
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

KOSHIK: A large-scale distributed computing framework for NLP

Exner, Peter; Nugues, Pierre

Published in:
3rd International Conference on Pattern Recognition Applications and Methods (ICPRAM 2014)

2014

Link to publication

Citation for published version (APA):
Exner, P., & Nugues, P. (2014). KOSHIK: A large-scale distributed computing framework for NLP. In 3rd
International Conference on Pattern Recognition Applications and Methods (ICPRAM 2014) (pp. 464-470).
SciTePress.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/c9fc300c-af19-4b87-be5b-e4547075d01a


KOSHIK- A Large-scale Distributed Computing Framework for NLP

Peter Exner and Pierre Nugues
Department of Computer Science, Lund University, Lund, Sweden

fpeter.exner, pierre.nuguesg@cs.lth.se

Keywords: NLP Framework, Distributed Computing, Large Scale-processing, Hadoop, MapReduce.

Abstract: In this paper, we describe KOSHIK, an end-to-end framework to process the unstructured natural language
content of multilingual documents. We used the Hadoop distributed computing infrastructure to build this
framework as it enables KOSHIK to easily scale by adding inexpensive commodity hardware. We designed
an annotation model that allows the processing algorithms to incrementally add layers of annotation without
modifying the original document. We used the Avro binary format to serialize the documents. Avro is designed
for Hadoop and allows other data warehousing tools to directly query the documents. This paper reports the
implementation choices and details of the framework, the annotation model, the options for querying processed
data, and the parsing results on the English and Swedish editions of Wikipedia.

1 INTRODUCTION

In recent years, the typical size of what we call a
large corpus has grown from one million words to bil-
lions of tokens. Such amounts have transformed what
we can expect from language technology. Google’s
knowledge graph (Singhal, 2012) and IBM Watson
(Ferrucci, 2012) are two recent examples of what
large-scale NLP made possible.

This big data era also means that most researchers
in the field will have to collect, process, and inter-
pret massive amounts of data. Although extremely
promising, this also means that most NLP experi-
ments or applications will no longer be able to rely on
a single computer whatever its memory size or pro-
cessor speed.

KOSHIK1 is a framework for batch-oriented large
scale-processing and querying of unstructured natu-
ral language documents. In particular, it builds on
the Hadoop ecosystem and takes full advantage of the
data formats and tools present in this environment to
achieve its task.

Volume, velocity, and variety are three aspects
commonly regarded as challenging when handling
large amounts of data. KOSHIK tries to address these
challenges by:

1Hadoop-based projects are often named with an ele-
phant or other animal theme. Following this tradition, we
named our framework after an Asian elephant, KOSHIK,
who can imitate human speech.

� Using Hadoop, an infrastructure that is horizon-
tally scalable on inexpensive hardware.

� Having a batch-oriented annotation model that al-
lows for incremental addition of annotations.

� Supporting a wide variety of algorithms (tok-
enizer, dependency parsers, coreference solver)
for different input formats: text, CoNLL, and
Wikipedia.

2 RELATED WORK

Early work on NLP frameworks has recognized the
importance of component reuse, scalability, and ap-
plication to real world data in unstructured informa-
tion processing. Examples of frameworks include
MULTEXT, GATE, and UIMA that were used in ap-
plications such as document retrieval, indexing, and
querying of processed information.

MULTEXT (Ide and Véronis, 1994) adopted the
principles of language independence, atomicity, in-
put/output streams, and a unifying data type to cre-
ate a system where tools can be reused and extended
to solve larger and more complex tasks. MULTEXT
stores the output from processing modules interleaved
in the original document as SGML markup. In con-
trast, documents in Tipster II (Grishman et al., 1997)
remain unchanged. The outputs from the process-
ing modules are separately added as annotations and
stored in a dedicated database.

463



GATE (Bontcheva et al., 2004) is an architec-
ture that builds on the work of Tipster by providing
a unifying model of annotation that represents the
data read and produced by all of the processing mod-
ules. Furthermore, GATE provides a uniform access
to algorithmic resources (tools, programs, or libraries)
through an API. GATECloud (Tablan et al., 2013) acts
as a layer for the GATE infrastructure on top of multi-
ple processing servers and provides a parallel analysis
of documents.

