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Abstract: Order-picking is one of the costliest processes in warehouses and we 

investigate how it can be optimized using Software as a Service (SaaS). First, we 

describe three specific order-picking optimization problems: The Picker Routing 

Problem (PRP), the Order Batching Problem (OBP) and the Storage Location 

Assignment Problem (SLAP). The PRP is a type of Traveling Salesman Problem (TSP) 

where we find a minimal-cost path for a vehicle assigned to pick a given set of products 

in the warehouse. The OBP is a type of Vehicle Routing Problem (VRP) where 

products are partitioned among a fleet of vehicles. We compute cost in the OBP by 

optimizing the PRP for each vehicle. In the SLAP, we assign or reassign storage 

locations of products such that costs in PRPs and/or OBPs are minimized. There are 

several choices regarding features and constraints for these problems, including 

digitization of warehouse rack layouts, zones, depot locations, dynamicity, product and 

vehicle characteristics, traffic rules and cost functions. In related work, there is little 

consensus on how to choose, classify and judge the importance of such features, 

leading to a lack of standards on data-driven benchmarking and experiment 

reproducibility. Before we propose optimization methods, we therefore examine 

choices and preprocessing of features to promote standardization. For our optimizers, 

we use heuristics and meta-heuristics. There exist publicly available heuristic solvers 

for the PRP capable of obtaining optimal solutions in a short CPU-time, but for the 

OBP and SLAP, optimal solutions often require an excessive amount of CPU-time. 

Consequently, we propose SaaS-suitable optimization techniques that balance between 

CPU-time, memory usage and cost minimization. We mainly rely on Monte Carlo 

methods, including Metropolis sampling and Nested Annealing, Sequential Minimal 

Distance (SMD), restart heuristics, cost approximation using the Quadratic 

Assignment Problem (QAP) and sub-optimal PRP optimization. Results show that 

costs found at early stages in optimization are often difficult to improve on, and that 

performance is sensitive to small changes in parameters and implementation in ways 

that are often difficult to foresee. For a SaaS which aims to provide optimization for 

multiple order-picking usecases, we therefore suggest a flexible workflow where 

various optimization methods are trialled and compared in sandbox environments. 

Data and results are shared in public repositories. 
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Popular summary 

 

“Too much of current warehousing practice is based on rules-of-thumb and 

simplistic ratios” [1].  

Warehouse optimization can be undeniably complex, but also relatable. 

Everyday routines, such as the order with which one carries out shopping 

errands, the distribution of items between two shopping bags, or where to store 

the keys and wallet in the house, have formal analogues in warehouse research 

(Section 1.3, 1.4, 1.5, respectively). For humans, optimization of such routines 

is often subconscious. A supermarket shopper, as well as a warehouse picker, 

have a basic notion of the difference between an “efficient” and “inefficient” 

routine. But this does not mean that they always follow the efficient routine. 

Instead, they tend to follow a routine lying somewhere between the efficient 

and inefficient. It has been developed over years and carries a substantial 

amount of inertia. Why change that which already works?  

The sub-optimality of existing routines is apparent in the domain of complex 

systems, such as Warehouse Management Systems (WMS). It is often easy to 

spot weaknesses in a WMS. It may have taken years of development and 

difficult decisions to get it working, followed by specific patches for multiple 

other systems that it connects with. Later, when core developers have left, a 

challenge may be to keep it updated and operational. When new features are 

needed or something in it fails, subsequent updates include brittle 

dependencies, erratically drawn connections between modules and spaghetti-

code. This is what reality often looks like when consultants are brought in to 

work on a WMS.  

The situation is not much better in the domain of warehouse research. While 

researchers can publish on topics that sidestep some of the intricacies of real 

WMSs, contributions cannot answer all questions that lay-persons may be 

pondering. Questions on warehouse operations, including order-picking 

optimization, often lack simple answers. Traditional conceptions are 

challenged by lean manufacturing, cloud-services and automation. Do we even 
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need warehouses or research on them? Could retailers not ship directly to 

customers? Or could we reduce warehousing to cross-docking, a method aimed 

at eliminating the need for storage, by instead timing the arrival of shipment 

trucks and moving products directly between them at docking stations? 

We may never have good answers to such questions, but that does not mean 

that warehouse research is meaningless. In this dissertation, we begin by 

discussing the problem of what a basic warehouse is and the types of activities 

that commonly occurs within it. This type of standardization is an important 

driver not only for research, but for industry as well, as we can only compare 

operational quality if we have a stable fundament on which to base the 

comparisons on. A significant portion of the work in this dissertation concerns 

standardization of common features that are used to represent order-picking 

problems. Order-picking is widely considered one of the costliest activities in 

warehouses, and its optimization is both deserving and receiving an increasing 

amount of public attention.  

For our quantitative work, we propose optimization methods for three 

optimization problems related to order-picking: The Picker Routing Problem 

(PRP), the Order Batching Problem (OBP) and the Storage Location 

Assignment Problem (SLAP). Optimization methods are proposed within the 

context of Software-as-a-Service (SaaS), where they are made accessible to 

warehouses over the cloud.  
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Terminology 

 

AGV: Autonomous Guided Vehicle.  

Batch: A set of orders. Usually, a batch is assumed to fit on a single vehicle.  

Cross-docking: Transfer of products from a set of shipment vehicles to another 

set of shipment vehicles without moving products into long term storage.  

Customer: There are three possible meanings relevant for the dissertation: 1. 

A client of a vendor. 2. A client of an order-picking optimization SaaS. 3. A 

location that needs to be visited (sometimes used in literature on the TSP and 

VRP).  

Depot: The origin/destination location of a path (inside a warehouse in our 

case). This location is usually modeled as a vertex in a graph.  

Deployment (cloud): Transferral of software from a local machine to a data 

centre. The purpose is often to make the software more accessible.   

Distance matrix: A file containing the distances between locations.  

Distribution centre: A type of warehouse focused on avoiding long storage for 

products.  

FaaS: Function as a Service (Section 3.4.1).  

IaaS: Infrastructure as a Service (Section 3.4.1).  

Instance (benchmarking): Data which describes an example problem. For 

example, a basic TSP instance includes coordinates of a set of locations.  

KPI: Key Performance Indicator, e.g., distance, time or operational cost.  

Line-item: See product.  

Makespan: time to finish a process or a set of processes.  

OBP: Order Batching Problem. Generation of batches from orders such that 

some cost is minimized.  
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Operational horizon: see Makespan.   

Optimization: The process of making something as good or effective as 

possible. An optimization problem is the problem of finding the best solution 

from all feasible solutions [2].  

Order: A set of products.  

Order-batching: A method of combining orders into batches. 

Order-integrity: A constraint which requires that an order cannot be split into 

smaller components, i.e., that it must be picked by a single vehicle. 

Order-line: Details on an order. Usually this includes product meta-data such 

as identifiers (SKUs) and corresponding quantities requested by a customer. 

Order-picking: Retrieval of products from storage locations.  

PAS: Pick-And-Sort batching. Items are first picked into a bin and then sorted 

into (shipping) boxes.  

PaaS: Platform as a Service (Section 3.4.1). 

Path: A sequence of vertices and edges where there are no repetitions of the 

same vertex. Synonymous to Hamiltonian path.  

Pick-error: When a picker picks the wrong product in a pick-round.  

Picker: See vehicle.  

Pick-location: A location in the warehouse where a product can be picked.   

Pick-round: Synonymous to pick-route/run, i.e., the sequence of pick locations 

visited by a single vehicle to pick a set of products. 

Planning: the process of planning activities or events in an organized way so 

that they are successful or happen on time. 

PRP: Picker Routing Problem. A Traveling Salesman Problem (TSP) set in a 

warehouse environment.  

Problem instance: A digital description of a problem such that it can be 

optimized. A PRP instance, for example, can include information such as 

coordinates of locations and obstacles.  

Product: A type of pickable item. The product is associated with meta-data, 

including a unique identifier (SKU) and information regarding location(s), 

dimensions, weight and quantity. A product with a quantity set to 10 means 

that there are 10 copies of it.  
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Put-away: The movement of products to storage locations.  

Rack: A polygonal structure on which products are stored.  

Replenishment: Increasing the quantities of products at their storage locations.  

SaaS: Software-as-a-Service (Section 1.7.2). 

Service time (for pick location): Time that a vehicle has to spend at a location 

to pick or deliver a product.  

SKU: Stock Keeping Unit. The unique identifier/key of a product.  

SLAP: Storage Location Assignment Problem (Section 1.5).  

SMD: Sequential Minimal Distance. A way to measure the distance between 

two sets of coordinates. Can be used in clustering or the batching of orders.  

Standardization: 1. Streamlining of process flows to achieve better cost 

efficiencies. 2. Forming agreement on terminology and features (including 

features used in data formats). The dissertation mainly focuses on the second 

definition.  

SWP: Sort-While-Pick batching. Products are sorted into correct order 

containers during picking.  

Tour: A sequence of vertices and edges where there are no repetitions of the 

same edge. Synonymous to trail.  

TSP: Traveling Salesman Problem (Section 1.3).  

Vehicle: Generic term for mobile units, trucks, forklifts, trolleys etc. that are 

loaded with products or orders during pick-rounds.  

VRP: Vehicle Routing Problem.  

Walk (in a graph): A sequence of edge and vertex visits.  

Warehouse: A building primarily used for storage of products before 

distribution.  

Warehouse Management System (WMS): “a complex software package that 

helps manage inventory, storage locations, and the workforce, to ensure that 

customer orders are picked quickly, packed, and shipped” [Bartholdi]. Basic 

features that WMS’s support: appointment scheduling, receiving, quality 

assurance, put-away, location tracking, work-order management, order-

picking, packing, consolidation, shipping, replenishment, wave management, 

yard management, labor management.  
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Wave (of orders): The available orders at a given time from which batches can 

be assembled.  

Wave-picking: The term wave picking is used if orders for a common 

destination (for example, departure at a fixed time with a certain carrier) are 

released simultaneously for picking in multiple warehouse areas. Usually (but 

not necessarily) it is combined with batch picking [3]. 
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1. Introduction  

1.1 Order-Picking: A Warehouse Process 

 

Figure 1: Typical warehouses as we see them from the outside [4]. On the fronts we can see docking 

stations for delivery vehicles.  

A warehouse is a building primarily used for storage of products before 

distribution. Warehouses are important for two fundamental reasons [1]:  

• Supply and demand buffering: Warehouses provide a buffer to meet 

quick surges in demand. Similarly, they provide a buffer for quick 

surges in supply. A bulk of products can be purchased for storage when 

vendors give price breaks, and then distributed to downstream 

customers at a later stage.  

• Transportation efficiency: Warehouses are hubs for products usually 

located at transportation hubs. A warehouse normally receives bulk 

supply of certain kinds of products from a vendor. These products are 

redistributed with other kinds of products and delivered to downstream 
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customers. Without warehouses, many vendors need to send products 

to many customers, leading to transportation inefficiencies.  

There are many types of warehouses. One way to categorize them is according 

to their types of stored products and served customers. Examples include retail, 

ecommerce and perishable goods warehouses. Vendors can also rent and carry 

out warehouse operations themselves in third-party logistics (3PL) 

warehouses. Warehouses can also be categorized according to how products 

are stored and picked. The most typical warehouse is a so-called picker-to-

parts warehouse [3], which means that pickers move to pick parts, normally 

assumed to be stored on racks in some form of rack-layout. Typically, there is 

a single depot-location where pickers commence and terminate pick-rounds, 

i.e., movements to pick sets of products. After a set of products has been 

picked, it is checked and packed for delivery. In the alternative parts-to-picker 

warehouse, (mostly) stationary pickers receive products from autonomous 

vehicles, and mainly work with sorting, checking and packing efforts [5]. 

Examples of parts-to-picker warehouses include Robot-based Compact 

Storage and Retrieval Systems (RCSRs) and Robotic Mobile Fulfilment 

Systems (RMFSs) [6] (Figure 2).  

 

Figure 2: The insides of warehouses can look very different. On the left is an example of a picker-to-parts 

warehouse with a conventional layout [7]. In the middle is an RCSR system and on the right an RMFS [6]. 

The pickers in the latter two cases are only involved with sorting, packing and checking products.  

Some authors separate between traditional/manual warehouses and smart 

warehouses [8], [9], [10]. Smart warehouses fit within the frameworks of 

Industry 4.0 and Logistics 4.0 [9] and are deemed more up to date with the 

latest process designs, hardware and/or software to achieve better cost 

efficiencies.  

For research purposes, common denominators between all warehouses are 

sought. Bartholdi & Hackman [1], for example, propose a chronology of five 

typical warehouse processes: 
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• Receiving: Products arrive at the warehouse in delivery vehicles 

(usually on pallets). The products are checked and staged for put-

away.  

• Put-away: The movement of products to storage locations (usually on 

pallets).  

• Order-Picking: Retrieval of products from storage locations (Section 

1.2). 

• Checking/Packing: Checking and packing the products in one or 

multiple shipment containers (e.g., cartons).  

• Shipping: Loading of the packed products in outbound delivery 

vehicles, followed by dispatch. 

Some authors propose extensions or adjustments to the above process 

chronology. Kamali [8], for example, includes replenishment and cross-

docking and Kembro & Norrman [9], regard the packing and sorting of 

products as separate processes. Geest et al. [10], also highlight the importance 

of tracking/tracing and planning in smart warehouses. Since there are several 

types of warehouses, there are also several ways to judge the importance of 

each process [11] (for a discussion on how to choose Key Performance 

Indicators (KPIs), see Section 3.1.8). Bartholdi & Hackman propose that a 

typical distribution of operational expense for receiving, put-away and order-

picking is 10%, 15% and 55%, respectively. Worth noting is that the low 

expense of put-away versus order-picking assumes that products are moved to 

storage locations in larger quantities, e.g., fully loaded pallets, and then picked 

in smaller quantities. In many warehouses, however, vehicles carry the same 

quantity of products for both put-away and order-picking, leading to a more 

even distribution in expenses. Theoretically, put-away and order-picking can 

be considered the same but mirrored process, at least if we state generally that 

both involve the movement of products from one set of locations to another set 

of locations (origins to destinations). Order-picking is studied more 

extensively in the literature compared to put-away [12]. This can be 

attributable to the latter being considered equally or less complex, expensive 

and/or impactful for customer satisfaction (as it has a less direct impact on the 

time between placing an order and receiving it).  
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1.2 Order-Picking Optimization 

“Order-picking is the most important process in most warehouses because it 

consumes the most labor” [1].  

An order consists of one or several products and it can be viewed from two 

perspectives: 1. The customer, who selects a set of products from a vendor. 2. 

The warehouse provider, who picks and ships the order to the customer. There 

are cases where an order is picked and shipped from separate warehouses 

(including vendor’s own warehouses), but research on order-picking generally 

works within the context of a single warehouse [1]. 

Due to its significant contribution to operational expense, warehouse managers 

are interested in order-picking optimization [1], [3], [11]. If we begin by 

approaching this topic from the perspective of a single warehouse-picking- 

vehicle, we can ask what the shortest path is for it to pick a set of products. We 

do not wish to have vehicles crisscross around the warehouse if this can be 

avoided, as this leads to more travel time and operational expense. If we have 

a set of products that is larger than what can fit on a single vehicle, we can ask 

how picking can be distributed among a fleet of vehicles, again with the basic 

idea of avoiding unnecessary travel. We may also ask whether it is possible to 

distribute products to vehicles such that the risk of customers getting orders 

with the wrong or missing products is reduced. Should orders be split between 

vehicles, or should we require that an order is always picked by a single 

vehicle? Another approach is to investigate the storage locations of products. 

Can we optimize storage locations to reduce order-picking travel costs? There 

are several other questions with regard to order-picking optimization, such as 

warehouse layouts, worker welfare and demand forecasting. But for 

meaningful research contributions, we need a narrow focus. Apart from 

delimiting our work to order-picking, we assume that a picker-to-parts system 

is used. Further, we optimize order-picking by working with three specific 

optimization problems: The Picker Routing Problem (PRP), the Order 

Batching Problem (OBP) and the Storage Location Assignment Problem 

(SLAP) (Sections 1.3, 1.4 and 1.5, respectively).  
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1.3 Picker Routing Problem (PRP) 

The PRP is a Traveling Salesman Problem (TSP) set within a warehouse 

environment [13], [14] (Figure 3). As an example, we may have assigned a 

vehicle to pick 10 products (in one or several orders) distributed at various 

warehouse locations. The task of finding the shortest pick-round for these 

products can be formulated as a TSP.  

 

 

Figure 3: Typical (top-down) visualization of a solution to the TSP (left) and two PRPs, with one obstacle 

(middle) and several obstacles (right). Note that all three examples have different origin and destination 

locations (blue and red). In the rightmost example, we can also note that products may belong to separate 

orders (green or blue color codes), but that this does not affect the PRP solution. In the rightmost example, 

we can also see that we may have situations where an aisle must be entered and exited using a single 

obstacle corner location, showcasing that the PRP (in that case) is a form of Steiner-TSP.  

In a typical warehouse, a set of racks or other obstacles obstruct straight paths 

between locations [15]. The obstacles may necessitate multiple visits to the 

same location, which results in a TSP version known as the Steiner–TSP [16]. 

For example, if the warehouse includes an aisle (between racks) that can only 

be entered and exited through a single location, we must use the location more 

than once to enter/exit the aisle. Similarly, multiple trips along the same path 

between locations may be needed.  

In terms of graph theory [17], the most general form of a PRP solution is a 

walk, i.e., a sequence of vertices (representing locations) connected by a 

sequence of edges. It can then be classified as an open walk, where the origin 

(first) vertex is different from the destination (last) vertex, or a closed walk, 

where the origin and destination are the same (single depot).  

For PRP optimization we need all possible shortest paths and costs between 

locations, and in Section 3.2.1 we describe how we produce these using 
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warehouse digitization. The way that this data is built and stored is important 

because it affects optimization CPU-time and memory requirements.  

1.4 Order Batching Problem (OBP) 

Order-picking is normally conducted by a fleet of vehicles with known 

carrying capacities, such as number of orders, products, weights, or dimension 

constraints. A batch denotes a set of orders, and in the OBP, a single vehicle is 

assumed to have enough capacity to carry one batch in its entirety. The OBP 

asks how one or several batches can best be generated without breaking vehicle 

capacity constraints. If we want to minimize travel distance, we try to generate 

batches whose union of products are located close to one another (Figure 4).  

 

Figure 4: Example optimization instance (left) and proposed solution (right). We have four orders 
(represented in green, red, lime and blue products) and a vehicle capacity of two orders. The solution 

shows the selection of orders and pick-rounds for a first and a second vehicle. 

Vehicle types and usage in the OBP can be separated into two categories [18]: 

1. The Sort-while-pick OBP means that the products in an order are placed in 

an order-specific container on the vehicle (e.g., a bin or carton). 2. The Pick-

and-sort OBP means that there is no order-specific container on the vehicle. In 

this case, the order is extracted from the vehicle after it has reached the 

destination.  
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Figure 5: Examples of vehicles used in warehouses. On the left is a trolley with 6 bins where each bin can 
be used to collect an order using sort-while-pick batching [19]. In the middle is a forklift carrying a pallet 

on which a set of products or orders is placed, e.g., using pick-and-sort batching [20]. On the right is a 

vehicle carrying a pod (a movable rack) [21], deployed in a Robotic Mobile Fulfillment Centre (a type of 

parts-to-picker warehouse) [6].  

Some authors refer to a Joint Order Batching and Picker Routing Problem 

(JOBPRP) to underline that the cost of a batch is computed by optimizing its 

corresponding PRP [15], [22]. We use the term OBP instead of JOBPRP (see 

Section 1.7.1 for more on this).  

1.5 Storage Location Assignment Problem (SLAP)  

The SLAP asks where to store products in a warehouse, such that the amount 

of material handling (movement) costs is minimized [23]. The locations of 

products affect the distance that vehicles need to travel for order-picking. 

Therefore, the SLAP qualifies as a means to optimize order-picking. SLAP 

optimization is generally conducted periodically (e.g., once per month), and it 

requires some form of future-forecasting of order-picking to deduce whether 

changing locations of products can help reduce subsequent movement costs. 

We term this future-forecasted order-picking the picking-log, and we separate 

between two versions of the SLAP depending on how the picking-log is used 

during optimization: In the first version, future PRPs are optimized only in 

terms of their product locations, but not in terms of their order composition, 

i.e., batches are already pre-generated. In the second version, optimization 

includes both changing product locations as well as the order composition (i.e., 
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batches are generated using OBP optimization). We term these versions the 

TSP – based SLAP1 and the OBP – based SLAP, respectively. 

While the OBP-based SLAP may seem more challenging than the TSP-based 

SLAP, there are several other features in the SLAP that can impact the level of 

challenge. One of these is (re)assignment scenarios [24]. In the most basic 

SLAP formulation, the task is to assign free locations to products that are 

newly arrived in the warehouse. Kübler et al. [24] call this the empty storage 

location scenario and it is equivalent to put-away. This can be compared to 

SLAP formulations that include reassignments, i.e., swapping locations 

between products that are already in the warehouse. Compared to the empty 

storage location/put-away scenario, reassignments are not mandatory to carry 

out, and therefore order-picking optimization savings, due to reassignments, 

must exceed the cost of carrying out the reassignments. In Section 3.2.4, we 

discuss how these reassignment scenarios can have a significant impact on 

optimization performance.  

 

Figure 6: TSP-based SLAP in a reassignment scenario (left). The locations of seven enumerated products 

are changed to achieve lower TSP (PRP) distances. The incurred reassignment penalties are not visualized 

(See [25] for a full diagram). OBP-based SLAP in an empty storage location scenario (right). Here, four 

products are assigned free locations, followed by OBP optimization.  

 
1 While we could have used the term “PRP-based SLAP”, we did not want to restrict our work 

on this version to a warehouse environment. 
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1.6 General Research Question 

We have identified order-picking as a key process in warehouses and described 

the PRP, OBP and SLAP as problems with which order-picking can be 

optimized. We proceed to ask the following general research question:  

How can an optimization software service be designed and provided for the 

PRP, OBP and SLAP?  

Before we approach the general research question, we discuss challenges and 

context: Standardization (Section 1.7.1) and Software as a Service (SaaS) 

(Section 1.7.2). Standardization provides a framework within which we can 

place design choices for the optimization software. SaaS provides details on 

how the optimization software can be provided as a service. We then break 

down the general research question into five concrete research questions 

(Section 1.8).  

1.7 Challenges and Context 

1.7.1 Standardization  

Standardization can have several meanings, and in operations research, it is 

commonly associated with how process flows can be streamlined to achieve 

better cost efficiencies [26], [27], [28]. According to Münsberg et al. [26], 

“standardization is essential to ensure a lean operating model”, and Dotoli et 

al. [27], cover various standardization methodologies, including VSM, Genba, 

Jidoka, Kaizen, PDCA, Poka-Yoke, Muda-removal, KPI analysis and 

simulation. According to Shalley et al. [28], “standardization … [is] embodied 

in routines, repetition and variance reduction”, and successful companies often 

achieve these by adhering to formal documents, including ISO 9000 and Six 

Sigma.  

Standardization does not necessarily have to concern “lean operating modes” 

or “streamlined processes”, however. In a more theoretical sense, it can be 

regarded as more aligned with the concept of generalization and the forming 

of agreement on the features used to formulate a problem (e.g., in order-picking 

optimization). We find significant gaps in research on PRP, OBP and SLAP 

optimization in this latter regard (Section 2.3). Lack of standards poses a 
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serious challenge to new research. Presentation of experimental results suffers 

without standards regarding the features used in experimentation.   

Standardization of features builds on standardization of terminology. The 

warehouse terms used in this dissertation come from a large corpus of 

nomenclature that is continually revised in parallel with advances in 

technology. In related work on order-picking optimization, use of terminology 

is far from uniform, including extreme cases when authors refer to operational 

problems that are similar, but using different terms (Section 2.3). Without 

standards on terminology, difficult choices must be made when choosing 

terms. We have already presented examples of such choices, e.g., by using 

OBP instead of JOBPRP (Section 1.4). Contrary to the proponents of JOBPRP, 

we do not regard inclusion of “PRP” in the JOBPRP title as advantageous 

(specifically, because the title can be extended with various other acronyms as 

well). We also use vehicle instead of picker and product instead of part. This 

does not fit well with the picker-to-parts and parts-to-picker dichotomy 

(Section 1.1), since a separation between a picker and a vehicle is needed to 

explain parts-to-picker. The use of picker can be traced back to traditional 

warehousing, where the picker has been thought of as a human. But these days, 

Autonomous Guided Vehicles (AGVs), mobile units, shuttles and pods are 

deployed in ways that challenge this convention [6]. This is why we use vehicle 

in this dissertation, but it is not optimal either as it dehumanizes pickers if they 

are human. Selecting terms can be challenging both logically and ethically.  

Standardization can be promoted through simulation and benchmarking [27], 

[29]. Publicly shared benchmark data is important for several reasons. Firstly, 

it makes it easier to independently reproduce published results. Secondly, it 

promotes competition to beat the state of the art on optimization problems, 

such as the PRP, OBP and SLAP. Benchmark data can also itself be regarded 

as an important descriptor of an optimization problem. Describing 

optimization problems in text, compact equations or pseudocode is not always 

easy, and benchmark data provide opportunities to approach PRPs, OBPs and 

SLAPs from a more data-centric perspective. Well-researched optimization 

problems, such as the Traveling Salesman Problem (TSP) and the Vehicle 

Routing Problem (VRP) (Section 2.3), are complemented by widely used 

benchmark data repositories [30], [31], [32], [33]. New researchers can 

therefore download datasets for these problems and start working with 

implementation at an early stage of a project. In the PRP, OBP and SLAP 

research communities, there are no well-established benchmark repositories, 

and new researchers need to decide whether the benchmark data that they find 

is adequate. There are many questions concerning how the PRP, OBP and 
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SLAP benchmark data should best be standardized. Should it be binary, text or 

JSON? Should it include distances between pairs of locations or information 

on obstacles? How many products, orders and pick-rounds should be used and 

how should they be distributed? How should we define vehicle capacity? 

Should we also work with a dynamic setting, where new information comes in 

through time, or a static setting, where all the information is assumed 

available? Answers to such questions are provided in terms of related work 

(Section 2) and proposed approaches (Section 3).  

1.7.2 Software as a Service (SaaS) - Kairos Logic AB  

This project is a collaboration between academia (LTH) and industry (Kairos 

Logic AB). Kairos Logic AB evolved from the Tenshi AI project at Sony 

Mobile Communications Inc. Apart from order-picking consultancy, Kairos 

Logic offers Software as a Service (SaaS) for PRP, OBP and SLAP 

optimization. The SaaS provides Application Programming Interfaces (APIs) 

and cloud service endpoints (URLs) where SaaS customers send HTTP PUT 

requests for optimization, followed by reception of optimized responses. The 

customer in this context is either a warehouse business or a Warehouse 

Management System (WMS) - provider, with examples such as Consafe 

Logistics, Landmark Group, Ongoing, Toyota Material Handling Group, 

Ahlsell, IKEA and Sony DADC (for convenience, we henceforth refer to the 

SaaS customer as a “WMS”, since all warehouses we deal with operate some 

form of WMS). Before the endpoint is provided to the WMS customer, a Proof 

of Concept (POC) is carried out. Historic data, usually in the form of a 

spreadsheet of picking, is analyzed and processed using PRP, OBP or SLAP 

optimization. The results of the POC are presented in a consultancy meeting. 

After the meeting, the WMS customer can choose to proceed further with more 

case studies and/or access to live testing of the service.  

This dissertation does not delve into the business potential of this type of 

optimization SaaS. Rather, it concerns order-picking optimization within the 

SaaS context. This is important to highlight, as it explains several choices with 

regard to how the general research question (Section 1.6) can be approached. 

In brevity, the proposed optimization methods need to be relatively fast, 

standardized and easily maintained so that integration is simple and works for 

several customers. In Section 3, we discuss how various industrial contexts 

affect architectural choices. In order to handle optimization requests 

efficiently, architectural choices are important not only for the optimization 

service in isolation, but also for warehouse digitization. We also explain why 
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the optimization service is deployed using Platform as a Service (PaaS) or 

Infrastructure as a Service (IaaS) instead of Function as a Service (FaaS).  

We provide an example of how the SaaS architecture relates to the 

standardization topic discussed in Section 1.7.1. A challenge to this specific 

SaaS optimization business is whether the same service should be offered to 

multiple warehouses or if it should be tailored for specific warehouses. A 

uniform service is desirable from the standardization perspective, but it cannot 

be fully achieved if the optimization business is customer-driven: There are 

dozens of versions of PRPs, OBPs and SLAPs (Section 2.2 and 2.3), and these 

versions translate into a large variety of customer requirements. In practice, the 

SaaS-business is often unable to satisfy all requirements of a new customer. 

The unfulfilled requirements are usually brought to light during or after the 

POC, and the customer commonly demands them to be fulfilled to proceed 

further. If the SaaS provider agrees to fulfil the requirements, they usually do 

not cause issues if they are implemented as extensions to the existing software 

stack. Worse is if the requirements are of the modification type, where some 

previously standardized functionality must be changed. Such modifications 

can, in the end, lead to improvements to the existing software stack, but it can 

also worsen it. In some cases, requirements are not well-defined or unsuitable 

for optimization. This is unfortunately quite common because of complexities 

involved in PRP, OBP and SLAP optimization, misunderstandings and/or 

miscommunications. Examples of this are discussed in Section 4. 

1.8 Concrete Research Questions 

We now formulate five concrete research questions that we aim to answer in 

this thesis: 

1. How can SaaS-suitable PRPs and OBPs be formulated? This includes 

feature standardization and CPU-time and memory needs in 

warehouse digitization. 

2. Building on the requirements outlined in 1, how can PRP and OBP 

optimization algorithms be designed and benchmarked? 

3. How well do the proposed optimization algorithms in 2 perform 

against alternative algorithms and are there possible improvements? 

4. How can OBP-optimization be utilized within an OBP-based SLAP 

optimization algorithm?  
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5. What are the challenges with the OBP-based SLAP and are there 

alternative ways to optimize the SLAP?  

In Section 1.9, we give a summary of how each question is approached in a 

corresponding paper (numbered 1-5). We include pointers to subsequent 

sections where the main topics in the papers are discussed.  

1.9 Summary of Papers  

Paper 1: Formulation of a Layout-Agnostic Order Batching Problem. 

Oxenstierna, J., van Rensburg, L. J., Malec, J., & Krueger, V. (2021, June). In 

International Conference on Optimization and Learning (pp. 216-226). 

Springer International Publishing. 

This paper addresses limitations in current research on PRP and OBP 

optimization and feature standardization, particularly with regard to warehouse 

layouts. Building on existing work, we formulate an Order Batching Problem 

(OBP) where optimal PRP optimization is internalized. In the layout-agnostic 

OBP, we do not make assumptions regarding how racks or other obstacles are 

laid out on a two-dimensional plane. For optimization to work in this scenario, 

certain datastructures, such as the distance matrix, must be prepared 

beforehand in a warehouse digitization process. In our experiments, we digitize 

nine warehouses with various arrangements of polygonal obstacles and 

investigate CPU-time and memory requirements. CPU-times and memory 

requirements are relevant for a SaaS business because they incur costs from a 

cloud service provider. Outline of key topics in the paper:   

• Identification of current gaps in related work regarding features used 

in PRP and OBP optimization and feature standardization (Section 

2.2, 2.3) 

• Advantages and disadvantages of layout-agnostic order-picking 

optimization (Section 3.1.1). 

• Efficiency and scalability with regard to warehouse digitization and 

SaaS deployment (Section 3.2.1, 3.4). 
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Paper 2: Layout-Agnostic Order Batching Optimization.  

Oxenstierna, J., Malec, J., & Krueger, V. (2021, September). International 

Conference on Computational Logistics (pp. 115-129). Springer International 

Publishing. 

Building on the previous paper, we introduce a heuristic OBP optimization 

algorithm, Single Batch Iterated (SBI). It uses the Concorde TSP solver for 

optimal PRP cost evaluation and the Sequential Minimal Distance (SMD) 

heuristic for batch construction. Experiments show that the algorithm is 

competitive against the state-of-the-art on an existing benchmark dataset. A 

new benchmark dataset for various layouts and constraints is publicly shared 

together with proposed solutions. Outline of key topics in the paper:   

• Advantages and disadvantages of including optimal PRP optimization 

in an OBP optimization algorithm (Section 2.4.2, 3.2.2).  

• The performance of the proposed OBP optimization algorithm against 

the state-of-the-art (Section 3.2.3). 

• Questions regarding how new benchmark datasets be constructed to 

promote standardization (Section 3.3). 

 

Paper 3: Efficient Order Batching Optimization using Seed Heuristics and the 

Metropolis Algorithm.  

Oxenstierna, J., Malec, J., & Krueger, V. (2022). Springer Nature Computer 

Science, 4(2), 107. 

In this paper, the previously developed SBI algorithm is improved and tested 

one-on-one against Metropolis Batch Sampling (MBS), a type of Markov 

Chain Monte Carlo (MCMC) algorithm. On existing benchmark data, SBI is 

found to be superior, especially for larger problem instances. This result is 

attributable to its effective use of heuristics that help it navigate large search 

spaces. Outline of key topics in the paper:   

• The main heuristics used in SBI and their effect on optimization 

performance (Section 3.2.3). 

• Reasons for SBI’s strong performance against MCMC (the MBS 

algorithm) (Section 3.2.3). 
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Paper 4: Storage Assignment using Nested Metropolis Sampling and 

Approximations of Order Batching Travel Costs. 

Oxenstierna, J., Malec, J., & Krueger, V. (2024). Springer Nature Computer 

Science, 5(5), 477. 

An OBP-based Storage Location Assignment Problem (SLAP) is first 

formulated, with the core idea that proposed changes in location assignments 

are evaluated using OBP optimization. For optimization of the OBP-based 

SLAP, a nested Metropolis algorithm is used. It incorporates the SBI 

optimizer, as well as a Quadratic Assignment Problem (QAP)-based cost 

approximator. Experiments include tests of the QAP model in isolation, as well 

as tests of the overall SLAP optimizer on a new and publicly shared benchmark 

dataset. Outline of key topics in the paper:   

• Formulation of the OBP-based SLAP (Section 3.2.4). 

• Investigations of a QAP model’s ability to predict OBP optimization 

costs (Section 3.2.4). 

• Performance of the nested Metropolis algorithm when it includes or 

excludes the QAP model (Section 3.2.4).  

 

Paper 5: Optimization of the Storage Location Assignment Problem using 

Nested Annealing. 

Oxenstierna, J., van Rensburg, L. J., Stuckey, P. J., & Krueger, V. (2022, 

February). International Conference on Operations Research and Enterprise 

Systems (pp. 220-244). Part of the Communications in Computer and 

Information Science book series (CCIS, volume 1985). 

In this paper, an alternative SLAP model is first formulated: OBP-optimization 

is replaced with PRP-optimization, with the argument that this is more suitable 

for standardization. The SLAP is optimized using the Concorde TSP solver 

and Nested Annealing. In order to improve the computational efficiency of the 

algorithm, various heuristics are tested. Results show that restart heuristics and 

sub-optimal PRP optimization are especially useful. A new benchmark dataset 

is publicly shared. Outline of key topics in the paper:   

• Formulation of the TSP-based SLAP and its strengths and weaknesses 

compared to the OBP-based SLAP. This includes discussions on 

standardization and integration challenges (Section 3.2.4, 3.4.2).  



30 
 

• The impact on computational efficiency of restart heuristics and sub-

optimal PRP optimization in SLAP optimization (Section 3.2.4). 

1.10 Disposition 

In the section on related work (Section 2), we first provide a background on 

operations-research, computer-science and warehouse-science (Section 2.1), 

followed by descriptions of key features and terms used in order-picking 

optimization (Section 2.2). We continue with a discussion on the 

standardization challenge (Section 2.3), first with regard to features and terms 

(Section 2.3.1), followed by an industrial context (Section 2.3.2). In Section 

2.4, we study related work on PRP, OBP and SLAP optimization methods. In 

the Approach section (Section 3), we begin by discussing and justifying our 

selection of features in PRPs, OBPs and SLAPs (Section 3.1), followed by 

optimization methods (Section 3.2). We then discuss benchmarking (Section 

3.3) and industrial context (Section 3.4). This is followed by discussions of 

industrial projects outside the main scope of this dissertation (Section 4). 

Section 3.4 and 4 can be regarded as extensions of Section 1.7, as they 

strengthen the argument that standardization and SaaS–specific considerations 

provide important challenges and context for the project as a whole. We end 

with a conclusion (Section 5).  
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2. Related Work 

2.1 Background 

The related work originates in the domains of operations-research, computer-

science and warehouse-science. In this section, we motivate why it is suitable 

to use these domains when approaching the main research question (Section 

1.6).  

