactive Failure Management in Cloud Computing
Systems. Journal of Communications, 7(1):52–61, January 2012.

[73] Zijie Guan, Jinjin Lin, and Pengfei Chen. On Anomaly Detection and Root
Cause Analysis of Microservice Systems. In Service-Oriented Computing –
ICSOC 2018 Workshops, volume 11434, pages 465–469. Springer Interna-
tional Publishing, 2019. Series Title: Lecture Notes in Computer Science.

[74] Tanja Hagemann and Katerina Katsarou. Reconstruction-based anomaly
detection for the cloud: A comparison on the Yahoo! Webscope S5 dataset.
In Proceedings of the 2020 4th International Conference on Cloud and
Big Data Computing, pages 68–75, Virtual United Kingdom, August 2020.
ACM.

[75] Tanja Hagemann and Katerina Katsarou. A Systematic Review on Anomaly
Detection for Cloud Computing Environments. In 3rd Artificial Intelligence
and Cloud Computing Conference, AICCC 2020, pages 83–96, New York,
NY, USA, March 2021. Association for Computing Machinery.



BIBLIOGRAPHY 175

[76] Ahmed Hany Fawzy, Khaled Wassif, and Hanan Moussa. Framework for
automatic detection of anomalies in DevOps. Journal of King Saud Univer-
sity - Computer and Information Sciences, 35(3):8–19, March 2023.

[77] Wilhelm Hasselbring. Software architecture: Past, present, future. In The
Essence of Software Engineering, pages 169–184. Springer International
Publishing, 2018.

[78] Jingzhu He, Yuhang Lin, Xiaohui Gu, Chin-Chia Michael Yeh, and Zhong-
fang Zhuang. PerfSig: extracting performance bug signatures via multi-
modality causal analysis. In Proceedings of the 44th International Confer-
ence on Software Engineering, pages 1669–1680, Pittsburgh Pennsylvania,
May 2022. ACM.

[79] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R. Lyu,
and Dongmei Zhang. Identifying impactful service system problems via
log analysis. In Proceedings of the 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering - ESEC/FSE 2018, pages 60–70, Lake Buena Vista,
FL, USA, 2018. ACM Press.

[80] Shilin He, Jieming Zhu, Pinjia He, and Michael R. Lyu. Experience Report:
System Log Analysis for Anomaly Detection. In IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE), pages 207–218,
Ottawa, ON, Canada, October 2016. IEEE.

[81] Zilong He, Pengfei Chen, Xiaoyun Li, Yongfeng Wang, Guangba Yu, Cailin
Chen, Xinrui Li, and Zibin Zheng. A Spatiotemporal Deep Learning Ap-
proach for Unsupervised Anomaly Detection in Cloud Systems. IEEE
Transactions on Neural Networks and Learning Systems, 34(4):1705–1719,
April 2023.

[82] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. De-
sign science in information systems research. MIS Quarterly, 28(1):75–105,
2004.

[83] Jonny Holmström. From AI to digital transformation: The AI readiness
framework. Business Horizons, 65(3):329–339, May 2022.

[84] Bin Hong, Yazhou Hu, Fuyang Peng, and Bo Deng. Distributed State Mon-
itoring for IaaS Cloud with Continuous Observation Sequence. In IEEE
12th Intl Conf on Ubiquitous Intelligence and Computing and IEEE 12th
Intl Conf on Autonomic and Trusted Computing and IEEE 15th Intl Conf on
Scalable Computing and Communications and Its Associated Workshops
(UIC-ATC-ScalCom), pages 1037–1042, Beijing, August 2015. IEEE.



176 References

[85] Bin Hong, Fuyang Peng, Bo Deng, Yazhou Hu, and Dongxia Wang. DAC-
Hmm: detecting anomaly in cloud systems with hidden Markov models.
Concurrency and Computation: Practice and Experience, 27(18):5749–
5764, December 2015.

[86] Bin Hong, Fuyang Peng, Bo Deng, and Yuchao Zhang. O-MAP: A per-
component online anomaly predicting method for Cloud infrastructure.
In IEEE International Conference on Information and Automation, pages
3026–3031, Lijiang, China, August 2015. IEEE.

[87] A. Hrusto, E. Engstrom, and P. Runeson. Optimization of anomaly detection
in a microservice system through continuous feedback from development.
In IEEE/ACM 10th International Workshop on Software Engineering for
Systems-of-Systems and Software Ecosystems (SESoS), pages 13–20, Los
Alamitos, CA, USA, may 2022. IEEE Computer Society.

[88] Adha Hrusto, Emelie Engström, and Per Runeson. Towards optimization
of anomaly detection in DevOps. Information and Software Technology,
160:107241, August 2023.

[89] Adha Hrusto, Per Runeson, and Emelie Engström. Closing the Feedback
Loop in DevOps Through Autonomous Monitors in Operations. SN Com-
puter Science, 2(6):447, August 2021.

[90] Adha Hrusto, Per Runeson, and Magnus C Ohlsson. Autonomous moni-
tors for detecting failures early and reporting interpretable alerts in cloud
operations. In IEEE/ACM 46th International Conference on Software En-
gineering: Software Engineering in Practice (ICSE-SEIP), 2024.

[91] Ruei-Jie Hsieh, Jerry Chou, and Chih-Hsiang Ho. Unsupervised Online
Anomaly Detection on Multivariate Sensing Time Series Data for Smart
Manufacturing. In IEEE 12th SOCA Conference, pages 90–97, Kaohsiung,
Taiwan, November 2019. IEEE.

[92] Chengqiang Huang, Geyong Min, Yulei Wu, Yiming Ying, Ke Pei, and
Zuochang Xiang. Time Series Anomaly Detection for Trustworthy Services
in Cloud Computing Systems. IEEE Transactions on Big Data, 8(1):60–72,
February 2022.

[93] Shaohan Huang, Carol Fung, Chang Liu, Shupeng Zhang, Guang Wei,
Zhongzhi Luan, and Depei Qian. Arena: Adaptive real-time update
anomaly prediction in cloud systems. In 13th International Conference on
Network and Service Management (CNSM), pages 1–9, Tokyo, November
2017. IEEE.



BIBLIOGRAPHY 177

[94] Tao Huang, Pengfei Chen, and Ruipeng Li. A Semi-Supervised VAE Based
Active Anomaly Detection Framework in Multivariate Time Series for On-
line Systems. In Proceedings of the ACM Web Conference 2022, pages
1797–1806, Virtual Event, Lyon France, April 2022. ACM.

[95] Fabian Huch, Mojdeh Golagha, Ana Petrovska, and Alexander Krauss. Ma-
chine learning-based run-time anomaly detection in software systems: An
industrial evaluation. In IEEE Workshop on Machine Learning Techniques
for Software Quality Evaluation (MaLTeSQuE), pages 13–18, March 2018.

