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Above all, do not lose your desire to walk.
Everyday, I walk myself into a state of well-being and walk away from every illness.

1 have walked myself into my best thoughts,
and I know of no thought so burdensome that one cannot walk away from it.

But by sitting still, and the more one sits still, the closer one comes ro feeling ill.
Thus if one just keeps on walking, everything will be all right.
- Soren Kierkegaard
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Popular Science Summary

A regular gas or liquid consists of atoms or molecules all moving in arbitrary directions.
If we cool it down, the particles’ movement slows down until it becomes tightly con-
strained and turns solid. In the quest to cool everything to absolute zero - the lowest
possible temperature - during the early 20th century, we managed to cool and solid-
ify almost any element but Helium. Somehow, Helium resisted the urge to solidify
and just remained liquid. As the temperature decreased, it suddenly stopped boiling,
remained utterly still, and started creeping out of its container. What was going on?

This strange behavior was due to the unique quantum properties of Helium. At ex-
tremely low temperatures, the Helium atoms entered a bizarre state of matter known
today as a superfluid. The superfluid can flow without any viscosity (describing how
much friction atoms within a fluid experience), allowing it to creep up the sides of
its container. The lack of viscosity would mean that a superfluid would never stop
moving once set to motion, like stirring a coffee that would never stop spinning. Not
only this - the coffee would also move in odd ways if we stirred it faster. The vor-
tex (swirl) in the center would not get bigger but split up in discrete intervals as we
stir faster and form smaller vortices until tiny swirls cover the coffee’s surface. These
two phenomena, persistent flow and quantized vortices, are prominent hallmarks of
superfluidity.

As time progressed, scientists found a connection between superfluidity and another
state of matter, a so-called Bose-Einstein condensate. In such a condensate, the dif-
ferent coffee particles lose all sense of identity and behave as one big matter-wave.
The smoking gun for the connection between superfluidity and Bose-Einstein con-
densation? The occurence of superfluidity in Helium appeared at roughly the same
temperature as was predicted for Bose-Einstein condensation.

While there is still ongoing research on the properties of superfluid Helium, another
contender emerged where researchers use alkaline or even lanthanide atoms and cool
them via lasers down to a billionth of a degree above absolute zero. Luckily, these
atoms are also very agreeable, and we can convince them to interact less or more
strongly, with some even acting as small magnets over a long distance instead of just
colliding with each other.

This malleability leads to more and more exotic phases, with the most recent discov-
ery supported by so-called quantum fluctuations. If the Bose-Einstein condensate is
coffee in your cup with all the properties of a superfluid, quantum fluctuations would
then be a proto-coffee (a coffee yet to be made with water and ground beans) around
your cup. The collisions between particles in the (coffee) condensate can kick them
out of the condensate and into the proto-coffee and vice-versa. Usually, this effect

vii



is too small to influence the coffee, and we can ignore it. But if the interactions are
tuned enough, the proto-coffee shows its effect and can lead to a self-bound Bose gas
- a large droplet of coffee that doesn’t need a cup. The question remains: how much
of the superfluidity remains in this coffee droplet?

If the coffee, however, is magnetic, a so-called supersolid might occur. Here, the
coffee is not only superfluid but also shows signs of being solid, with lumps of coffee
crystallizing into a periodic and predictable pattern. But how could a solid behave
like a superfluid, and how does one bring these concepts together?

This thesis and the papers therein add to the body of research attempting to answer
these questions with a particular focus on the hallmarks of superfluidity via numerical
studies in the mean-field regime.
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Chapter 1

Introduction

This thesis concerns frictionless flow - superfluidity - and how it manifests in exotic
phases of weakly interacting Bose gases. When a bosonic gas or liquid’s temperature
decreases below some critical value, it can transition into a superfluid state. This phase
transition connects deeply to the quantum particle statistics of the system and allows
the superfluid to flow without dissipation. The connection between superfluidity and
Bose statistics follows two separate roads in history’, challenging many of the most
famous physicists of the 20th century and heavily influencing the development and
understanding of modern condensed matter physics along the way.

The first of these roads started 100 years ago when Satyendra Bose considered PlancK’s
derivation of black-body radiation [s]. Planck’s model introduced the quantization
of energy [6], paving the way for modern quantum mechanics. In his work, Bose
introduced indistinguishable particles and how to count their states. Applying these
concepts to Planck’s work, he managed to recover Planck’s law, but crucially without
making any of the classical assumptions [5]. However, Bose struggled with getting
his work published and contacted Einstein, with whom he had prior correspondence,
for help [1, 3]. The idea of indistinguishable particles heralded quantum statistics and
the split of all particles into two fundamental classes - today known as Bosons and
Fermions.

One week after Einstein received Bose’s paper, he extended Bose’s work from photons
to a monoatomic ideal gas with conserved particle numbers [2]. Einstein found that
by lowering the temperature, the states of the ideal gas would become saturated until
a specific critical temperature, after which atoms would start accumulating in a single

'For comprehensive historical reviews of superfluidity and Bose-Einstein condensation, see Refs. [1—
4].



quantum state - they would condense [7—9]. This was the first paper that made use of
de Broglie’s particle-wave duality [10], and Einstein argued that if particles are waves,
they should follow the same (Bose) statistics as photons?. After Einstein’s prediction,
not much happened with his idea due to the criticism that such a phase transition
could not occur in a finite system [3]. This changed when both historical roads met
in 1938.

The second historical road concerns superfluid Helium. By the end of the 19th cen-
tury, an increasing interest in low-temperature physics had led to the successful lig-
uefaction of most major gases, except Helium [12]. This changed in 1908 when
Kamerlingh Onnes succeeded in this endeavor at the University of Leiden [12, 13].
Only in 1932, when cooling liquid Helium down further, it was observed that it sud-
denly stopped boiling and became completely calm, indicating a second phase transi-
tion [14]. This phase transition shows a A-shaped singularity in the specific heat [15],
today referred to as the A-point, and Helium above and below the transition point as
Helium I and II, respectively.

In 1938, Nature published two hallmark papers back-to-back on liquid Helium, both
concerning the first observations of superfluidity. In the first, Kapitza investigated
the flow through a thin slit between two highly-polished disks [16]. Above the A-
point, there was no flow through the slit, while below, the flow occurred so rapidly
that Kapitza could only propose an upper bound on the viscosity. The second paper,
by Allen and Misener [17, 18], described similar experiments through thin capillaries
with varying diameters. Similarly, the flow sped up significantly below the A-point
and was independent of applied pressure and capillary diameter. In analogy with
superconductivity, Kapitza dubbed this effect superfluidity [16].

At this point, there was little theoretical understanding of the effects, and quantum
mechanics was still in its infancy. The first up to the task was London, who had
heard of the above experiments by Kapitza and Allen & Misener a few months before
their respective papers [19]. Before turning to superfluidity, London had developed a
theory of superconductivity based on a macroscopic wavefunction [20], an idea that
he would carry over to superfluidity.

By late 1937, Einstein’s seminal work on quantum condensation had gotten a reputa-
tion as purely academic without getting any further attention [2, 3]. Nevertheless, it
sparked a debate between Einstein, Ehrenfest, and Ehrenfest’s graduate student Uh-
lenbeck at a statistical physics conference [19]. By the end of the discussion, Uh-
lenback had withdrawn his criticism of Bose-Einstein condensation in finite-size sys-
tems. London also attended the conference and overheard this discussion, previously
unaware of Einstein’s papers on Bose-Einstein condensation [19]. As London knew

2Later, Schroedinger heard of de Broglie’s idea for the first time through Einstein’s paper [1, 11].



that *He is bosonic, he immediately connected the recent superfluidity experiments
to Bose-Einstein condensation. He promptly published two papers [21, 22], noting
that the transition temperature to a condensed state reasonably estimates the A-point.
These papers mark the historical convergence between superfluidity and Bose-Einstein
condensation.

Shortly after this paper, London started collaborating with Tisza, who similarly strug-
gled with the political climate developing in Europe [19]. Quickly into their collab-
oration and after a sleepless night [19], Tisza proposed a so-called two-fluid hydro-
dynamic model [23] to explain various experimental results of superfluid *He. One
component of this model would be a Bose-condensed part, describing the superfluid
with zero viscosity, while the non-condensed part carries all viscosity. Notably, in this
description, both components have an independent velocity field. While this idea was
initially deeply upsetting for London [19], Tisza could explain all prior hydrodynamic
results for the first time [23].

A significant drawback of London and Tisza’s model was that it rested on the idea of a
non-interacting ideal Bose gas without interactions [21, 22]. *He molecules, however,
are strongly interacting. This discrepancy drew Landau’s attention, who had just been
released from political prison with the help of his friend Kapitza [4]. In 1941, Landau
published his seminal paper on superfluid *He [24, 25]. Here, he introduced the
idea that one can describe the superfluid through weakly interacting quasi-particles
and their collective modes, such as sound and entropy waves. With this excitation
spectrum of quasi-particles, Landau could do quantitative calculations and explain the
thermodynamic and hydrodynamic properties of superfluid Helium [24, 25]. Landau,
however, categorically rejected the connection between superfluidity and an ideal Bose
gas as proposed by London and Tisza [24, 25].

The first formal work that combined both theoretical ideas was done in 1947 by Bo-
goliubov [26], whose work we will follow in most of Ch. 3. Applying the method
of second quantization, he derived the excitation spectrum of a weakly interacting
Bose gas. He showed that it can support superfluidity under the same argument Lan-
dau brought forth [26]. As such, he first showed that Bose-Einstein condensation
and superfluidity are deeply connected. Bogoliubov’s work effectively kick-started
an extensive theory of superfluidity and weakly interacting Bose gases, which is the
theoretical ground for this thesis.

The next breakthrough occurred as late as 1995, when, for the first time, Bose-Einstein
condensation occurred in an experiment using ultra-cold gases of alkali atoms [27, 28].
By now, these experimental set-ups have become highly tunable, with many combi-
nations of alkali [29] and lanthanide [30—34] atoms possible, where one can almost
freely tune the interaction strength between the atoms via Feshbach resonances [35—



41]. With this tunability comes the ability to create systems that would otherwise
not exist or are difficult to realize, allowing for a perfect playground in fundamental
research. One of these systems comes from a proposal in 2015 [42], where the interac-
tion between two different components would make the gas unstable. However, by
including a higher-order term in the mathematical description that originates from
the interaction of atoms outside the condensed state with the condensate itself, one
can re-stabilize this system so that it may exist without an external trapping potential.
This system subsequently occurred in a one-component dipolar system of lanthanide
atoms [43, 44] and a two-component mixture as initially proposed in [45, 46].

Another of these systems comes as a so-called supersolid, somehow combining a su-
perfluid’s zero viscosity with a crystalline solid’s rigid structure. Proposed in the late
1960s [47, 48] and long hunted for [49], the formalism mentioned above of atoms
outside of the condensed state interacting with the condensate itself led to the obser-
vation of a supersolid in the same dipolar lanthanide system as for the one-component

self-bound droplet [50—s52].

This thesis describes the mechanisms involved in forming the self-bound and dipolar
supersolid systems described above and how to probe their superfluid properties. The
goal for this first introductory part of this thesis is simple: What would be the most
helpful document for myself if I were back at the beginning of my PhD studies to
understand the research papers included in this thesis? As such, we start by describing
Bose-Einstein condensation, first following Bose’s and Einstein’s work in Ch. 2, before
generalizing it to interacting systems. Ch. 3 calculates the effect of atoms outside the
condensed state on the condensed ground state by following Bogoliubov’s seminal
paper [26] and its extension for two components [53], before describing self-bound
droplet formation [42, 54]. We formally introduce the concept of superfluidity in
Ch. 4 for one and two superfluid components before turning to supersolidity in Ch. 5.
After giving a concluding outlook in Ch. 6, we include the full texts of the papers that
comprise this thesis’s original research.



Chapter 2

Bose-Einstein Condensation

From a certain temperature on, the molecules condense’ without attractive forces, that is,
they accumulate at zero velocity. The theory is pretty, but is there also some truth in it?’
- Einstein to Ehrenfest, 1924 [2]

We start this thesis by considering the origin and definition of a Bose-Einstein con-
densate - a state of matter where below a critical temperature T}, a macroscopic fraction
of particles occupy the same quantum state. Initially, in Sec. 2.1, we will briefly look
at the historical development starting from Planck’s law of black-body radiation [6],
leading to Bose’s introduction of quantum statistics [5] and Einstein’s generalization
from photons to massive non-interacting particles [7—9]. In the final parts in Sec. 2.2,
we follow Onsager and Penrose’s generalization [s55, 56] and give three different def-
initions of Bose-Einstein condensation with interacting particles before introducing
the Bogoliubov approximation [26], which most of Ch. 3 builds on.

2.1 Planck, Bose & Einstein

The Bose-Einstein condensate originates from the equally named quantum statistics
bosonic particles obey. Bose developed these as an alternative explanation of Planck’s
black-body radiation law that does not rely on any classical assumptions [5]. In
PlancK’s original derivation’ [6], he modeled the black body as having walls consisting
of harmonic oscillators that eventually reach thermal equilibrium if the temperature
T is held constant by continuously emitting and absorbing radiation. In this ther-
mal equilibrium, the spectral shape of the radiation then solely depends on the black

'For a detailed derivation with a strong historical narrative of Planck, Bose and Einstein see Ref. [1].



body’s temperature and is independent of shape or material. After some calculation [1,
6] he recovered the energy density u(v) per frequency interval dv

2
u(v)dv = 872,:/ Edv, (2.1)
c

where c is the speed of light, v the frequency and E the average harmonic oscil-
lator energy. If one then inserts according to Boltzmann E = kpT, where kg is
the Boltzmann constant, one recovers the Rayleigh-Jeans law (v) = 87v2kpT/c?,
which experiences the ultraviolet catastrophe [ u(v)dv — oo [1]. Intrigued by the
universality of black-body radiation, Planck looked towards finding a more suitable
average energy and divided the energy associated with a certain frequency into a part
in the oscillators and a part in the medium [6]. As the black body approaches ther-
mal equilibrium, it will assume the most probable partition between these two parts
that maximizes entropy. The probability of finding a certain amount of energy in the
oscillators is proportional to the number of ways to divide this energy between the
oscillators. This is similar to how, in a set of two dice, the most likely outcome is
seven, as the largest number of combinations of the two dice gives seven. The prob-
lem now lies that if this energy is infinitely divisiable, there will be an infinite amount
of variations possible. Planck recognized this and proposed that the harmonic os-
cillators have quantized energy E, = nhv, where n is an integer, and h is some
constant originating from experimental data. One can then write the average energy

E =32 E,p(n), where

exp(—BEn)
27010:0 exp(—pEn) ’

p(n) = (2.2)

is the Boltzmann distribution for a system in thermodynamic equilibrium with 8 =
1/(kgT) the inverse temperature. Inserting F,, = nhv one then quickly finds

82 hv
¢ exp(Bhv) —1’

u(v) =

(2.3)

which is Planck’s radiation law and (exp(B8hv) —1)~" the Bose-Einstein distribu-
tion.

In 1924 Bose proposed an alternative derivation [1, 5] where he calculated the phase
space volume in the interval dv for a photon with momentum hv/c as [ drdp =
8rh312Vdv/c. If one divides this volume into cells of size h?, one finds 8712dv /c3
of these cells in the frequency interval dv. Similarly to Planck, the question then turns



to counting the different ways of distributing N photons over the cells, which Bose
assumed to be indistinguishable. The number of distinct orderings of the cells g; with
n; particles is then

(ni +gi — D! (ni + g;)!

t; = , (2.4)

where we have made the last step for a large number of cells g; > 1. As before, in
the thermodynamic equilibrium, the system follows the most probable distribution,
such that we want to maximize [1, 5]

) O )

ni!gi!

with the constraint that there are N particles with frequency v and a total energy
E =3 Nshvs. Maximizing Eq. (2.5) under these constraints, one finds that

8 1
Ng = dug ,
3 exp(Bhr) — 1

(2.6)

which is equivalent to PlancK’s result [1, s].

Bose struggled to publish this result but contacted Einstein for help [1, 3]. Previously,
Bose had translated Einstein’s theory of relativity and Einstein agreed and recognized
the value in Bose’s work [1, 3]. Einstein also extended it to massive non-interacting
particles by introducing particle number conservation, which was not given in Bose’s
derivation as photons are continuously emitted and absorbed [5, 7—9]. The average
occupation number of bosons in a state j with energy E; and chemical potential y
at a temperature then becomes

1
exp(B(E; — p)) =17

(N;) = (2.7)

with the total particle number N = 3 (N;). The lowest state E grows larger

in population at a given T faster with j than any other (V). As p approaches

Ey with increasing N, the groundstate becomes macroscopically occupied, and (No)
becomes of order N (in the following, we write ~ O(N)) [57]. We refer to (ng)/N
as the condensate fraction, which depends on 7" in the case of large IV, with a critical



temperature 7;, marking when the ground state becomes macroscopically occupied.
We can estimate 7. by requiring that the de-Broglie wavelength

2mh?
)\T = W (28)

which describes the spatial extent of an individual particle’s wavefunction, becomes

comparable to the interparticle spacing d = n~1/3 and gives
2rh2n2/3
kBTc ~ T, (29)

below which the ground state is macroscopically occupied”.

2.2 Bose-Einstein Condensation in Interacting Systems

We can generalize Einstein’s theory of the non-interacting Bose gas [5, 7—9] to a macro-
scopic number of particles occupying a single-particle state for an interacting system.
While this is accurate enough in words, we want to put this into mathematical lan-
guage and go through three definitions of Bose-Einstein Condensation that all emerge
from this description.

We may investigate such a macroscopic occupation via the reduced single-particle
density matrix n; (r,r’) = (UT(r)¥(r')), where U and ¥ are second quantized
bosonic field operators and 11 (r,r’) measures the correlations® between particles at
position ' and r in an interacting system. The density matrix is hermitian and, as
such, can be diagonalized with real eigenvalues \; and their respective eigenfunctions

X

ni(r,r’) = Z XX (r)xi(r). (2.10)

This expression fulfills the above generalization of a Bose-Einstein condensate if only
one of the eigenvalues \; becomes ~ O(N), where N is the number of particles,

2For a homogeneous Bose gas in a box, an exact calculation gives T = ¢(3/2)~2/327h?n*/® /M,
where ( is the Riemann-Zeta function [58, 59].

30ne could also see this as the immediate response of the system when inserting a particle at position
r and removing another at r’.



and the remaining A; remain ~ O(1). If only one of the eigenvalues is ~ O(NV), it
commonly refers to a “simple“ Bose-Einstein condensate, which describes the systems
investigated in this thesis. If however multiple eigenvalues are ~ O(N), one has a
“fragmented” condensate [60, 61]. By extracting one of the eigenvalues for a simple
condensate, we arrive at the description first formalized by Onsager and Penrose [56],

n1(r, ') = doxg(r)xo(r') + D X (0) (). (2.11)
i#0

Now, let us assume that our system is in the thermodynamic limit where both the
particle number NV and volume V' — o0, but the density n = N/V = const., an ap-
proximation we will frequently use throughout this thesis. We consider non-uniform
densities in Ch. 3.2. Due to the systems’ translational invariance, we can transform
the bosonic field operators into k-space. Then ny(r,r’) = V13" exp(—ik(r —
r’')/h) <\ifli‘ilk>, where <\11L\ifk> = (Ny) is the average momentum occupation num-
ber according to Bose-Einstein statistics. In this case, the eigenfunctions x; also be-
come plane waves, such that if we turn the sum over k into an integral* over D-
dimensions in the thermodynamic limit, 71 becomes

(2.12)

A~ .I_ A
i (0, 1) = (WyWo) / dk  _ixe—r)/n 1

Vv (2m)P eB(Ex—p) — 1’

where 8 = 1/(kgT) is the inverse temperature, F the systems energy spectrum and
i < Ey the chemical potential. We now focus on the first term in Eq. (2.12) for
simplicity and immediately see that in the case of a condensed system, there will still
be some correlation, even if |r — 1| — oco. The correlation maximizes for a fully con-
densed system and introduces the concept of “Off-diagonal long-range order® [62].
Some caution about off-diagonal long-range order in a realistic system confined in
an external trapping potential is warranted. In this case, the system does not extend
to infinity, so the concept of |r — r’/| — 00 becomes meaningless, and off-diagonal
long-range order is not a sufficient definition of a Bose-Einstein condensate.

Lastly, due to the macroscopic state occupation, we can motivate a similar separation
for the field operator

\ij(ra t) = 1&(1‘7 t) + 19(1’, t)v (2-13)

“For finite size systems with periodic boundary conditions k is quantized as k = 27nh/l due to
the finite volume V.



where 1) describes the condensed part and ¥ is a fluctuation operator accounting for
the remaining states. In the case of an infinite, uniform system in the thermodynamic
limit, we can expand W as before in single-particle plane waves, such that

A ez’kr/h

= \/V k#oa W (2.14)

The transformation into single-particle plane waves is canonical, such that the oper-
ators Ay, &L fulfill bosonic commutation relations, too. The number operator in the

momentum operator representation Ny = &L&k then gives the number of particles
with momentum k. Due to the canonical transformation we then get [63, 64]

lim [ao,ag] = lim

Vo0 Voo V =0 (2.15)

For an infinite system, where V' — 00, the non-commutativity vanishes and ag and
dg become complex numbers ag — ag = v/ Noe' with some phase value ¢, resulting
in the transformation to a classical field

P(r,t) = Y(r,t). (2.16)

Eq. (2.16) is the so-called Bogoliubov approximation [26] and means that the con-
densate can be described effectively as a coherent (classical) state. Correspondingly,
we will, in the remainder of this thesis, write &(()T) — a(()*) where the (1) and (%) indi-
cate that we, in general, refer to both annihilation and creation operators or complex

conjugated pairs.

Alternatively, to arrive at the same result as in Eq. (2.15), we can split the total particle
number operator N with (N) = N into N = N +Zk;ﬁo Ny, where Ny = &(T)&O is
the number operator for the condensed state. If (Ng) is of order O((N))and N > 1

then the non-commutivity also vanishes [65].

In the following chapters, we rely heavily on the Bogoliubov approximation [26] in
deriving the equation of state for the condensed ground state and the contribution of
the fluctuation operator 1 within the infinite system framework. Only after setting
up the basic scaffolding will we investigate when we can use the approximation of an
infinite and uniform system for a real, experimental system in a trap.
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Chapter 3

The weakly interacting Bose gas

It is useful to note that N. N. Bogoliubov has succeeded recently, by an ingenious
application of second quantization, in determining the general form of the energy
spectrum of a Bose-Einstein gas with a weak interaction between the particles.”

- Landau, 1949 [66]

The theory of weakly interacting Bose gases traces back to Bogoliubov’s seminal paper
in 1947 [26]. Here, he laid the foundation of these systems by introducing quasi-
particles to explain superfluidity in terms of the quasi-particle collective excitations.
Continuing on this foundation, Gross [67] and Pitaevskii [68] independently derived
a non-linear Schrodinger equation describing the ground state and time-evolution of
the bosonic macroscopic wavefunction that we today call the Gross-Pitaevskii equa-
tion.

The quasi-particle treatment introduced by Bogoliubov [26] together with the Gross-
Pitaevskii equation [67, 68] presents the main theoretical foundation of this thesis.
We start this chapter by considering an infinite and uniform Bose gas in Sec. 3.1 to
introduce the Bogoliubov treatment in a simple environment. This results in the
ground state properties and the effects of non-condensed particles on the ground state.
After this, we extend this treatment to a non-uniform Bose gas within the so-called
local density approximation in Sec. 3.2 before considering specific one-component
(Sec. 3.3) and two-component (Sec. 3.4) systems. Lastly, in Sec. 3.5, we consider the
formation of self-bound droplets in contact and dipolar interacting systems and the
formation of mixed bubbles in two-component contact interacting systems.
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3.1 The Uniform Bose Gas

Let us first consider a general system of bosons at zero temperature, where the bosons
only interact via one-body potential and two-body interaction, described by the second-
quantized Hamiltonian

H= / AWt (r, t)ho(x, )0 (r, t) G.1)

+% / / Ardrdt (¢, )0 (e, DB — DY, ) (r 1), (5.2)

where ho(r,t) = —h2V?2/(2m) + Vet (r,t) is the one-body potential with an ex-
ternal field Vixt and @ is a (for-now) arbitrary two-body interaction potential.

