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Abstract 

Introduction: Obesity continues to be a growing problem and places a significant 
burden on the healthcare system by increasing the risk of developing various 
diseases including type 2 diabetes (T2D). T2D, in turn, increases the risk of 
developing other diseases, such as cardiovascular diseases (CVDs), neuropathy, and 
nephropathy. Furthermore, obesity and T2D are closely linked to liver diseases, 
particularly metabolic dysfunction-associated steatotic liver disease (MASLD). 
Various strategies exist to overcome obesity, including lifestyle modification, food 
supplements, pharmaceuticals, and more invasive surgical methods. In this thesis, 
the impact of various obesity prevention strategies on metabolism is assessed using 
metabolomics and lipidomics.  
Methods: I applied liquid and gas chromatography coupled with mass spectrometry 
to obtain metabolite and lipid profiles, followed by statistical analysis of the 
resulting data. In Paper I, I evaluated the effect of Roux-en-Y gastric bypass 
surgery (RYGB) on human metabolism within a few months and a few years post-
surgery. In Paper II, I studied the effect of caffeine supplementation on metabolism 
in the healthy liver, both in vivo and in vitro. In Paper III, I examined the effect of 
meals enriched in carbohydrates, fats, protein, or fibre on individuals with type 1 
and type 2 diabetes, as well as normoglycaemic individuals. 
Results and Discussion: In Paper I, I found that the majority of changes in the 
metabolome and lipidome occurred within two months after RYGB, after which the 
metabolic profiles began to reverse, moving towards their initial state. In Paper II, 
I did not find any metabolite or lipid to be significantly altered due to caffeine 
supplementation in models of the healthy liver, suggesting that the beneficial effect 
of caffeine may only be found in the diseased liver. In Paper III, I found 
metabolism to differ between individuals based on their glycaemic status and in 
response to variations in meal composition. Minor differences were observed in the 
diabetes status-dependent response to meal variation.   
Conclusion: RYGB significantly affected the human metabolome, however, these 
changes were transient, and within few months after surgery, metabolic profiles 
began to shift back towards their initial state. The beneficial effect of caffeine 
supplementation on liver was not observed in models of the healthy liver. The lack 
of diabetes status-dependent responses to meal variation suggests that diets that are 
healthy in people without diabetes are also healthy in people with diabetes. 
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Popular Science Summary 

Although humanity has found ways to manage the COVID-19 pandemic, another 
silent pandemic – obesity – continues to affect people around the world. Obesity is 
considered a disease because of its harmful effects on health. It increases the risk of 
developing several diseases, such as heart disease and type 2 diabetes (T2D). T2D, 
in turn, also negatively affects human health and, over time, may lead to serious 
damage to blood vessels, nerves, the heart, eyes, and kidneys. T2D and obesity are 
also linked to a liver disorder called metabolic dysfunction-associated steatotic liver 
disease (MASLD), where fat builds up in the liver.  

One possible explanation for the harmful effects of obesity is based on the theory of 
lipotoxicity. In the body, excessive energy is stored in the form of fat in adipose 
tissue. However, when the amount of incoming fat exceeds the storage capacity of 
the adipose tissue, fat begins to accumulate in other cells in the body, where it can 
interfere with the normal function of cells. 

There are several ways to combat obesity, including lifestyle changes, dietary 
supplements, medications, and even surgery. This thesis investigates the impact of 
various obesity treatments on metabolism using two scientific approaches: 
metabolomics and lipidomics. These approaches are similar to blood tests but allow 
for the analysis of hundreds of different compounds in a sample. The key difference 
between metabolomics and lipidomics is that metabolomics focuses on water-
soluble compounds, such as amino acids and sugars, while lipidomics targets oil-
soluble compounds, such as fats. 

In Paper I, we studied how the human metabolome – the complete set of small 
molecules in the body – changes after a weight loss procedure called Roux-en-Y 
gastric bypass surgery (RYGB). In this surgery, the stomach size is reduced, and the 
upper part of the small intestine is bypassed, which limits the amount of food people 
can eat and also limits food absorption. After RYGB, people can lose up to 30% of 
their body weight within a year. It is also known that people with T2D experience 
improvements in their blood glucose levels shortly after surgery. However, not 
everyone maintains these improvements, and some people regain weight and 
experience a return of T2D over time. In our study, we analysed blood samples 
obtained before RYGB and after two months, one year, and five years after the 
surgery. We found that the metabolite and lipid levels significantly changed after 
surgery but started to return to their original state two months after surgery. This 
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may suggest the body’s adaptation to the surgery, but it can also be early signs of 
future weight regain. 

In Paper II, we examined the impact of caffeine on fat accumulation in the liver. 
Coffee and caffeine are suggested to be good for health, including lowering the risk 
of T2D and liver diseases, but the exact mechanism of this is not well understood. 
Some studies suggest that caffeine helps reduce fat build-up in the liver, but most 
of these studies have been done on unhealthy liver models. Our study focused on 
healthy liver models and found that caffeine, at normal concentrations, did not have 
a significant effect on fat accumulation in the liver. 

In Paper III, we studied how the human metabolome responds to four different 
meals equal in calories but enriched in different macronutrients: carbohydrates, fats, 
protein, or fibre. The study was conducted in three groups of participants: people 
with type 1 diabetes and T2D, and a healthy control group. We found that the 
metabolite and lipid profiles of the T2D group were the most different from the other 
two groups. Additionally, the levels of several metabolites and lipids varied 
depending on the type of macronutrient in the meal. However, we did not find 
enough evidence to show that people in the three groups responded differently to 
the same meal. 
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1. Introduction and Background 

1.1. What is metabolomics and lipidomics? 
Metabolomics is the large-scale study of the metabolome, which is the combination 
of all small molecules – metabolites – present in a cell, tissue, biofluid, or organism 
[1, 2]. Lipidomics represents a subset of metabolomics and aims to study lipids 
present in a biological system [3]. Often, the term “metabolomics” is used to 
describe the polar part of the metabolome, which includes compounds such as amino 
acids, sugars, and carboxylic acids, while “lipidomics” refers to the lipophilic part, 
encompassing several lipid classes. The terminology outlined above will be used 
consistently throughout this thesis. 

Metabolomics and lipidomics belong to the omics family of disciplines, aiming to 
characterise all the entities within a certain biological subset. For instance, genomics 
aims to characterise all genes, transcriptomics – all RNAs, proteomics – all proteins, 
metabolomics – all metabolites in a particular biological system (Figure 1) [1].  

 

Figure 1. Illustration of different omics fields and the transmission of information from genes via RNA 
and proteins to metabolome, which together provide information about an organism’s phenotype. | 
Redrawn with adaptation from Dettmer, K. et al. [1]. Copyright © 2006, John Wiley and Sons. 
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The main advantage of metabolomics is that it provides a snapshot of an organism’s 
state under certain conditions at a specific time. This allows for the evaluation of 
the phenotype – a unique combination of various characteristics defining a particular 
biological system as a result of the combination of endogenous biological processes 
in the organism (predefined by genome) under the influence of external 
environmental processes [4]. Environmental factors in human research can be 
determined as very broad range of factors, such as diet, medications, ecological 
factors and compounds produced by gut microbiota. By contrast, endogenous 
factors, apart from genetically predefined ones, also include pathological processes 
ongoing in the body, such as obesity and diabetes in humans, which are the focus of 
this thesis. 

Analysis of an organism’s metabolome/lipidome is challenging due to its high 
complexity. The focus of this thesis is on the human metabolome, which is 
exceptionally diverse and estimated to consist of >100 000 molecules, among which 
researches are able to measure about 8000 molecules currently [2, 5-7]. 
Additionally, human metabolites have high structural heterogeneity and cannot be 
measured using only one method (in contrast to genomics and to some extent 
proteomics) and usually require sample preparation and analysis on several 
platforms. The metabolomics workflow usually consists of several steps, such as 
sample collection, sample preparation, sample analysis, and evaluation of the 
obtained data [2]. More details about metabolomics sample preparation and analysis 
are given in the Methods section of this thesis. 

Two main approaches are used to detect metabolites: nuclear magnetic resonance 
(NMR) and mass spectrometry (MS) [8]. NMR-based metabolomics is non-
destructive, allows simultaneous determination of all measurable metabolites 
present in the sample, and can be utilised in dynamic and in vivo studies [9]. NMR-
based metabolomics has the advantages of high reproducibility, the ability to 
quantify metabolites in a wide dynamic range (wide range of concentrations), high 
sample throughput, the possibility to identify isomers, and determine the structure 
of unknown metabolites, especially when combined with modern software tools for 
automated metabolite identification. NMR-based metabolomics can be beneficial 
for the measurement of compounds that are difficult to ionise or require 
derivatisation prior to MS analysis [9]. However, NMR metabolomics has its 
limitations, such as high detection limits, low resolving power, and usually requires 
larger sample volumes compared to MS-based techniques [10, 11].  

MS is currently the most widely used detection technique in metabolomics due to 
its main advantages: it allows measurements of metabolites present at very low 
concentrations, and can be easily coupled with complementary separation 
techniques, such as chromatography and ion mobility, which significantly extend 
the number of detected compounds [10, 12]. At the same time, the disadvantage of 
MS-based metabolomics is that it often requires more complicated sample 
preparation methods to reduce sample complexity, may need sample derivatisation 
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and encounters difficulties in analysing compounds with poor ionisation yields [10], 
[9]. 

In my thesis, I focused on metabolomics and lipidomics analysis of human plasma 
and used chromatography and MS-based techniques. This approach usually consists 
of sample preparation, separation using gas or liquid chromatography, and detection 
with mass spectrometry [12, 13].  

1.2. Diabetes, obesity, and metabolic dysfunction-
associated steatotic liver disease 

1.2.1. The obesity pandemic 
Even though humanity managed to cope with the COVID-19 pandemic, there is still 
another pandemic around – obesity, the prevalence of which is constantly increasing 
[14, 15]. The prevalence of obesity has grown significantly over the past few 
decades and continues to increase, reaching about 20% in Europe and over 40% in 
the United States (Figure 2) [16-20]. 