According to Morse et al. [34], operations research “is an applied science 

utilizing all known scientific techniques as tools in solving a specific problem”. 

We use scientific techniques from computer-science and warehouse-science to 

provide answers on how order-picking optimization can be designed and 

provided as a service. Operations-research is particularly suitable since it fits 

well with the project’s combined academic – industrial context (Section 1.7.2). 

According to Morse et al., a core element of operations-research is the 

separation between a research worker and an executive. The role of the 

research worker is to “provide the executive with a quantitative basis for 

decision” [34]. As a collaboration between a university and a company, we 

have a concrete example of an executive, the CEO of the company, whom we 

need to convince that our quantitative research can be used as a basis for 

decision.  

Operations-research has traditionally relied on mathematics for the 

“quantitative basis”, but computer-science is similarly a valid option [35]. 

Apart from a stable grounding in mathematics [36], computer-science connects 

well with the service aspect of the main research question. Both the proposed 

optimization service and the warehouse systems it connects with operate on 

computers. Literature on computer-science sub-topics, such as memory 

requirements, computational times and efficiency in optimization, is therefore 

relevant. Since the optimization service is cloud-based, computer-science is 

used to provide answers on cloud infrastructure and networking.  

Compared to operations-research and computer-science, warehouse-science 

[1] is a small domain. Authors on order-picking optimization mainly publish 



32 
 

in journals with names derived from “operations-research”, “industrial-

engineering” or “production-research” rather than warehouse-science [12]. 

There are also journals on “inventory management”, “supply chain” and 

“logistics”, within which warehouse-science can be considered a subset [37]. 

We primarily use warehouse-science to provide context for the operational 

setting, looking particularly at terminology and descriptions of the order-

picking process. This does not mean that warehouse-science itself should be 

categorized as “descriptive”. Bartholdi & Hackman [1] define warehouse-

science in a fashion more akin to operations-research: “the emphasis … is on 

developing methodology to optimize warehouse operations”.  

As with operations-research, we could regard computer-science as a scientific 

technique within warehouse-science. But in this dissertation, we treat 

computer-science more independently. For example, we include discussions 

on why certain methods are deemed unsuitable for standardized order-picking 

optimization. This particularly concerns Machine Learning (ML) and optimal 

solutions for the OBP and the SLAP (Section 2.4). We also look at how an 

order-picking optimization SaaS can be deployed on the cloud, a topic not 

particularly well-researched generally. The SaaS architecture can be used to 

investigate ideas on future warehousing. One such hypothesis is that 

warehouses are going to become smaller and more flexible in the future [1]. 

We can ask, for example, whether the SaaS architecture is well-suited for small 

and flexible warehouses. 

2.2 PRP, OBP and SLAP Features 

The PRP, OBP and SLAP are part of a large family of NP-hard combinatorial 

optimization problems. They have corollaries in the Traveling Salesman 

Problem (TSP) (Section 1.3), the Vehicle Routing Problem (VRP) [22] and the 

Location Routing Problem (LRP) [38]. There are many versions of these 

problems, most of whom have their primary usecases outside of warehouses 

[12], [23], [39], [40]. Since PRPs, OBPs and SLAPs occur inside warehouses, 

research on them tend to include warehouse-specific features. Below, we go 

through how features are commonly named, designed and used in PRP, OBP 

and SLAP optimization:  

• Layout: In the majority of literature on order-picking, it is assumed 

that the warehouse uses a conventional layout [12], [22], [41], [42]: 

Racks are arranged in Manhattan style blocks separated by aisles and 
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blocks of racks are separated by cross-aisles. There are several other 

possible layouts [5], [43], [44], [45]. Masae et al. [12], distinguish 

between conventional, non-conventional and general layouts. It is 

usually assumed that order-picking takes place on a single floor, which 

means that the layout is defined on an xy Cartesian plane.  

• Locations and zones: It is often assumed that a single product is stored 

at each defined location in the warehouse [24]. In some cases, a single 

product is stored at multiple locations (Section 4.1). In other cases, 

multiple products are stored at a single location. This latter case may 

be useful to reduce the size of a digital model of a warehouse, as well 

as order-picking optimization complexity [14], [46]. Defining a 

surjective relationship between many products to fewer locations 

(within a specified area) is similar to a zone in the warehouse [18]. 

Zones are usually implemented as a form or “load-balancing” of order-

picking throughout the warehouse [47], or to distinguish frequently 

picked products from less frequent ones [48]. For example, an ABC 

zoning policy can be used, where the A zone includes the most 

frequently picked products, followed by B etc. [24], [49], [50]. Various 

other zone arrangements exist: Garfinkel [18], for example, studies 

scenarios with 10 – 40 zones.  

• Depots: Usually, a warehouse is assumed to have a single shared origin 

and destination for vehicles [3]. Some authors refer to this as a fixed 

or central depot [51]. For cases where there are different origin and 

destination locations, the names variable depots, open-trip, multi-

depot TSP and Dial-a-ride problem are used [38], [51], [52]. These 

scenarios can occur in warehouses where products are brought to 

multiple docking stations. There are also cases when different types of 

vehicles have different docking stations.  

• Dynamicity: If time-based features are needed to describe and optimize 

a problem instance (e.g., a PRP, OBP or SLAP), it is dynamic [33], 

[53]. If there are no such features, it is static. The time-based features 

can take several forms, such as live information on vehicle locations 

(used to avoid traffic congestion, for example), or soft or hard time 

constraints on when products or orders need to be picked [52]. For the 

SLAP, dynamic seasonal popularities of products may be used. 

• Stochasticity: We discuss stochasticity with regard to how PRPs, 

OBPs and SLAPs can be digitally represented in simulated problem 

instances. Problem instances can be separated into pre-generated and 
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randomly-generated [54]. A random process can be used to generate 

data, such as vehicle origin and destination locations, travel times and 

order sizes in both of these [33]. But the randomly-generated type does 

not provide all the static data needed to run experiments [33]. Instead, 

the randomly-generated instance includes information on how to use a 

random process to generate static data [52].  

 

 
Figure 7: Dynamicity and stochasticity [32]. Benchmark instances can be constructed using 

either one of the four combinations.  

• Order-integrity constraint: This constraint means that orders cannot 

be split between vehicles. It follows that the capacity of the vehicle 

must always be large enough to carry at least one full order in its 

entirety. In reality, however, an order may be too large to fit on a 

vehicle, necessitating it to be split (in Section 3.1 we describe how we 

handle this scenario). Order-integrity is usually motivated as a means 

to avoid additional sorting efforts after picking [52]. It is generally 

used in the OBP and less so in alternative picking methods, such as 

wave-picking [3]. 

• Constraints concerning product characteristics: Products may be 

hazardous, in need of cooling, specialized picking and/or storage [1]. 

Light products may need to be picked after heavy ones (so that they 

can be placed on top) using precedence constraints [55]. 

• Traffic rules: When vehicles intersect each other’s paths, they may 

cause traffic congestion. Traffic congestion is often considered 

important in warehouses, as it serves as a motivation for imposing one-

directional traffic rules and/or certain PRP optimization algorithms 

[3], [15]. In the SLAP, it also serves as a motivation to prevent too 

many products from being assigned locations close to a depot area 

(since this may lead to congestion) [56]. 
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• Capacity constraints: Example capacities include number of orders, 

products, xyz dimensions and weight. For the OBP, these capacities 

can concern vehicles (e.g., weight that a vehicle can carry). For the 

SLAP, they can concern locations (e.g., product quantity that can be 

stored at a single location).  

• Cost function: Cost in PRP, OBP and SLAP optimization is most often 

measured in distance [3], followed by travel times and times based on 

other features. The time-based costs are more prevalent in literature on 

the OBP and the SLAP, since both are more involved with stationary 

sorting efforts. For example, in the OBP, the time needed to sort and 

check orders after they have been picked can be included [57]. In the 

SLAP, administrative times needed to carry out optional product-

location reassignments can be included [24]. Gibson & Sharp [58], 

suggest four alternatives to measure distance in a warehouse: 

Rectilinear (Manhattan), Euclidean, Chebyshev and aisle. The latter 

distance is computed by using known dimensions of aisles and cross-

aisles.  

2.3 PRP, OBP and SLAP Standardization 

2.3.1 Feature Standardization 

There is little consensus regarding the relative importance and relationships 

between the features listed in Section 2.2. Even when excluding parts-to-

picker systems, there are many possible combinations of features when 

formulating order-picking problems [12], [23], [40], [59]. When defining a 

PRP, OBP or SLAP, we can assume that we must choose from some features 

listed in Section 2.2. If we need to make a binary decision for seven features, 

we get 27 = 128 possible combinations. This number can be compared against 

number of papers referred to in review papers on order-picking problems by 

Masae et al. [12], Charris et al. [23], Li et al. [60] and Pardo et al. [61]. They 

include 149, 71, 172 and 125 papers, respectively. The number of papers on 

any specific version of the PRP, OBP or SLAP, based on a combination of 

features in Section 2.2, is low and this poses a standardization challenge. Pardo 

et al., for example, propose that the OBP can be separated into 36 specific 

versions, 18 of which have never been published on [61].  
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The standardization challenge is also visible through differences on 

optimization choices, taxonomy and naming of problems. Regarding 

optimization choices, Mantel et al. [62], claim that “extensive batching 

extinguishes the effect of a clever slotting [SLAP] strategy”, whereas Kübler 

et al. [24], include batching in their SLAP strategy to reach “significant 

performance improvements”. Regarding taxonomy, Charris et al. [23], Li et al. 

[60] and Masae et al. [12], propose different diagrams to describe relationships 

between features such as layouts, storage conditions, depots and picking 

methodologies (Figure 8, 9 and 10, respectively). For example, Charris et al. 

have an arrangement with “SKU-department assignment”, “zoning” and 

“storage location assignment” under “storage”, whereas Li et al. divide 

“storage assignment” into “random”, “closest open location”, “dedicated”, 

“full turnover” and “class based”. Under “batching”, Li et al. put “proximity 

batching” and “time window batching”, whereas Charris et al. divide it into 

“batch size” and “order batch assignment”. Charris et al. include “sorting” in 

their diagram, but this is not included by Li et al. or Masae et al. Meanwhile, 

Li et al. include six “routing methods” and Masae et al. include a box on 

“depots”, neither of which are present in any other diagrams. In summary, there 

are many possible ways to build taxonomies for combinations of features in 

order-picking problems.  

 

Figure 8: Taxonomy on storage and order-picking by Charris et al. [23]. 
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Figure 9: Taxonomy on order-picking by Li et al. [60]. 

 

Figure 10: Taxonomy on order-picking routing by Masae et al. [12].  
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Regarding naming of problems, Mantel et al. [62], Kim & Smith [63] and 

Jahani [49] refer to a “slotting problem”, Boysen & Stephan [64] to a “Product 

Location Problem” and Garfinkel [18] to a “correlated storage assignment 

problem”, when they could have used the “SLAP” term [23], [24], [65], [66]. 

We can also observe a lack of references in literature on the OBP and SLAP to 

literature on their respective counterparts in the Vehicle Routing Problem 

(VRP) and the Location Routing Problem (LRP). We could, for example, claim 

that the OBP is a type of VRP and then use literature on the VRP when working 

on an OBP. An OBP is equivalent to a common VRP if all the orders contain 

one product each that never share the same location [23], [67]. A VRP, on the 

other hand, is equivalent to an OBP if it is of the following kind: A Steiner 

Clustered VRP with Soft Cluster Constraints (Steiner SoftCluVRP). The 

SoftCluVRP was introduced by Hintsch & Irnich [68], but it lacks the 

requirement that clusters can share locations (“customers” using their 

terminology), hence the addition of the Steiner prefix. Different terms are used 

to describe the same features in the respective research communities: An OBP 

“location” is (often) equivalent to a VRP “customer”, an OBP “order” is 

equivalent to a CluVRP “cluster”, the “soft cluster” constraint is equivalent to 

the “order-integrity” constraint.  

In the case of the SLAP and LRP, there is also a limited exchange of 

knowledge. If we look at review papers on the SLAP [23] and the LRP [38], 

respectively, we note that neither refers to both problems, despite their 

similarities. The main difference between the two is that the LRP is concerned 

with finding the best locations for depots, whereas the SLAP is concerned with 

finding the best locations for products. But the impact of changing a depot 

location and a product location is very similar: Generally, we need to solve a 

new routing instance to evaluate the impact of conducting changes in locations, 

regardless of whether they are for depots or products.  

The evolution of parallel terminologies can also be motivated. A warehouse 

has certain differences to the various outdoor usecases that the TSP, VRP and 

LRP are usually concerned with. An OBP formulation may be formally 

equivalent to a SteinerSoftCluVRP, but they are expected to be applied in 

different environments. Apart from considerations concerning warehouse 

rack-layouts, vehicles in warehouses tend to be smaller and operating on 

smaller timescales compared to outdoor counterparts. The domain of 

warehouse vehicles also changes quickly. A warehouse AGV taxonomy 

provided by Azadeh et al. [6] is not fixed and can be expected to change as 

technology evolves. Hence, even if the “inside warehouse” or “outside 
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warehouse” domains are similar currently, they may diverge in the future, and 

this motivates semantic separations.   

 

Figure 11: The PRP, OBP and SLAP have similar problems outside of warehouses. But this does not 

necessarily mean that semantic separations are unmotivated.    

In terms of features used in benchmarking for order-picking problems, there 

exists no well-established standards. For the OBP, instances include Foodmart 

[22] and HappyChic [69], both of which describe niche usecases. In Foodmart, 

each vehicle carries bins and orders may be split between them. This adds a 

bin-packing problem on top of the OBP and renders their version a hybrid 

between pick-and-sort and sort-while-pick batching. HappyChic is tied to a 

certain layout where vehicles must move uni-directionally around a conveyer 

belt of a certain design. In the VRP research community, there are several well-

known instance repositories, such as the Solomon, Christofides, Taillard, 

Augerat et al., Fisher and Kilby instances [30], [31], [32], [33]. For the PRP 

and SLAP, we are not aware of workable instances. For the TSP, instance 

repositories include TSPLIB [70] and Cook [71]. There are benchmark 

instances for the LRP, but comparisons between published results are 

insufficient. Nagy [40], for example, claims that only four published papers on 

LRPs include comparisons of results to those of other authors.   

2.3.2 Industrial Context 

There does not exist much prior research on optimizing PRPs, OBPs and 

SLAPs in the SaaS format described in Section 1.7.2. In this section, we briefly 

discuss this topic from the perspective of the WMS, as well as the SaaS 

provider.  

Cloud-based WMSs are widely considered superior to more traditional 

alternatives [72], [73], [74], [75] , but they come with certain caveats, and it is 
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not self-evident that order-picking optimization is something that a WMS 

wants to outsource to a SaaS-provider. From the WMS’s perspective, 

connection to a SaaS enforces a high level of modularity, leading to 

decentralization [1], [76]. This can be advantageous because the engineers of 

the WMS only have to write a module which connects to a SaaS. Any 

development, maintenance and scaling of the PRP, OBP and SLAP optimizers 

are handled by the SaaS providers. But since the WMS developers lose some 

degree of control over their system, it can be disadvantageous in terms of 

security and legal ramifications [77].  

For the WMS team to be interested in using the SaaS, it also needs to be set up 

in a way such that it is easy to integrate. Apart from reliability and adhering to 

RESTful API principles [78], [79], computational efficiency is also relevant. 

The WMS team needs to have information about the amount of cost savings 

that can be achieved within a known amount of time. The allowed wait-time 

for a request to be answered can have effect on the choice of deployment type 

for the SaaS, e.g., Infrastructure as a Service (IaaS), Platform as a Service 

(PaaS) and Function as a Service (FaaS) [80], [81]. There are also trade-offs 

between holding warehouse-related files in memory in a PaaS or IaaS, making 

them instantly available for optimization, versus a FaaS with a cold-start, 

where some time is spent loading files into memory before optimization can 

begin [81]. In Section 3.4, we provide further details on deployment options.  

2.4 Optimization 

2.4.1 Problem Formulations 

We now study how PRPs, OBPs and SLAPs have been formulated in the 

literature. We only look at formulations which use distance as a cost function. 

Although Masae et al. [12] and Charris et al. [23] point to several cost 

alternatives, we follow Koster et al.’s [3] argument that distance is of primary 

importance. This is mainly because alternatives include distance functions, as 

well as other functions (for a time-based cost prediction, for example, the 

expected distance to be travelled is one of the main inputs [41]).  

We begin by formulating a distance-minimizing PRP as a general TSP. One 

possible way to formulate a TSP is through two-index Integer Programming 

(IP) [82], where there are 𝑛 vertices (one of which is a single origin/destination, 

i.e., depot) and all pairwise distances between the vertices are known:   
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𝑚𝑖𝑛 ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗

𝑗≤𝑛
𝑗≠𝑖

0≤𝑖
𝑖≠𝑗

, 𝑑𝑖𝑗 ∈ ℝ+, 𝑥𝑖𝑗 ∈ {0, 1},   (1) 

 

s.t. 

∑ 𝑥𝑖𝑗 = 1,

𝑛

𝑖=0
𝑖≠𝑗

 𝑗 = 1, … , 𝑛,   
(2) 

 

∑ 𝑥𝑖𝑗 = 1, 𝑖 = 1, … , 𝑛,   

𝑛

𝑗=0
𝑗≠𝑖

 
(3) 

 

𝑢𝑖 − 𝑢𝑗 + 𝑝𝑥𝑖𝑗 ≤ 𝑝 − 1, 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛.   (4) 

 

The binary 𝑥 indicates whether a certain edge 𝑖𝑗 (between vertices 𝑖 and 𝑗) is 

traversed. The distance between vertices 𝑖 and 𝑗 is 𝑑𝑖𝑗. Constraints (2) and (3) 

ensure that each vertex is connected with exactly two edges (one incoming and 

one outgoing). The inequality in Equation 4 is needed to ensure that all of the 

vertices are connected in a single path, which can be achieved using techniques 

on sub-tour elimination. There are several ways to carry it out. Equation 4 

shows Miller & Tucker’s [82] formulation. Variable 𝑢 specifies the visiting 

order of the vertices (𝑢𝑖 < 𝑢𝑗), and 𝑝 ≥ 𝑛 specifies a maximum number of 

vertices visited in a TSP.  

As mentioned in Section 1.3, the difference between the TSP and the PRP 

mainly concern typical warehouse obstacles. A significant portion of the work 

on PRPs focuses on conventional obstacle layouts and how they can be 

exploited to make optimization computationally efficient [12]. One example is 

Scholz et al. [83], who build on the IP formulation in Equations 1, 2 and 3 with 

77 constraints, many of which are tied to the conventional layout (Figure 12).  
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Figure 12: Visualization of how a conventional layout can be used to build a graph for efficient PRP 

optimization [83]. 

Mostly, however, PRP formulations for conventional layouts do not use this 

many constraints or are not as mathematical. Koster et al. [14] and Zunic et al. 

[45], for example, describe PRP optimization procedures mostly using words.  

For the OBP, cost can also be formulated using indexation of edges, as shown 

in Equation 1. One example is Valle et al. [22]: 

𝑚𝑖𝑛 ∑ ∑ 𝑑𝑖𝑗𝑥𝑡𝑖𝑗

(𝑖,𝑗)∈𝐴𝑡∈𝑇

.  (5) 

Apart from using a set of edges 𝐴, distances are only computed on edges that 

a single vehicle 𝑡 ∈ 𝑇 (a trolley) traverses. They then add 17 constraints for 

order-integrity, sub-tour elimination, symmetry-breaking and heuristics tied to 

the conventional layout. Kulak et al. [16] also formulate cost using Equation 

5, but they only use 6 constraints (they do not include the conventional layout 

explicitly in the formulation).  
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Another way to formulate the OBP is through set-partitioning. Gademann et 

al. [41], for example, use the following formulation:  

𝑚𝑖𝑛 ∑ 𝑑𝑠𝑥𝑠,

𝑠∈𝑆

  (6) 

where 𝑠 denotes a batch selected from the set of all feasible batches 𝑆. 𝑥𝑠 ∈
{0, 1} specifies whether a certain batch is selected in the solution and 𝑑𝑠 

denotes the distance needed to pick the products in that batch, i.e., the distance 

of a PRP solution. They use the following constraint to ensure that each order 

is assigned to exactly one batch: ∑ 𝑎𝑗𝑠𝑥𝑠 = 1𝑠∈𝑆 , for 𝑗 = 1, … , 𝑛, where 𝑎𝑗𝑠 

specifies whether order 𝑗 is included in batch 𝑠 and 𝑛 is the number of orders. 

Other authors use a similar formulation [5], [42].   

For the SLAP, Garfinkel [18] uses the following IP formulation:   

𝑚𝑖𝑛 ∑ ∑ 𝑛𝑟𝑐𝑧𝑦𝑟𝑧

𝑧∈𝑍

,

𝑟∈𝑅

 (7) 

where 𝑅 denotes orders and 𝑛𝑟 number of repeats of order 𝑟. 𝑧 ∈ 𝑍 denotes 

zones in the warehouse and 𝑐𝑧 the cost of entering a zone, 𝑦𝑟𝑧 ∈ {0, 1} is 1 if a 

certain zone must be entered to fill a certain order. Note that this formulation 

does not include any PRP or OBP explicitly. Instead, order-picking cost is 

computed using the number of times that certain zones in the warehouse are 

entered by orders. Kübler et al. [24] also provide a crude model of order-

picking using a Quadratic Assignment Problem (QAP) (slightly simplified): 

 

∑ ∑ ∑ ∑ 𝑓𝑚,𝑛𝑑𝑖,𝑗𝑊𝑚,𝑖𝑊𝑛,𝑗

𝑗∈𝑉
𝑗≠𝑖

𝑖∈𝑉𝑛∈𝐴
𝑛≠𝑚

𝑚∈𝐴

,  (8) 

where 𝑚, 𝑛 ∈ 𝐴 denote products, 𝑖, 𝑗 ∈ 𝑉 denote locations, 𝑓𝑚,𝑛 pick 

frequency, 𝑑𝑖,𝑗 distance and 𝑊𝑚,𝑖 a binary indicator that is 1 if product 𝑚 is 

picked at location 𝑖 (and respectively for 𝑊𝑛,𝑗). Similar models can be found 

within the domain of datamining, where support (frequency) and affinity 

(distance) between products are used to compute cost [47], [84].  
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2.4.2 Optimal Solutions 

A feasible solution to a PRP, OBP or SLAP is either optimal or sub-optimal. 

An optimal solution (by some authors it is referred to as an exact solution [12]) 

provides the minimum cost as expressed in Equations 1, 5, 6 and 7. But we 

also find some disagreement in the literature on the meaning of an optimal 

solution. Commonly, it is referred to as the solution with minimal distance 

given that edges between vertices are defined such that they do not intersect 

obstacles [12], [14], [16], [85]. Other constraints are deemed optional. For 

example, it is deemed optional to add constraints that restrict the way that pick-

rounds are formed because of uni-directional traffic rules, or because certain 

products cannot be placed below others on a vehicle (Section 2.2). But in real 

warehouses, these constraints may not be optional, and we may still use 

optimal algorithms when such constraints are included. Scholz et al. [83], for 

example, propose optimal algorithms for cases with directional constraints.  

In a real warehouse, a PRP, as expressed in Equation 1, can include hundreds 

of unique vertices (locations), but it is usually much shorter [14]. For common 

PRPs with a few dozen vertices, the Concorde TSP solver can deliver optimal 

solutions within a few dozen milliseconds [86]. For 100 vertices, it usually 

requires around 0.5 – 1 seconds [87]. Concorde uses Linear Programming, 

Cutting Planes, min-max Duality, PQ trees, Lin-Kernigan heuristics, a 

Blossom Algorithm and effective ways to achieve sub-tour elimination (it is 

130000 lines of C code) [88]. Even though Concorde is publicly available for 

research, it is used surprisingly seldom in research on PRPs: In the research 

review by Masae et al. [12], only 13.8% of papers on PRPs propose distance-

optimal solutions. Reasons for this low percentage include the attempt to avoid 

human pickers getting confused when following a distance-optimal pick-round 

through the warehouse [3]. Furthermore, Masae et al. find that the vast majority 

of these 13.8% require that the warehouse layout is conventional. Examples of 

PRP algorithms that provide optimal solutions specifically for the conventional 

layout include Linear Programming, branch and bound and Dynamic 

Programming [12], [14], [83]. For optimal PRP optimization on 

unconventional layouts, there is little previous work:  

it seems that the application of [PRP optimization algorithms] to layouts 

different to the model containing parallel aisles and a central depot has 

not been considered at all in the literature [89]. 

For the OBP and SLAP, optimal solutions are only obtainable within 

reasonable CPU-time for the smallest problem instances. Briant et al. [15], for 

example, propose an OBP algorithm that requires between 300-7200 seconds 
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to generate optimal batches from 20-45 orders. They use a Branch and Price 

algorithm. A Master Problem (MP) based on a linear relaxation of all possible 

pick-rounds in an OBP is first formulated. Each possible pick-round serves as 

a column which can be added to the MP. In each iteration of their algorithm, a 

Lagrangian lower bound is computed based on the MP. Then, a Restricted 

Master Problem (RMP) is solved to optimality. The RMP only includes a 

subset of pick-rounds, which are selected based on a linear relaxation of the 

PRP. The optimality-proof of the selection of pick-rounds is based on 

heuristics tied to two conventional warehouse layouts and a cutting plane 

method. The best pick-rounds are added as columns to the RMP. The 

procedure continues until the RMP has been solved to optimality (when 

improving columns cannot be found) or a time-out. Finally, the upper bound is 

provided by solving the MP with the final set of columns in the RMP. While 

the value of providing optimality bounds for the OBP is important, Briant et 

al.’s method only works for conventional layouts and requires significant CPU-

time.  

For the SLAP, there is not much prior work attempting to find optimal 

solutions. Boysen & Stephan [64] propose Bounded Dynamic Programming 

(BDP), a type of Held-Karp algorithm where an intersection between lower 

and upper bound SLAP solution candidates is formulated. The upper bound is 

obtained by a greedy heuristic and the lower bound is obtained through a linear 

relaxation, a greedy heuristic and a local-search Held-Karp algorithm. Due to 

the exponential complexity of BDP, Boysen & Stephan’s experiments are 

restricted to a conventional layout with up to only four racks. Garfinkel [18] 

proposes Lagrangian relaxation and various constructive and clustering 

heuristics to formulate upper and lower bounds for warehouses with a known 

number of zones. The task is to relocate products such that the number of 

“multi-zone” orders is minimized. The travel costs are modeled on a zone-

level, which significantly simplifies the problem. Even so, to obtain the 

optimal solution for 40 zones and 100 products, Garfinkel reports that a CPU-

time of 3.5 weeks was needed for the experiment.  

2.4.3 Sub-optimal Solutions 

Common heuristics for distance-sub-optimal PRP optimization include the S-

shape and Largest Gap for conventional layouts [14], [52] (Figure 13). The S-

shape algorithm produces an S-shaped path through the warehouse. The 

Largest – Gap algorithm produces a path which goes around a block of racks 

and makes incisions into the aisles with pick locations. For warehouses without 
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conventional layout, optimization using Simulated Annealing and Google OR-

tools TSP optimization suite have been proposed [25]. 

 

Figure 13: PRP heuristics for a conventional layout (single block) [5]. The black cells denote products to 

be picked and the lines show proposed pick-rounds.  

For the OBP, sub-optimal algorithms can be divided into heuristics and meta-

heuristics. Heuristic algorithms can be divided into four categories: Priority-

rule based, seed, savings and data mining algorithms [5], [90]. In priority rule-

based algorithms, batches are built by ranking and then assigning orders by 

importance, e.g., using First Come First Serve, First Fit and Best Fit. In savings 

algorithms, the cost of batches with single orders is first evaluated. This result 

is then compared against proposals of pairs and triplets of orders in batches. In 

seed-algorithms, batches are generated in two steps: A seed selection step and 

a construction step. In the first step, a suitable first order is selected, and orders 

are then added to it in the second step, until vehicle capacity is exceeded. There 

are many possible heuristics that can be used for this purpose: Ho et al. [91] 

propose 11 different heuristics for seed selection and 16 heuristics for 

construction. Examples of meta-heuristic algorithms for the OBP include Tabu 

Search [90], Ant Colony Optimization [92], Genetic Algorithms [93] and 

Variable Neighbourhood Search [94].  
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For the SLAP, sub-optimal algorithms are also divisible into heuristic and 

meta-heuristic. As shown in Equations 7 and 8, heuristics can be used to 

provide a simplified model of the order-picking assumed to be used in the 

warehouse (compared to modeling it more explicitly using PRPs and/or OBPs). 

Apart from using the number of times zones are entered (Equation 7) and 

distances and pick-frequencies between pairs of products (Equation 8), other 

alternatives include Cube per Order Index (COI) [95] and Order Oriented 

Slotting (OOS) [62]. COI uses the pick-frequency and volume of a product to 

compute the ideal proximity to a depot. COI does not include capability for 

multiple products in an order. OOS, on the other hand, is specifically designed 

to handle orders with multiple products. Meta-heuristic algorithms for the 

SLAP include Simulated Annealing [96], Ant Colony Optimization [97] and 

Evolutionary algorithms [56]. 

2.4.4 Machine Learning (ML) 

There have been attempts at introducing pre-trained ML approaches for the 

PRP and OBP [98], [99], [100], [101]. They offer to replace decision-time 

search for optimization of PRP’s and OBP’s, with pre-trained parameters, 

which could provide significant improvements in computational efficiency. 

The parametrization can be achieved by mapping locations, obstacles and PRP 

or OBP problem instances into a graph where vertices are connected based on 

relationships defined in the geometric domain. These parameters can then be 

trained on many sets of annotated problem instances to learn to approximate 

search policies or solution costs. This approach has both theoretical merits and 

flaws.  

Concerning the merits, it has already been shown that learning based on 

features in a combined geometric and sequential domain is possible [102]. 

Search algorithms for games such as Chess and Go, including Monte Carlo 

Tree Search (MCTS), can be substantially improved by the usage of pre-

trained parameters [102]. Strong results have also been achieved on Starcraft 

2 [103] and Dota 2 [104].   

The relevance of these achievements for PRP, OBP and SLAP optimization 

can be debated. The Starcraft 2 algorithm (AlphaStar) uses a wide array of 

game-specific entities and a graph of structured actions that can be applied on 

the entities [105]. It is designed for a specific Real Time Strategy (RTS) game 

with hidden information. If the environment is turn-based and without hidden 

information, as in the case of Go and AlphaZero [102], the similarities to the 

PRP, OBP and SLAP are arguably stronger. One core feature of AlphaZero is 
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convergence on optimal play, made possible by its self-play training loop 

[100]. This type of convergence is based on the decomposition of a problem 

instance into a Markov Chain of states, where the learning of policies to move 

from one state to the next is assumed to be a differentiable problem. This 

differentiability is, in its turn, dependent on the gradual building of a training 

database using experience replay. The objective is stated as generating a policy 

which beats any other policy’s performance on the training database.  

There is no immediate theoretical hindrance for why this type of approach 

could work on problems such as the PRP, OBP and SLAP. The main issue can 

rather be attributed to more practical reasons: As laid out in Section 2.2, there 

are many types of obstacle layouts, picking methodologies, constraints and 

other features in PRPs, OBPs and SLAPs. Realistically, a WMS which 

includes ML-based optimization modules would also include various heuristic 

modules [99]. To see why heuristics are needed, the OBP can be used as an 

example: To get the solution cost of a single OBP candidate solution (i.e., an 

assignment of orders and visit sequences to vehicles), a set of TSP’s need to 

be optimized. Incorporating learning to approximate TSP costs within an OBP 

algorithm is naturally complicated by the NP-hard nature of the TSP. Vinyals 

et al. [106] try learning TSP costs, but they do not offer a competitive result 

(compared to the Concorde TSP solver, for example). It could still be possible 

to incorporate a learnt approximation of TSP costs in an OBP optimizer (cost 

approximation has been shown to be effective in OBPs [107]), but the added 

burden of development, pre-training and maintenance of such an ML-based 

optimizer is significant. In the warehouse domain, learning TSP costs is mostly 

feasible if features, such as rack layouts, are heavily restricted, such as in the 

work by Seward on conventional layouts [99]. As soon as the TSP is assumed 

to be generic, the training data needed increases significantly.  

There are order-picking problems other than the PRP, OBP and SLAP that may 

be more suitable for ML. One example is demand forecasting, i.e., the 

prediction of products or orders that are going to be demanded at a future time. 

This topic has not seen an overly large amount of research within the 

warehousing domain, but it can draw from a larger body of both practical and 

theoretic work within the broader logistics and ecommerce domain [108], 

[109]. Abolghasemi et al. [110], for example, propose ML methods to measure 

the volatility of demanded products generally, without going into detail on 

practical applications. Within ML research, there is a variety of methods and 

datasets which target the same type of problems [111]. Spiliotis et al. [108] 

apply various ML methods against standard statistical methods in a case-study 

to predict the demand for 3300 products. A specific difficulty of their dataset 
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is that certain products occur very sparsely through time. They find that ML 

methods are promising for this type of task, especially because of their low 

CPU-time requirements (after pre-training), but that some methods 

underperform for reasons that they admit are elusive. A well-known problem 

with ML methods is that they are “black-box” in nature [99], [112]: It is 

difficult to deduce why they underperform or overperform on a certain task, 

since their search for parameter combinations is largely autonomous. Hodzic 

et al. [113], also conduct a demand forecasting experiment to test the difference 

between an ML method, in the form of a Long Short Term Memory cell 

(LSTM), against a standard statistical one, in the form of an Adaptive Median. 

Their dataset consists of 2913 products, and they find that the LSTM is 

stronger than the Adaptive Median when it comes to forecasting the number of 

demanded products, but that the Adaptive Median is stronger when it comes to 

forecasting the specific products that are demanded.  
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3. Approach 

3.1 Feature Selection and Engineering 

Before we approach PRP, OBP and SLAP optimization (Section 3.2), we select 

and engineer a set of features. For each feature, we attempt to make choices 

that are beneficial for standardization (Section 1.7.1) and the SaaS 

optimization architecture (Section 1.7.2).  

3.1.1 Layout 

We propose that standardized order-picking optimization methods need to 

have capability to handle polygonal obstacles that are distributed in any 

manner in two dimensions. In our papers, we refer to this scenario as the 

unconventional layout [114]. In reference to related work, we can also call this 

scenario the union of conventional, non-conventional and general layouts 

(Section 2.2). A significant amount of related work on order-picking 

optimization is designed exclusively for the conventional layout. But we also 

note the following: 

1. A significant quantity of warehouses do not use conventional layouts.  

2. In terms of CPU-time, it is expensive to obtain optimal solutions for 

OBPs and SLAPs, even for conventional layouts.  

For the PRP, there exist algorithms capable of finding optimal solutions for 

conventional layouts at relatively low CPU-time, including approaches based 

on linear and dynamic programming (Section 2.4.2). But for the OBP and 

SLAP, proposed optimal solutions require CPU-times that can be deemed in 

excess of what is SaaS-suitable (Section 3.4.1). Arguably, potential 

optimization advantages attained when working exclusively with conventional 

layouts are exceeded by the advantages attained from generalizing layouts 

[114].   
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Bartholdi & Hackman [1] point to an important disadvantage of un-

conventional layouts that we must address: Added complications in building 

and applying a digital model of a warehouse. All pairwise distances between 

the locations, i.e., the distance matrix, need to be pre-computed. If we study 

conventional layout problem instances, such as “ran-x” or “abc-x” [90], we 

note that they include entries such as “Aisle 6 Location 22” and “Aisle 13 

Location 29”, as well as information on aisle widths and lengths. From this 

information, it is possible to build a distance matrix between the provided 

locations at high speed. For the unconventional layout without uniform aisles, 

this is not possible (Section 3.2.1). Consequently, the distance matrix must be 

built in an onboarding step before a warehouse can start using the optimization 

service. The distance matrix must also be kept accessible in memory for the 

optimization service to perform well in terms of CPU-time (Section 3.4.1). 

3.1.2 Locations and Zones 

We propose a distinction between four types of locations: 

1. Depot/origin/destination locations: The locations where vehicles start 

and end pick-rounds.  

2. Obstacle locations: The outlines of racks or other obstacles.  

3. Product locations: Each product has one location in the warehouse. In 

real warehouses, there are cases when a product is stored in multiple 

locations. This complicates order-picking optimization, since 

decisions must be made concerning which of the product locations 

should be visited. In Section 4.1, we exemplify this scenario and show 

why it is unsuitable for standardization.  