In general, this is a difficult problem to solve exactly, so it becomes necessary to ap-
ply some approximations. Under certain conditions, one may put the interaction
functional towards infinity, leading to the so-called fermionization of bosons and
the Tonks-Giradeu regime in one dimension [69—71]. The usual approach that we
will follow here is to assume that most particles are in the condensed ground state
as described in the previous chapter and that the interaction potential is small, thus
entering a weakly-interacting regime [26, 64].

We now apply another simplification that will allow us to obtain the system’s ground
state properties analytically. Assuming that our system is infinite and uniform, we set
Vext(r) = 0. Thus, the system is translational invariant, and we can write the bosonic

field operators as W) (r) = A(T 1,Z)k ( ) with the single-particle wavefunctions
as plane waves

Yi(r) = \1FV exp (ll;ir) . (3-3)

Utilizing these transformations, we can write the stationary (grand canonical) Hamil-
tonian Hy. in momentum creation and annihilation operators as

4. [(hPK?
ch =H-— ,u,N Za}lak < — u)
(3.4)

At A s
§ ak1 ak2+qak2 aqu)(q),
k1k27q

12



where the index gc indicates that we work with the grand canonical Hamiltonian.
Additionally, in Eq. (3.4), we have assumed that the interaction potential is radially
symmetric, such that we can write

B v = Y e exp (i), 65)

Let us investigate the ground state properties if the system is fully condensed and every
particle is in the k = O state. In this case, we get the ground state energy Fgc o as

2

N,
Eaeo = —2(0) — uN, 6
80 = 5y, (0) — uNo (3.6)

to zeroth-order. The chemical potential determines the equation of state by 0 E,¢ o/
0Ny = 0 and gives

No

p=20);

3.7)

Now applying the Bogoliubov approximation from Eq. (2.16) and keeping terms up
to second order in creation and annihilation operators &l(j) while maintaining lin-
ear momentum conservation, the remaining second-order Hamiltonian Hg 9 is then

given by

R s [R2E? N
Hgeo = ZQLCLk [m — 2 (®(0) + ‘I’(k))]
(3.8)
oo 3 0(K) [t + adalal, |

In the first line, the interacting terms represent a particle’s Hartree-Fock mean field
produced by interactions with its surrounding particles. The ®(0) Hartree term de-
scribes a particle in the state k interacting with the /Ny atoms in the condensed state.
In contrast, the ®(k) Fock term describes the scattering process of a particle in the
k state into the condensed state and a condensed particle into the k state. The terms
in the second line represent the scattering of two particles in the condensed state into
the -k states and vice-versa.

13



In Sec. 2.2 we mentioned that ag and ag represent complex numbers and can be

written as a(()*) = /Npet™. We now want to absorb the phase factor e into

the remaining &l(j ) and replace 1 with Eq. (3.7). Then we can write a[()*) NV =
V' No/V = \/ng, where ng is the ground state density. The second order Hamilto-

nian Hg 2 then becomes

(3.9)

Eq. (3.9) contains off-diagonal elements in creation and annihilation operators, which
we want to remove by diagonalization. In the process, we will obtain the quantum
fluctuation’s ¥ effect on the ground state. As the following procedure is general to any
quadratic bosonic Hamiltonian, let us generalize Eq. (3.9) to

N 4 1 o wnt a
Hge o = Z TkaLak + B Z [Ukaka,k + UkaLaik} , (3.10)
kA0 Kk£0

where in our case T, = h?k?/2m +no® (k) and Uy = no® (k). IA{gCQ is hermitian

and can thus be diagonalized by unitary transformations, which we define as [26, 64]

(3.11)

These transformations are commonly referred to as Bogoliubov transformations [26,
64], where &y and dL are quasi-particle operators of the diagonalized Hamiltonian.
The quasi-particle amplitudes uy and vk are uniquely determined by requiring

Aéc,Q = ZEdeéék + Ky, (3.12a)
k0
luke|? — Jv]* = 1, (3.12b)

where the first line is the diagonalized Hamiltonian of free bosonic quasi-particles dy,
plus some operator-independent zero-point energy Ky, and the second line ensures

14



that the transformations in Eq. (3.11) are canonical. One commonly writes the am-
plitudes ux and vy in terms of hyperbolic functions sinh and cosh. This method,
however, becomes quite cumbersome for any but the simplest systems. Here, we fo-
cus on the equations of motion instead. The quasi-particle Hamiltonian H, gc,2 and

Hygc 2 describe the same system. As such, the equation of motion in the Heisenberg

picture is invariant of the chosen representation. We thus calculate [du, Hgc 2] and

[, Hy o] and compare coefficients' for dx and dT_k. This results in the following
linear system?”

T —Ug| |ux Uk
N = FEx (3.13)
Uk —Tk Vk Uk

where we have additionally assumed Uy = U_yx and Uy = U*,. E y is then the
solution to the linear system as

By =\/TE — |Uk]?, (3.14)

or for our system

By = /ex (ex + 2n0@(k)), (3.15)

which is the Bogoliubov excitation spectrum generalized for arbitrary radially sym-
metric interactions [26] and e = h?k?/2m is the free particle spectrum.

Lastly, we are interested in determining Ky, for which we introduce the vacuum state

|0) with ay |0) = 0. Then (0| I:ngg |0y = 0, which must also hold for I:Iécgz

A !
(0] H10) = Exforcl® + Kie = 0. (3.16)
k#0

We can obtain |vk|? by multiplying the first line in Eq. (5.13) with uj,, complex con-
jugating the second line before multiplying it with vk and lastly utilizing Eq. (3.12b),
which gives

'We can obtain the same result formally by placing the resulting equations between (1] ... |0) and
(0] ... |1) pairs.

2In the representations given in the main text, both o, gc,2 and o éc,z sum over all k # 0. However,
the Bogoliubov transformations in Eq. (3.11) explicitly depend on the direction of k. It is, therefore,
necessary to restrict the sum to k > 0 and include an additional term for —k to ensure correctness.
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T
1M2=1<k—1> (3.17)

and thus

1
K= 3 kE;éO(Ek — Tx)
(3.18)

= % Z (\/Gk (ex + 2no@(k)) — ex — no(I)(k)) .
k20

K represents the zero-point contribution of the quantum fluctuation term 1 to the
ground state energy Ejp. For a three-dimensional one-component Bose gas with con-
tact interaction, this is commonly called the Lee-Huang-Yang (LHY) correction [72,
73] or Bogoliubov vacuum energy, which we will calculate in Sec. 3.3.

In the thermodynamic limit, where we can replace the k-sum with an integral over
momentum-space in D dimensions, the equation of state Eq. (3.7) then becomes

= ®(0)no+
b (3.19)

where we used the Bogoliubov vacuum energy in Eq. (3.18) as a correction to the
ground state energy.

Before considering real physical systems and their different external potentials Vit in
modern experimental setups, let us do some mathematical housekeeping and deal with
the ramifications of the used approximations. So far, we have been deliberately vague
about 'weak’ interactions and that ‘most’ particles are in the condensed ground state.
Now, we want to put some quantitative labels on these statements. If the majority of
particles are condensed, it implies that Zk;ﬁouvk) = Zk?é()(dlr{&@ =N-Ny K
N and as such

N—No  Yigolifin)
N N

< 1. (3.20)

The sum can be obtained by utilizing the Bogoliubov transformations in Eq. (3.11) and
via the mean quasi-particle occupation number (d;f(dk> = (exp(B(Eyx — p)) — 1)1,

and thus for T = 0K
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N-N, 1 Ti
_— = — 7—1
N 2NZ<Ek )
k£0

. i ek+n0<1>(k) B
2N Z <\/ek(ek +2no®(k)) 1> <l

k£0

(3.21)

Surprisingly, the resulting depletion of the condensate is finite despite 7' = 0 K and
results from Eq. (3.12b), which enforces bosonic commutation relations and is thus a
genuine quantum effect.

As a result of the approximation up to second-order in H gc,2> it describes a system of
free bosonic quasi-particles, where particle numbers are not conserved ([H, 2c,25 Ny #
0). We could, however, remedy this by including a weak interaction between quasi-
particles by including third-order terms as well, allowing the quasi-particles to reach
statistical equilibrium [26]. As such, quasi-particles are continuously destroyed and
created, so we must decide whether to focus on the total particle number N or the
ground state particle number Ny. As the condensate depletion in Eq. (3.21) is assumed
to be small, one can safely replace N with IV post hoc’.

Most of the papers in this thesis investigate a system under rotation. We now want to
see how to introduce this rotation into a system. We can write the rotation operator
as R(t) = exp(—i0(t)L./h), where R(t) rotates a state |¥(t)) by an angle 6(t)
around the z-axis, such that |¥’(¢)) = R(t) |¥(t)). We can then calculate the time
evolution of the state |U()) as

0,19 (1) = ihd, (R(r) [9(1)) )
622
= (i@ RO R (1) + ROFOR (1)) (1)

Here, the second term describes the transformation into the co-rotating frame. As-
suming that 6(t) changes as 0(t) = — ftto dt’Q(t'), where tg is the initial time and
Q(t) is the rotation’s instantaneous angular velocity, the time derivative becomes
O R(t) = iQ(t)L.R(t)/h. If all the operators in H(t) rotate at the same con-
stant €, the problem becomes time-independent and we can amend the one-particle
potential by writing il() — ﬁo - QL, [74].

3Alternatively, insert Ng = N — (&Ldk> in the resulting energy expression while discarding all
(afar)? < 1.
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3.2 'The Local Density Approximation

De Gennes first generalized the above process in the context of superconductors [75]
to a spatially modulated system. We now want to follow this procedure and allow
the bosonic field operators to become position-dependent ¥ — W(r), either due to
interactions or due to an external trapping potential Vext (r). As we will see, the above
derivation still holds if we assume that at every r, there is a locally uniform system
surrounding it. First, we begin by the usual separation into ground and excited state
U(r) = ¢(r) + J(r), inserting it into Eq. (3.2) directly and keeping terms in 9(r)
up to second order. We can then write the resulting (grand canonical) Hamiltonian
as

A~

Hee(r) = Hyoo(r) + Hge,t (r) + Hgeo(r) + O(0(x)), (3.23)

where the index gives the order in () (r) and O(93(r)) represents the discarded
higher-order terms. The terms themselves then become

Fyeo(r) = [ dr o ()hol)o(r)
(3.242)
+ ;// dr dr’ ng(r)ne(r')®(r — 1),
Hgea(s) = [ dr o (0)ho(®)30)

+ % / / drdr’ ®(r — 1) [no(r')w(r)é(r) (3.24b)

NTRY 3 (3.240)
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where [1)(r)|> = ng(r). As before, we only want to maintain terms of second-order
in 9 (1), so we set Hye1 = 0. We can remove Hye 1 by enforcing

2m

<_h2v2 + Vet (r) + / dr'no(r')®(r —r') — M) Yr)=0, G2

which describes the equation of state for H, gc,0 and assumes that ®(r — r’) is radially
symmetric. Eq. (3.25) also constitutes the so-called time-independent Gross-Pitaevskii
equation and is the main numerical tool used in this thesis. The time-dependent
Gross-Pitaevskii equation results from Eq. (3.25) by using exp(—iut/h) [74] and was
first independently derived by Gross [67] and Pitaevskii [68] in the study of vortices
in weakly interacting Bose gases®. The second-order terms in H, gc,2 are sorted by their
Hartree, Fock, and pair-exchange contributions in the first, second, and third lines,
respectively, and as before, correspond to interactions in and out of the condensate
from the remaining quantum field.

Instead of representing the fluctuation operator in single-particle plane waves and
then introducing the unitary Bogoliubov transformations, we now perform both at
the same time but with arbitrary single-particle wavefunctions instead:

d(r) =3 [us0)a, — v(r)ab] (3.26)
v£0

where &, and 07:[, are again bosonic operators, which satisfy the generalized canonical
relation

[l e) = i 6) 00 0)) = b

(3.27)
/dr [} (r)v,(r) — v} (r)u, (r)] = 0.
As before, we can write a diagonalized Hamiltonian in the new operators
1o =Y E,dla, + Kid, (3.28)

v#0

“Alternatively, one can calculate the Heisenberg equation of motion for the field operator
0¥ (r,t) = [H, ¥(r,t)]i/h and then apply the Bogoliubov approximation, where one ignores quan-
tum fluctuations [57, 59].
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and calculate the Heisenberg equation of motions via [J(r), IA{gqg] and [0(r), IA{éC’Q]

to establish a set of equations, which diagonalizes Hy o:

(Ey(r) - ﬁg(r))uy(r) = /dr’i)(r —1')

[(no(r") + " (" )p(r)) uy(r) — ¥ (x" )0 (r)v, (x)],
(3-29)

[(no(r') + " (x")(r)) vy (r) = ¥ (x")(r)u, ()] .

These equations constitute the so-called Bogoliubov-de Gennes [75] equations. They
are, in the current integral form, difficult to solve as they require knowledge of the
ground state wavefunction () as well as the quasi-particle amplitudes u, (r) and
vy (r) at every position. We can remedy this by assuming that the Bose gas is slowly
varying in space so that it can be roughly described by plane waves, which leads to
the following transformations [76—78]:

(3.30)
v k#0

The left side of Eq. (3.29) then becomes

(Ek (r) —ﬁo (r)) uk(r)ez‘kr/h _
(3.31)

h2 ]{32 )
(Ek(r) — —— = Vexe(r) + ,u(r)> e (r) e/,
2m
For the right side of Eq. (3.29) we can represent each term in the integral as ®(r —
r') X (r,r")qx(r,r") exp(ikr’ /), where X (r,r’) represents the factors containing
¥(r) and gk (r,r") exp(ikr’/h) the different quasi-particle amplitudes. Expanding
X (r,r")gk(r,r’") in r’ around r up to first order and Fourier transforming ®(r — r’)
gives

(k)X (1) gx(x) — i [Vied (k)] Vi [X (1) que(x)] + - .. (.32)
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We can insert only the zeroth-order term if the first-order term is much smaller, lead-
ing to the validity criterion to use the so-called local density approximation

[Vk®(k)] Vi [X (r)qi(r)]
D (k) X (r)guc(r)

< 1. (3.33)

In this case, the Bogoliubov de-Gennes equations® become

K 1 ®(k)ng(r) —o(k)¥2(r) uk(r) we(r)
) (3-34)

Sk 2(r)  —LE — d(k)no(r)

2m

= E i (r) [

vk (1) vk (r
which represents the same eigenvalue problem as in Eq. (3.13) but with ¢ — ¥ (r)
and gx — gx(r). This means that we can treat any spatially modulated system in
which the interaction is symmetric under position exchange, locally as an infinite,
uniform system as long as the criterion in Eq. (3.33) is valid. We can then still use our
previously developed procedure of the uniform, infinite Bose gas in future chapters
and transform any global quantity to a local one post hoc.

3.3 One-Component Systems

So far, we have omitted any specifics of the interaction potential ® besides that it needs
to be symmetric under position exchange. While many different interaction types
are possible in modern experimental setups, such as short-range only, short-range
and long-range interactions such as dipolar [86] or Rydberg [87, 88] interactions, or
contact interactions of a soft-core type, in this thesis, we are interested in only two
kinds of interactions: short-range (so-called *contact’) and dipolar long-range. In the
weakly interacting limit, short-range interactions can be classified by a single number
as, the s-wave scattering length if the actual interaction potential drops off faster than
rf?

pseudopotential [72, 73, 89]

(in the case of a three-dimensional system), which allows us to introduce the

Arha,

(I)pseudo (I') = m 5(1‘) (3.35)

>The same set of equations can also be used to calculate the collective excitations under small per-
turbations of an existing ground state [44, 57, 59, 79—85]. We use this technique in Papers III and VI.
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Note that if the system only interacts via short-range interaction, then the integral
parts in Eq. (3.29) vanish due to the §(r), resulting in the standard Bogoliubov-de
Gennes equations.

The second type of interaction is long-range dipolar, where the two-body interaction
potential between two parallel dipoles becomes [90—92]

Caa

Dyq(r) = i |r|3 (1 — 3cos? 9) (3.36)

where 0 is the angle between the dipole’s polarization direction and r making it
anisotropic. The dipolar interaction strenght Cyq is either o3 for magnetic dipoles
or d?/€o for electric dipoles. Here, 4 is the vacuum permeability, /44 the magnetic
dipole moment, dgq the electric dipole moment, and € the vacuum permittivity. The
dipolar two-body potential ®q4q(r) goes to zero with |r|? and has higher-order con-
tributions besides the s-wave scattering lengths, which makes it long-range. For a
one-component system that exhibits both short-range and long-range dipolar inter-
actions, the total two-body interaction potential becomes

Arha, Caa

O(r) = T(5(1') + ppmEs (1- 3 cos® 9), (3:37)
which has the Fourier transform [93]
4mh?as  C
(k) = 7rma + % (3 cos® o — 1). (3.38)

Here « is the angle between k and the dipole polarization. The ground state energy
contribution of the two-body interaction is then given by

o 2mh2as
0

1
Egco = fn%q)(|k| =0)= [1 + €4d (3 cos® v — 1)] . (3.39)
2

When using ®(k) in K to get the quantum fluctuation contribution to the ground
state energy, we transform the discrete sum over k into a continuous integral in the
thermodynamic limit

%4 d®k h2k?
= 5 / W |:Ek — % — TL()‘I)(k) . (340)
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However, we integrate with k — 00, which violates the weakly interacting limit
for high momenta. As such, the integral diverges in the ultraviolet, and we cal-
culate the scattering amplitude at low momenta up to second order in the Born-
approximation [89]:

1% d3k h2k? ®(k) 2mn
2/ |: nQ(I)(k) + k}2 h2
VK128 o4

—T ag’ngﬂ'Qg)(edd).

Here Q;(€4q) comes from the polar-angle part of the momentum integration defined
as

1/2

1
Qi(x) = /0 du [1 + z(3u® — 1)] (3.42)

The time-independent Gross-Pitaevskii equation in the local density approximation
then becomes

ﬁ2
(2mv2 + Vext(r) — o+ gno(r) + /dr/ no(r)®(r — 1)

(3.43)
128 h2\/ad
+ VT O canyel* i) =

Note that while the mean-field level dipolar term is anisotropic, the beyond mean-
field correction in the local density approximation is not. This isotropy is due to the
expansion in Eq. (3.33) and following inclusion of only the zeroth order term in the
local density approximation, which only becomes anisotropic in the first term due to

Vie® (k).

Additionally, Q;(z) acquires an imaginary part when x > 1, which leads to a phonon
instability in the system’s phase resulting from the modes in Eq. (3.15) becoming imag-
inary for low k when €44 becomes large. For systems considered in this thesis, we use
€dd > 1. However, as the imaginary part is small, we discard it for the systems
considered here [94—98].

An additional benefit of keeping €4q small is that we may expand it to polynomial
order around €39 = 0 [96, 99]
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3 1 3
Q5(6dd) =1 + Eﬁﬁd + ?Gid — %Géd + O(ng) (344)

The expansion of Qs(e4q) simplifies numerical implementation as well as analytical
variational calculations, where one commonly keeps terms up to the second order,
which permits only small deviations from the full expression.

Lastly, let us look at the depletion density in Eq. (3.21). For the contact and dipolar
interaction, it is then equal to

N - N, 3 -
- 1. .
v Sﬁ\/aanB(edd) < (3.45)

The depletion includes Q3 while the ground state energy has | = 5. This implies
that quantum fluctuations have a much stronger effect on ground state energy than
condensate depletion. In the depletion, y/a3n emerges as the leading parameter to
determine whether the system is weakly interacting. One usually refers to /a3n as
the diluteness parameter. We can apply the theory presented here if the system is
weakly interacting (i.e., if Eq. (3.45) holds).

3.4 Two-Component Systems

We continue with systems that consist of two distinct Bose gases in the statistical sense
and derive the ground state energy contribution of the quantum fluctuations in the
most general case for spinless bosons®. As such, each species ¢ comes equipped with
its total particle number V;, mass m;, and interactions between species ¢ and j occur
via the two-body interaction potential ®;;(r — r’). The resulting second quantized
(grand-canonical) Hamiltonian then reads

Hye=> / dr! (v) (ho; — pi) Wi(r)
Z (3.46)

+ ;Z / / drdr/ & (r) Ul () @35 (r — x');(x') 5 (x),
ij

where we have assumed that the same external trap in hg; acts on both species in
the same way. Utilizing the local density approximation, i.e., assuming it is safe to

SMost often only systems of equal masses such as different hyperfine states are considered in the
literature, simplifying the following calculation considerably.
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represent the system as uniform as long as it is slowly varying in space, we again write
the second quantized field operators in single-particle plane waves, which transforms

the system into k-space:
21.2
zz@k—)*«
Mg ) Oy 0k

E : E : akl q,t k2+q]q)2](q)ak2yjak17i'

4, ki,ka,q

(.47)

As before, we separate the system into a condensed k = 0 and non-condensed k # 0
part and only keep terms up to second order in creation and annihilation operators

ad
k i

1
2V

— p1No,1 — p2No,2,

gc2 —ZZdLZAkz (_,U'Z>

1 k#0

1 A
+ v Z Z [QQi(O)No,iGLiak,i

i k#0

quo (@11(0)]\[&1 + ‘I’QQ(O)NO%Q + 2‘1’12(0)]\7071]\[0,2)

(3.48a)

+ @i (k) No i (QdLi&m + G-yl + &tkﬁLi) ]

1
ol aus
g7 2 2 |20 Nal

i#j kA0
+ ®15(k)\/NoiNo (aLiak,j +af

+a,T kza;f(] +a_ kzak,]> :|

(3.48b)

Following Eq. (3.48a), the equation of state for component i is then

pi = P4 (0)ng; + P12(0)no, 5. (3.49)
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We can generalize the second-order term in Eq. (3.48b) to a generic quadratic Hamil-
tonian by setting

h2k?
Tk,i = G — i+ (I)zz( )77/071‘ + @ii(k)noﬂ' + (1)12(0)77‘0,]‘7
(]
Uk, = (I)ii(k)n()’i, (3.50)

Cx = ®12(k) /10,1702,

resulting in the generalized Hamiltonian [64]

Uxi (.1 .
Hyeo = ZZTkzakzakz 21 ( I” T_k2+ak1a kz)

i k#0

(3.51)

N o R .
+Cx <ak71a_k’2 + Gy 1 ax2 + ak’laLQ +a-x10-x2) .

Here, the first line represents two separate non-interacting single-component systems
that can be diagonalized individually, and the second line the interaction between the
two systems. Again, we want to bring this into a diagonalized form

w2 = Z Ex aOékOék + Ex ﬁﬁkﬁk + Ky, (.52)
K20

where d and [y are the new quasi-particle operators resulting from the Bogoliubov
transformations

A~ * A /\T
Gy = E (U iGx,i — VkiGly ;)
P

By = Z(mi‘;idk,i - nk,z’&Jr_kJ‘)-

i

(3.53)

For the two-component case, the canonical relations become
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* *
Z (uk7l7auk7l’ﬁ - vk7l7avk71:ﬁ) = 6a7/87

%

§ : * *
(uk7i7auk7j7a - Ukyi’avk,j,a) = 67:7.77
(0%

(3.54)
> (Ui s V8 — Vi o) =0,

%

§ : * * _
(uk,i,avkvjva - vk,i,auk»j»a) - 0

«

Here the ¢, j-index refers to the different components in Hy. and the «, 3-index
to the different components in Héc. For example uk 1 o = uk1, Uk1,8 = Mk, 1
Vk,2,8 = Nk,2 and so on.

We again calculate the Heisenberg equation of motions for the two different Hamilto-
nians [Gy, Hge 2] and [y, Hy, 5] and compare coefficients before the operator terms.
Here, we must be careful to compare only operators of the correct valued £k, mean-
ing we restrict the sum over k to k > 0, acquiring separate terms for +k and —k.