[96] Mohammad S. Islam, William Pourmajidi, Lei Zhang, John Steinbacher,
Tony Erwin, and Andriy Miranskyy. Anomaly detection in a large-scale
cloud platform. In Proceedings of the 43rd International Conference on
Software Engineering: Software Engineering in Practice, ICSE-SEIP ’21,
page 150–159. IEEE Press, 2021.

[97] Mohammad Saiful Islam and Andriy Miranskyy. Anomaly detection in
cloud components. In IEEE 13th International Conference on Cloud Com-
puting (CLOUD), pages 1–3, 2020.

[98] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. Performance Moni-
toring and Root Cause Analysis for Cloud-hosted Web Applications. In Pro-
ceedings of the 26th International Conference on World Wide Web, pages
469–478, Perth Australia, April 2017. International World Wide Web Con-
ferences Steering Committee.

[99] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. Detecting Perfor-
mance Anomalies in Cloud Platform Applications. IEEE Transactions on
Cloud Computing, 8(3):764–777, July 2020.

[100] M.P.G.K. Jayaweera, W.M.C.J.T. Kithulwatta, and R.M.K.T. Rathnayaka.
Detect anomalies in cloud platforms by using network data: a review. Clus-
ter Computing, 26(5):3279 – 3289, 2023.

[101] Tong Jia, Yifan Wu, Chuanjia Hou, and Ying Li. LogFlash: Real-time
Streaming Anomaly Detection and Diagnosis from System Logs for Large-
scale Software Systems. In IEEE 32nd International Symposium on Soft-
ware Reliability Engineering (ISSRE), pages 80–90, Wuhan, China, Octo-
ber 2021. IEEE.

[102] Tong Jia, Lin Yang, Pengfei Chen, Ying Li, Fanjing Meng, and Jingmin Xu.
LogSed: Anomaly Diagnosis through Mining Time-Weighted Control Flow
Graph in Logs. In IEEE 10th International Conference on Cloud Computing
(CLOUD), pages 447–455, Honolulu, CA, USA, June 2017. IEEE.



178 References

[103] Wenqian Jiang, Yang Hong, Beitong Zhou, Xin He, and Cheng Cheng. A
gan-based anomaly detection approach for imbalanced industrial time se-
ries. IEEE Access, 7:143608–143619, 2019.

[104] Ying Jiang, Na Zhang, and Zheng Ren. Research on intelligent monitoring
scheme for microservice application systems. In International Conference
on Intelligent Transportation, Big Data Smart City (ICITBS), pages 791–
794, Vientiane, Laos, 2020. IEEE.

[105] Javier Jose Diaz Rivera, Talha Ahmed Khan, Waleed Akbar, Muhammad
Afaq, and Wang-Cheol Song. An ML Based Anomaly Detection System in
real-time data streams. In International Conference on Computational Sci-
ence and Computational Intelligence (CSCI), pages 1329–1334, Las Vegas,
NV, USA, December 2021. IEEE.

[106] Parisa Sadat Kalaki, Alireza Shameli-Sendi, and Behzad Kha-
laji Emamzadeh Abbasi. Anomaly detection on OpenStack logs based on
an improved robust principal component analysis model and its projection
onto column space. Software: Practice and Experience, 53(3):665–681,
March 2023.

[107] Yasuhiko Kanemasa, Shuji Suzuki, Atsushi Kubota, and Junichi Higuchi.
Single-View Performance Monitoring of On-Line Applications Running
on a Cloud. In IEEE 10th International Conference on Cloud Computing
(CLOUD), pages 350–358, Honolulu, CA, USA, June 2017. IEEE.

[108] Phanindra Reddy Kannari, Noorullah Shariff Chowdary, and Rajkumar
Laxmikanth Biradar. An anomaly-based intrusion detection system using
recursive feature elimination technique for improved attack detection. The-
oretical Computer Science, 931:56–64, 2022.

[109] Yıldız Karadayı, Mehmet N. Aydin, and A. Selçuk Öğrenci. A Hybrid Deep
Learning Framework for Unsupervised Anomaly Detection in Multivariate
Spatio-Temporal Data. Applied Sciences, 10(15):5191, July 2020.

[110] George K. Karagiannidis and Athanasios S. Lioumpas. An improved ap-
proximation for the gaussian q-function. IEEE Communications Letters,
11(8):644–646, 2007.

[111] Sara Kardani-Moghaddam, Rajkumar Buyya, and Kotagiri Ramamoha-
narao. Performance anomaly detection using isolation-trees in heteroge-
neous workloads of web applications in computing clouds. Concurrency
and Computation: Practice and Experience, 31(20):e5306, October 2019.

[112] Mark Kasunic. Designing an effective survey. Technical Report CMU/SEI-
2005-HB-004, Carnegie Mellon Software Engineering Institute, 2005.



BIBLIOGRAPHY 179

[113] Mohammad Khanahmadi, Alireza Shameli-Sendi, Masoume Jabbarifar,
Quentin Fournier, and Michel Dagenais. Detection of microservice-based
software anomalies based on OpenTracing in cloud. Software: Practice and
Experience, 53(8):1681–1699, August 2023.

[114] Farzaneh Khoshnevisan, Zhewen Fan, and Vitor R. Carvalho. Improving
robustness on seasonality-heavy multivariate time series anomaly detection.
CoRR, abs/2007.14254, 2020.

[115] Tung Kieu, Bin Yang, Chenjuan Guo, and Christian S. Jensen. Outlier
Detection for Time Series with Recurrent Autoencoder Ensembles. In Pro-
ceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, pages 2725–2732, Macao, China, August 2019. International
Joint Conferences on Artificial Intelligence Organization.

[116] Barbara Ann Kitchenham, David Budgen, and Pearl Brereton. Evidence-
Based Software Engineering and Systematic Reviews. Chapman & Hal-
l/CRC, 2015.

[117] Iman Kohyarnejadfard, Daniel Aloise, Seyed Vahid Azhari, and Michel R.
Dagenais. Anomaly detection in microservice environments using dis-
tributed tracing data analysis and NLP. Journal of Cloud Computing,
11(1):25, August 2022.

[118] Joanna Kosińska, Bartosz Baliś, Marek Konieczny, Maciej Malawski, and
Sławomir Zieliński. Toward the observability of cloud-native applications:
The overview of the state-of-the-art. IEEE Access, 11:73036–73052, 2023.

[119] Nane Kratzke and Peter-Christian Quint. Understanding cloud-native ap-
plications after 10 years of cloud computing - a systematic mapping study.
Journal of Systems and Software, 126:1–16, 2017.

[120] Abhishek Kumar, Tristan Braud, Sasu Tarkoma, and Pan Hui. Trustworthy
ai in the age of pervasive computing and big data. In IEEE International
Conference on Pervasive Computing and Communications Workshops (Per-
Com Workshops), pages 1–6, Austin, TX, USA, 2020. IEEE.