4. Stop locations: To limit the size of a digital model of a warehouse and 

to simplify optimization, many product locations can be set to share a 

single “stop location”. For example, if we have 20 products within an 

area of 4 𝑚2, we can use a single stop location, instead of 20 different 

product locations. 

Regarding stop locations, in Section 2.2 we stated that surjective relationships 

between many products and fewer locations (in specific areas) are similar to 

zones in a warehouse. We can see the similarity if we think of a precision or 

granularity regarding the digitization of product locations. We define a stop 

location using a fine granularity level, claiming that movements within a few 

square meters do not have to be accounted for when finding solutions to order-
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picking problems. This can help reduce memory and computational 

requirements (Section 3.2.1). Order-picking optimization is carried out on the 

stop-location level, so the granularity with which stop locations are defined 

dictates the precision in optimization: The larger area that we assign to a single 

stop location, the lower the achievable precision. In some scenarios, it may be 

beneficial to work with multiple levels of surjective products to locations 

relationships. For SLAP optimization, for example, we could start with a 

broader area for product-location assignment and move gradually toward 

assignment of more exact locations.  

Arguably, the stop-location term generalizes the zone term. We could use the 

zone term instead, but the zone term is usually associated with a coarse 

granularity level, defined in terms of larger areas. 

3.1.3 Depots 

For the PRP, we assume that both the origin and destination can be any location 

in the warehouse. We consider requirements of a single depot as strict, since 

PRP optimization can be set up for multiple depots with relative ease using 

“dummy nodes” [115]. Since we include the PRP in our work on the OBP and 

SLAP, we do not regard single-depot configurations as necessary for these 

either. SLAP optimization involving the Quadratic Assignment Problem 

(QAP) or pick-frequency heatmaps [25] assume a single depot, but could 

potentially be modified for the multi-depot case.  

3.1.4 Dynamicity and Stochasticity 

Standards are lacking on how to define dynamicity in PRPs, OBPs and SLAPs. 

For the sake of standardization, we propose that work on static, rather than 

dynamic versions of these problems, has precedence. The focus is on the 

optimization quality that can be achieved given all the data available in a static 

PRP, OBP or SLAP instance. There are many choices regarding how to define 

problem instances, even in static settings (Section 2.3).  

We only consider stochasticity with regard to instance generation (Section 

2.2). We propose pre-generated deterministic instances, following the same 

general structures as used in the TSPLIB [70] and Cook [71] instances (Section 

2.3.1). 



53 
 

3.1.5 Order-integrity 

We use order-integrity in our work on the OBP. It follows that a single order 

can always fit on a single vehicle in the warehouse. We assume that we are not 

aware of whether an order has been split at an earlier stage (by a Warehouse 

Management System (WMS), for example) to make this possible. In certain 

implementations of order-picking, e.g., single-product picking robots or wave-

picking, order-integrity may not be beneficial for operations. But it is 

beneficial from a standardization perspective, as single-product picking or 

wave-picking can be modified into OBPs using relatively simple pre-

processing: Single products can be redefined as orders with single products.  

3.1.6 Product Constraints and Traffic Rules 

Warehouses often contain products that are hazardous, in need of cooling or 

specialized placement on a vehicle. We do not consider these types of 

specialized products for standardized versions of the PRP, OBP and SLAP.  

We work with scenarios where travel costs are assumed equivalent between 

pairs of locations. If the warehouse uses uni-directional travel rules in aisles or 

cross aisles, they can be imposed using digitization techniques that do not 

impact optimization CPU-time (Section 4.5).  

3.1.7 Capacity Constraints 

Capacity constraints have a significant impact on optimization performance, 

but they are challenging to standardize due to the high variability of warehouse 

vehicles and picking methods. Possible capacities for vehicles include number 

of orders, number of products, xyz dimensions and carry weight. For the 

SLAP, capacities can also be defined in terms of number of products or xyz 

dimensions for locations. We mainly work with number of orders and/or 

products in our experiments on PRPs, OBPs and SLAPs.  

3.1.8 Cost Function 

There are several choices for cost functions for the PRP, OBP and SLAP, 

including distance, time and profitability (Section 2.2). We use distance in our 

experiments. From the standardization perspective, distance is beneficial since 

it is an unambiguous metric, assuming it is modeled such that it accurately 

represents the geometry of a warehouse. Travel distance is often chosen due to 
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its close correlation with travel time [3]. But time may also include components 

that are difficult to standardize, e.g., search-times for products, administration 

and unexpected delay bottlenecks. Worth noting is that the cost function will 

always be delimited to some extent: The warehouse is not the only part in the 

logistics chain, and profitability may be affected by factors that are difficult to 

optimize [116].  

 

Figure 14: The amount of data needed to work with profitability, time and distance cost functions [100]. 
Profitability may be of higher interest to managers, but that does not necessarily mean that it is a better cost 

function from a standardization perspective or optimization.  

Hence, distance is benefited by its simplicity in terms of both implementation 

and interpretability. For the SaaS business (Section 1.7.2), it makes sense to 

carry out an initial Proof of Concept (POC) for WMS customers in a way that 

is as explainable as possible. Work with more complex KPI’s should be 

conducted after work with more basic KPI’s has been completed.  

We choose the Euclidean norm (Section 2.1) for our computations of shortest 

paths and distances. For conventional layouts, heuristic models for distance 

can be used (such as counting the number of aisles that are entered) [58]. For 

the unconventional layout, Euclidean distance is arguably a stronger choice 

than the two alternatives proposed by Gibson & Sharp [58], i.e., Manhattan 

and Chebyshev. The main advantage of Euclidean paths and distances are their 

stronger descriptive properties. In Figure 15, we suggest that it is easier to draw 

conclusions regarding the quality of a Euclidean-based PRP solution, than a 

Manhattan alternative. This can be useful if we wish to visually validate the 

digitization process (Section 3.2.1). After a warehouse graph has been built, a 

few mock PRPs are generated and solved using the Concorde TSP solver, and 

these PRPs are then visually inspected for correctness. 
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Figure 15: The same PRP solution using Euclidean (left) and Manhattan (right) paths/distances. In the 

Euclidean case, we can see that the path looks close-to-optimal. In the Manhattan case, it is less clear.  

3.2 Optimization 

3.2.1 Digitization and Preprocessing  

As we discussed in Section 3.1.1, our assumption of an unconventional layout 

requires the building and storing of a digital model of the warehouse. For this 

purpose, we use a warehouse digitization process introduced in 2019 and 2021 

[114], [117].   

A warehouse can be modeled as a graph 𝐺 = (𝑉, 𝐸), consisting of vertices 𝑉 

representing locations in the warehouse, and edges 𝐸, which represent possible 

paths to move between the vertices. Janse van Rensburg [117], proposes a 

method in which all shortest paths and distances between the vertices is 

computed such that obstacles are circumvented. The method can be 

summarized as follows:  

1. A 2D top-view image of the warehouse is used as reference.  

2. Stop locations are added as x, y coordinates and corresponding 

mappings between product locations to stop locations are generated.  
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3. Obstacles of any 2D shape and rasterized edges (drawing of lines on a 

raster) between locations are plotted/generated.  

4. Rasterized edges that include cells located within an obstacle are 

removed.  

5. Graph 𝐺 is constructed from the locations (represented as vertices) and 

the remaining edges.  

6. The Floyd-Warshall algorithm is used to compute all shortest walks 

and distances between vertices.  

Experiments show CPU-time and memory requirements to build various sizes 

of 𝐺, shortest walks and distances [114]. The largest graph includes 6491 

vertices and 306 obstacles and requires 1.2 GB of memory and ~18 hours CPU-

time. Most warehouse graphs can be constructed using less than 100 MB, 

however.  Also note that the number of locations can be significantly reduced 

if we accept a lower precision of the optimization results (Section 3.1.2).  

3.2.2 Picker Routing Problem (PRP) Optimization 

For PRP optimization, three sources of TSP optimization software are used: 

The Concorde TSP solver (Section 2.4.2), the OR-tools TSP optimization suite 

(Section 2.4.3) and Simulated Annealing [119].  

A Linux-compatible wrapper to Concorde is available online [86] and it is also 

the version used in all our implementations. The ability of Concorde to produce 

optimal solutions to the TSP is well-documented, but its ability to produce 

optimal solutions to the PRP is not. On the one hand, no attempt to prove 

Concorde’s optimality on PRPs is carried out in this project. On the other, no 

substantial evidence is identified which indicates that it performs sub-

optimally. When Concorde’s performance on PRPs is compared to its 

performance on TSPs, no substantial difference is observed [25]. From visual 

inspection of hundreds of solved PRPs and TSPs, sub-optimal looking 

solutions are not observed. A counterargument is that it is difficult to know 

what an optimal solution looks like, especially when working with PRPs that 

are constrained in various ways. For example, we could have unidirectional 

travel rules or multiple depots that creates challenges for visual inspection. We 

also note that the use of surjective relationships between products and locations 

(Section 3.2.1) could have a detrimental impact on Concorde’s performance. 

We continue with the CPU-time that Concorde uses. Commonly, PRPs are 

shorter than ~50 locations, and Concorde delivers solutions to these in 
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fractions of a second (but with a high variance [87]). Concorde may be fast 

enough for PRP optimization in isolation, but it is less clear that it is fast 

enough for use within OBP and SLAP optimization. On the one hand, we can 

easily motivate using Concorde within OBP and SLAP optimization: It 

provides a model for distance-optimal pick-rounds through the warehouse. But 

on the other, the number of PRPs that Concorde needs to solve in OBPs and 

SLAPs, rises exponentially: Assuming Concorde requires 10ms to solve a 

single PRP, it requires 1 minute to solve 6000 PRPs. Even in relatively small 

OBP and SLAP instances, there are orders of magnitude more possible PRPs. 

As an example, an OBP where 30 orders should be distributed into 5 batches, 

may have around 1017 possible PRPs (a rough estimate provided by the 

Stirling number).  

To reduce CPU-time, we also investigate usage of distance-sub-optimal PRP 

optimization within OBP and SLAP optimization [25], [120]. A joint 

conclusion from this work is that the combined use of Concorde and sub-

optimal PRP optimization is motivated, but that the large variability in search 

space and features makes it is difficult to provide any concrete evidence for 

how much one should be used over the other. One could, for example, 

hypothesize that the utility of sub-optimal PRP optimization grows with 

instance size: We do not carry out experiments of a large-enough scale to 

thoroughly test this, however. 

For sub-optimal PRP optimization, we primarily use the Google OR-tools TSP 

optimization suite [118]. It includes at least five different TSP optimizers, and 

per default it selects one automatically. One disadvantage of the OR-tools TSP 

optimization suite is that some of its functionality is not extensively 

documented. For example, setting it to use “Simulated Annealing” often leads 

to worse performance compared to letting it choose optimizer automatically, 

while it is not clear why this is the case, nor explained how it does the 

automatic selection. Another example is a lack of information regarding how 

to control the CPU-time used for TSP optimization. This is crucial information 

when deciding on how to trade-off CPU-time against distance minimization, 

which is especially relevant if one seeks to use OR-tools as a cost approximator 

for TSP solutions produced by Concorde (more on this in Section 3.2.4).  

For sub-optimal PRP optimization, we also use a publicly available Simulated 

Annealing optimizer [119]. This implementation is slower, in terms of CPU-

time, but simpler compared to OR-tools, and we mainly use it for certain 

visualization scenarios.  
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In certain industrial OBP and SLAP scenarios, a case against distance-optimal 

PRP solutions can be made. Distance is often not the KPI that a WMS 

operation uses, and the industrial setting (Section 1.7.2) is a SaaS that sells 

services to a WMS. In other words, the SaaS needs to be mouldable to whatever 

KPI the WMS uses. If a WMS provider does not use distances in their KPI 

model, the SaaS provider should not require it to work with them. If the WMS 

provider uses a more basic cost function to evaluate performance, such as SMD 

in the case of the OBP, or a support-distance dot product in the case of the 

SLAP, the SaaS provider can avoid PRP optimization altogether. PRP 

optimization on a SLAP picking-log using Concorde can be thousands of times 

slower than computing a support-distance dot product [25]. Hence, if the WMS 

uses an evaluation based on a support-distance dot product, it makes sense for 

the SaaS provider to also use it until the customer demands something else. 

3.2.3 Order Batching Problem (OBP) Optimization 

The set-partitioning formulation by Gademann [41] (Section 2.4.1) is used as 

foundation for all our work on the OBP. One difference is the addition of a set 

of vehicles:  

𝑚𝑖𝑛 ∑ 𝐷(𝑏)𝑥𝑚𝑏,

𝑏∈ℬ 

𝑚 ∈ ℳ, (9) 

where 𝑏 ∈ ℬ is a batch generated out of the set of all valid batches, 𝐷(𝑏) is the 

distance of 𝑏 as provided by PRP optimization, 𝑚 ∈ ℳ is a vehicle selected 

from available vehicles and 𝑥𝑚𝑏 a binary variable which is 1 if 𝑚 is assigned 

to pick 𝑏. We then add constraints for order-integrity, minimum required 

location visits and vehicle capacity [114]. Order-integrity, precedence and 

capacity constraints reduce the number of possible batches and thereby the 

number of possible PRPs. In a pallet picking usecase with all these constraints 

(Section 4.3), the number of possible combinations of pallets on a fork-lift is 

so small that optimization often cannot yield significant savings. In other cases, 

the number of possible PRPs can be very large. In related work, we find that 

optimal OBP optimization suffers from being tailored for specific scenarios 

(Section 2.4.2). To model an OBP as a convex optimization problem, for 

example, many assumptions must be made with regard to the features (such as 

layout and capacity constraints). From the perspective of a SaaS - business 

(Section 1.7.2), another issue with optimal optimization is that it requires a 

significant amount of CPU-time. For a customer driven SaaS, it is 

advantageous if optimization results can be delivered quickly (Section 3.4.1).  
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With this reasoning, we design and provide sub-optimal optimizers for the 

OBP [87], [120] (Papers 2 and 3). They are based on heuristics and meta-

heuristics. The main optimizer is called Single Batch Iterated (SBI) and it uses 

constructive heuristics in a Seed algorithm (Section 2.4.3). Orders are added 

to a batch semi-randomly based on a Sequential Minimal Distance (SMD) 

heuristic, which is used to compute (and later query) distance estimates 

between orders. Cost evaluation for a candidate batch is achieved using 

optimal or sub-optimal PRP optimization. The procedure continues with semi-

randomly generated and evaluated batches until convergence or a pre-

designated timeout. SBI is evaluated in terms of computational efficiency 

against optimal OBP results on smaller existing conventional layout instances 

[120]: An average gap to optimality of 2.3% is reported against Briant et al.’s 

[15] Branch and Price method. Importantly, the proposed sub-optimal results 

require significantly lower CPU-times compared to Briant et al. For larger 

instances where optimal solutions are not available, we find that solution 

improvement often decreases to 1% per minute after 30-60 seconds of 

optimization. For example, an initial SBI solution may take 5-10 seconds to 

obtain. After 5 minutes of additional optimization, the initial solution is only 

improved on by 4-7% [120].  

The main meta-heuristic optimizer is called Metropolis Batch Sampling 

(MBS). First, an initial solution is generated using the seed and SMD 

heuristics. Then, batches are altered iteratively using the Metropolis algorithm 

by swapping orders between batches and computing the PRP costs of new 

batches. The Metropolis acceptance ratio controls whether new batches and 

their corresponding costs are accepted or rejected.  

In terms of performance evaluation, there are advantages and disadvantages to 

both SBI and MBS. In terms of computational efficiency, SBI performs better 

on OBP’s, but it is designed specifically for that problem, relying heavily on 

the SMD heuristic. MBS is more easily adopted to optimize other problems, 

such as the SLAP, where distance estimates between orders are not necessarily 

as directly relevant. On the OBP experiments conducted, the relative strength 

of SBI can be explained through two factors: 1. The predictive strength of the 

SMD heuristic. 2. The relatively low CPU-time needed to compute SMD, as 

well as the temporary storage of SMD values in memory. As is often the case 

in the engineering of optimization algorithms, multiple improvements to both 

SBI and MBS are developed during the project. For SBI, improvements mainly 

regard computational efficiency through reuse of certain computations. For 

MBS, improvements include the addition of temperature (i.e., Simulated 
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Annealing), seed selection strategies and more effective usage of cost 

approximation.  

3.2.4 Storage Location Assignment Problem (SLAP) Optimization 

Our proposed optimization models for the SLAP build on our work on PRP 

and OBP optimization (Section 3.2.2, 3.2.3). We propose two versions of the 

SLAP: The OBP-based SLAP and the TSP-based SLAP2. There are two main 

differences:  

1. Cost evaluation: In the OBP-based SLAP, solution cost is obtained by 

optimizing an OBP. In the TSP-based SLAP, solution cost is obtained 

by optimizing multiple PRPs (TSPs).  

2. SLAP features: In the OBP-based SLAP, products that are newly 

arrived in the warehouse are assigned a location. In the TSP-based 

SLAP, the locations of products already in the warehouse are swapped.  

Concerning cost evaluation, it is assumed that a SLAP problem-instance 

includes a future-forecasted picking-log with information on products that need 

to be picked in the warehouse. In the OBP-based SLAP, the picking-log 

consists of orders (that need to be batched in an OBP), and in the TSP-based 

SLAP, the picking-log consists of pick-rounds (which may have been 

generated using OBP optimization at an earlier stage). Some researchers, such 

as Kübler et al. [24], also include the forecasting of the picking-log (demand 

forecasting) as part of their SLAP optimization model, but we argue that 

standardization suffers if this is required. The core question the SLAP asks is 

where products should be stored, not to predict the number of products that 

will be picked. An issue with demand forecasting is that it is dynamic in nature, 

as it is based on seasonal trends. Such trends are difficult to standardize due to 

the high variability of products.  

Building on our work on OBP optimization (Section 3.2.3), our SLAP 

optimizers rely on heuristics and meta-heuristics. The OBP-based SLAP 

optimizer uses a Nested Metropolis algorithm and is divided into four layers: 

The first (outer) layer runs a Metropolis algorithm, the second layer 

approximates the cost of a SLAP sample using a model based on the Quadratic 

Assignment Problem (QAP). The third layer computes ground truth OBP costs 

using the SBI optimizer for samples which have passed an accept filter based 

 
2 See Section 1.5 for a rationalization for using “TSP” in the title.  
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on the QAP estimates. The fourth layer is comprised of PRP optimization as 

used by SBI. See Paper 4 [107] for a diagram of the optimizer.  

One key problem with the OBP-based SLAP is that solution quality of a single 

SLAP candidate sample (an assignment of products to locations) requires an 

OBP to be optimized. An important issue is that there is no proposal with which 

to efficiently solve realistically sized OBP instances to optimality (Section 

2.4.2). The OBP-optimizer used (SBI) produces sub-optimal solutions. We 

could argue that usage of the OBP to obtain SLAP solution costs is a reasonable 

choice. After all, if a warehouse uses order-batching, it makes sense to compute 

SLAP solution quality using OBP-optimization, even if it the costs are sub-

optimal. Nevertheless, the usage of sub-optimal results to guide a Metropolis 

algorithm (for SLAP optimization) can be problematic for two reasons:  

1. Stability issues. Building on a line of argumentation by Mantel et al. 

[62], an inaccurately evaluated solution candidate will cause a Markov 

chain to jump around less ideal search regions. Furthermore, we use 

two levels of approximation, since we approximate OBP costs 

provided by SBI using a Quadratic Assignment Problem (QAP) 

model. While QAP costs are fast to compute, they are not necessarily 

proportional enough to OBP costs. Costs in a QAP are provided by the 

sum of all pairwise distances between a set of product locations, 

multiplied by their pick-frequency. Experiment results show that 

usage of the QAP approximations can be beneficial for optimization 

of the overall SLAP (at least certain versions) [107], but that its 

generalizable properties can be debated. 

2. Hyperparameter search space. A combination of hyperparameters in 

both the OBP and SLAP optimizers needs to be found. For the OBP 

optimizer, these hyperparameters are 𝑁 (number of samples), 𝐶 and 𝑃 

(floats controlling the amount of feature-distance between samples). 

For the SLAP optimizer they are 𝑁 (number of samples), 𝜆 (float 

controlling the amount of distance between samples) and 𝜑 (choice of 

relevance values). The search of a strong combination of these 

hyperparameters is possible, but it requires a significant amount of 

quantitative experimentation. If it takes 4 seconds to obtain an OBP 

solution within 10% of optimality (for a “medium” – size instance) 

[120], it takes 8 hours to generate 7200 samples. Since the SLAP 

search space for but the smallest instances is many orders of 

magnitudes higher, 7200 samples is inadequate to guarantee 

convergence on a strong solution.  
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From a standardization perspective, we could question whether in-depth 

quantitative experiments are suitable for the OBP-based SLAP. Arguably, 

feature standardization has precedence. Besides the listed features in Section 

2.2, there is little agreement on how to standardize SLAP-specific features, 

such as the reassignment distance (the cost needed to swap locations between 

products). For the OBP-based SLAP, the easiest reassignment scenario is used, 

namely the one where new products appear in the warehouse and reassignment 

distance can be set to zero (since the location assignment of new products is 

mandatory). This is clearly a simplification of a realistic scenario, where 

warehouse managers also want to know when locations between products 

already in the warehouse should be exchanged.  

The optimization algorithm for the TSP-based SLAP [25] (Paper 5) is similar 

to the one above, but Nested Metropolis sampling is replaced with Nested 

Annealing (a temperature parameter is added). It excludes the OBP, and 

instead, all the order-batching forecasting is assumed to have been carried out 

at a prior stage in the overall WMS. While Paper 5 improves the computational 

efficiency of the MCMC algorithm by usage of restart heuristics and sub-

optimal TSP optimization, the main focus is on the modeling of a more 

standardized reassignment scenario: If new products are predicted to arrive, 

they are assigned uniform random free locations in a baseline sample. If they 

are already in the warehouse, the baseline sample keeps them at their current 

locations. The picking-log is then passed on to the SLAP optimizer which finds 

suitable location swaps between products, considering both optimal distances 

of TSP solutions for the picking-log, as well as sub-optimal reassignment 

distances.  

We report cost savings around 23% after 1 hour of optimization of the OBP-

based SLAP and cost savings around 30% after 8 hours of optimization of the 

TSP-based SLAP. The reassignment distance in the TSP-based SLAP may 

pose a more serious problem than the sub-optimal estimates in the OBP-based 

SLAP. The issue with the former is that minimization of reassignment distance 

is not easily achieved alongside minimization of picking-log distance. To 

minimize the latter, many products need to  exchange locations with other 

products. But the reassignment distance is positively correlated with the 

number of location exchanges [25].  
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3.3 Benchmarking  

PRP, OBP and SLAP features should be described in instances such that they 

are as representable as possible, while allowing for simple experiment 

reproducibility. Currently, there is little agreement regarding a benchmark 

standard for the PRP, OBP and SLAP.  

The representation of a warehouse’s layout is one point of contention. In 

instances designed for the conventional layout, such as Foodmart [22], 

HappyChic [69], ran1-3 and abc1-3 [121], features such as “number of aisles” 

and “intra-aisle-distance” are used to describe the layout. There are also 

instance file formats for the conventional layout that include a distance matrix. 

For the layout-agnostic case, neither of these options are appealing. Features, 

such as number of aisles and intra-aisle-distance, cannot be used, and the 

distance matrix takes up a lot of space in the instance, while still not providing 

enough information to allow a recreation of the warehouse layout, nor of exact 

picking paths through the warehouse.  

We propose a different approach, but it also has caveats. In our generated 

instances [25], [87], [107], [120], we leave out the distance matrix, and instead 

provide the coordinates of all locations, including the ones for polygonal 

obstacles. The distance matrix must then be generated in such a way that no 

path between two locations intersect any obstacle. The main problem with this 

approach is that the distance matrix must be reproduced before minimized 

distances can be checked for correctness. We still argue against including the 

distance matrix directly in the instance, since the distance matrix is only one 

of several files needed to properly validate an experiment. To validate an 

experiment, the distance matrix itself needs to be validated, and for that, only 

two options are possible: Either to provide the whole graph of shortest paths in 

the instance, or to provide the data needed to generate the graph. The shortest 

paths and distances can take up as much as 50 megabytes of memory for a 

warehouse with 500 locations [114], which is arguably excessive for 

benchmark data.  
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3.4 Industrial context 

3.4.1 SaaS CPU-time and Deployment Options 

A key issue is the time it takes between an optimization request being sent from 

the WMS customer and receival of the response from the SaaS. In this section, 

we discuss why this topic is important and how SaaS CPU-time can be 

minimized.  

Since results to common PRPs in warehouses can be obtained in fractions of a 

second, it makes sense to offer a PRP optimization service as “instantaneous” 

and/or even “optimal” (using the Concorde TSP solver with a license, for 

example). The customer sends a request for PRP optimization and 

“instantaneously” gets a response with the shortest possible pick-round. In 

order to achieve this, we must assume that the optimization server has the 

digital files of a warehouse stored in memory (Section 3.1.1). If we assume 

that we wish to offer the same service for all warehouses, we should assume 

that there will be warehouses whose digitization files are going to take up 

significant memory. Since it takes time to load these files from disk into 

Random Access Memory (RAM) such that they can be used by the optimizer, 

we need to keep these files highly accessible. The most significant file in this 

regard is the distance matrix, i.e., the file which provides all pairwise distances 

between locations in a warehouse. If we assume that we want to store the 

distance between two locations in 16 bits, we need 1.6 ∗ 109 bits (200 MB) for 

a distance matrix with 10000 locations (we do not wish to half it since we may 

want to include capability for asymmetrical distances). While we can reduce 

the number of locations (Section 3.2.1), we can also assume that we need 

memory for other types of data. For PRP visualization (Section 4.4), for 

example, we need to have shortest walks between the product visits in the PRP, 

and these take up more memory than the distance matrix [114]. Assuming that 

the digital files for a warehouse take up 1 GB, it can take a few seconds to load 

them into RAM. Following this reasoning, we ask two questions: 

1. Is a WMS customer willing to wait a few seconds for a response to a 

basic optimization request? For example, we can imagine a scenario 

when the customer sends a PRP request with five pick locations to test 

the service for the first time.  

2. What are the loading speeds and costs from storage for different SaaS 

deployment options, like Infrastructure, Platform and Function as a 

Service (IaaS, PaaS and FaaS)? 
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Regarding the first question, the WMS customer can be assumed to already 

use PRP optimization in some form (e.g., if the warehouse uses a conventional 

layout, it may use simple heuristics like the S-shape algorithm). It may not be 

as good as the Concorde TSP solver in terms of distance minimization, but it 

is likely very fast. To ensure customer satisfaction, we suggest that the files 

needed for optimization by the SaaS should be pre-loaded into RAM.  

Regarding the second question, the files can be kept accessible in RAM if we 

deploy a server using IaaS or PaaS (Section 2.3.2). For a FaaS-based solution, 

the files need to be loaded upon request receival (cold start). Due to 

complexities involved with this latter option, the relative cheapness of keeping 

one or a few servers idling (at least for a small-scale SaaS business) we suggest 

a non-FaaS option. Deployment pricing is a complex topic, however, and FaaS 

may be a preferable choice with only small adjustments to the cloud business 

operation. When it comes to selecting between IaaS and PaaS, we do not regard 

either as superior. An IaaS may have more bare-metal options compared to a 

PaaS, but assuming we need load-balancing and auto-scaling, among other 

customizable tools, the final system can end up looking similar following both 

alternatives.  

For OBP and SLAP optimization, “instantaneous” CPU-time is often  

unfeasible. As we have discussed in Section 2.4 and 3.2.3, optimization of 

realistic OBP and SLAP instances require significant CPU-time to reach 

competitive cost savings. In our industrial work, however, we observe that 

warehouse managers often push for optimization responses to be delivered as 

fast as possible. Because of this, we include a “computational_time” parameter 

in the OBP and SLAP request APIs, where the customer can specify the 

maximum allotted CPU-time for the optimization request. If the customer does 

not use this parameter, the default option is set to “minimal”, i.e., the service 

assumes that the request should be optimized as fast as possible. We inform 

customers about the relationship between optimization savings and CPU-time, 

but we often find that they prefer this “minimal” option. The reason for this 

can partly be attributed to integration challenges (Section 3.4.2).  

3.4.2 SaaS – WMS Integration Challenges 

From the SaaS-business perspective, it is relatively easy to explain to a 

potential WMS customer how PRP optimization can be integrated into their 

existing system: After the WMS has constructed a pick-round, they translate it 

to the format of an optimization request, send it to the SaaS, and within a pre-

designated timeout (e.g., 1 second), they obtain a response with an optimized 
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pick-round. If a response is not received before the timeout, the WMS proceeds 

to use the pick-round they have from earlier.  

For OBP optimization, it is more difficult to define such timeouts. A key 

component in OBP optimization is the computation of distance estimates 

between input orders (e.g., using SMD). But since the number and contents of 

input orders may vary widely between different warehouses, it is difficult for 

the SaaS to predict the CPU-time that may be required for this type of distance 

estimation. Furthermore, there are variations of OBP request-response set ups 

that the SaaS needs to have capability for, such as:  

1. Single batch: The WMS sends a set of orders to the SaaS and receives 

a single batch in response, together with the orders that are excluded 

from the batch.  

2. Multi batch: The WMS sends a set of orders to the SaaS and receives 

a set of batches in the response.  

The WMS may need to implement polling as a way to integrate request-

response cycles robustly: In the polling set up, the WMS first sends a request 

and then polls the SaaS until a response is ready for collection. Additionally, 

it is clearly more complex for the WMS to post-process an OBP optimization 

response than a PRP response: The WMS should (ideally) check that the SaaS-

proposed batches are valid: Are batches within vehicle capacity limits, are 

included/excluded orders duplicated etc. Besides such tests on the WMS end, 

the batches may need to go through additional software to be translated into 

pick-rounds. 

For SLAP optimization, integration is more difficult. Firstly, it can generally 

be assumed that CPU-times are going to be high enough to necessitate polling 

or a similar solution. Secondly, the WMS needs to share a picking-log (Section 

3.2.4), i.e., order-picking data that will be used for optimization cost estimates. 

WMS’s usually store such data, but extracting and sharing it can be 

challenging. Thirdly, it needs to share the products that should be assigned or 

re-assigned a location in the SLAP request, as well as available (empty) 

locations (if relevant). This type of sub-selection is necessary as requests 

cannot be arbitrarily large for a reasonable SLAP optimization set up. WMS 

customers may be reluctant to implement this sub-selection, however.  

As a SaaS provider, we often find that negotiations with WMS customers get 

stranded due to these types of integration challenges. The challenges for OBP 

and SLAP optimization described above may be regarded as technically 

surmountable on our SaaS end. For example, the initial work on OBP-based 
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SLAP optimization was deemed too complex for integration and therefore we 

commenced work on the TSP-based SLAP. There are often several additional 

challenges on the WMS end that we do not see, however. WMS’s are complex 

and often imperfect, with brittle dependencies and limitations on what can be 

achieved. Oftentimes, the WMS providers are on a tight budget and cannot 

allocate a sufficient number of man-hours for SaaS integration. Sometimes, a 

WMS manager enthusiastically starts to integrate OBP and SLAP 

optimization, only to give up after finding problems that they themselves were 

not initially aware of.  

3.4.3 Number of Warehouses per Cloud Container  

Kairos Logic AB uses a custom version of the Google Cloud Platform’s (GCP) 

Appengine Flexible. It uses a docker image to build PaaS containers. The 

image includes a URL that points to a cloud bucket that holds warehouse files 

(distance matrix etc.). When a new container is launched, it starts by 

downloading the files from the URL and loads them into RAM. An important 

question is the number of warehouses that should be included in the bucket 

that the URL points to. We explore two possibilities: 

1. The URL points to a bucket with the files for a single warehouse. The 

container instance is dedicated to a single warehouse. 

2. The URL points to a bucket with the files for all warehouses. The 

container instance is deployed with enough memory to include all 

warehouses. 

The first option is more scalable from a technical standpoint, since we assume 

that there will always be a container capable of storing all the relevant files for 

a single warehouse. It is more expensive cost-wise, however, since the minimal 

number of container instances is going to be equal to the number of 

warehouses. If no requests come in from a specific warehouse, there will still 

be a dedicated server running for it.  

The second option is cheaper, since it allows the minimal number of instances 

to be 1 (Appengine Flexible minimum). On the other hand, it clearly comes 

with scalability issues, as the amount of RAM for a single container instance 

is limited.  
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4. Additional Projects 

4.1 Products with multiple locations 

It is common that warehouses store the same product in multiple locations. 

Usually, these locations are close to one another and used to reduce the risk of 

a product running out in a single location. For order-picking optimization, this 

constitutes a problem, as we need to choose which location a vehicle should 

visit to pick a product. Furthermore, the vehicle might need to visit more than 

one location for the product quantity in the order to be filled. It is difficult to 

motivate the inclusion of this scenario in standardized PRP, OBP or SLAP 

optimization. The scenario is intertwined with product put-away and 

replenishment, which are not part of the main scope of the dissertation (Section 

1.1).  

4.2 Batching based on truck loading precedence 

The OBP model in this dissertation (Section 3.2.3) does not delve into what 

happens with orders after they have been picked and delivered to the depot(s). 

But in real warehouses, the OBP is just one step in a logistics chain. One of 

Kairos Logic AB’s clients asked whether OBP optimization can be extended 

to encompass the next step in their logistics chain. A portion of one of their 

warehouses has a staging area, where picked batches are placed before they are 

loaded into delivery trucks. After loading, the delivery trucks are sent on an 

outdoor path with delivery points, where the batch closest to the back door is 

unloaded at the first delivery point, followed by a batch further inside for the 

second delivery point and so on. The batches should be placed in the staging 

area such that the one closest to the delivery truck is the one to be unloaded at 

the last delivery point. This set up comes with certain implications: Firstly, two 

types of batches can be identified. The first type is the warehouse vehicle batch, 

which is a collection of orders which are close to each other in the warehouse. 

The second type is the delivery truck batch, which is one per delivery point. 

This second batch may be much larger than the first, since a delivery point may 

contain more orders than can fit on a single warehouse vehicle.  
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The approach chosen for this problem is to optimize an OBP for every delivery 

point. The first OBP is for the last delivery point and if it has 50 orders, then 

an OBP is constructed with these 50 orders. There are no flat walls inside the 

delivery truck to separate the delivery point batches, as the orders are instead 

stacked more efficiently using a 3D knapsack problem optimizer. Ideas to 

integrate this knapsack optimizer with the OBP proved overly complex for the 

implementation. The placement of the batches before the delivery truck 

loading is therefore only a rough estimate of how the orders are subsequently 

placed inside the truck.  

4.3 Pallet stacking and safety 

The capacity constraints of a warehouse vehicle can take various forms. For 

the OBP experiments in this dissertation, capacity is often described in number 

of orders. This is adequate when the vehicle carries bins, one for each order, 

or when orders are first prepared as empty shipment boxes that are placed on 

the warehouse vehicle. These bins or boxes are filled with the products 

belonging to the respective order as the vehicle moves around the warehouse.  

It is also common that orders are fully packed pallets that are loaded by a 

forklift at the pick locations. The stacking of pallets is constrained in various 

ways. In one project, the aim is to stack as many pallets as possible on a forklift, 

where the stacking depends on the carrying capacity of a pallet, i.e., the weight 

that can be placed on top of a pallet, as well as their length, width and height 

dimensions and the length of the fork. Usually, the dimensions permit a single 

tower of pallets to be placed on the fork, but if the width of these pallets is low 

enough, a second tower can be placed in front of the first.  

Quantitatively, this type of pallet stacking is relatively trivial. The number of 

possible stacks is usually not that large (normally, 1-4 pallets are placed on the 

forklift) and oftentimes the stack is made up of several pallets picked from the 

same location. There are also caveats with targeting this type of problem for 

quantitative optimization.  

Firstly, pushing the bounds for number of pallets on a forklift poses a safety 

hazard. In one project, the safety of the stacking was originally judged by 

experienced human pickers. But management wanted to improve efficiency 

and informed them that they should stack pallets as proposed by optimization 

software. As is often the case with software, however, it can only partially 

replace the judgement of experienced human pickers. One conclusion of this 

project is that the pickers tend to care less about safety when a software dictates 
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what should be placed on the fork and how. Subsequently, an incident with a 

broken pallet ensued. The cause was a forklift that was improperly stacked 

because of a misunderstanding between warehouse management and Kairos 

Logic.  