We then obtain the following linear system

Tx1  Ukn Cx Cx Uk, 1 Uk, 1

—Ux1 —Txg —Cx  —Cx | vk Uk, 1
= Fx.a ; (3-55)

Cx Cx Txo Uxo | |uk2 Uk,2

—Cx  —Cx —Ux2 —Tx2l Lvk2 Vk,2

where Ty ;, Uy ; and Cy are direction independent of k and are real. Additionally,
there is an analogous system for Fjy g. The eigenvalues Ey , are then solutions to

[Elil E—I—k oz} [El2(,2 E+k a]

) (3.56)
= 4Ci(Tier = Use1)(The2 = Ur2) = 0
where we have written EZ , = Tl% ; Uk as the single species Bogoliubov spectrum
in Eq. (3.15). Solving the elgenvalue problem gives
Biea + Fiea
Bra(s) = 5
(3.57)

1/2
(EZ, — EZ,)?
+ \/1‘141‘2 +4CE Tk — Uk1)(Tk2 — Uk2) ’
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where the @y quasi-particles have the "+”-branch and Sy quasi-particles the "—"-
branch. We can calculate the ground state energy contribution from quantum fluctu-
ations K as before by knowing that there are no quantum fluctuations in the vacuum
state, such that (0] IA{gQQ |0) = 0:

K = —Ey vk l® + [vk2l?) — Exg(Inkal® + [nk2l?). (3.58)

Rewriting Eq. (3.55) we can calculate the quasi-particle amplitudes via

uk,1 (T — Exa) + Uk,10k,1 + (uk2 + vk,2)Ck = 0
Vi1 (Tiq + Exa) + Uk ruk1 + (uk2 + vk 2)Ck = 0
uk2 (Tk2 — Exa) + Uk 2vk2 + (k1 + vk,1)Ck = 0,

) ( ) 0.

i

(3.59)

)

vk2 (T2 + Exa) + Uk ouko + (uk1 + vk,1)Cx =

From here, we can get the amplitudes in three steps. First, we show that the quasi-
particle amplitudes are real. Secondly, we get an expression that relates uy ; and vy ;3
lastly, we use the canonical condition in Eq (3.54) to get an expression relating all four
amplitudes. To show that the amplitudes are real, we multiply the first line by wuy;
and complex conjugate the second before multiplying by vk 1. After repeating the
same in reverse order for the same lines, we add each pair to get the Ck-terms and
recognize

* * * *
Uk 2Uy 1 VK 22U 1+ U 2Vk, 1 T Vg 2Vk 1 (5.60)
.60
% * * * 3
= Uy oUk,1 + Uk 2Uk,1 + Uk, 2V 1 + Uk, 2V 1>

which can only be valid if the amplitudes are real. From subtracting the first and
second (third and fourth) lines in Eq. (3.59), we get uk ; = ki vk ; with

Ty — Uk + Ex o

by = = ’ Ly (3.61)
" T — Uki — Fxa

Lastly, we repeat the first steps when we showed that all amplitudes are real and ac-
cumulate terms in a way that we have two equations with equal prefactors for the
Cx-terms, which gives us |vk 1 I2Ax = ‘vk72\2 with
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B kiJ(Tk,l — By o) + 2Ux 1k +Tx1 + By

M = Tn — Biw) T Wheshien + Ties + B 662
Using the canonical relations in Eq. (3.54), we then find that
fora [ = [(key = 1) + (W — D] 6:69
such that,
Vi1 |* + [ 2] = L+ A (3.64)

(k12<,1 -+ (k12<2 — DAk

We notice that in these expression C occurs only implicitly in Ey o), which allows
us to simplify the quasi-particle energies to

EZ, + B2 2
Bica(s) = <‘”2“ + R) , 6.65)

where R stands for the remaining term in Eq. (3.57). Using this, and after some
manipulation of Eq. (3.64), we finally arrive at

1
Ky = 3 (Bxa + Ex g — Ticq — Tk 2) - (3.66)

This expression is valid for any interaction as long as it is radially symmetric and
symmetric under component exchange. We could generalize this expression to even
more components; however, this thesis only looks at short-range interacting two-
component systems where the local density approximation is valid. In the systems
considered here, the interaction strengths g;; are positive, and in the following, we
further assume

ﬁ2:1+0<zwﬂ%wu@@§, 569

911922 N

where the last term gives the order of the relative depletion (N — Ny)/N. In contact-
interacting systems Fj ,(g) then becomes
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Ei1 + Bico
Ek7a7ﬁ = 2

(3.68)
(Eiy — Bio)?
+ \/4 + dex 1€1,2972710,110,2
and the fluctuation correction to the ground state becomes [42, 53]
dPk h2k? h2k?
K=V | —= |E Eyg— —— - = . (3.6
/ 2(27)D [ ko + Exp S, giiny S 92212 (3.69)

Note that the Ey g-branch may acquire an imaginary part for small k if the inter-
action strenghts are chosen inappropriately such that g3, > g11g20. However, this
branch also vanishes in the leading order of condition Eq. (3.67), so we can safely ig-
nore it when working in this regime’. Removing this term is analogous to removing
the imaginary part in the dipolar case of Eq. (3.41). Lastly, we look at the quantum
depletion of the condensate, specific for each component,

N; — No;i Zk;é0<d;r<,i&k7i> k0 (i * + [l )
N; N N N

<1, (3.70)

which we will evaluate separately for different spatial dimensions in the next section.

Above, we derived the Bogoliubov vacuum energy for two components following
Refs. [42, 53, 64] for a depletion small enough to be weakly interacting. While we
specialized in the contact-interacting case, the derivation is valid as long as @ (r —r’) is
radially symmetric. We now continue with a brief overview of the specific shape of the
Bogoliubov vacuum energy and condensate depletion in different dimensions [42, 53,
54] before considering systems where the usually negligible effects become important.

3.4.1 Binary Bose Mixtures in Three Dimensions

As before, we express the interaction strengths in three dimensions via the s-wave
scattering length ag, which requires using the second-order Born approximation [89]
to get rid of the ultraviolet divergence for high k in a weakly interacting approximation

"There is, however, an approach to remedy this instability by treating the attraction between the two
components as a BEC-BCS cross-over and introducing a bosonic pairing term [100].
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d*k /MM gi
9ij = 9ij [1 + / Gnp R ; (.71)

where g;; = 4%712&3,2‘]- //mMim; is the contact interaction strength as before. The
Bogoliubov vacuum energy density Eg = K /V in the most general case is then, after
integration of Eq. (3.69) [42, 53, 101],

8 my\3/2 my g3 g22M2
Er — (7) 5/2p(3d) (M2 Jip  g22M2 ) _
B 1572 \ 2 (g )" mi gi11922 g11ni G.72)

where

#(3D) (z,u,x) = ;;/0 dk k? [\2 Zi:gi(z,u,x)

(3.73)
1+2 4 9 drzu\ 1
— k“—1-— 1
By a:+< +xz+1+z>k2],
with
2 4 4
(2 Tk k k
gi(z,u,:v)— <l€ +7+Z+@
(.74)

1/2

rk?2 kY kAN\?  dzukt
+ 2 _ 77 -
\/(k P 422> T )

This integral generally has no closed solution but results in a combination of elemen-
tary and elliptic functions®. However, in the case of equal masses m; = mg = m we
can write

k2 1/2
g+ (Liu,z) =k ((1 + 2+ 2) + /(1 —22 +4xu)>

FBP) (1, u,2) = 15/ dk k2
0

1
32 E ggi(lﬂ%x) (3.75)

_k2_1—x+(1+m2+2mU)]€12],

8See Supplemental Material of Ref. [101].
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which solves to

i, (3.76)

with the Bogoliubov sound modes c+ given by [42, 53, 101]

o guni+ gaang £ /(9111 — gaana)? + 4gfyning

As noted before, the c_-branch vanishes in the for us relevant regime when g%Q =
911922 and turns imaginary when exceeding that limit. The time-independent Gross-
Pitaevskii equation then becomes

h2
- %v2+%xt(r) + giini(r) + gran;(r)
(3.78)
4 m3/2 i1 3/2
33 78 (g11n1 + g22n2)™ " | i(r) = pei(r)
and the depletion in Eq. (3.70) for component 7 in this case becomes
Ni — Noi 2k (loiei® + [macil®)

N; N;

(3.79)

8
= ﬁaii\/ a11ny + agng K 1

which reduces to Eq. (3.45) in the case for g11 ~ g22, 1 ~ n2 and €qq = 0.

As noted above, the k integral has no closed solution in the m; # mg case. However,
Eq. (3.72) is still numerically solvable for certain parameters. One can then use the
resulting data to find a fit and obtain an approximate function. At the time of writing
this thesis, an approximate expression for different masses only exists in the three-
dimensional case [102],

87”?/2(9117”L1)5/2

1572h3

N3, 10
Ep ~ 1+<1> 922 2] . (3.80)

ma giini
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3.4.2 Binary Bose Mixtures in Two Dimensions

When considering low-dimensional systems with D < 3, we must determine whether
the system only appears lower-dimensional in a geometric sense or is truly lower-
dimensional. In the first case, the ratio of the reduced axis (for example, the z—direction
in a two-dimensional system) to the perpendicular one is small as [, /I; < 1, while
collisions in the reduced axis between particles may still occur. We then refer to the
system as quasi-lower dimensional. In a genuinely lower-dimensional system, this di-
rection freezes out, and no interactions are allowed anymore with I, < as [57, 59].
This argument is equivalent to requiring that the energy of the confining potential
is far larger than any other energy in the system, including thermal energy and the
chemical potential, such that Aiw, > p [57, 103, 104].

We start with a genuine two-dimensional system, where the short-range interaction
coupling constant in two dimensions is [54]

2
(2p) _ _A4mh 1 (.81)

Gij = ; Ineij /K2

with €;; = 4exp(—27)/ a?j and k is a momentum cut-off as the two-dimensional

scattering integral diverges for large momenta. For conciseness, all g;; and a;; in
(2D) (2D)
ij ij
In a system axially confined by a harmonic oscillator with oscillator length a, the

this section are to be understood as their two-dimensional version g and a

two-dimensional scattering length a;; becomes [105]

a;j = a (21 / 17;6_7> exp (—ﬁ;:j) ) (3.82)

where y is Euler’s constant and B ~ 0.91.

In two dimensions, the integral for the Bogoliubov vacuum energy Ep with equal
masses M1 = Mo = m then becomes [54, 101]

1 m g12  g22m2 K
E(2D) _tm n1)2 £(2D) (1’ , , ,
B A7 hQ(gH O 911922 g11n1 \/migiini

(3.83)

0 -

which integrates to
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(2D) mcif
Ey 8 7 Zci < 12,2 > (3.84)

While we can show that the system’s energy is independent of the cut-off k by 9(Ep+
Eg)/0k? = 0, we want to remove the cut-off dependence explicitly. For that we
choose a new set of coupling constants g;; with

- Amh? €ii
gij = ———1In (J> ; (3.85)

M A

where we choose A such that §12 = v/g11g22. The scattering amplitudes g;; and g;;
are related via the Born series expansion [54]

- - H2 m;m; B
9ij = Gij [1 + gijIn (A) e J} +0 (gf’]) . (3.86)

If k2 is larger but not exponentially larger than A, the two expressions are equivalent,
and we can use both interchangeably. Otherwise we can insert it into Eq. (3.84) and
keep terms in g;; up to second order to get for m; = my = m,

1m ~ 2 mye P
Ep =13 (G111 + g22n2)” In (m(gunl + 922”2)> : (3.87)

The time-independent Gross-Pitaevskii equation for component ¢ is then

h?
[— 2—V2 + Vext (r) + giini(r) + g12n;(r)

(3.88)
+ #hzgu’ (21: gmu) In (;LZ (Zz: gmu)) ]wi(r) = (),

which we use in Papers I and II. Lastly, we are interested when our approximations
hold for a two-dimensional system such that it is weakly interacting, i.e.

N; — No _ > k40 (lvne.l? %) _ gim
Ni Nz 4Wh2

< 1. (3.89)

This means that the relative number of particles in the non-condensed states is inde-
pendent of the density and only depends on the interaction coupling constant and
the system’s mass.
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3.4.3 Binary Bose Mixtures in One Dimension

If a system is strongly confined in two orthogonal directions by a harmonic potential
such that /] < ag, the system is one-dimensional with it is scattering amplitude [106]

D 2h?
gz(jl ) = _7(1]3) (3-90)
mimjaij

(1D)

where a;; = —a? /a;; is the one-dimensional scattering length. As in the previous

ij
. . . . . 1D
section, all g;; and a;; are to be understood as their one-dimensional version 92'(]' )

1D .
and az(j ). The Bogoliubov vacuum energy EB for equal masses m; = mo = m

then becomes [54, 101]

2
apy _ 1 m 3/2 £(1D) ( 912 922”2)
EUD) = =T 1, 12 92272
D 27 h? (gum )72 f 911922 91111
. (3.91)
f(lD)(l,u,:U,):/ dk gi(l,u,x)—kz—l—x ,
V2
which integrates to
2 m? 3
Eg = T3 Zi: L. (3.92)

Note that the energy has a minus sign compared to the three-dimensional case in
Eq. (3.76), affecting the self-bound droplet and mixed bubble systems investigated in
the next section. The time-independent Gross-Pitaevskii equation for component %
in the local density approximation then becomes

h2
— %v2+‘/ext(r) + giini(r) + gran;(r)

12 (3.93)

P (g + gaana)'? [i(x) = i, (1)

which we use in Papers III and V. Lastly, let us calculate the depletion. Here, the
integral diverges to infinity for small k, meaning that there technically is no Bose-
Einstein condensation possible as all particles would be outside of the ground state.
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Nevertheless, the Bogoliubov theory presented here accurately describes the energy of
a weakly interacting one-dimensional Bose gas despite assuming a condensate [107,
108]. We can, however, introduce a lower momentum cut-off x for the depletion

integral, where we send k — 1/£4 after integration, where 1/&4 = (/4¢3 m?/h? is

the characteristic momentum-scale’. The depletion then becomes to zeroth-order

N; — Noi 2o (sl + |rcil?) 113 ym Gii
N; N; 16v/2 hm \/guini + gaang

<1,

(3-94)

where the prefactor 1.13 approximates v/2(4 + log(4/(2 — v/2)?)) — 8. As the
depletion only depends on 4/g/n in the case of g11 ~ g2z and n; ~ na, a one-
dimensional system becomes weakly interacting for high densities, contrary to the
three-dimensional case.

3.5 On Droplets & Bubbles

Let us now look closer at the energy and stability of a uniform, three-dimensional,
two-component system. Starting with the mean-field interaction term Ey = > ;. =
gijnin;j/2 we find that the system is mechanically stable as long as g%Q < g11929. It
undergoes phase separation [109] for g12 > |/g11g22, meaning that the components
will avoid occupying the same spatial region; or collapse for g12 < —/g11922. Here,
the collapse shows as a feedback process where the strongly attractive g12 increases the
density in the center. This increase, in turn, increases the total attraction further, until
in the Gross-Pitaevskii formalism, all atoms collapse onto a single point'®. Suppose we
were to plot the energy in the 11-ng-plane. We can then determine the eigenvectors
in the n1-no-plane by writing Eg as ), A+n, with ny as [42, 101]

a~12n; 4+ al/2n,
ny = 1 )
Va+a-Tt
—al2n + o~ V2n,

Va+al

(3.95)

9We will discuss the origin of this in Sec. 4.3.
19This is the regime where the Boboliubov approximation used in this thesis loses its validity and
three-body processes start taking over [110-113].
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Here v = \/g22/g11 is the interaction imbalance and ny > 0, ny < n_ < ng
with n;, = —njya and ngp = nq4/a. After rotating Eg o into the new coordinate
system, and including the Bogoliubov vacuum energy, Eg o reads [1o1]

a+a 1l
Egc,O = 2 gni — U4Ny
(3.96)
5gln?2 — (o —a Vnin_ —n2
+g[+ ( N4 ]_M_n_JrEB,

a+al

where dg = g12 — g and'' g = \/g11g22. In the case for g12 = g the negative branch
c_ vanishes as before and ¢ becomes

(@ +1)ny +ala—1)n_

2
c = . .
T =9 oVaT 1 (3.97)

We now want to separately distinguish between the two cases of g12 = +g, starting
with the negative case. While we restrict ourselves to the three-dimensional case, the
following analysis is also valid in two- and one-dimensional systems [54]. On the
mean-field level without the Bogoliubov vacuum energy density Ep, it is energeti-
cally favorable to minimize na_ and maximize n2, i.e., having the ratio n1/n2 = «
constant while increasing both densities. With a total increase of both densities, while
including Eg, an intricate interplay of mean field interactions which scale with ~ n?
5/2 occurs. As gig — g is slightly smaller than
g, the inter-component term effectively cancels the intra-component terms on the

and Bogoliubov vacuum energy ~ n

mean field level, and the system should collapse. It can, however, be stabilized by
the Bogoliubov vacuum energy, leading to a zero-pressure environment in the bulk
density [42]. We thus find a minimized energy for some finite densities 721 and no,
allowing for the formation of a self-bound droplet state in the case of a finite particle
number [42, 45, 46, 54].

Any self-bound system will have a zero-pressure environment in the bulk. In the grand
canonical ensemble, one calculates the pressure as P = —0Fgc o /OV , where we have
updated the chemical potentials as j1; = 0Fgc0/ON;. For the mass-balanced case,
this gives the equilibrium density for zero pressure as

25 + 2 i _
n” = o <aalfi12> [a (o™ 1), G-98)

"Note that dependent on whether the Bose gas is near collapse or separation dg is in the literature
often defined as g12 + g or g12 — g respectively.
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where a = \/ai1a2s is the average three-dimensional scattering length, which gives
the interaction strength as g = 47rﬁ2a/ V/mima. If we look at the energy terms
contributing to the ground state for one-component dipolar systems, we see that they
have a similar structure as in the two-component case with short-ranged interactions.
While the contact term remains repulsive, the dipolar interaction may be attractive or
repulsive, depending on the polarization angle due to its anisotropy. If it is attractive
enough in the direction of head-to-tails, the Bose gas may collapse. Similar to the case
in mixtures, the quantum fluctuations can now stabilize the system due to the ~ nd/2
repulsive dependency [94—98, 114—116]. While we mentioned the existence of droplets
in both, the two-component contact and one-component dipolar droplet, on a mean-
field level, they also result from exact methods such as Monte-Carlo methods [117,
118] or exact diagonalization. We investigate droplet formation in mixtures using
the Gross-Pitaevskii formalism in Papers I and II and using exact diagonalization in
Paper V.

If we apply a compressional force to the droplet, it will deform to maintain its zero-
pressure environment. Due to the anisotropy in the dipolar case, however, the en-
ergy cost for a widening of the droplet becomes too large, and it becomes energeti-
cally favorable to form multiple smaller droplets when compressed in the magnetic
field direction [119]. Depending on the dimensionality of the trapping environment,
the droplets then align themselves in an elongated one-dimensional array [119], or a
hexagonal two-dimensional array [120]'?. We study such one-dimensional arrays in a
toroidal trap in Papers IV and VI.

We can gain an intuitive understanding of the ground state behavior of two-component
contact-based or one-component dipolar droplets by following a variational approach
using a suitable trial-wavefunction [57, 59, 91]. By substituting the wave function with
its variational parameters into an energy functional, we can minimize the energy func-
tional with respect to the variational parameters. In this way one can understand the
stability diagram, the formation of the droplets and their excitations [80, 94, 95, 122,
123] and the magnetostriction of dipolar systems [124, 125]. The variational approach
is also applicable for mixtures [126] and arrays of droplets [119, 127, 128]. We use the
variational ansatz for a symmetric two-dimensional droplet in Paper II.

Let us now consider the regime where g12 ~ g, following Ref. [101]. Then, the rotated
density n is independent of the system’s phase in the mean-field approximation. We
can see this if we minimize the mean field part of Fy. o with respect to n4., such that

12See Ref. [121] for an extensive review on theoretical and experimental works on the self-bound
systems discussed here.
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Figure 3.1: Bubble formation in a contact interacting Bose-Bose mixture: (left) Grand-canonical potential in ar-
bitrary units as a function of n_ according to Eq. (3.96) for a one-dimensional system with o = 2.7
and g = 5.0. Note that Eq. (3.96) is independent of total particle number and particle number
imbalance. We chose p_— and added an offset such that all lines have the same value at both end-
points without changing the underlying physics. (right) Density distributions for a mixed-bubble
forming one-dimensional system on a ring. Note how the limits for the phase transitions of mixed-
bubble formation change due to finite-size effects and v = N3 /N> = 10 # oo as discussed in the
main text. All data were obtained by propagating Eq. (3.93) in imaginary time o = 2.7, g = 5.0,
Niot = N1 4+ No = 10%, v = N1 /N2> = 10and i = m; = R = 1. The parameter §g/n /g3 is
given in the respective figures.

H4

m (3.99)

ny =

and Eg ¢ is then only dependenton n_. Eq. (3.99) is the g12 > O analog of ny /ngy =
« for the droplet formation.

The additional mean field terms with g produce a correction of order gn?n where
n = (919)/(¥1¥) <« 1 is the total quantum depletion in Eq. (3.21). In the pure
mean-field case, the transition is determined solely by dg = g12 — ¢g. If 6g > 0,
the system separates, and Egc o(n— ) will minimize at the endpoints nz, and ng, cor-
responding to fully separated components 2 and 1 respectively (see —0.052 line in
Fig. 3.1). p— is then defined by Egc o(n1,) = Egc0(nr). For dg < 0 (but g12 > 0),
Egc0(n—) is convex and has only one minimum, resulting in a fully mixed phase,
where both components share the same space (see —0.072 line in Fig. 3.1). The tran-
sition between miscibility and separation is behind two second-order phase transitions
at By o(ng) = 0and Ey, (nr) = 0. These two cases are exhaustive if we neglect

g
the effects of quantum fluctuations.

Including Eg, however, Egco(n—) may be partially concave and convex [101] (see
the three middle lines in Fig. 3.1), with the transition point in the interval dgmin <

09 < dgmax- As Ege o(n-) is a monotonically increasing function, if a > 0, the
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concave region starts at 121, and ends at some n_, which allows us to determine d gimin

by the emergence of the tangent point on ny, as Ey. o(n1) = 0. The upper end of the
interval is then determined by whether the function is concave during the full interval
as'? Eg. o(nr) = (Ege0(nR) = Ege0(nL))/(nr —n1). Mixing several component-
2 atoms into a large bath of component-1 atoms will lead to a uniform spread over
the full system size for 6g < dgmin (see —0.062 density plot in Fig. 3.1). Otherwise,
it will either localize into a pure bubble for dg > dgmax (see —0.017 density plot in
Fig. 3.1) or swim in a background of component 1 in between those two values. The
transition from mixed to pure bubble occurs continuously, while from mixed phase
to mixed bubble, it remains of first order. The boundaries of the mixed bubble phase
in three dimensions are then

Ogmin 1 (a— D(a?+ 1)V [m3g3n,

dg w2 a3/? o
(3.100)
Sgmax 4 30%% +6a + 40!/ +2

59 - 15 (\/&_,_ 1)2 gmin-

The mixed bubble phase occurs in Eg.(n_) and requires the fluctuation energy Eg,
which depends on (o — 1)n_ in the rotated n_-n plane. The n_ term, however,
vanishes at & = 1, such that the n_ term vanishes together with the mixed bubble
phase [ro1].

The above derivation for the mixed bubble is valid in the thermodynamic limit when
N; — o0, V. — o0, n; = N;/V = const. and N;/Ny — oo for a > 1.
However, using the Bogoliubov-de Gennes equations for a one-dimensional system
with periodic boundary conditions, we can calculate 0gmin/dg by calculating the
point of dynamic instability. Here, the lowest excitation branch acquires an imaginary
part when crossing the phase transition via a critical parameter. The transition point
then becomes

lim RPny 69 1 (a —1)2 a+v

N—oo m g3/2__ﬂ\/&«/a2+1 o+ v’

(3.101)

where v = Nj /N3. Expanding this expression at ¥ — 0o then recovers the original
result for component 2 in a large bath of component 1 in the one-dimensional case
and is a result of Paper III. One can see the difference between Eq. (3.101) and the
v — o0 prediction in Fig. (3.1) when comparing the left panel with the right panels.

