
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Order Picking Optimization as a Service

Oxenstierna, Johan

2024

Link to publication

Citation for published version (APA):
Oxenstierna, J. (2024). Order Picking Optimization as a Service. Computer Science, Lund University.

Total number of authors:
1

Creative Commons License:
Unspecified

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/7bc88992-a7aa-4b74-b40a-0eefb2d742c7

1

Order-Picking Optimization

as a Service
Johan Oxenstierna

DOCTORAL DISSERTATION

Doctoral dissertation for the degree of Doctor of Philosophy (PhD) at the Faculty of

Engineering at Lund University (LTH) to be publicly defended on 7 November 2024 at

1 pm, Department of Computer Science.

Advisors: Prof. Dr. Volker Krueger, Prof. Dr. Jacek Malec.

2

Abstract: Order-picking is one of the costliest processes in warehouses and we

investigate how it can be optimized using Software as a Service (SaaS). First, we

describe three specific order-picking optimization problems: The Picker Routing

Problem (PRP), the Order Batching Problem (OBP) and the Storage Location

Assignment Problem (SLAP). The PRP is a type of Traveling Salesman Problem (TSP)

where we find a minimal-cost path for a vehicle assigned to pick a given set of products

in the warehouse. The OBP is a type of Vehicle Routing Problem (VRP) where

products are partitioned among a fleet of vehicles. We compute cost in the OBP by

optimizing the PRP for each vehicle. In the SLAP, we assign or reassign storage

locations of products such that costs in PRPs and/or OBPs are minimized. There are

several choices regarding features and constraints for these problems, including

digitization of warehouse rack layouts, zones, depot locations, dynamicity, product and

vehicle characteristics, traffic rules and cost functions. In related work, there is little

consensus on how to choose, classify and judge the importance of such features,

leading to a lack of standards on data-driven benchmarking and experiment

reproducibility. Before we propose optimization methods, we therefore examine

choices and preprocessing of features to promote standardization. For our optimizers,

we use heuristics and meta-heuristics. There exist publicly available heuristic solvers

for the PRP capable of obtaining optimal solutions in a short CPU-time, but for the

OBP and SLAP, optimal solutions often require an excessive amount of CPU-time.

Consequently, we propose SaaS-suitable optimization techniques that balance between

CPU-time, memory usage and cost minimization. We mainly rely on Monte Carlo

methods, including Metropolis sampling and Nested Annealing, Sequential Minimal

Distance (SMD), restart heuristics, cost approximation using the Quadratic

Assignment Problem (QAP) and sub-optimal PRP optimization. Results show that

costs found at early stages in optimization are often difficult to improve on, and that

performance is sensitive to small changes in parameters and implementation in ways

that are often difficult to foresee. For a SaaS which aims to provide optimization for

multiple order-picking usecases, we therefore suggest a flexible workflow where

various optimization methods are trialled and compared in sandbox environments.

Data and results are shared in public repositories.

3

ISSN: 1404-1219

ISBN: 978-91-8104-215-3 (printed), 978-91-8104-216-0 (electronic)

Dissertation 75, 2024

LU-CS-DISS: 2024-02

Funding information: This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

Printed in Sweden by Media-Tryck, Lund University

4

Table of contents

List of Figures .. 7

Acknowledgements .. 8

Popular Summary ... 9

Terminology ... 11

1. Introduction ... 15

1.1 Order-Picking: A Warehouse Process ... 15

1.2 Order-Picking Optimization .. 18

1.3 Picker Routing Problem (PRP) .. 19

1.4 Order Batching Problem (OBP) .. 20

1.5 Storage Location Assignment Problem (SLAP)............................ 21

1.6 General Research Question ... 23

1.7 Challenges and Context ... 23
1.7.1 Standardization .. 23
1.7.2 Software as a Service (SaaS) - Kairos Logic AB 25

1.8 Concrete Research Questions .. 26

1.9 Summary of Papers ... 27

1.10 Disposition .. 30

2. Related Work ... 31

2.1 Background ... 31

2.2 PRP, OBP and SLAP features ... 32

2.3 PRP, OBP and SLAP standardization ... 35
2.3.1 Feature Standardization ... 35
2.3.2 Industrial Context .. 39

2.4 Optimization .. 40

5

2.4.1 Problem Formulations ... 40
2.4.2 Optimal Solutions .. 44
2.4.3 Sub-optimal Solutions ... 45
2.4.4 Machine Learning (ML) .. 47