[121] Giacomo Lanciano, Antonio Ritacco, Fabio Brau, Tommaso Cucinotta,
Marco Vannucci, Antonino Artale, Joao Barata, and Enrica Sposato. Us-
ing Self-Organizing Maps for the Behavioral Analysis of Virtualized Net-
work Functions. In Donald Ferguson, Claus Pahl, and Markus Helfert, edi-
tors, Cloud Computing and Services Science, volume 1399, pages 153–177.
Springer International Publishing, 2021. Series Title: Communications in
Computer and Information Science.



180 References

[122] Eero Laukkanen, Juha Itkonen, and Casper Lassenius. Problems, causes
and solutions when adopting continuous delivery—A systematic literature
review. Information and Software Technology, 82:55–79, February 2017.

[123] Chang-Ki Lee, Yu-Jeong Cheon, and Wook-Yeon Hwang. Studies on the
GAN-Based Anomaly Detection Methods for the Time Series Data. IEEE
Access, 9:73201–73215, 2021.

[124] Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, Yongqiang Yang, and
Michael R. Lyu. Heterogeneous anomaly detection for software systems via
semi-supervised cross-modal attention. In IEEE/ACM 45th International
Conference on Software Engineering (ICSE), pages 1724–1736, 2023.

[125] Dan Li, Dacheng Chen, Baihong Jin, Lei Shi, Jonathan Goh, and See-Kiong
Ng. Mad-gan: Multivariate anomaly detection for time series data with
generative adversarial networks. In Artificial Neural Networks and Machine
Learning – ICANN 2019: Text and Time Series, pages 703–716. Springer,
2019.

[126] Min Li, Dingyong Tang, Zepeng Wen, and Yunchang Cheng. Universal
Anomaly Detection Method Based on Massive Monitoring Indicators of
Cloud Platform. In IEEE International Conference on Software Engineer-
ing and Artificial Intelligence (SEAI), pages 23–29, Xiamen, China, June
2021. IEEE.

[127] Xiaoyun Li, Pengfei Chen, Linxiao Jing, Zilong He, and Guangba Yu.
SwissLog: Robust Anomaly Detection and Localization for Interleaved Un-
structured Logs. IEEE Transactions on Dependable and Secure Computing,
20(4):2762–2780, July 2023.

[128] Yuewei Li, Yan Lu, Jingyu Wang, Qi Qi, Jing Wang, Yingying Wang, and
Jianxin Liao. TADL: Fault Localization with Transformer-based Anomaly
Detection for Dynamic Microservice Systems. In IEEE International Con-
ference on Software Analysis, Evolution and Reengineering (SANER), pages
718–722, Taipa, Macao, March 2023. IEEE.

[129] Yufeng Li, Guangba Yu, Pengfei Chen, Chuanfu Zhang, and Zibin Zheng.
MicroSketch: Lightweight and Adaptive Sketch Based Performance Issue
Detection and Localization in Microservice Systems. In Service-Oriented
Computing, volume 13740, pages 219–236. Springer Nature Switzerland,
2022. Series Title: Lecture Notes in Computer Science.

[130] Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. Copod:
Copula-based outlier detection. In IEEE International Conference on Data
Mining (ICDM), pages 1118–1123. IEEE, 09 2020.



BIBLIOGRAPHY 181

[131] Derek Lin, Rashmi Raghu, Vivek Ramamurthy, Jin Yu, Regunathan Rad-
hakrishnan, and Joseph Fernandez. Unveiling clusters of events for alert
and incident management in large-scale enterprise it. In Proceedings of
the 20th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining - KDD ’14, pages 1630–1639, New York, New York,
USA, 2014. ACM Press.

[132] Mingwei Lin and Zhiqiang Yao. Toward Anomaly Detection in IaaS Cloud
Computing Platforms. International Journal of Security and Its Applica-
tions, 9(12):175–188, December 2015.

[133] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei
Chen. Log clustering based problem identification for online service sys-
tems. In Proceedings of the 38th International Conference on Software
Engineering Companion - ICSE ’16, pages 102–111, Austin, Texas, 2016.
ACM Press.

[134] Ying Lin, Zhengzhang Chen, Cheng Cao, Lu-An Tang, Kai Zhang, Wei
Cheng, and Zhichun Li. Collaborative Alert Ranking for Anomaly Detec-
tion. In Proceedings of the 27th ACM International Conference on Informa-
tion and Knowledge Management, pages 1987–1995, Torino Italy, October
2018. ACM.

[135] Benjamin Lindemann, Benjamin Maschler, Nada Sahlab, and Michael
Weyrich. A survey on anomaly detection for technical systems using lstm
networks. Computers in Industry, 131:103498, 2021.

[136] Johan Linåker, Sardar Sulaman, Martin Host, and Rafael de Mello. Guide-
lines for conducting surveys in software engineering. Technical report,
Lund University, May 2015.

[137] Dapeng Liu, Dan Pei, and Youjian Zhao. Application-aware latency moni-
toring for cloud tenants via CloudWatch+. In 10th International Conference
on Network and Service Management (CNSM) and Workshop, pages 73–81,
Rio de Janeiro, Brazil, November 2014. IEEE.

[138] Jianwei Liu, Hongwei Zhu, Yongxia Liu, Haobo Wu, Yunsheng Lan, and
Xinyu Zhang. Anomaly detection for time series using temporal convolu-
tional networks and Gaussian mixture model. Journal of Physics: Confer-
ence Series, 1187(4):042111, April 2019.

[139] Jinyang Liu, Tianyi Yang, Zhuangbin Chen, Yuxin Su, Cong Feng, Zengyin
Yang, and Michael R. Lyu. Practical Anomaly Detection over Multivariate
Monitoring Metrics for Online Services, August 2023.



182 References

[140] Ping Liu, Haowen Xu, Qianyu Ouyang, Rui Jiao, Zhekang Chen, Shenglin
Zhang, Jiahai Yang, Linlin Mo, Jice Zeng, Wenman Xue, and Dan Pei.
Unsupervised Detection of Microservice Trace Anomalies through Service-
Level Deep Bayesian Networks. In IEEE 31st International Symposium on
Software Reliability Engineering (ISSRE), pages 48–58, Coimbra, Portugal,
October 2020. IEEE.

[141] Shirong Liu, Xiong Chen, Xingxiong Peng, and Ruliang Xiao. Network
log anomaly detection based on gru and svdd. In IEEE International Con-
ference on Parallel & Distributed Processing with Applications, Big Data
& Cloud Computing, Sustainable Computing & Communications, Social
Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), pages
1244–1249, 2019.

[142] Yuecan Liu, Jiangang Sun, Yuzhu Chang, Qingfu Yang, Linwei Yang, and
Jing Li. Service-based cloud platform application monitoring analysis. In
IEEE 6th Advanced Information Technology, Electronic and Automation
Control Conference (IAEAC ), pages 799–803, Beijing, China, October
2022. IEEE.