UIMA (Ferrucci and Lally, 2004) is an infrastruc-
ture designed for the analysis of unstructured docu-
ments (text, speech, audio, and video). It has com-
ponents for reading documents, performing analy-
sis, writing to databases or files, and a configurable
pipeline. The annotation model in UIMA is based
on a hierarchical type system defining the structure
of annotations associated with documents. UIMA is
compatible with a large set of external NLP tools.
These include OpenNLP2, DKPro Core (Gurevych
and Müller, 2008), and JULIE Lab3. Scalability of the
processing in UIMA is offered through UIMA Asyn-
chronous Scaleout (UIMA AS) and Behemoth4 for
processing within Hadoop.

3 KOSHIK OUTLINE

Rather than creating a new framework for parallel
computation, such as UIMA AS or GATECloud, we
designed KOSHIK from the ground-up for the Hadoop
environment using Hadoop-compatible tools and data
formats. One advantage of this approach lies in the
ability to reuse other text and NLP processing tools in
Hadoop, such as Cloud95, for further processing.

Document processing is implemented as MapRe-
duce jobs, that through Hadoop allow for horizontal
scaling of computational power. KOSHIK supports a
full pipeline of NLP multilingual tools including pre-
filters, tokenizers, syntactic and semantic dependency
parsers, and coreference solvers. To our knowledge,
this is the first framework to support a full pipeline
with a semantic layer in the Hadoop environment.

KOSHIK’s annotation model resembles that of AT-
LAS (Laprun et al., 2002) and Tipster II, which it ex-
tends to support the variety of output models from the
processing tools. Data serialization of documents and
annotation is made using Avro6, a binary language-
independent serialization format. Avro allows the se-

2http://opennlp.apache.org/
3http://www.julielab.de/Resources/Software/NLP Tools.html
4https://github.com/DigitalPebble/behemoth
5http://lintool.github.io/Cloud9/
6http://avro.apache.org/

rialization of complex structures to data files that can
be queried through other Hadoop tools, most notably
Hive (Thusoo et al., 2009) and Pig (Olston et al.,
2008).

The rest of the paper is structured as follows. We
introduce the KOSHIK architecture in Sect. 4 and we
discuss how we chose a distributed computing plat-
form. We outline KOSHIK’s implementation. Sec-
tion 5 gives an overview of the annotation model and
shows how we represent different document struc-
tures and annotations from the parsers. We discuss
how annotated data can be queried using the tools in
Hadoop in Sect. 6. In Sect. 7, we discuss applica-
tions of our framework and give an overview of re-
sults from parsing the English and Swedish editions
of Wikipedia. Finally, we conclude with a discussion
in Sect. 8.

4 ARCHITECTURE

KOSHIK supports a variety of NLP tools implemented
atop of the Hadoop distributed computing framework.
The requirements on KOSHIK were driven by the de-
sire to support scalability, reliability, and a large num-
ber of input formats and processing tasks. Figure 1
shows an overview of the architecture. The following
sections detail the implementation choices and engi-
neering details.

4.1 Distributed Computing Framework

The design of a distributed computing framework has
a critical influence in the processing speed of large
corpora. At first hand, distributed processing consists
in sharing the processing of documents over multiple
computing nodes. This involves among other things
the division and distribution of a collection of docu-
ments, scheduling of computing tasks, and retrieval
of computing outputs. At the very core, the nature of
this task is communication and coordination oriented.

We first experimented with the Message Passing
Interface (MPI) communications protocol. MPI al-
lows a program in a distributed environment to share
information and coordinate in a parallel task by pro-
viding communication and synchronization function-
alities between processes. While using MPI solved
the problem of distributing computational power,
many other factors such as reliability caused by hard-
ware failures and rescheduling of failed tasks re-
mained unsolved.

After the initial attempt with MPI, we built
KOSHIK to run on Hadoop (White, 2012). Hadoop is

ICPRAM�2014�-�International�Conference�on�Pattern�Recognition�Applications�and�Methods

464



Figure 1: An overview of the KOSHIK architecture. Input from text, CoNLL, and Wikipedia dump XML files are imported us-
ing a corresponding InputFormat. The imported documents are analyzed using a pipeline of content processors and serialized
to Avro binary format. The serialized documents can be queried using Hive or Pig.

an infrastructure for running large-scale data process-
ing tasks in a distributed environment. It offers a pro-
gramming model, MapReduce (Dean and Ghemawat,
2008), through which processing workflows, referred
to as MapReduce jobs, can be expressed. Using
this model, Hadoop abstracts implementation details
such as network communication and reading/writing
to disk. Its execution engine automatically schedules
jobs, performs load balancing, monitors and reruns
failed tasks. Data stored on the Hadoop Distributed
File System (HDFS) is replicated across nodes for re-
liable storage. This also has the benefit of offering
data locality for processing task, thereby lowering the
network traffic between nodes.