13This is just a Taylor expansion around nr up to the first order. A function f(x) is bounded from
above by its first-order Taylor expansion if it is concave and differentiable.
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Furthermore, one may modify the global mixing behavior of the system by introduc-
ing component-dependent local perturbations such as an optical lattice. Then, mixed
bubbles with a size much larger than the periodicity of the lattice may form even
without the inclusion of the Bogoliubov vacuum energy [129].
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Chapter 4

Superfluidity

by analogy with superconductors, [...] the helium below the A-point enters a special state
that might be called a superfluid”

- Kapitza, 1938 [16]

any known _formula cannot, from our data, give a value of viscosity which would have
any meaning’

- Allen & Misener, 1938 [17]

Both superfluidity and superconductivity imply frictionless transport. In the case of
superconductivity, this refers to the actual electrical charge, and in the case of super-
fluidity, to the mass of the moving particles.

In this chapter, we want to work out the phenomena associated with this frictionless
flow in the context of a weakly interacting Bose gas. We start in Sec. 4.1 by reproducing
Landau’s criterion of superfluidity [24, 25] and specifying the two-fluid model’s impli-
cations in Sec. 4.2. From here, we continue in Sec. 4.3 by extending the definition of
a Bose-Einstein condensate to a macroscopic wavefunction with spontaneously bro-
ken U(1) symmetry [130, 131] and global phase coherence. This immediately recovers
Landau’s criterion, specificially derived for a weakly interacting Bose gas. From here,
we investigate in Sec. 4.4 the implications of phase coherence in the form of persistent
currents and quantized vortices. Lastly, we extend this treatment in Sec. 4.5 to two
components and discuss the so-called Andreev-Bashkin effect [132, 133], describing
drag between superfluids.
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4.1 Landau’s Criterion for Superfluidity

At the beginning of the 1940s, two prevailing theoretical ideas tried to explain su-
perfluidity. London and Tisza described it as an ideal Bose gas with the emergence
of a two-fluid model for the condensed and non-condensed part [21—23]. The two-
fluid model allowed each component to have its own velocity field, explaining the
non-classical results in prior experiments [16-18, 134]. Landau, however, rejected the
of relating an ideal Bose gas to superfluidity [24, 25] and pointed out that an ideal
gas can not approximate the strongly interacting Helium molecules'. To understand
why interactions are necessary for superfluidity, let us follow Landau’s approach and
consider liquid Helium moving as an ideal Bose gas through a capillary with veloc-
ity v, just like in Kapitza’s experiment [16]. Additionally, we may have a frame of
reference that moves with the Bose gas. In this frame of reference, the ideal gas has
an energy E', constituted by the internal energy E and the kinetic energy Mv? /2,
where M = N'm is the total mass of all particles:

E' = Ey+ Mv?*)2. (4.1)

If the fluid is viscous, dissipation can occur by transferring kinetic energy into heating.
Landau considered only dissipation via elementary excitations of two types of quasi-
particles: phonons and rotons. It is important to understand that he postulated the
existence of rotons as atomic-sized vortices based on the commutation relations of his
newly quantized hydrodynamic equations [24]. For now, we ignore any specific form
of quasi-particles and assume a generic excitation spectrum E}, which equals zero at
all k in the case of an ideal Bose gas. A single excitation in the gas will then add this
energy Ey to E'. Through a Galilean transformation, the energy in the tube frame
will then be

E" = Ey + Mv*/2 + Fy — hkv. (4.2)

Dissipation via elementary excitations is then favorable if E” < E’, i.e., when Ey —
hkv < 0. This always holds for an ideal Bose gas where Ey = 0, such that it cannot
support superfluidity. E” minimizes if k and v are parallel, leading to the Landau
critical velocity (24, 57, 59]

|ve| = min —. (4.3)

'London pointed this out himself in Ref. [21].
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As already pointed out, an ideal gas whose particles are point-like and have no in-
teractions, such as the ideal Bose gas as proposed by London and Tisza [21—23], will
then have Ex = 0 and, as such, will not be superfluid. Landau then postulated an
excitation spectrum of weakly interacting quasi-particles consisting of phonons and
rotons with Fy = chk and Ey, = A + h%k? /24, where c is the sound velocity, ;
an effective mass and A the minimum energy of rotons. He later modified the roton
spectrum to be included in the phonon spectrum to By, = A+ (hk —hkg)? /2 [135]

to better represent the experimental data [15].

4.2 Two-Fluid Model & Second Sound

Let us now briefly return to the aforementioned two-fluid model, where each com-
ponent can have its own velocity field according to

j = PsVs + PnVn, (4.4)

where j is the momentum density and ps and vy the superfluid density and velocity.
The last term describes the normal component, which entails the system’s viscosity,
while the superfluid term carries zero viscosity. In Tisza’s model [23], the superfluid
and normal components were the Bose condensed and non-condensed parts, while
in Landau’s model [24, 25] they were parts without and with quasi-particles according
to the description above.

A direct consequence of these separate velocity fields is their decoupling and moving
in-phase and out-of-phase. When both superfluid and normal components move in-
phase, this leads to the usual understanding of phononic sound waves, and we call
this first sound. In the latter case, when both fields move out-of-phase, we refer to
it as second sound, which can be understood as entropy or temperature waves, while
the system remains undisturbed. The effect of second sound then explains the high
thermal conductivity of superfluid Helium as the boiling process stops at the phase
transition. Instead of diffusion, heat then moves via second sound in the system.
Second sound was first measured by Peshkov in 1946 [136], while the sloshing of tem-
perature waves has been recently visualized [137].

In this thesis, we only consider 7' = 0 K for a weakly interacting Bose gas where the
normal component vanishes. Moreover, as such, one would expect no second sound in
our systems. This changes, however, if the Bose gas experiences a density modulation.
Here the system splits into a superfluid background, while the remaining particles can
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move like a rigid body in the density modulation. We can then find an analogy of
these two components with Eq. (4.4), where Ref. [138] describes the hydrodynamics
in such a system. We will discuss a type of these density modulations further in Ch. s,
while we treat the resulting second sound in Paper VI.

4.3 Quasi-Averages, U(1) Symmetry Breaking & Phase Co-

herence

Due to the direct confirmation of the combined phonon-roton spectrum in Helium
I via inelastic neutron scattering [139, 140], Landau’s description quickly became
the prevailing theory of superfluidity. London’s and Tisza’s idea still lacked a formal
theoretical description [26, 55], which would eventually rely on the macroscopic or-
der parameter we introduced in Ch. 1 and spontaneous breaking of U(1) symmetry.
Both these concepts were only developed in the late 1950s [141]. Despite Bogoliubov
introducing the bosonic macroscopic order parameter in Ref. [26], it took until the
introduction of U(1) symmetry breaking [142—145] that both concepts together kick-
started the study of weakly interacting Bose gases in connection with superfluidicy?.
The goal of this section is now to combine Bogoliubov’s work [26] with the symmetry-
breaking macroscopic wavefunction in the form of Bogoliubov quasi-averages [63, 64,
146] to show that superfluidity in weakly interacting Bose gases emerges as a direct
result of symmetry breaking and recovers Landau’s criterion in Eq. (4.3).

In deriving the ground state properties of the weakly interacting Bose gas in Ch. 3, we
used the Bogoliubov approximation and separated the system into a condensed and
fluctuating part. There is a subtle detail when we assume ag and agj to be complex
numbers with an amplitude /Ny and phase factor exp(+i¢). We will now inves-
tigate how this phase factor emerges when explicitly deriving superfluidity in weakly
interacting Bose gases.

Let us start with a one- component system where our general (grand canomcal) Hamil-
tonian Hye = H — puN conserves particle numbers [Hge, N] = 0, and H is the
stationary one-component Hamiltonian as before. The Hamiltonian is then U(1)
symmetric, which implies a degeneracy in H, gc- In the Bogoliubov approximation,
we can write the ground state operators &(()’r) /NVV ~ \/ngexp(Fia), where o is a
new arbitrary angle’, different from ¢. Thus, in the Bogoliubov approximation, one
has already assumed a ground state that spontaneously breaks U(1) symmetry.

?In fact, Bogoliubov’s work mainly went under the radar [3], which lead to Lee, Huang and Yang
coming to a similar result ten years later without citing Bogoliubov’s work [141]. This is why the beyond
mean-field energy correction is today known as the Lee-Huang-Yang correction [72].

3We now write o as we essentially want to derive the phase factor ¢ rigorously.
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Let us now continue by taking the average” of the operators < / V' V), which be-
comes exactly 0 due to selection rules in the occupation number basm |10, .My - )
If we treat CLO / V'V as a complex number and take the statistical average, this implies
that we average over all « as well. Bogoliubov recognized this problem and remedied
it by introducing what he called quasi-averages [63, 64, 146] < - - - >, such that

4

< ﬁ == /no exp(£io). (4-5)

In the following, we want to introduce the concept of quasi-averages, starting from a
non-interacting Hamiltonian, following Refs. [63, 64, 146]. Here, we will see that we
can define quasi-averages as

<= lim (e ), (4.6)

v—0

where (...), ¢ is the common average with respect to a new Hamiltonian H, v in
Eq. (4.7), v > 0 some real parameter and ¢ the fixed angle of the phase factor above.
As we will see later, we defined this conveniently with foresight. In general, ¢ could
be some arbitrary symmetry-breaking quantity of the system under investigation and
also occurs in other systems like superconductors and magnetism [63, 64].

To break U(1) symmetry, we introduce an additional term to our Hamiltonian that
acts as source and drain terms and destroys the degeneracy®[63, 64, 146]

Hyg = Hye — v (&8 exp(i¢) + o exp(—i¢)) vV (4.7)

We can restore the quadratic properties of the Hamiltonian by introducing new op-

/(1)

crators CLO

do = dl) — %exp(wﬁ)\/V,
(4.8)

Q>
o—+

= dg — %exp(—igb)\/v,

“We can compute the expectation value of an operator as (O) =
Tr(O exp(—Hge/0))/Tr(exp(—Hgc/6))  while choosing the occupation number basis
|no,...,Nk,...) tosum over in the trace.

5Note that a(Jr>

numbers formally

are operators again, as we now want to introduce the approximation as complex

47



(t)

while leaving the remaining @, ’ unchanged. After insertion, H,, 4 then becomes

If] B N h2k2 o ﬁ
w——mm%+§:*5;—ucwm+uV (4.9)
k#£0

Let us now calculate the average occupation number and determine the condition for
a condensate:

(@ g =0,
(g a)u,p = (exp (—Bp) — 1), (4.10)
o == (o (3 (2= ,)) 1)
resulting in
No = noV + (@} ah),., (4.11)
g = % + % > alin),- (4.12)

k£0
In the thermodynamic limit, V' — 0o and v — 0, this needs to recover the usual
description of condensation of free bosons. At the same time, v/ needs to be of

dimension y/ng. Thus we can write p = —v///ng. Taking the average <€L8Ld/0/V>,,’¢
in the thermodynamic limit then becomes

&/Td/ dT . ag .
(55 m)

= Jim_ & (exp(Bu/y/g) ~ 1) =0,

v, (4.13)

such that we have in the asymptotic limit &(()T)/\/V ~ /no exp(Li¢). Itis this limit
that defines the quasi-average as in Eq. (4.6), such that

<y == lim (@)}, (4.14)
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and thereby justifies writing a(() ) a(() ). "This way, for a Hamiltonian H,, 4, the

ground state amplitudes are fixed complex numbers in the limit v — 0. Thus, the
ground state spontaneously breaks the U(1) symmetry in the Bogoliubov approxi-
mation by introducing the v-term [63, 64, 146]. Let us take the limit v — 0 after®
V' — 00. We arrive at the usual description of condensation where, in the interact-

(1)

ing case, the quasi-averages will also extend to the other amplitudes a(T) besides aj .
This symmetry breaking of the ground state is called global phase coherence or global
phase memory. We now want to investigate the consequences of this global phase ¢
by extending it to the local density approximation in a weakly interacting system.

In line with our local density approximation, let us assume that we still have a uniform
Bose gas, but our newly acquired phase factor is position dependent ¢ — ¢(r). Then,
by using the system’s translational invariance, we get

b(r) = ST Zd) Zak exp ( > (4.15)

and the kinetic term in the thermodynamic and v — 0 limit becomes

k% Rk h?
S alan (G + 5 VO + 5 (VOWP k). a0
k

while the interaction term remains unchanged. If we use the current density operator”

) = o (W) V() - BV )

[\~

A (4.17)
=V Z k(k+Vo(r)),
Kk

we can identify the velocity v(r) = (j(r))/n(r) via the current density operator
expectation value (j(r)) as

v(r) = %ng(r), (4.18)

¢The non-commutativity between these two limits is sometimes seen as the defining property of
spontaneous symmetry breaking [147].

7One can obtain the current density operatorj by calculating the equation of motion of the reduced
one-particle density matrix.
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where v(r) is the newly defined velocity of the Bose gas. The kinetic term then
becomes

h2k? 1
Z ( + hkv + 2mv — u) (4.19)

k
After separating the system into its k = 0 ground state and k # 0 fluctuating terms,
we get the ground state equation of state as 1 = mwv?/2+ny®(0). While diagonaliz-

ing the fluctuating terms with the Bogoliubov transformations, we need to accurately
discern between Ty = Ty +hkv, such that the system of equations to solve becomes

Uk
Uk

and thus, the Bogoliubov excitation spectrum in Eq. (3.15) acquires an additional kv

Ty + hkv  —U;

Uy —Ty+hkv *

“k] (4.20)

Vk

term to become

Eix = Vele + 2®(K)ng) + fikv. (4.21)

While the depletion of the condensate (i.e., <&L&k> = limg_0 |vk|?) remains un-
changed by the additional velocity, the quasi-particles are still required to fulfill Bose-
Einstein statistics, such that their average occupation number is

(Ny) = (exp(B(Ex + hkv)) — 1)L (4.22)

Here (Ny) > 0 and as such

Fx + hkv > 0, (4.23)

which minimizes if k and v are antiparallel. We then replace the vectors with absolute
values using the antiparallel property and get

Ex

[ve| = I?ﬁfl R (4.24)
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which is exactly Landau’s criterion for superfluidity in Eq. (4.3), but derived specifi-
cally for a weakly interacting Bose gas that spontaneously breaks U(1) symmetry.

We now want to investigate the excitation spectrum more, starting with a purely
contact-interacting Bose gas and later including dipolar interactions. For large mo-
menta, Ey approaches the behavior of a free particle for both cases, while at low
momenta, the excitation spectrum assumes the phononic form

Ey = hke(1+...), (4.25)
where ¢ is the sound velocity
no@(k)
=3/ —. .26
- (4.26)

The phonon mode represents a gapped excitation, where the gap equals c and is the en-
ergy of a massless Goldstone-Nambu particle associated with the spontaneous break-
ing of U(1) symmetry [142—145]. For a contact interacting system the sound velocity
also represents the upper bound for the superfluid critical velocity. The regime in
which both the free-particle spectrum and the phonon mode become equally strong
defines a characteristic momentum scale 1/, where

§ = h//4mgng (4.27)

is the healing length in a one-component contact-interacting Bose gas with interaction
strength ¢ and describes the length in which it recovers from 0 to its bulk density.

In the dipolar case, while for k — 0 and k — 00 one observes the same behavior,
there can be an additional minimum, depending on €4q. This minimum has the same
shape as the roton spectrum proposed by Landau and was consequently dubbed the
roton minimum. The excitation spectrum is then not monotonically increasing any-
more and provides another option for dissipation. We focus on the roton minimum
specifically in Sec. s5.2.

4.4 Persistent Currents & Vortex Lines

While quantizing the hydrodynamics equations to derive a microscopic description of
superfluid Helium, Landau found that the system has irrotational states separated by
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some discrete energy from the ground state [24, 25]. These irrotational states are the
rotons we already mentioned, and Landau described them as atomic-size vortices. We
here now want to introduce irrotational flow and vorticity in a superfluid based on the
velocity in Eq. (4.18) and the work on vortices by Onsager [148] and Feynman [149].

The form of the velocity in Eq. (4.18) is a direct consequence of Bose-Einstein statis-
tics and spontaneous U(1) symmetry breaking and is independent of temperature,
interaction strength, or diluteness. We can readily see that the velocity is irrotational,
meaning

V x v(r, 1) = %v < Vo(r) = 0. (4.29)

This irrotationality forces us to only consider distinct solutions for the order parameter
that permit velocity and rotation, which we will explore next.

First, we look at a system that lives on a so-called simply connected region. This
is a topology where one can reduce any closed line to a single point. Following the
velocity and irrotationality, we can calculate the circulation & = § dI'v(r) along such
a line and see that it naturally only permits one solution - £ = 0 [57, 148, 149]. The
same is valid for multiply connected regions that consist of simply connected ones,
but changes if we adapt our topology to the line integral using a toroidal geometry.
Evaluating the same line integral then gives a quantized circulation  around the loop:

h
K= %dl’v(r) = 277%3, (4.29)

where s are non-negative integers, giving states of discrete angular momentum. Be-
cause of the quantization, at least in theory, these states are meta-stable against per-
turbations and thus allow for so-called persistent currents [29, 150—-152]. We will now
continue with two explanations for this meta-stability, one brought forth by Feyn-
man [149] based on the irrotationality requirement itself and the other by Bloch [153,

154].

Because of irrotationality, the superfluid must rotate everywhere along the line at the
same speed. So if it were to lose some velocity while maintaining irrotationality, it
needs to lose the same amount of velocity év everywhere, accompanied by a change
in linear momentum dp of Mdv and energy 6E = vdp. At T = 0K, this energy
can only dissipate as excitations with energy €(p). Assume that there is an excitation
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Figure 4.1: Superfluid dispersion relation for persistent current: (left) Ground state energy in units of
[h?/(39u(um)?)] as a function of angular momentum in the laboratory frame for a contact-
interacting one-component Bose gas in a harmonic trap permeated by a Gaussian as in Eq. (4.30).
All data were obtained by propagatmg Eq. (3.25) in imaginary time for w,/(27) = 178 Hz,
A = 248/178, N = 30 x 10°, as = 65a0 using 39K atoms [155]. The Gaussian has V; as given in
the legend and a width w = 2. 0 pm. (right) Surface density plots for Vi, = 10.0 in the z = 0-plane
asn(z,y) = [dzn(z,y, z) forl € {0.2,1.0, 1.2} (left column) and corresponding phase surfaces

in the z = 0 plane (right column) for V; = 10.0. Colorbar either gives density in xm ™2 or phase
value.

A with momentum py. Then the slowing down can only occur® if SE > Adp/po.
AtT # 0K or in a non-isolated system, some excitations may be available that allow
for dissipation at any velocity [149].

Let us now look at a one-dimensional torus and assume we are hypothetically allowed
to violate irrotationality by giving a number V; of particles angular momentum. Nec-
essarily, this will not be a ground state of the system. Starting from a state where the
angular momentum per particle | = L/(Nh) = 0, we give more and more particles
one quantum of angular momentum until we reach some critical angular momentum
lc. Due to the associated local mass transport, the particle’s movement comes at an
energy cost. There will be a similar scenario if we start in the co-rotating frame of a
state with L/(Nh) = 1 while finding some way to decrease the angular momentum
to an angular momentum [,. With more particles coming to a standstill, they will lead
to seemingly negative local mass transport, which comes at a similar energy cost. Nat-
urally, the intersection point between the two scenarios is then I, = I, = 1/2. In the
co-rotating frame, the dispersion relation E(!) is then a periodic function with min-
ima at integer values of L /(N h), while in the lab frame the same function is engulfed
by a NR21%/(2mpd) function, where m is the mass of the particles and pg the radius
of the torus. This argument was first brought forth rigorously in Ref. [154] and Fig. 4.1

8This is essentially yet another form of Landau’s criterion, first formulated by Feynman and can be
visualized by calculating the intersecting point between €(p) and dvp in an E-p plot.
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shows the resulting dispersion relation E(1). One refers to the states with the lowest
energy for a given [ as yrast states [156]. Note that for a two-component system, the
periodicity depends on the mass imbalance between the two components [157, 158].

Fig. (4.1) shows how the persistent current develops as we move from a purely har-
monic trap (simply connected region) to a toroidal geometry as we introduce a Gaus-
sian bump with strength Vj and width w into the harmonic trap’s center:

1 2
Virap(p, 2) = §mw2 <(p2 + A%2%) + Vyexp <—2fu>) : (4.30)

We derived the quantization of circulation in Eq. (4.29) under the assumption that a
geometry exists where the condensate density vanishes at the center, allowing the phase
to wind around it. However, what if the system would create such a phase singularity
itself? This scenario describes the case of vortex lines, first considered by Onsager [148]
and Feynman [149]. Let us assume that we manage to rotate liquid Helium in a
cylindrical container with frequency €2. The most naive assumption would be that
the angular velocity w remains constant everywhere, such that viy, = @ X r - it
rotates like a rigid body. It is immediately apparent that V x vy, # 0, and that a
superfluid thus can not rotate like a rigid body in a continuous container.

However, because the particles are bosonic and angular momentum is a good quantum
number as long as the Hamiltonian remains rotational symmetric, every particle needs
to carry the same angular momentum | = (L.)/(Nh). This immediately rules out
rigid body rotation but allows us to continue. In a classical system, L = mr x v, such
thatif we setvg o< 1/7, angular momentum remains constant for all distances around
the rotational axis. This also emerges naturally from our irrotationality argument in
cylindrical coordinates. Incidentally, a velocity of this shape diverges close to r = 0,
such that any particle near the rotation axis is pushed out by centrifugal forces - leaving
a hole in the center, similar to the toroidal geometry before. The distance at which
the vortex core recovers the non-rotating equilibrium density is the healing length £

in Eq. (4.27) [57, 591

We now want to calculate the energy of such a vortex line in the lab and rotating
frame and see when it becomes energetically favorable to form a vortex state. In the
laboratory frame, the vortex line energy of a weakly interacting Bose gas is then given

~

by By = Egc(s # 0) — Egc(s = 0) where Ege is (Hge ) in Eq. (3.24a) [159]

2t rR R 242
N d h
EV:L;“ / / v2rdrdd = = 2> / T e
0o Jo 0

m r m e
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Figure 4.2: Ground state density isosurfaces for quantized vortex states: Isosurfaces with vorticity have the
respective phase ¢(r) overlaid. All data were obtained by propagating Eq. (3.25) with contact

interactions including the rotation term —QL . in imaginary time for w,/(27) = 178 Hz, A =
248/178, N = 30 x 10%, as = 65a0 using >°K atoms [155]. Isosurfaces taken at n = 85 x
10*em 3.

where 7. is the vortex core size, which we introduce as a cut-off for the diverging
integral.

The system can only reach equilibrium in a co-rotating frame, and as such, we need
to evaluate whether a vortex state is preferable in this co-rotating frame. Following
Eq. (3.22), the energy then becomes

Eg.(s #0) — QN (L,) < Egc(s =0), (4.32)

in other words, the energy cost E,, by introducing the vortex state needs to be smaller
than the energy correction QN (L) in the co-rotating frame. Thus, the critical rota-
tional frequency for a vortex state to be energetically favorable becomes

hs R
Qo= ——In—. .
R (4-33)

Due to the irrotationality condition in Eq. (4.28), the system’s wavefunction is an
cigenstate of the angular momentum operator, with (L.) = Nsh. This means that
the system’s angular moment increases in steps of s, while Ey increases in steps of
s2. By introducing a second vortex next to the first one, we can continue increasing
the angular moment when €2 increases, but at a lower energy cost, such that single
vortices with s > 1 become energetically unfavorable, where in the simplest case
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E(s1) + E(s2) < E(s1 + $2), where we have ignored any interaction between
the vortices themselves [59]. Due to the interaction, however, the vortices will align
in a hexagonal pattern, commonly referred to as an Abrikosov lattice [59, 160—164].
Note that multiple singly quantized vortices will occur in harmonically trapped [165,
166], or uniform systems [159], while in anharmonic systems there may be multiply
quantized vortices [167-169]. Fig. (4.2) shows an example system with up to four
singly quantized vortices in a harmonic trap with their respective phase ¢(r) overlaid
if they carry angular momentum.