Obesity, according to World Health Organisation, is a chronic complex disease 
defined by excessive adiposity (fat accumulation) that can impair health (code 5B81 
in the International Classification of Disease ICD-11) [18, 21, 22]. It is assessed 
based on body mass index (BMI), calculated as described in the equation below. A 
condition with BMI between 25.0 and 29.9 kg/m2 is considered as overweight, and 
obesity is diagnosed when BMI exceeds 30 kg/m2. Besides BMI, additional 
measurements, such as waist circumference, are often used for diagnosis 
determination [18]. 𝐵𝑀𝐼 =  𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔)ℎ𝑒𝑖𝑔ℎ𝑡  (𝑚 ) 

The latest assessment of various risk factors negatively affecting human health by 
the Global Burden of Diseases study found that high fasting plasma glucose and 
high body mass index are the third and fourth most dangerous risk factors, 
attributing to 6.53 and 4.72 million deaths globally per year, respectively. 
Meanwhile, high systolic blood pressure and smoking occupy the first two positions 
among risk factors, accounting for 10.4 and 7.10 million deaths per year, 
respectively. This creates a huge burden on the healthcare system and negatively 
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Figure 2. The share of people with obesity (body mass index of 30 kg/m2 or higher) has grown rapidly 
since the 1970s. (A). The estimated prevalence of obesity in adults in 2016. (B) The chart illustrating 
the changes in the prevalence of obesity from 1975 to 2016. | Both plots are based on the data from 
World Health Organization - Global Health Observatory (2024) data repository - processed by Our 
World in Data.  

A 

B 
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affects human lives in general [23]. Additionally, it was demonstrated, that the 
hazard ratio for overall mortality for people with BMI in the range of 30.0 to 34.9 
kg/m2 was increased by 44%, and for BMI >40 kg/m2 was almost twice as high as 
for people in the healthy BMI range of (18.5-24.9 kg/m2) [24]. 

Obesity has several harmful effects on health, such as increased risks for the 
development of type 2 diabetes (T2D), cardiovascular diseases (CVDs), and some 
types of cancer [23, 25]. For example, the results of the Swedish Obese Subjects 
study (SOS), which followed two groups of people for up to 20 years – the group 
who underwent weight-loss surgery (n = 2010) and a control group under usual care 
(n = 2037) – demonstrated that the weight-loss group had significantly reduced 
overall mortality (-30%) and lowered incidences of CVDs (-30%) and diabetes 
(-80%) (Figure 3) [25]. Additionally, T2D also negatively affects human health by 
increasing the risk of several diseases, among which the most common are heart 
attack, stroke, kidney failure, retinopathy, and lower limb amputation [26]. The 
strong association between obesity and T2D has even lead to the introduction of 
term “diabesity” [27]. 

 

Figure 3. Cumulative mortality in two groups of participants: control group under usual care and a 
surgery group, in which participants underwent weight-loss surgery. | Reproduced with permission 
from Sjöström, L. et al. [25]. Copyright © 2012, John Wiley and Sons. 
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1.2.2. Metabolism in healthy individuals 
In a healthy condition, when glucose gets into the bloodstream after a meal, insulin 
is secreted by the pancreatic β-cells to promote peripheral tissues to absorb 
incoming glucose [28]. The summary of the processes happening under insulin 
secretion is given in Figure 4 [28].  Insulin binds to the insulin receptor in peripheral 
tissue, which initiates a cascade of biochemical processes, including activation of 
glucose transporters, facilitating glucose uptake and activation of glycolysis 
(glucose breakdown). At the same time, insulin is known as an anabolic hormone, 
which promotes energy storage. Thus, insulin facilitates the conversion of excess 
incoming glucose into fat (mainly consisting of triglycerides, TGs – the primary 
form of energy storage in the body) in adipose tissue through the process of 
lipogenesis. Insulin also stimulates glucose deposition in the form of glycogen (a 
polysaccharide made of glucose units – the storage form of glucose) in the process 
of glycogenesis in the liver and muscles, and reciprocally suppresses glycogenolysis 
(glycogen breakdown). At the same time, gluconeogenesis (formation of new 
glucose molecules) is also suppressed by insulin after a meal. 

 

Figure 4. Overview of the key processes involved in carbohydrate metabolism after a carbohydrate-
rich meal. | Redrawn with permission from Frayn, K. and Evans, R. [28]. Copyright © 2019, John 
Wiley and Sons. 

The tendency of the body to store glucose in the form of easily accessible glycogen 
and to not convert all excess glucose into fat can be explained by the critical role of 
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glucose for some tissues and organs in the body, such as red blood cells and brain 
cells, which require glucose as an primary energy source and cannot utilise, for 
example fat [29]. The reason for this is that red blood cells do not have 
mitochondria, which are required for lipid oxidation, and the brain cannot utilise 
fatty acids (FA), because they cannot cross the blood-brain barrier (although the 
brain can utilise ketone bodies formed from FA). In addition, TGs can only be used 
to synthesis glucose to a limited degree, for example, glycerol formed during TG 
breakdown can be utilised for gluconeogenesis, but the amount of glycerol in stored 
TGs is extremely small. Considering that blood cells and the brain are crucial for 
body functioning and require a significant amount of energy (approximately 20% of 
total energy intake is consumed by the brain), glycogen represents an “emergency” 
fuel source for the body. An overview of the integration of carbohydrates, fats, and 
protein metabolism is given in Figure 5 [28].  

 

Figure 5. Integration of carbohydrate, fat, and protein metabolism in the body. * – pentose phosphate 
pathway. | Reproduced with permission from Frayn, K. and Evans, R. [28]. Copyright © 2019, John 
Wiley and Sons. 
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1.2.3. Type 2 diabetes and metabolic dysfunction-associated steatotic 
liver disease 
Type 2 diabetes is characterised by insulin resistance – a state in which peripheral 
cells become less sensitive to insulin, which results in their inability to take up 
glucose from the blood (Figure 6) [30, 31]. Initially, the pancreatic beta-cells can 
compensate for the increased insulin resistance by increasing the secretion of insulin 
(Figure 7) [28, 32]. However, in some individuals, who may be genetically 
predisposed, over time, the beta-cells fail to do so, causing blood glucose levels to 
increase and T2D to develop. 

   

Figure 6. Key difference between type 1 and type 2 diabetes: T1D is characterised by the pancreas’s 
almost complete inability to produce insulin, whereas in T2D, insulin is produced but peripheral cells 
develop insulin resistance and become less sensitive to it. 

Obesity increases the risk of T2D development via increased insulin resistance, but 
the molecular mechanism underlying this is not fully understood, and there are 
several theories explaining this consequence. For instance, the negative effect of 
obesity has been linked to the concept of lipotoxicity [33]. Human adipocytes have 
a certain limit of size and amount of fat they can store. When this limit is reached, 
fat starts accumulating in other tissues, which do not have fat storage functions, 
thereby negatively affecting the function of these tissues [34]. At the same time, 
adipose tissue produces various pro-inflammatory cytokines such as interleukine-6 
(IL-6) [35] and tumour necrosis factor-alpha (TNF-α) [36], which affect the 
functions of other cells and tissues, potentially leading to their dysfunction and, 
consequently, the development of T2D and related complications, such as CVDs, 
retinopathy, nephropathy, and metabolic dysfunction-associated steatotic liver 
disease [37, 38]. 

Excess fat accumulation in the liver (steatosis) leads to the development of 
metabolic dysfunction-associated steatotic liver disease (MASLD, previously 
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known as non-alcoholic fatty liver disease – NAFLD) [39, 40]. The progression of 
MASLD can result in inflammation (hepatitis), fibrosis, and may even lead to 
cirrhosis and cancer development. The mechanisms of MASLD development and 
progression are not yet fully understood, and no specific pharmaceutical treatment 
options are available [41]. Nevertheless, a combination of a healthier diet and 
exercise has been shown to be an effective means of combating MASLD [42]. 

 

Figure 7. Levels of plasma glucose (A) and insulin (B) in lean (red open circles) and obese individuals 
(filled green circles) over an ordinary day with indicated intakes of breakfast, lunch, and dinner. 
Although both groups of individuals have similar glucose levels, the insulin level in obese individuals 
is much higher, indicating an insulin resistance state. | Reproduced with permission from Frayn, K. 
and Evans, R. [28]. Copyright © 2019, John Wiley and Sons. Based on McQuaid, S. E. [32]. Copyright 
© 2010, American Diabetes Association. 

1.2.4. Type 1 diabetes 
In contrast to T2D, type 1 diabetes (T1D) usually develops early in life and is 
characterised by beta-cell destruction and an often complete depletion of the 
pancreas’s ability to produce insulin, which is crucial for modulating peripheral 
tissues to activate glucose transporters and allow glucose to enter cells (Figure 6) 
[30]. In untreated T1D, a catabolic state develops, characterised by increased 
breakdown of stored fuel [28]. The absence of insulin results in peripheral tissues 
not receiving a glucose supply, leading to stimulated glycogen breakdown and 
reduced glycogen formation. Additionally, the process of gluconeogenesis is 
stimulated, while glycolysis is reduced. To perform gluconeogenesis, the body 
utilises amino acids from protein breakdown (mainly from muscles) and glycerol 
formed during lipolysis. Thus, glucose from food cannot be utilised by tissues due 
to the absence of insulin, while glucose production in the body is increased. 
Together, these processes lead to the state of hyperglycaemia, characterised by 
increased glucose concentration (healthy baseline levels of 5 mmol/L rise to 10-20 
mmol/L or more). Excess glucose in the blood can be partially excreted in the 
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urine – a characteristic of diabetes known as osmotic diuresis – which requires 
additional water, often leading to patients feeling excessively thirsty. 

However, not only glucose but also lipid metabolism is significantly affected in T1D 
[28]. In the absence of energy supply from glucose, lipolysis in the adipose tissue is 
activated. This leads to increased blood lipid concentrations. Lipolysis produces 
FAs, which cannot enter into the tricarboxylic acid cycle (TCA) because the 
substrates required for this are rapidly consumed in gluconeogenesis. Consequently, 
the liver converts the FAs into ketone bodies: β-hydroxybutyrate, acetoacetic acid 
and their spontaneous breakdown product acetone. Ketone bodies can be utilised as 
a source of energy by most tissues in the body. However, their blood concentration 
in T1D patients may rise very high and lead to a decrease in blood pH; this condition 
is known as diabetic ketoacidosis. Moreover, elevated levels of glucose and ketone 
bodies in the blood lead to increased blood osmolarity, which, combined with the 
increased acidity, can affect brain and heart function and lead to unconsciousness 
and even diabetic coma.  