While Hadoop has native support for Java and
support for many high-level programming languages
(Python, Ruby etc.) through Hadoop streaming, pro-
cessing of data is further simplified by tools that re-
move the necessity to write MapReduce jobs; the
most notable ones being Pig and Hive. Pig has a
scripting language, called Pig Latin, that can express
workflows which read and transform large data-sets.
Hive offers an SQL-like language, called HiveQL, to
express queries that are transformed into MapReduce
jobs. These tools leverage the power of querying over
distributed datasets while offering a simplified query-
ing language familiar to RDBMS analysts.

Hadoop scales horizontally over inexpensive off-
the-shelf hardware and is offered in many distribu-

tions: Cloudera7, Hortonworks8, MapR9, and many
more. It can also be run on a computing cloud
services such as Amazon EC2 (Elastic Compute
Cloud)10.

4.2 MapReduce

Designed by Google, MapReduce is a programming
model inspired by the map and reduce primitives
present in Lisp and other functional programming lan-
guages. Users specify a map and a reduce function
that both receive and output key value pairs. Map
functions receive key value pairs based on the input
data submitted with a MapReduce job. The key value
pairs output from mappers are sorted by the keys and
partitioned into groups that are sent as input to reduc-
ers. Output from reducers are written to the HDFS
filesystem in Hadoop.

While the number of map tasks is governed by
how Hadoop splits the input data, the number of re-
duce tasks can be explicitly specified by the user. This
knowledge has guided our implementation of Koshik
as we have chosen to place all processing in reduce
tasks. In doing so, we allow the user to retain con-
trol over the number of simultaneous tasks running
on each node. This is an advantage especially when

7http://www.cloudera.com/
8http://hortonworks.com/
9http://www.mapr.com/

10http://aws.amazon.com/ec2/

KOSHIK-�A�Large-scale�Distributed�Computing�Framework�for�NLP

465



an algorithm is performing a memory intensive com-
putation that cannot be divided into more fine grained
tasks. Typically, these algorithms can be found in syn-
tactic and semantic dependency parsers that require
large training models.

4.3 Processing Pipeline

KOSHIK currently supports the input of data from reg-
ular text files, CoNLL-X (Buchholz and Marsi, 2006),
CoNLL 2008 and 2009 (Surdeanu et al., 2008), and
Wikipedia dump files. These are converted by map
tasks into KOSHIK documents. Processing of doc-
uments is done by specifying a pipeline of annota-
tors, called content processors. Through pipelines,
processing can be expressed as a linear workflow.
Each content processor implements a simple interface
that specifies one process function that takes a docu-
ment as input, enriches it by adding layers of annota-
tions, and outputs the document. Thus, integrating
an NLP tool into KOSHIK is performed by includ-
ing the library of the tool and implementing a process
method. The implementation of the process method is
aided by the annotation model, described in Section 5,
which provides a set of objects representing the com-
mon output from tokenizers, syntactic and semantic
parsers, and coreference solvers. By keeping the in-
terface lightweight and the annotation model simple,
we believe that the barrier for porting tools from other
toolkits to KOSHIK is lowered.

KOSHIK currently supports a wide range of filters,
tokenizers, taggers, parsers, and coreference solvers
for a wide number of languages. Multilinguality is
provided by each NLP tool through a language spe-
cific model. The supported tools include:

� Filtering of Wiki markup11.

� OpenNLP, sentence detector and tokenizer.

� Mate Tools, part-of-speech tagger, lemma-
tizer, syntactic and semantic dependency parser
(Björkelund et al., 2009; Bohnet, 2010).

� Stanford CoreNLP, including named entity tag-
ger (Finkel et al., 2005), syntactic parser (Klein
and Manning, 2003) and coreference solver (Lee
et al., 2011).

� Stagger (Östling, 2012), a part-of-speech tagger
for Swedish.

� MaltParser (Nivre et al., 2007), a dependency
parser.

11http://en.wikipedia.org/wiki/Wikimarkup/

5 ANNOTATION MODEL

In many ways, the core of our framework lies in the
annotation model. With this model, the content pro-
cessors only need to care about the input and output of
annotated documents. This allows for the free inter-
change of content processors in a pipeline. Therefore,
it is important that the annotation model is designed
to support a wide variety of document structures and
output from content processors, such as taggers and
parsers. It is also essential to create a schema struc-
ture such that annotations can easily be queried once
serialized.