3. Approach .. 50

3.1 Feature Selection and Engineering .. 50
3.1.1 Layout .. 50
3.1.2 Locations and Zones .. 51
3.1.3 Depots .. 52
3.1.4 Dynamicity and Stochasticity .. 52
3.1.5 Order-integrity ... 53
3.1.6 Product Constraints and Traffic Rules 53
3.1.7 Capacity Constraints .. 53
3.1.8 Cost Function ... 53

3.2 Optimization .. 55
3.2.1 Digitization and Preprocessing .. 55
3.2.2 Picker Routing Problem (PRP) Optimization 56
3.2.3 Order Batching Problem (OBP) Optimization 58
3.2.4 Storage Location Assignment Problem (SLAP)

Optimization ... 60

3.3 Benchmarking ... 63

3.4 Industrial Context .. 64
3.4.1 SaaS CPU-time and Deployment Options 64
3.4.2 SaaS – WMS Integration Challenges 65
3.4.3 Number of Warehouses per Cloud Container 67

4. Additional Projects .. 68
4.1 Products with multiple locations .. 68
4.2 Batching based on truck loading precedence 68
4.3 Pallet stacking and safety ... 69
4.4 Graphical User Interface (GUI) .. 70
4.5 Directed and mixed graphs ... 72
4.6 TSP optimization using Google maps API 73

5. Conclusion .. 74

6. References .. 76

7. Papers ... 87

Contribution Statement ... 87

6

Paper 1 .. 88

Paper 2 .. 104

Paper 3 ... 120

Paper 4 ... 145

Paper 5 ... 182

7

List of Figures

Figure 1:.. 15
Figure 2:.. 16
Figure 3:.. 19
Figure 4:.. 20
Figure 5:.. 21
Figure 6:.. 22
Figure 7:.. 34
Figure 8:.. 36
Figure 9:.. 37
Figure 10: .. 37
Figure 11: .. 39
Figure 12: .. 42
Figure 13: .. 46
Figure 14: .. 54
Figure 15: .. 55

8

Acknowledgements

First and foremost, I would like to express my deep gratitude to my academic

supervisor, Volker Krueger, and my co-supervisor, Jacek Malec, for their

unwavering support throughout my PhD journey. Volker, thank you for the

countless insightful discussions, for guiding me in structuring my research and

formulating research questions. Jacek, I am grateful for your help getting the

work on the right track, especially at the early stages of the project.

I would also like to extend my thanks to my industrial supervisor, Lijo George,

for helping me see the broader impact of my research and providing ongoing

support. My appreciation goes to co-authors Louis Janse van Rensburg and

Peter Stuckey for their valuable contributions on digitization and optimization.

Thanks also to Björn Ekberg, Enys Mones, Michael Ashcroft and Nina

Källgren for valuable support with software and project management.

I am incredibly thankful to Haorui Peng, Matthias Mayr, Alexander Dürr,

Faseeh Ahmad, Momina Rizwan, Idriss Riouak, Gareth Callanan, Anton

Risberg Alaküla, Rikard Olajos, Noric Couderc, Michail Boulasikis, Simon

Kristoffersson Lind, Ayesha Jena, Hampus Åström, Esranur Ertürk, Gustaf

Waldemarson, Peng Kuang, Leonard Papenmeier, as well as many others at

the Computer Science Dept. whose camaraderie enriched this experience. Your

friendship and the countless discussions we shared have been invaluable.

Special thanks to Anders Bruce, Birger Swahn, Ulrika Templing, Heidi

Adolfsson and Peter Möller for helping out with office equipment and

administration.

Finally, to my family and friends, especially during the challenging times of

the COVID-19 pandemic, thank you for your patience, support, and

encouragement.