1.3. Strategies for weight loss and improved metabolic 
health 

Metabolic health is a loosely defined term but is generally assumed to reflect a state 
opposite to metabolic dysregulation, often described as metabolic syndrome and 
established based on the combination of several parameters, such as waist 
circumference, blood glucose level, blood pressure, blood cholesterol, and 
triglyceride levels within a healthy range. The state when at least three of these 
parameters are elevated is defined as the metabolic syndrome, which significantly 
increases the risk of developing T2D and CVDs [43]. The thresholds of these 
parameters are: waist circumference ≥102 cm for men and  ≥88 cm for women, 
fasting plasma glucose ≥6.1 mmol/L (110 mg/dL), triglycerides ≥1,7 mmol/L (150 
mg/L), reduced HDL cholesterol <1.03 mmol/L (40 mg/L) in men and <1.29 
mmol/L (50 mg/L) in women, and blood pressure ≥130/≥85 mmHg.  

Reducing body weight by 5-10 kg significantly reduces the risk of developing CVDs 
and T2D [43] and thus improves metabolic health. Different approaches can be used 
to improve metabolic health by reducing body weight, ranging from diets, increased 
physical activity, use of medications or dietary supplements, and, in a radical way, 
surgery [27, 44, 45]. This thesis is focused on the following approaches: the effect 
of the most radical surgical treatment was studied in Paper I; in Paper II, we 
evaluated the influence of caffeine and its metabolites on lipid accumulation in the 
liver – which is associated with obesity and T2D; and the dietary approach was 
examined in Paper III. 
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1.3.1. Why do people gain weight?  
To find an effective treatment option for a disease, it is important to understand what 
causes it and how it develops [46]. Genetic variation is often discussed as an 
important factor in the development of obesity [47]. However, several studies 
demonstrate that genetic predisposition to some diseases can be significantly 
affected by lifestyle. For example, a study with data on 55 685 participants estimated 
the influence of lifestyle on the risks of coronary artery disease and discovered that, 
in the group of people with high genetic risk, a healthy lifestyle could decrease the 
risk of disease prevalence by 46% [48]. 

The development of overweight and obesity is connected to an extremely complex 
combination of several biological and environmental factors; some of which are 
shown in Figure 8 [15]. The UK Foresight Program “Tackling Obesities” identified 
seven main clusters affecting obesity development in an individual or a group: 
physiology, individual psychology, individual physical activity, food consumption, 
food production, social psychology, and the physical activity environment [49]. At 
the same time, Matthias Blüher highlights in his review that “Obesity is not caused 
by personal choice or by society but rather by the relationship between an individual 
and their environment” [15]. 

 

Figure 8. Environmental, societal, and biological factors contributing to obesity development. | 
Reproduced from Blüher, M. et al. [15] with permission from Springer Nature. Copyright © 2019, 
Springer Nature. 
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The increase in obesity rates over the last decades is usually associated with changes 
in society, such as higher consumption of convenience foods, an increasing share of 
computer-based work and entertainment activities, decreased physical activity, 
more persuasive food marketing and promotion of larger portions and frequent 
snacking, as well as normalisation of consumption of sweets, soft drinks, and fast 
food [15]. For example, ultra-processed food was shown to result in approximately 
500 kcal per day higher food intake and led to an increase in body weight of 0.9 kg 
over two weeks in the study where two groups received either ultra-processed or 
unprocessed meals. The meals were designed to be equal in calories, sugar, fat, fibre, 
and other macronutrients, and participant were allowed to consume as much as they 
desired. (Figure 9) [50]. 

   

Figure 9. The changes in (A) total energy intake and (B) body weight in groups on ad libitum ultra-
processed and non-processed food diets. | Reprinted from Hall, K.D. et al. [50] with permission from 
Elsevier. Copyright © 2019, Elsevier. 

1.3.2. Lifestyle modification 
Excess body fat accumulation occurs when the amount of caloric intake exceeds 
expenditure [45]. Thus, weight loss can be achieved by increasing physical activity 
and reducing food intake. Lifestyle modification, including weight loss (aiming at a 
minimum of 5%), restriction of total (<30%) and saturated (<10%) fat intake, 
increased intake of fibre (≥15 g/1000 kcal) and physical activity (>4 hours per week) 
was shown to be effective in reducing the risk of developing T2D by 58% after 
4 years of follow-up in the Finnish Diabetes Prevention Study, involving 522 
middle-aged overweight individuals [51]. In the US Diabetes Prevention Program 
[52], 3234 nondiabetic participants with elevated blood glucose and BMI >24 
without diabetes were divided into three groups: a control group, a group receiving 
metformin and a lifestyle modification group, and followed for 4 years. The lifestyle 
modification included the requirement to lose 7% of body weight, follow a low-
calorie, low-fat diet, and perform 150 minutes of physical activity per week. The 
study found that lifestyle modification was significantly more effective in reducing 
the risks of developing diabetes than metformin – lifestyle modification reduced the 
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risk by 58% and metformin by 31%. The cumulative share of people who developed 
T2D after 3 years in the control group was 28.9%, in metformin group 21.7%, 
whereas in lifestyle modification group it was 14.4% (Figure 10). Additionally, 
further evaluation of the US Diabetes Prevention Program data led to the conclusion 
that every kilogram of weight loss results in a 16% reduction in the risk of 
developing diabetes [53]. 

 

Figure 10. Cumulative incidence of diabetes in the control/placebo group, the group receiving 
metformin, and the group following the lifestyle modification program over four years. | Reproduced 
with permission from Knowler, W. C. et. al. [52]. Copyright © 2002, Massachusetts Medical Society. 

Thus, lifestyle modifications to improve metabolic health typically involve weight 
loss. Numerous diets have been suggested for weight loss, but they can be grouped 
into three categories based on the used strategy, as suggested by Freire [54]: 1) 
manipulation of macronutrient content, including diets focused on reducing or 
increasing the proportion of specific food components, e.g., low-carbohydrate or 
low-fat diets; 2) manipulation of timing, including restrictions on the times when 
one can eat, e.g., time-restricted feeding, periodic fasting (5:2), or alternate-day 
fasting; 3) restriction of specific foods, such as plant-based, Mediterranean, and 
Paleo diets. An overview of efficiency of different weight-loss approaches was also 
demonstrated in the meta-analysis of 80 weight-focused randomised controlled 
trials lasting for a minimum of one year by Franz et al. (Figure 11) [55].   

A challenge when interpreting dietary studies is the imbalance between the large 
number of observational studies (in which subjects are observed over a period of 
time without the intervention of researchers) and the insufficient number of 
randomised controlled trials (in which participants are divided into control and 
experimental groups). However, even in randomised controlled trials, there is a 
significant challenge to control the actual food intake by participants and their 
adherence to the prescribed protocol [56-58]. In addition, there is a lack of long-
term studies: most nutritional studies run for only a few months.  
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Figure 11. Average weight loss in groups of people who used different weight loss approaches for a 
minimum of one year. | Reprinted from Franz, M.J. et al. [55] with permission from Elsevier. Copyright 
© 2007, Elsevier. 

Another crucial aspect of food-limiting diets, such as low-carbohydrate or low-fat 
diets, is the types of food used to replace the restricted macronutrients. This aspect 
is not always considered in diet interventions, which makes the study outcomes 
unclear. For example, people on a low-fat diet may increase carbohydrate 
consumption, and thus the observed study outcomes can be influenced by any of 
these modifications. To complicate matters further, the type of specific 
macronutrient is also important. In the case of increased carbohydrate consumption, 
increasing the fibre content in the diet can be beneficial for health, whereas an 
increase in refined and high glycaemic index carbohydrates would have a negative 
effect. Furthermore, food is inherently complex and is estimated to consist of more 
than 26000 different molecules, while only some of them (e.g., only 150 nutritional 
components are tracked by the United States Department of Agriculture) have been 
investigated in research studies [59].  

To minimise these difficulties, in Paper III we studied the immediate effects on the 
human lipidome and metabolome elicited by meals rich in carbohydrates, protein, 
fat, and fibre in individuals with T1D and T2D and compared these effects with 
those in individuals without diabetes. Although the study only examined a single 
meal and did not involve a long-term intervention, it can be assumed that the 
consequences of altered dietary habits would be reflected in the cumulative effect 
of many individual meals. Importantly, the study utilised realistic meals, rather than 
examining separate food components in isolation. This approach provides a clearer 
picture of how the human metabolome responds to different meals and helps 
determine which meal types are more advantageous depending on an individual’s 
glycaemic status. 
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1.3.3. Medications and supplements 
It is very difficult for people to adhere to lifestyle modifications, and weight loss 
resulting from non-pharmacological interventions is very challenging to sustain for 
the majority of people [27]. For example, a meta-analysis of 45 randomised 
controlled trials involving 7788 individuals demonstrated that behavioural 
interventions focusing on modification of both food intake and physical activity 
resulted in a very modest average loss of 1.56 kg after 12 months [60]. In addition, 
there is also a lack of access to healthcare professionals providing obesity treatment 
and limitations associated with the cost of guided weight-loss programmes [61]. 
Thus, several alternative strategies have been developed. Among them, various 
supplements have been suggested to facilitate weight loss; however, there is a lack 
of sufficient evidence regarding their efficacy [61-63]. These dietary supplements 
include, for example, chocolate/cocoa, calcium and vitamin D, Camellia sinensis 
(green tea), Phaseolus vulgaris (white kidney bean), Garcinia cambogia, Ephedra 
sinica, caffeine, chitosan, conjugated linoleic acid, and guar gum [61, 63]. A 
systematic review of dietary supplements and alternative therapies used for weight 
loss found only 16.5% – or 52 studies out of 315 randomised controlled trails – to 
have a low risk of bias and to be sufficient to support the efficacy of examined 
treatment options [61]. Among them, only 16 studies showed significant weight 
changes in the range of 0.3 to 4.93 kg. Similar results were obtained by another 
research group in their meta-analysis of randomised controlled trials of herbal 
medicines and dietary supplements containing isolated organic compounds [63]. It 
was found that some dietary supplements and herbal extracts produced significant 
weight loss, although weight loss for all of these supplements was bellow 2.5 kg. 