Another, less critical caveat with this type of optimization is that the forklift 

needs to unpack the stack every time a new pallet is to be added to it. For 

example, if a forklift carries three pallets when it arrives at a new pick location, 

it needs to unload them from the fork, before loading them again with the new 

pallet. Distance minimization becomes more questionable as a KPI for an 

implementation of this procedure. Apart from the time needed to unpack and 

pack the stack of pallets, the picking path through the warehouse can rarely be 

the shortest one: If the forklift is set to pick the bottom and inner-most pallet 

first, followed by one on top or in front of it etc. adhering to constraints, the 

picking path is decided by where the pallets are located, rather than by PRP 

optimization. Some alternatives are possible, where the stack gets re-arranged 

at some pick locations. While there is no doubt that all these considerations 

can be included in an optimization model, it is questionable whether it can be 

standardized for multiple types of forklifts and pallet types.  

4.4 Graphical User Interface (GUI) 

For a company or research project engaged with PRP, OBP and SLAP 

optimization, it is important to be able to visualize order-picking before and 

after optimization. It is important both as a debugging tool, to ensure 

correctness before and after optimization, and to convey a message for 

potential investors, customers and researchers. The main point of the 

visualization is to present the workings of the optimization process in a 

pedagogic and intuitive way. Generally, the difficulty in creating good 

visualizations follows the complexity of the problem: PRP optimization is 

easier to visualize than OBP optimization and OBP optimization is easier to 

visualize than SLAP optimization. The main idea of PRP optimization can be 

visualized by showing a single or a few pick-rounds before and after 

optimization. OBP optimization requires the showing of one pick-round per 

batch, so one can see that the products in a batch are relatively close to each 

other. SLAP optimization requires the showing both of multiple pick-rounds, 

as well as a path or multiple paths related to the reassignment penalty.  

The visualizations thus tend to include multiple pick-rounds, even for small 

problem instances, and if these are plotted together on a single picture, it 

becomes cluttered and difficult to understand. One fix for this problem is to 



71 
 

use a GUI with buttons to click through pick-rounds and to toggle between 

before/after. At Kairos Logic, a proprietary GUI is used internally (mainly for 

debugging), but below one project is described which aims at extending the 

GUI as a service for customers.  

The core idea is that the customer should participate in steps involved in 

digitizing the warehouse and optimizing PRPs, OBPs and SLAPs. One 

identified problem is that customers often doubt the results of optimization. An 

interactive GUI provides the means for customers to learn more and to 

participate in both the digitization and optimization of their warehouse.  

Concerning digitization (Section 3.2.1), a GUI can provide the customer with 

the possibility to add obstacles, unidirectional traffic zones and pick locations 

manually using drag and drop or a coordinate textbox. After a “submit” button 

is pressed, the pick-locations are connected, and the shortest paths and 

distances are generated using the Floyd-Warshall graph algorithm (or similar). 

After the digitization files have been generated, the GUI shows a picture of all 

the generated edges.  

Concerning optimization, the GUI can help convince the warehouse or WMS 

customer that their existing operation can be improved. Without the GUI, the 

customer only has access to an API and documentation describing required and 

optional fields in an optimization request. After they send the request, they 

obtain the optimized response, which includes information on the sequence 

with which products need to be picked, how much distance saving was 

achieved and how much CPU-time was spent. It is understandable that a 

customer may not trust some of this information. To help convince them, they 

can get a visualization of the request and response inside a GUI.  

This type of customer-accessible GUI should not be enforced, but rather 

provided as an optional assistance tool. The customer needs to run some form 

of integration script which builds the optimization request from information in 

the WMS, translates this information into a request according to the SaaS API, 

and sends it to the service URL. After the response has been received, its data 

needs to be integrated back into the WMS. Forcing the customer to carry out 

this WMS – SaaS integration in a GUI takes away flexibility on their end.  

In summary, a GUI provides opportunities for improved customer relations 

and satisfaction, but it also strengthens the argument that the developed 

optimization technology needs to be fast, simple, and flexible (Section 1.7.2). 

Assuming the business is customer-driven, and that customers have different 

ideas of how they want optimization to be visualized, the GUI development 

rate can be expected to be high. The customer only sees the results of 
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optimization once the optimizer has finished its job, so it is clearly an 

advantage if it is fast. Apart from time needed for development, one argument 

against the GUI project is that it risks giving competitors information with 

which to reverse-engineer features of the SaaS. For a small-scale SaaS, 

strengthened customer relations arguably outweigh this risk.  

4.5 Directed and mixed graphs 

The optimization methods described in Section 3.2 assume that the distance 

matrix is symmetrical, i.e., vehicles can turn on the spot and the distance 

between two locations is equal. Real warehouses, however, often include areas 

where vehicles are permitted to travel in only one direction. When a graph of 

the warehouse is built with vertices and edges, it is directed if the edges only 

permit travel in one direction, and mixed if some edges permit travel in one 

direction and some permit travel in both directions. A brief description of the 

process with which directed and mixed graphs are handled is provided below.  

The digitization process is mainly restricted by the requirements of the 

Concorde TSP solver, since the proposed optimization methods rely on it to a 

significant extent. Concorde only works with symmetric distance matrices. For 

directed and mixed graphs, the distance matrix is instead asymmetric, so a 

required pre-processing step is to translate the asymmetric matrix to a 

symmetric one. For details on how this can be done, see Hahsler & Kurt [122]. 

Briefly, the procedure includes the extension of the asymmetric matrix with 

dummy vertices and edges with very large or small distances. The dummy 

vertices are added to the TSP before optimization, and after optimization. The 

procedure is like the one used for symmetric distances and multi-depot TSPs, 

but instead of adding one dummy node to the matrix, it adds one dummy node 

for each location in the TSP.  

Directed and mixed graphs are not deemed suitable for standardized PRP, OBP 

and SLAP optimization. They would be interesting if they significantly affect 

the performance of TSP optimization (as against bi-directional graphs). For 

TSP optimization using Simulated Annealing or OR-tools, no difference in 

performance is observed. For Concorde, some decrease in performance is 

observed, but it is not deemed significant enough for a closer study. Concorde 

uses various geometric heuristics, and the usage of dummy vertices and edges 

with very large distances slows it down in some cases (in the end it always 

seems to find an optimal solution). Directed or mixed graphs also counteract 

standardization as they add some complexity in the description of problem 

instances. The published TSPLIB instances do not include weighted edges or 
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a distance matrix, as these can instead be produced based on the provided 

product and obstacle coordinates. Including edges and their directions would 

add to the size of the instances. One alternative way is to include the directed 

areas as lists of coordinates with corresponding lists of permitted directions, 

but this adds complexity. Before further work on directed and mixed graphs is 

warranted, researchers need to find agreement on what the format for layout-

agnostic PRP, OBP and SLAP instances should be. The proposed format of the 

generated instances is a suggestion, which may be discarded at a future date in 

favor of a different format.  

4.6 TSP optimization using Google maps API 

The only non-warehouse POC involves computing paths for washing 

deliveries using the Google Maps Distance API [123]. This API offers both 

distance calculations and visualizations of planned outdoor routes. The POC is 

aimed at seeing whether a light-weight service can be provided based on $200 

worth of free monthly requests that the API offers. One limitation of the API 

is that Google’s common TSP optimization service, “optimizeWaypoints”, has 

a maximum of 8 locations (it also costs $0.01 per request). Alternatively, a 

possibility is to precompute a distance matrix and then optimize the TSP using 

OR-tools. Google provides a distance matrix API, but it is quite expensive: 

The API charges per element in the distance matrix and 1000 elements costs 

$5. This equates to 40000 elements costing $200. In other words, the 200$ 

quota only suffices to compute a distance matrix with 200 locations. This is 

not enough to cover all the locations that the washing delivery service may 

visit in a month. A conclusion drawn is that Google Maps Distance API is most 

suitable for companies whose delivery vehicles do not make more than 8 stops. 

This POC also shows that one of the main hurdles when developing routing 

services outdoors is the construction or purchase of a distance matrix.  
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5. Conclusion 

In this dissertation, we studied how order-picking optimization can be designed 

and provided as Software as a Service (SaaS) for Warehouse Management 

Systems (WMS). We investigated three optimization problems related to 

order-picking: 

1. The Picker Routing Problem (PRP), where we optimize the shortest 

path that a vehicle travels to pick a set of products.  

2. The Order Batching Problem (OBP), where we optimize how orders 

are distributed among a fleet of vehicles, as well as the corresponding 

PRP for each vehicle.  

3. The Storage Location Assignment Problem (SLAP), where we assign 

or reassign locations for products. After a candidate assignment or 

reassignment has been found, solution cost is obtained by optimizing 

PRPs or OBPs.  

In related work, there are many proposals for how to select and engineer 

features for the PRP, OBP and SLAP. Example features include warehouse 

layouts, locations, dynamicity, stochasticity, capacity and travel constraints 

and cost functions. We make proposals for how features can be selected and 

engineered to promote standardization. We use these features to build and 

publicly share benchmark datasets. We also discuss warehouse digitization and 

how datastructures can be pre-stored in memory to achieve reduced CPU-times 

for subsequent PRP, OBP and SLAP optimization.  

Concerning optimization, we propose heuristic and meta-heuristic algorithms. 

For PRP optimization, we primarily use the Concorde TSP solver. Common 

PRPs rarely exceed a few dozen locations and Concorde is capable of finding 

solutions to those in fractions of a second. Sub-optimal PRP optimization, in 

the form of Google OR-tools TSP optimization suite is also effective for 

common PRPs, as it can find close-to optimal solutions faster than Concorde.  

For OBP optimization, we mainly rely on constructive Seed heuristics and 

Sequential Minimal Distance (SMD) heuristics. We also use Markov Chain 
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Monte Carlo (MCMC) in the form of a Metropolis algorithm. Our OBP 

optimizers construct candidate batches and evaluates them by optimizing their 

corresponding PRPs optimally or sub-optimally. Experiment results show that 

the Seed and SMD heuristics outperform the Metropolis algorithm. For smaller 

OBP instances, we found that close-to-optimal results can be achieved within 

a few seconds. For larger instances, we found that solution improvement 

quickly slows down. For example, costs obtained after 5-10 seconds are only 

4-7% higher than costs obtained after 5 minutes. Warehouse managers often 

prefer OBP solutions to be obtainable quickly, at a small increase in solution 

cost.  

For periodical SLAP optimization, we found that significant improvements are 

achievable using MCMC, but that many questions remain with regard to 

standardization and integration challenges. Apart from questions on what PRP 

and/or OBP features to include in SLAP optimization models, we have 

additional features that also need consideration. One such feature is the cost 

for carrying out a swap between products that are already in the warehouse. 

Since this type of reassignment is optional and not a requirement, a 

reassignment penalty term needs to be included in the cost function.  

Due to the many possible feature combinations in PRPs, OBPs, and SLAPs, as 

well as varying requirements from WMS customers, integrating an 

optimization SaaS with them is often challenging. However, customers are 

generally willing to engage in discussions about order-picking optimization 

and participate in Proof of Concepts (PoC) as part of consultancy efforts.  

The lack of standardization across different systems and processes remains a 

key challenge. The leveraging of effective optimization methods (including 

methods utilizing Machine Learning) suffers without standardized data 

formats and operational protocols. This challenge is emblematic of the 

interdisciplinary nature of the problem, where computer and warehouse 

science must converge to deliver solutions that are not only efficient but 

adaptable to diverse operational environments. For a customer-driven SaaS, 

the human aspect is also important. Customer requirements are not always 

practical or aligned with operational realities, and balancing optimization with 

human factors is critical. Excessive optimization, for instance, can increase 

safety risks by pushing systems or workers beyond sustainable operational 

limits. Striking a balance between efficiency, safety, and adaptability is 

essential, underscoring the need for both technical innovation and pragmatic 

collaboration. 
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Formulation of a Layout-Agnostic Order Batching 

Problem 

Johan Oxenstierna, Louis Janse van Rensburg, Jacek Malec and Volker Krueger 

Abstract 

To date, research on warehouse order-batching has been limited by reliance on 

rigid assumptions regarding rack layouts. Although efficient optimization 

algorithms have been provided for conventional warehouse layouts with 

Manhattan style blocks of racks, they are limited in that they fail to generalize 

to unconventional layouts. This paper builds on a generalized procedure for 

digitization of warehouses where racks and other obstacles are defined using 

two-dimensional polygons. We extend on this digitization procedure to 

introduce a layout-agnostic minisum formulation for the Order Batching 

Problem (OBP), together with a sub-problem for the OBP for a single vehicle, 

the single batch OBP. An algorithm which optimizes the single batch OBP 

iteratively until an approximate solution to the OBP can be obtained, is 

discussed. The formulations will serve as the fundament for further work on 

layout-agnostic OBP optimization and generation of benchmark datasets. 

Experimental results for the digitization process involving various settings are 

presented.  

 

1. Introduction 

Order-picking is “the process of retrieving products from storage areas in 

response to a specific customer request” where “customer request” denotes a 

shipment order consisting of one or several products [1]. Order-picking is 
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accountable for as much as 55% of all operating expenses in a warehouse and 

is considered an important process to optimize [2]. Order-batching is a 

common method with which to conduct order-picking. It means that each 

picker (vehicle) is set to pick a so-called batch of one or more orders [3]. As 

an optimization problem order-batching is known as the Order Batching 

Problem (OBP) [4] or the Joint Order Batching and Picker Routing Problem 

(JOBPRP) [5]. The Picker Routing Problem is a sub-problem of the OBP for 

one vehicle and is here treated as equivalent to the Traveling Salesman 

Problem (TSP) [6]. This paper follows the convention that an “OBP” can 

include TSP optimization without having to include TSP optimization in the 

name of the problem (such as the JOBPRP) [4]. The Picker Routing Problem 

is henceforth referred to as TSP and the Order Batching Problem, which 

includes TSP optimization, as OBP. In the literature the OBP is usually 

formulated as a specific form of the more well-known Vehicle Routing 

Problem (VRP) [7], with two key amendments:  

• Order-integrity: In the OBP products in one order cannot be picked by 

more than one vehicle [8] whereas in the VRP this constraint is not 

used (there is no notion of a warehouse shipment “order” in the VRP) 

[7].  

• Obstacle-layout: We can observe two types of obstacle layouts (see 

Fig 1): In the conventional layout, racks are laid out in a Manhattan 

style blocks. In the unconventional layout, racks or other obstacles can 

be freely placed (see Fig 2. for examples). The unconventional layout 

includes the case when there are no racks or obstacles at all. All 

previous work on the OBP seems to require explicitly a conventional 

layout [5], [8]–[10], while the VRP does not have this requirement. 

 

 

Fig. 1. Example of a conventional layout (left) with 30 racks, 16 aisles and 3 cross-aisles. Adding 
a single or a few irregular racks or other obstacles to the conventional layout renders it 
unconventional. 
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Fig. 2. Eight examples of unconventional warehouse layouts. a) and b) show cases where the layout has been 

built to fit within a non-rectangular outer wall. e) is the so called “fishbone” layout. 

 

The aim of this paper is to formulate an OBP where orders and order-integrity 

are preserved, but where the layout is generalized towards any layout with or 

without polygonal obstacles. This is in line with a future research 

recommendation by Masae et al. [11]: “there is a strong need for developing 

[…] algorithms for […] non-conventional warehouses”. Below are some 

reasons for why this is important: 

• It allows warehouses with unconventional layouts to formulate and 

optimize OBP’s. This includes warehouses divided into zones where 

each zone has a conventional layout.  

• It allows OBP optimization to be used as a tool with which to optimize 

warehouse layouts beyond conventional layouts.  

• Problems in non-warehouse domains, such as agriculture, mining, 

road and aerial logistics to be explored as OBP’s. The OBP is 

fundamentally similar to batch processing [12] where each process 
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consists of constrained sub-processes (similar to order-integrity), and 

the Key Performance Indicator (KPI) depends on how well the sub-

processes operate when they are combined. These types of broadened 

perspectives on the OBP can only be pursued if it is generalized 

beyond conventional layouts. 

The paper continues with a literature review (Section 2), followed by the OBP 

formulation (Section 3). The formulation builds on a digitization process which 

generates the distances and shortest paths between all defined locations for a 

given warehouse [13]. The feasibility of the digitization process is examined 

in experiments involving various warehouse configurations (Section 4). 

 

2. Literature Review 

The OBP is a specific form of the Vehicle Routing Problem (VRP) [7] and a 

specific VRP-variant known as the Steiner-VRP [14]. A key feature of the 

Steiner-VRP is that multiple visits to same location (representing a vertex in a 

graph) are allowed [5], [8], [10], [14]. OBP’s and VRP’s are known to be NP-

hard [15], [16]. OBP’s have been formulated using integer programming (e.g. 

[14]) or set-partitioning (e.g. [4]), with a heavy reliance on heuristics for a 

conventional warehouse layout. The conventional layout is modeled such that 

obstacles (racks) are arranged with parallel “aisles” (between racks) and 

parallel “cross-aisles” (between sections of racks) [9], [14]. Using such 

restrictive definitions for aisles and cross-aisles makes it possible to formulate 

heuristics that reduce the solution space of an OBP. Briant et al. [9], for 

example, use cutting planes and various relaxation heuristics to formulate an 

OBP which they then propose optimality bounds for. They use a conventional 

layout with 8 aisles and 3 cross-aisles, which corresponds to the size of the 

warehouse shown in Fig. 2 d).  
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Fig. 3. A Steiner-VRP (left) plotted against the proposed layout-agnostic OBP in a setting without any 

obstacles. The dots denote products and the colors orders which the products belong to. The outlined green 

and red products in the middle share the same location. The difference between the Steiner-VRP and the 

OBP seen here is solely due to the order-integrity constraint. The vehicle distances may be longer in the 

OBP but the products which they are assigned to carry are more associated (by order color in this 

example). Order-integrity is used to e.g. reduce a later time-consuming sorting effort or to reduce pick-

error i.e. the risk of the wrong product going into the wrong order.  

The conventional layout appears in formulations as “number of aisles” [8], “the 

cross-distance between two consecutive aisles” [4], “number of vertices in the 

subaisle” [14] or “intra-aisle distance” [17]. They are used as required inputs 

for OBP optimization. Some authors have called for formulations involving 

more layouts than the conventional layout [11], [18]–[21]. Without the 

conventional layout, however, it is a challenging task to effectively constrain 

an OBP solution space. This can for instance be exemplified in the scenario 

when there are no obstacles, and each order contains a single product. In that 

case the OBP is equivalent to a Steiner-VRP, and this problem has no yet 

proposed optimal solution [14]. Proposed OBP optimization algorithms for the 

conventional layout include dynamic programming [9], datamining [22], 

clustering [10] and meta-heuristics such as Tabu Search [23], Ant Colony 

Optimization [15] and Genetic Algorithms [24]. In the VRP research domain 

problem formulations are generally not concerned with obstacle layouts [25]. 

Instead the only requirement in a VRP is usually a cost matrix, providing the 

travel distance or time between all pairs of locations [7], [26]. In a VRP it is 

generally assumed that this cost matrix already exists, or that it is produced in 
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a prior data collection process. In research on the OBP, on the other hand, 

plenty of attention is usually given to how to produce the cost matrix and how 

to define shortest paths or TSP’s in an environment with obstacles. This can 

also be seen in some papers on VRP’s that include obstacles (e.g. [27] and 

[28]). Concerning where vehicles begin and end their trips, most OBP papers 

assume that the origin and destination location is the same (usually this 

location is named depot). If this is not the case, the OBP is denoted multi-depot 

or a Dial-A-Ride-Problem  (DARP) [21]. An example of this is when vehicles 

have one location where they drop off their picked orders, and where there are 

one or several locations where they can start their rides.  

 

3. Problem Formulation 

3.1 Preliminaries 

The proposed OBP formulation is based on an undirected, symmetric and 

weighted graph. Without obstacles (racks or other) no graph is needed since 

distances between all pairs of locations in that case can be assumed to be 

Euclidean. Also, in the obstacle free case, the shortest path between any two 

locations can be assumed to be a single edge. With obstacles, however, shortest 

distances must be calculated based on the shortest paths that circumvent 

obstacles, and this is achieved here using the Floyd-Warshall graph algorithm 

[13], [29]. Concerning number of depots the below formulation assumes both 

an origin and a destination location for vehicles is formulated (but they can 

share the same coordinates).  

First a set of locations is defined as ℒ ⊂ ℝ+ × ℝ+. This set consists of different 

types of locations: 𝑙𝑠 ∈ ℒ is the starting (origin) location for all vehicles. 𝑙𝑑 ∈
ℒ is the destination location for all vehicles. ℒ𝒫 ⊂ ℒ is the set of product 

locations. ℒ𝒰 ⊂ ℒ is a union of sets of obstacles: ℒ𝒰 = ∪𝑖 𝑢𝑖, 𝑖 ∈ ℕ+ where 

each 𝑢𝑖 is a polygonal obstacle with a set of corner locations 𝑢𝑖 =

{𝑙𝑖
1, 𝑙𝑖

2, . . . , 𝑙𝑖
𝑘} ⊆ ℒ𝒰, 𝑘 ∈ ℕ+. All of the locations can thus be summarized as a 

union: ℒ = {𝑙𝑠} ∪ {𝑙𝑑} ∪ ℒ𝒫 ∪ ℒ𝒰. The products which are to be collected are 

defined as a set 𝒫 = {𝑝1, 𝑝2, … , 𝑝𝑛}, 𝑛 ∈ ℕ+. Each product 𝑝 ∈ 𝒫 has a 

location 𝑙𝑜𝑐𝑝: 𝒫 → ℒ𝒫 , weight 𝑤𝑝: 𝒫 → ℝ+ and volume 𝑣𝑜𝑙𝑝: 𝒫 → ℝ+. The 

unassigned orders which are to be batched are defined as a subset of all 
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possible combinations of products 𝒪 ⊂ 2𝒫. The locations of the products in an 

order 𝑜 ∈ 𝒪 are defined as a function 𝑙𝑜𝑐𝑜: 𝒪 → 2ℒ𝒫  . Order weight and 

volume quantities are defined as 𝑤𝑜:  𝒪 → ℝ+ and 𝑣𝑜𝑙𝑜:  𝒪 → ℝ+. 𝑤(𝑜) =
∑ 𝑤(𝑝)𝑝∈𝑜 , 𝑣𝑜𝑙(𝑜)  =  ∑ 𝑣𝑜𝑙(𝑝)𝑝∈𝑜 . Vehicles are defined as ℳ =

{(𝑤, 𝑣𝑜𝑙, 𝑘, 𝑖𝑑)| 𝑤, 𝑣𝑜𝑙, 𝑖𝑑 ∈ ℝ+, 𝑘 ∈ ℕ+} where 𝑤 denotes weight capacity, 

𝑣𝑜𝑙 denotes volume capacity, 𝑘 denotes the maximum number of orders the 

vehicle can carry and 𝑖𝑑 a unique identifier of a vehicle. The capacities of a 

single vehicle 𝑚 ∈ ℳ are provided using functions 𝑤𝑚:  ℳ →
ℝ+, 𝑣𝑜𝑙𝑚:  ℳ → ℝ+ and 𝑘𝑚: ℳ → ℕ+.  

The digital model of the warehouse is represented as a graph with a set of 

vertices 𝒱 = {𝑣1, 𝑣2, … , 𝑣𝑛}, 𝑛 =  |ℒ|. 𝒱 consists of different types of vertices 

denoted as follows: 𝑣𝑠 ∈ 𝒱 is a starting (origin) vertex for vehicles, 𝑣𝑑 ∈ 𝒱 is 

a destination vertex for vehicles, 𝒱ℒ𝒫
⊂ 𝒱 is a set of product location vertices 

and  𝒱𝒰 ⊂ 𝒱 is a set of obstacle corner vertices. The union of all vertices, 𝒱 =

{𝑣𝑠} ∪ {𝑣𝑑} ∪ 𝒱ℒ𝒫
∪ 𝒱𝒰, are defined similarly to the locations apart from one 

important difference: There may be several products in one location and there 

is one vertex per product location, not one vertex per product (this is to limit 

the size of the graph). To get a set of locations from a corresponding set of 

vertices the function 𝑙𝑜𝑐𝒱: 𝒱 → ℒ is used. To get a set of vertices from a set of 

locations is similarly provided by the function 𝑣 ℒ: ℒ → 𝒱.  

The set of possible batches is defined as ℬ ⊂  2𝒪, 𝑏 ∈ ℬ, 𝑏 ∈ 2𝒪, 𝑏 ≠ ∅. The 

locations of the products in the batch can be obtained using function 𝑙𝑜𝑐𝑏: ℬ →
2ℒ𝒫 .  𝑙𝑜𝑐(𝑏) =∪𝑜∈𝑏 𝑙𝑜𝑐(𝑜). Similarly, the vertices in the batch are 𝑣𝑏: ℬ →

2 𝒱ℒ𝒫 .  𝑣(𝑏) =∪𝑜∈𝑏 𝑣(𝑙𝑜𝑐(𝑜)). Batch weight and volume quantities are 

defined as 𝑤𝑏: ℬ → ℝ+ and 𝑣𝑜𝑙𝑏: ℬ → ℝ+. The number of orders in a batch 

is defined as 𝑘𝑏: ℬ → ℕ+ or |𝑏|.  

The set of edges E is defined such that each edge is an ordered pair 𝑒 ∈ 𝐸 =
{(𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝒱, i ≠ 𝑗} where 𝑖 is an origin and 𝑗 a destination vertex. 𝐸 

excludes any edge which passes through the hull of any polygon in 𝒰 (for 

details on how this can be achieved see [13]). Edges between adjacent corners 

in any polygon 𝑢 ∈ 𝒰 are not excluded in 𝐸. The edges and vertices are then 

used to construct the symmetric undirected weighted graph 𝐺 = (𝒱, 𝐸).  

A shortest paths distance matrix 𝐷: 𝒱 × 𝒱 → ℝ+ provides the minimum sum 

of edge distances between any two vertices in 𝒱 without crossing any hull in 

ℒ𝒰.  Each edge cost 𝑑𝑙𝑜𝑐(𝑖),𝑙𝑜𝑐(𝑗) ∈ 𝐷 (henceforth 𝑑𝑖𝑗) is between two 

vertices, 𝑖, 𝑗 ∈ 𝒱, 𝑖 ≠ 𝑗.  If there exists an unobstructed path between 

𝑙𝑜𝑐(𝑖) and 𝑙𝑜𝑐(𝑗) (which does not go through any obstacle hull) the distance 
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is Euclidean ‖𝑙𝑜𝑐(𝑖) − 𝑙𝑜𝑐(𝑗)‖. If obstacles must be bypassed to go from 

𝑙𝑜𝑐(𝑖) to 𝑙𝑜𝑐(𝑗), however, the distance is a sum of Euclidean distances 

following the shortest path between them (without crossing obstacles). The 

Floyd-Marshall graph algorithm is used to compute these shortest paths and 

distances exactly [13].  

The set of vertices, including origin and destination vertex, that have to be 

visited to pick a batch is defined as 𝒱𝑏 = {𝑣𝑠} ∪ 𝑣(𝑏) ∪ {𝑣𝑑}, 𝑏 ∈ ℬ. A 

function can then be built which provides the sequence of vertex visits in a 

batch TSP solution: 

𝑇𝑏: 𝒱𝑏 → {𝑣𝑖}𝑖=1
𝑛 , 𝑛 = |𝒱𝑏|, (1) 

𝑇(𝑏)𝑖 = {

𝑣𝑠 𝑖 = 1
𝑣𝑘 1 < 𝑖 < 𝑛 
𝑣𝑑 𝑖 = 𝑛

 
(2) 

where 𝑣𝑘 ∈ 𝑣(𝑏) and 𝑖 gives the sequence of visits. The distance of a batch 

TSP solution is similarly provided in a function: 

 

𝐷𝑏: 𝑇(𝑏)𝑖  →  ℝ+, 𝑖 ∈ ℕ+, 𝑖 ≤ |𝑇(𝑏)|.   (3) 

𝐷(𝑏) = ∑ 𝑑𝑇(𝑏)𝑖𝑇(𝑏)𝑗
, 𝑖, 𝑗 ∈ ℕ+, 𝑗 = 𝑖 + 1, 𝑖 < |𝑇(𝑏)| (4) 

Note 𝐷𝑏could be renamed 𝐷𝑇𝑏
 to clarify that the distance of a batch is 

computed over a certain path to visit all the products in the batch. 

𝒱, 𝐸, 𝐺 and 𝐷 are assumed to be produced in a digitization preprocessing step 

and the computational effort at this stage is assumed to not be included in 

subsequent OBP optimization. Out of  𝒱, 𝐸, 𝐺 and 𝐷 only 𝐷 is needed as input 

for OBP optimization assuming vehicles are capable of finding the shortest 

path between any two locations on their own. 𝒱, 𝐸, 𝐺 are also needed for 

directions on how to follow the shortest path, and if visualizations of edges are 

sought, both of which are arguably important in an industrial OBP optimization 

service. One example of a visualization of 𝐺 and a small OBP optimization 

instance can be seen in Fig. 4 below:  
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Fig. 4. Visualization of the digital graph (𝐺) of a warehouse, and an example OBP with two orders, two 

vehicles and vehicle capacity of one order. Each blue line is an edge 𝑒 ∈ 𝐸 that connects two vertices 

(𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝒱. The white hulls are racks (obstacles) laid out in an “unconventional” way and no edges pass 

through them. The orange vertices show a subset of 𝒱𝒰 and the green and yellow vertices along the racks 

are the sought products in  𝒱ℒ𝒫
 (where color indicates which order it belongs to). Note one of the products 

is visited by both vehicles. At the bottom the origin and destination, 𝑣𝑠 and 𝑣𝑑  can be seen (blue and red 

respectively). The OBP solution is here shown as the red and lime edges following the shortest paths between 

𝑣𝑠, the yellow or green vertices and 𝑣𝑑 (the two paths are obtained using 𝑇𝑏 above).  

3.2 General OBP formulation 

A set-partitioning formulation with an exponential number of binary variables 

is used to formulate the layout-agnostic general OBP. The binary decision 

variable 𝑥𝑚𝑏 is used to indicate whether batch 𝑏 ∈ ℬ is assigned to vehicle 

𝑚 ∈ ℳ (𝑥𝑚𝑏 = 1, if 𝑚 is assigned to 𝑏, 𝑥𝑚𝑏  = 0 otherwise). The binary 

decision variable 𝑥𝑚𝑜 is used to indicate whether order 𝑜 ∈ 𝒪 is assigned to 

vehicle 𝑚 ∈ ℳ (𝑥𝑚𝑜 = 1 if 𝑚 is assigned 𝑜, 𝑥𝑚𝑜 =  0 otherwise). The 

binary decision variable 𝑥𝑚𝑙 is used to indicate whether vehicle 𝑚 visits 

location 𝑙 ∈ ℒ𝒫 (𝑥𝑚𝑙 = 1 if 𝑚 visits 𝑙, 𝑥𝑚𝑙 = 0 otherwise).  

 

𝑚𝑖𝑛 ∑ 𝐷(𝑏)𝑥𝑚𝑏 ,

𝑏∈ℬ 

𝑚 ∈ ℳ 

s.t. 

 

s.t. 

(5) 
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∑ 𝑥𝑚𝑜

𝑚 ∈ ℳ

= 1, ∀𝑜 ∈ 𝒪 

 

(6) 
 

∑ 𝑥𝑚𝑙

𝑙∈𝑙𝑜𝑐(𝑜)

≥ 𝑥𝑚𝑜, ∀𝑜 ∈ 𝒪, 𝑚 ∈ ℳ 
(7) 

𝑞(𝑏) ≤ 𝑞(𝑚)𝑥𝑚𝑏 , 𝑏 ∈ ℬ, 𝑞 ∈ {𝑤, 𝑣𝑜𝑙, 𝑘}, 𝑚 ∈ ℳ 

 

(8) 

The optimization aim of the OBP (5) is to assign batches to vehicles such that 

the sum of the distances of all batches is minimized. (6) ensures that each 

unassigned order is assigned to exactly one vehicle (order-integrity). (7) 

ensures that every product location in every order assigned to a vehicle is 

visited at least once. This inequality is what renders the OBP a general Steiner-

VRP. (8) ensures capacity of vehicles is never exceeded. 

3.3. Single batch OBP formulation 

The general OBP formulation is problematic to work with due to the large 

number of possible combinations of vehicles and batches. Below is a proposal 

for a more tractable problem where the aim is to find a batch for an already 

selected vehicle. After vehicle m has been selected the aim is to assign as many 

orders as possible to it while keeping batch distance at a minimum:  

 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑏∈ℬ

𝐷(𝑏) (9) 

 

 

 

 

 

 

 

∃𝑞(𝑞(𝑏) + 𝑞(𝑜)  ≥  𝑞(𝑚)), ∀𝑜 ∈ 𝒪, 𝑜 ∉ 𝑏, 𝑞 ∈ {𝑤, 𝑣𝑜𝑙, 𝑘} (10) 

  

where 𝑘(𝑜) (i.e. the number of orders in an order) is 1. The aim in the single 

batch OBP (9) is to, for a given vehicle 𝑚, find a single batch 𝑏 with the 

minimal batch distance. Constraints (6), (7), and (8) from the general OBP still 

apply (for the given vehicle). Constraint (10) is further added to ensure that the 

number of orders in the batch is as large as possible (for all unassigned orders 

there exists a weight, volume or number of orders quantity which will exceed 

vehicle capacity if the order is added to the batch). Without this maximization 

of number of orders an optimization algorithm would always create a batch 

with just a single order because this would produce the minimal batch distance. 

The single batch OBP formulation is a specific version of the so called 
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minimum cost maximal knapsack packing problem (MCMKP) if distance is 

treated as “profit” and number of orders as knapsack “weight” (according to 

the definition by [30]).  Note in the formulation here batch “weight” and 

“volume” are not included in the maximization since this would impose 

decision making over the importance of the different quantities (which one is 

most important to maximize while not exceeding vehicle capacity). The 

intention of the single batch OBP formulation is to provide the means with 

which to build an efficient single batch OBP optimization algorithm. This 

algorithm can then be used to produce one batch at a time within an algorithm 

which optimizes the general OBP, as proposed in Algorithm 1 below: 

 

 

 

Algorithm 1 runs with the assumption that there are always enough vehicles to 

choose from, and it creates single batches until there are no more unassigned 

orders left. The total cost is expressed in the TSP path distances of the 

batches 𝐷(𝑏). After a batch has been created its orders are removed from 𝒪.  

 

4. Experimental results 

This section evaluates the computational effort and memory requirement 

needed to generate the datastructures used by the formulation in Section 3. The 

only datastructure needed for OBP optimization is the distance matrix 𝐷, but 

graph 𝐺, including shortest paths between all locations are also included (Table 

1). 
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Computational time and memory requirement grows fast with number of 

locations in the digitization procedure. The largest instance included 6491 

defined locations and required 18 hours of CPU-time. Please note the 

computation only has to be run once (and re-run if the obstacle layout is 

changed in the warehouse). Once the graph has been generated, distances and 

shortest paths can be queried quickly by pre-allocating them in Random Access 

Memory (RAM), which is why RAM usage is also a relevant parameter. 

“Number of locations”, denoted as |ℒ| in Section 3, and the number of products 

in each defined location, varies depending on precision sought in the 

digitization process. For example, the warehouse denoted c9543_ARA, holds 

around 40000 products, but there are only 4037 defined locations. Each 

location in that case represents the products within an area of around 3 𝑚2 on 

the horizontal axis and 5 shelf levels on the vertical axis, with a total of around 

10 products represented by every defined location. Clearly, a faster digitization 

process would be achieved if more products were mapped to the same 

locations, but then the digital model would be less precise. The tradeoff 

between memory and CPU-time on the one hand, and digitization precision on 

the other, is an interesting topic left for future work.  

 

Table 1. Experimental results for the digitization of distances and shortest paths. 
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5. Conclusion 

This paper set out to formulate an Order Batching Problem (OBP) that does 

not depend on the way in which racks or other obstacles are laid out in the 

warehouse. A digitization procedure to generate necessary datastructures was 

first described. A minisum set-partitioning formulation with an exponential 

number of binary variables was introduced for the layout-agnostic OBP. A 

more tractable version of the OBP, the single batch OBP, was additionally 

formulated where the aim is to find a single batch for an already specified 

vehicle. Experiments evaluating CPU-times and memory footprints for 

generating necessary datastructures was presented. In ensuing work new layout 

agnostic OBP optimization algorithms and benchmark instances will be 

introduced.   
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Abstract. Order-batching is an important methodology in warehouse
material handling. This paper addresses three identified shortcomings in
the current literature on order-batching optimization. The first concerns
the overly large dependence on conventional warehouse layouts. The sec-
ond is a lack of proposed optimization methods capable of producing
approximate solutions in minimal computational time. The third is a
scarcity of benchmark datasets, which are necessary for data-driven per-
formance evaluation. This paper introduces an optimization algorithm,
SBI, capable of generating reasonably strong solutions to order-batching
problems for any warehouse layout at great speed. On an existing bench-
mark dataset for a conventional layout, Foodmart, results show that the
algorithm on average used 6.9% computational time and 105.8% travel
cost relative to the state of the art. New benchmark instances and pro-
posed solutions for various layouts and problem settings were shared on
a public repository.