This work was partially supported by the Wallenberg AI, Autonomous

Systems, and Software Program (WASP), funded by the Knut and Alice

Wallenberg Foundation, whose generous funding is gratefully acknowledged.

9

Popular summary

“Too much of current warehousing practice is based on rules-of-thumb and

simplistic ratios” [1].

Warehouse optimization can be undeniably complex, but also relatable.

Everyday routines, such as the order with which one carries out shopping

errands, the distribution of items between two shopping bags, or where to store

the keys and wallet in the house, have formal analogues in warehouse research

(Section 1.3, 1.4, 1.5, respectively). For humans, optimization of such routines

is often subconscious. A supermarket shopper, as well as a warehouse picker,

have a basic notion of the difference between an “efficient” and “inefficient”

routine. But this does not mean that they always follow the efficient routine.

Instead, they tend to follow a routine lying somewhere between the efficient

and inefficient. It has been developed over years and carries a substantial

amount of inertia. Why change that which already works?

The sub-optimality of existing routines is apparent in the domain of complex

systems, such as Warehouse Management Systems (WMS). It is often easy to

spot weaknesses in a WMS. It may have taken years of development and

difficult decisions to get it working, followed by specific patches for multiple

other systems that it connects with. Later, when core developers have left, a

challenge may be to keep it updated and operational. When new features are

needed or something in it fails, subsequent updates include brittle

dependencies, erratically drawn connections between modules and spaghetti-

code. This is what reality often looks like when consultants are brought in to

work on a WMS.

The situation is not much better in the domain of warehouse research. While

researchers can publish on topics that sidestep some of the intricacies of real

WMSs, contributions cannot answer all questions that lay-persons may be

pondering. Questions on warehouse operations, including order-picking

optimization, often lack simple answers. Traditional conceptions are

challenged by lean manufacturing, cloud-services and automation. Do we even

10

need warehouses or research on them? Could retailers not ship directly to

customers? Or could we reduce warehousing to cross-docking, a method aimed

at eliminating the need for storage, by instead timing the arrival of shipment

trucks and moving products directly between them at docking stations?

We may never have good answers to such questions, but that does not mean

that warehouse research is meaningless. In this dissertation, we begin by

discussing the problem of what a basic warehouse is and the types of activities

that commonly occurs within it. This type of standardization is an important

driver not only for research, but for industry as well, as we can only compare

operational quality if we have a stable fundament on which to base the

comparisons on. A significant portion of the work in this dissertation concerns

standardization of common features that are used to represent order-picking

problems. Order-picking is widely considered one of the costliest activities in

warehouses, and its optimization is both deserving and receiving an increasing

amount of public attention.

For our quantitative work, we propose optimization methods for three

optimization problems related to order-picking: The Picker Routing Problem

(PRP), the Order Batching Problem (OBP) and the Storage Location

Assignment Problem (SLAP). Optimization methods are proposed within the

context of Software-as-a-Service (SaaS), where they are made accessible to

warehouses over the cloud.

11

Terminology

AGV: Autonomous Guided Vehicle.

Batch: A set of orders. Usually, a batch is assumed to fit on a single vehicle.

Cross-docking: Transfer of products from a set of shipment vehicles to another

set of shipment vehicles without moving products into long term storage.

Customer: There are three possible meanings relevant for the dissertation: 1.

A client of a vendor. 2. A client of an order-picking optimization SaaS. 3. A

location that needs to be visited (sometimes used in literature on the TSP and

VRP).

Depot: The origin/destination location of a path (inside a warehouse in our

case). This location is usually modeled as a vertex in a graph.

Deployment (cloud): Transferral of software from a local machine to a data

centre. The purpose is often to make the software more accessible.

Distance matrix: A file containing the distances between locations.

Distribution centre: A type of warehouse focused on avoiding long storage for

products.

FaaS: Function as a Service (Section 3.4.1).

IaaS: Infrastructure as a Service (Section 3.4.1).

Instance (benchmarking): Data which describes an example problem. For

example, a basic TSP instance includes coordinates of a set of locations.

KPI: Key Performance Indicator, e.g., distance, time or operational cost.

Line-item: See product.

Makespan: time to finish a process or a set of processes.