[143] Zhuo Long, Xiaofei Zhang, Li Zhang, Guojun Qin, Shoudao Huang, Dianyi
Song, Haidong Shao, and Gongping Wu. Motor fault diagnosis using atten-
tion mechanism and improved adaboost driven by multi-sensor information.
Measurement, 170:108718, 2021.

[144] Matthieu Lucke, Moncef Chioua, Chriss Grimholt, Martin Hollender, and
Nina F. Thornhill. Integration of alarm design in fault detection and di-
agnosis through alarm-range normalization. Control Engineering Practice,
98:104388, May 2020.

[145] Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo. Dimensions of Dev-
Ops. In Casper Lassenius, Torgeir Dingsøyr, and Maria Paasivaara, editors,
Agile Processes in Software Engineering and Extreme Programming, pages
212–217. Springer International Publishing, 2015.

[146] Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo. An exploratory
study of DevOps: Extending the dimensions of devops with practices. In
The Eleventh International Conference on Software Engineering Advances
(ICSEA), Rome, Italy, 08 2016.

[147] Joao Paulo Magalhaes and Luis Moura Silva. A Framework for Self-
Healing and Self-Adaptation of Cloud-Hosted Web-Based Applications. In
IEEE 5th International Conference on Cloud Computing Technology and
Science, pages 555–564, Bristol, United Kingdom, December 2013. IEEE.



BIBLIOGRAPHY 183

[148] Sepehr Maleki, Sasan Maleki, and Nicholas R. Jennings. Unsupervised
anomaly detection with LSTM autoencoders using statistical data-filtering.
Applied Soft Computing, 108:107443, September 2021.

[149] Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli, and Rui Xin. Pre-
dicting failures in multi-tier distributed systems. Journal of Systems and
Software, 161:110464, March 2020.

[150] Lun Meng, Feng Ji, Yao Sun, and Tao Wang. Detecting anomalies in mi-
croservices with execution trace comparison. Future Generation Computer
Systems, 116:291–301, March 2021.

[151] Haibo Mi, Huaimin Wang, Zhenbang Chen, and Yangfan Zhou. Automatic
Detecting Performance Bugs in Cloud Computing Systems via Learning
Latency Specification Model. In IEEE 8th International Symposium on Ser-
vice Oriented System Engineering, pages 302–307, Oxford, United King-
dom, April 2014. IEEE.

[152] HaiBo Mi, HuaiMin Wang, YangFan Zhou, Michael R. Lyu, and Hua Cai.
Localizing root causes of performance anomalies in cloud computing sys-
tems by analyzing request trace logs. Science China Information Sciences,
55(12):2757–2773, December 2012.

[153] Alok Mishra and Ziadoon Otaiwi. Devops and software quality: A system-
atic mapping. Comput. Sci. Rev., 38:100308, 2020.

[154] Sara Kardani Moghaddam, Rajkumar Buyya, and Kotagiri Ramamoha-
narao. ACAS: An anomaly-based cause aware auto-scaling framework for
clouds. Journal of Parallel and Distributed Computing, 126:107–120, April
2019.

[155] Jefferson Seide Molléri, Kai Petersen, and Emilia Mendes. An empirically
evaluated checklist for surveys in software engineering. Information and
Software Technology, 119:106240, March 2020.

[156] Saad Mubeen, Sara Abbaspour Asadollah, Alessandro Vittorio Papadopou-
los, Mohammad Ashjaei, Hongyu Pei-Breivold, and Moris Behnam. Man-
agement of Service Level Agreements for Cloud Services in IoT: A Sys-
tematic Mapping Study. IEEE Access, 6:30184–30207, 2018.

[157] Joydeep Mukherjee, Alexandru Baluta, Marin Litoiu, and Diwakar Krish-
namurthy. RAD: Detecting Performance Anomalies in Cloud-based Web
Services. In IEEE 13th International Conference on Cloud Computing
(CLOUD), pages 493–501, Beijing, China, October 2020. IEEE.



184 References

[158] Sankha Subhra Mullick, Shounak Datta, and Swagatam Das. Adaptive
learning-based k -nearest neighbor classifiers with resilience to class im-
balance. IEEE Transactions on Neural Networks and Learning Systems,
29(11):5713–5725, 2018.

[159] Mohsin Munir, Shoaib Ahmed Siddiqui, Andreas Dengel, and Sheraz
Ahmed. DeepAnT: A Deep Learning Approach for Unsupervised Anomaly
Detection in Time Series. IEEE Access, 7:1991–2005, 2019.

[160] Sasho Nedelkoski, Jorge Cardoso, and Odej Kao. Anomaly Detection from
System Tracing Data Using Multimodal Deep Learning. In IEEE 12th In-
ternational Conference on Cloud Computing (CLOUD), pages 179–186,
Milan, Italy, July 2019. IEEE.

[161] Isaac Odun-Ayo, Toro-Abasi Williams, and Jamaiah Yahaya. Cloud man-
agement and monitoring - a systematic mapping study. Indonesian Journal
of Electrical Engineering and Computer Science, 21(3):1648–1662, March
2021. Number: 3.

[162] OpenAI. Gpt-3: Language models are few-shot learners, 2020.

[163] Alina Oprea, Zhou Li, Ting-Fang Yen, Sang H. Chin, and Sumayah Alr-
wais. Detection of early-stage enterprise infection by mining large-scale
log data. In 45th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks, pages 45–56, 2015.

[164] Alessandro Orso, Donglin Liang, Mary Jean Harrold, and Richard Lipton.
Gamma system: Continuous evolution of software after deployment. SIG-
SOFT Softw. Eng. Notes, 27(4):65–69, July 2002.

[165] David O’Shea, Vincent C. Emeakaroha, Neil Cafferkey, John P. Morrison,
and Theo Lynn. Detecting Anomaly in Cloud Platforms Using a Wavelet-
Based Framework. In Markus Helfert, Donald Ferguson, Victor Mén-
dez Muñoz, and Jorge Cardoso, editors, Cloud Computing and Services Sci-
ence, volume 740, pages 131–150. Springer International Publishing, 2017.
Series Title: Communications in Computer and Information Science.

[166] Yicheng Pan, Meng Ma, Xinrui Jiang, and Ping Wang. Faster, deeper,
easier: crowdsourcing diagnosis of microservice kernel failure from user
space. In Proceedings of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis, pages 646–657, Virtual Denmark, July
2021. ACM.

[167] Husanbir S. Pannu, Jianguo Liu, and Song Fu. AAD: Adaptive Anomaly
Detection System for Cloud Computing Infrastructures. In IEEE 31st Sym-
posium on Reliable Distributed Systems, pages 396–397, Irvine, CA, USA,
October 2012. IEEE.