Keywords: order-batching Problem · Order Picking · Discrete opti-
mization

1 INTRODUCTION

There are many optimizable processes within warehouse operations. One of
these is order-picking, which refers to the retrieval of shipment orders, where
each order contains one or several products (items stored in the warehouse) [23].
As much as 55% of all operating expenses in a warehouse are allocated for
order-picking [21]. A common method with which to conduct order-picking is
order-batching, where each picker (vehicle) is set to pick a batch of one or
more orders [37]. Within optimization literature order-batching is known as the
Order-Batching Problem (OBP) [15] or the Joint Order-Batching and Picker
Routing Problem (JOBPRP) [39]. The Picker Routing Problem is the Traveling

⋆ Supported by the Wallenberg Autonomous Systems Program.



Salesman Problem (TSP) [33] applied in warehouses (henceforth the Picker
Routing Problem is referred to as TSP). Most of the literature assesses quality
of batches based on travel cost estimation while still calling the problem an
OBP (without incorporating picker routing in the term), and this paper follows
this convention. The OBP is usually formulated as a special version of the more
well known Vehicle Routing Problem (VRP) [13]. While the general objective
in the OBP is the same as in the VRP, i.e., to assign a set of vehicles to visit
a set of locations at minimum travel cost, the literature on the OBP includes
two distinguishing features:

– Order-integrity : In the OBP products of one order cannot be picked by more
than one vehicle [18] whereas in the VRP this constraint is not used (orders
are not defined in the VRP) [13].

– Obstacle-layout : As far as we are aware, all previous work on the OBP
requires a certain form of obstacle layout in the warehouse (the conventional
layout) (e.g. [5,24,38]). The conventional layout means that warehouse racks
are placed in Manhattan style blocks with parallel aisles and cross-aisles (see
Figure 1 a). The VRP does not have this requirement.

We are not aware of any reference in the literature which suggests a proportion of
conventional versus unconventional layouts in the warehousing domain. Figure 1
includes examples of unconventional layouts used in industry. We see an overly
large reliance on conventional layouts as a shortcoming in research on OBP
optimization.

Fig. 1: Examples of warehouse layouts. All except a) are unconventional.

A second identified shortcoming concerns the subject of an OBP optimization
module’s required computational time, versus the ease with which it can be
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integrated with a Warehouse Management System (WMS). The WMS manages
the overall operation of a warehouse and there is a complex interaction between
processes such as order-picking, delivery scheduling, quality assurance, location
tracking, packing, verification, shipping, replenishment, yard management, la-
bor management etc., and time margins are usually tight [4]. The WMS gets
orders for picking dynamically during the workday. If a subset of these orders
are sent to an optimization module, which will select some of them to be picked
by a vehicle, it is therefore preferable, from an optimization point of view, to
have this selection and corresponding picking tour computed before new or-
ders have arrived to the warehouse. The simplest form of integration is by a
synchronous request/response cycle between the WMS and the optimization
module, instead of an asynchronous setup where the WMS first sends a request
for optimization followed by the collection of a response at a later time (when
the original request may already be obsolete). Synchronous request/response is
only possible if optimization can be completed within a few seconds. This paper
showcases the kind of OBP optimization performance achievable in such a short
time.

A third identified shortcoming is a scarcity of publicly shared benchmark
datasets on the OBP. These types of datasets are crucial to allow for experiment
reproducibility and peer collaboration.

Our contributions are as follows:

1. The introduction of an optimization algorithm, SingleBatchIterated (SBI),
with capability of producing fast approximate solutions to the OBP, irre-
spective of warehouse layout. SBI’s performance is evaluated against the
state of the art on Foodmart, a publicly available dataset, which models
a warehouse with a conventional layout. The evaluation concerns distance
minimization as well as computational time.

2. The introduction of a publicly shared OBP dataset with six types of ware-
house layouts and 203 test-instances. Optimization results using SBI and
various settings are included in each instance.

2 LITERATURE REVIEW

OBP’s for warehouses with conventional layouts have been formulated using
integer programming (e.g. [39]) or set-partitioning (e.g. [15]). The conventional
layout appears in these formulations as required input parameters such as “num-
ber of aisles” [5], “intra-aisle distance” [7], “the cross-distance between two
consecutive aisles” [15] or “number of vertices in the subaisle” [39]. Some au-
thors have requested investigations into more layouts than the conventional
layout [14, 16, 18, 27]. One benefit of this generalization is that more problem
scenarios within logistics could be explored as OBP’s. One drawback is that it
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is very challenging to reduce the OBP solution space without taking advantage
of regularities in the layout [39].

Authors often discuss OBP optimization with regard to two fundamental
components: 1. Order to vehicle assignments. 2. Solving the TSP’s needed to
visit all products in the proposed order assignments. The two components can
either be optimized jointly [39] or in separate phases [3,38]. The TSP component
is often optimized using linear time S-shape or Largest-gap heuristics [18, 35]
which are specifically designed for conventional layouts. The order to vehicle as-
signment component is often optimized using so called proximity batching, which
heuristically ensures vehicles are assigned orders whose pick products are lo-
cated close together [15]. Sharp & Gibson [37] propose First-Come-First-Served
(FCFS), Space Filling Curve (SFC) and Sequential Minimal Distance (SMD)
heuristics to ensure closeness between batched products. Rosenwein [36] pro-
poses Minimum Additional Aisle (MAA) and Centre of Gravity (COG) heuris-
tics. Ho et al. [20] propose 25 different heuristics to initialize and then add one
order at a time to a batch until vehicle capacity is exceeded. These heuristics
are sometimes collectively referred to as seed heuristics or seed algorithms [22].
Another heuristic optimization method for order to vehicle assignment is the
so called Clark & Wright (C&W) savings algorithm [5]. In this algorithm travel
cost to pick individual orders are first estimated and then compared against the
cost required to pick larger collections of orders. This algorithm is known to pro-
duce batches with less travel cost than seed algorithms, while the computational
effort is 100-200 times greater [22].

The OBP optimization objective can be stated as minimizing the sum of
all TSP solution costs needed to pick all products (henceforth referred to as
minisum) [5,6] or to minimize the maximum TSP solution costs (minimax ) [18].
Solution cost is mostly expressed in terms of distance or time. The latter is more
complex but also more realistic to work with as it involves predicting vehicle
velocities, time to search for and pick items on shelves etc.

There is a broad array of focus areas in the literature on OBP optimiza-
tion, reflecting different types of warehouse models and constraints. Chew &
Tang [11], for example, examine the relationship between the travel cost of a
vehicle, number of available vehicles and where products are stored in the ware-
house. The latter is an optimization problem on its own called the Storage Lo-
cation Assignment Problem (SLAP) [9]. It is rarely studied in conjunction with
batching although there is a clear interdependence [18,29]. If there are different
origin and destination locations for vehicles the OBP is said to be a multi-depot
or Dial-A-Ride Problem (DARP) [18]. A basic multi-depot example is whenever
vehicles are set to drop off their picked orders at one pre-designated location,
then move to another pre-designated location to collect empty boxes, i.e. orders
that have not been picked yet, before moving out to collect a new batch. If all
products that need to be picked are assumed to be known apriori the OBP is
said to be static or off-line as opposed to dynamic or on-line [40]. Proposed op-
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timization programs for the OBP versions described above include integer and
mixed integer [5], dynamic programming [6], data mining [10], clustering [24]
and meta-heuristics such as Tabu Search [19], Ant Colony Optimization [26]
and Genetic Algorithms [8].

Computational time used for OBP optimization and its relevance within
warehouse operations is a topic only discussed on a high level if at all in the
literature. Some authors set timeouts for optimization but these are only ar-
bitrarily defined to simulate a ”tolerable” time horizon [24]. The largest test-
instance results with 30 - 5000 orders in Briant et al. [6], were achieved after
optimization was set to run between 30 minutes to 2 hours. Briant et al., do not
discuss whether a WMS provider would be interested in allocating 30 minutes
for generating 6 optimized batches out of 30 unassigned orders.

There exist two OBP benchmark datasets: Foodmart [39] and HappyChic [6]
which are designed for static OBP’s and two conventional layouts. The vast ma-
jority of benchmarking in OBP research is not carried out on public datasets,
but instead on a described model/simulation of a warehouse with a conventional
layout. For comparison, in the related research domain on the Vehicle Rout-
ing Problem (VRP), there are several widely used benchmark datasets which
researchers use to evaluate optimization performance, including the Solomon,
Christofides, Taillard, Augerat et al., Fisher and Kilby instances [28, 30–32]. A
commonly used data format for VRP instances is TSPLIB [17]. We have ex-
tended on TSPLIB to introduce new OBP instances in the experimental part
of this paper (Section 5).

3 PRELIMINARIES

In this section we define all relevant terms and parameters that will be needed
for the reminder of the paper. For better readability, we keep the definitions on
an intuitive level and use mathematical precision only where necessary.

A batch b is defined as a set of orders from customers, selected out of a
set of unassigned orders. The unassigned orders are denoted O and the set of
all possible batches is denoted B. Each order contains a set of products and
each product has a volume and weight. A batch is picked by a vehicle, m,
selected out of a set of available vehicles, m ∈ M . The vehicle’s capacities are
expressed in number of orders, weight and volume. Each product has a location
in the warehouse. The union of all locations in a batch b is retrievable with a
function locb. The sequence of location visits a vehicle follows to pick a batch
(including an origin and a destination location for the vehicle) is computable
with a function T b. Note T b gives a solution to a Traveling Salesman Problem
(TSP). The distance of T b is computable with a function Db. The Db function
makes use of a distance matrix which contains the shortest distance between
all locations in a given warehouse (without crossing obstacles). The distance
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matrix is assumed pre-computed. For a presentation of the digitization steps
followed to produce it see [34].

The optimization objective of the minisum OBP [5,15,19] is to assign batches
to vehicles such that the distance required to pick the orders is minimized, while
not breaking any of the following constraints:

1. Each unassigned order is assigned to exactly one vehicle (order-integrity).
2. Each product location in each order assigned to a vehicle must be visited

at least once.
3. Capacities of vehicles may never be exceeded.

The proposed optimization algorithm (Section 4) makes use of an optimization
module which optimizes a more tractable form of the OBP, the so called single
batch OBP. The optimization objective of the single batch OBP is to find a
single batch b with the minimal batch distance. Constraints 2 and 3 still apply
for the single batch version of the problem. The following additional constraint
is added:

4. The number of orders in a single batch must be as large as possible.

Without this last constraint i.e. the maximization of number of orders, a single
batch optimization algorithm would always create a batch with just a single or-
der. This is because the minimal batch distance is always achieved if the batch
is made up of just a single order. Note that it is possible to define constraint 4
as both a constraint and an objective. Constraint 4 is delimited from including
weight and volume of products in the maximization since this would necessi-
tate decision making over whether weigth, volume or number of orders is more
important. Both above models are concerned with static OBP’s (Section 2) i.e.
ones where all unassigned orders can be batched at any time.

4 OPTIMIZATION ALGORITHM

In this section we will introduce the SingleBatchIterated (SBI) optimization al-
gorithm, which produces an approximate solution to the minisum OBP. Inter-
nally it makes use of the SingleBatch algorithm, which produces an approximate
solution to the single batch OBP (Section 3). SingleBatch is shown in the lower
rectangular box in Fig 2. It is used to produce single batches and corresponding
picking tours iteratively until there are no more unassigned orders left.
A vehicle is first selected from a set of vehicles (a) and a subset of unassigned
orders from the set of all unassigned orders is selected (b). This subset selection
is done to reduce the amount of computational time needed for the subsequent
optimization. A single batch b as well as a TSP solution for that batch are then
computed using the SingleBatch optimization algorithm (c). The distance of
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Fig. 2: Flowchart showing Sin-
gleBatchIterated (SBI). First
unassigned orders are processed
according to priority and a sub-
set of orders is then sent to the
SingleBatch optimization algo-
rithm (lower box), which pro-
duces a single batch and the TSP
solution required to pick that
batch. The algorithm runs until
all unassigned orders have been
batched.

the TSP solution is added to the total cost of the OBP solution (initialized as
0). The selected vehicle is dispatched to pick batch b (d). The orders in b are
removed from the set of unassigned orders (e). The steps in Fig 2 correspond
to Algorithm 1 shown below.

Algorithm 1: SBI

cost ← 0
while O do

m← select vehicle(M)
Os ← select subset(O)
b← single batch(Os,m,D)
cost = cost +D(b)

end

Algorithm 2: SingleBatch

single batch(Os,m,D)

// Phase 1
bord ← seed algorithm(Os,m,D)
// Phase 2
btour ← solve tsp(b,D)
return b

The SingleBatch algorithm, Algorithm 2, takes a subset of unassigned orders
Os, a vehicle m and the distance matrix D as input. Order selection using one
of two seed algorithms is used to initialize a batch and assign orders to it (bord)
until vehicle capacity runs out. A tour to pick the batch (btour) is computed
using the Concorde TSP solver (details for Concorde are beyond the scope of
this paper, for details see [2, 12]). The SingleBatch function returns the batch
(including the orders and the tour).

SBI requires that there are enough vehicles to batch all orders. This delim-
itation is used because the vehicle selection part is handled by the Warehouse
Management System (WMS) in the intended industrial application (the WMS
takes over the full handling of the upper rectangle in Fig 2, i.e., it decides when
and which vehicles should be assigned a batch).

The purpose of the SingleBatch seed algorithm (inside Algorithm 2) is to
return a batch of orders that allows subsequent TSP optimization (for the
locations in that batch) to result in a short distance. One way to achieve a
batch selection quickly is to use heuristics such as Sequential Minimal Distance
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(SMD) [37] or Centre of Gravity (COG) [36], and these are tested and compared
in the experimental part of this paper. SMD and COG can be used to output a
scalar value (”distance”) that estimates the distance that would be achieved if
the locations of the products of two orders were used to formulate and optimize
a TSP. The ”seed algorithm” works sequentially by adding an order at a time to
a sequence of assigned orders (i.e. the single batch). The ”seed order” denotes
the order which was last added to the sequence (while the sequence is being
populated). SMD and COG are used to search for an unassigned order, with a
low ”distance” to the seed order, to add next. The first order in the sequence
can for example be selected randomly [37]. In SingleBatch’s seed algorithm it is
instead selected as the order with the least sequential minimal distance (SMD)
or the shortest distance to the centre of gravity (COG) (depending on which
is used). To enable this the vehicle origin location is used as a first seed place-
holder. Using SMD or COG for the first order selection is motivated by the
SingleBatch optimization objective which states that the distance of the batch
should be as short as possible regardless of how many orders end up in that
batch.

SMD is computed using the following:

SMD(s, o) =
∑
i∈s

min
j∈o
|dij |, o ∈ O, o ̸∈ b, s ∈ b (1)

where dij is the distance between product i in order s (the seed) and product j
in unassigned order o. SMD(s, o) is then calculated as the sum of these minimal
distances dij . Sharp & Gibson [37] present a way in which to compute dij in the
conventional layout scenario. For the unconventional layout scenario it is given
as dij ∈ D (D is the shortest paths distance matrix, assumed pre-computed).

The COG heuristic was introduced by Rosenwein [36] and is for a single
order given as:

COG(o) =
1

|o|
∑
p∈o

ap (2)

where ap denotes the location of the product, and |o| is the number of products
in the order. The COG of two orders is given by the Manhattan distance between
two order COG’s: COG(s, o) = |COG(s)− COG(o)| where s and o denote the
seed order and an unassigned order, respectively. Note this version of COG
does not make use of distance matrix D and hence does not take the warehouse
layout into account.

Once the order with the least SMD or COG has been found it is added to
the batch and set as the new seed. New orders are then added in the same way
until vehicle capacity is full or there are no more unassigned orders left.
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5 EXPERIMENTS

In this section we first discuss the datasets used i.e. Foodmart and the new test
instances generated. Then,

1. we discuss OBP results using our SBI approach on the datasets in terms of
distance minimization, as well as computational times.

2. we compare results using a seed algorithm running either the SMD or COG
heuristics.

3. we compare computational times required by the seed algorithm and the
TSP solver.

5.1 Datasets

Foodmart Foodmart contains test-instances for static OBP’s and a conven-
tional layout. It was introduced by Valle et al. [39] and includes 135 test-
instances with up to 50 unassigned orders and 7 larger testing-instances with
50 to 5000 orders. The layout has 3 cross-aisles and a maximum of 8 aisles (see
Fig. 1 a)). There is only a single origin and destination location.

In Foodmart each vehicle carries 8 bins, where each bin has a volume capac-
ity of ”40 V ”. Each product has a volume ranging from 1 to 40 V , and if an order
contains products whose sum of V ’s exceeds 40, or exceeds the volume left in
any of the 8 bins, the order may be split between different bins on the same ve-
hicle. This way to formulate vehicle capacity is specific to Foodmart. There are
many possible alternatives, e.g. maximum number of orders [25], products [5],
volume [8] or weight [24]). The number of available vehicles is unlimited in
Foodmart.

Presented results for Foodmart in [6,39] include optimal OBP results for 130
test-instances where the number of orders to be batched varies between 5 - 100.
These instances can therefore be used to evaluate our approach against optimal
results on conventional layouts. We believe the gap between SBI’s results and
optimal results can be used as an estimate of how far away from optimality
SBI’s results are on unconventional layouts.

Generated test-instances Six different types of warehouse layouts on a
80× 80 grid were first generated with the following name-tags: ”No obstacles”,
”conventional layout with 3 cross-aisles and 12 aisles”, ”1 single rack”, ”12
racks”, ”NR1” and ”NR2” (see Fig 4). ”NR” stands for non-regular. The un-
conventional layouts were chosen as simplified representations of real examples
seen in the industry (see Figure 1).

Using the generated layouts, 203 test-instances on a modified TSPLIB for-
mat were then generated (30-40 instances for each layout) 3. The modifications

3 https://github.com/johanoxenstierna/OBP instances
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made to the TSPLIB are described in a text file in the provided link. For sim-
plicity vehicle capacity is the same for all vehicles and only expressed in number
of orders (between 2-30) in these instances, and experiments involving more ca-
pacity types (e.g. volume, weight, number of products, Foodmart type bins and
combinations of capacities and/or vehicle types) are left for future work. The
number of vehicles in the instances is set as the ceiling of number of unas-
signed orders divided by the vehicle number of orders capacity (denoted kM ):

|M | = ⌈ |O|
kM ⌉. Concerning where the products are placed in the warehouse (see

Section 2 for an explanation for why this is relevant in OBP’s), either 1, 2 or
4 rectangular storage assignment zones are used. These zones are placed any-
where on the grid and are generated in two steps: First a random x, y storage
zone centroid coordinate within the 80 × 80 grid is generated. Then storage
locations for products (for each order in the generated instance) are generated
such that the Manhattan distance between the product location and the storage
zone centroid coordinate do not exceed a specified distance 4. Each of the six
layout types has a differing origin and destination location where vehicles start
and end their tours.

5.2 Experimental Results

Since the vehicles in Foodmart use bins into which orders are placed the Sin-
gleBatch algorithm was first adapted to be able to handle that particular ca-
pacity type. To be exact, the modification was conducted within the call to the
”seed algorithm” function in Algorithm 2. Three modifications were made: 1.
The batch object b was modified to include a key-value dictionary ”bins” with
8 enumerated keys and corresponding values to keep track of how much volume
has been taken up in each bin. 2. A function check candidate order(b, o) (inside
”seed algorithm”), which checks if a candidate order can be added to a batch
without breaking constraints, was modified to find the bin which, if the order
is added to it, comes as close as possible to the 40 volume capacity without
breaking it. 3. If there exists such a bin its key is returned, the order is added
to the batch and the given bin is updated with the added volume. If the order
cannot be added to any bin in this batch it is excluded and added to a different
batch at a later stage. Only SMD was used as order selection heuristic for the
Foodmart experiment.

The OBP experimental results are summarized in Table 1 (Foodmart) and
Table 2 (generated instances). On the Foodmart instances an average of 105.8%
distance and 6.9% computational time was achieved relative to reported optimal
results in [6,38]. The result shows that fast approximate OBP optimization can
be accomplished with a relatively small penalty in added distance.

4 it is is called ”min distance to slotting zone” and can be found in a specs JSON in
each instance.
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Concerning the comparison of the SMD and COG heuristics, results only
concern the generated instances (since COG was not used on Foodmart). It
was found that, on the 203 generated OBP instances, SBI with SMD yielded
solutions with 97.9% distance and 131% computational time, relative to SBI
with COG. Within SingleBatch, the seed algorithm on average used only 7.3%
of the total computational time versus the TSP solver Concorde’s 92.7%. On
average, the seed algorithm requires 0.05 — 0.1 seconds to construct a batch
using SMD, whereas Concorde requires anywhere between 0.001 – 3 seconds
to solve a batch TSP, depending on various factors such as number of product
locations in the batch (see Fig. ??).

Fig. 3: CPU-time (y-axis) of
the SingleBatch algorithm
versus number of products
in the single batch OBP’s
(x-axis) (this figure excludes
results on Foodmart and
”NR1”).

No attempt was made to infer how features such as layout, storage zones and
depot locations affect the computational times shown in Fig. ??. Concorde has
a high degree of internal variance when it comes to computational time [1,2,12].
It would therefore require a large number of OBP test instances to make this
type of inference.

6 CONCLUSION

This paper introduced an optimization algorithm, SingleBatchIterated (SBI),
capable of producing strong approximate solutions to the OBP at minimal com-
putational time for both conventional and unconventional warehouse layouts.
The algorithm was evaluated on the Foodmart benchmark dataset, where it
showed that OBP solutions could be obtained at great speed and with a rela-
tively low penalty in added distance compared to optimal results. Additionally,
a new OBP dataset with several types of layouts, depot locations and stor-
age zone settings was introduced. Proposed solutions using SBI were uploaded
together with visualizations of the new instances.
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The vast majority of computational time in SBI was allocated to TSP solv-
ing rather than order selection. Results show that this is mostly due to the TSP
solver Concorde, which has a high internal variance in terms of computational
time. Instead of replacing Concorde with a TSP optimizer which is more sta-
ble with regard to computational time, it is deemed more relevant to allocate
more computational time at the order selection phase. As Fig. ?? and Table 2
show, most OBP instances were optimized in well under 1 second, which allows
for more optimization in many scenarios. One alternative could be to add the
savings algorithm (Section 2) as an alternative for order selection and to use
it if there are relatively few products in the batch. Further work on dataset
generation is also needed, especially for OBP instances involving dynamicity
and more vehicle capacity options.
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Abstract 

Order Picking in warehouses is often optimized using a method known as 

Order Batching, which means that one vehicle can be assigned to pick a batch 

of several orders at a time. There exists a rich body of research on Order 

Batching Problem (OBP) optimization, but one area which demands more 

attention is computational efficiency, especially for optimization scenarios 

where warehouses have unconventional layouts and vehicle capacity 

configurations. Due to the NP-hard nature of the OBP, computational cost for 

optimally solving large instances is often prohibitive. In this paper we compare 

the performance of two approximate optimizers designed for maximum 

computational efficiency. The first optimizer, Single Batch Iterated (SBI), is 

based on a Seed Algorithm, and the second, Metropolis Batch Sampling 

(MBS), is based on a Metropolis algorithm. Trade-offs in memory and CPU-

usage and generalizability of both algorithms is analysed and discussed. 

Existing benchmark datasets are used to evaluate the optimizers on various 

scenarios. On smaller instances we find that both optimizers come within a few 

percentage points of optimality at minimal CPU-time. For larger instances we 

find that solution improvement continues throughout the allotted time but at a 

rate which is difficult to justify in many operational scenarios. SBI generally 
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outperforms MBS and this is mainly attributed to the large search space and 

the latter’s failure to efficiently cover it. The relevance of the results within 

Industry 4.0 era warehouse operations is discussed. 

 

1. Introduction 

Order Picking is the process in which sets of products (orders) are retrieved 

from locations in a warehouse. Order Batching is a method in which vehicles 

can be assigned to pick several orders at a time. Order Batching can be 

formulated as an optimization problem known as the Order Batching Problem 

(OBP) (Gademann et al., 2001) or the Joint Order Batching and Picker Router 

Problem (JOBPRP) (Valle et al., 2017), where the Picker Router Problem is a 

Traveling Salesman Problem (TSP) applied in a warehouse environment 

(Ratliff & Rosenthal, 1983). We consider the OBP and JOBPRP versions 

equivalent if solutions to the OBP are assumed to include TSP solutions 

(henceforth we use the term OBP to refer to this version). There are several 

other versions and focus areas in OBP’s, including dynamicity, traffic 

congestion, depot setups and obstacle layouts. One focus area is optimization 

aimed towards maximum computational efficiency. As will be laid out in 

Section 2, computational efficiency has both direct and indirect impacts on the 

quality of warehouse operations. Authors generally consider it to be important, 

but there are significant differences in how CPU-times and timeouts are used. 

Although the variability of OBP versions and corresponding results concerning 

computational efficiency is high, we believe more research in this domain is 

warranted. We delimit our work to OBP’s where the objective is to minimize 

aggregate distances, and as measurement of computational efficiency we use 

the rate with which aggregate distance is reduced through CPU-time. We use 

the following two OBP optimizers: Single Batch Iterated (SBI) (Oxenstierna 

et al., 2021, 2022) and Metropolis Batch Sampling (MBS) (introduced in this 

paper). We compare the aggregate distance result between the two optimizers, 

and also compare against results on public OBP benchmark datasets. We use a 

distance based OBP cost because this is the predominant Key Performance 

Indicator (KPI) in benchmark datasets. Although a KPI based on capital cost 

is what is mostly sought by warehouse management, it is more complex: There 

are a multitude of features that can go into capital, such as time-based aspects 

of work, traffic congestion, maintenance, ergonomics etc. A distance based 
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KPI allows for a simpler model and a more generalized way in which to 

reproduce benchmark data and results.   

We only work with CPU-times in the range 0 – 300 seconds. Results are 

compared with previous work by Aerts et al. (2021) and Henn & Wäscher 

(2012) who have proposed approximate optimization results for sets of smaller 

instance sizes. For smaller instances we also assess results against optimal 

results on the Foodmart dataset (Briant et al. 2020). For larger instances we 

use L09_251 (Oxenstierna et al., 2022). As far as we are aware, there exists no 

standard benchmark format in OBP research, rendering experiment 

reproducibility difficult. Further discussions on how to represent key OBP 

features in reproducible data is highly relevant. Our research contributions are 

as follows: 

• An investigation into the importance of computational efficiency in 

OBP optimization. 

• Experiments regarding computational efficiency of two OBP 

optimizers on existing test-instances.  

 

2. Literature Review 

In this section we first present how the OBP and some of its key features are 

formulated in the literature. Then we present commonly used OBP 

optimization algorithms and heuristics. Finally, we present how computational 

efficiency has been motivated and evaluated for different OBP models. 

As several studies have pointed out, the Order Batching Problem (OBP) shares 

significant similarities with the more well-known Vehicle Routing Problem 

(VRP) (Cordeau et al., 2007; Valle et al., 2017; Valle & Beasley, 2019). Aerts 

et al. (2021) distinguish three points of separation between the OBP and a 

common VRP:  

1. Order-integrity constraint: In the OBP, products belonging to an order 

may only be picked by one vehicle, whereas there exists no concept of 

orders or order-integrity in the common VRP.  
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2. Number of visits constraint: In the OBP the same location may be 

visited several times by various vehicles, whereas a location may only 

be visited once in the common VRP.  

3. Obstacle-layout: In the OBP it is assumed that there exists an obstacle 

layout, whereas there is no such assumption in the common VRP.  

Concerning the latter point, most of the research on the OBP assumes that the 

warehouse uses a conventional layout, which means racks are arranged with 

parallel aisles (between racks) and parallel cross-aisles (between sections of 

racks) (Masae et al., 2020). If these conditions are not met the layout is 

unconventional (see Figure 1). 

 

Figure 1: Examples of the conventional (top) and a unconventional (bottom) layout warehouse, and OBP’s 

with four orders from Oxenstierna et al., (2022). The colored diamonds denote origin and destination 
locations. The colored dots denote products and the orders which they belong to. In the solutions (right of 

the arrows), one vehicle is assigned to pick the red and lime orders and a second vehicle is assigned to pick 

the blue and green orders.  

Aerts et al. argue that the OBP can be modelled as a Clustered VRP (CluVRP) 

with weak cluster constraints. Weak cluster constraints mean that a vehicle 

may visit the locations in several clusters of locations in any sequence. The 

CluVRP was first introduced by Defryn & Sörensen (2017) and according to 

Aerts et al. (2021) it is equivalent to the OBP since clusters can be mapped as 

orders. In experiments they utilize this problem on a conventional layout 

warehouse and on OBP scenarios involving up to 100 orders. 

For conventional layouts, proposed optimization algorithms include integer 

programming (Valle et al., 2017), clustering (Kulak et al., 2012), datamining 

(Chen & Wu, 2005), dynamic programming (Briant et al., 2020) meta-

heuristics and heuristics. Examples of meta-heuristics include Variable 

Neighborhood Search (Aerts et al., 2021), Tabu Search (Henn & Wäscher, 

2012), Ant Colony Optimization (Li et al., 2017) and Genetic Algorithms 
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(Cergibozan & Tasan, 2020). The heuristic algorithms can be divided into three 

categories: Priority rule-based algorithms, savings algorithms and seed 

algorithms (Henn et al., 2010). Priority-rule based algorithms build batches by 

sorting orders according to a heuristic, for example First-Come-First-Serve, 

First-Fit or Best-Fit. In savings algorithms batches with single orders are first 

initialized and evaluated. Then, pairs, triplets and larger batches of orders are 

constructed and the combination with the best total result is retrieved (Henn & 

Wäscher, 2012). In seed algorithms batches are generated in two phases: Seed-

selection and order addition. In the first phase an initial seed order is selected. 

In order-addition orders are then added to the seed order. There are many 

choices for seed algorithms, with corresponding advantages and disadvantages 

depending on the usecase (Ho et al., 2008; Kulak et al., 2012; Scholz et al., 

2017). One example is the Sequential Minimal Distance (SMD) heuristic 

(Sharp & Gibson, 1992), where the sum of minimal distances between products 

in the seed order and remaining orders is computed: 

𝑆𝑀𝐷(𝑠, 𝑜) = ∑ 𝑚𝑖𝑛
𝑗∈𝑜

|𝑑𝑖𝑗| ,

𝑖∈𝑠

 𝑜 ∈ 𝒪, 𝑜 ∉ 𝑏, 𝑠 ∈ 𝑏 
(1) 

 

where 𝑠 denotes a seed order in batch 𝑏, where 𝑜 denotes an order which does 

not exist in 𝑏, and where 𝑖 and 𝑗 denote products in order 𝑠 and 𝑜 respectively.  

Whenever there are more than two products in a batch, some form of TSP 

optimization is often used within the OBP optimizer. For conventional layouts, 

the highly efficient S-shape or Largest Gap algorithms are commonly used 

(Henn, 2012; Roodbergen & Koster, 2001). We are not aware of any attempts 

to extend these to unconventional layouts. Given a distance matrix is provided, 

however, TSP’s can be optimized reasonably fast using OR-tools (Kruk, 2018) 

or Concorde (D. Applegate et al., 2002; D. L. Applegate et al., 2006). 

Concorde, for example, is almost guaranteed to find the shortest path of a TSP 

with 100 nodes in less than one second (D. L. Applegate et al., 2006).  

OBP models can be divided into static and dynamic: Dynamic models are 

generally more realistic than static ones (incoming orders are there assumed to 

be known beforehand). The literature still tends to model OBP’s as static since 

dynamicity incurs more complexity (Scholz et al., 2017).  

The importance of computational efficiency in OBP optimization can be 

derived from two types of factors. The first type has an immediate impact on 

operations in the warehouse. As an example, optimization should ideally be 

faster than the time it takes a vehicle to finish a picking round (Henn, 2012; 
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Scholz et al., 2017). Otherwise, vehicles must wait in an idle state at the depot 

while optimization finishes.  

The second type concerns a larger perspective with flexible 4.0 industry-era 

integration and business utility. As an example, if an OBP optimization module 

is deployed on the cloud as a 3rd party software service (SaaS), a Warehouse 

Management System (WMS) client may be more interested in buying it if it is 

safe and simple to integrate. Longer CPU-times generally make it harder to set 

up a system (at least as a microservice) so that these two conditions are fulfilled 

(Esposito et al., 2016). Furthermore, rental and electricity cost of servers can 

naturally be assumed to rise with CPU-times (Naumenko & Petrenko, 2021).  

In the broader literature on the OBP, the second type of factors are rarely 

discussed. CPU times are chosen to be “tolerable” (Kulak et al., 2012), 

“reasonable” (Bozer & Kile, 2008) or “acceptable” (Aerts et al., 2021; Scholz 

et al., 2017), but often lack in concrete explanations of what these terms entail. 

Some examples are provided below for how researchers have used CPU-times 

and timeouts in optimization experiments with OBP’s.  

For approximate optimization, Henn & Wäscher (2012) use timeouts between 

1 – 180 seconds for a heuristic optimizer and OBP’s where 40 – 100 unassigned 

orders are to be batched. Aerts et al. (2021), use timeouts between 1 and 60 

seconds on the same instance set and propose a meta-heuristic algorithm 

specifically designed to terminate at around 60 seconds, since solution 

improvement is found to be insignificant beyond that point. Both Aerts et al. 

and Henn & Wäscher’s algorithms come to within 5% of the best solution 

overall within the first 10% of optimization time. Scholz et al. (2017) 

experiment with instances of similar size but in a dynamic setting and report a 

much lower efficiency: 70% of maximum allowed CPU-time is necessary to 

reach within 5% of best solution overall. Efficiency also decreases non-linearly 

with instance size in their results: For 10 orders their optimizer needs 2 

seconds, for 100 orders it needs 11 minutes, and for 200 orders 60 minutes. 

Henn (2012) also presents an algorithm for dynamic OBP’s and sets it to self-

terminate after 60 seconds, partly due to operational considerations (to avoid 

vehicles from idling at the depot). Many publications do not present concrete 

results for timeouts or rate of solution improvement, or a low number of 

experiments (Azadnia et al., 2013; Bué et al., 2019; Jiang et al., 2018). Kulak 

et al. (2012) and Li et al. (2017), for example, present highly efficient meta-

heuristic optimizers, but only on 5 to 10 instances, and do not include rate of 

solution improvement in their results. For authors presenting algorithms 

capable of finding optimal solutions to static OBP’s, Henn & Wäscher (2012) 
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set timeouts between 2 – 1328 seconds for instances with up to 60 orders. 

Gademann et al. (2001), set timeouts to 10 – 30 minutes for up to 100 orders. 

Valle et al. (2017) and Briant et al. (2020), on the Foodmart dataset, present 

timeouts in the range 300 seconds to 2 hours to obtain optimal results for 20-

45 orders.  

These examples show that computational efficiency in OBP optimization is 

difficult to judge generally. Choice of static or dynamic modelling, optimal 

versus approximative optimization, experimental setup, instance sizes and the 

technology level of used software and hardware, are all aspects that can have 

a complex effect on results in this regard. 

3. Problem Formulation 

We define the OBP objective as the assignment of  batches to vehicles such 

that the aggregate distance needed to pick the batches is minimized. Each batch 

𝑏 consists of a set of one or several orders 𝑏 ∈ 2𝒪, where each 𝑜 ∈ 𝒪 is a subset 

of products 𝑜 ∈ 2𝒫. Each product 𝑝 ∈ 𝒫 is a set which includes a unique 

product identifier, an order identifier, weight 𝑤 and volume 𝑣𝑜𝑙, 𝑤, 𝑣𝑜𝑙 ∈ ℝ+. 

The sum of weight, volume or number of orders in a batch can be retrieved 

with function 𝑞(𝑏), 𝑞 ∈ 𝑤, 𝑣𝑜𝑙, 𝑘. The 𝑥, 𝑦 location coordinates of all products 

is defined as set ℒ𝒫, and the location of a product is retrievable with function 

𝑙(𝑝). The locations of the products in an order are retrievable with function 

𝑙(𝑜) =∪𝑝∈𝑜 𝑙(𝑝), and all locations in a batch are retrievable with function 

𝑙(𝑏) =∪𝑜∈𝑏 𝑙(𝑜). We define a single origin location for all vehicles 𝑙𝑠, a single 

destination location 𝑙𝑑 and a set of polygonal obstacle location sets ℒ𝒰. The 

aggregate of all locations is ℒ = {𝑙𝑠} ∪ {𝑙𝑑} ∪ ℒ𝒫 ∪ ℒ𝒰. 