Our annotation model is similar to ATLAS and
Tipster II in that we associate the regions of the origi-
nal document with metadata. Rather than interleaving
annotation such as in XML, we append layers of an-
notations to documents. In this way, we separate the
annotations and leave the original document unmodi-
fied. This approach makes it possible the incremental
addition of information where content processors in-
creasingly enrich documents by adding layers of an-
notation. It also supports a pipeline where content
processors can be mixed-and-matched as each con-
tent processor finds the layer of annotation needed for
its algorithm.

Unlike UIMA, we focus our analysis on text doc-
uments. This restriction makes the development of
our content processors simpler since they only have to
handle one type of document and can make assump-
tions about the document and annotation features.
Furthermore, serialization and subsequent querying
of processed data is also simplified since it becomes
possible to determine the expected document and an-
notation attributes.

The base of the annotation model is represented
by a document and an annotation type. This model is
then extended by subtypes to represent tokens, edges,
spans, and other features. Figure 2 shows an overview
of the annotation model and Figure 3 shows how the
model can be used to annotate a document.

The following subsections discuss the annotation
model and how they can represent output of mor-
phosyntactic, semantic, and discourse analysis.

5.1 Documents

The KOSHIK document model has attributes to pre-
serve the original content together with the version,
language, source, and indexing. In addition, the
model supports a number of metadata descriptors.
Each document has a set of associated annotations at-
tached.

ICPRAM�2014�-�International�Conference�on�Pattern�Recognition�Applications�and�Methods

466



Figure 2: KOSHIK uses an annotation model for representing document metadata, structure and other annotations from parsers.

5.2 Annotations

Annotations associate the region of a document with
some metadata. Regions are unidimensional and are
bounded by a beginning and an end. Metadata can
either consist of a string or represent multiple fea-
tures, as key-value pairs in a dictionary. By restrict-
ing the structure and values of metadata, serialization
and subsequent querying of data becomes simplified.
As an example, using Hive, the dictionary holding the
metadata can easily be decomposed into rows, one for
each dictionary entry. As complex relational joins are
avoided, this simplifies the expression of queries.

5.3 Tokens

The token type represents the tokens in a sentence.
Each token has fields to represent morphosyntactic
features such as form, part-of-speech, and lemma. All
fields from the CoNLL-X and CoNLL 2008 shared
task data format are available as default. In addition,
the token type can be extended with metadata to store
parser precision as a feature in the annotation meta-
data dictionary.

5.4 Spans

Spans are used to model mentions in coreference
chains, named entities, and other entities that span
over several tokens. Spans can also model the output
from shallow parsers such as syntactic chunkers.

5.5 Edges

Typically, edges model relations between tokens
resulting from syntactic and semantic dependency

parsers. Edges are saved as features of tokens and
rebuilt during deserialization.

5.6 Serialization

All documents and annotations in KOSHIK are seri-
alized in order to retain structure and to be stored
in a compact format. The fields of both simple and
complex types, such as strings, integers, and maps,
are directly mapped to corresponding types in Avro.
Our choice to serialize to Avro was governed by the
fact that many tools in the Hadoop environment have
built-in capabilities to deserialize and read the Avro
binary format. For instance, Hive can directly query
complex structures such as arrays and maps using an
Avro Serializer and Deserializer (SerDe).

6 QUERYING ANNOTATED DATA

Many analyses require querying parsed data, be it on a
specific document or a collection of documents. Such
queries may range from counting the number of to-
kens to calculating the number of arguments for a
certain predicate. One possible approach to query-
ing data in Hadoop, is to implement a query by writ-
ing a MapReduce job in a programming language.
However, implementing even the most trivial query
might represent a technical hurdle to many. Even so,
advanced queries become more complicated as they
need to be written as flows of multiple MapReduce
jobs. To overcome this problem and to offer interac-
tive analysis of data, Hive and Pig offer simple yet
powerful query languages by abstracting MapReduce
jobs.

Ideally, the querying should be performed directly

KOSHIK-�A�Large-scale�Distributed�Computing�Framework�for�NLP

467



Figure 3: Applying the KOSHIK annotation type to a document structure. The figure shows the various annotation layers
added by a pipeline of NLP tools to a text document. An annotation type associates a region of the document with some type
of metadata. This metadata can be a part of the original text itself or, as in the case of the token type, it can be a part-of-speech
tag, lemma, etc.

on the data output from KOSHIK, without any need of
transformation or duplication of the data. This means
that if a large amount of data is analyzed, it becomes
unfeasible and unscalable to offload it as a whole into
another cluster or data warehouse. In essence, such an
action would duplicate the data. To avoid unnecessary
duplication of data and to query it using tools within
the Hadoop environment, KOSHIK serializes data to
the Avro format. By doing so, Hive is able to directly
query the data from KOSHIK without creating any un-
necessary duplication.