BIBLIOGRAPHY 185

[168] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[169] Manjula Peiris, James H. Hill, Jorgen Thelin, Sergey Bykov, Gabriel Kliot,
and Christian Konig. PAD: Performance Anomaly Detection in Multi-
server Distributed Systems. In IEEE 7th International Conference on Cloud
Computing, pages 769–776, Anchorage, AK, USA, June 2014. IEEE.

[170] Roberto Pietrantuono, Antonia Bertolino, Guglielmo De Angelis, Breno
Miranda, and Stefano Russo. Towards Continuous Software Reliability
Testing in DevOps. In IEEE/ACM 14th International Workshop on Au-
tomation of Software Test (AST), pages 21–27, Montreal, QC, Canada, May
2019. IEEE.

[171] William Pourmajidi, John Steinbacher, Tony Erwin, and Andriy Miranskyy.
On challenges of cloud monitoring. In Proceedings of the 27th Annual
International Conference on Computer Science and Software Engineering,
CASCON ’17, page 259–265, USA, 2017. IBM Corp.

[172] Jiaxing Qi, Zhongzhi Luan, Shaohan Huang, Carol Fung, Hailong Yang,
Hanlu Li, Danfeng Zhu, and Depei Qian. LogEncoder: Log-Based Con-
trastive Representation Learning for Anomaly Detection. IEEE Transac-
tions on Network and Service Management, 20(2):1378–1391, June 2023.

[173] Juan Qiu, Qingfeng Du, and Chongshu Qian. KPI-TSAD: A Time-Series
Anomaly Detector for KPI Monitoring in Cloud Applications. Symmetry,
11(11):1350, November 2019.

[174] Rakesh Rana, Miroslaw Staron, Jörgen Hansson, Martin Nilsson, and Wil-
helm Meding. A Framework for Adoption of Machine Learning in Industry
for Software Defect Prediction. In Proceedings of the 9th International
Conference on Software Engineering and Applications, pages 383–392, Vi-
enna, Austria, 2014. SCITEPRESS - Science and and Technology Publica-
tions.

[175] Rui Ren, Yang Wang, Fengrui Liu, Zhenyu Li, and Gaogang Xie. Triple:the
interpretable deep learning anomaly detection framework based on trace-
metric-log of microservice. In IEEE/ACM 31st International Symposium
on Quality of Service (IWQoS), pages 1–10, 2023.



186 References

[176] Oliviero Riganelli, Paolo Saltarel, Alessandro Tundo, Marco Mobilio, and
Leonardo Mariani. Cloud Failure Prediction with Hierarchical Temporal
Memory: An Empirical Assessment. In 20th IEEE International Con-
ference on Machine Learning and Applications (ICMLA), pages 785–790,
Pasadena, CA, USA, December 2021. IEEE.

[177] Pilar Rodríguez, Alireza Haghighatkhah, Lucy Ellen Lwakatare, Susanna
Teppola, Tanja Suomalainen, Juho Eskeli, Teemu Karvonen, Pasi Kuvaja,
June M. Verner, and Markku Oivo. Continuous deployment of software
intensive products and services: A systematic mapping study. Journal of
Systems and Software, 123:263–291, January 2017.

[178] Derrick Rountree and Ileana Castrillo. Chapter 3 - cloud deployment mod-
els. In Derrick Rountree and Ileana Castrillo, editors, The Basics of Cloud
Computing, pages 35–47. Syngress, Boston, 2014.

[179] Sudip Roy, Arnd Christian Konig, Igor Dvorkin, and Manish Kumar. Per-
fAugur: Robust diagnostics for performance anomalies in cloud services.
In IEEE 31st International Conference on Data Engineering, pages 1167–
1178, Seoul, South Korea, April 2015. IEEE.

[180] Shaolun Ruan, Yong Wang, Hailong Jiang, Weijia Xu, and Qiang Guan.
BatchLens: A Visualization Approach for Analyzing Batch Jobs in Cloud
Systems. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 108–111, Antwerp, Belgium, March 2022. IEEE.

[181] Lukas Ruff, Jacob R. Kauffmann, Robert A. Vandermeulen, Grégoire Mon-
tavon, Wojciech Samek, Marius Kloft, Thomas G. Dietterich, and Klaus-
Robert Müller. A Unifying Review of Deep and Shallow Anomaly Detec-
tion. Proceedings of the IEEE, 109(5):756–795, May 2021.

[182] Per Runeson, Emelie Engström, and Margaret-Anne Storey. The design sci-
ence paradigm as a frame for empirical software engineering. In Contempo-
rary Empirical Methods in Software Engineering, pages 127–147. Springer,
2020.

[183] Areeg Samir and Claus Pahl. DLA: Detecting and Localizing Anomalies in
Containerized Microservice Architectures Using Markov Models. In 7th In-
ternational Conference on Future Internet of Things and Cloud (FiCloud),
pages 205–213, Istanbul, Turkey, August 2019. IEEE.

[184] Carla Sauvanaud, Mohamed Kaâniche, Karama Kanoun, Kahina Lazri, and
Guthemberg Da Silva Silvestre. Anomaly detection and diagnosis for cloud
services: Practical experiments and lessons learned. Journal of Systems and
Software, 139:84–106, 2018.



BIBLIOGRAPHY 187

[185] Carla Sauvanaud, Mohamed Kaâniche, Karama Kanoun, Kahina Lazri, and
Guthemberg Da Silva Silvestre. Anomaly detection and diagnosis for cloud
services: Practical experiments and lessons learned. Journal of Systems and
Software, 139:84–106, May 2018.

[186] Carla Sauvanaud, Guthemberg Silvestre, Mohamed Kaaniche, and Karama
Kanoun. Data Stream Clustering for Online Anomaly Detection in
Cloud Applications. In 11th European Dependable Computing Conference
(EDCC), pages 120–131, Paris, France, September 2015. IEEE.

[187] Florian Schmidt, Florian Suri-Payer, Anton Gulenko, Marcel Wallschlager,
Alexander Acker, and Odej Kao. Unsupervised Anomaly Event Detec-
tion for VNF Service Monitoring Using Multivariate Online Arima. In
IEEE International Conference on Cloud Computing Technology and Sci-
ence (CloudCom), pages 278–283, Nicosia, December 2018. IEEE.

[188] Syed Yousaf Shah, Zengwen Yuan, Songwu Lu, and Petros Zerfos. De-
pendency analysis of cloud applications for performance monitoring using
recurrent neural networks. In IEEE International Conference on Big Data
(Big Data), pages 1534–1543, Boston, MA, December 2017. IEEE.

[189] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. Continuous In-
tegration, Delivery and Deployment: A Systematic Review on Approaches,
Tools, Challenges and Practices. IEEE Access, 5:3909–3943, 2017.