We build undirected graph 𝐺 = (𝑉, 𝐸). Each vertex in 𝑉 represents a unique 

location in ℒ and function 𝑣(𝑙) gives a vertex for a location. The vertices in 

batch 𝑏 includes the origin and destination vertices 𝑣(𝑏) = 𝑣(𝑙𝑠) ∪ 𝑣(𝑙(𝑏)) ∪

𝑣(𝑙𝑑). 𝐸 represents the set of all Euclidean edges between all locations that 

circumvent obstacles in ℒ𝒰. Distance matrix 𝐷 and shortest paths between all 

edges is computed using the Floyd-Warshall algorithm. How 𝐸 and shortest 

paths can be constructed with polygonal obstacles is beyond the scope of this 

paper; for details see (Rensburg, 2019). We also permit a surjective 

relationship of products to locations, i.e., several types of products can be 

stored at the same location and the location represents several real locations in 
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the warehouse. This can be useful to help reduce the memory footprint of 𝐺. 

The path to pick batch 𝑏 is retrievable with the following function:  

 

𝑇(𝑏) = {𝑣𝑖}𝑖=1
𝑛 , 𝑛 = |𝑣(𝑏)|, 

 

(2) 

𝑣𝑖 = {

𝑣𝑠 𝑖 = 1
𝑣𝑘 1 < 𝑖 < 𝑛 
𝑣𝑑 𝑖 = 𝑛

 
 

(3) 

 

and represents the solution to a Traveling Salesman Problem (TSP). The 

distance of 𝑇(𝑏) is retrievable with function 𝐷(𝑏) = ∑ 𝑑𝑇(𝑏)𝑖𝑇(𝑏)𝑗
, 𝑖, 𝑗 ∈

ℤ+, 𝑗 = 𝑖 + 1, 𝑖 < |𝑇(𝑏)|, where 𝑑 ∈ ℝ+ represents scalar entries in distance 

matrix 𝐷. Vehicles are defined as 𝑚 ∈ ℳ where each vehicle has capacities 

expressed in weight 𝑤, volume 𝑣𝑜𝑙 and number of orders 𝑘. The scenario 

where a vehicle 𝑚 is assigned a batch, order, and/or product location is defined 

with binary variables 𝑥𝑚𝑏, 𝑥𝑚𝑜 and 𝑥𝑚𝑙, respectively. We then use the 

following OBP formulation: 

 

 

𝑚𝑖𝑛 ∑ 𝐷(𝑏)𝑥𝑚𝑏,

𝑏∈ℬ 

𝑚 ∈ ℳ 

s.t. 

 

 

s.t. 

(4) 

 

 

∑ 𝑥𝑚𝑜

𝑚 ∈ ℳ

= 1, ∀𝑜 ∈ 𝒪 

 

(5) 

 

∑ 𝑥𝑚𝑙

𝑙∈𝑙𝑜𝑐(𝑜)

≥ 𝑥𝑚𝑜, ∀𝑜 ∈ 𝒪, 𝑚 ∈ ℳ 
(6) 

𝑞(𝑏) ≤ 𝑞(𝑚)𝑥𝑚𝑏, 𝑏 ∈ ℬ,  

𝑞 ∈ 𝑤, 𝑣𝑜𝑙, 𝑘, 𝑚 ∈ ℳ 

 

(7) 
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where (4) states the objective, i.e., minimize distances for all generated batches 

ℬ, where (5) enforces order-integrity, where (6) enforces all locations in all 

orders to be visited at least once and where (7) ensures vehicle capacities are 

never exceeded. Since this OBP is highly intractable we also use a less 

ambitious objective in the single batch OBP:  

 

 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑏∈ℬ

𝐷(𝑏) (8) 

 

where the aim is to find a single batch for an already selected vehicle. For this 

case we also enforce the single batch to come as close as possible to vehicle 

capacity: ∃𝑞(𝑞(𝑏) + 𝑞(𝑜)  ≥  𝑞(𝑚)), ∀𝑜 ∈ 𝒪, 𝑜 ∉ 𝑏, 𝑞 ∈ 𝑤, 𝑣𝑜𝑙, 𝑘.  

4. Optimization Algorithms 

4.1   Single Batch Iterated (SBI) 

SBI (Algorithm 1) is a heuristic multi-phase optimizer. In the core of the 

algorithm unassigned orders 𝒪 are iteratively sent as input to the SMD 

(Sequential Minimal Distance) function, together with distance matrix 𝐷, a 

randomly chosen available vehicle and a semi-stochastic seed order index. The 

SMD function builds a single batch 𝑏 by first selecting a seed order according 

to the seed index and then adds orders to it according to minimal distances 

(Equation 1). Batch 𝑏 is then removed from the set of unassigned orders and 

the procedure repeats until all orders have been batched into ℬ. An 

approximate solution to the OBP (Equation 4) is thus obtained by pre-selecting 

vehicles and approximately solving a single batch OBP for each vehicle 

(Equation 8).  
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Algorithm 1: Single Batch Iterated (SBI) 

 

 

Number of iterations (𝑁) is used here for brevity and in the implementation 

(Section 5) a time-based condition is used to stop the outer loop. The purpose 

of the 𝑖 index is to reduce the probability that the same solution is obtained 

multiple times, and, if used, it can be set to 𝑁 = |𝒪|, for example. The paths 

to visit all locations in batches 𝑏 ∈ ℬ, 𝑇(𝑏) and their distance, ∑ 𝐷(𝑏)𝑥𝑚𝑏𝑏∈ℬ , 
is computed using the OR-tools TSP optimization suite1 (in the TSP function). 

OR-tools is set to finish quickly by using a number-of-iterations parameter, 

which is set to grow linearly with number of vertices in the TSP. In the 

update_best function, the aggregate distance between the new OR-tools cost 

(𝑦) is compared against the best OR-tools cost obtained so far (�̂�). If the new 

cost is lower, the TSP’s are optimally solved using Concorde2 and if this is 

better than the previous Concorde best, the result is stored as the new best in 

𝑦∗.  

Since the number of SMD computations between orders is approximately 

cubic to number of orders, |𝒪| ∑(|𝒪| − 𝑖), 𝑖 ∈ [|𝒪| − 1], we use an SMD 

order-order enumerated matrix which is populated through the optimization 

procedure: If SMD between two orders does not exist in the matrix, it is 

 
1 https://developers.google.com/optimization/routing/tsp, collected 13-09-2021. 

2 http://www.math.uwaterloo.ca/tsp/concorde/index.html, collected 16-09-2021. 

https://developers.google.com/optimization/routing/tsp
http://www.math.uwaterloo.ca/tsp/concorde/index.html
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computed and pushed to the matrix. Once the value is stored it is subsequently 

queried. Caching SMD’s reduces number of calls to SMD from cubic to 

square, at an insignificant increase in memory usage (~25 megabytes for 5000 

orders assuming 8 bits per cell in the matrix). It should be noted that this only 

works for an SMD algorithm where the seed is defined as a single order, which 

cannot provide more than a noisy estimate of the subsequent TSP solution 

distance for batches with more than two orders. We still deem pairwise order-

order SMD caching suitable, since distance estimates are inaccurate even if 

SMD’s for larger collections of orders are computed (TSP optimization is 

required for accurate estimates). Caching could also be used to store all 

generated single batches and their solved TSP’s in a hash tree or equivalent, to 

prevent the same TSP to be optimized twice (memoization). We leave an 

implementation of this for future work.  

One potential issue with SBI is its reliance on the SMD heuristic. Although 

SMD makes sure the distance between orders is always minimized for a given 

batch, the number of orders to select from decreases through the single-batch 

while-loop in Algorithm 1. Hence, the last batch which is created in the while-

loop can be assumed to be of worse quality in terms of distance minimization 

relative to the first.  

4.2   Metropolis Batch Sampling (MBS) 

MBS is a heuristic multi-phase optimizer which uses distance matrix 𝐷, the 

Concorde TSP solver (in the TSP function below) and the SMD heuristic to 

compute distance between orders. The main difference between SBI and MBS 

is that the latter only uses the SMD function to produce an initial solution. A 

Metropolis algorithm (Mackay, 1998) is then used to improve on it using the 

following procedure: 
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Algorithm 2: Metropolis Batch Sampling 

 

 

 

The upper while-loop is equivalent to the one in Algorithm 1. The lower for-

loop consists of a Metropolis algorithm where each new sample is drawn from 

a previous one. The function new_sample(ℬ𝑖) uses the following stationary 

distribution to describe the probability for a given new sample: 

 

𝑞(ℬ𝑖+1|ℬ𝑖) = 𝑒−2𝐶𝐻𝑑(ℬ𝑖, ℬ𝑖+1)𝑃
 (9) 

 

where C and P are constants and where the 𝐻𝑑(ℬ𝑖,  ℬ𝑖+1) function denotes the 

number of swapping operations needed to obtain ℬ𝑖+1 from ℬ𝑖. A swapping 

operation is defined as a switch of position of two orders in an enumerated set 

of batches. Since number of swaps to go from ℬ𝑖 to ℬ𝑖+1 is always equal to 

number of swaps to go from ℬ𝑖+1 to ℬ𝑖, the 𝑞 distribution is symmetrical, i.e., 

𝑞(ℬ𝑖+1|ℬ𝑖) = 𝑞(ℬ𝑖|ℬ𝑖+1). A swap is only permitted if vehicle weight and 

volume capacity constraints are not broken.  
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The TSP’s of the batches in the new sample are then solved using Concorde 

(Section 2) in the TSP function, and the aggregate cost is stored in 𝑦𝑖+1. The 

accept probability α is computed based on the following balance condition 

(Tak et al., 2018): If 𝑦𝑖+1 <  𝑦𝑖 the new sample is always accepted. If 𝑦𝑖+1 ≥
𝑦𝑖 the sample may still be accepted if a uniform random value is less than α. α 

depends on the ratio 𝑦𝑖/𝑦𝑖+1. 

Contrary to SBI, the search space of MBS is guaranteed to include the global 

optimum, provided the sampling function can output any ℬ that does not break 

constraints and enough computational time. This may just as well be a liability, 

however, since the search space may be too large for the algorithm to see 

optimization gains within reasonable time. We add bias parameter γ ∈ ℝ+ to 

allow for experiments where the search space of the algorithm is more 

restricted. Without the use of γ, the probability is high that the algorithm steps 

away from the SBI local minimum ℬ1 in the very first iteration (which is likely 

to happen if 𝑦1/𝑦2 is close to one).  

The best sample is assumed to be stored throughout the optimization procedure 

(sample storage is omitted from the pseudo-code). Just as with Algorithm 1, a 

number of iterations parameter 𝑁 ∈ ℤ+ is shown as stopping condition in 

Algorithm 2 for brevity, but in the experiments in Section 5, a CPU-time 

condition is used instead. Establishing a suitable 𝑁 for converge is possible by 

studying covariance of samples, but it is challenging in the OBP case: ℬ𝑖 is a 

set of orders where the orders may contain a variable number of products at 

variable locations. Heuristics would thus be needed to quantify covariance 

between two samples.  
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5. Experiments 

5.1   Benchmark datasets 

The publicly shared OBP datasets Foodmart3, L6_2034 and L09_2515 are used 

for experimentation. Foodmart was introduced by Valle et al. (2017) and 

models a warehouse with a conventional layout and a maximum of 8 aisles and 

3 cross-aisles. A feature in Foodmart is that vehicles carry bins and that vehicle 

capacity is expressed as a volume unit per bin. If an order cannot fit in a single 

bin, splitting it between different bins is permitted. SBI and MBS are not 

designed for this feature (it constitutes an extra bin packing problem within the 

OBP), so a greedy heuristic module is attached to the optimizers for the 

Foodmart experiment (for details see Oxenstierna et al., 2021).  

L6_203 and L09_251 model scenarios for one conventional and up to six 

unconventional warehouse layouts and multiple depots. In these instances, 

vehicle capacity is expressed in number of orders and total number of orders 

generally range between 4-50. All but 6 Foodmart instances also fit within this 

range. For total number of orders in the range 50-1000 we use L09_251.  

Number of orders only gives a rough idea of how much CPU-time might 

reasonably be needed to optimize an OBP instance. Number of products per 

order and vehicle capacities are further examples of features that have a 

considerable impact. To classify instances by size, we use the amount of 

computational time needed to obtain the SMD baseline solution: 0-2, 2-4, 4-7 

or >7 seconds. The resulting number of instances for the four classes are as 

follows: 0-2 s: 335, 2-4 s: 179, 4-7 s: 91, >7 s: 56. The maximum permitted 

CPU-time for the 0-2 s instances is set to 20 seconds and 300 seconds for the 

remaining ones. For all our experiments we use Intel Core i7-4710MQ 2.5 GZ 

4 cores, 16 GB RAM.  

 

 
3    https://pagesperso.g-scop.grenoble inp.fr/~cambazah/ batching/, collected 19-05-2022 (135 

instances).  

4    https://github.com/johanoxenstierna/OBP_instances, collected 19-05-2022 (257 instances). 

5    https://github.com/johanoxenstierna/L09_251, collected 19-05-2022 (269 instances).  

https://github.com/johanoxenstierna/OBP_instances
https://github.com/johanoxenstierna/L09_251
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5.2 Experiment results  

Aggregations of all results are presented in Figure 2, Figure 3, Table 1 and 

Table 2 (Appendix). In Figure 2, the relative improvement rates from the 

baseline are shown for the two optimizers and four instance size classes. The 

shades around the lines represent 95% confidence intervals.  

In terms of rate of solution improvement, SBI performs stronger than MBS 

across all instance size classes, and the difference grows with instance size. 

The MBS results shown are for parameter values 𝐶 = 0.1, 𝑃 = 1, γ = 10 

(Section 4.2), retrieved from early testing. A γ value of 1 (the standard 

Metropolis algorithm), yields weaker results.  

Overall, the solution improvement rates for the two smaller instance classes 

(blue and orange) corroborate those of Henn & Wäscher (2012) and Aerts et 

al. (2021): Improvements are significant in the initial stage of optimization (1-

4% improvement over baseline within the first 10% of optimization) and then 

taper off. In our case all instances with up to 100 orders require no more than 

2 seconds to obtain the SBI baseline.  

The Foodmart instances (all except 6) fit within the smallest class and there we 

compare our strongest results against optimal results in Briant et al. (2020): On 

average a gap to optimality of 2.3% is achieved after a maximum of 10 

seconds. The average gap between the baseline solution and the best solution 

found is 3.2% on Foodmart. On generated instances in L6_203 the 

corresponding gap is 3.5%. For the larger two instance classes (>4 seconds to 

find a baseline solution), the pattern is similar, but more time is needed to reach 

the same percentage improvement over the baseline.  
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Figure 2: Optimization time versus relative OBP distances in percentages, for four instance size classes (661 

total instances). The smallest instances (blue) end at a 20 second timeout.  
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Figure 3: Optimization time versus standardized absolute distance savings, for four instance size classes.  

 

In terms of absolute distance rate of improvement, we first standardize the data 

such that the average pick round is of similar length between the three datasets. 

The absolute distance improvements for the four instance size classes are 

shown in Figure 3. One observable pattern in Figure 3 is that larger OBP’s tend 

to see more solution improvement. One explanation for this is that the 
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probability of finding a strong baseline decreases with larger instances, and 

possible optimization gains can therefore be assumed to also be larger. The red 

curves (>7 s), for example, yield weaker results in the beginning and stronger 

results in the end, relative to the green curves (4-7 s). It takes around 4 minutes 

to get there, however. Since there are only 56 instances in the red class, more 

data would be needed to investigate this pattern further and to narrow the 

confidence intervals.  

The best achieved rates of solution improvement decrease to less than <1% / 

minute after the initial gains taper off (after 30 – 60 seconds for the larger 

instances in Figure 2). In terms of standardized distance, this is on average 

equivalent to around 18% of the length of a single batch TSP solution (~12 

standardized distance units).  

As discussed in Section 2, judgement of results in light of previous work is 

challenging due to the high variability of OBP models. Overall, we believe 1% 

/ min is a slow rate of improvement and that it would be difficult to justify in 

many OBP scenarios, especially when considering the advantages of short 

CPU-times discussed in Section 2. 

There are several possible reasons why MBS  performs worse than SBI. One 

is that the relatively general application of the Metropolis algorithm faces a 

search space which is far too large for it to adequately sample within the 

allotted time. Even with a high amount of extra bias, imposed through 

manually added parameter 𝛾, MBS is not able to find and improve on samples 

faster than SBI. The purely heuristic and more biased SBI optimizer has no 

global optimum guarantee due to the SMD heuristic, but it instead guarantees 

that each sample is a relatively strong local minimum. Using the semi-

stochastic seed index within the SMD function (Section 4.1) also makes sure 

that the SBI local minimums are uncorrelated to some extent. Another possible 

advantage of SBI is that it uses an approximate TSP optimizer to filter out 

promising samples before solving them optimally. Tests show that both TSP 

optimizers (Concorde and OR-tools) perform relatively similar in terms of 

CPU-time on the given instance set: Its TSP’s are often quite short (5 – 20 

locations) and there is a significant amount of static CPU-time software 

overhead relative to the actual TSP optimization for these cases. The main 

optimization result is that the SMD heuristic proves useful, at least in terms of 

computational efficiency, the way it is used within the SBI optimizer and for 

the OBP version at hand.  
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6. Conclusion 

We investigated computational efficiency in approximate Order Batching 

Problem (OBP) optimization. In previous work, computational efficiency has 

not been given enough attention, especially when considering unconventional 

warehouse layouts and vehicle types (Aerts et al., 2021). It is an important 

topic that affects operational costs both directly and indirectly, however. In 

experiments we studied the computational efficiency of two approximate 

optimizers, Single Batch Iterated (SBI) and Metropolis Batch Sampling 

(MBS). They both begin by obtaining an initial solution using the Sequential 

Minimal Distance (SMD) heuristic. SBI then improves on this solution by 

rerunning the SMD selection procedure using a semi-stochastic seed-order 

index, whereas MBS improves on the initial solution using a Metropolis 

algorithm.  

For OBP instances with up to 100 orders and a few seconds of CPU-time, both 

optimizers yield distances only a few percentage points higher than results 

obtained at timeout (or optimal results where such are available). The result 

corroborates previous research claims: Fast approximate optimization is a 

practicable choice in common OBP scenarios (Bozer & Kile, 2008; Kulak et 

al., 2012). 

For larger instances, with 100 – 1000 orders, more time is required to obtain 

similar optimization gains. The standardized absolute distance saved through 

the optimization procedure grows similarly for all instance sizes. In SBI’s case 

this can be explained since weak batches (with products located far from each 

other) are only constructed whenever there are few orders left to select from 

(SMD prevents this in other cases). This phenomenon occurs an equal number 

of times regardless of instance size and the amount of possible solution 

improvement in larger instances is thus relatively low. MBS does not face this 

particular issue, but on the other hand it has no mechanism to reduce the vast 

search space. MBS generally performs worse than SBI within the 5 minute 

timeout, particularly on larger instances.  

Regardless of instance size, we conclude that that the value in spending 

significantly more CPU-time to obtain a result a few percentage points better 

than a baseline, must be weighed against the less measurable and indirect costs 

that come with lower computational efficiency. Although several authors have 

problematized large CPU-time requirements for OBP optimization (Bozer & 

Kile, 2008; Kulak et al., 2012; Valle & Beasley, 2019), it is challenging to 
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judge optimization efficiency generally due to the large variability of OBP 

usecases (Section 2). 

For future work we believe the investigation can be widened to include more 

optimizers. MBS could be replaced by similar but more biased MCMC 

algorithms, such as Simulated Annealing (Rajasekaran & Reif, 1992) or Basin 

Hopping (Wales & Doye, 1997). Heuristics to add even more bias to these 

algorithms might be needed, however. Examples include mode-jumping (Tak 

et al., 2018) and restarts (Yu et al., 2021), which prevent convergence on local 

minima. Also, the number of required samples (𝑁) for convergence could be 

estimated for various MCMC algorithms by calculating covariance between 

generated samples. That way, maximum CPU-time can be set in a more 

informed manner. For SBI, the Sequential Minimal Distance (SMD) heuristic 

could be replaced by alternatives which may be more suitable for the 

unconventional layout. We believe there are significant savings to be made in 

optimization if more memory is allocated to store and reuse parts of expensive 

computations. Modeling of OBP’s and data-driven performance evaluation are 

also of primary importance. Currently there exists no standard format for OBP 

benchmark datasets and this poses a serious threat to scientific reproducibility. 

Since there are many possible versions of OBP’s, the community needs to 

discuss how a standard format for OBP benchmark data can be designed to 

balance realism with simplicity and reproducibility.  
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Appendix 

Table 1: Aggregation of SBI test-instance results into categories based on number of orders in the OBP’s. 

Within each category the average over all results is shown. Whenever the specified time is not relevant or 

the optimizer failed to obtain a result within its scope, a minus sign (-) is shown. The distances shown are 

standardized. 
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Table 2: Aggregation of MBS test-instance results into categories based on number of orders in the OBP’s. 

Within each category the average over all results is shown. Whenever the specified time is not relevant or 

the optimizer failed to obtain a result within its scope. The distances shown are standardized. 
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Storage Assignment using Nested Metropolis 

Sampling and Approximations of Order Batching 

Travel Costs 

Johan Oxenstierna, Jacek Malec and Volker Krueger 

Abstract 

The Storage Location Assignment Problem (SLAP) is of central importance in 

warehouse operations. An important research challenge lies in generalizing the 

SLAP such that it is not tied to certain order-picking methodologies, 

constraints, or warehouse layouts. We propose the OBP-based SLAP, where 

the quality of a location assignment is obtained by optimizing an Order 

Batching Problem (OBP). For the optimization of the OBP-based SLAP, we 

propose a nested Metropolis algorithm. The algorithm includes an OBP-

optimizer to obtain the cost of an assignment, as well as a filter which 

approximates OBP costs using a model based on the Quadratic Assignment 

Problem (QAP). In experiments, we tune two key parameters in the QAP 

model, and test whether its predictive quality warrants its use within the SLAP 

optimizer. Results show that the QAP model’s per-sample accuracy is only 

marginally better than a random baseline, but that it delivers predictions much 

faster than the OBP optimizer, implying that it can be used as an effective filter. 

We then run the SLAP optimizer with and without using the QAP model on 

industrial data. We observe a cost improvement of around 23% over 1 hour 

with the QAP model, and 17% without it. We share results for public instances 

on the TSPLIB format.   
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1. Introduction 

 

Charris et al. (2018) gives the following definition of a Storage Location 

Assignment Problem (SLAP): The “allocation of products into a storage space 

and optimization of the material handling (…) or storage space utilization 

[costs]”. The relationship between material handling costs, on the one hand, 

and storage assignment, on the other, can be showcased in an example: If a 

vehicle needs to pick a set of products, its travel cost clearly depends on where 

the products are stored in the warehouse. At the same time, the development 

of an effective storage strategy needs to consider various features in material 

handling, such as vehicle constraints, traffic conventions and picking 

methodologies. 

In this paper, we work with a version of the SLAP which is particularly 

generalizable. Kübler et al. (2020), name this version the “joint storage 

location assignment, order batching and picker routing problem”. The main 

characteristic of this problem is the inclusion of two optimization problems in 

the SLAP:  

1. The Order Batching Problem (OBP), where vehicles are assigned to 

carry sets of orders (an order is a set of products) (Koster et al., 2007).  

2. The Picker Routing Problem, where a short picking path of a vehicle 

is found for the products that the vehicle is assigned to pick. The Picker 

Routing Problem is a Traveling Salesman Problem (TSP) applied in a 

warehouse environment (Ratliff & Rosenthal, 1983).  

Henceforth, we refer to this version as the OBP-based SLAP. A key advantage 

of using the OBP within the SLAP is the added flexibility and generality of the 

order on a conceptual level: For example, optimizing the OBP-based SLAP 

gives opportunity to also optimize the TSP-based SLAP (Oxenstierna et al., 

2023). When it comes to product locations, the sole difference between the 

OBP and the OBP-based SLAP is that locations for all products are assumed 

fixed in the former while, in the latter, they are assumed mutable (for a subset 

of locations in our case).  
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Figure 1: Example storage assignment of four products and subsequent order-picking for the SLAP model 
used in the paper. Rectangles denote warehouse racks. Red and blue diamonds denote origin/destination for 

picking paths. Colored dots denote products and the four orders they belong to. Black crosses denote 

available locations for the new products. Note that products are often more spread out than what is shown 

in this example.  

It is of scientific importance to be able to compare optimization approaches 

and solutions. For the SLAP, this is made difficult by the many versions of the 

problem. As the extensive literature review by Charris et al. (2018) shows, 

there is little consensus regarding which versions are more important, or 

specifically, which features would represent a standardized version. Examples 

of such features are dynamicity, warehouse layout, vehicle types, cost 

functions, reassignment scenarios and picking methodologies. There is also a 

shortage of benchmark datasets for any version of the SLAP, which prevents 

the reproducibility of experiments (Aerts et al., 2021; Kofler et al., 2014). As 

part of our contribution for a standardized version, we suggest a modified 

TSPLIB format (Reinelt, 1991) (Section 6). There are several ways in which 

to balance between simplicity, reproducibility and industrial applicability 

when developing SLAP versions and corresponding instances, however. From 
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the generalization perspective, our model is advantageous in two main areas: 

Order-picking methodology and warehouse layout. But it is weak in two other 

areas: dynamicity and reassignment scenarios. We describe the meaning of 

these choices further in the light of prior work (Section 2) and in our problem 

formulation (Section 4). We invite the community to debate which features are 

more or less important for a standardized version.  

In Section 5, we introduce our SLAP optimizer. It is based on the Metropolis 

algorithm, a type of Markov Chain Monte Carlo (MCMC) method. A core 

feature of the optimizer is that the quality of a location assignment candidate 

is retrieved by optimizing an OBP. Due to the OBP’s NP-hardness, it must be 

optimized in a way that trades off solution quality with CPU-time. For this 

purpose, we use an OBP optimizer with a high degree of computational 

efficiency (Oxenstierna et al., 2022). Within the SLAP optimizer, the OBP 

optimizer is still computationally expensive, and we show that it can be 

assisted by fast cost approximations from a Quadratic Assignment Problem 

(QAP) model. Finally, we test the performance of the SLAP optimizer with 

and without inclusion of the QAP approximations. Cost improvements are 

around 23% over 1 hour with the QAP model, and 17% without. In summary, 

we make three concrete contributions: 

1. Formulation of an OBP-based SLAP optimization model and a 

corresponding benchmark instance standard.  

2. QAP approximation model to predict OBP travel costs and 

experiments on generated instances to test whether the use of QAP 

approximations within a SLAP optimizer can be justified.  

3. An OBP-based SLAP optimizer (QAP-OBP) and experiments on 

industry instances to test its computational efficiency. Comparison of 

results with and without usage of QAP approximations. 
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2. Related work 

This section goes through general strategies for conducting storage location 

assignment, as well as ways in which their quality can be evaluated. Various 

SLAP formulations and proposed optimization algorithms are covered. Our 

primary focus will be on the standard picker-to-parts arrangement. We 

specifically refer to the work of Kübler et al. (2020), as their proposed model 

aligns with ours.  

There exist numerous general strategies for conducting storage location 

assignment (Charris et al., 2018). Three key strategies are Dedicated, Class-

based and Random: 

• Dedicated: Each product is assigned to a specific location which never 

changes. This strategy is suitable if the product collection changes 

rarely and simplicity is desired. Additionally, human pickers can 

leverage this strategy by familiarizing themselves with specific 

products and their corresponding locations, which might speed up their 

picking (Zhang et al., 2019).  

• Random: Each product can be assigned any available location in the 

warehouse. This is suitable whenever the product collection changes 

frequently. 

• Class-based (zoning): The warehouse is partitioned into sections, and 

the products are classified based on their demand. Each class is 

assigned a zone. The outline of the zone can be regarded as dedicated 

in that it does not change, whereas the placement of each product in a 

zone is assumed to be random (Mantel et al., 2007). Class-based 

storage assignment can therefore be regarded as a middle ground 

between dedicated and random. 

The quality of a location assignment is commonly evaluated based on some 

model of aggregate travel cost. For this purpose, a simplified simulation of 

order-picking in the warehouse can be used (Charris et al., 2018; Mantel et al., 

2007). Some proposals include the simulation of order-picking by the Cube per 

Order Index (COI) (Kallina & Lynn, 1976). COI includes the volume of a 

product and the frequency with which it is picked (historically or future-

forecasted). Products with high pick frequency and relatively low volume are 

subsequently assigned to locations close to the depot. Since orders may contain 

products which are not located close to each other, COI is only adequate for 

order-picking scenarios where orders contain one product and vehicles carry 
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one product at a time. This may be sufficient for pallet picking or when certain 

types of robots are used (Azadeh et al., 2019). Mantel et al. (2007), introduced 

Order Oriented Slotting (OOS) where the number of products in an order may 

be greater than one. A similar model to OOS is used by Fontana & 

Nepomuceno (2017), Lee et al. (2020) and Žulj et al. (2018). The picking cost 

of an order in OOS can in some cases be modeled using a Quadratic 

Assignment Problem (QAP) (Mantel et al., 2007). The QAP computes the sum 

of element-wise products of weights and frequencies (Abdel-Basset et al., 

2018) and for an order this can be translated into distances between products 

and how often they are picked. Nevertheless, a QAP on its own is often not 

sufficient to model a SLAP without extensive use of heuristics and constraints 

for warehouse layouts and picking methodologies (Mantel et al., 2007). For a 

layout-agnostic OBP-based SLAP, graph-based QAP techniques could be 

attempted, but hitherto they have only been applied on related problems (X. 

Wu et al., 2021; Zhou & De la Torre, 2016). 

There is only limited research on SLAPs where vehicles are expected to carry 

multiple orders and where an Order Batching Problem (OBP) is integrated into 

the SLAP optimization process. One example is Xiang et al. (2018) and Yang, 

(2022), who use this approach in a robotic warehouse where the vehicles are 

pods or mobile racks, which is not easily comparable to a picker-to-parts 

system. Another example is Kübler et al. (2020), which we look closer at 

below.    

Travel distance or time are commonly used to evaluate SLAP solution quality 

in the above mentioned models, but there are several alternatives and 

extensions. Lee et al. (2020), for example, study the effect of location 

assignment and traffic congestion in a warehouse. Assigning too many 

products to locations close to the depot (the goal in common COI) may lead to 

traffic congestion, which should ideally be considered in an industrial model. 

Lee et al. (2020), formulate Correlated and Traffic Balanced Storage 

Assignment (C&TBSA) as a multi-objective problem with travel cost on the 

one hand, and traffic congestion avoidance on the other. Larco et al. (2017), 

include worker welfare in their evaluation of solution quality. If picking is 

conducted by humans who move products from shelves onto a vehicle, the 

weight and volume, as well as the height of the shelf the product is placed on, 

can have an impact on worker welfare. Parameters such as "ergonomic 

loading," "human energy expenditure," or "worker discomfort" (Charris et al., 

2018) can be used to quantify worker welfare. 

The SLAP can be categorized into two main groups based on the number of 

location assignments required. Either the assignment is a “re-warehousing” 
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operation, which means that a large portion of the warehouse’s products are 

(re)assigned (Kofler et al., 2014). Often, however, only a small subset of 

products are (re)assigned, and this is referred to as “healing” (Kofler et al., 

2014). Solution proposals involving healing often look closely at different 

types of scenarios for carrying out initial assignments for new products in the 

warehouse, or reassignments for products already in the warehouse. Kübler et 

al. (2020), propose four such scenarios.   

I. Empty storage location: A product is assigned to a previously 

unoccupied location.  

II. Direct exchange: A product changes location with another product.  

III. Indirect exchange 1: A product is moved to another location which is 

occupied by another product. The latter product is moved to a third, 

empty location.  

IV. Indirect exchange 2: A product is moved to a new location which is 

occupied by a second product. The second product is moved to a new 

location which is occupied by a third product. The third product is 

moved to the original location of the first product.  

The above scenarios are all associated with varying levels of effort, ranging 

from the lightest in scenario I, to the heaviest in IV. Kübler et al. quantify these 

efforts by including both physical and administrative times, which are 

transformed to effort terms by proposed proportionalities.  

Concerning SLAP optimizers, proposals include models capable of obtaining 

optimal solutions, such as Mixed Integer Linear Programming (MILP), 

dynamic programming and branch and bound algorithms (Charris et al., 2018). 

The warehouse environment is often simplified to a significant degree when 

optimal solutions are sought (Charris et al., 2018; Garfinkel, 2005; Kofler et 

al., 2014; Larco et al., 2017). The main simplification relates to order-picking 

using COI or OOS. Other simplifications involve limiting the number of 

products (Garfinkel, 2005), number of locations (J. Wu et al., 2014), or by 

requiring the conventional warehouse rack layout (Kübler et al., 2020). The 

conventional layout assumes Manhattan style blocks of aisles and cross-aisles, 

and it is used almost exclusively in existing literature on the SLAP (we are 

only aware of two exception cases using the “fishbone” and “cascade” layouts 

(Cardona et al., 2012; Charris et al., 2018). 

Most proposed SLAP optimizers provide non-exact solutions using heuristics 

or meta-heuristics. One example is multi-phase optimization where the first 

phase proposes possible locations for products, and the second phase carries 
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out the assignments and evaluates them (Wutthisirisart et al., 2015). In Kübler 

et al. (2020), a heuristic zoning optimizer is used to generate location 

assignments, and a Discrete Evolutionary Particle Swarm Optimizer (DEPSO) 

is used to optimize an OBP for the evaluation of the assignments. DEPSO is a 

modification of a standard PSO algorithm that addresses the risk of 

convergence on local minima and allows for a discrete search space. Other 

heuristic or meta-heuristic approaches include Genetic and Evolutionary 

Algorithms (Ene & Öztürk, 2011; Lee et al., 2020), Ant Colony Optimization 

(Yingde & Smith, 2012) and Simulated Annealing (Zhang et al., 2019). If TSP 

optimization is desired within a SLAP, S-shape or Largest Gap algorithms 

(Roodbergen & Koster, 2001) are often utilized. For TSP-optimization on 

unconventional layouts with a pre-computed distance matrix, Google OR-tools 

or Concorde have been proposed (Oxenstierna et al., 2022; Rensburg, 2019). 

Evaluating the quality of results in prior work is challenging due to the 

variability of SLAP models. Below are a few examples where result quality is 

judged based on a percentage saving in travel distance or time: For 

conventional warehouse layouts, reassignment costs and dynamic picking 

patterns, Kofler et al. (2014), report best savings around 21%. Kubler et al. 

(2020), report best savings around 22% in a similar scenario. Zhang et al. 

(2019) report best savings around 18% on simulated data with thousands of 

product locations, but without reassignment costs. In a similar setting, for a 

few hundred products, Trindade et al. (2022) report best savings around 33%. 
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3. Nested Metropolis sampling 

The proposed optimizer (Section 5) is based on a nested Metropolis algorithm 

first introduced by Christen & Fox (2005). The Metropolis algorithm is a type 

of Markov Chain Monte Carlo (MCMC) method, which first draws a sample 

𝑥𝑖+1 based on a desired feature distance (excluding costs) to a previous sample 

𝑥𝑖. The distance is given by some probability distribution 𝑞(𝑥𝑖+1|𝑥𝑖), and it is 

usually chosen such that the distance between 𝑥𝑖+1 and 𝑥𝑖 is low with a high 

probability (Mackay, 1998). The accept probability is then computed based on 

some function that takes the costs of the new and previous samples as input 

(van Ravenzwaaij et al., 2018). Common Metropolis sampling assumes that 

there is only one cost function, 𝑓∗, and since we wish to include an 

approximation of this cost, 𝑓, we use a modification (Christen & Fox, 2005). 

Nested Metropolis sampling is shown in flowchart form in Figure 2.  

After a first sample 𝑥𝑖 has been initialized (i), a new sample 𝑥𝑖+1 is generated 

(ii) and its cost approximated 𝑓(𝑥𝑖+1) (iii). If the approximation is deemed 

strong enough (probabilistically) relative to 𝑓(𝑥𝑖), the sample is promoted (iv) 

to the next step where its ground-truth cost 𝑓∗(𝑥𝑖+1) is computed (v). The 

accept filter (vi) is only used for promoted samples.  