The development of anti-obesity medication began several decades ago but has been 
extremely challenging. Only recent progress in understanding the mechanism of 
appetite regulation has stimulated the development of new anti-obesity drugs [64]. 
Several anti-obesity drugs that reached the market were withdrawn later due to 
adverse reactions. Some of the medications available today can be used only for 
short-term treatment due to the potential development of adverse effects, such as 
addiction or tolerance. 

Anti-obesity drugs, which are now available on the market, have different 
mechanisms of action [64]. For example, phentermine and cathine are 
sympathomimetic medications, which mimic the effects of endogenous agonists on 
the sympathetic nervous system. Phentermine is also used in combination with the 
anticonvulsant drug topiramate, due to its hunger reducing effect. Another known 
combination includes the opioid receptor agonist naltrexone with bupropion, a 
dopamine and noradrenaline reuptake inhibitor. Orlistat, which is available over the 
counter, reduces fat absorption from food due to its action as an intestinal lipase 
inhibitor.  
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The most novel class of anti-obesity drugs is the glucagon-like peptide-1 (GLP-1) 
receptor agonists, such as liraglutide and semaglutide. Before the approval of 
semaglutide, the available anti-obesity drugs were able to provide weight reduction 
only within a single-digit range. Semaglutide, approved by the FDA in 2021, 
marked a breakthrough in the field of anti-obesity drugs by offering significantly 
higher weight loss and sufficient tolerability [64]. Semaglutide was demonstrated to 
reduce body weight by 14.9% after 68 weeks of treatment in patients without 
diabetes [65] and by 9.6% in patients with T2D [66]. However, semaglutide is 
prescribed for the treatment of overweight or obesity when combined with at least 
one comorbidity, such as T2D, high blood pressure, or high cholesterol levels [64]. 

The mechanism of action of semaglutide is based on its action as an agonist of GLP-
1, which belongs to the group of gastrointestinal tract hormones – the incretins [67]. 
Incretins are released by the intestine after food intake and promote insulin secretion 
by the pancreas and also reduce gastric emptying and food intake. Semaglutide has 
a complex effect on several systems in the body. It reduces gastrointestinal motility 
and gastric emptying, affects the brain by reducing reward behaviour and food 
intake; it stimulates insulin secretion from the pancreas and enhances insulin 
receptor signalling and glucose uptake by muscles, altogether providing appetite 
reduction and improvements in insulin sensitivity and metabolic health [67, 68]. 

Several other drugs (over 30, according to a 2022 review by Müller et al.) are now 
in the development stage for the treatment of obesity [64]. Most of them have 
mechanisms of action related to gastrointestinal hormones. 

The majority of anti-obesity drugs require a prescription and are quite expensive, 
reducing their availability to many people. Additionally, anti-obesity drug intake 
can be associated with side effects. Thus, food supplements remain a popular 
alternative for weight management and improvement of metabolic health. Caffeine 
and coffee are among these food supplements suggested to improve human health, 
facilitate the reduction of blood glucose levels, and have beneficial effects on liver 
health [69]. In Paper II, we studied the influence of caffeine and its metabolites on 
fatty liver disease, which is associated with obesity and T2D. 

1.3.4. Weight-loss surgeries 
In a more radical approach, obesity can be treated with surgery, which can be 
performed in different ways. Several weight-loss (or bariatric) surgical procedures 
have been developed to reduce the size of the stomach, limiting the amount of food 
people can eat (Figure 12) [70]. For example, in sleeve gastrectomy, part of the 
stomach is removed, in gastric banding, an adjustable band is placed over the 
stomach, reducing its size, and in gastric bypass, or Roux-en-Y gastric bypass 
surgery (RYGB), the stomach size is reduced to about 30 ml and the upper part of 
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the small intestine is bypassed, thus reducing not only the amount of food one can 
eat but also its absorption [71].  

 

Figure 12. Examples of the most common bariatric (or weight-loss) surgeries. | Reprinted from Nuzzo, 
A. et al. [70] with permission from Elsevier. Copyright © 2020, Elsevier. 

RYGB is one of the most common bariatric surgeries [71] and provides the most 
significant reduction in body weight during the first year after the surgery (Figure 
13) [72]. Moreover, bariatric surgeries were shown to reduce overall mortality by 
29%, the risk of myocardial infarction by 29%, the risk of stroke by 34%, the risk 
of cancer in women by 42% and the risk of developing T2D by 83% [25]. 
Furthermore, in 87% of cases, it also results in improvements in blood glucose levels 
in people diagnosed with T2D at the time of surgery [73]. The metabolic effects of 
RYGB were studied in Paper I. 

 

Figure 13. Weight change (%) in response to different bariatric surgical procedures. | Reproduced 
with permission from Sjöström, L. et al. [72]. Copyright © 2002, Massachusetts Medical Society. 
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1.4. Application of metabolomics and lipidomics to 
study diabetes and obesity 

A better understanding of the mechanisms involved in diabetes development and 
the negative consequences of obesity on health is necessary to develop effective 
treatment strategies, including new drugs and guidelines for lifestyle modification. 
In this process, metabolomics and lipidomics play an important role, as these 
approaches allow for monitoring of changes in numerous biologically active 
molecules in the body occurring under the influence of endogenous (e.g., genetic) 
and exogenous (e.g., lifestyle and diet) stimuli [74]. Identified alterations can, 
besides offering knowledge on the mechanisms of disease, become biomarkers for 
disease diagnosis.  

Metabolomic studies provide detailed descriptions of a disease far beyond the single 
biomarkers commonly used in clinical practice, thereby leading to a better 
understanding of a disease. Clarification of the underlying biological mechanisms 
of a pathological process can in turn reveal novel targets for drug development [75]. 
For example, diabetes impacts the metabolism of all macronutrients, but it is defined 
only by glucose levels. However, glucose alone is incapable of providing a full 
description of the underlying metabolic dysregulation. Thus, metabolomics and 
lipidomics, focusing on the analysis of numerous compounds, are efficient tools for 
understanding diabetes and related conditions. For example, metabolomics was used 
to distinguish maturity-onset diabetes of the young type 2 (MODY2) from other 
types of MODY and T2D and provided a deeper understanding of MODY2 [76]. 

Metabolomics and lipidomics are considered to be more cost-effective and 
productive in the process of drug discovery and development compared to a process 
starting from finding a dysregulated gene (then a protein and then a potential drug 
that can regulate this shift). The reason for this is that not all diseases have a genetic 
basis and, in many cases, environmental factors are crucial for disease development 
[75]. This is supported by the example of the recent discovery of the role of 
trimethylamine-N-oxide (TMAO) in the development of atherosclerosis. [77]. This 
discovery was followed by the identification of enzymes involved in the formation 
of TMAO and led to the rapid development of the corresponding inhibitor [77]. 
Moreover, dysregulation of metabolism is also a hallmark of cancer [78], and is 
likely to be involved also in many other diseases, such as Alzheimer’s disease, 
autism, schizophrenia, and inflammatory bowel disease, all of which are being 
increasingly studied using metabolomics [75]. 

In the field of diabetes research, metabolomics studies led to the discovery that 
branched amino acids (leucine, isoleucine, and valine), as well as aromatic amino 
acids (phenylalanine and tryptophan) and 2-aminoadipic acid, are elevated in 
individuals with T2D and can be used to identify individuals with a high risk of 
developing T2D up to 12 years before the disease onset [79, 80].  
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In the lipidomics field, insulin resistance has been linked to alterations in ceramide 
levels, and their accumulation has been shown to cause changes in tissue 
metabolism and stimulation of apoptosis [81, 82]. Thus, the corresponding enzymes 
involved in ceramide production have become potential targets for the development 
of drugs to treat insulin resistance and other obesity-associated metabolic diseases 
[83]. Moreover, the measurement of certain ceramide ratios in human blood has 
been proven to indicate the risks of developing CVDs and has been implemented 
into clinical practice in Finland and at the Mayo Clinic in the US [84]. These 
ceramide measurements are performed on a robotic-assisted MS platform, and the 
cost and speed of the analysis are comparable to those of an antibody-based assay 
[84]. At the same time, it should be noted that the development of such ceramide 
tests has only become possible in recent years due to the development of advanced 
mass-spectrometers, which allow the measurement of ceramides present at very low 
concentration in blood – at the level of approximately 1/1000 of cholesterol level 
[83]. Thus, the constant development of analytical instrumentation introduces new 
opportunities in revealing novel alterations in metabolite levels associated with 
diseases and paves the way for new biomarkers and drugs. 

The rapid development of metabolomics has also made it an important component 
of precision medicine [11, 85]. Metabolomics has been applied to distinguish 
individual responses to different dietary interventions and to establish so-called 
metabotypes – groups of people with unique responses to specific diets [86, 87], 
[88]. This approach allows prediction of how a particular meal will affect 
postprandial blood glucose in each individual, thereby helping to identify the most 
suitable diet for each person [89]. 

Thus, the rapid advancement of metabolomics instrumentation and its growing 
accessibility promotes the use of metabolomics in clinical practice. Even though it 
currently appears quite complicated for routine clinical analysis, as David S. 
Wishart mentioned, similar hesitations existed when introducing currently well-
established analytical techniques and clinical chemistry in the middle of the 20th 
century [75]. 
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2. Aims of the Thesis 

The aim of the PhD thesis is to study changes in the metabolome in relation to 
diabetes, obesity, and MASLD, using metabolomics and lipidomics approaches to 
gain a better understand of strategies that can be used to treat and prevent these 
conditions. The thesis sub-projects were designed to evaluate interventions ranging 
from invasive to non-invasive, including the study of RYGB, dietary supplements, 
such as caffeine, and macronutrients in food, which can be used to improve 
metabolic health. 