[190] Lifeng Shen, Zhuocong Li, and James Kwok. Timeseries anomaly detec-
tion using temporal hierarchical one-class network. In Advances in Neural
Information Processing Systems, volume 33, pages 13016–13026. Curran
Associates, Inc., 2020.

[191] Jayalaxmi P Shetty and Rajesh Panda. An overview of cloud computing
in SMEs. Journal of Global Entrepreneurship Research, 11(1):175–188,
December 2021.

[192] Alban Siffer, Pierre-Alain Fouque, Alexandre Termier, and Christine
Largouet. Anomaly Detection in Streams with Extreme Value Theory.
In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1067–1075, Halifax NS
Canada, August 2017. ACM.

[193] Jonathan Sillito and Esdras Kutomi. Failures and Fixes: A Study of Soft-
ware System Incident Response. In IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), pages 185–195, Adelaide, SA,
Australia, September 2020. IEEE.



188 References

[194] Derek Smith, Qiang Guan, and Song Fu. An Anomaly Detection Frame-
work for Autonomic Management of Compute Cloud Systems. In IEEE
34th Annual Computer Software and Applications Conference Workshops,
pages 376–381, Seoul, Korea (South), July 2010. IEEE.

[195] Jacopo Soldani and Antonio Brogi. Anomaly Detection and Failure Root
Cause Analysis in (Micro) Service-Based Cloud Applications: A Survey.
ACM Computing Surveys, 55(3):59:1–59:39, February 2022.

[196] Gagan Somashekar, Anurag Dutt, Rohith Vaddavalli, Sai Bhargav Varanasi,
and Anshul Gandhi. B-MEG: Bottlenecked-Microservices Extraction Using
Graph Neural Networks. In Companion of the ACM/SPEC International
Conference on Performance Engineering, pages 7–11, Bejing China, July
2022. ACM.

[197] Youmei Song, Chaoran Li, Kuoran Zhuang, Tianjiao Ma, and Tianyu Wo.
An Automatic Scaling System for Online Application with Microservices
Architecture. In IEEE International Conference on Joint Cloud Computing
(JCC), pages 73–78, Fremont, CA, USA, August 2022. IEEE.

[198] Song Fu. Performance Metric Selection for Autonomic Anomaly Detection
on Cloud Computing Systems. In IEEE Global Telecommunications Con-
ference - GLOBECOM 2011, pages 1–5, Houston, TX, USA, December
2011. IEEE.

[199] Daniel Ståhl, Torvald Mårtensson, and Jan Bosch. Continuous practices
and devops: Beyond the buzz, what does it all mean? In 43rd Euromicro
Conference on Software Engineering and Advanced Applications (SEAA),
pages 440–448, Vienna, September 2017. IEEE.

[200] Margaret-Anne Storey, Neil A. Ernst, Courtney Williams, and Eirini
Kalliamvakou. The who, what, how of software engineering research: a
socio-technical framework. Emp. Softw. Eng., 25(5):4097–4129, 2020.

[201] Daniel Sun, Min Fu, Liming Zhu, Guoqiang Li, and Qinghua Lu. Non-
Intrusive Anomaly Detection With Streaming Performance Metrics and
Logs for DevOps in Public Clouds: A Case Study in AWS. IEEE Transac-
tions on Emerging Topics in Computing, 4(2):278–289, April 2016.

[202] Sampo Suonsyrjä, Laura Hokkanen, Henri Terho, Kari Systä, and Tommi
Mikkonen. Post-Deployment Data: A Recipe for Satisfying Knowledge
Needs in Software Development? In Joint Conference of the Interna-
tional Workshop on Software Measurement and the International Confer-
ence on Software Process and Product Measurement (IWSM-MENSURA),
pages 139–147, Berlin, Germany, October 2016. IEEE.



BIBLIOGRAPHY 189

[203] Chellammal Surianarayanan and Pethuru Raj Chelliah. Essentials of Cloud
Computing: A Holistic, Cloud-Native Perspective. Texts in Computer Sci-
ence. Springer International Publishing, 2023.

[204] Aboozar Taherkhani, Georgina Cosma, and T.M. McGinnity. Adaboost-
cnn: An adaptive boosting algorithm for convolutional neural networks to
classify multi-class imbalanced datasets using transfer learning. Neurocom-
puting, 404:351–366, 2020.

[205] Damian A. Tamburri, Marco Miglierina, and Elisabetta Di Nitto. Cloud
applications monitoring: An industrial study. Information and Software
Technology, 127:106376, November 2020.

[206] Yongmin Tan, Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Chitra Venka-
tramani, and Deepak Rajan. PREPARE: Predictive Performance Anomaly
Prevention for Virtualized Cloud Systems. In IEEE 32nd International Con-
ference on Distributed Computing Systems, pages 285–294, Macau, China,
June 2012. IEEE.

[207] Minaoar Hossain Tanzil, Masud Sarker, Gias Uddin, and Anindya Iqbal.
A mixed method study of DevOps challenges. Information and Software
Technology, 161:107244, September 2023.

[208] FreeWheel Biz-UI Team. Continuous Integration and Continuous Deploy-
ment. In Cloud-Native Application Architecture, pages 351–382. Springer
Nature Singapore, Singapore, 2024.

[209] Pratik Thantharate. IntelligentMonitor: Empowering DevOps Environ-
ments with Advanced Monitoring and Observability. In International Con-
ference on Information Technology (ICIT), pages 800–805, Amman, Jordan,
August 2023. IEEE.

[210] Stefan Throner, Heiko Hutter, Niklas Sanger, Michael Schneider, Simon
Hanselmann, Patrick Petrovic, and Sebastian Abeck. An Advanced DevOps
Environment for Microservice-based Applications. In IEEE International
Conference on Service-Oriented System Engineering (SOSE), pages 134–
143, Oxford, United Kingdom, August 2021. IEEE.

[211] Deepika Tiwari, Long Zhang, Martin Monperrus, and Benoit Baudry. Pro-
duction monitoring to improve test suites. IEEE Transactions on Reliability,
71(3):1381–1397, 2021.

[212] Laszlo Toka, Gergely Dobreff, David Haja, and Mark Szalay. Predicting
cloud-native application failures based on monitoring data of cloud infras-
tructure. In IFIP/IEEE International Symposium on Integrated Network
Management (IM), pages 842–847, 2021.



190 References

[213] Luca Traini and Vittorio Cortellessa. DeLag: Using Multi-Objective Op-
timization to Enhance the Detection of Latency Degradation Patterns in
Service-Based Systems. IEEE Transactions on Software Engineering,
pages 1–28, 2023.

[214] Shreshth Tuli, Giuliano Casale, and Nicholas R. Jennings. Tranad: deep
transformer networks for anomaly detection in multivariate time series data.
Proc. VLDB Endow., 15(6):1201–1214, February 2022.