For a cost minimization problem, the promote and accept probabilities can be 

computed based on the following equations (Christen & Fox, 2005): 

 

𝛼(𝑥𝑖+1|𝑥𝑖) = 𝑚𝑖𝑛(1, 𝑓(𝑥𝑖)/𝑓(𝑥𝑖+1))       (1) 

𝛼∗(𝑥𝑖+1|𝑥𝑖) = 𝑚𝑖𝑛(1, 𝑓∗(𝑥𝑖)/𝑓∗(𝑥𝑖+1)) (2) 

  

where 𝛼(𝑥𝑖+1|𝑥𝑖) denotes the promote probability and 𝛼∗(𝑥𝑖+1|𝑥𝑖) the accept 

probability.  
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Figure 2: Nested Metropolis Sampling. The inner loop computes a cheap (in terms of CPU-time) 
approximation of a sample cost and if the approximation is strong, the sample is promoted to the outer loop 

where an expensive ground-truth cost is computed. 
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4. Problem formulation 

4.1 Objective function 

The objective function in the OBP-based SLAP is based on the ones 

formulated in Henn & Wäscher (2012) and Oxenstierna, van Rensburg, et al. 

(2021), i.e., the minimization of cost in an Order Batching Problem (OBP):  

 

𝑓∗(𝑥) = 𝑚𝑖𝑛 ∑ 𝐷𝑥(𝑏)𝑎𝑣𝑏 ,

𝑏∈ℬ 

𝑣 ∈ 𝑉, ℬ ⊂ 2𝒪 
(3) 

where 𝒪 denotes orders, where ℬ denotes batches and where 𝐷𝑥(𝑏) denotes 

the distance of a TSP solution, i.e., the distance needed to pick batch 𝑏 ∈ ℬ. 

Batch 𝑏 is a set of orders and 𝑣 ∈ 𝑉 denotes a vehicle. Each vehicle can carry 

one batch and the number of orders that can fit in the batch is governed by 

vehicle capacity (such as dimensions, bins, number of orders or products). 

𝑎𝑣𝑏 denotes a binary variable set to 1 if vehicle 𝑣 is assigned to pick 𝑏 and 0 

otherwise. Orders consist of products 𝒪 ∈ 2𝒫, where each product 𝑝 ∈  𝒫 is a 

tuple consisting of a unique key (Stock Keeping Unit), a Cartesian location 

𝑙𝑜𝑐(𝑝), and a positive quantity of how many 𝑝 are available at 𝑙𝑜𝑐(𝑝). The 

locations of all products are given by location assignment vector 𝑥, where the 

elements represent products and the indices locations (each index is mapped to 

a Cartesian coordinate).  

The mapping of location keys to coordinates and computation of distances 

between pairs of locations is based on a digitization pipeline for warehouses 

on any 2D obstacle layout and usage of the Floyd-Warshall graph algorithm. 

Details on this digitization pipeline  and the OBP (including TSP-optimization 

for 𝐷𝑥(𝑏) and usage of vehicle capacity in 𝑎𝑣𝑏) are beyond the scope of this 

paper, so for specifics we refer to Oxenstierna, van Rensburg, et al., (2021) and 

Rensburg (2019).  

The difference between the OBP and the OBP-based SLAP mainly concerns 

product locations. In Oxenstierna, van Rensburg, et al. (2021) each product 𝑝 

∈ 𝒫 “has a [fixed] location”, meaning that 𝑥 in  𝑓∗(𝑥) is immutable. In the 

OBP-based SLAP, however, a subset of products 𝒫𝑠 ⊂ 𝒫 do not have fixed 

locations, which means that some elements in 𝑥 can change indices in the 

vector. The OBP-based SLAP objective consists of finding location 

assignment 𝑥, such that the OBP in Equation 3 is minimized: 
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argmin
𝑥

∑ 𝐷𝑥(𝑏)𝑎𝑣𝑏,

𝑏∈ℬ 

𝑣 ∈ 𝑉, ℬ ⊂ 2𝒪 
(4) 

 

This objective lacks reassignment costs and is therefore a version of the “empty 

storage location” scenario I in Kübler et al. (2020) (Section 2). Exclusion of 

reassignment costs is motivated for this scenario, since the initial location 

assignment of new products in a warehouse is not optional, but a requirement. 

The other of Kübler et al.’s scenarios are all reassignments. Contrary to the 

initial assignments that we work with, reassignments can produce an increased 

travel cost, as potential gains in order-picking must be weighed against 

reassignment costs.  

Although reassignments should ideally be included in a complete SLAP model, 

a standardized SLAP needs to be a trade-off between simplicity and 

complexity. In the TSP-based SLAP (Oxenstierna et al., 2023) it is shown that 

the optimization of reassignments is NP-hard and not easily combined with 

order-picking optimization within a SLAP. The TSP-based SLAP includes 

reassignments, but uses the TSP instead of the OBP to optimize order-picking. 

The OBP-based SLAP excludes reassignments, but includes the OBP, a 

significantly more challenging problem than the TSP. As is often the case in 

literature on the SLAP, choice of optimization model depends on which 

features are considered more important for the usecase at hand.  

 

4.2 Fast OBP Cost Approximation  

One key difficulty with the OBP-based SLAP is that the OBP poses a highly 

intractable problem. Even for relatively small OBP instances, a significant 

amount of CPU-time is needed to obtain substantial cost improvements 

(Kübler et al., 2020; Oxenstierna et al., 2022). In the case of the OBP-based 

SLAP, this means that it would require a large amount of CPU-time to 

minimize cost for many assignment candidates 𝑥 (Equation 4). To alleviate this 

problem, we propose to include an approximation of 𝑓∗(𝑥): 
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𝑓(𝑥) = ∑ ∑ ∑ ∑ 𝑤𝑝1𝑝2

𝑙2∈ℒ𝒫

𝑙1≠l2

𝑙1∈ℒ𝒫𝑝2∈𝒫
𝑝1≠𝑝2

𝑑𝑙1𝑙2

𝑥 × 𝑎(𝑝1, 𝑙1)𝑎(𝑝2, 𝑙2) 

𝑝1∈𝒫

 
 

(5) 

where 𝑤 denotes weight, where 𝑑𝑙1𝑙2

𝑥 denotes distance between two locations 

𝑙1, 𝑙2and 𝑎(𝑝, 𝑙) a function which returns 1 if product 𝑝 is located at location 𝑙 
and 0 otherwise. 𝑓(𝑥) is the element-wise summation of weights times 

distances. The cell values in the weight matrix represent the number of times 

two products, 𝑝1, 𝑝2, appear in the same order 𝑜 ∈ 𝒪. The (shortest) distances 

between all pairs of product locations are assumed pre-computed and stored in 

memory. We refer to Equation 5 as the Quadratic Assignment Problem (QAP) 

model. Note that we never minimize it. For the 𝑓(𝑥) approximation to be of 

use, we proceed to discuss how its ability to predict  𝑓∗(𝑥) can be evaluated.   

Assuming a dataset of finite samples with approximated and ground truth costs 

(𝑥, 𝑓(𝑥), 𝑓
∗(𝑥)) ∈ 𝑋, |𝑋| ∈ ℤ+, 𝑓(𝑥), 𝑓∗(𝑥)  ∈ ℝ+

, the predictive quality of 𝑓(𝑋) 

versus 𝑓∗(𝑋) is obtainable through softmax cross-entropy (Bruch et al., 2019; 

Cao et al., 2007): 

ℙ(𝑓(𝑥𝑖)) =
𝑒𝑓(𝑥𝑖)

∑ 𝑒𝑓(𝑥𝑗)|𝑋|
𝑗=1

 
(6) 

ℙ(𝑓∗(𝑥𝑖)) =
𝑓∗(𝑥𝑖)

∑ 𝑓∗(𝑥𝑗)
|𝑋|
𝑗=1

 
(7) 

𝐿 = −
1

|𝑋|
∑ ℙ(𝑓∗(𝑥𝑖)) 𝑙𝑜𝑔ℙ(𝑓(𝑥𝑖))

(𝑥𝑖,𝑓(𝑥𝑖),𝑓∗(𝑥𝑖))

   

 

(8) 

 

where ℙ(𝑓(𝑥𝑖)) and ℙ(𝑓∗(𝑥𝑖)) denote the probabilities of approximate and 

ground truth costs of sample 𝑥𝑖, respectively, where (𝑥𝑖, 𝑓(𝑥𝑖), 𝑓
∗(𝑥𝑖)) ∈ 𝑋. 𝐿 

is the loss, i.e., a distance heuristic between 𝑓(𝑋) and 𝑓∗(𝑋). This approach 

can be extended into Normalized Discounted Cumulative Gain (NDCG) 

(Bruch et al., 2019): 
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𝑁𝐷𝐶𝐺 =  
𝐷𝐶𝐺

𝐼𝐷𝐶𝐺
   

(9) 

  

𝐷𝐶𝐺 = ∑
𝑟𝑒𝑙(𝜋𝑓(𝑋)(𝑖))

𝑙𝑜𝑔2(𝜋𝑓(𝑋)(𝑖) + 1)

|𝑋| 

𝑖=1

 

(10) 

𝐼𝐷𝐶𝐺 = ∑
𝑟𝑒𝑙(𝜋𝑓∗(𝑋)(𝑖))

𝑙𝑜𝑔2(𝜋𝑓∗(𝑋)(𝑖) + 1)

|𝑋| 

𝑖=1

 

(11) 

 

𝜋𝑓(𝑋) is a ranking (an ordering of samples 𝑋 according to their costs 𝑓(𝑋)) and 

𝑟𝑒𝑙(𝜋𝑓(𝑋)(𝑖)) is the relevance at rank 𝜋𝑓(𝑋)(𝑖). 𝐼𝐷𝐶𝐺 denotes an ideal value, 

where𝑟𝑒𝑙(𝜋𝑓∗(𝑋)(1)) > 𝑟𝑒𝑙(𝜋𝑓∗(𝑋)(2)) > ⋯ >  𝑟𝑒𝑙(𝜋𝑓∗(𝑋)(|𝑋|)), i.e., the 

case when the relevance of a sample corresponds with how highly it is ranked.  

Bruch et al. (2019) argue that NDCG is a stronger choice than softmax cross-

entropy whenever cost is non-binary, which is the case in 𝑓∗(𝑥) (Equation 3). 

In Figure 13 (Appendix) an example is shown where NDCG is computed from 
|𝑋| samples.  

In summary, we can quantify the predictive quality of the QAP model by its 

ability to rank a list of samples 𝑋 against a ground truth ranking by the OBP 

optimizer. Since the nested Metropolis algorithm in Section 3 only stores two 

samples at any iteration, we modify the algorithm to instead work with more 

samples (Section 5). We also want to avoid the computation of 𝑓∗(𝑋) in each 

iteration, so in the optimization algorithm we only compute 

𝑓∗(𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝑓(𝑋)). In Section 7, we conduct an experiment to test the 

validity of using the NDCG-based  𝑓∗(𝑎𝑟𝑔𝑚𝑖𝑛𝑥  𝑓(𝑋)) in SLAP optimization. 

In Section 6 we also discuss choice of datatype for the relevance values. 
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5. Optimization Algorithm 

5.1 Overview 

The proposed optimization algorithm includes three main modules: 1. a sample 

(location assignment) generator. 2. a fast cost approximator based on a model 

of the Quadratic Assignment Problem (QAP). 3. an Order Batching Problem 

(OBP) optimizer. In this paper, we mainly focus on how QAP approximations 

can be effectively utilized within the nested Metropolis sampler described in 

Section 3. In Sections 5.2 and 5.3, we therefore describe two main 

modifications. The final version (QAP-OBP) is shown in flowchart form in 

Figure 3 and pseudocode in Algorithm 1.  

 

Figure 3: QAP-OBP optimization algorithm.  
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Sample 𝑥 contains both the assigned products (products already in the 

warehouse) and the unassigned products 𝒫𝑠 (Section 4). 𝑥1 is initialized such 

that products 𝒫𝑠 are assigned free locations in 𝑥 randomly without replacement. 

Choices for iterations 𝐾, the cost distance function ∆ and constant 𝑐1 are 

discussed in Section 7.  

 

5.2 Sample Generator 

The input to the sample generator (step ii in Figure 3) is a single sample 𝑥𝑖 and 

the output is a list of new samples 𝑋𝑖+1. There are two main parameters in use 

by the sample generator. 𝑁 ∈ ℤ+ dictates how many new samples are 

generated, i.e., |𝑋𝑖+1|, and λ ∈ ℝ+ dictates how much each new sample in 𝑋𝑖+1 
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differs from 𝑥𝑖. The way 𝑁 and λ are utilized to generate new samples is shown 

in Algorithm 2. 

 

 

Every time the sample generator is called, an empty list is first initialized. 

Then, for 𝑁 iterations, a new sample 𝑥 is generated by first copying 𝑥𝑖 and then 

by computing 𝑚, the number of products for which the index in 𝑥 can change. 

For 𝑚 we use a truncated Poisson distribution with rate λ and upper bound 

𝑚 ≤ |𝒫𝑠|. A uniform random selection of 𝑚 products, 𝒫𝑚, are then removed 

from 𝑥. For each 𝑝 ∈ 𝒫𝑚, a uniform random free index (either an empty 

location or an index holding a product in 𝒫𝑠) in 𝑥 is then selected such that the 

quantity (𝑞) of the product does not exceed the location’s capacity. After 𝑥 has 

been filled, it is appended to 𝑋𝑖+1. 
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5.3 Promote and Accept Thresholds and Cost Computations 

After a list of samples 𝑋𝑖+1 has been generated (step ii in Figure 3), their costs 

are approximated using the QAP model (iii). The sample with the lowest cost 

approximation is then always promoted (iv). Steps ii, iii and iv in both the 

nested Metropolis sampler and QAP-OBP (Figure 2 and Figure 3, respectively) 

are the same considering that the final output is a single promoted sample. 

There are advantages and disadvantages of both versions regarding how they 

conduct this selection. In the nested Metropolis sampler in Figure 2, the 

promote probability depends on the ratio of approximated cost between 

previous and new single samples. In QAP-OBP, the sample generator is instead 

set to output 𝑁 = |𝑋𝑖+1| candidates, followed by argmin (compare step iv in 

Figure 2 and 3). This modification simplifies evaluation of the QAP model’s 

accuracy, since we can set up an experiment to compute OBP costs on the same 

samples (Figure 5). Generating multiple samples could also facilitate 

parallelization, which, for future work, could reduce the QAP model’s CPU-

time. The main consideration, however, is that it simplifies the original 

algorithm for a particularly complex optimization scenario, where it cannot be 

expected to behave according to Christen & Fox’s (2005) performance 

guarantees. The problem with the original algorithm is that it assumes optimal 

𝑓∗(𝑥) costs, but these are not generally available for OBPs (Oxenstierna et al., 

2022) (as far as we are aware, there exists no proposal for how to obtain 

optimal results for but the smallest OBP instances within reasonable CPU-

time). A relatively minor problem with the modification is that it requires 

tuning of the number of samples (𝑁) that the sample generator is outputting 

each iteration. The reason we use a Metropolis algorithm instead of possibly 

more capable meta-heuristic alternatives, is mainly due to implementation. The 

Metropolis algorithm does not have many parameters which could be tuned 

based on iterations 𝐾 (such as the temperature in Simulated Annealing) and 

therefore, a time-based condition can be used instead of 𝐾 to terminate the 

algorithm (we will use this in Section 7.2.3). 

Concerning computation of 𝑓∗(𝑥) we use the Single Batch Iterated (SBI) 

optimizer and its main features are its high computational efficiency and its 

ability to handle warehouses with unconventional rack layouts (Oxenstierna et 

al., 2022). OBP optimization and its internal use of TSP optimization, is 

beyond the scope of this paper, and we here treat SBI as a black-box which 

outputs a 𝑓∗(𝑥) for Equation 3. The sample 𝑥 with the lowest 𝑓∗(𝑥) found is 

always stored throughout the optimization procedure (sample storage is 

omitted in Figure 2, Figure 3 and the pseudo-code).  
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6. Datasets 

For this paper, we have generated and shared instances in L17_5331, which are 

based on OBP instances in L6_2032 and L09_2513. We also use data from a 

real warehouse (Aba Skol AB). The generated instances use the TSPLIB 

format (Reinelt, 1991) with certain amendments for the SLAP, including 6 

types of warehouse obstacle layouts, various depot configurations, vehicle 

capacities and orders (see Figure 1 for an example of one of the layouts). 

L17_533 does not include any unidirectional travel rules, meaning that the 

distance between any two locations is equal both ways. The number of orders 

range between 4 to 1000 and number of products range between 10 to 3000. 

The products that are to be assigned a location, 𝒫𝑠, are tagged as “SKUsToSlot” 

in the instance set. The “assignmentOptions” includes the available empty 

locations and how cost is to be computed (it is always set to the “empty storage 

location” scenario). For analysis, instances are categorized according to 

vehicle capacities, number of orders, products and parameters 𝑁 and λ. 

 

 

Figure 4: Top-view of the Aba Skol AB warehouse. The picking zones are color-coded. The red circle 

denotes the most commonly used depot location. 

 

 
1 https://github.com/johanoxenstierna/L17_533, collected 13-02-2023. 

2  https://github.com/johanoxenstierna/OBP_instances, collected 15-01-2023. 

3 https://github.com/johanoxenstierna/L09_251, collected 15-01-2023. 
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The industrial warehouse dataset (Figure 4) contains 210277 products in 37014 

orders collected using batch picking over a 4-month period. There are 1289 

pick-locations (in the graph representation) and most batches exist within one 

of six picking zones, but 24.4% include picks from several zones. As with the 

generated instances, shortest distances and paths between any two locations 

are assumed equal. For a proof of concept, we select product subsets from this 

data to be of relevance to warehouse management and real-world utility, on the 

one hand, and comparability to the generated instances, on the other. We build 

150 subsets from 3-week periods with selections of between 50-1800 products 

for 𝒫 and between 10 and 225 corresponding products for 𝒫𝑠. The subset 

selection is random apart from that the products in a subset must exist within 

the same 3-week period. Number of free locations is given on a per-product 

basis, since each product has specific constraints regarding where it can be 

placed, and on average it varies between 50 – 481 locations. For parameters 

𝑁 and λ, we explore suitable values on the generated instances within shorter 

optimization runs, followed by longer runs with chosen constants on the real 

dataset.  
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7. Experiments 

7.1 Overview and Constants 

The experiments are divided into two parts. The first part involves tuning the 

QAP model and comparing its ability to rank SLAP assignment samples 

against an OBP ground truth model and a random baseline (Figure 5).  

 

 

Figure 5: Steps involved to obtain QAP predictive quality on samples generated from an instance. 

 A SLAP test-instance (orders with products) is first loaded (i) and 𝑥1 

initialized (products 𝒫𝑠 are assigned free locations in 𝑥1 randomly) (ii). Then, 

𝑁 location assignments, 𝑋𝑖+1, are generated according to Algorithm 2 (iii). The 

cost of the generated assignments is estimated using the QAP model and the 

OBP optimizer SBI (iv). The samples and costs are used to compute IDCG and 

DCG (v). IDCG is computed from the ranking of costs according to the OBP 
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optimizer and DCG is computed from the ranking of costs according to the 

QAP model. A random DCG value is also pre-computed using the average of 

106 random rankings. This random baseline represents the case when 𝑓(𝑋𝑖+1) 

and 𝑎𝑟𝑔𝑚𝑖𝑛𝑥+1 𝑓(𝑋𝑖+1) (steps iii and iv in Figure 3) cannot help produce a 

lower value in   𝑓∗(𝑥𝑖+1) (step v) (Freund et al., 2003; Freund & Schapire, 

1996). Relevance values 𝑟𝑒𝑙(𝜋𝑓∗(𝑋))  and 𝑟𝑒𝑙(𝜋𝑓(𝑋)) are chosen to be the 

ordinal ranks of samples 𝑥 according to respective cost functions. For 𝑁 

samples, the values are 𝑟𝑒𝑙(𝜋𝑓∗(𝑋)) = (𝜋𝑓∗(𝑋)(𝑁), 𝜋𝑓∗(𝑋)(𝑁 − 1), … ,

𝜋𝑓∗(𝑋)(1)) and 𝑟𝑒𝑙(𝜋𝑓(𝑋)) = (𝜋𝑓(𝑋)(𝑁), 𝜋𝑓(𝑋)(𝑁 − 1), … , 𝜋𝑓(𝑋)(1)) (this 

corresponds to the set up shown in Figure 13 in Appendix). The DCG value 

obtained from the QAP model is then used to compute NDCG according to 

Equation 9 (vi). The predictive quality is finally calculated by subtracting the 

achieved NDCG value with the random NDCG baseline, with a positive value 

implying that the QAP model is stronger. We also record the CPU-time needed 

for the QAP model and the OBP-optimizer, respectively. The tuning of the 

QAP model concerns parameters 𝑁 (number of samples) and λ (rate of change 

for the samples) to maximize NDCG. We further investigate whether NDCG 

is impacted by other factors, including warehouse layout and instance size. 

Instance size is used to provide a quantification of instance difficulty, and here 

we restrict it to number of orders, total number of products |𝒫| and products 

which are to be assigned a location |𝒫𝑠|. The latter number, |𝒫𝑠|, is computed 

as 5-10% of |𝒫| in the instance. 

We proceed with a second experiments part, where we run the SLAP optimizer 

(Algorithm 1) on the industrial instances with and without the QAP model. For 

the experiments without the QAP model, 𝑁 = 1 and lines 11 and 12 in 

Algorithm 1 are removed. This second part is carried out after suitable 

constants for 𝑁 and λ values have been found on the L17_533.  

In order to find such constants, we run the steps in Figure 5 for 10 𝑁 values 

ranged between 1 – 200 and 10 λ values set between 5 – 50% of |𝒫𝑠|. For the 

experiments to test 𝑁, we use λ = 15% of |𝒫𝑠|. For the experiment to test λ, 

we use 𝑁 =  50. For the cost distance function ∆ we use a scaled sigmoid, 

which is set to approach 1 when the ratio 𝑓∗(𝑥𝑖)/𝑓∗(𝑥𝑖+1) exceeds 1.05. This 

means that sample 𝑥𝑖+1 is unlikely to be accepted if its cost is 5% higher than 

that of 𝑥𝑖. For each instance, the global best OBP result is tracked and uploaded 

as the current best result. We refer to the documentation in L17_533 for further 

details. We use Intel Core i7-4710MQ 2.5 GZ 4 cores, 32 GB RAM, Python3, 

Cython and C. 
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7.2 Results 

7.2.1 The impact of parameters 𝑁 and 𝜆 on QAP predictive quality  

Concerning 𝑁, we first observe that the average predictive quality of the QAP 

model is equivalent to the random baseline when 𝑁 = 1 (Figure 6). We further 

observe that mean predictive quality rises steadily until 𝑁 is 20, after which it 

tapers off.  

 

 

Figure 6: Boxplot showing number of samples (𝑁) against QAP predictive quality. The red line denotes the 

NDCG random baseline. The box edges show the first and third quartiles of the data (Q1, Q3) and the 

whiskers show (Q1 – 1.5 * IQR, Q3 + 1.5 * IQR), where IQR is the Inter Quartile Range. 

The result clearly shows that the QAP model is able to rank samples better than 

the random baseline (negative values imply the opposite). The positive initial 

trend could be impacted by the choice of ordinal relevance values 𝑟𝑒𝑙(𝜋𝑓(𝑋)) 

for the NDCG computation (Section 7.1), which could favour the baseline for 

smaller 𝑁.  

Concerning rate of change of new samples λ, the best results are achieved when 

it is set toward the lower end of the 5-50% range of |𝒫𝑆| (Figure 7). This 

provides some validation for the use of a Metropolis algorithm, since it shows 

that a Markov Chain can be used to nudge samples closer towards lower costs. 

Otherwise, NDCG would be similar regardless of the x-axis in Figure 7. This 

result is in line with Oxenstierna et al., (2023), where a slightly stronger pattern 

is observed on the related TSP-based SLAP.   
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Figure 7: How much new samples are changed compared to previous samples (λ) against QAP predictive 

power.  

 

7.2.2 The impact of other factors on QAP predictive quality 

Results for all factors are shown in Table 1, 2 and 3 (Appendix). We find that 

QAP predictive quality decreases as instance size increases (Figure 8). This 

may be due to that the quality of 𝑓∗(𝑥) costs provided by the OBP optimizer 

decrease with instance size (they are sub-optimal, see Section 5.3), making 

analysis of results for larger instance classes more difficult in general. We find 

that the fraction of CPU-time required by the QAP model versus the OBP 

optimizer is between 0.006-0.019, or around 50-150 times faster. The 

difference is largest for the largest instances and smallest for the smallest 

instances (Table 2). We do not observe any relationship between QAP 

predictive quality and warehouse layout.  

Overall, the result provides evidence that QAP approximations of OBP costs 

within an OBP-based SLAP optimizer may be justified. Its predictive quality 

may decrease with instance size, relative to the OBP optimizer (Figure 7), but 

its relative usage of CPU-time also decreases. Another way to visualize the 

performance difference between the QAP model and the random baseline is 

through a frequency distribution (Figure 9).  
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Figure 8: Instance size, in terms of number of orders, versus the predictive quality of the QAP model and the 

random baseline.  

 
 

 
Figure 9: Frequency distribution of NDCG values (20 bins) from QAP and random ranking of samples 

when 𝑁 = 20 and 𝜆 = 10% (of |𝒫𝑆|). 
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7.2.3 SLAP optimization with and without QAP approximation 

We report results from running the QAP-OBP SLAP optimizer (Section 5) on 

the industrial dataset with and without the use of QAP approximations. Apart 

from general settings (Section 7.1), 𝐾 is set to 108 and the algorithm is set to 

terminate after 60 minutes (which, given maximum OBP and QAP CPU-times, 

ensures iterations never exceed 𝐾). 𝜆 is set to 10% of |𝒫𝑆| and 𝑐1 = 1. 𝑁 is set 

to 20, which means that the QAP model will have a relatively small impact on 

overall CPU-time. 𝑁 could theoretically be set to a much larger number, but 

this may not necessarily yield better results. The QAP model in the form of 

Equation 5 likely needs to be further developed before its extended use can be 

motivated. One risk with setting 𝑁 to a large number is that the SLAP 

optimizer will spend too much time in search regions with a low QAP cost, 

rather than in regions with a low OBP cost.  

In Figure 10, we see that Algorithm 1, on average, improves cost by around 

23% in 1 hour. Without QAP approximations, cost improves by around 17%.  

 

 

Figure 10: SLAP optimization cost improvements with and without the QAP model during 1 hour. The 

shaded areas denote 95% confidence intervals.  
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Figure 11: QAP-OBP SLAP cost improvement using QAP approximations for 5 categories of instance sizes 

(in terms of |𝒫𝑠|). Shaded areas denote data within 1 standard deviation.  

 

 

Figure 12: Same as Figure 11, but without using QAP approximations.  

 

The size of the instances has a significant impact on computational efficiency. 

In Figure 11 and 12, we see that the impact of instance size, in terms of number 

of products that are assigned a location, |𝒫𝑠|, has a similar effect on 

computational efficiency regardless of whether the QAP is used. The stronger 

performance of the smaller instances can largely be attributed to more samples 
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being generated within the 60 minutes. On average, cost improvement 

continues throughout the time, which is explainable due to the large SLAP 

search space.  

 

8. Conclusion 

In this paper, we: 

• formulate an optimization model for the Storage Location Assignment 

Problem (SLAP), where the costs of assignments are evaluated using 

Order Batching Problem (OBP) optimization. 

• share generated SLAP test instances, with the goal to standardize 

formats and comparability between solution approaches.  

• propose a Quadratic Assignment Problem (QAP) model to quickly 

approximate OBP costs in SLAP optimization. The QAP model is 

tested and tuned on the generated instances.  

• propose a SLAP optimizer (QAP-OBP), which we test on industrial 

instances with a 1 hour optimization timeout.  

Within the QAP-OBP optimizer, the QAP and OBP modules are utilized in a 

Metropolis algorithm, where samples are modified by a variable amount each 

iteration. The algorithm is nested such that OBP costs are only computed for 

samples with relatively strong QAP cost approximations.  

In order to motive the use of the QAP model within the algorithm, experiments 

are first conducted to test its predictive quality against costs obtained by the 

OBP optimizer and a random baseline. Results show that QAP predictive 

quality is stronger than the baseline, and that they are around 50-150 times 

faster to compute than the cost obtained when using the OBP optimizer.  

We then proceed to run the SLAP optimizer with and without the QAP 

approximations. We find that the optimizer performs better when using the 

QAP approximations, with cost improvements of around 23% after 1 hour. 

This result is in line with results in related work on SLAPs that are less difficult 

in some regards (for example concerning warehouse layouts), but more 

difficult in others (dynamicity or larger number of products). 
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For future work, the parameter which controls the number of samples that 

should be approximated by the QAP model for every OBP cost computation, 

𝑁, could be tuned. The QAP computations could be significantly sped up by 

the use of parallelization and Graphical Processing Units (GPU), extending its 

utility within the SLAP optimizer for larger 𝑁. Also, alternative optimization 

approaches could be explored. These include meta-heuristic techniques such 

as Simulated Annealing or Particle Swarm Optimization. The QAP cost 

approximator could also be developed for a Machine Learning approach and 

used in a similar fashion as the weak estimators in boosting or aggregate 

bootstrapping. The factorial search space remains a fundamental problem for 

learning, however. Finally, we invite discussions into how to best represent 

SLAP features in public benchmark data and which features to choose for a 

standardized version of the problem.  
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Appendix 

 

NDCG flowchart: The below example shows how Normalized Discounted 

Cumulative Gain (NDCG) can be computed from input permutations (products 

to locations), approximated (𝑓) and ground truth (𝑓∗) values. Note that 𝑓(𝑋) 

denotes a sorting of 𝑋 according to the cost valuation of elements in the cost 

step. Also note that relevance values can be formulated in several ways. 

 

 
 

Figure 13: NDCG procedure flowchart.   
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Table 1: Summary of instances and results for different types of warehouse layouts. Also an aggregate of the 

results concerning the predictive quality of the QAP model. 
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Table 2: Summary of results with regard to instance size. These results exclude instances with more than 

435 products. All values are averages over instances with a certain number of products (num_products).    
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Table 3: Results on 60 minute optimization runs.   
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Abstract. The Storage Location Assignment Problem (SLAP) has a significant
impact on the efficiency of warehouse operations. We propose a multi-phase
optimizer for the SLAP, where the quality of an assignment is based on dis-
tance estimates of future-forecasted order-picking. Candidate assignments are
first sampled using a Markov Chain accept/reject method. Order-picking Travel-
ing Salesman Problems (TSPs) are then modified according to the assignments
and solved. The model is graph-based and generalizes to any obstacle layout
in two dimensions. We investigate whether optimization speed-ups are possible
using methods such as cost approximation, rejection of samples with low ap-
proximate cost and restarts from local minima. Results demonstrate that these
methods improve performance, with total travel-cost reductions of up to 30%
within 8 hours of CPU-time. We share a public repository with SLAP instances
and corresponding benchmark results on the generalizable TSPLIB format.

Keywords: Storage Location Assignment Problem, Nested Annealing, Ham-
ming Distances.

1 Introduction

The Storage Location Assignment Problem (SLAP) concerns the search for suitable
locations for products in a warehouse. There exist dozens of proposed versions and op-
timization methods for the SLAP [5]. We work with a standard picker-to-parts scenario
where racks and other obstacles can be laid out freely on a two-dimensional plane and
where vehicles may start and end their paths at any location. In order to evaluate the
quality of a location assignment, we combine two costs. The first cost consists of the
travel distance needed to complete a given picking-log, i.e., a set of pick-rounds (se-
quences of product visits). A pick-round is equivalent to a Steiner Traveling Salesman



Fig. 1: Example of a SLAP with products enumerated 1-7 and an unconventional
obstacle-layout [28]. The picking-log consists of three pick-rounds (TSPs) and their
optimal solutions give the picking-log distance. The initial baseline assignment (top)
has a longer picking-log distance compared to a candidate (sample) assignment (bot-
tom left). In this example, the reassignment path needed to move the products accord-
ing to the sample (bottom right), is longer than any possible savings concerning the
picking-log (more pick-rounds are needed for savings).

Problem (TSP) [36], where the origin and destination locations may be different and
where the same location may be revisited by one or several vehicles. We obtain the
picking-log distance by solving all TSPs given a location assignment of products. The
second cost is the travel distance needed to move the products such that the assignment
is obtained, in a single reassignment path. We refer to this model as the TSP-based
SLAP. A visualization of the TSP-based SLAP is provided in Figure 1.

In Section 2 we discuss strengths and weaknesses of proposed SLAP models in the
literature. The TSP-based SLAP can be compared to the closely related Order Batching
Problem (OBP)-based SLAP [26], where the picking-log is replaced by a set of orders
(where an order is a set of products). The OBP-based SLAP requires the batching of
orders into pick-rounds, as well as the subsequent TSP optimization of these pick-
rounds, before quality of a proposed location assignment can be estimated. While the
theoretical optimization gains may be higher in the OBP-based SLAP, its larger search
space also adds significant challenges [33, 17].

Choice of SLAP-model is inevitably a trade-off between simplicity, on the one
hand, and complexity, on the other. Regarding the former, there is a need in research to
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discuss what a relatively simple and standardized version of the SLAP should entail,
since there is little consensus on the matter [5]. Apart from order batching, examples
of other optional features include various forms of dynamicity, warehouse layout, ve-
hicle types, cost functions and reassignment scenarios. The TSP-based SLAP excludes
order-batching and dynamicity and uses distance instead of more realistic but com-
plex cost alternatives, such as time-based costs. Nevertheless, the TSP-based SLAP
still poses a highly intractable problem. This is partly attributable to the reassignment
distance. Hypothetically, more location reassignments are needed to obtain a lower
picking-log distance, but more reassignments also lead to a longer reassignment dis-
tance. Thus, an equilibrium point between two adversarial problems must be found to
attain a strong solution. One final and relatively novel feature of the TSP-based SLAP
is that it does not assume a specific warehouse layout. Although this makes cost calcu-
lation more computationally expensive, by disallowing heuristics based on presumed
rack-placements, it allows for a higher degree of generalization.

In Section 5 we introduce our optimization algorithm. It is based on Simulated An-
nealing and a Hamming-distance location-swap heuristic. Restarts from local minima,
as well as two cost approximators, are investigated to potentially improve computa-
tional efficiency (cost improvement through CPU-time). One of the cost approximators
is based on sub-optimal TSP optimization, while the other is based on a pick-frequency
heatmap. In Section 6 we introduce three datasets, including a publicly shared bench-
mark instance set on the TSPLIB format [11], and corresponding computational re-
sults.

Our contributions are summarized as follows:

1. A SLAP optimizer using a novel version of the Simulated Annealing algorithm
and experiments to test its computational efficiency.

2. Performance comparison of two cost-approximators utilized within the optimizer.
3. A publicly shared SLAP instance set on the TSPLIB format.

This paper is an extension of a ICORES-2023 paper [28]. Apart from a thorough
revision of the text, the extension includes new data (dataset 3 in Section 6.3), a new
cost approximator (Section 5.3), re-runs of previous experiments, as well as new ex-
periments and results (Section 6 and Section 8).

2 Literature Review

In this section we discuss how the SLAP has been described and optimized in pre-
vious work. We particularly refer to the extensive literature review by Charris et al.
[5]. There are several strategies for conducting a storage location assignment. These
include Dedicated, Random and Class-based.

– Dedicated: The locations of products are assumed to never change. This strategy is
suitable if the collection of products does not change much through time. If human
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picking is used, this approach has the advantage that pickers can learn to associate
products with locations, allowing for speed-ups in picking [43].

– Random: Products can be assigned any location in the warehouse. This is particu-
larly suitable if the collection of products changes frequently.

– Class-based (zoning): Each product is assigned a class and the warehouse is di-
vided into zones. Each zone contains one or several classes of products. Class-
based storage can incorporate dedicated and random strategies for certain zones
and/or classes [23]

The quality of a location assignment can be modeled in several ways. In a human pick-
ing scenario, Larco et al. [18] show that there exists a relationship between the height
at which products are placed and worker welfare. Worker welfare can be quantified
by estimating parameters such as “ergonomic loading”, “discomfort” or “expenditure
of human energy” [5]. On a similar note and for autonomous vehicle or shuttle based
storage and retrieval systems (AVS/R), there exists a model which has the objective to
minimize “energy consumption” [2].

Another way to judge solution quality is through datamining, using computations
such as support, confidence and lift [25]. These can also be used to propose concrete
location assignments [14, 43]. Datamining is primarily focused on the statistical anal-
ysis of products and their relationships, but it is often combined with order-picking in
a SLAP.

A third proposal studies the effect of traffic congestion. Bottlenecks can be caused
if, for example, too many products with high pick-frequency are placed close to the
depot. Lee et al. [19], propose Correlated and Traffic Balanced Storage Assignment
(C&TBSA), a multi-objective SLAP model which aims to minimize traffic congestion,
while also minimizing aggregate order-picking cost.