Specific aims: 

Paper I:  Currently, it is unknown how long improvements in metabolism last after 
RYGB. The aim of this project was to investigate metabolic remission after RYGB, 
including significant weight regain and normalisation of blood metabolite levels. 
The ultimate aim, which was not reached, was to enable the identification of 
individuals who will show long-term benefits from RYGB. 

Paper II: Caffeine has been suggested to improve health, but both causal evidence 
and mechanistic understanding are lacking. The aim of this project was to evaluate 
the impact of caffeine on the healthy liver and potentially provide a mechanism for 
the suggested role of caffeine in protecting against MASLD.  

Paper III: There is still debate regarding the optimal and healthiest diet, especially 
for people with diabetes. The aim of this project was to evaluate the alterations in 
the human metabolome and lipidome in response to an acute meal tolerance test, 
using meals enriched with either carbohydrates, fats, protein, or fibre in individuals 
with type 1 and type 2 diabetes, and to compare these responses to normoglycaemic 
individuals, in order to evaluate which dietary strategies are better for metabolic 
health within each group. 
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3. Methods 

3.1. Sample preparation  
Numerous procedures have been developed for extraction of metabolites and lipids 
from various biological samples. Some procedures suggest simultaneous extraction 
of metabolites and lipids into a single-phase [90, 91] or partitioning them in a two-
phase system [92-94], while others are developed to extract polar and lipophilic 
analytes separately [95, 96]. Due to the high complexity of the metabolome and 
lipidome, it is usually advantageous to perform separate extractions of polar and 
lipophilic compounds [12]. One of the main advantages of this approach is that it 
helps to reduce ionisation suppression, a much-feared problem occurring with MS 
detection, which complicates metabolite/lipid identification and quantification [2]. 
For instance, in this thesis, a sample preparation based on the addition of a methanol-
water mixture to blood samples [96] has been widely applied since it allows 
separation of targeted polar analytes from proteins and some of the lipid classes, 
especially glycerolipids and sterols, which could compromise the quality of the MS 
measurements due to extensive matrix effects and ionisation suppression (Figure 
14). Protein removal also helps to minimise contamination of the analytical 
instrumentation and extend column lifetime. 

 

Figure 14. Sample preparation strategy applied in this thesis to obtain samples enriched with polar 
and lipophilic compounds. MTBE – methyl tert-butyl ether. 
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Figure 15. Examples of lipids from the most common lipid classes in humans. 

There are also several strategies for the preparation of lipid-enriched samples. Lipids 
are divided into eight major classes (based on the structure of the backbone and 
headgroup), and the structures of the most common in humans are shown in Figure 
15 [97]. The solubility in various solvents differ significantly between these classes, 
ranging from relatively polar phospholipids to highly lipophilic triglycerides. The 
solubility also varies within each class and depends on the number of acyl chains 
and the number of carbons in these chains. 

Extraction of lipids can be performed using a single-phase extraction approach [95].  
However, this approach has been shown to extract mainly polar lipids, whereas a 
significant amount of non-polar lipids (such as triglycerides and cholesterol esters) 
can be lost [98]. There are also several two-phase extraction procedures, e.g., 
traditional chloroform-based methods [99, 100] or methods based on methyl tert-
butyl ether (MTBE) [101], which are the most common nowadays. A modified 
version of the MTBE-based protocol developed by Matyash et al. [101] was used in 
this thesis [102]. Two-phase extractions require slightly more preparation time but 
allow for the extraction of more lipid classes and the reduction of sample complexity 
by the removal of proteins, salts, and most polar metabolites [98]. 
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3.2. Chromatographic separation 
Extracted samples can be analysed directly by MS or by a combination of 
chromatography with MS. The high complexity of the metabolome and lipidome, 
along with the presence of numerous isomeric compounds, existing in a relatively 
narrow mass range of about 200-1200 Da, makes it advantageous to use 
chromatographic separation prior to MS [2, 12].  

Chromatography is a technique that allows the separation of analytes based on their 
differential distribution between a stationary and a mobile phase. The stationary 
phase is usually contained in a column through which the mobile phase is flowing 
by the aid of a high-pressure pump [103]. When a mixture of analytes is loaded onto 
the column, analytes with a higher distribution to the mobile phase will pass the 
column faster than those being mainly distributed to the stationary phase, resulting 
in their separation. Based on the type of mobile phase, chromatography is classified 
into gas and liquid chromatography, utilising gases (e.g. helium or nitrogen) or 
liquids (e.g. various organic solvents), respectively [103]. In liquid chromatography, 
separations can be performed with a non-polar stationary phase and a polar mobile 
phase (reversed-phase liquid chromatography, RP-LC) or with a polar stationary 
phase and a non-polar mobile phase (hydrophilic interaction liquid chromatography, 
HILIC).  

The wide diversity of physicochemical properties of the metabolites and lipids often 
results in the necessity to use different chromatographic approaches to ensure a 
descent coverage of the metabolome and lipidome, respectively [10, 11]. The 
majority of polar small molecules present in biological samples, such as amino acids 
and carboxylic acids, are too polar to be retained by RP-LC and are therefore often 
separated by HILIC, or, following derivatisation to produce volatile derivatives of 
the metabolites, by gas chromatography (GC) (Figure 16) [12, 104, 105]. 

 
Figure 16. Different chromatographic techniques can be applied to cover wide polarity range of 
complex samples. | Redrawn with adaptation from Roca, M. et al. [12] with permission from Elsevier. 
Copyright © 2020, Elsevier. 
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Chromatographic separation of lipids is usually based either on the head-group 
polarity or on acyl chain hydrophobicity [106-108]. Head-group-based separation 
is usually performed via normal-phase liquid chromatography (NP-LC), HILIC, or 
supercritical fluid chromatography (SFC), and is based on the different nature of 
lipid headgroups ranging from zwitterionic and polar headgroups, such as in 
phospholipids, to neutral and quite non-polar headgroups, such as in glycerolipids 
(Figure 15). On the other hand, separation based on acyl chain composition is 
usually achieved by RP-LC and is based on the number of acyl chains, the number 
of carbons in the acyl chains, and the degree of unsaturation. Lipids containing 
longer and more saturated acyls are retained the most in RP-LC. The fact that lipids 
within a particular lipid class represent a homologous series can be used to link 
retention times to acyl composition, thereby facilitating lipid identification [109, 
110]. For example, this approach was used to increase the confidence in lipid 
identification in Paper I (Figure 17) and to construct the list of targeted lipids in 
Paper II. 
A   B 

 

Figure 17. Correlation of triglyceride retention time with (A) their acyl chains lengths and (B) degree 
of unsaturation (based on the data from Paper I). 

3.3. Mass spectrometry 
MS, according to IUPAC, is the study of matter through the formation of gas-phase 
ions that are detected and characterised by their mass and charge [111]. The MS 
process involves three main steps: analyte ionisation, ion separation based on the 
mass-to-charge (m/z) ratio, and detection. 

A mass spectrometer can separate only ions; thus, analytes need to be ionised prior 
to separation in the mass analyser. Different types of ionisation sources are used in 
the metabolomics/lipidomics field, such as electrospray ionisation (ESI), 
atmospheric-pressure chemical ionisation (APCI), atmospheric-pressure 

7,80

8,00

8,20

8,40

8,60

8,80

9,00

48 50 52 54 56

Re
te

nt
io

n 
tim

e 
(m

in
)

Number of carbons in acyl chains 

Number of double bonds 0 1 2 3 4 5 6

7,80

8,00

8,20

8,40

8,60

8,80

9,00

0 1 2 3 4 5 6 7

Re
te

nt
io

n 
tim

e 
(m

in
)

Number of double bonds

Number of carbons in acyl chains 48 50 52 54 56



45 

photoionization (APPI), and electron ionisation (EI). The most common type of 
ionisation used in LC-MS-based metabolomics/lipidomics is ESI, and in GC-MS-
based metabolomics it is EI [11, 112].  

Several different mass analysers are applied in the metabolomics and lipidomics 
fields, such as single quadrupole (Q), time-of-flight (TOF), ion trap (IT), Orbitrap, 
and Fourier transform ion cyclotron resonance (FT ICR); these analysers are often 
combined to provide tandem MS capability [2]. Mass analysers can be grouped into 
low- and high-resolution types based on their ability to distinguish ions of similar 
mass. TOF, Orbitrap, and FT ICR mass spectrometers are often considered high-
resolution instruments and provide high accuracy in mass measurements, whereas 
quadrupoles and ion trap-based mass spectrometers are considered low-resolution 
instruments [103, 112]. 

Lipids and metabolites can be analysed in targeted or untargeted modes [113]. 
Targeted analysis is often performed on low-resolution triple quadrupole (QQQ) 
instruments, which provide high selectivity and low detection limits due to the 
ability of the instrument to perform selective reaction monitoring (SRM), often 
referred as multiple reaction monitoring (MRM) in the case of several reactions 
[114]. This approach requires providing the instrument with a list of certain 
transitions (reactions) for each compound of interest, defining m/z value of a 
precursor ion, fragmentation energy, and the m/z value(s) of formed product ion(s) 
for each analyte of interest [115]. The principle of operation of the QQQ instrument 
is based on the different functions of each quadrupole: the first quadrupole is used 
to select the intact precursor ion, which is then fragmented in the second quadrupole 
(also called the “collision cell”), followed by selection of product ions in the third 
quadrupole (Figure 18). In the thesis, targeted analysis was performed on a QQQ 
instrument in Paper II for the analysis of lipids in hepatocytes due to the low 
amount of sample material and expected low lipid concentrations. The examples of 
used transitions can be found in Table 1 and Figures 23-24. The limitation of such 
targeted methods is that they provide information only for compounds for which 
transitions have been predefined.  

 

Figure 18. Principle of targeted mass spectrometry technique performed on a triple quadrupole QQQ 
instrument. The first quadrupole filters out a product ion, which is fragmented in the second quadruple, 
followed by a second filtration step were only the pre-selected product ions are allowed to pass through 
the third quadruple.  
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In untargeted methods, all m/z values within a certain range are measured, and this 
type of analysis is usually performed on high-resolution instruments. High-
resolution instruments have a significant advantage, as they allow separation of 
metabolites/lipids with very close m/z values [107, 116]. 