[215] Aline Valente, Maristela Holanda, Ari Melo Mariano, Richard Furuta, and
Dilma Da Silva. Analysis of Academic Databases for Literature Review
in the Computer Science Education Field. In IEEE Frontiers in Education
Conference (FIE), pages 1–7, October 2022. ISSN: 2377-634X.

[216] Owen Vallis, Jordan Hochenbaum, and Arun Kejariwal. A novel technique
for Long-Term anomaly detection in the cloud. In 6th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 14), Philadelphia, PA, June
2014. USENIX Association.

[217] Yiannis Verginadis. A review of monitoring probes for cloud computing
continuum. In Advanced Information Networking and Applications, pages
631–643. Springer, 2023.

[218] Fotios Voutsas, John Violos, and Aris Leivadeas. Filtering Alerts on Cloud
Monitoring Systems. In IEEE International Conference on Joint Cloud
Computing (JCC), pages 34–37, Athens, Greece, July 2023. IEEE.

[219] Fotios Voutsas, John Violos, and Aris Leivadeas. Mitigating Alert Fatigue
in Cloud Monitoring Systems: A Machine Learning Perspective. Computer
Networks, 250:110543, August 2024.

[220] Chao Wang and Zhongchuan Fu. Quantitative evaluation of fault propa-
gation in a commercial cloud system. International Journal of Distributed
Sensor Networks, 16:155014772090361, March 2020.

[221] GuiPing Wang, JianXi Yang, and Ren Li. UFKLDA: An unsupervised fea-
ture extraction algorithm for anomaly detection under cloud environment.
ETRI Journal, 41(5):684–695, October 2019.

[222] Ke Wang and Hyong S. Kim. PCAD: Cloud Performance Anomaly De-
tection with Data Packet Counts. In IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), pages 106–113,
Hong Kong, December 2017. IEEE.

[223] Lu Wang, Yu Xuan Jiang, Zhan Wang, Qi En Huo, Jie Dai, Sheng Long
Xie, Rui Li, Ming Tao Feng, Yue Shen Xu, and Zhi Ping Jiang. The opera-
tion and maintenance governance of microservices architecture systems: A



BIBLIOGRAPHY 191

systematic literature review. Journal of Software: Evolution and Process,
35(10):e2433.

[224] Tao Wang, Jiwei Xu, Wenbo Zhang, Zeyu Gu, and Hua Zhong. Self-
adaptive cloud monitoring with online anomaly detection. Future Gener-
ation Computer Systems, 80:89–101, March 2018.

[225] Tao Wang, Wenbo Zhang, Jun Wei, and Hua Zhong. Fault detection for
cloud computing systems with correlation analysis. In IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM), pages 652–
658, Ottawa, ON, Canada, May 2015. IEEE.

[226] Tao Wang, Wenbo Zhang, Jiwei Xu, and Zeyu Gu. Workflow-Aware Au-
tomatic Fault Diagnosis for Microservice-Based Applications With Statis-
tics. IEEE Transactions on Network and Service Management, 17(4):2350–
2363, December 2020.

[227] Tao Wang, Wenbo Zhang, Chunyang Ye, Jun Wei, Hua Zhong, and Tao
Huang. FD4C: Automatic Fault Diagnosis Framework for Web Applica-
tions in Cloud Computing. IEEE Transactions on Systems, Man, and Cy-
bernetics: Systems, 46(1):61–75, January 2016.

[228] Wenlu Wang, Pengfei Chen, Yibin Xu, and Zilong He. Active-MTSAD:
Multivariate Time Series Anomaly Detection With Active Learning. In
52nd Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 263–274, Baltimore, MD, USA, June 2022.
IEEE.

[229] Muhammad Waseem, Peng Liang, Mojtaba Shahin, Amleto Di Salle, and
Gastón Márquez. Design, monitoring, and testing of microservices sys-
tems: The practitioners’ perspective. Journal of Systems and Software,
182:111061, 2021.

[230] Billy Williams and Lester Hoel. Modeling and forecasting vehicular traffic
flow as a seasonal arima process: Theoretical basis and empirical results.
Journal of Transportation Engineering, 129:664–672, 11 2003.

[231] Li Wu, Johan Tordsson, Jasmin Bogatinovski, Erik Elmroth, and Odej Kao.
MicroDiag: Fine-grained Performance Diagnosis for Microservice Sys-
tems. In IEEE/ACM International Workshop on Cloud Intelligence (Cloud-
Intelligence), pages 31–36, Madrid, Spain, May 2021. IEEE.

[232] Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. MicroRCA: Root
Cause Localization of Performance Issues in Microservices. In NOMS
IEEE/IFIP Network Operations and Management Symposium, pages 1–9,
Budapest, Hungary, April 2020. IEEE.



192 References

[233] Zhe Xie, Haowen Xu, Wenxiao Chen, Wanxue Li, Huai Jiang, Liangfei
Su, Hanzhang Wang, and Dan Pei. Unsupervised Anomaly Detection on
Microservice Traces through Graph VAE. In Proceedings of the ACM Web
Conference 2023, pages 2874–2884, Austin TX USA, April 2023. ACM.

[234] Ruyue Xin, Hongyun Liu, Peng Chen, and Zhiming Zhao. Robust and accu-
rate performance anomaly detection and prediction for cloud applications:
a novel ensemble learning-based framework. Journal of Cloud Computing,
12(1):7, January 2023.

[235] Jingmin Xu, Yuan Wang, Pengfei Chen, and Ping Wang. Lightweight and
Adaptive Service API Performance Monitoring in Highly Dynamic Cloud
Environment. In IEEE International Conference on Services Computing
(SCC), pages 35–43, Honolulu, HI, USA, June 2017. IEEE.

[236] Ke Xu, Yun Wang, Leni Yang, Yifang Wang, Bo Qiao, Si Qin, Yong Xu,
Haidong Zhang, and Huamin Qu. CloudDet: Interactive Visual Analysis
of Anomalous Performances in Cloud Computing Systems. IEEE Transac-
tions on Visualization and Computer Graphics, pages 1–1, 2019.

[237] Xiwei Xu, Liming Zhu, Min Fu, Daniel Sun, An Binh Tran, Paul Rimba,
Srini Dwarakanathan, and Len Bass. Crying wolf and meaning it: Reduc-
ing false alarms in monitoring of sporadic operations through pod-monitor.
IEEE/ACM 1st International Workshop on Complex Faults & Failures in
Large Software Systems (COUFLESS), pages 69 – 75, 2015.

[238] Tianyi Yang, Jiacheng Shen, Yuxin Su, Xiaoxue Ren, Yongqiang Yang, and
Michael R. Lyu. Characterizing and Mitigating Anti-patterns of Alerts in
Industrial Cloud Systems. In 52nd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), pages 393–401, Bal-
timore, MD, USA, June 2022. IEEE.

[239] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series gen-
erative adversarial networks. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates, Inc., 2019.