Furthermore, the number of vortices increases with {2 until some critical " where
the lattice breaks apart and enters a turbulent state [160, 170] or eventually the trap
can not confine the rotating system any longer. For a weakly interacting system, this
approximately mimics the scenario of a rotating spring with spring-constant £ and
a mass m. If the centrifugal force overcomes the spring’s restoring force, the spring
enters the regime of inelastic deformation, which is the case if 2 > w,, where w, is
the spring’s characteristic frequency. In other words, the condensate will break apart
if we rotate faster than the harmonic oscillator frequency.

4.5 Three-Fluid Hydrodynamics

A big contention point in Landau’s theory was that he made no statement on the type
of particles required for superfluidity [24], while London and Tisza [21—23] assumed,
and later Bogoliubov [26] showed that Bose statistics are crucial. A possible way to
solve the scientific conflict between Landau and Tisza was to cool down fermionic
3He. If it condenses and shows the same properties as *He, superfluidity would be
independent of particle statistics.

Eventually, Bardeen, Baym, and Pines found [171] that at sufficiently low temper-
atures (in the order of mK), 3He atoms may undergo a phase transition and start
forming Cooper pairs, leading to the discovery of pure *He transitioning to a super-
fluid state [172—174] which then may be described as a weakly interacting Bose gas. So,
while Fermions may form a superfluid, this only happens because they form bosonic
Cooper-pairs, which form the superfluid [175]. This insight, in conjunction with the
experimental discovery of 3He being soluble in “He [171, 176], posed the question of
how those two different superfluids would interact.

In analogy to Tisza’s and Landau’s two-fluid hydrodynamics of *He, one would expect
some form of three-fluid hydrodynamics, describing the normal component, which,
due to friction, can be described as one component for both constituents plus one
superfluid component each. These types of systems, as shown by Khalatnikov [177],

56



Galasiewicz [178], and Mineev [179], experience a third sound similar to the first and
second sounds in one-component superfluids. While first sound describes compres-
sion modes (i.e. sound waves) and second sound entropy waves, third sound describes
a change in concentration between the two components.

Andreev and Bashkin [132] noted an oddity in the above paper by Khalatnikov [177].
According to Khalatnikov, the equations of motion for both superfluids remain inde-
pendent. However, due to the strong interaction between 3He and *He, a ®He atom
renormalizes to a quasi-particle with an effective mass 2.3 times greater than the 3He
mass itself. The renormalization only works if the motion of the quasi-particle not
only moves *He but also co-transports “He. Additionally, this mass transport does not
perturb the onset of superfluidity in He due to the formation of Cooper Pairs [171,
176].

Earlier, we defined the expectation value of the probability density current of a com-
ponent i as j;j(r) = v;(r)/n;(r). By definition, this immediately excludes the
above effect of mass renormalization. Andreev and Bashkin [132] found a way around
this when considering exactly this problem by introducing ’superfluid densities’ pz(;),
where densities of equal index describe the respective component and the unequal
index introduces a coupling between the two components. In a frame where the nor-
mal component is at rest, the relative momenta p; can then be written using this

symmetric superfluid density matrix as

p1 = o\ (Vi = va) + Pl (va — Vi),

b2 = Pg;) (Vo —vp) + Pg? (Vi—vn).

(4.34)
Using this in the equations derived by Khalatnikov [177] gives the mass-current j; of
a component ¢ as

ji= (o= 0 = ) v+ Vi + 03V, (4:39)

One refers to this coupling of velocities via a drag coeflicient as the Andreev-Bashkin
(s)

effect [132]. For the 3He-*He mixture, the symmetric matrix coefficients p; ¥
using BCS-theory [132]; the low miscibility of both isotopes, however, makes it chal-

emerge

lenging to achieve experimentally [176].

Let us now try to model the superfluid drag effect in a two-component bosonic mix-
ture [133]. As before, we will use the Bogoliubov approximation and a spontaneously
broken U(1) symmetry in both components. In the local density approximation for
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an infinite uniform system in the laboratory reference frame, the field operators then
become

A

Wilr) = > s (55 ) explioto, (436

As with the single-component system, the interaction term remains unchanged by the
inclusion of the phase factor, while the kinetic term turns into

o h2k? 1
Z aLiakﬂ- < o + hkv; + 2min‘> . (4.37)
k

Following the two-component diagonalization procedure in Sec. 3.4, while paying
special attention to the specific £k terms, we end up with a similar set of equations

to Eq. (3.59)

[Tyx1  Uka Cx Cx | [uk1] [k 1]
—Ugn —T_x1 —Cx —Ck Vi1 Vk.1
=FEixa . (4-38)
Cxk Cx  Thxe  Ti2 | |uyp, R P
-C —C} U -T_
| —C k k.2 k2| |y, k]

In the case of vi = vy = Vv the eigenvalues simply become F ,, + hikv. If however,
V1 # Vg, the eigenvalues are determined by the characteristic polynomial

(T2 = U21) = (Bca = ikvi)? | [(T2o = U2) = (Figa — kva)? .
439
— 4CE(Ties — Use)(Tiez — Uk2) = 0.

This is a true quartic polynomial: None of the a; in ) ; 5 a;z" is zero. While quartic
polynomials are the highest-order polynomials of which an exact solution exists, these
solutions are too cumbersome for any practical purpose. As a remedy we expand
By o(3) around small velocities v;(r) = 0 up to second order, which gives [133]
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1 Eg,— Eg, 1 Eic1 — Eis
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o (1 g ) e (-
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(4.40)

2
EZ) =

1 El% — ER Ef, — B,
Shkve |14 el k2 hk kel k2
Ttk < TE, - E2 v\t TR TR,

208 (Tt — Uke1)(Tie2 — U 2) (B, +3E3 5)
By 5(ER , — B¢ 5)?

Ek,(x

7% (kvy — kvy)?

The last term in both expressions includes a vivy mixed-term, which couples the
velocities. The second and third terms turn into ikv; and cancel later with the same
terms in T ; in Eq. (4.37).

Following a similar argument as in Sec. 4.3, where we obtained Landau’s criterion for
superfluidity in a single-component Bose gas by requiring that the quasi-particles also
have to follow Bose-Einstein statistics, we can get a criterion for superfluidity for a
two-component system using Eq. (4.39) [180]. The resulting critical velocity | v ;| for
component ¢ then also includes the Andreev-Bashking effect [180].

To determine the drag coefficient, we calculate the current j; via

. 1 0F
Ji= 5 8vglc = (ni — pdr)Vi + parvj, (4.41)
where the energy F. is
14 2
Egc = Egc,O + = 5 (nlvl + TL2V2 pdr<V1 - V2) ) . (4.42)

Agnostic of the specific type of interaction, the drag coefficient then becomes for
arbitrary masses

C2(Tx1 — U1) (T2 — Uk 2)
h22k2 .

(4.43)
Fx oFx 3(Ex.o + Ex)?
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For a purely contact-interacting mixture pq, then has the following expression:

4 glamang (i er2)®?
Par = 57 v/mams Ek: z (4.44)

ko Bk s (B + B p)?

After integration in the thermodynamic limit for equal masses, Eq. (4.44) becomes

forD = 3,2, 1

(2 m?, 2+ +3c_cy
I5a? 2 9T for D=3,
4 4 2 2 o
_ 1 c_—c+—|—4c_c+ln<—_>
parV —ﬂggfzmng 5 53 ‘ , forD =2, (4.45)
11, 1
Eﬁgmnlngi(c_ i C+)3, fOI‘ D = 1,

where ¢4 are the Bogoliubov sound modes in Eq. (3.77). Eq. (4.45) monotonically
increases with g7, such that close to the self-bound droplet and mixed bubble phase,
where g%2 = ¢g11922 and thus c_ = 0 Eq. (4.45) becomes

2 2
g1omning

4571’2 ? (911n1 + 922n2)1/27

2 m

for D = 3,

1 m g%inng

V = —_— = for D = 2, (4.46)

par 487 h? g11n + gaane 4
11 gianing

187 h (gr1ny + gaona)3/?’

for D = 1.

Similarly to the Bogoliubov vacuum energy Ep before, we may include one of the
two Egs. (4.45) and (4.46) to determine the equation of state and ultimately include
it in the Gross-Pitaevskii equation.

Due to its relatively small size, there is no direct observation of the Andreev-Bashkin
effect in a two-component weakly interacting Bose-Bose mixture. Similarly to the in-
clusion of the Bogoliubov vacuum energy E'g that leads to the discovery of self-bound
droplets and dipolar supersolids if the interactions are tuned suitably, one would also
expect the Andreev-Bashkin effect to be most prevalent close to those systems due to
the quadratic dependence on g12 [133, 181]. Possible options for detection are then the
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measurement of the sound velocity ¢ [182, 183], which experiences a shift in a mov-
ing system. Alternatively, a detection via the Josephson effect in a toroidal system
with two weak links [133] or measuring the current-current response function via the
system’s susceptibility [182] seems likely. Outside of the mean-field framework pre-
sented here, the Andreev-Bashkin occurs in exact methods such as quantum Monte
Carlo [184], or matrix product states [185], which show good agreement with the
Bogoliubov approximation. Lastly, while no paper in this thesis covers the Andreev-
Bashkin effect, it is subject to current work by the author.
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Chapter s

Supersolidity

In view of the small value [...] it seems highly unlikely that these effects would have been
discovered by accident even if superfluid solids’ do exist at attained temperatures.”

- Legget, 1970 [48]

The previous chapter summarizes superfluidity as frictionless flow due to bosonic par-
ticles gaining phase coherence by forming a macroscopic wavefunction where they be-
come indistinguishable. The term supersolidity then suggests combining this global
phase coherence with the rigidity of a crystalline solid. In the latter, the rigidity oc-
curs because, in a crystal, each particle sits in localized positions in space that are

distinguishable.

One of the earliest ideas to detect supersolidity was to study quantum crystals, which
may have vacancies at low temperatures [47, 186, 187]. These vacancies could then
behave like particles and tunnel from site to site. If the atoms are bosons, the vacancies
should obey bosonic statistics and turn superfluid for low enough temperatures. It
took until 2004 [188, 189] until the first potential observation in solid 4He, which
subsequently was highly controversial [190], sparking a flurry of experimental and
theoretical works’.

In keeping with the rest of this thesis, we will focus on supersolidity in ultra-cold
atomic systems”, particularly the dipolar kind. In the following pages, we will de-
velop what constitutes a solid in Sec. 5.1, the origin of supersolidity in dipolar Bose
gases in Sec. 5.2 and how to measure supersolidity in Sec. 5.3. Lastly, in Sec. 5.4, we

Isee Ref. [49, 191] for comprehensive and detailed reviews on the history and physics involved.
2Experimentally first achieved in 2019 in three different groups at around the same period [s0—52].
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investigate how much of a superfluid is in a ring supersolid, building the foundations

for Papers IV and VI.

5.1 What Makes a Solid?

If we want to know how to combine the notion of a superfluid with a crystalline solid,
we first need to understand what makes a solid. Here we restrict ourselves to a three-
dimensional system. In the common understanding of a macroscopic crystalline solid,
we will encounter some periodic density modulation 0n(r) = 7 — n(r) across a set
of lattice vectors {T; }, where 7 is the system’s average density,

n= ‘:l//drn(r). (s.1)

Naturally, an unperturbed fluid or gas will have én(r) = 0. The periodicity in the
modulation dn(r) with lattice vectors {T;} can then be written as

on(r) = dn(r + T;). (5.2)

Moreover, in a macroscopic sample, we call this property diagonal long-range or-
der [49], which shows in the reduced one-particle density matrix n1(r, r’) as period-
icity occurring along its diagonal. A supersolid then needs to fulfill diagonal long-
range and off-diagonal long-range orders simultaneously and spontaneously for the
same set of particles.

Additionally, it is essential to stress the periodicity argument, as there are also solids
with disordered structure, referred to as glasses, which in the following would then
lead to superglasses [192, 193] if combined with superfluidity®. The mentioned peri-
odicity is further required to emerge via spontaneous breaking of translational sym-
metry. One could imagine a setting by which Vet (r) is shaped to induce the desired
lattice vectors via an optical lattice. A weakly interacting Bose gas would represent the
periodic solid structure we explicitly enforce while maintaining its superfluid charac-
teristics. This, however, does not make a supersolid.

3In fact, the early experiments had a sizeable amount of disorder in the crystal. After decreasing the
disorder via annealing, the difference to a regular crystal was below the measurement error [191].
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Figure 5.1: Dipolar excitation spectrum (left) and schematic density modulation (right): (left) Roton spectrum
in units of [k?/(162u(um)?)] of a one-component dipolar Bose gas of 152Dy atoms in a tube for
different values of eqq. All data were obtained via Eqip (ky) = /e(ky)A(ky), with A(k,) as

in Eq. (5.3), for n = 733.0625 ym ' from numerical simulations, aga = 130ao, €ada = @ad/as,
po = 1pm, w/(27) = 1kHz and X\ = 1.7. (right) Schematic illustration of side-by-side alignment
of dipoles (small boxes within the density) for low eqq (top) and head-to-tail alignment for large
€qa (bottom), leading to a density modulation of Ao = 27 /kyot. Figure inspired by Ref. [44].

5.2 Roton Instability & Dipolar Supersolids

We are now looking for a mechanism that spontaneously breaks translational symme-
try and induces diagonal long-range order while maintaining global phase coherence.
In ultra-cold gases, this has been achieved by using spin-orbit coupling [194] or by
coupling to the modes of an optical cavity [195]. Here, we focus on the modern
variant in dipolar gases [50—s52], following the surprising observation of dipolar self-
bound droplets [43, 114-116]. The culprit here is the roton-like excitation spectrum
(see Fig. 5.1), where the roton is generally considered a precursor to crystallization [4,
196-198].

Eq. (3.41) gives the Bogoliubov excitation spectrum in a uniform Bose gas. This ex-
citation spectrum changes drastically in a trapped geometry [199—203]. To illustrate
the changes, let us consider a quasi-one-dimensional geometry, where we can inte-
grate out the - and z-direction by assuming harmonic confinement in these direc-
tions [202, 203] while leaving the gas unconfined in the y-direction with n(r) =

exp(—(nx2+22/n)/21%)/(VTl)n(y), where [? = \/wyw; and n = \/w, /w; [202,

203]%. We can then write the excitation spectrum as Eqip(ky) = +/€(ky)A(ky),

“Note that this ignores the effective change of  and 1) by the anisotropic dipolar attractive interaction.
The neglect of this change makes it a quasi-one-dimensional approximation, and one should consider
and 7) as variational parameters [202, 203]. The results in Fig. 5.1 without the full variational calculation
are then only schematically correct, where it underestimates Kot significantly.
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where €(ky) = h*k2 /(2m) and

A(ky) = e(ky) + QnU(ky) + 3gQFn3/2. (5.3)

Here gqr = 25652 /(15mi3)\/a3(1 + 3/2€3,) is the quantum fluctuation coeffi-

cient and

-~ 2a.h? n 2aq4h” (3Q6QE1(_Q) +3_ 1) (5-4)

Ulky) = ml? ml? 1+n

is the two-body interaction for the field in ky-space, where Ei is the exponential

integral and Q) = \/ﬁk512/2 [202, 203].

At low momenta, the excitation spectrum in Eq. (5.3) increases stronger than the
contact-based spectrum due to the side-by-side repulsion of the dipoles. At the same
time, it approaches the free-particle limit for large momenta. The spectrum can de-
velop a separate local maximum and minimum at intermediate values of k,, depend-
ing on the exact values of €44 and ng. The maximum is known as the maxon, and the
minimum is known as the roton in analogy to the roton spectrum of Helium II pro-
posed by Landau [24]. In contrast to Helium, however, one can change the position
krot and gap A of the roton minimum by modifying a, via Feshbach resonances in
an experiment with ultra-cold gases [57, 59, 204—206].

Let us now consider the case where we have a system with constant density and rela-
tively low €4q such that there is no roton minimum (see €gq = 1.0 line in Fig. 5.1).
Here, the density is uniform, and excitations with finite momentum are too costly
for dispersion. With increasing €44, the roton minimum occurs (see €4 = 1.9
line in Fig. 5.1) and eventually reaches A = 0 as it deepens (see €3q ~ 2.1 line
in Fig. 5.1). The excitation modulates the ground state at zero energy cost with wave-
length Aot = 27/ kyot. This starts a feedback process where, due to the modulation,
ng increases, pushing the spectrum into the imaginary, leading to a roton instability
caused collapse®. Experimentally, however, the collapsing gas splits up into multiple
self-bound droplets [43, 115, 116] where the quantum fluctuations in Eq. (3.41) stop
the runaway process that would lead to collapse, as the repulsive term scales stronger
with density than the dipole head-to-tail attraction (see Eq. (3.41)).

With A = 0 and inclusion of the quantum fluctuation term, we have spontaneously
broken translational symmetry with a wavelength of A\;ot = 27 /kyot, and depending

>This feedback process is similar to other self-organizational processes [207—209] and fulfills all math-
ematical properties to be categorized as such [210, 211]. In molecular systems where aqq itself is also
tunable, this leads to a variety of different supersolid phases [212, 213].
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on the system parameters, we either get self-bound isolated droplets [43, 114-116] or
droplets that coherently couple via a background superfluid [50—52, 214].

We calculate the excitation spectrum in momentum space via the dynamic structure
factor and the associated collective modes with symmetry arguments for a dipolar
supersolid system on a ring in Paper VI.

5.3 Quantifying a Supersolid

One of the more startling consequences of a supersolid is the combination of the
superfluid’s and solid’s response to small external rotations. Due to the superfluid’s
zero viscosity, it will not respond to a small external rotation around its symmetry
axis, meaning that its moment of inertia is zero. On the other hand, if set to rotate
around its symmetry axis, a solid will pick up angular momentum according to its
specific classical moment of inertia I]. Based on this, we can motivate the definition
of a parameter describing non-classical rotational inertia (NCRI) f for a supersolid
as [215]

I
f=1-lim —, (5-5)

where I is the total moment of inertia of the system. If we consider a system on a
torus, I = limq_,o(L. )/, where Q is the rotation frequency around its z-axis and
<IA/ ») the angular momentum expectation value in z. I is the standard definition of
classical moment of inertia I = f drn(r)r2. Then, for a superfluid, f = 1, and for
a rigid body, f = 0. Assuming that f is neither of these values, and the system es-
tablishes diagonal long-range and off-diagonal long-range orders simultaneously and
spontaneously, the system may be considered a supersolid.

In his seminal paper, Leggett [48] used the NCRI to suggest an experiment to indi-
rectly measure supersolidity in a torsional oscillator [191]. Suppose we have a container
with a supersolid above its transition temperature to a superfluid, meaning only the
classical part exists. Further, suppose we set this container to small harmonic oscil-
lations around its axis. In that case, the measurable resonant period of oscillations
is then proportional to the square root of the system’s moment of inertia (vessel and
substance therein). If we lower the temperature and observe the resonant period de-
creasing monotonously and continuously, this could be due to superfluidity emerging
and the superfluid velocity field decoupling. While the vessel and solid part oscillate,
the increasing superfluid part stays still. However, this may not immediately indicate
a supersolid emerging, as the NCRI may lower due to any non-superfluid component,
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such as a thermal one. The point that Leggett was making [48], however, is that at
T = 0K the NCRI can only be non-trivial if a broken translational symmetry exists,
for which he derived an upper bound for f,

u 1 /¢ dz \
r=(c) wgm) <t 59

in the case of a one-dimensional ring, where we have ignored the curvature of the
ring. Heren = 1/C fOC dazn(x) is the average density and C' the circumference of
the ring. Note that one could alternatively also integrate only over a single supersolid
cell. If n(x) then has a density modulation, the NCRI in Eq. (5.6) subsequently
lowers below 1. If there are regions where n(x) almost vanishes, f* — 0, relating
the separated parts to rigid motion.

The problem with measuring the NCRI is that it is a relatively ambiguous method
of detecting supersolidity due to its indirectness, and several proposed mechanisms
could have explained a non-trivial NCRI value in experiments with solid Helium [49].
However, in the case of a weakly interacting Bose gas, this method of detecting NCRI
has been successfully combined with the scissors mode in a dipolar supersolid [216,
217].

In the previous section we have established that a supersolid features diagonal long-
range order and off-diagonal long-range order simultaneously in its density matrix.
While the off-diagonal long-range order will asymptotically approach ng for large |r—
r’|, diagonal long-range order will lead to oscillatory behavior corresponding to the
lattice periodicity. As such, the Fourier transform n1 (k) shows peaks at the position
of reciprocal lattice vectors. Measuring the momentum distribution, in principle,
offers a way to assess whether a system is a supersolid. However, in Ch. 2, we also
established that off-diagonal long-range order is a weak way of defining a Bose gas
in experimentally feasible systems due to its finite size. An alternative way would be
to demonstrate phase-coherence between the solid parts of the supersolid due to the
underlying superfluid. Establishing phase coherence with the corresponding phase
factor ¢(r) is then equivalent to the spontaneous U(1) symmetry breaking discussed
in Sec. 4.3.

For this purpose, we will choose a system in a ring geometry as in Paper IV and VI
(and Ref. [214]). This geometry (or periodic boundary conditions for a 1D system)
brings two main advantages. Firstly, due to its periodic nature, it is the closest exper-
imentally feasible geometry to the infinite system we have been discussing in Ch. 3.3.
In particular, this leads to a clear splitting of the collective modes in the form of an
additional Goldstone mode, a Higgs mode, and a distinction between the first and
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Figure 5.2: Fractional NCRI across superfluid-droplet transition: (left) Fractional NCRI as a function of eqq
of a one-component dipolar Bose gas in a ring trap. (right) Ground state density isosurfaces for
€qa € [2.0,2.15,2.4]. All data were obtained numerically by propagating Eq. (3.43) with quan-
tum fluctuations in imaginary time for N = 5 x 10% 2Dy atoms, aqq = 130ao, €aq = aad/as,
po = lpm, w/(2w) = 1kHz and A = 1.7. The solid and transparent isosurfaces are taken at
n=6.5x 10"* cm™3 and n = 1.75 x 10'* cm 2. Figure inspired by Ref. [214].

second sound in a ring supersolid. Secondly, it offers an accessible platform to study
the hallmarks of superfluidity, namely persistent currents, quantized vortex genera-
tion, and second sound. In the following subsection, we will discuss the first two

hallmarks.

We start by calculating the ground state in imaginary time for N = 5 x 103 162Dy
atoms inside a ring trap Viing (r) = mw?[(p— po)? + A?2%] /2, where py is the radius
of the ring, w = 1 kHz the trapping frequency and A = 1.7 the trap-asymmetry in the
azimuthal direction. The 192Dy atoms have a dipolar scattering length agqq = 130aq,
where ag is the Bohr radius. Experimentally we can tune the contact scattering length
as and thereby €qq via Feshbach resonances [204, 206]. The system experiences two
limiting cases, where for €4q S 2.09 the system is a regular uniform Bose gas, and for
large €qq 2 2.3 (f < 0.1, see Fig. 5.2) the system separates into isolated droplets as
explained in Sec. 3.5. The more interesting case lies between these two limits, where
a Bose gas background immerses the isolated droplets, which may establish phase
coherence between the droplets.