Identification confidence in untargeted analysis can be increased by the application 
of tandem MS (or MS/MS analysis) [117]. In this case, two mass analysers are 
combined (e.g., single Q and TOF), with a collision cell in-between. Such a system 
allows ion fragmentation: the first mass analyser serves as a mass filter for a 
particular ion, which is then fragmented in the collision cell, and formed fragments 
are analysed in the second mass analyser. Modern instruments can perform ion 
fragmentation automatically in data-dependent acquisition (DDA) or data-
independent acquisition (DIA) modes [118]. In DDA, after one full scan, the 
instrument selects the ions associated with the most intense signals and then 
fragment and analyse formed ions. The disadvantage of this approach is that the 
instrument chooses only the most intense peaks for further fragmentation, and this 
may result in the absence of information about less abundant species. Data-
independent acquisition can be performed via e.g. all-ion fragmentation (AIF), 
where the instrument performs a full scan followed by a single fragmentation scan 
for all ionisable analytes present at that occasion. The disadvantage of DIA modes 
is the very high complexity of generated data and the loss of connection between 
precursor ions and their fragments [118]. 

3.4. MS coupled to ion mobility spectrometry 
Additional improvements in metabolite/lipid identification can be achieved by 
combining an LC-MS system with ion mobility spectrometry (IMS) [119]. IMS 
provides an additional dimension for ion separation based on their collisional cross-
section (CCS) values, which highly depend on the size and shape of the analyte, 
thereby providing an exceptional tool for separating isomeric compounds [120]. 
This approach was applied for lipid analysis in Paper III using trapped IMS (tims), 
which in combination with a QTOF provides detailed fragmentation data via the 
parallel accumulation serial fragmentation (PASEF) workflow [121]. 

The principle of IMS is based on the separation of ions in a drift tube through which 
a stream of gas flows. Analytes are rendered resistance to the gas flow by the 
application of an electric field. The separation depends on an ion’s CCS value, 
which describes how often a molecule collides with other molecules around it and, 
consequently, how fast an ion can drift in an IMS instrument. In this way, CCS 
values can be compared to a ship’s sail: a ship with larger sails will move faster than 
one with smaller sails. 
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Although the concept of IMS was developed in the 1890s, mass spectrometers 
integrated with IMS were not widely applied until recently. This was due to the 
bulkiness of most IMS instruments, their susceptibility to ion losses, and their low 
duty cycles [122, 123]. A significant increase in the use of IMS-MS began in the 
2000s, following the introduction of a commercial IMS-MS by Waters in 2006 
[122]. Other vendors followed and recently Bruker introduced the timsTOF, which 
utilises an IM analyser with the PASEF workflow, followed by a high-resolution 
TOF mass analyser.  

 

Figure 19. The principle of parallel accumulation serial fragmentation (PASEF) technique. Initially, 
the electric field in the "storage" region is reduced, allowing ions to accumulate in the "analysis" 
region. Then, electric field in the "storage" region is gradually decreased, leading to ion release and 
separation based on their CCS values. Simultaneously, the electric field in the "storage" region is 
increased, allowing ion accumulation. | Redrawn from Silveira, J.A. et al. [124] with permission from 
Elsevier. Copyright © 2016, Elsevier. 

The key feature and advantage of the PASEF technology is the simultaneous 
separation of one group of ions while another group is being accumulated. This is 
achieved because the central part of the drift tube contains two regions: the 
“storage” region at the ion entrance and the “analysis” region at the ion elution 
side (Figure 19) [123]. The PASEF cycle consists of two main steps: first, the 
electric field in the “storage” region is reduced, allowing ions to accumulate in the 
“analysis” region. In the next step, the electric field in the “storage” region is 
increased, preventing new ions from entering the “analysis” region. Simultaneously, 
ions previously accumulated in the “analysis” region are released and separated 
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based on their CCS values, using a stepwise decreasing electric field. In this process, 
ions with larger CCS values and higher m/z values are released first, while smaller 
ions elute last. The resulting spectrum is called a mobilogram. The ions leaving the 
drift tube are then fragmented in the collision cell and detected by a high-resolution 
TOF mass analyser. The analysis occurs in cycles, with each cycle (e.g. 0.3 seconds 
for lipidomics analysis) typically consisting of one full-scan followed by several 
PASEF cycles (e.g., two 100 ms cycles in lipidomics analysis), including multiple 
MS/MS analyses in DDA mode [120]. 

3.5. Study design 
The study design is extremely important in all types of studies, and especially in 
large-scale omics studies [125]. In the thesis projects, a constrained randomization 
approach [126] was used to minimise the variation in data associated with the so-
called batch effect. Metabolomics studies are often performed on a large number of 
samples, which cannot be prepared and analysed simultaneously; thus, they are 
often separated into smaller groups – batches. Separation of samples into batches 
leads to increased variability in the data due to variations in instrument performance 
over time, possible sample ageing, etc. The constrained randomisation approach is 
based on the principle of grouping the main effect in a random order, while the order 
of other variables is not crucial [126]. For example, in Paper I, we analysed how 
the human metabolome changes in response to gastric bypass surgery over time. 
The study involved 148 participants, whose blood samples were taken at baseline 
and then after two, 12, and 60 months post-surgery. The research question was to 
elucidate how the human plasma metabolome changes in an individual. Thus, during 
analysis we kept all samples from one individual together but analysed them in a 
random order. Care was also taken to randomly analyse individuals with an without 
diabetes, which was another important outcome variable. At the same time, the 
specific order of individuals was not crucial (Figure 20).  

Another important aspect of metabolomics experiments is the application of quality 
control (QC) samples, internal standards (IS), and regular verification of instrument 
performance using system suitability tests (SST) [127]. It is important that the QC 
sample represent the “average” sample being analysed. In the case of human plasma, 
a standard plasma sample (commercially available) can be utilised. However, 
standard samples are not always available, and in such case, a QC sample can be 
prepared by mixing fixed aliquots from each sample. A QC sample is then analysed 
regularly (e.g., after every tenth sample) in each analytical batch. QC samples and 
IS added to the samples allows for monitoring of system performance by checking 
mass accuracy, stability of retention time, and signal intensity etc. This information 
can then be used for signal normalisation if needed. 
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Figure 20. Illustration of constrained randomisation approach applied during sample analysis based 
on the Paper I study, where blood samples were collected from individuals at baseline (0) and then at 
2, 12, and 60 month post-surgery. 

3.6. Raw data processing 
Data analysis in metabolomics/lipidomics studies consists of several steps [128] and 
starts with the analysis of raw data, including peak picking, which distinguishes real 
signals from noise, peak alignment, peak integration, metabolite identification, and 
sometimes quantification [129]. Compound identification is one of the biggest 
challenges in the metabolomics/lipidomics field due to the high complexity of these 
omes, the presence of isomeric compounds, coelution of analytes, and in-source 
fragmentation [2]. Another significant complication is the high structural 
heterogeneity of metabolites, which belong to multiple structural groups, making it 
difficult to develop systematic identification algorithms. Lipids usually have a 
higher level of structural resemblance, as they often can be considered as 
homologous series within lipid classes, but the high rate of isobaric and isomeric 
structures among lipids significantly complicates their identification.  

Identification confidence can be improved in several different ways. First, sample 
complexity can be reduced by optimizing the extraction for the metabolites of 
interest. Additionally, orthogonal analytical data can be employed, such as 
chromatographic retention time, CCS-values, and mass spectra (as used for 
lipidomics analysis in Paper III). Various approaches in tandem MS can also 
provide additional structural information to reinforce identification of the metabolite 
or lipid. Furthermore, the confidence in metabolite/lipid identification should be 
reported according to community-established rules [13, 130, 131] and metabolite 
naming, especially lipid annotation, should be based on the achieved level of 
identification [97]. 
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3.7. Statistical data analysis 
There are numerous methods for performing statistical data analysis in the omics 
fields [128]. Most often the data need to be prepared for the statistical analysis and 
this includes operations such as data filtering, outlier detection, and transformation 
[132, 133]. Data filtering involves removing metabolites found in only a few 
samples, those with low signal levels, or those exhibiting very high variation in the 
QC samples. In all the studies presented in this thesis, we used log-transformed data. 
This transformation helps compensate for non-symmetrical data distributions 
around the mean, which is common in biological data, where most values are 
clustered around a small number but with some larger values. Log-transformation 
also brings data to a similar scale, thereby stabilising the variance among data 
(reducing heteroscedasticity) [132], as different metabolites and lipids can vary 
significantly in concentration in biological samples. 

To evaluate how metabolites and lipids changed in response to different variables 
in the performed studies, we utilised different types of linear regression models. In 
Paper II, we used a simple linear regression model (SLR) to assess the effect of 
caffeine supplementation in vivo. In Papers I and III SLR was not applicable 
because our data were based on repeated measurements from the same individuals. 
Thus, we applied linear mixed-effects models (LMM). This type of model allows us 
to separate fixed effects, which are of primary interested (e.g., how the metabolite 
abundance changes over time) from random effects, which are less of a concern 
(such as differences between individuals). Additionally, LMM can be extended to 
multivariate LMM, where several factors are included in the model, such as time, 
age, sex, BMI, etc. This approach enabled us to evaluate the influence of specific 
factors while accounting for individual variance, determine the statistical 
significance of each factor. The results of these analyses can be pictured in several 
different ways, out of which volcano plots (e.g., Paper II, Figure 2), bar plots, and 
heatmaps (e.g., Paper I, Figure 3) are very illustrative. 