Order-picking has many variations, depending on obstacle layout, picking strategy
and travel conventions [5, 23, 31, 41]. Concerning obstacle layout, we distinguish be-
tween two types: Conventional and Unconventional. In the conventional layout, ware-
house racks are assumed to be organized in Manhattan style blocks with parallel aisles
and cross-aisles. Conventional layouts are used in the majority of research on both
order-picking and the SLAP [5, 15]. The unconventional layout includes the “fishbone”
and “cascade” layouts [4, 5], as well as all other layouts that are not conventional. Re-
gardless of layout, the picking path of a vehicle can be formulated as a Traveling Sales-
man Problem (TSP) where paths cannot intersect obstacles [12, 31]. For conventional
layouts, the TSP is often optimized using S-shape or Largest-Gap algorithms [32]. For
unconventional layouts, Google OR-tools or Concorde have been proposed [27, 31].

As mentioned in Section 1, the SLAP can be optimized as a joint problem with an
Order Batching Problem (OBP). Proposals include Kübler et al. [17], Xiang et al. [40]
and Maruyama et al. [24]. While these authors argue for this approach, arguments also
exist against it, at least for certain settings [23]. One issue with the OBP-based SLAP
is that the OBP is highly intractable in its own right, thus adding to the difficulties
involved in optimizing an already challenging problem.
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If order-batching is not included in the SLAP, heuristics such as Cube per Or-
der Index (COI) [13] and Order Oriented Slotting (OOS) [23] have been proposed.
COI assumes that products with relatively high pick-frequency and low volume should
be placed close to depot. COI does not include associations between products and is
therefore mainly suitable for pick-rounds with few picks, such as pallet-picking or
certain AVS/R systems [2]. OOS, on the other hand, is specifically designed for sce-
narios where orders may contain more than one product. Mantel et al. [23] introduce
a Quadratic Assignment Problem (QAP) heuristic which computes distances between
products and the number of times products appear in the same order. The quality of a
candidate location assignment can then be estimated using QAP. Similar methods to
OOS are used by Žulj et al. [44], Fontana and Nepomuceno [8] and Lee et al. [19].

The SLAP usecase can be divided into two categories depending on the number
of products that are to be moved. “Re-warehousing” is the case when a large propor-
tion of products are moved, whereas a smaller proportion is moved in “healing” [14].
Movements can be conducted in many ways, each accompanied by a (re)assignment
“effort”. Kübler et al. [17] propose the following (re)assignment effort scenarios:

i Product A is moved to an unoccupied location.
ii Product A swaps location with product B.

iii Product A is moved to a location occupied by product B. Product B is moved to
a new location. If there is a product C occupying the new location, the procedure
continues until a final product is placed at an empty location.

Scenario i comes with the least (re)assignment effort and the effort grows through
scenarios ii and iii. Apart from travel distance, time used for product removal/placement
on shelves as well as administrative time, can be added to the effort computation [17].

When it comes to optimization algorithms for the SLAP, both exact and non-exact
methods have been proposed. The exact algorithms include dynamic programming,
branch and bound algorithms and Mixed Integer Linear Programming (MILP) [5]. The
SLAP search space is often reduced in scope when exact solutions are sought. These
include restricting the number of locations [38], number of products [9, 21] or by only
working with conventional warehouse layouts [3].

More commonly, non-exact heuristic or meta-heuristic algorithms are used. Pro-
posals include Particle Swarm Optimization (PSO) [17], Genetic and Evolutionary Al-
gorithms [7, 19, 20] and Simulated Annealing [14, 43]. The SLAP is often optimized in
multiple phases using these methods. One example is to first generate candidate prod-
ucts for location assignments using datamining, and to then evaluate various candidate
assignments using order-picking optimization [14, 39].

It is challenging to judge optimization results in previous work due to the multitude
of variations in SLAP models [5]. For results including reassignment costs, conven-
tional warehouse layouts, dynamic picking patterns and meta-heuristic optimization,
Kofler et al. [14] report best savings around 21%. In a similar scenario, Kübler et al.
[17] report best savings around 22%. Excluding reassignment costs, Zhang et al. [43]
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report best savings around 18% on simulated data with thousands of product loca-
tions. In similar settings, Trindade et al. [35] report best savings around 33%, using
a multi-phase optimizer, and Chiang et al. [25] report best savings around 13% using
datamining heuristics and integer programming.

3 Simulated Annealing

Simulated Annealing, which draws inspiration from the annealing process in metal-
lurgy [14], has a useful analogue with SLAP optimization: A poor storage assignment
can be viewed as more energetic as it leads to more travel for picking in the ware-
house. As the SLAP is optimized, products are reassigned to new locations using a
decreasing temperature. As temperature cools, products become fixed in a lower en-
ergy state where picking travel costs are reduced. There are many complicating factors
in the SLAP which can prevent a smooth decent toward an improved storage assign-
ment, however. In the remainder of this section, we describe the Simulated Annealing
algorithm and how it may be modified to help attain stronger results in the SLAP.

A key component in Simulated Annealing (Algorithm 1) is the sample function.
In each iteration i, sample xi+1 is drawn based on a desired distance to sample xi. This
distance is computed using the probability distribution q(xi+1|xi), without involving
the cost of the samples (henceforth we refer to this as the feature-distance). The q
distribution is often chosen to be Normal, so that the distance between xi and xi+1 is
low with high probability [22]. The cost∗ function computes/retrieves the cost ( f ∗)
of the new/previous sample (the first sample is retrieved from memory after the first
iteration). The accept probability α∗ is based on a cost-distance function ∆ (which
outputs a negative value if the new cost is lower than the previous) and a decreasing
temperature function T [29]. Functions for q, T and ∆ are further discussed in Section
5.

Simulated Annealing is a type of Markov Chain Monte Carlo (MCMC) method and
one advantage of this type of method is that its bias-variance tradeoff can be tuned us-
ing relatively few parameters [10]. A known disadvantage is that only two samples are
stored in memory at any given time, which risks leading the Markov Chain to conver-
gence on weak local minima [22]. Several methods have been proposed to reduce this
risk, including mode-jumping [34], Nested Annealing [29] and Basin Hopping [37].
These methods split the search space into regions which are then subjected to local
search. Another method is the Restart Strategy (SARS), which restarts the search from
a random new sample whenever a “non-improving” local minimum is found [42].

Simulated Annealing can be modified to include a cost approximator, f , which
provides fast cost estimates of f ∗, to potentially increase computational efficiency.
Christen and Fox [6] propose to use f to reject new samples that are unlikely to yield
an improvement in f ∗ over the previous sample. The common MCMC accept method
is accordingly split into two parts: Promote ( f ∗ cost evaluation for a sample with a
strong f ) and accept (update xi for the next iteration to be a sample with a strong f ∗).
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Algorithm 1 Simulated Annealing
1: xi: Sample (an assignment).
2: f ∗(xi): Ground truth cost of sample xi.
3: q: Feature-distance function.
4: ∆: Cost-distance function.
5: N: Number of iterations.
6: T : Temperature function.
7: x1: Initial sample (baseline).
8: for i = 1, ...,N do
9: t← T (i)

10: xi+1← sample(q(xi+1|xi))
11: f ∗(xi), f ∗(xi+1)← cost∗(xi,xi+1)
12: α∗← exp(−c1∆( f ∗(xi+1), f ∗(xi))/t)
13: u←U(0,1) // random uniform
14: if u < α∗ then // sample accepted
15: xi← xi+1
16: end if
17: end for

In our optimization algorithm (Section 5), we utilize this concept and split Simulated
Annealing into promote based on a fast and less accurate costs computed in f , and
accept based on slow and more accurate costs computed in f ∗.

4 Problem Formulation

4.1 Objective Function

The objective in the TSP-based SLAP is to minimize the aggregate travel distance to:

1. Complete a given picking-log (a set of pick-rounds) B .
2. Carry out any proposed location reassignments in a single reassignment path R .

Each pick-round b ∈ B is a list of products. The set of all locations (including pick-
locations, origin and destinations and obstacle corners in 2D Cartesian space) is de-
noted L and the set of all pick-locations is denoted L(P ). The set of all products in B
is denoted P . Each product p ∈ P is defined as a tuple including a unique key (Stock
Keeping Unit), a pick location l(p) ∈ L(P ) and a positive pick frequency count F(p).
Each pick location is a tuple consisting of a unique key, a capacity and a location
(represented as a node in a graph). A product is located at strictly one location and
a location stores strictly one product. A product is allowed to move from its initial
location to a new one as long as the new location’s capacity is not exceeded.
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A SLAP solution candidate (also referred to as sample or assignment) is repre-
sented as permutation vector x ∈ X , where the elements are enumerated product keys
and the indices are enumerated locations. For an example warehouse with 3 locations,
sample x = (2,1,3) means that product 2 is assigned location 1, 1 assigned 2 and
3 assigned 3. Each sample x contains positive permutation integers in range 1 to m,
2≤m≤ |P | and each permutation x has ground truth cost f ∗(x). m denotes the number
of products that are subject to location change, and it does not necessarily have to be
equal to the number of products in the warehouse, but could instead be manually set to
limit the search space. Sample x1 represents the baseline product location assignment
(the initial locations of the products). In order to evaluate performance in optimization
experiments, costs f ∗(x2), f ∗(x3), ..., f ∗(xN) are compared against f ∗(x1).

The objective in the TSP-based SLAP, is to find a sample assignment x such that
picking-log cost ∑b∈B D(b) and reassignment cost D(R ) are minimized:

argmin
x

((∑
b∈B

D(b))+λD(R )) (1)

Constant λ is used to weigh the two cost terms. Below we show how the picking-log
and reassignment costs are computed using Euclidean distances.

4.2 Picking-log distance

The cost of all pick-rounds in picking-log B is computed using distance ∑b∈B D(b).
D(b) is the distance of the solution to the Traveling Salesman Problem (TSP) repre-
sented by product locations in b:

D(b) = dl(originb),l(p1)+dl(p|b|),l(destinationb)+∑dl(pi),l(p j), j = i+1,0 < i < |b| (2)

where dl(pi),l(p j) denotes the distance between the locations of pi, p j ∈ b, and where
dl(originb),l(p1) connects an origin location and dl(p|b|),l(destinationb) a destination location
to the path. The location of a product l(pi) is obtained from an index in the loca-
tion assignment sample x. This index is stored for each product and updated whenever
it changes location. We assume shortest distances and corresponding shortest paths
(needed if path visualization is sought) between pairs of locations are queryable from
Random Access Memory (RAM). All shortest paths and distances are pre-computed
using the Floyd-Warshall graph algorithm, using a warehouse digitization process be-
yond the scope of this paper [31]. This process includes capability for uni-directed and
mixed graphs, but in this paper we only work with bi-directed graphs (meaning that the
distance between two locations is equal in both directions). We allow the origin and
destination locations in the pick-rounds to be any locations in L (concerning TSP opti-
mization, this is sometimes referred to as a Multi-Depot TSP or Dial-a-ride Problem).
In Section 5 we describe how TSP optimization works for the multi-depot requirement.
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4.3 Reassignment distance

Reassignment path R and its distance D(R ) is based on direct and indirect exchange
scenarios (scenarios ii and iii in Section 2) with the following assumptions: Since there
are an equal amount of products and locations in the SLAP, scenarios ii and iii represent
a bijective relationship between products and locations. When products change loca-
tions, the bijection can take three forms: Direct exchange, e.g. x1 = (1,2) to x2 = (2,1)
(product 2 goes to location 1 and 1 goes to 2), indirect exchange, e.g. x1 = (1,2,3) to
x2 = (3,1,2) (1 goes to 2, 2 goes to 3 and 3 goes to 1), or a combination of both. We
also assume that the operation to change locations of products, using direct and indirect
exchanges, can be carried out by a single vehicle traveling along a single path through
the warehouse, without intermediate stops at the depot. Algorithm 2 shows how this
single reassignment path can be constructed, just from information in the initial assign-
ment x1 and a subsequent sample x1+i, generated during optimization iteration i < N.

Algorithm 2 Reassignment Path and Distance
1: x1: Initial assignment sample (baseline solution).
2: x: Sample obtained during SLAP optimization.
3: xm← copy(x)
4: D(Rbest)← ∞

5: for j = 1, ...,K do // iterations.
6: R ← list()
7: while xm not_empty do
8: r← list()
9: while not_completed(r) do

10: add_to_subcycle(r,x,xm,x1)
11: end while
12: R += r
13: end while
14: shuffle_and_flatten(R )
15: D(Rbest)← update_best(R ,Rbest)
16: end for

r denotes a sub-cycle of locations (a sequence that starts and ends at the same
location). The add_to_subcycle function has two cases:

1. If the r sequence is empty, a random new element is removed from xm and its initial
location (the index for that product in x1) is added to r.

2. If r is not empty, the new location of the last added product in r is first found in x
and added to r. The product located at that “next” location is found in x1, matched
in and then removed from xm.
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If the added location to r is equivalent to the first one in r, the sub-cycle is com-
pleted and r is added to R . After xm is emptied, R is first randomly shuffled and then
flattened (the inner lists of sub-cycles are converted into a single list). The distance
D(R ) is then computed as the sum of all location to location distances in R , plus
the distance from an origin depot location to the first location in R and the last loca-
tion in R to a destination depot location. At each iteration, the update_best(R ,Rbest)
function updates the lowest minimum found by comparing distance D(R ) and dis-
tance D(R best). For Algorithm 1 and our modifications to it in Algorithm 3, D(R ) is
included in the cost∗ and cost functions.

In summary, reassignment path R is a solution to a constrained, linked-list TSP
where a product is dropped off and another product picked up at each location. The
vehicle conducting the reassignment path is assumed to be able to carry the whole
quantity (frequency F(p) in our case) of any single product located at any single loca-
tion. A model of the reassignment path involving vehicle-capacities, enforcing return
trips to depot when a product quantity exceeds vehicle capacity, is left for future work.

5 Optimization Algorithm

5.1 Assignment sampling using Markov Chain Monte Carlo (MCMC) and
Hamming Distances

As described in Section 3, the Simulated Annealing algorithm includes two distribu-
tions to describe the amount of distance between samples xi and xi+1: Feature-distance
q and cost-distance ∆. For sampling to be effective, there should exist some degree
of proportionality between these two distributions. If the feature-distance between xi
and xi+1 is relatively low, the distance between costs f ∗(xi) and f ∗(xi+1) should also
be relatively low. The cost-distance in a SLAP is in the domain R+, as it represents
Euclidean travel distances in the warehouse. The feature-distance between two sam-
ples is represented by the difference between two assignments. We hypothesize that
the feature-distance can be computed using a Hamming distance heuristic. Hamming
distance is a count of the number of non-identical elements between two permutation
vectors (which are equivalent to assignments) [30]. The following sampling distribu-
tion is then proposed to utilize this Hamming distance (based on bounds proposed by
Christen and Fox [6]):

q(xi+1|xi) = e−CHd(xi,xi+1)
P

(3)

where C and P are hyperparameters in R+, and Hd denotes Hamming distance. We
propose to use this sampling function within Algorithm 1. Below we propose methods
which may improve computational efficiency (cost reduction through CPU-time) of
Algorithm 1.
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5.2 TSP optimization and cost caching

We utilize two TSP optimizers to compute the picking-log distances of assignment
samples. For optimal TSP solutions we use the Concorde TSP solver 5 [1]. For ap-
proximate TSP solutions we use the OR-tools TSP optimization suite6 [16]. In order
to limit the CPU-time of OR-tools, we use the solution_limit parameter. For both these
TSP optimizers, multi-depot scenarios are handled by modifying the input distance
matrix with a dummy location whose distance is zero to the origin and destination, and
whose other distances are set to infinity.

Before we apply TSP optimization to compute picking-log distance of an assign-
ment sample, we reduce CPU-time through a filtering technique. Given the usage of
sampling distribution q (Equation 3), we note that many pick-rounds will often not
contain products that had their location changed. For example, assume we start with
assignment x1 = (2,1,3) and two pick-rounds in the picking-log, one containing prod-
ucts 1 and 2 and the other containing product 3. Picking-log distance is then computed
by TSP-optimizing the two pick-rounds (to keep the example small, we disregard the
fact that TSP optimization only yields savings for longer pick-rounds). Assume we
then swap locations of products 1 and 2: x2 = (1,2,3). Since product 3 remains at
its initial location, there is no need to re-optimize the pick-round which contains that
product. To enable this reduction of redundant TSP-optimization, we cache the TSP
costs (both optimal and approximate) of any pick-round once computed. These costs
are then queried for the pick-round until one or several product locations are changed,
at which point the TSP gets re-optimized and the costs updated (only after promotion
in the case of f ∗).

5.3 Heatmap-based approximation

In order to motivate SLAP optimization, results need to be as interpretable and visually
representable as possible. One problem with TSP optimization within a SLAP is that
results cannot be easily visualized. Visualizing TSPs entails showing them before and
after SLAP optimization. Figure 1 and Figure 8 (Appendix) are examples. Interpreta-
tion of these types of figures becomes very challenging when the picking-log contains
hundreds of pick-rounds.

One possible way with which to visualize SLAP optimization in a single figure,
is a heatmap. Figure 2 is an example which shows number of picks at 2700 locations
(several locations share a single cell in the heatmap). The lower picture shows the
result after SLAP optimization. To achieve this movement of the "hotter" products
closer to depot, a dot product is first computed between the pick frequency count of
each product F(p) and the distance of their locations from an origin location and to a
destination location:

5https://math.uwaterloo.ca/tsp/concorde/downloads /downloads.htm, collected 27-05-2022.
6https://developers.google.com/optimization/routing/tsp, collected 12-06-2022.
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|L |

∑
i=1

F(pi)(dl(origin),l(pi)+dl(pi),l(destination)) (4)

Location swaps are then conducted based on this dot product. For the heatmap ex-
ample in Figure 2, 200 swaps were conducted to achieve a reduction of cost, according
to Equation 4, of around 35%. Apart from the visual interpretability, an additional ad-
vantage of using Equation 4 is that it is very fast to compute. In Section 6 we conduct an
experiment to investigate whether there is any correlation between this approximation
and optimal TSP cost. The predictive quality of Equation 4 is likely weak, but if CPU-
time is low enough it could still outmatch the alternative f approximation achieved
by the OR-tools TSP optimizer. Note that this approach only works for cases when all
pick-rounds in the picking-log use the same origin and destination location.

Fig. 2: Heatmap of picking in a warehouse with a single depot location (the black
square). The colorbar shows how many picks occur within a given cell.

5.4 Nested Annealing

In Section 3 we suggested that the computational efficiency of Simulated Annealing
(Algorithm 1) can be increased if there exists a function f which can quickly esti-
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mate f ∗ . We then proceeded to propose two suggestions for such an f : One using
sub-optimal TSP optimization (OR-tools), and one using a heatmap based approxima-
tion. In Algorithm 3, we show how either of these can be utilized within a modified
Simulated Annealing algorithm:

Algorithm 3 Nested Annealing (based on computational ef-
ficiency in cost estimation
1: xi: Sample (candidate solution).
2: f (xi): Less accurate fast cost estimate.
3: f ∗(xi): More accurate slow cost estimate.
4: q: Feature-distance function.
5: ∆: Cost-distance function.
6: α: Probability that sample xi+1 is promoted.
7: α∗: Probability that sample xi+1 is accepted.
8: N: Number of iterations.
9: T : Temperature function.

10: x1: Initial assignment sample (baseline).
11: for i = 1, ...,N do
12: t← T (i)
13: xi+1← sample(q(xi+1|xi))
14: f (xi), f (xi+1)← cost(xi,xi+1)
15: α← exp(−c1∆( f (xi+1), f (xi))/t)
16: u←U(0,1) // random uniform
17: if u < α then // sample promoted
18: f ∗(xi), f ∗(xi+1)← cost∗(xi,xi+1)
19: α∗← exp(−c2∆( f ∗(xi+1), f ∗(xi))/t)
20: u←U(0,1)
21: if u < α∗ then // sample accepted
22: xi← xi+1
23: end if
24: end if
25: end for

After a sample xi+1 is generated, its cost is estimated using f . If the sample passes
the promote filter on Line 17, cost∗ is computed using f ∗. Note that the cost and
cost∗ functions include reassignment distance D(R ) (Algorithm 2). Since Algorithm
2 does not guarantee optimality for D(R ), cost∗ does not guarantee optimality either,
and hence we refer to f ∗ as “more accurate” rather than optimal. Hyperparameters
c1,c2 ∈R+ may be set differently. Christen and Fox [6] suggest setting c1 > c2 so that
the promotion of a sample is less likely than the acceptance of a promoted sample.
For the temperature function T we use a shifted and scaled reverse sigmoid (decreas-
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ing) that gives temperatures in range [1,0]. For the cost-distance function ∆ we use a
shifted and scaled sigmoid that gives values in range [0,1]. Nested Annealing was first
introduced by Rajasekaran and Reif [29], but they do not use cost approximation and
base the nesting on variable set temperatures in local search regions. Algorithm 3 of-
fers an alternative nesting strategy, based on a trade-off between predictive speed and
accuracy.

5.5 Restarts

Due to the large search space of the SLAP, the MCMC sampling function xi+1 ←
sample(q(xi+1|xi)), may benefit from occasional restarts (Section 3). Yu et al. [42],
propose restarts from randomly generated samples. Their test-problems do not include
reassignment distances, however, and in the SLAP, randomly generated samples can
be expected to have a significantly higher cost than x1 due to reassignment distance
D(R ). As a solution to this problem, we instead propose restarts from local minima.
The best minimum found through optimization is denoted xbest and it is used as restart
sample with an increasing probability. Forcing restarts from xbest is motivated because
its local neighbourhood cannot be extensively searched for in any but the smallest
SLAP test-instances. A second minimum is denoted xlowR and it is used as a restart
sample with a decreasing probability. Forcing restarts from xlowR is designed to target
a low reassignment distance D(R ). The first such local minimum is xlowR = x1, whose
D(R ) = 0. xlowR = x1 can be assumed to be a strong local minimum, due to its lack of
reassignment distance, but after f ∗(x1) has been beaten by f ∗(x1+i), xlowR is updated
at regular intervals to a previously generated sample which has a relatively low f ∗ cost
and D(R ). In Section 6 we propose probability distributions for xbest and xlowR, as well
as optimization results with and without the use of restarts.

6 Experiments

6.1 Overview

We carry out experiments to investigate the following topics with regard to computa-
tional efficiency (cost reduction through CPU-time), in chronological order specified
below:

1. Utility of Hamming-distance based sampling (q).
2. Utility of restarts.
3. Comparison of two cost approximators for use within Algorithm 3.
4. Comparison of Algorithm 1 and Algorithm 3 (using best settings from 2 and 3).
5. Other features (such as layout and number of products and pick-rounds).

All experiments are carried out using Intel Core i7-4700MQ, 2.40GHz, 4 cores and
Python3 (with heavy use of Cython) and C.
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6.2 Parameters

For all experiments, the number of products open for location reassignment (m) is set
to be equivalent to the number of products in the test-instance. The number of reassign-
ment path optimization iterations (K in Algorithm 2) is set to 300. After optimization
has completed, the reassignment path is re-optimized with K set to 10000. The accept
probability computation is set to be equivalent between Algorithm 1 and 3 (c2 = 1 and
equivalent ∆ and T functions). The ∆ function is set to approach 1 when the ratio of
the distance between a new sample and a previous sample exceeds 1.05: This means
that if a new sample has a distance 5% higher than the previous sample, it is unlikely
to be promoted and/or accepted. c1 in Algorithm 3 is set to 2, which makes it more dif-
ficult for a sample to be promoted than accepted once promoted. The reverse sigmoid
probability distribution q, which gives the number of location changes between a new
and a previous sample, is set to approach zero when number of location changes ex-
ceeds 20. For all experiments where a restart strategy is used, sample xi+1 can be built
from either xi, xbest or xlowR (Section 5). The probability to pick one of the latter two
is governed by a sigmoid and reverse sigmoid, respectively, with probabilities in range
[0,0.2] and [0.2,0], stretched over N iterations. In all iterations where neither xbest nor
xlowR is picked, xi is used (no restarts). λ and N are set depending on the dataset.

6.3 Datasets

The following three datasets are used:

1. 266 TSPLIB instances7 modified for the SLAP and shared in a public repository8.
These instances include 6 different types of warehouse layouts (including one with
no obstacles). The number of products open for location reassignment vary be-
tween 5-427 in these instances. The initial locations for all products (baseline as-
signment x1) in these instances is selected using a random uniform distribution.
Solution proposals are uploaded for each of these instances using Algorithm 3 af-
ter a maximum of 20000 iterations (N). Experiments to test utility of Hamming
distances and restarts are conducted on this dataset. λ is set to 1 for experiments
on this dataset.

2. Data from a real warehouse with a conventional layout. The provided picking-
log includes 260 unique products and 260 product locations. There are 200 pick-
rounds and most products are picked in several pick-rounds. The experiments
where Algorithm 1 and 3 are compared are run on this dataset. Algorithm 1 and 3
are run 10 times each on this dataset, with varying random seeds and a maximum
CPU-time set to 8 hours. λ is set to 1 for experiments on this dataset.

3. Data from a real warehouse with an unconventional layout. Specific to this dataset
is that there is only a single origin/destination and that some products are not

7https://github.com/johanoxenstierna/OBP/instances, collected 19-10-2022.
8https://github.com/johanoxenstierna/L40_266, collected 14-11-2022.
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located in the warehouse apriori. These products are assigned random initial lo-
cations. There are also more locations than products in this dataset. The empty
locations are utilized in optimization by placing a mock product at each of them.
By flagging these products, they can be excluded from cost computation, while re-
maining open for product locations swaps. This dataset also contains longer pick-
rounds than the other two (with an average of 29 picks per pick-round). The ex-
periments where the two cost approximators are compared are conducted on this
dataset, using a maximum CPU-time of 4 hours. λ is set to 0 for experiments on
this dataset: This removes the reassignment distance and thus ensures that the two
approximators can be compared against an optimal f ∗.

In all three datasets, the capacity of all locations is assumed to be identical, meaning
that any product can be placed at any location. We compare costs of samples against the
baseline x1, where each product is fixed to its initial location, where optimal picking
costs are computed in D(B) and where D(R ) = 0.

6.4 Experiment results

Utility of Hamming-distance based sampling Results show that many location reas-
signments are needed to reach the best reductions in travel cost (Figure 3). Also, more
reduction in cost is achieved when the Hamming distance (number of location changes)
between a previous sample and a new one is relatively low (Figure 4). On average, the
cost of sample f ∗(xi+1) is more reduced compared to a previous sample f ∗(xi) if fewer
location changes are attempted. This result empirically validates the Hamming distance
distribution q(xi+1|xi) and its bias toward conducting fewer location changes at each
step in the Markov Chain (Equation 3).

Utility of Restarts Results with and without restarts (Section 5) are shown in Figure
5. Given the same amount of optimization iterations (N = 30000) on dataset 2, the best
results for both Algorithm 1 and 3 are obtained using restarts. Restarts enforce revisits
to local minima with relatively short total travel costs f ∗ or reassignment costs D(R )
(Section 5). Since fewer reassignments mean that fewer pick-rounds contain products
whose locations change, total TSP optimization CPU-time is significantly lower when
restarts are used. This is achieved by the caching of TSP costs (Section 5). Furthermore,
few reassignments mean that the optimization of the reassignment path requires less
CPU-time to reach a relatively strong solution. As can be observed, Algorithm 1 and
3 without restarts (lighter blue and green) quickly jump up in cost. This is mainly
attributed to the relatively low cost in assignment x1, where D(R ) = 0, which is never
revisited once stepped away from and never improved on (without restarts).

Comparison of the two cost approximators for Algorithm 3 Results on dataset 3 are
summarized in Table 2. We first study the coefficient of determination R2 (goodness of
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Fig. 3: The total number of product location reassignments needs to be large to achieve
the best total travel costs in f ∗(xbest) (dataset 2).

fit) between approximations f against f ∗. For OR-tools, R2 = 0.97 and for the heatmap,
R2 = 0.15. Even though the heatmap approximation is thousands of times faster to
compute compared to TSP-optimizing the picking-log using OR-tools, OR-tools still
results in more savings than the heatmap approximation. Due to its high speed, the
heatmap approximation allows for more samples to be generated and higher initial
savings, but due to its weaker predictive quality it, in the end, loses out to the TSP
approximation.

The weakness of the heatmap approximation can be attributed to a combination
of two factors. The first is that a swap of two products may result in a frequently
picked product being located further from the depot, incurring an increased heatmap
cost, while TSP distance, on the contrary, is reduced (this can be observed in Figure
8). The second factor is its bias to promote samples where high-frequency products
are moved closer to depot. This type of bias risks leading the search to a pre-mature
convergence on a local minimum. In order to prevent convergence on a local minimum,
many samples are needed which temporarily increase TSP costs, but these types of
samples are not often promoted in Algorithm 3 when the heatmap approximation is
used.

Although OR-tools outperforms the heatmap approximation, one noted issue with
the former is its high minimal CPU-time. The CPU-times of OR-tools are averaging 0.1
seconds to optimize a single TSP, whereas the corresponding CPU-time for Concorde
is averaging 0.2 seconds. We could not achieve a lower value using the solution_limit
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Fig. 4: Distribution (violin) plot showing number of location changes against picking-
log distance D(B) (blue) and reassignment distance D(R ) (orange) when moving from
a previous sample to a new sample in the Markov Chain. The mean cost of both D(B)
and D(R ) increase when more location changes are attempted in new samples. This
plot excludes any xi and xi+1 pairs where either were restarts back to a local minimum.

parameter after several tests. On dataset 1 and 2, this CPU-time is potentially advan-
tageous, since OR-tools delivers TSP distances within 1-2% of optimality (Table 2).
This high approximation quality is explainable since pick-rounds b ∈ B rarely exceed
15 locations in length in those datasets. On dataset 3, when the pick-rounds are 29 prod-
ucts on average, OR-tools is within 6% of optimality. We did not attempt to tune the
CPU-time and the solution_limit parameter in OR-tools to maximize its utility within
Algorithm 3.

Finally, we compute goodness of fit between both cost approximators and R(D) for
any generated samples (while λ was set to zero for dataset 3, R(D) was still computed
and logged). In both cases, R2 was close to zero. While this may seem disadvantageous,
it also means that R (D) has a high variance and low bias, thus preventing Algorithm
3 from converging on weak local minima. We also note that R2 increases for promoted
samples and even more so for accepted samples (reaching as high as R2 = 0.57 for ac-
cepted samples). This provides further validation for Algorithm 3 and its cost function
(Equation 1): The Markov Chain tends to converge on regions where picking-log cost
is low and where reassignment costs are low as well.

Algorithm 1 compared to Algorithm 3 When the best settings found are utilized
in Algorithm 3 (Nested Annealing with the OR-tools TSP cost approximation and
restarts), it outperforms Algorithm 1 (Simulated Annealing without cost approxima-
tion and with restarts) within the given CPU-time (Figure 6). The Markov chain in
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Fig. 5: Algorithm 1 and Algorithm 3 with and without restarts for 30000 iterations on
dataset 2 [28]. The costs shown are for f ∗(xi+1).

Algorithm 3 is more biased compared to the one in Algorithm 1, due to more samples
being rejected. Algorithm 1 searches through less attractive search regions, which re-
duces risk of convergence on local minima, so if given more CPU-time it could reach
stronger results.

Other features Aggregate averages of results on the generated instances (dataset
1) and Algorithm 3 are shown in Table 1 (Appendix). The elements for columns
f (xi), f ∗(xi), f (xi+1), f ∗(xi+1), f ∗(xbest), D(R)1 D(R)300 are all shown as percentages
against the distance of the baseline cost f ∗(x1) (100%). D(R)1 and D(R)300 denote the
distance of the reassignment path after Algorithm 2 has been run for 1 and 300 iter-
ations, respectively. The rows are aggregated averages based on number of products
shown in column 1, from a total of 5279885 samples on the instance set (with 3-12
minutes CPU-time on each instance).

The relationship between number of location changes and D(R ) can be seen in
Figure 7. As more location swaps are carried out, the amount of reassignment distance
increases, but the rate of increase slows down. One possible misconception is that
the gradient should go down to zero as the reassignment path cannot exceed some
hypothetical maximum. This is unlikely to occur, however, since the reassignment path
may need to go back and forth through the warehouse several times to perform many
reassignments.

No correlation was found between the warehouse layout and features such as total
cost improvement, reassignment distance and/or number of final proposed location re-
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Fig. 6: Aggregate CPU-time against shortest total travel cost ( f ∗(xbest)) on the real
warehouse dataset (20 optimization runs): Blue is Algorithm 1, green is Algorithm 3
and red is the cost of baseline assignment x1 (100%). The shadowed areas represent
95% confidence intervals [28]

.

assignments. This is explainable since both TSP-optimizers (OR-tools and Concorde)
and the reassignment path optimizer (Algorithm 2) are layout-agnostic (Section 1).

7 Conclusion

This paper proposes a new optimization model for the Storage Assignment Location
Problem (SLAP). In the Traveling Salesman Problem (TSP)-based SLAP, future fore-
casted picking is assumed to be static, while the warehouse rack layout can have any
shape in two dimensions. In order to optimize the TSP-based SLAP, we propose a
Nested Annealing algorithm. The algorithm is an extension of Simulated Annealing
and generates assignment samples using a Hamming distance function and two sam-
ple filters. The algorithm requires fast and reasonable accurate cost approximations,
and we propose two alternatives: One based on sub-optimal TSP optimization, and the
other based on a pick-frequency heatmap. In order to reduce risk of convergence on a
weak local minimum, we propose a restart heuristic, which forces occasional revisits
to previously generated and relatively strong samples. Since products cannot be reas-
signed to new locations for free, a model for the reassignment path and reassignment
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Fig. 7: Number of location changes vs. reassignment distance (as a percentage of base-
line costs) (Algorithm 3 and dataset 3).

distance is proposed. This cost is computed and added to the cost of any generated
sample.

To evaluate the proposed optimizer using various SLAP scenarios and optimiza-
tion settings, experiments were conducted on three datasets: A set of publicly shared
test-instances on the generalizable TSBLIB format, as well as two datasets from real
warehouses. Results show that Nested Annealing yields cost savings of up to 30%
within 8 hours of CPU-time. This result is in line with results in prior work, where
strong assumptions are made with regard to warehouse layout (but where dynamicity
may be included or where number of products is larger) [14, 17, 35]. Concerning the
cost approximators, results show that sub-optimal TSP optimization outperforms the
pick-frequency heatmap approach. While the former is thousands of times slower than
the latter, it nevertheless achieves a better result due to its higher predictive accuracy.

For future work, heuristics to increase the amount of bias could be investigated.
One cause of high variance in the proposed algorithm is that any product is allowed to
swap location with any other product. Instead, products could be set up to be allocated
to certain areas in the warehouse. This type of zoning is not trivially achieved, however,
and could, if not carefully handled, lead to premature convergence on local minima.
We concluded this after early tests and instead pursued cost approximation and the
promote filter as another means to constrain the search space.

A topic which we did not explore extensively in this paper is the λ constant (Section
4) and its effect on optimization. We set it to either 0 or 1 and only concluded that it
significantly slows down effective search when used. Instead of a constant, it could be
set to change during optimization to potentially improve performance. For example, λ

could be set to start at a low value and then grow linearly.
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A final proposal involves analysis of the picking log and how it relates to potential
cost savings. Zhang et al. [43] and Kofler et al. [14] use datamining heuristics to show
that potential cost savings (the "reassignment potential") are correlated to the way in
which products in pick-rounds are distributed. It is challenging to make use of such
heuristics to make concrete proposals for reassignments in a Markov Chain, however.
The SLAP remains a highly intractable problem.
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8 Appendix

Examples of pick-rounds before and after 100 iterations of SLAP optimization (left
and right respectively). The SLAP can be challenging even when there are only six
pick-rounds in the picking-log. While it is relatively easy to spot suitable swaps of
locations for pick-rounds involving few products, it is more difficult when pick-rounds
are long. One of the products is picked in all of the pick-rounds, and as that product is
moved, it affects total distance in an unforseeable manner.

Fig. 8: Pictures of optimally solved pick-rounds (TSP’s) before (left) and after SLAP
optimization (right). The product which is picked in all pick-rounds is the lower-
rightmost one in the upper two pictures (before and after it was moved).
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Table 1: Aggregate averages of results from 5279885 generated samples for opti-
mization runs on the 266 publicly shared instances. The results are aggregated based
on ranges of number of products (the first column).
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Table 2: Aggregate averages of results on dataset 3, where the two cost approxima-
tors are compared. The CPU-times are here for predictions of single TSPs.
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