However, we first want to classify the density modulation occurring between the uni-
form Bose gas and isolated droplet phases. For this purpose, we use the NCRI in
Eq. (5.5) adapted to the three-dimensional torus as f = 1 —limg_,o(L.) /(N M (p?)
), by applying a small external rotation (numerically, 2 = 10~7w) and evaluate

A

(L.) and {p?) numerically from the obtained ground state. Fig. 5.2 shows the result-
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Figure 5.3: Phase coherence across superfluid-supersolid/droplet transition Isosurfaces of densities at given
€qa and given t with phase ¢(r) overlaid on inner isosurface. Starting from a phase-coherent
superfluid ground state (left), we ramp a linearly within 10 ms to the target value corresponding
to the respective eqq value. While the supersolid maintains phase coherence after 200 ms (middle),
the droplets lose phase coherence (right). All data were obtained numerically by propagating
Eq. (3.43) in imaginary and real time for N = 5 x 103 162Dy atoms, aqq = 130aq, €qaq = aad/as,
po = lpm, w/(2w) = 1kHz and A = 1.7. The solid and transparent isosurfaces are taken at
n=6.5x 10" cm™3 andn = 1.75 x 10** cm 3.

ing NCRI with density-isosurfaces. For values €gq S 2.09 in the uniform regime,
the NCRI is, as expected, equal to unity. With increasing €4q, a sudden jump oc-
curs followed by a monotonous and continuous decrease in NCRI until we reach the
droplet regime for €qq 2 2.3 with f — 0. Thus, we have a system with supersolid
NCRI for intermediate values of €44.

We now examine the phase coherence between the droplets. Interestingly, even for
the isolated droplet case, all droplets are phase coherent in the ground state solution.
This artifact of the time-independent Gross-Pitaevskii equation and the underlying
macroscopic wavefunction ansatz changes if we dynamically induce the phase transi-
tion from the uniform ground state via an interaction quench into the desired regime.
Starting from the uniform ground state at €qq = 1.9, obtained via imaginary time
propagation, we follow the protocol outlined in Ref [s0—52] and ramp linearly to the
target €qq within 10ms. Then the picture changes and the isolated droplets have
different phases, while the supersolid phase remains phase coherent as seen in Fig. 5.3.

s.4 Hallmarks of Superfluidity in a Supersolid

As we established in Sec. 4.4, the hallmarks of superfluidity are zero viscosity, leading
to meta-stable persistent currents in toroidal geometries, irrotational flow, leading
to quantized vortices, and a decoupling of the classic and superfluid velocity field,
leading to the emergence of second sound. Here, we want to investigate the first two
hallmarks, meta-stable persistent currents, and quantized vortices, building the bridge
for Paper IV. In a supersolid, we may regard the solid component as the classical one in
analogy with Tisza’s and Landau’s two-fluid model (see Sec. (4.2)). The second sound
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Figure 5.4: Dispersion relation comparing supersolid and superfluid: (left) Ground state energy difference
per particle in units of [#?/(162u(um)?)] as a function of angular momentum per particle in the
laboratory frame for a dipolar one-component Bose gas in a ring trap at different values of eqq. The
dashed grey line shows Eq. (5.8) for f = 0 using the trap radius p = 1 um. In contrast, the orange
line uses the effective radius due to the long-range dipolar interaction \/(r2) = po = 1.088 pm.
(right) Phase ¢(z,y) at z = 0 forl € [0.4,0.8,1.4] and eqq = 2.12. The color bar gives the phase
value ¢(z, y). All data were obtained numerically by propagating Eq. (3.43) in imaginary time for
N =5 x 10° 162Dy atoms, aqa = 130ao, €4a = adda/as, po = 1pum, w/(27) = 1kHz and
A=1.7.

then shows in the collective excitations of the system by an out-of-phase oscillation
between the crystals and the superfluid background. This is one of the subjects of
Paper VI.

We address the hallmark of meta-stable persistent currents by investigating the disper-
sion relation E (1) in the laboratory frame, see Fig 5.4 [218], where | = (L.)/(Nh) is
the angular momentum per particle as before. In the superfluid regime, the dispersion
relation follows the same pattern as discussed in Sec. 4.4, namely that of a periodic
function with local minima at integer values of [ on top of a parabolic function repre-
senting the kinetic energy of the rotating system in the laboratory frame. The initial

increase and later decrease of E'(1) is associated with a vortex entry into the ring.

The isolated droplet phase for €44 2 2.3 and f — 0 then only acquires the parabolic
branch ~ [? as it lacks any superfluid background. Necessarily, the supersolid phase
has two options to pick up angular momentum: via rigid body rotation of the droplets
and vortex entry of the superfluid. The resulting energy in the rotating frame is
then [214, 218]

_ W?Ngs* | R*NI2

E = + Ep, (5.7)

2mpg 2mp%
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Figure 5.5: Time-of-flight expansion of supersolid with vorticity: Integrated density distributions n(z,y) =
[ dzn(z,y, z) for different vorticity s and times ¢. Systems with higher vorticity maintain a larger
vortex core in the center. The color bar gives density in xm™2. All data were obtained numerically
by propagating Eq. (3.43) in imaginary and real time for N = 5 x 10% 2Dy atoms, aqa = 130a0,
€dd = @dd/as = 2.15, po = 1 pum, w/(27‘r) =1kHzand A = 1.7.

where the first term describes the superfluid part with Ny = fIN the number of
particles connected with vortex generation, s the circulation number originating from
an order paramter ~ €*? and pg the system’s radius. The second term describes the
energy associated with rigid body rotation with N. = (1 — f)N and the classical
angular momentum per particle l.. The third term is the interaction energy, which
we assume to be independent of [. We can then determine the angular momentum
per particle associated with rigid body rotation I via NI = N.l. + Ns, such that

E(l) _1? [ 1 <fs+<l—fs>2>] _ (5.9)

N m |20} 1—f

The dispersion relation consists of intersecting parabolas, with intersection points at
[ = s+ 1/2. Note that the intersecting branches are a general feature of the dis-
persion relation of a superfluid on a ring with an impurity [219]. In our case, the
impurities are the self-forming droplets that interact attractively with their surround-
ing superfluid. The impurities may also be attractively acting particles or external
potentials. Suppose we have a repulsive impurity, such as a repulsive particle, external
potential [220—222], or even the localizing component in the mixed-bubble phase.
In that case, the intersecting parabolas show an avoided level-crossing between the
branches [220], resembling a qubit in an atomic superconducting quantum interfer-
ence device (AQUID) [223—225]. As is visible in Fig 5.4, persistent currents may not
appear at integer values of [ in the supersolid phase compared to the superfluid phase.
The local minima are then given in the interval s — 1/2 <l <14 1/2byl = fs,
such that f > (s — 1/2)/s is a requirement for the minimum to exist [218].
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Figure 5.6: Interference pattern of supersolid with vorticity and a reference condensate: Integrated density
distributions n(z,y) = [ dzn(z,y, z) for different vorticity s at t = 0.25s. Systems with higher

vorticity maintain a larger vortex core in the center. The color bar gives density in um 2. All data
were obtained numerically by propagating Eq. (3.43) in imaginary and real time for N = 6 x 10°
162Dy atoms, aqa = 130ag, €44 = @aa/as = 2.15, po = 1pum, w/(2w) = 1kHz and A = 1.7,
With Vexs (r) = min(Viing (r), Vharm (r))-

If we take po in Eq. (5.8) to be the ring radius, the analytical model deviates from
the numerical results. This deviation becomes evident if we compare the case f = 0
to the numerical results, where the parabola generated by f = 0 in Eq. (5.8) should
form the support for the superfluid and supersolid periodic functions on top of it
(see the grey-dashed line in Fig. 5.4). We can, however, remedy this deviation by
noticing that for a dipolar system, the ring radius is not the system’s actual radius
due to the long-range interaction. The repulsive long-range interaction forces the
Bose gas to assume an effective radius pg > pg. For our system with pg = 1 pm
and agq = 130ay, this effective radius becomes pg ~ 1.088 um, which we evaluate
numerically by calculating 1/ (p?). When we insert pg into Eq. (5.8), we find that the

expression agrees well with the numerical results.

In an experimental setup, one generally lacks direct access to the dispersion relation
and needs to visualize the flow differently. If a vortex exists in the ring center, there
will be a phase singularity with zero density due to irrotationality. Then, releasing the
system radially from the trap and observing it in a time-of-flight expansion may reveal
the vortex core [226]. For a system without a vortex, a high-density region forms at the
center due to interference of the expanding condensate (see Fig. 5.5). To measure the
circulation s, we introduce a reference condensate in the ring center, which remains
at rest. When one removes the trap in the radial direction, including the barrier sep-
arating reference from outer condensate, spiral arms form due to interference of the
superfluid components [222, 227—229]. The spiral arms’ number and direction (clock-
wise or counter-clockwise) then give the circulation [222, 227—229]. Fig. 5.6 shows this
process of spiral formation in a time-of-flight measurement, where we have increased
the number of 12Dy atoms to N = 6 x 103 to compensate for the reference Bose gas
in the center. Further, we amend the trap to be Vext (r) = min(Viing (r), Viarm (1)),
with Viarm (r) = mwd (p? + \222) /2.

While the ring geometry lends itself to the study of persistent currents, it only sup-
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ports multiply quantized vortices in a region where the density is already zero in the
absence of vorticity. We may also want to observe multiple singly quantized vortices
as they occur in harmonic traps for a weakly interacting Bose gas. Here, one can
use the dipolar polarization direction to induce vorticity via magneto-stirring [230],
which was recently applied to a dipolar Bose gas outside the supersolid phase for vortex
generation [230]. In this experiment, the vortices aligned in a stripe phase compared
to the triangular alignment in a non-dipolar Bose gas. This alignment is due to the
anisotropy of the dipolar interaction and may have startling consequences if the vor-
tices’ inclination to align in a triangular pattern competes with the droplets’ tendency
to do the same in the supersolid phase [231—234]. The vortices should, however, form
in the low-density region of the superfluid background, as it is energetically favorable
(see Eq. (4.31)) [232].
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Chapter 6

Outlook

This thesis describes the theoretical framework involved in the modern landscape of
self-bound droplets, mixed bubbles, and dipolar supersolids in ultra-cold bosonic
gases, particularly concerning their superfluid properties. As all these systems rely
on the effects of quantum fluctuations on the condensed ground state, we spent a
significant portion of the thesis on deriving these effects in Ch. 3. In particular, to
the best of my knowledge, Sec. 3.4 in the fully interaction-type agnostic and mass-
imbalanced regime has not been written down before with this level of detail. We
also connected the definitions of a Bose-Einstein condensate to the defining property
of a superfluid - global phase coherence and spontaneous U(1) symmetry breaking.
Lastly, we investigated how all these properties and effects come together in a dipolar
supersolid.

As mentioned in the introduction, the goal was to provide the most helpful document
if I were back at the beginning of my PhD studies. As such, it feels prudent to point
out possible future research avenues.

A significant problem for all systems discussed in this thesis is the relatively short
lifetime in an experiment [45, 46, so—s2]. This makes it challenging to observe super-
fluid properties as the high depletion and three-body losses near the Feshbach reso-
nances [35—41] effectively destroy these systems before vortices or a persistent current
could occur. Heteronuclear systems such as in Refs. [102, 235] offer a way out where
the lifetime can be up to several orders of magnitudes larger. Investigating vortex
formation and persistent currents could then become a feasible option.

A dipolar supersolid’s lifetime may be increased similarly by introducing a second
component. Here, the quantum fluctuation term becomes irrelevant as the inter-
action with the second component (which may be contact or dipolar interacting in
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itself) stabilizes against collapse [236—242]. In analogy with the rigid and superfluid
components of a one-component dipolar supersolid, we could find two superfluid
components and two rigid ones (which couple together). The formation of these
components could form an ideal playground to investigate the Andreev-Bashkin ef-
fect and its resulting third sound (see Sec. 4.5).

The superfluid drag originated from the mass-renormalization of *He in *He and
emerged using BCS theory [132]. Ref. [100] introduced a similar pairing effect to
correct some of the Bogoliubov theory deviations from exact diffusion Monte Carlo
calculations [100]. One could assume that including a pairing mechanism may also
amend some deviations in the drag for an attractive interspecies interaction. Similarly,
to my knowledge, such an effect has not been investigated in the formation of dipolar
droplets and supersolids.

Landau’s criterion for superfluidity can be written as Ex — hkv > 0, which enforces
that the quasi-particles themselves fulfill bosonic particle statistics. Following a pro-
posal by Pitaevskii [243, 244], we could apply some rotation to a dipolar system that
is still fully superfluid but close to the supersolid phase, such that it has a roton mini-
mum (see eqq = 1.9 line in Fig. 5.1). Due to the applied rotation, we could lower the
roton gap until a density modulation occurs, essentially rotating the superfluid sys-
tem into a supersolid. A potential precursor of this effect exists in a dipolar toroidal
supersolid in Ref. [214], which would help formalize this effect.

Lastly, let us turn to the mixed bubble. So far, there have been only two articles besides
the original proposal [101], Paper III, and Ref. [129]. An experimental observation so
far is missing and could be challenging to achieve due to the necessity of a fully flat
trap. Here, we may turn to a strongly interacting one-dimensional system and in-
vestigate bubble formation via exact diagonalization (similarly to Paper V), quantum
Monte Carlo [118], or matrix product states [245, 246]. This strongly interacting bub-
ble could also offer a pathway for the superfluid drag.

76



References

(1]

A. Pais, “Einstein and the quantum theory”, Rev. Mod. Phys. 51, 863914
(1979).
A. Pais, Subtle is the Lord (Clarendon Press, 1982), p. 432.

A. Griflin, “A Brief History of Our Understanding of BEC: From Bose to
Beliaev”, arXiv: Condensed Matter (1999).

S. Balibar, “Rotons, Superfluidity, and Helium Crystals”, AIP Conference
Proceedings 850, 18—25 (2006).

Bose, “Plancks Gesetz und Lichtquantenhypothese”, Zeitschrift fiir Physik
26, 178-181 (1924).

M. Planck, “On the theory of the energy distribution law of the normal spec-
trum”, Verh. Deut. Phys. Ges 2, 237-245 (1900).

A. Einstein, “Quantentheorie des einatomigen idealen Gases, Sitz. K”, Preuss.

Akad. Wiss 261, 1924 (1924).

A. Einstein, “Quantentheorie des einatomigen idealen gases. zweite abhand-
lung.”, Albert Einstein: Akademie-Vortrige: Sitzungsberichte der Preuflischen
Akademie der Wissenschaften 1914-1932, 245-257 (1925).

A. Einstein, “Zur quantentheorie des idealen gases”, Albert Einstein: Akademie-
Vortrige: Sitzungsberichte der Preufischen Akademie der Wissenschaften 1914—
1932, 258—266 (1925).

L. De Broglie, “Waves and Quanta”, Nature 112, 540—540 (1923).

J. Gribbin, Erwin Schridinger and the Quantum Revolution (Bantam Press,
2012).

D. van Delft, Freezing Physics: Heike Kamerlingh Onnes and the Quest for Cold,
History of science and scholarship in the Netherlands (Aksant Academic Pub-
lishers, 2007).

77


https://doi.org/10.1103/RevModPhys.51.863
https://doi.org/10.1103/RevModPhys.51.863
https://api.semanticscholar.org/CorpusID:16372217
https://doi.org/10.1063/1.2354593
https://doi.org/10.1063/1.2354593
https://doi.org/10.1038/112540a0

(13]

(25]

[26]
[27]

(28]

H. K. Onnes, “The liquefaction of helium”, in 7/rough Measurement to Knowl-
edge: The Selected Papers of Heike Kamerlingh Onnes 1853-1926, edited by K.
Gavroglu and Y. Goudaroulis (Springer Netherlands, Dordrecht, 1991), pp. 164—
187.

J. McLennan, H. Smith, and ]. Wilhelm, “The scattering of light by liquid
helium”, The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science 14, 161-167 (1932).

W. Keesom and A. Keesom, “New measurements on the specific heat of liquid
Helium”, Physica 2, 557—572 (1935).

P. Kapitza, “Viscosity of liquid helium below the A-point”, Nature 141, 74-74
(1938).

J. E Allen and A. Misener, “Flow of liquid helium II”, Nature 141, 75-75
(1938).

J. Allen and H. Jones, “New phenomena connected with heat flow in helium
117, Nature 141, 243244 (1938).

K. Gavroglu, Fritz London: A Scientific Biography, Sescelades: Biografia (Cam-
bridge University Press, 1995).

E London, H. London, and E A. Lindemann, “The electromagnetic equations
of the supraconductor”, Proceedings of the Royal Society of London. Series
A - Mathematical and Physical Sciences 149, 71-88 (1935).

E London, “The A-Phenomenon of Liquid Helium and the Bose-Einstein
Degeneracy”, Nature 141, 643—644 (1938).

E London, “On the Bose-Einstein Condensation”, Phys. Rev. 54, 947-954
(1938).

L. Tisza, “Transport Phenomena in Helium II”, Nature 141, 913913 (1938).
L. Landau, “Theory of the Superfluidity of Helium II”, Phys. Rev. 60, 356358
(1941).

L. Landau, “Two-fluid model of liquid Helium II”, J. Phys. Ussr s, 71—90
(1941).

N. N. Bogoliubov, “On the theory of superfluidity”, J. Phys 11, 23 (1947).
M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A.

Cornell, “Observation of Bose-Einstein Condensation in a Dilute Atomic Va-
por”, Science 269, 198—201 (1995).

K. B. Davis et al., “Bose-Einstein Condensation in a Gas of Sodium Atoms”,
Phys. Rev. Lett. 75, 3969—3973 (1995).

78


https://doi.org/10.1007/978-94-009-2079-8_7
https://doi.org/10.1007/978-94-009-2079-8_7
https://doi.org/https://doi.org/10.1016/S0031-8914(35)90128-8
https://doi.org/10.1038/141074a0
https://doi.org/10.1038/141074a0
https://doi.org/10.1038/141075a0
https://doi.org/10.1038/141075a0
https://doi.org/10.1098/rspa.1935.0048
https://doi.org/10.1098/rspa.1935.0048
https://doi.org/10.1038/141643a0
https://doi.org/10.1103/PhysRev.54.947
https://doi.org/10.1103/PhysRev.54.947
https://doi.org/10.1038/141913a0
https://doi.org/10.1103/PhysRev.60.356
https://doi.org/10.1103/PhysRev.60.356
https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1103/PhysRevLett.75.3969

[29]

(30]

[31]

A. J. Leggett, “Bose-Einstein condensation in the alkali gases: Some funda-
mental concepts”, Rev. Mod. Phys. 73, 307356 (2001).

T. Weber, J. Herbig, M. Mark, H.-C. Nigerl, and R. Grimm, “Bose-Einstein

Condensation of Cesium”, Science 299, 232—235 (2003).

A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, “Bose-Einstein
Condensation of Chromium”, Phys. Rev. Lett. 94, 160401 (2005).

M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev, “Strongly Dipolar Bose-
Einstein Condensate of Dysprosium”, Phys. Rev. Lett. 107, 190401 (2011).

K. Aikawa et al., “Bose-Einstein Condensation of Erbium”, Phys. Rev. Lett.
108, 210401 (2012).

Y. Miyazawa, R. Inoue, H. Matsui, G. Nomura, and M. Kozuma, “Bose-
Einstein Condensation of Europium”, Phys. Rev. Lett. 129, 223401 (2022).

A. Marte et al., “Feshbach Resonances in Rubidium 87: Precision Measure-
ment and Analysis”, Phys. Rev. Lett. 89, 283202 (2002).

A. Widera, O. Mandel, M. Greiner, S. Kreim, T. W. Hinsch, and 1. Bloch,
“Entanglement Interferometry for Precision Measurement of Atomic Scatter-
ing Properties”, Phys. Rev. Lett. 92, 160406 (2004).

M. Erhard, H. Schmaljohann, J. Kronjiger, K. Bongs, and K. Sengstock,
“Measurement of a mixed-spin-channel Feshbach resonance in 8"Rb”, Phys.
Rev. A 69, 032705 (2004).

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in

ultracold gases”, Rev. Mod. Phys. 82, 1225-1286 (2010).

S.B. Papp and C. E. Wieman, “Observation of Heteronuclear Feshbach Mole-
cules from a 8°Rb-8"Rb Gas”, Phys. Rev. Lett. 97, 180404 (2006).

S. Roy et al., “Test of the Universality of the Three-Body Efimov Parameter at
Narrow Feshbach Resonances”, Phys. Rev. Lett. 111, 053202 (2013).

L. Tanzi, C. R. Cabrera, J. Sanz, P. Cheiney, M. Tomza, and L. Tarruell, “Fes-
hbach resonances in potassium Bose-Bose mixtures”, Phys. Rev. A 98, 062712
(2018).

D. S. Petrov, “Quantum Mechanical Stabilization of a Collapsing Bose-Bose
Mixture”, Phys. Rev. Lett. 115, 155302 (2015).

H. Kadau et al., “Observing the Rosensweig instability of a quantum fer-
rofluid”, Nature 530, 194-197 (2016).

L. Chomaz et al., “Observation of roton mode population in a dipolar quan-
tum gas”, Nature physics 14, 442—446 (2018).

79


https://doi.org/10.1103/RevModPhys.73.307
https://doi.org/10.1126/science.1079699
https://doi.org/10.1103/PhysRevLett.94.160401
https://doi.org/10.1103/PhysRevLett.107.190401
https://doi.org/10.1103/PhysRevLett.108.210401
https://doi.org/10.1103/PhysRevLett.108.210401
https://doi.org/10.1103/PhysRevLett.129.223401
https://doi.org/10.1103/PhysRevLett.89.283202
https://doi.org/10.1103/PhysRevLett.92.160406
https://doi.org/10.1103/PhysRevA.69.032705
https://doi.org/10.1103/PhysRevA.69.032705
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/PhysRevLett.97.180404
https://doi.org/10.1103/PhysRevLett.111.053202
https://doi.org/10.1103/PhysRevA.98.062712
https://doi.org/10.1103/PhysRevA.98.062712
https://doi.org/10.1103/PhysRevLett.115.155302
https://doi.org/10.1038/nature16485
https://doi.org/10.1038/s41567-018-0054-7

G. Semeghini et al., “Self-Bound Quantum Droplets of Atomic Mixtures in
Free Space”, Phys. Rev. Lett. 120, 235301 (2018).

C. R. Cabrera et al., “Quantum liquid droplets in a mixture of Bose-Einstein
condensates”, Science 359, 301-304 (2018).

A. E Andreev and I. M. Lifshitz, “Quantum Theory of Defects in Crystals”,
Soviet Physics Uspekhi 13, 670 (1971).

A.J. Leggett, “Can a Solid Be ”Superfluid”?”, Phys. Rev. Lett. 25, 1543-1546
(1970).

M. Boninsegni and N. V. Prokof’ev, “Colloquium: Supersolids: What and
where are they?”, Rev. Mod. Phys. 84, 759—776 (2012).

L. Tanzi et al., “Observation of a Dipolar Quantum Gas with Metastable Su-
persolid Properties”, Phys. Rev. Lett. 122, 130405 (2019).

L. Chomaz et al., “Long-Lived and Transient Supersolid Behaviors in Dipolar
Quantum Gases”, Phys. Rev. X 9, 021012 (2019).

E Botecher et al., “Transient Supersolid Properties in an Array of Dipolar
Quantum Droplets”, Phys. Rev. X 9, o11051 (2019).

D. M. Larsen, “Binary mixtures of dilute bose gases with repulsive interactions
at low temperature”, Annals of Physics 24, 89—101 (1963).

D. S. Petrov and G. E. Astrakharchik, “Ultradilute Low-Dimensional Lig-
uids”, Phys. Rev. Lett. 117, 100401 (2016).

O. Penrose, “On the Quantum Mechanics of Helium II”, The London, Edin-
burgh, and Dublin Philosophical Magazine and Journal of Science 42, 1373~
1377 (1951).

O. Penrose and L. Onsager, “Bose-Einstein Condensation and Liquid He-
lium”, Phys. Rev. 104, 576—584 (1956).

L. Pitaevskii and S. Stringari, Bose-Einstein Condensation and Superfluidity
(Oxford University Press, Jan. 2016).

L. P. Pitaevskii, “On the properties of the spectrum of elementary excitations
near the disintegration threshold of the excitations”, Zhur. Eksptl’. i Teoret.
Fiz. Vol: 36 (1959).

C. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases (Cam-
bridge University Press, 2002).

A. J. Leggett, Quantum Liquids: Bose condensation and Cooper pairing in con-
densed-matter systems (Oxtord University Press, Sept. 2006).