Working with metabolomics data involves evaluating multiple interconnected 
metabolites and lipids. Therefore, applying multivariate tools that allow for an 
overview of all data collectively is advantageous. Multivariate analysis tools include 
unsupervised methods, such as principal component analysis (PCA), and supervised 
methods, such as partial least squares regression (PLS), also known as projections 
to latent structures, and orthogonal projections to latent structures (OPLS) [133-
135]. The key difference between unsupervised and supervised analysis lies in the 
input data: unsupervised methods uses only metabolite variables without predefined 
grouping variables, whereas supervised methods are based on defined groups and 
allows for the identification of correlations between metabolites and various 
outcomes while removing variation in the data that is not of interest [128]. PCA is 
often used at the beginning of data analysis as an exploratory tool to detect any 
grouping in the data and identify the main sources of variation. For example, PCA 
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was used in Paper I to visualise clustering based on the time after gastric bypass 
surgery (Paper I, Figure 2). Meanwhile, a variant of the OPLS method based on 
effect projections (OPLS-EP) [126] was employed in Paper I to analyse the 
influence of acyl chain carbon number and degree of unsaturation on lipid profiles 
after RYGB (Paper I, Figure 4). 
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4. Results and Discussions  

4.1. Effect of gastric bypass surgery on metabolic 
health – Paper I 

A previous study performed in our group focused on the short-term effects of  
RYGB [102]. In that study, it was shown that the majority of metabolic alterations 
observed after RYGB result from the very-low-calorie diet that patients need to 
follow before the surgery. In that study, indications of the metabolome returning to 
initial conditions shortly after RYGB were also observed [102]. Thus, in Paper I, 
we investigated the more long-term effects of RYGB by analysing blood samples 
collected before RYGB and then after two, twelve, and sixty months post-RYGB 
(Figure 21). 

 

Figure 21. The outline of the study performed in Paper I. 

Two types of extracts were obtained for each sample: polar extracts [96, 136] and 
lipophilic extracts [101, 102], which were analysed using LC-QTOF. Subsequently, 
fractions of the polar extracts were evaporated to dryness and analysed by GC-MS 
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after a two-step derivatisation involving methoximation with subsequent silylation 
[104]. 

The obtained experimental data were evaluated using PCA to get a general overview 
of the data (Paper I, Figures 2 and 5). Then, LMMs were applied to analyse 
variation in each metabolite individually over the study periods (Paper I, Figures 
3 and 6). Changes in metabolite and lipid profiles were examined over the following 
study periods: short-term (from baseline to two months post-RYGB), long-term 
(between two and twelve months), one-year cumulative (from baseline to twelve 
months) and also very-long-term (between one and five years post-RYGB) and five-
year cumulative (from baseline to five years) (Figure 21). 

Analysis of the lipidomics data revealed a great diversity in the behaviour of various 
lipid species, but also within many of the investigated species. In order to evaluate 
these differences, we used OPLS-EP [126] to study lipid alterations based on their 
acyl chain carbon number and degree of unsaturation (Paper I, Figure 4). The 
loadings from the model were extracted [137], which describe the contribution of 
each lipid to the observed difference between study periods. Then, linear models 
were used to evaluate how these loadings depended on the lipid acyl chain length 
and degree of unsaturation. These analyses revealed that during the short period of 
two months post-RYGB, levels of lipids with longer acyl chains and a higher degree 
of unsaturation were increasing, whereas lipids with shorter acyl chains and a lower 
number of double bonds were decreasing. During the following ten-month post-
RYGB, we observed the opposite behaviour.  

The increase in long-chain and highly unsaturated lipids has been observed 
previously after bariatric surgeries [138, 139], although not to the same systematic 
extent, and are generally believed to have beneficial effects on health. Long and 
unsaturated lipid acyl chains contribute to enhanced membrane fluidity, which  
improves the capacity of the membrane to integrate proteins, including receptors 
and ion channels [140, 141]. The observed opposite alterations in lipid levels 
between two and twelve months post-RYGB (Paper I, Figure 3) demonstrate that 
the metabolome begins to return to its initial state. Moreover, the effect of the very-
long-term follow-up showed almost no changes between the five year and baseline 
states (Paper I, Figure S2). Despite this observation, a complete remission of the 
metabolome to the initial state cannot be confirmed due to the lack of samples from 
the 5 years study visit. 

The analysis of polar metabolites, including amino acids, acylcarnitines, carboxylic 
acids, sugars, and some other low molecular weight metabolites showed more 
complex alterations, which are summarised in (Table 1). Levels of the majority of 
metabolites decreased shortly after RYGB. These metabolites included branched-
chain (leucine, isoleucine, valine), aromatic (tryptophane, phenylalanine, tyrosine), 
and some other amino acids (alanine, glutamic acid, lysine, ornithine, aspartic acid, 
proline, methionine, cysteine, threonine), sugars and their derivatives (glucose,  
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Table 1. Overview of alterations of metabolites between baseline and two-months post-RYGB. 

Metabolites decreased in the 
short-term post-RYGB Biological interpretation References 

Branched chain amino acids: 
leucine, isoleucine, valine 

Increased levels are assosiated with insulin 
resistance and can be used as predictors of T2D 
development 

[142], [143], 
[79] 

Aromatic aminoacids: 
tryptophane, phenylalanine, 
tyrosine 

Increased levels are assosiated with insulin 
resistance and can be used as predictors of T2D 
development 

[79] 

Other amino acids: alanine, 
glutamic acid, lysine, ornithine 

Alanine, lysine, ornithine have been associated 
with T2D development 

[144] 

Aspartic acid, proline, 
methionine, cysteine 

Decrease in aspartic acid, proline, methionine, 
cysteine reflects a catabolic state  

Decreased levels of methionine and cysteine are 
associated with oxidative stress 

[145, 146] 

Urea Urea is produced in amino acid catabolism; 
higher levels of urea are associated with an 
increased risk of T2D development 

[147] 

Sugars: glucose, fructose, 
inositol 

Improved insulin sensitivity  

Carnitine and short-chain 
acylcarnitines (3:0, 4:0, 5:0, 
8:1) 

Reduced catabolism of amino acids  [148] 

2-Hydroxybutyrate Levels of 2-hydroxybutyrate increase during 
conditions of increased oxidative stress and are 
associated with T2D 

[149] 

Lactic acid Increased mitochondrial oxidation of glucose [150] 

Uric acid Increased levels are assosiated with insulin 
resistance  

[151] 

Metabolites increased in the 
short term post RYGB   

3-Hydroxybutyrate Ketone body, indicator of a catabolic state [152] 

Serine Serine has been reported to be positively 
correlated with insulin secretion and sensitivity 

[153] 

Glycine Glycine levels are decreased in patients with 
obesity or diabetes 

[154], [155] 

Acetylcarnitine (2:0), medium 
and long-chain acylcarnitines 
(10:0, 12:1, 14:1, 16:0, 18:1) 

Increased levels of acylcarnitines are associated 
with a catabolic state 

[148] 

TCA cycle intermediates: 
malate and citrate 

Possible indicators of increased mitochondrial 
oxidative metabolism 

[156] 
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fructose, inositol, threonic acid), short-chain carnitines, lactic acid, 2-
hydroxybutyrate, urea, and uric acid. At the same time, some metabolites increased 
over the short-term period, including the ketone body 3-hydroxybutyrate, serine and 
glycine, acetylcarnitine, medium and long-chain acylcarnitines, TCA-cycle 
intermediates (malic and citric acids). In general, a pattern similar to that found in 
the lipidomics data was observed in the metabolomics data, i.e. opposite metabolic 
changes over the short-term and long-term study periods, with one- and five-year 
cumulative effects being less significant (Paper I, Figure 6, Figure S3). 

The majority of alterations observed are in line with previously published data on 
metabolite and lipid levels after bariatric surgery [157, 158]. At the same time, we 
found that the metabolome was shifting to the initial state two months post-RYGB. 
This shift parallels the expected increase in calorie intake during the post-surgery 
period. A few weeks prior to the surgery and until two months post-RYGB, people 
can consume only around 500 kcal per day. After two months, the calory intake 
increases to about 1000 kcal and thereafter continuous to increase [159]. 

The early shift toward the initial metabolome could be an early indication of future 
weight regain. Although gastric bypass provides significant weight loss, many 
patients experience weight regain in the long term. It was demonstrated that 37% of 
patients experience a weight regain of >25% of the total lost weight within a few 
years after the surgery [160]. Additionally, weight regain is associated with the 
recurrence of obesity-related comorbidities, such as T2D and hypertension. It has 
been shown that within 3-15 years after bariatric surgery 30-50% of patients who 
achieved T2D remission return to an insulin resistant state [161, 162].  

Weight regain after bariatric surgeries could be related to anatomical changes, 
although this is quite rare. The most common reasons are linked to increased calory 
intake due to maladaptive  (unhealthy eating behaviour in which food is used to cope 
with difficult emotions and stress) or dysregulated eating (such as grazing – eating 
small portions of food in an uncontrolled and unplanned way), as well as not 
following post-surgery dietary recommendations, insufficient physical activity, and 
physiological compensatory mechanism such as changes in hormonal regulation of 
food intake [163]. At the same time, as highlighted in the review by Busetto et al., 
multiple biological processes are involved in the regulation of body weight, and 
most of these processes are beyond voluntary food intake and physical activity 
[164]. Thus, the mechanisms underlying weigh regain after bariatric surgery are 
very complex and require further investigation. 
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4.2. Impact of caffeine on liver metabolism in healthy 
conditions – Paper II 

Coffee has been suggested to cause several beneficial effects on human health, 
including reduced all-cause mortality, a reduction in CVDs, and positive effects on 
liver health [69]. Coffee has a very complex composition, and many compounds 
found in coffee may contribute to these beneficial effects. In Paper II, we focused 
on caffeine, since it has been shown that decaffeinated coffee lacks a significant 
metabolic effect in the liver [69]. The beneficial effects of coffee on liver health 
have been linked to its ability to improve hepatic steatosis by reducing liver fat 
accumulation. However, previous research has focused on the lipotoxic unhealthy 
liver, whereas little is known about the effect of caffeine on the healthy liver. 

Initially, the effect of caffeine supplementation was evaluated in an animal model 
in a collaboration project with the Department of Neonatology, Lund University, 
where the in vivo experiments were performed. Several lipid species showed 
decreased levels in livers from caffeine treated animals at a nominal level of 
significance. However, these changes were minor and lost upon correction for 
multiple testing (Paper II, Figure 2). No statistically significant alterations in lipid 
profiles were found in the blood samples. 