Hive offers an SQL-like query language called
HiveQL. Both simple types, integers, strings, etc.,
and complex ones, structs, maps, arrays, are sup-
ported by the type system in Hive. HiveQL supports
primitive operations from relational algebra including
projections, selection, and joins. More complicated
queries are made possible by creating Hive User-
Defined Functions (UDF). As an example, the dictio-
nary of tokens holding morphosyntactic information,
part-of-speech, form, lemma, etc., are easily decom-
posed into separate rows using the explode() UDF
in Hive and allows for the querying of the distribution
of part-of-speech tags.

7 APPLICATIONS AND RESULTS

The typical scenario for using KOSHIK consists of the
following steps:
1. Import of corpora to the Koshik document model.

2. Analysis of documents using a NLP pipeline.

3. Querying or conversion of annotated documents
to a desired output format.
To evaluate KOSHIK, we constructed a compo-

nent pipeline to extract predicate–argument struc-
tures from the English edition of Wikipedia and solve
coreferences. In addition, we present the results of a
syntactic dependency analysis of the Swedish edition.
The experiment was performed on 12-node Hadoop
cluster; each node consisting of a PC equipped with a
6-core CPU and 32GB of RAM.

For the English semantic analysis, KOSHIK uses
a state-of-the-art graph-based dependency parser
(Björkelund et al., 2009; Bohnet, 2010). KOSHIK
uses the Stanford CoreNLP multi-pass sieve corefer-
ence resolver to resolve anaphoric expressions (Lee
et al., 2011). For Swedish, we used the Stagger part-
of-speech tagger (Östling, 2012) and the MaltParser

ICPRAM�2014�-�International�Conference�on�Pattern�Recognition�Applications�and�Methods

468



dependency parser (Nivre et al., 2007). In Table 1,
we show the results from the English analysis and in
Table 2, the results from the Swedish analysis.

Table 1: English Wikipedia statistics, gathered from the se-
mantic and coreference analyses.

Corpus size 7.6 GB
Articles 4,012,291
Sentences 61,265,766
Tokens 1,485,951,256
Predicates 272,403,215
Named entities 148,888,487
Coreference chains 236,958,381
Processing time 462 hours

Table 2: Swedish Wikipedia statistics, gathered from the
syntactic analysis.

Corpus size 1 GB
Articles 976,008
Sentences 6,752,311
Tokens 142,495,587
Processing time 14 minutes

8 CONCLUSIONS

In this paper, we have described a framework,
KOSHIK, for end-to-end parsing and querying of
documents containing unstructured natural language.
Koshik uses an annotation model that supports a large
set of NLP tools including prefilters, tokenizer, named
entity taggers, syntactic and semantic dependency
parsers, and coreference solvers. Using the frame-
work, we complete the semantic parsing of the En-
glish edition of Wikipedia in less than 20 days and the
syntactic parsing of the Swedish one in less than 15
minutes. The source code for Koshik is available for
download at https://github.com/peterexner/KOSHIK/.

9 FUTURE WORK

While many high precision NLP tools exist for the
analysis of English, resources for creating tools for
other languages are more scarce. Our aim is to
useKoshik and create parallel corpora in English and
Swedish. By annotating the English corpus seman-
tically and the Swedish corpus syntactically, we hope
to find syntactic level features that may aid us in train-
ing a Swedish semantic parser. We will also continue
to expand the number and variety of tools and the lan-
guage models offered by Koshik.

ACKNOWLEDGEMENTS

This research was supported by Vetenskapsrådet, the
Swedish research council, under grant 621-2010-
4800 and has received funding from the Euro-
pean Union’s seventh framework program (FP7/2007-
2013) under grant agreement 230902.

REFERENCES

Björkelund, A., Hafdell, L., and Nugues, P. (2009). Mul-
tilingual semantic role labeling. In Proceedings of
CoNLL-2009, pages 43–48, Boulder.

Bohnet, B. (2010). Very high accuracy and fast dependency
parsing is not a contradiction. In Proceedings of the
23rd International Conference on Computational Lin-
guistics, pages 89–97. Association for Computational
Linguistics.