E. J. Mueller, T.-L. Ho, M. Ueda, and G. Baym, “Fragmentation of Bose-
Einstein condensates”, Phys. Rev. A 74, 033612 (2006).

8o


https://doi.org/10.1103/PhysRevLett.120.235301
https://doi.org/10.1126/science.aao5686
https://doi.org/10.1070/PU1971v013n05ABEH004235
https://doi.org/10.1103/PhysRevLett.25.1543
https://doi.org/10.1103/PhysRevLett.25.1543
https://doi.org/10.1103/RevModPhys.84.759
https://doi.org/10.1103/PhysRevLett.122.130405
https://doi.org/10.1103/PhysRevX.9.021012
https://doi.org/10.1103/PhysRevX.9.011051
https://doi.org/https://doi.org/10.1016/0003-4916(63)90066-6
https://doi.org/10.1103/PhysRevLett.117.100401
https://doi.org/10.1103/PhysRev.104.576
https://www.osti.gov/biblio/4250074
https://www.osti.gov/biblio/4250074
https://doi.org/10.1103/PhysRevA.74.033612

C. N. Yang, “Concept of Off-Diagonal Long-Range Order and the Quantum
Phases of Liquid He and of Superconductors”, Rev. Mod. Phys. 34, 694704
(1962).

N. N. Bogoliubov, Lectures on Quantum Statistics, Volume 2 (Gordon and
Breach, 1970).

N. Bogoliubov, Introduction to Quantum Statistical Mechanics, Introduction
to Quantum Statistical Mechanics (World Scientific, 2010).

. Dirac, The Principles of Quantum Mechanics, Comparative Pathobiology -
Studies in the Postmodern Theory of Education (Clarendon Press, 1981).

L. Landau, “On the Theory of Superfluidity”, Phys. Rev. 75, 884-885 (1949).
E. P. Gross, “Structure of a quantized vortex in boson systems”, Il Nuovo
Cimento (1955-1965) 20, 454—477 (1961).

L. P. Pitaevskii, “Vortex lines in an imperfect Bose gas”, Sov. Phys. JETP 13,
451454 (1961).

L. Tonks, “The Complete Equation of State of One, Two and Three-Dimensional
Gases of Hard Elastic Spheres”, Phys. Rev. 50, 955963 (1936).

M. Girardeau, “Relationship between Systems of Impenetrable Bosons and
Fermions in One Dimension”, Journal of Mathematical Physics 1, 516523
(1960).

M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol, “One
dimensional bosons: From condensed matter systems to ultracold gases”, Rev.
Mod. Phys. 83, 1405-1466 (2011).

T. D. Lee, K. Huang, and C. N. Yang, “Eigenvalues and Eigenfunctions of
a Bose System of Hard Spheres and Its Low-Temperature Properties”, Phys.
Rev. 106, 11351145 (1957).

K. Huang and C. N. Yang, “Quantum-Mechanical Many-Body Problem with
Hard-Sphere Interaction”, Phys. Rev. 105, 767—775 (1957).

J. Sakurai and J. Napolitano, Modern Quantum Mechanics (Cambridge Uni-
versity Press, 2017).

P. de Gennes, Superconductivity Of Metals And Alloys, Advanced Books Classics
(Avalon Publishing, 1999).

S. Giorgini, L. Pitaevskii, and S. Stringari, “Thermodynamics of a trapped
bose-condensed gas”, Journal of Low Temperature Physics 109, 309-355 (1997).

A. R. P Lima and A. Pelster, “Quantum fluctuations in dipolar Bose gases”,
Phys. Rev. A 84, 041604 (2011).

81


https://doi.org/10.1103/RevModPhys.34.694
https://doi.org/10.1103/RevModPhys.34.694
https://doi.org/10.1103/PhysRev.75.884
https://doi.org/10.1007/BF02731494
https://doi.org/10.1007/BF02731494
https://doi.org/10.1103/PhysRev.50.955
https://doi.org/10.1063/1.1703687
https://doi.org/10.1063/1.1703687
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1103/PhysRev.106.1135
https://doi.org/10.1103/PhysRev.106.1135
https://doi.org/10.1103/PhysRev.105.767
https://doi.org/10.1103/PhysRevA.84.041604

(80]

(81]

(82]

[90]

[o1]

[92]

A. R. P Lima and A. Pelster, “Beyond mean-field low-lying excitations of
dipolar Bose gases”, Phys. Rev. A 86, 063609 (2012).

M. Edwards, P. A. Ruprecht, K. Burnett, R. J. Dodd, and C. W. Clark, “Col-
lective Excitations of Atomic Bose-Einstein Condensates”, Phys. Rev. Lett.
77, 1671-1674 (1996).

H. Hu and X.-]. Liu, “Collective excitations of a spherical ultradilute quan-
tum droplet”, Phys. Rev. A 102, 053303 (2020).

S. Ronen, D. C. E. Bortolotti, and J. L. Bohn, “Bogoliubov modes of a dipolar
condensate in a cylindrical trap”, Phys. Rev. A 74, 013623 (2006).

A. L. Fetter, “Rotating trapped Bose-Einstein condensates”, Rev. Mod. Phys.
81, 647—691 (2009).

D. Baillie, R. M. Wilson, and P. B. Blakie, “Collective Excitations of Self-
Bound Droplets of a Dipolar Quantum Fluid”, Phys. Rev. Lett. 119, 255302
(2017).

J. Hertkorn et al., “Fate of the Amplitude Mode in a Trapped Dipolar Super-
solid”, Phys. Rev. Lett. 123, 193002 (2019).

S. M. Roccuzzo and E Ancilotto, “Supersolid behavior of a dipolar Bose-
Einstein condensate confined in a tube”, Phys. Rev. A 99, 041601 (2019).

T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, “The physics
of dipolar bosonic quantum gases”, Reports on Progress in Physics 72, 126401
(2009).

N. Henkel, E Cind, P. Jain, G. Pupillo, and T. Pohl, “Supersolid Vortex

Crystals in Rydberg-Dressed Bose-Einstein Condensates”, Phys. Rev. Lett.
108, 265301 (2012).

L. Seydi, S. H. Abedinpour, R. E. Zillich, R. Asgari, and B. Tanatar, “Rotons
and Bose condensation in Rydberg-dressed Bose gases”, Phys. Rev. A 101,
013628 (2020).

A. Fetter and ]. Walecka, Quantum Theory of Many-particle Systems, Dover
Books on Physics (Dover Publications, 2003).

M. Marinescu and L. You, “Controlling Atom-Atom Interaction at Ultralow
Temperatures by dc Electric Fields”, Phys. Rev. Lett. 81, 4596—4599 (1998).

S.Yiand L. You, “Trapped atomic condensates with anisotropic interactions”,
Phys. Rev. A 61, 041604 (2000).

B. Deb and L. You, “Low-energy atomic collision with dipole interactions”,
Phys. Rev. A 64, 022717 (2001).

K. Géral, K. Rzazewski, and T. Pfau, “Bose-Einstein condensation with mag-
netic dipole-dipole forces”, Phys. Rev. A 61, os1601 (2000).

82


https://doi.org/10.1103/PhysRevA.86.063609
https://doi.org/10.1103/PhysRevLett.77.1671
https://doi.org/10.1103/PhysRevLett.77.1671
https://doi.org/10.1103/PhysRevA.102.053303
https://doi.org/10.1103/PhysRevA.74.013623
https://doi.org/10.1103/RevModPhys.81.647
https://doi.org/10.1103/RevModPhys.81.647
https://doi.org/10.1103/PhysRevLett.119.255302
https://doi.org/10.1103/PhysRevLett.119.255302
https://doi.org/10.1103/PhysRevLett.123.193002
https://doi.org/10.1103/PhysRevA.99.041601
https://doi.org/10.1088/0034-4885/72/12/126401
https://doi.org/10.1088/0034-4885/72/12/126401
https://doi.org/10.1103/PhysRevLett.108.265301
https://doi.org/10.1103/PhysRevLett.108.265301
https://doi.org/10.1103/PhysRevA.101.013628
https://doi.org/10.1103/PhysRevA.101.013628
https://doi.org/10.1103/PhysRevLett.81.4596
https://doi.org/10.1103/PhysRevA.61.041604
https://doi.org/10.1103/PhysRevA.64.022717
https://doi.org/10.1103/PhysRevA.61.051601

[100]

[1o1]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

E Wichtler and L. Santos, “Quantum filaments in dipolar Bose-Einstein con-
densates”, Phys. Rev. A 93, 061603 (2016).

D. Baillie, R. M. Wilson, R. N. Bisset, and P. B. Blakie, “Self-bound dipolar
droplet: A localized matter wave in free space”, Phys. Rev. A 94, 021602 (2016).
R. N. Bisset, R. M. Wilson, D. Baillie, and P. B. Blakie, “Ground-state phase
diagram of a dipolar condensate with quantum fluctuations”, Phys. Rev. A
94, 033619 (2016).

L. Ferrier-Barbut, M. Schmitt, M. Wenzel, H. Kadau, and T. Pfau, “Liquid
quantum droplets of ultracold magnetic atoms”, Journal of Physics B: Atomic,
Molecular and Optical Physics 49, 214004 (2016).

E Wichtler and L. Santos, “Ground-state properties and elementary excita-
tions of quantum droplets in dipolar Bose-Einstein condensates”, Phys. Rev.
A 94, 043618 (2016).

A. Boudjemaa, “Properties of dipolar bosonic quantum gases at finite tem-
peratures”, Journal of Physics A: Mathematical and Theoretical 49, 285005
(2016).

H. Hu and X.-J. Liu, “Consistent Theory of Self-Bound Quantum Droplets
with Bosonic Pairing”, Phys. Rev. Lett. 125, 195302 (2020).

P. Naidon and D. S. Petrov, “Mixed Bubbles in Bose-Bose Mixtures”, Phys.

Rev. Lett. 126, 115301 (2021).

F. Minardi, E Ancilotto, A. Burchianti, C. D’Errico, C. Fort, and M. Mod-
ugno, “Effective expression of the Lee-Huang-Yang energy functional for het-
eronuclear mixtures”, Phys. Rev. A 100, 063636 (2019).

E Schreck et al., “Quasipure Bose-Einstein Condensate Immersed in a Fermi
Sea”, Phys. Rev. Lett. 87, 080403 (2001).

A. Gorlitz et al., “Realization of Bose-Einstein Condensates in Lower Dimen-
sions”, Phys. Rev. Lett. 87, 130402 (2001).

D. S. Petrov and G. V. Shlyapnikov, “Interatomic collisions in a tightly con-
fined Bose gas”, Phys. Rev. A 64, 012706 (2001).

M. Olshanii, “Atomic Scattering in the Presence of an External Confinement
and a Gas of Impenetrable Bosons”, Phys. Rev. Lett. 81, 938—941 (1998).

E. H. Lieb and W. Liniger, “Exact Analysis of an Interacting Bose Gas. I. The
General Solution and the Ground State”, Phys. Rev. 130, 1605-1616 (1963).

V. N. Popov, “On the theory of the superfluidity of two-and one-dimensional
bose systems”, Teoreticheskaya i Matematicheskaya Fizika 11, 354365 (1972).

E. Timmermans, “Phase Separation of Bose-Einstein Condensates”, Phys.
Rev. Lett. 81, 5718—5721 (1998).

83


https://doi.org/10.1103/PhysRevA.93.061603
https://doi.org/10.1103/PhysRevA.94.021602
https://doi.org/10.1103/PhysRevA.94.033619
https://doi.org/10.1103/PhysRevA.94.033619
https://doi.org/10.1088/0953-4075/49/21/214004
https://doi.org/10.1088/0953-4075/49/21/214004
https://doi.org/10.1103/PhysRevA.94.043618
https://doi.org/10.1103/PhysRevA.94.043618
https://doi.org/10.1088/1751-8113/49/28/285005
https://doi.org/10.1088/1751-8113/49/28/285005
https://doi.org/10.1103/PhysRevLett.125.195302
https://doi.org/10.1103/PhysRevLett.126.115301
https://doi.org/10.1103/PhysRevLett.126.115301
https://doi.org/10.1103/PhysRevA.100.063636
https://doi.org/10.1103/PhysRevLett.87.080403
https://doi.org/10.1103/PhysRevLett.87.130402
https://doi.org/10.1103/PhysRevA.64.012706
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1007/BF01028373
https://doi.org/10.1103/PhysRevLett.81.5718
https://doi.org/10.1103/PhysRevLett.81.5718

[110]

[111]

[112]

[113]

[114]

[115]

[116]

(117]

[118]

[119]

[120]

[121]

[122]

[123]

E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell,
and C. E. Wieman, “Dynamics of collapsing and exploding Bose-Einstein
condensates”, Nature 412, 295-299 (2001).

H. Saito and M. Ueda, “Mean-field analysis of collapsing and exploding Bose-
Einstein condensates”, Phys. Rev. A 65, 033624 (2002).

M. Ueda and H. Saito, “A Consistent Picture of a Collapsing Bose—Einstein
Condensate”, Journal of the Physical Society of Japan 72, 127-133 (2003).

S. L. Cornish, S. T. Thompson, and C. E. Wieman, “Formation of Bright
Matter-Wave Solitons during the Collapse of Attractive Bose-Einstein Con-
densates”, Phys. Rev. Lett. 96, 170401 (2006).

I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau, “Observa-
tion of Quantum Droplets in a Strongly Dipolar Bose Gas”, Phys. Rev. Lett.
116, 215301 (2016).

M. Schmitt, M. Wenzel, E Bottcher, 1. Ferrier-Barbut, and T. Pfau, “Self-
bound droplets of a dilute magnetic quantum liquid”, Nature 539, 259262
(2016).

L. Chomaz et al., “Quantum-Fluctuation-Driven Crossover from a Dilute
Bose-Einstein Condensate to a Macrodroplet in a Dipolar Quantum Fluid”,
Phys. Rev. X 6, 041039 (2016).

H. Saito, “Path-Integral Monte Carlo Study on a Droplet of a Dipolar Bose—
Einstein Condensate Stabilized by Quantum Fluctuation”, Journal of the Phys-
ical Society of Japan 85, 053001 (2016).

V. Cikojevi¢, L. Vranje$ Marki¢, G. E. Astrakharchik, and J. Boronat, “Uni-
versality in ultradilute liquid Bose-Bose mixtures”, Phys. Rev. A 99, 023618
(2019).

M. Wenzel, E Bottcher, T. Langen, 1. Ferrier-Barbut, and T. Pfau, “Striped
states in a many-body system of tilted dipoles”, Phys. Rev. A 96, 053630 (2017).

D. Baillie and P. B. Blakie, “Droplet Crystal Ground States of a Dipolar Bose
Gas”, Phys. Rev. Lett. 121, 195301 (2018).

E Bottcher etal., “New states of matter with fine-tuned interactions: quantum
droplets and dipolar supersolids”, Reports on Progress in Physics 84, 012403
(2020).

A. Cappellaro, T. Macri, and L. Salasnich, “Collective modes across the soliton
droplet crossover in binary Bose mixtures”, Phys. Rev. A 97, 053623 (2018).

G. Astrakharchik and B. A. Malomed, “Dynamics of one-dimensional quan-
tum droplets”, Physical Review A 98, 013631 (2018).

84


https://doi.org/10.1038/35085500
https://doi.org/10.1103/PhysRevA.65.033624
https://doi.org/10.1143/JPSJS.72SC.127
https://doi.org/10.1103/PhysRevLett.96.170401
https://doi.org/10.1103/PhysRevLett.116.215301
https://doi.org/10.1103/PhysRevLett.116.215301
https://doi.org/10.1038/nature20126
https://doi.org/10.1038/nature20126
https://doi.org/10.1103/PhysRevX.6.041039
https://doi.org/10.7566/JPSJ.85.053001
https://doi.org/10.7566/JPSJ.85.053001
https://doi.org/10.1103/PhysRevA.99.023618
https://doi.org/10.1103/PhysRevA.99.023618
https://doi.org/10.1103/PhysRevA.96.053630
https://doi.org/10.1103/PhysRevLett.121.195301
https://doi.org/10.1088/1361-6633/abc9ab
https://doi.org/10.1088/1361-6633/abc9ab
https://doi.org/10.1103/PhysRevA.97.053623

[124]

(125]

[126]

[127]

[128]

(129]

[130]

[131]

(132]

[133]

(134]

(138]

(139]

J. Stuhler et al., “Observation of Dipole-Dipole Interaction in a Degenerate
Quantum Gas”, Phys. Rev. Lett. 95, 150406 (2005).

T. Lahaye et al., “Strong dipolar effects in a quantum ferrofluid”, Nature 448,
672—675 (2007).

L. Lavoine and T. Bourdel, “Beyond-mean-field crossover from one dimen-

sion to three dimensions in quantum droplets of binary mixtures”, Phys. Rev.
A 103, 033312 (2021).

R. N. Bisset and P. B. Blakie, “Crystallization of a dilute atomic dipolar con-
densate”, Phys. Rev. A 92, 061603 (2015).

E. Poli et al., “Maintaining supersolidity in one and two dimensions”, Phys.
Rev. A 104, 063307 (2021).

A. Aliand H. Saito, “Engineering Mixing Properties of Fluids by Spatial Mod-
ulations”, Phys. Rev. Lett. 132, 173402 (2024).

E London, Superfluids, Volume 2 (John Wiley, New York, reprinted by Dover
Publications, 1954).

P. W. Anderson, “Considerations on the Flow of Superfluid Helium”, Rev.
Mod. Phys. 38, 298—310 (1966).

A. Andreev and E. Bashkin, “Three-velocity hydrodynamics of superfluid so-
lutions”, Soviet Journal of Experimental and Theoretical Physics 42, 164 (1975).

D. V. Fil and S. I. Shevchenko, “Nondissipative drag of superflow in a two-
component Bose gas”, Phys. Rev. A 72, 013616 (2005).

J. Wilhelm, A. Misener, and A. Clark, “The viscosity of liquid helium”, Pro-
ceedings of the Royal Society of London. Series A-Mathematical and Physical
Sciences 151, 342—347 (1935).

L. Landau, “On the theory of Superfluidity of Helium II”, J. Phys 11, 91—92
(1947).

S. Balibar, “The Discovery of Superfluidity”, Journal of Low Temperature
Physics 146, 441—470 (2007).

Z. Yan, P. B. Patel, B. Mukherjee, C. ]J. Vale, R. J. Fletcher, and M. W.

Zwierlein, “Thermography of the superfluid transition in a strongly interact-
ing Fermi gas”, Science 383, 629-633 (2024).

J. Hofmann and W. Zwerger, “Hydrodynamics of a superfluid smectic”, Jour-
nal of Statistical Mechanics: Theory and Experiment 2021, 033104 (2021).

J. L. Yarnell, G. 2. Arnold, P. J. Bendt, and E. C. Kerr, “Excitations in Liquid
Helium: Neutron Scattering Measurements”, Phys. Rev. 113, 1379-1386 (1959).

85


https://doi.org/10.1103/PhysRevLett.95.150406
https://doi.org/10.1038/nature06036
https://doi.org/10.1038/nature06036
https://doi.org/10.1103/PhysRevA.103.033312
https://doi.org/10.1103/PhysRevA.103.033312
https://doi.org/10.1103/PhysRevA.92.061603
https://doi.org/10.1103/PhysRevA.104.063307
https://doi.org/10.1103/PhysRevA.104.063307
https://doi.org/10.1103/PhysRevLett.132.173402
https://doi.org/10.1103/RevModPhys.38.298
https://doi.org/10.1103/RevModPhys.38.298
https://doi.org/10.1103/PhysRevA.72.013616
https://doi.org/https://doi.org/10.1016/B978-0-08-010586-4.50068-7
https://doi.org/https://doi.org/10.1016/B978-0-08-010586-4.50068-7
https://doi.org/10.1007/s10909-006-9276-7
https://doi.org/10.1007/s10909-006-9276-7
https://doi.org/10.1126/science.adg3430
https://doi.org/10.1088/1742-5468/abe598
https://doi.org/10.1088/1742-5468/abe598
https://doi.org/10.1103/PhysRev.113.1379

[140]

[141]

(142]

(143]

(144]

[145]

(147]

(148]

[149]

[150]
[x51]

[152]

D. G. Henshaw and A. D. B. Woods, “Modes of Atomic Motions in Liquid
Helium by Inelastic Scattering of Neutrons”, Phys. Rev. 121, 12661274 (1961).

A. Grifhn, Excitations in a Bose-condensed liquid, 4 (Cambridge University
Press, 1993).

N. N. Bogoliubov, V. V. Tolmachov, and D. V. Sirkov, “A New Method in
the Theory of Superconductivity”, Fortschritte der Physik 6, 605682 (1958).

Y. Nambu, “Quasi-Particles and Gauge Invariance in the Theory of Supercon-
ductivity”, Phys. Rev. 117, 648663 (1960).

J. Goldstone, “Field theories with «Superconductor» solutions”, Il Nuovo Ci-
mento (1955-1965) 19, 154—164 (1961).

J. Goldstone, A. Salam, and S. Weinberg, “Broken Symmetries”, Phys. Rev.
127, 965—970 (1962).

W. E. Wreszinski and V. A. Zagrebnov, “Bogoliubov Quasiaverages: Sponta-

neous Symmetry Breaking and the Algebra of Fluctuations”, Theoretical and
Mathematical Physics 194, 157-188 (2018).

A. Aldand and B. D. Simons, Condensed matter field theory, 2nd ed. (Cam-
bridge University Press, 2010).

L. Onsager, “Statistical Hydrodynamics”, Il Nuovo Cimento (1943-1954) 6,
279-287 (1949).

R. Feynman, “Chapter II Application of Quantum Mechanics to Liquid He-
lium”, in , Vol. 1, edited by C. Gorter, Progress in Low Temperature Physics
(Elsevier, 1955), pp. 17-53.

A. ]. Leggett, “Superfluidity”, Rev. Mod. Phys. 71, S318-5323 (1999).

Y. Kagan, N. V. Prokof’ev, and B. V. Svistunov, “Supercurrent stability in a

quasi-one-dimensional weakly interacting Bose gas”, Phys. Rev. A 61, 045601
(2000).

C. Ryu, M. E Andersen, P. Cladé, V. Natarajan, K. Helmerson, and W. D.
Phillips, “Observation of Persistent Flow of a Bose-Einstein Condensate in a
Toroidal Trap”, Phys. Rev. Lett. 99, 260401 (2007).

E Bloch, “Off-Diagonal Long-Range Order and Persistent Currents in a Hol-
low Cylinder”, Phys. Rev. 137, A787-A795 (1965).

E Bloch, “Superfluidity in a Ring”, Phys. Rev. A 7, 21872191 (1973).

K. L. Lee, N. B. Jorgensen, I.-K. Liu, L. Wacker, J. J. Arlt, and N. P. Proukakis,
“Phase separation and dynamics of two-component Bose-Einstein conden-
sates”, Phys. Rev. A 94, 013602 (2016).

86


https://doi.org/10.1103/PhysRev.121.1266
https://doi.org/https://doi.org/10.1002/prop.19580061102
https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1007/BF02812722
https://doi.org/10.1007/BF02812722
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1134/S0040577918020010
https://doi.org/10.1134/S0040577918020010
https://doi.org/10.1007/BF02780991
https://doi.org/10.1007/BF02780991
https://doi.org/10.1103/RevModPhys.71.S318
https://doi.org/10.1103/PhysRevA.61.045601
https://doi.org/10.1103/PhysRevA.61.045601
https://doi.org/10.1103/PhysRevLett.99.260401
https://doi.org/10.1103/PhysRev.137.A787
https://doi.org/10.1103/PhysRevA.7.2187
https://doi.org/10.1103/PhysRevA.94.013602

[156]

[157]

[159]
[160]

[161]
[162]

[170]

(171]

[172]

B. Mottelson, “Yrast Spectra of Weakly Interacting Bose-Einstein Conden-
sates”, Phys. Rev. Lett. 83, 26952698 (1999).

J. Smyrnakis, S. Bargi, G. M. Kavoulakis, M. Magiropoulos, K. Kirkkiinen,
and S. M. Reimann, “Mixtures of Bose Gases Confined in a Ring Potential”,
Phys. Rev. Lett. 103, 100404 (2009).