The liver is a complex organ, containing multiple cell types and in vivo animal 
research is often associated with significant variation between animals. Hence, to 
reduce the experimental variation and to focus on lipid metabolism in liver cells, the 
effect of caffeine and its metabolite paraxanthine was compared to the effect of 
adenosine in two independent hepatocyte cell lines. Paraxanthine was selected as it 
is suggested to be a more potent phosphodiesterases (PDE) inhibitor than caffeine 
[165]. Adenosine was included since xanthines are known to act as adenosine 
receptor antagonist [166]. Liver cell lines HepG2 and Huh-7 were treated with 
different concentrations of caffeine, paraxanthine, and adenosine, and were cultured 
in either low- or high-glucose media for 24h (Figure 22). Subsequently, lipids were 
extracted according to previously published method [102] and analysed using the 
targeted LC-QQQ method. 
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Figure 22. Schematic illustration of the setup of the experiment in lever cells performed in Paper II. 

The targeted QQQ method was chosen for the lipid analysis due to the low number 
of cells and, consequently, the expected very low lipid abundance in the culture. The 
method was based on a targeted SFC-QQQ method [167]. The choice of lipid 
species included in the method was also based on published results [167], general 
information about lipid abundance in humans [6, 7, 168], and preliminary tests of a 
wide ranges of lipid species, from which the most abundant were selected. A 
summary of the selected lipids and associated transitions is provided in Table 2 and 
Figures 23-24. 

Data obtained from the cell experiments were analysed by PCA (Paper II, Figure 
3). The biggest difference in the lipid profiles was found between the different cell 
lines and glucose concentrations, whereas no group separation was observed based 
on the added drugs at any of the tested concentration. The absence of effect may be 
explained by the fact that previous studies used higher, non-physiological, caffeine 
doses [169] or involved fatty acid-treated cells, which stimulated a disease state in 
cells [170]. In contrast, our experiment was based on “healthy” cells without the 
inclusion of toxic levels of fatty acids in the media. Hence, caffeine is unlikely to 
have an effect on the healthy liver.  
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Table 2. Overview of transitions for each lipid class analysed by LC-QQQ 

Lipid Class Transition N 

Positive mode ESI(+)   

PCs – Phosphatidylcholines [M + H]+ → 184 23 + 1 IS 

LPCs – Lysophosphatidylcholines [M + H]+ → 184 15 

SMs – Sphingomyelins [M + H]+ → 184  26 

Cers – Ceramides [M + H]+ → 264 14 

CEs – Cholesterol esters [M + NH4]+ → 369 17 + 1 IS 

DGs – Diglycerides [M + NH4]+ → [M - Acyl-COOH + H]+ 29 + 1 IS 

TGs – Triglycerides [M + NH4]+ → [M + NH4]+ 39 + 1 IS 

ACs – Acyl carnitines [M + H]+ → 85 4 

Negative mode ESI(-)   

FFAs - Free fatty acids [M - H]- → [M - H]- 24 + 1 IS 

PEs - Phosphatidylethanolamines [M - H]- → [Acyl-COO]- 32                      
(53 transitions) 

LPEs - 
Lysophosphatidylethanolamines 

[M - H]- → [Acyl-COO]- 16 + 1 IS 

PIs - Phosphatidylinositols [M - H]- → 241 11 

Total  250 + 6 IS 
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Figure 23. Examples of transition schemes for each lipid class analysed by LC-QQQ in positive ESI 
mode. 
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Figure 24. Examples of transition schemes for each lipid class analysed by LC-QQQ in negative ESI 
mode. 
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4.3. Impact of different dietary approaches on the 
metabolome of people with diabetes and 
normoglycemic individuals – Paper III  

 

Diet is one of the most important factors contributing to human health and requires 
special attention for people with diabetes. The application of metabolomics and 
lipidomics approaches to evaluate the impact of different meals on health offers 
unique opportunities for characterising the dynamic metabolic response to varying 
meal composition. These meal-elicited alterations in the metabolite profile reflect a 
combination of endogenous and exogenous factors, where endogenous processes, 
influenced by genetic variation and diseases such as diabetes, interact with 
exogenous factors provided by the meal. 

In Paper III, we evaluated the impact of four 600-kcal meals composed of red meat 
with boiled or French-fried potatoes and different vegetables but prepared in 
different ways to produce meals enriched in carbohydrates, protein, fats, or fibre. 
Each of these meals was given to three groups of participants: people with T1D (n 
= 18), people with T2D (n = 21), and a control group of individuals with normal 
glucose levels (n = 17), on different days with a washout period in between. Blood 
samples were taken five minutes before food intake and then one and three hours 
after the meal.  

 

Figure 25. Overview of the study presented in Paper III. 
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Plasma samples were analysed by GC-MS-based metabolomics and LC-timsTOF-
based lipidomics in order to evaluate the impact of meal macronutrient variation and 
glycaemic status on the meal-elicited metabolic regulation (Figure 25). Hormonal 
regulation in response to these meals has already been reported [171], [172]. 

In the obtained data, we observed that glycaemic status had a pronounced effect on 
lipid profiles. The group of individuals with T2D deviated from the two other 
groups, as evidenced by PCA (Paper III, Figure 1D), heatmaps (Paper III, Figure 
S1), and in analysing alterations in lipids grouped by lipid class (Paper III, Figure 
4). We observed that the T2D group had higher levels of multiple lipids, mainly 
triglycerides (TGs) and diacylglycerols (DGs). At the same time, this group had 
decreased levels of lysophosphatidylcholines (LPCs), ether-linked LPCs, ether-
linked phosphatidylcholines (PC-Os), and hexosylceramides (HexCer). These 
observations reflect a state of dyslipidaemia [173], characteristic for people with 
T2D, and also confirm previously published lipidomic studies in people with T2D 
[174, 175]. Changes in metabolite profiles based on glycaemic status were less 
pronounced, even though T1D group tended to show relatively lower levels of most 
metabolites (Paper III, Figure S7). However, some diabetes-characteristic 
alterations were also revealed, such as decreased levels of the hyperglycaemia-
dependent metabolite 1,5-anhydroglucitol in T2D and T1D [176]. 

To estimate the effect of different meals on postprandial metabolite and lipid 
profiles, we used LMMs, which allowed us to account for the random effect 
associated with repeated measurements in the same individuals. In our model (y ~ 
meal*time*diabetes + time2 + (1|participant)), we included parameters for meal, 
time, and diabetes status, as well as the interactions between them. We also added a 
squared term of time, as we observed that several metabolites and lipids showed a 
U-shaped profile. This model was initially used on all metabolites and lipids 
individually (Paper III, Figures 2B-D and 3B-D). We also used the same model to 
visualise alterations in metabolites and lipids grouped by class (Paper III, Figures 
4 and 6). 

Our analyses revealed several meal-dependent changes in metabolism, including an 
increased response in sugars following the intake of the carbohydrate- and fibre-rich 
meals compared to the fat- and protein-rich meals. We also found an increased level 
of pipecolic acid after the intake of the fibre-rich meal. Pipecolic acid is formed 
from lysine by intestinal bacteria and is known to increase after consumption of 
plants [177]. However, very few metabolites showed diabetes-modified responses, 
as evidenced by the lack of significant interactions in the LMMs.  

Lipid levels were more sensitive to glycaemic status, as compared to the 
metabolites; this was mainly driven by the altered lipid levels observed in T2D. 
Similar results were obtained both at the level of individual lipids and at the level 
of lipid class. At lipid class-level, only TGs were found to be significantly altered 
by the meal. Notably, the TG profiles differed between saturated, mono- and 
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polyunsaturated TGs (Paper III, Figure S5). To examine this pattern further, we 
selected the most abundant lipid classes, e.g. TGs, SMs, and PCs, and evaluated 
how the number of double bonds and the carbon length of acyl chains were 
associated with the effects obtained from the LMMs (Paper III, Figure 5). We 
found that the protein-rich meal resulted in an increase in long-chain saturated and 
short-chain unsaturated PC and SM lipids, whereas it did not have a statistically 
significant effect on TG levels. The intake of the fat-rich meal led to an increase in 
long-chain saturated PCs and SMs and to an increased in medium-chain 
polyunsaturated TGs. As for the metabolites, we could not detect any significant 
interactions between diabetes and the other model terms, suggesting the meal-
elicited response in lipid levels to be conserved in diabetes. 

 



64 

5. Conclusions and Further 
Perspectives 

In Paper I, we found that the most significant alteration in the human metabolome 
occurs within two months after gastric bypass surgery. Then, the metabolome begins 
to change in the opposite direction, indicating a return to the initial state. Thus, at 
one-year post-RYGB, when patients reach their lowest weight, most metabolites are 
close to the pre-surgical level, and five years after the surgery, this difference 
becomes even less noticeable. The observation that metabolism returns to the initial 
state can provide evidence of the organism’s adaptation to RYGB surgery and the 
safety of the procedure. On the contrary, the observed return to the initial metabolic 
state may indicate the reinstatement of an anabolic state, which over time will lead 
to weight-regain, something that is observed in the years following RYGB. Notably, 
not all individuals return at the same rate. Hence, it would be interesting to evaluate 
a longer follow-up time to test this. Moreover, the ability of metabolomics and 
lipidomics to predict which individuals would benefit the most from a RYGB 
remains unexplored.  

In Paper II, we found that caffeine did not produce any significant changes in the 
lipid profiles in the in vivo experiment. We also did not observe significant 
alterations in the lipidome of hepatocytes under treatment with caffeine, 
paraxanthine, or adenosine. These results suggests that caffeine, in physiological 
concentrations, does not produce a significant impact on a healthy liver. This study, 
based solely on healthy animal models and clonal cell lines, does not rule out any 
health effects of caffeine in the obese state. However, further research is needed to 
more precisely identify the metabolic conditions under which caffeine may exert 
beneficial health effects. 

In Paper III, we found differences in lipid and metabolite profiles depending on 
participants’ glycaemic status and the meal consumed. However, we found very few 
meal-elicited alterations to be affected by glycemic status. Hence, this suggests that 
participants from all study groups should benefit from the same diet to the same 
extent. The study only evaluated the acute effects of meals. Therefore, long-term 
meal interventions and the assessment of additional health parameters may be 
necessary to validate these findings. 
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