Bontcheva, K., Tablan, V., Maynard, D., and Cunningham,
H. (2004). Evolving gate to meet new challenges in
language engineering. Natural Language Engineer-
ing, 10(3-4):349–373.

Buchholz, S. and Marsi, E. (2006). Conll-x shared task
on multilingual dependency parsing. In Proceedings
of the Tenth Conference on Computational Natural
Language Learning, pages 149–164. Association for
Computational Linguistics.

Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113.

Ferrucci, D. and Lally, A. (2004). Uima: an architec-
tural approach to unstructured information processing
in the corporate research environment. Natural Lan-
guage Engineering, 10(3-4):327–348.

Ferrucci, D. A. (2012). Introduction to “This is Wat-
son”. IBM Journal of Research and Development,
56(3.4):1:1 –1:15.

Finkel, J. R., Grenager, T., and Manning, C. (2005). Incor-
porating non-local information into information ex-
traction systems by gibbs sampling. In Proceedings of
the 43rd Annual Meeting on Association for Compu-
tational Linguistics, pages 363–370. Association for
Computational Linguistics.

Grishman, R., Caid, B., Callan, J., Conley, J., Corbin, H.,
Cowie, J., DiBella, K., Jacobs, P., Mettler, M., Og-
den, B., et al. (1997). Tipster text phase ii architecture
design version 2.1 p 19 june 1996.

Gurevych, I. and Müller, M.-C. (2008). Information extrac-
tion with the darmstadt knowledge processing soft-
ware repository (extended abstract). In Proceedings
of the Workshop on Linguistic Processing Pipelines,
Darmstadt, Germany. No printed proceedings avail-
able.

Ide, N. and Véronis, J. (1994). Multext: Multilingual text
tools and corpora. In Proceedings of the 15th con-
ference on Computational linguistics-Volume 1, pages
588–592. Association for Computational Linguistics.

KOSHIK-�A�Large-scale�Distributed�Computing�Framework�for�NLP

469



Klein, D. and Manning, C. D. (2003). Accurate unlexical-
ized parsing. In Proceedings of the 41st Annual Meet-
ing on Association for Computational Linguistics-
Volume 1, pages 423–430. Association for Computa-
tional Linguistics.

Laprun, C., Fiscus, J., Garofolo, J., and Pajot, S. (2002).
A practical introduction to atlas. In Proc. of the 3rd
LREC Conference, pages 1928–1932.

Lee, H., Peirsman, Y., Chang, A., Chambers, N., Surdeanu,
M., and Jurafsky, D. (2011). Stanford’s multi-pass
sieve coreference resolution system at the conll-2011
shared task. In Proceedings of the Fifteenth Confer-
ence on Computational Natural Language Learning:
Shared Task, pages 28–34. Association for Computa-
tional Linguistics.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G.,
Kubler, S., Marinov, S., and Marsi, E. (2007). Malt-
parser: A language-independent system for data-
driven dependency parsing. Natural Language Engi-
neering, 13(2):95.

Olston, C., Reed, B., Srivastava, U., Kumar, R., and
Tomkins, A. (2008). Pig latin: a not-so-foreign lan-
guage for data processing. In Proceedings of the 2008
ACM SIGMOD international conference on Manage-
ment of data, pages 1099–1110. ACM.

Östling, R. (2012). Stagger: A modern pos tagger for
swedish. In The Fourth Swedish Language Technol-
ogy Conference.

Singhal, A. (2012). Introducing the knowledge graph:
things, not strings. Official Google Blog.

Surdeanu, M., Johansson, R., Meyers, A., Màrquez, L., and
Nivre, J. (2008). The CoNLL 2008 shared task on
joint parsing of syntactic and semantic dependencies.
In CoNLL 2008: Proceedings of the 12th Conference
on Computational Natural Language Learning, pages
159–177, Manchester.

Tablan, V., Roberts, I., Cunningham, H., and Bontcheva,
K. (2013). Gatecloud. net: a platform for large-scale,
open-source text processing on the cloud. Philosoph-
ical Transactions of the Royal Society A: Mathemati-
cal, Physical and Engineering Sciences, 371(1983).

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P.,
Anthony, S., Liu, H., Wyckoff, P., and Murthy, R.
(2009). Hive: a warehousing solution over a map-
reduce framework. Proceedings of the VLDB Endow-
ment, 2(2):1626–1629.

White, T. (2012). Hadoop: The definitive guide. O’Reilly
Media, Inc.

ICPRAM�2014�-�International�Conference�on�Pattern�Recognition�Applications�and�Methods

470