[240] Guangba Yu, Zicheng Huang, and Pengfei Chen. TraceRank: Abnormal
service localization with dis-aggregated end-to-end tracing data in cloud
native systems. Journal of Software: Evolution and Process, 35(10):e2413,
October 2023.

[241] Zhaoyang Yu, Minghua Ma, Chaoyun Zhang, Si Qin, Yu Kang, Chetan
Bansal, Saravan Rajmohan, Yingnong Dang, Changhua Pei, Dan Pei, Qing-
wei Lin, and Dongmei Zhang. Monitorassistant: Simplifying cloud service
monitoring via large language models. In Companion Proceedings of the



BIBLIOGRAPHY 193

32nd ACM International Conference on the Foundations of Software Engi-
neering, FSE 2024, page 38–49, New York, NY, USA, 2024. Association
for Computing Machinery.

[242] Ang Zhang, Xiaoyong Zhao, and Lei Wang. CNN and LSTM based
Encoder-Decoder for Anomaly Detection in Multivariate Time Series. In
IEEE 5th Information Technology,Networking,Electronic and Automation
Control Conference (ITNEC), pages 571–575, Xi’an, China, October 2021.
IEEE.

[243] Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian
Lumezanu, Wei Cheng, Jingchao Ni, Bo Zong, Haifeng Chen, and Nitesh V.
Chawla. A Deep Neural Network for Unsupervised Anomaly Detection and
Diagnosis in Multivariate Time Series Data. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 33:1409–1416, July 2019.

[244] Hancui Zhang, Jun Liu, and Tianshu Wu. Adaptive and incremental-
clustering anomaly detection algorithm for vms under cloud platform run-
time environment. IEEE Access, 6:76984–76992, 2018.

[245] Jing Zhang. Anomaly detecting and ranking of the cloud computing
platform by multi-view learning. Multimedia Tools and Applications,
78(21):30923–30942, November 2019.

[246] Xiao Zhang, Fanjing Meng, Pengfei Chen, and Jingmin Xu. TaskInsight: A
Fine-Grained Performance Anomaly Detection and Problem Locating Sys-
tem. In IEEE 9th International Conference on Cloud Computing (CLOUD),
pages 917–920, San Francisco, CA, USA, June 2016. IEEE.

[247] Xiao Zhang, Fanjing Meng, and Jingmin Xu. PerfInsight: A Robust
Clustering-Based Abnormal Behavior Detection System for Large-Scale
Cloud. In IEEE 11th International Conference on Cloud Computing
(CLOUD), pages 896–899, San Francisco, CA, USA, July 2018. IEEE.

[248] Xu Zhang, Qingwei Lin, Yong Xu, Si Qin, Hongyu Zhang, Bo Qiao,
Yingnong Dang, Xinsheng Yang, Qian Cheng, Murali Chintalapati, You-
jiang Wu, Ken Hsieh, Kaixin Sui, Xin Meng, Yaohai Xu, Wenchi Zhang,
Furao Shen, and Dongmei Zhang. Cross-dataset time series anomaly detec-
tion for cloud systems. In USENIX Annual Technical Conference (USENIX
ATC 19), pages 1063–1076, Renton, WA, July 2019. USENIX Association.

[249] Yuxin Zhang, Yiqiang Chen, Jindong Wang, and Zhiwen Pan. Unsupervised
Deep Anomaly Detection for Multi-Sensor Time-Series Signals. IEEE
Transactions on Knowledge and Data Engineering, pages 1–1, 2021.



194 BIBLIOGRAPHY

[250] Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi Raj, Abhishek Par-
wal, Timothy Sherwood, and Milind Chabbi. CRISP: Critical path analysis
of Large-Scale microservice architectures. In USENIX Annual Technical
Conference (USENIX ATC 22), pages 655–672, Carlsbad, CA, July 2022.
USENIX Association.

[251] Hang Zhao, Yujing Wang, Juanyong Duan, Congrui Huang, Defu Cao, Yun-
hai Tong, Bixiong Xu, Jing Bai, Jie Tong, and Qi Zhang. Multivariate time-
series anomaly detection via graph attention network. In IEEE International
Conference on Data Mining (ICDM), pages 841–850, 2020.

[252] Nengwen Zhao, Junjie Chen, Xiao Peng, Honglin Wang, Xinya Wu, Yuan-
zong Zhang, Zikai Chen, Xiangzhong Zheng, Xiaohui Nie, Gang Wang,
Yong Wu, Fang Zhou, Wenchi Zhang, Kaixin Sui, and Dan Pei. Under-
standing and handling alert storm for online service systems. In IEEE/ACM
42nd International Conference on Software Engineering: Software Engi-
neering in Practice (ICSE-SEIP), pages 162–171, 2020.

[253] Nengwen Zhao, Panshi Jin, Lixin Wang, Xiaoqin Yang, Rong Liu, Wenchi
Zhang, Kaixin Sui, and Dan Pei. Automatically and Adaptively Iden-
tifying Severe Alerts for Online Service Systems. In IEEE INFOCOM
2020 - IEEE Conference on Computer Communications, pages 2420–2429,
Toronto, ON, Canada, July 2020. IEEE.

[254] Peihai Zhao, Xiaoyan Chang, and Mimi Wang. A Novel Multivariate Time-
Series Anomaly Detection Approach Using an Unsupervised Deep Neural
Network. IEEE Access, 9:109025–109041, 2021.

[255] Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A Python toolbox for scal-
able outlier detection. Journal of Machine Learning Research, 20(96):1–7,
2019.


	Introduction
	Background and Related Work
	Research Approach
	Summary of Results
	Discussion
	Validity of research
	Conclusions

	Included papers
	Closing the Feedback Loop in DevOps Through Autonomous Monitors in Operations
	Introduction
	Background and Related work
	Research Approach
	Case Description
	Problem Conceptualization
	Solution Design
	Prototype Implementation and Empirical Validation
	Discussion and Conclusion

	Towards Optimization of Anomaly Detection in DevOps
	Introduction
	Background and Related Work
	Research Approach
	Problem Context
	Review of DL Methods for Anomaly Detection in MTS
	Guidance for a Minimum Feasible DL Method
	Implementation and evaluation of anomaly detection approaches
	Conclusion

	Autonomous Monitors for Detecting Failures Early and Reporting Interpretable Alerts in Cloud Operations
	Introduction
	Background and related work
	Research approach
	Problem context
	Autonomous monitors
	Discussion
	Conclusion

	Advancing Software Monitoring: An Industry Survey on ML-Driven Alert Management Strategies
	Introduction
	Background and Related Work
	Research methodology
	Results
	Discussion and conclusion

	Monitoring Data for Anomaly Detection in Cloud-Based Systems: A Systematic Mapping Study
	Introduction
	Background and Related Work
	Research Methodology
	Results and Analysis
	Discussion and Conclusion


	Bibliography
	References