K. Anoshkin, Z. Wu, and E. Zaremba, “Persistent currents in a bosonic mix-
ture in the ring geometry”, Phys. Rev. A 88, 013609 (2013).

E. Varoquaux, “Anderson’s considerations on the Flow of Superfluid Helium:
Some offshoots”, Rev. Mod. Phys. 87, 803854 (2015).

A. A. Abrikosov, “On the Magnetic properties of superconductors of the sec-
ond group”, Sov. Phys. JETP s, 1174-1182 (1957).

V. Tkachenko, “On vortex lattices”, Sov. Phys. JETP 22, 1282-1286 (1966).
V. Tkachenko, “Stability of vortex lattices”, Sov. Phys. JETP 23, 1049-1056
(1966).

J. R. Abo-Shacer, C. Raman, J. M. Vogels, and W. Ketterle, “Observation of

Vortex Lattices in Bose-Einstein Condensates”, Science 292, 476—479 (2001).

P. Engels, I. Coddington, P. C. Haljan, and E. A. Cornell, “Nonequilib-
rium Effects of Anisotropic Compression Applied to Vortex Lattices in Bose-
Einstein Condensates”, Phys. Rev. Lett. 89, 100403 (2002).

D. Butts and D. Rokhsar, “Predicted signatures of rotating Bose-Einstein con-
densates”, Nature 397, 327329 (1999).
G. M. Kavoulakis, B. Mottelson, and C. J. Pethick, “Weakly interacting Bose-

Einstein condensates under rotation”, Phys. Rev. A 62, 063605 (2000).

E. Lundh, “Multiply quantized vortices in trapped Bose-Einstein conden-
sates”, Phys. Rev. A 65, 043604 (2002).

A. E. Leanhardt et al., “Imprinting Vortices in a Bose-Einstein Condensate
using Topological Phases”, Phys. Rev. Lett. 89, 190403 (2002).
K. Kasamatsu, M. Tsubota, and M. Ueda, “Giant hole and circular superflow

in a fast rotating Bose-Einstein condensate”, Phys. Rev. A 66, 053606 (2002).

U. R. Fischer and G. Baym, “Vortex States of Rapidly Rotating Dilute Bose-
Einstein Condensates”, Phys. Rev. Lett. 90, 140402 (2003).

J. Bardeen, G. Baym, and D. Pines, “Effective Interaction of He? Atoms in
Dilute Solutions of He® in He* at Low Temperatures”, Phys. Rev. 156, 207—
221 (1967).

D. D. Osheroff, W. J. Gully, R. C. Richardson, and D. M. Lee, “New Mag-
netic Phenomena in Liquid He? below 3 mK”, Phys. Rev. Lett. 29, 920-923
(1972).

87


https://doi.org/10.1103/PhysRevLett.83.2695
https://doi.org/10.1103/PhysRevLett.103.100404
https://doi.org/10.1103/PhysRevA.88.013609
https://doi.org/10.1103/RevModPhys.87.803
https://doi.org/10.1126/science.1060182
https://doi.org/10.1103/PhysRevLett.89.100403
https://doi.org/10.1038/16865
https://doi.org/10.1103/PhysRevA.62.063605
https://doi.org/10.1103/PhysRevA.65.043604
https://doi.org/10.1103/PhysRevLett.89.190403
https://doi.org/10.1103/PhysRevA.66.053606
https://doi.org/10.1103/PhysRevLett.90.140402
https://doi.org/10.1103/PhysRev.156.207
https://doi.org/10.1103/PhysRev.156.207
https://doi.org/10.1103/PhysRevLett.29.920
https://doi.org/10.1103/PhysRevLett.29.920

T. A. Alvesalo, Y. D. Anufriyev, H. K. Collan, O. V. Lounasmaa, and P. Wen-
nerstrom, “Bvidence for Superfluidity in the Newly Found Phases of He”,
Phys. Rev. Lett. 30, 962965 (1973).

H. Kojima, D. N. Paulson, and J. C. Wheatley, “Propagation of Fourth Sound
in Superfluid *He”, Phys. Rev. Lett. 32, 141-144 (1974).

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Microscopic Theory of Su-
perconductivity”, Phys. Rev. 106, 162-164 (1957).

D. O. Edwards, D. E Brewer, P. Seligman, M. Skertic, and M. Yaqub, “Sol-
ubility of He? in Liquid He? at 0°K”, Phys. Rev. Lett. 15, 773775 (1965).

I. Khalatnikov, “Hydrodynamics of Solutions of 2 Superfluid Liquids”, Soviet
Physics JETP-USSR s, 542—545 (1957).

Z. Galasiewicz, “A new sound mode in superfluid 3He—superﬂuid 4He solu-
tions”, Physics Letters A 43, 149-150 (1973).

V. Mineev, “Some problems in the hydrodynamics of solutions of two super-
fluid liquids”, Zh. Eksp. Teor. Fiz 67, 683—690 (1974).
L. Y. Kravchenko and D. V. Fil, “Ciritical Velocities in Two-Component Su-

perfluid Bose Gases”, Journal of Low Temperature Physics 150, 612—617 (2008).

K. Sellin and E. Babaev, “Superfluid drag in the two-component Bose-Hubbard
model”, Phys. Rev. B 97, 094517 (2018).

J. Nespolo, G. E. Astrakharchik, and A. Recati, “Andreev—Bashkin effect in
superfluid cold gases mixtures”, New Journal of Physics 19, 125005 (2017).

J. H. Kim, D. Hong, and Y. Shin, “Observation of two sound modes in a
binary superfluid gas”, Phys. Rev. A 101, 061601 (2020).

L. Parisi, G. E. Astrakharchik, and S. Giorgini, “Spin Dynamics and Andreev-
Bashkin Effect in Mixtures of One-Dimensional Bose Gases”, Phys. Rev. Lett.
121, 025302 (2018).

D. Contessi, D. Romito, M. Rizzi, and A. Recati, “Collisionless drag for a
one-dimensional two-component Bose-Hubbard model”, Phys. Rev. Res. 3,
Lo22o17 (2021).

D. Thouless, “The flow of a dense superfluid”, Annals of Physics 52, 403427
(1969).

G. V. Chester, “Speculations on Bose-Einstein Condensation and Quantum

Crystals”, Phys. Rev. A 2, 256-258 (1970).

E. Kim and M. H.-W. Chan, “Probable observation of a supersolid helium
phase”, Nature 427, 225-227 (2004).

88


https://doi.org/10.1103/PhysRevLett.30.962
https://doi.org/10.1103/PhysRevLett.32.141
https://doi.org/10.1103/PhysRev.106.162
https://doi.org/10.1103/PhysRevLett.15.773
https://doi.org/https://doi.org/10.1016/0375-9601(73)90587-2
https://doi.org/10.1007/s10909-007-9595-3
https://doi.org/10.1103/PhysRevB.97.094517
https://doi.org/10.1088/1367-2630/aa93a0
https://doi.org/10.1103/PhysRevA.101.061601
https://doi.org/10.1103/PhysRevLett.121.025302
https://doi.org/10.1103/PhysRevLett.121.025302
https://doi.org/10.1103/PhysRevResearch.3.L022017
https://doi.org/10.1103/PhysRevResearch.3.L022017
https://doi.org/https://doi.org/10.1016/0003-4916(69)90286-3
https://doi.org/https://doi.org/10.1016/0003-4916(69)90286-3
https://doi.org/10.1103/PhysRevA.2.256
https://doi.org/10.1038/nature02220

(189]

[190]

[ro1]
(192]

(193]

(194]

[195]

(199]

[200]

[201]

[202]

[203]

[204]

E. Kim and M. H. W. Chan, “Observation of Superflow in Solid Helium”,
Science 305, 1941-1944 (2004).

D. Y. Kim and M. H. W. Chan, “Absence of Supersolidity in Solid Helium
in Porous Vycor Glass”, Phys. Rev. Lett. 109, 155301 (2012).

S. Balibar, “The enigma of supersolidity”, Nature 464, 176-182 (2010).

G. Biroli, C. Chamon, and E Zamponi, “Theory of the superglass phase”,
Phys. Rev. B 78, 224306 (2008).

X. Yu and M. Miiller, “Mean field theory of superglasses”, Phys. Rev. B 8s,
104205 (2012).

J.-R. Lietal., “A stripe phase with supersolid properties in spin—orbit-coupled
Bose—FEinstein condensates”, Nature 543, 91-94 (2017).

J. Léonard, A. Morales, P. Zupancic, T. Esslinger, and T. Donner, “Supersolid
formation in a quantum gas breaking a continuous translational symmetry”,
Nature 543, 87—-90 (2017).

V. Celli and ]J. Ruvalds, “Theory of the Liquid-Solid Phase Transition in He-
lium II”, Phys. Rev. Lett. 28, 539—542 (1972).

P. Noziéres, “Is the Roton in Superfluid “He the Ghost of a Bragg Spot?”,
Journal of Low Temperature Physics 137, 45-67 (2004).

R. N. Bisset, P. B. Blakie, and S. Stringari, “Static-response theory and the
roton-maxon spectrum of a flatctened dipolar Bose-Einstein condensate”, Phys.
Rev. A 100, 013620 (2019).

L. Santos, G. V. Shlyapnikov, and M. Lewenstein, “Roton-Maxon Spectrum
and Stability of Trapped Dipolar Bose-Einstein Condensates”, Phys. Rev. Lett.
90, 250403 (2003).

U. R. Fischer, “Stability of quasi-two-dimensional Bose-Einstein condensates
with dominant dipole-dipole interactions”, Phys. Rev. A 73, 031602 (2006).
P. B. Blakie, D. Baillie, and R. N. Bisset, “Roton spectroscopy in a harmon-

ically trapped dipolar Bose-Einstein condensate”, Phys. Rev. A 86, 021604
(2012).

P. B. Blakie, D. Baillie, and S. Pal, “Variational theory for the ground state and
collective excitations of an elongated dipolar condensate”, Communications
in Theoretical Physics 72, 085501 (2020).

P. B. Blakie, D. Baillie, L. Chomaz, and E Ferlaino, “Supersolidity in an elon-
gated dipolar condensate”, Phys. Rev. Res. 2, 043318 (2020).

K. Baumann, N. Q. Burdick, M. Lu, and B. L. Lev, “Observation of low-field
Fano-Feshbach resonances in ultracold gases of dysprosium”, Phys. Rev. A 89,
020701 (2014).

89


https://doi.org/10.1126/science.1101501
https://doi.org/10.1103/PhysRevLett.109.155301
https://doi.org/10.1038/nature08913
https://doi.org/10.1103/PhysRevB.78.224306
https://doi.org/10.1103/PhysRevB.85.104205
https://doi.org/10.1103/PhysRevB.85.104205
https://doi.org/10.1038/nature21431
https://doi.org/10.1038/nature21067
https://doi.org/10.1103/PhysRevLett.28.539
https://doi.org/10.1023/B:JOLT.0000044234.82957.2f
https://doi.org/10.1103/PhysRevA.100.013620
https://doi.org/10.1103/PhysRevA.100.013620
https://doi.org/10.1103/PhysRevLett.90.250403
https://doi.org/10.1103/PhysRevLett.90.250403
https://doi.org/10.1103/PhysRevA.73.031602
https://doi.org/10.1103/PhysRevA.86.021604
https://doi.org/10.1103/PhysRevA.86.021604
https://doi.org/10.1088/1572-9494/ab95fa
https://doi.org/10.1088/1572-9494/ab95fa
https://doi.org/10.1103/PhysRevResearch.2.043318
https://doi.org/10.1103/PhysRevA.89.020701
https://doi.org/10.1103/PhysRevA.89.020701

[205]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

Y. Tang, A. G. Sykes, N. Q. Burdick, J. M. DiSciacca, D. S. Petrov, and B. L.
Lev, “Anisotropic Expansion of a Thermal Dipolar Bose Gas”, Phys. Rev. Lett.
117, 155301 (2016).

E. Lucioni et al., “Dysprosium dipolar Bose-Einstein condensate with broad
Feshbach resonances”, Phys. Rev. A 97, 060701 (2018).

J. Conway et al., “The Game of Life”, Scientific American 223, 4 (1970).

M. Gardner, “Mathematical Games”, Scientific American 223, 120-123 (1970).
S. Wolfram, A New Kind of Science (Wolfram Media, 2002).

A. M. Turing, “The chemical basis of morphogenesis”, Philosophical Transac-
tions of the Royal Society of London. Series B, Biological Sciences 237, 37—72
(1952).

P. Bourgine and A. LESNE, Morphogenesis: Origins of Patterns and Shapes,
Springer complexity (Springer Berlin Heidelberg, 2010).

J. Hertkorn et al., “Pattern formation in quantum ferrofluids: From super-

solids to superglasses”, Phys. Rev. Res. 3, 033125 (2021).

M. Schmidt, L. Lassabli¢re, G. Quéméner, and T. Langen, “Self-bound dipo-
lar droplets and supersolids in molecular Bose-Einstein condensates”, Phys.
Rev. Res. 4, 013235 (2022).

M. N. Tengstrand, D. Boholm, R. Sachdeva, J. Bengtsson, and S. M. Reimann,
“Persistent currents in toroidal dipolar supersolids”, Phys. Rev. A 103, 013313
(2021).

A. Leggett, “On the Superfluid Fraction of an Arbitrary Many-Body System
at T' = 07, Journal of statistical physics 93, 927—-941 (1998).

L. Tanzi, J. G. Maloberti, G. Biagioni, A. Fioretti, C. Gabbanini, and G.
Modugno, “Evidence of superfluidity in a dipolar supersolid from nonclassical
rotational inertia”, Science 371, 1162-1165 (2021).

S. M. Roccuzzo, A. Recati, and S. Stringari, “Moment of inertia and dynam-
ical rotational response of a supersolid dipolar gas”, Phys. Rev. A 105, 023316
(2022).

M. N. Tengstrand and S. M. Reimann, “Droplet-superfluid compounds in
binary bosonic mixtures”, Phys. Rev. A 105, 033319 (2022).

K. Furutani and L. Salasnich, “Superfluid properties of bright solitons in a
ring”, Phys. Rev. A 105, 033320 (2022).

M. Cominotti, D. Rossini, M. Rizzi, F. Hekking, and A. Minguzzi, “Optimal
Persistent Currents for Interacting Bosons on a Ring with a Gauge Field”,
Phys. Rev. Lett. 113, 025301 (2014).

90


https://doi.org/10.1103/PhysRevLett.117.155301
https://doi.org/10.1103/PhysRevLett.117.155301
https://doi.org/10.1103/PhysRevA.97.060701
http://www.jstor.org/stable/24927642
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1103/PhysRevResearch.3.033125
https://doi.org/10.1103/PhysRevResearch.4.013235
https://doi.org/10.1103/PhysRevResearch.4.013235
https://doi.org/10.1103/PhysRevA.103.013313
https://doi.org/10.1103/PhysRevA.103.013313
https://doi.org/10.1023/B:JOSS.0000033170.38619.6c
https://doi.org/10.1126/science.aba4309
https://doi.org/10.1103/PhysRevA.105.023316
https://doi.org/10.1103/PhysRevA.105.023316
https://doi.org/10.1103/PhysRevA.105.033319
https://doi.org/10.1103/PhysRevA.105.033320
https://doi.org/10.1103/PhysRevLett.113.025301

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

(233]

(234]

[235]

D. Draxler, ]. Haegeman, E Verstraete, and M. Rizzi, “Continuous matrix
product states with periodic boundary conditions and an application to atom-
tronics”, Phys. Rev. B 95, 045145 (2017).

G. Del Pace et al., “Imprinting Persistent Currents in Tunable Fermionic
Rings”, Phys. Rev. X 12, 041037 (2022).

C. Ryu, P W. Blackburn, A. A. Blinova, and M. G. Boshier, “Experimental
Realization of Josephson Junctions for an Atom SQUID”, Phys. Rev. Lett.
111, 205301 (2013).

L. Amico et al., “Roadmap on Atomtronics: State of the art and perspective”,
AVS Quantum Science 3, 039201 (2021).

L. Amico et al., “Colloquium: Atomtronic circuits: From many-body physics
to quantum technologies”, Rev. Mod. Phys. 94, 041001 (2022).

M. Modugno, C. Tozzo, and E. Dalfovo, “Detecting phonons and persistent
currents in toroidal Bose-Einstein condensates by means of pattern forma-
tion”, Phys. Rev. A 74, 061601 (2006).

S. Eckel, F. Jendrzejewski, A. Kumar, C. J. Lobb, and G. K. Campbell, “In-
terferometric Measurement of the Current-Phase Relationship of a Superfluid
Weak Link”, Phys. Rev. X 4, 031052 (2014).

L. Corman et al., “Quench-Induced Supercurrents in an Annular Bose Gas”,
Phys. Rev. Lett. 113, 135302 (2014).

R. Mathew et al., “Self-heterodyne detection of the in situ phase of an atomic
superconducting quantum interference device”, Phys. Rev. A 92, 033602 (2015).

L. Klaus et al., “Observation of vortices and vortex stripes in a dipolar con-
densate”, Nature Physics 18, 1-6 (2022).

Y.-C. Zhang, F. Maucher, and T. Pohl, “Supersolidity around a Critical Point
in Dipolar Bose-Einstein Condensates”, Phys. Rev. Lett. 123, o15301 (2019).

A. Gallemi, S. M. Roccuzzo, S. Stringari, and A. Recati, “Quantized vor-
tices in dipolar supersolid Bose-Einstein-condensed gases”, Phys. Rev. A 102,
023322 (2020).

E Ancilotto, M. Barranco, M. Pi, and L. Reatto, “Vortex properties in the
extended supersolid phase of dipolar Bose-Einstein condensates”, Phys. Rev.
A 103, 033314 (2021).

S. M. Roccuzzo, S. Stringari, and A. Recati, “Supersolid edge and bulk phases
of a dipolar quantum gas in a box”, Phys. Rev. Res. 4, 013086 (2022).

C. D’Errico etal., “Observation of quantum droplets in a heteronuclear bosonic
mixture”, Phys. Rev. Res. 1, 033155 (2019).

91


https://doi.org/10.1103/PhysRevB.95.045145
https://doi.org/10.1103/PhysRevX.12.041037
https://doi.org/10.1103/PhysRevLett.111.205301
https://doi.org/10.1103/PhysRevLett.111.205301
https://doi.org/10.1116/5.0026178
https://doi.org/10.1103/RevModPhys.94.041001
https://doi.org/10.1103/PhysRevA.74.061601
https://doi.org/10.1103/PhysRevX.4.031052
https://doi.org/10.1103/PhysRevLett.113.135302
https://doi.org/10.1103/PhysRevA.92.033602
https://doi.org/10.1038/s41567-022-01793-8
https://doi.org/10.1103/PhysRevLett.123.015301
https://doi.org/10.1103/PhysRevA.102.023322
https://doi.org/10.1103/PhysRevA.102.023322
https://doi.org/10.1103/PhysRevA.103.033314
https://doi.org/10.1103/PhysRevA.103.033314
https://doi.org/10.1103/PhysRevResearch.4.013086
https://doi.org/10.1103/PhysRevResearch.1.033155

[236]

(237]

[238]

(239]

[240]

[241]

[242]

[243]

(244]

[245]

(246]

A. Trautmann et al., “Dipolar Quantum Mixtures of Erbium and Dysprosium
Atoms”, Phys. Rev. Lett. 121, 213601 (2018).

C. Politi et al., “Interspecies interactions in an ultracold dipolar mixture”,
Phys. Rev. A 105, 023304 (2022).

S.Li, U. N. Le, and H. Saito, “Long-lifetime supersolid in a two-component
dipolar Bose-Einstein condensate”, Phys. Rev. A 105, Lo61302 (2022).

T. Bland, E. Poli, L. A. P. Ardila, L. Santos, E Ferlaino, and R. N. Bisset,
“Alternating-domain supersolids in binary dipolar condensates”, Phys. Rev.
A 106, 053322 (2022).

D. Scheiermann, L. A. P. Ardila, T. Bland, R. N. Bisset, and L. Santos, “Cat-
alyzation of supersolidity in binary dipolar condensates”, Phys. Rev. A 107,
Loz21302 (2023).

W. Kirkby, T. Bland, E Ferlaino, and R. N. Bisset, “Spin rotons and super-
solids in binary antidipolar condensates”, SciPost Phys. Core 6, 084 (2023).

S. Halder, S. Das, and S. Majumder, “Two-dimensional miscible-immiscible
supersolid and droplet crystal state in a homonuclear dipolar bosonic mix-
ture”, Phys. Rev. A 107, 063303 (2023).

L. Pitaevskii, “Layered structure of Superfluid 4He with supercritical motion”,
JETP Letters 39, s1i—s14 (1984).

E Ancilotto, E Dalfovo, L. P. Pitaevskii, and E Toigo, “Density pattern in
supercritical flow of liquid *He”, Phys. Rev. B 71, 104530 (2005).

U. Schollwéck, “The density-matrix renormalization group in the age of ma-

trix product states”, Annals of Physics 326, January 2011 Special Issue, 96-192
(201).

S. Dutta, A. Buyskikh, A. J. Daley, and E. J. Mueller, “Density Matrix Renor-
malization Group for Continuous Quantum Systems”, Phys. Rev. Lett. 128,
230401 (2022).

92


https://doi.org/10.1103/PhysRevLett.121.213601
https://doi.org/10.1103/PhysRevA.105.023304
https://doi.org/10.1103/PhysRevA.105.L061302
https://doi.org/10.1103/PhysRevA.106.053322
https://doi.org/10.1103/PhysRevA.106.053322
https://doi.org/10.1103/PhysRevA.107.L021302
https://doi.org/10.1103/PhysRevA.107.L021302
https://doi.org/10.21468/SciPostPhysCore.6.4.084
https://doi.org/10.1103/PhysRevA.107.063303
https://doi.org/10.1103/PhysRevB.71.104530
https://doi.org/https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevLett.128.230401
https://doi.org/10.1103/PhysRevLett.128.230401

m
o
[N}
o
5
o
S
2
2
2
<
2
[e]
1)
!
Z
<
H
=
o
o<
o
=
%\§
N
<
X
o
o~
o
2
g
E
~
<
=
L
d
£
2
=
=
z
=
L
=
&

Department of Physics
Faculty of Engineering

UNIVERSITY ISBN 978-91-8104-217-7 — o



	Tom sida
	373276_nr2_G5_Philipp.pdf
	List of publications
	Acknowledgements
	Popular Science Summary
	Introduction
	Bose-Einstein Condensation
	Planck, Bose & Einstein
	Bose-Einstein Condensation in Interacting Systems

	The weakly interacting Bose gas
	The Uniform Bose Gas
	The Local Density Approximation
	One-Component Systems
	Two-Component Systems
	Binary Bose Mixtures in Three Dimensions
	Binary Bose Mixtures in Two Dimensions
	Binary Bose Mixtures in One Dimension

	On Droplets & Bubbles

	Superfluidity
	Landau's Criterion for Superfluidity
	Two-Fluid Model & Second Sound
	Quasi-Averages, U(1) Symmetry Breaking & Phase Coherence
	Persistent Currents & Vortex Lines
	Three-Fluid Hydrodynamics

	Supersolidity
	What Makes a Solid?
	Roton Instability & Dipolar Supersolids
	Quantifying a Supersolid
	Hallmarks of Superfluidity in a Supersolid

	Outlook
	References
	Scientific publications
	Paper I: Rotating Binary Bose-Einstein Condensates and Vortex Clusters in Quantum Droplets
	Paper II: Breathing mode in two-dimensional binary self-bound Bose-gas droplets
	Paper III: Mixed bubbles in a one-dimensional Bose-Bose mixture
	Paper IV: Toroidal dipolar supersolid with a rotating weak link
	Paper V: Superfluid-droplet crossover in a binary boson mixture on a ring: Exact diagonalization solutions for few-particle systems in one dimension
	Paper VI: Decoupled sound and amplitude modes in trapped dipolar supersolids