OBP: Order Batching Problem. Generation of batches from orders such that

some cost is minimized.

12

Operational horizon: see Makespan.

Optimization: The process of making something as good or effective as

possible. An optimization problem is the problem of finding the best solution

from all feasible solutions [2].

Order: A set of products.

Order-batching: A method of combining orders into batches.

Order-integrity: A constraint which requires that an order cannot be split into

smaller components, i.e., that it must be picked by a single vehicle.

Order-line: Details on an order. Usually this includes product meta-data such

as identifiers (SKUs) and corresponding quantities requested by a customer.

Order-picking: Retrieval of products from storage locations.

PAS: Pick-And-Sort batching. Items are first picked into a bin and then sorted

into (shipping) boxes.

PaaS: Platform as a Service (Section 3.4.1).

Path: A sequence of vertices and edges where there are no repetitions of the

same vertex. Synonymous to Hamiltonian path.

Pick-error: When a picker picks the wrong product in a pick-round.

Picker: See vehicle.

Pick-location: A location in the warehouse where a product can be picked.

Pick-round: Synonymous to pick-route/run, i.e., the sequence of pick locations

visited by a single vehicle to pick a set of products.

Planning: the process of planning activities or events in an organized way so

that they are successful or happen on time.

PRP: Picker Routing Problem. A Traveling Salesman Problem (TSP) set in a

warehouse environment.

Problem instance: A digital description of a problem such that it can be

optimized. A PRP instance, for example, can include information such as

coordinates of locations and obstacles.

Product: A type of pickable item. The product is associated with meta-data,

including a unique identifier (SKU) and information regarding location(s),

dimensions, weight and quantity. A product with a quantity set to 10 means

that there are 10 copies of it.

13

Put-away: The movement of products to storage locations.

Rack: A polygonal structure on which products are stored.

Replenishment: Increasing the quantities of products at their storage locations.

SaaS: Software-as-a-Service (Section 1.7.2).

Service time (for pick location): Time that a vehicle has to spend at a location

to pick or deliver a product.

SKU: Stock Keeping Unit. The unique identifier/key of a product.

SLAP: Storage Location Assignment Problem (Section 1.5).

SMD: Sequential Minimal Distance. A way to measure the distance between

two sets of coordinates. Can be used in clustering or the batching of orders.

Standardization: 1. Streamlining of process flows to achieve better cost

efficiencies. 2. Forming agreement on terminology and features (including

features used in data formats). The dissertation mainly focuses on the second

definition.

SWP: Sort-While-Pick batching. Products are sorted into correct order

containers during picking.

Tour: A sequence of vertices and edges where there are no repetitions of the

same edge. Synonymous to trail.

TSP: Traveling Salesman Problem (Section 1.3).

Vehicle: Generic term for mobile units, trucks, forklifts, trolleys etc. that are

loaded with products or orders during pick-rounds.

VRP: Vehicle Routing Problem.

Walk (in a graph): A sequence of edge and vertex visits.

Warehouse: A building primarily used for storage of products before

distribution.

Warehouse Management System (WMS): “a complex software package that

helps manage inventory, storage locations, and the workforce, to ensure that

customer orders are picked quickly, packed, and shipped” [Bartholdi]. Basic

features that WMS’s support: appointment scheduling, receiving, quality

assurance, put-away, location tracking, work-order management, order-

picking, packing, consolidation, shipping, replenishment, wave management,

yard management, labor management.

14

Wave (of orders): The available orders at a given time from which batches can

be assembled.

Wave-picking: The term wave picking is used if orders for a common

destination (for example, departure at a fixed time with a certain carrier) are

released simultaneously for picking in multiple warehouse areas. Usually (but

not necessarily) it is combined with batch picking [3].

15

1. Introduction

1.1 Order-Picking: A Warehouse Process

Figure 1: Typical warehouses as we see them from the outside [4]. On the fronts we can see docking

stations for delivery vehicles.

A warehouse is a building primarily used for storage of products before

distribution. Warehouses are important for two fundamental reasons [1]:

• Supply and demand buffering: Warehouses provide a buffer to meet

quick surges in demand. Similarly, they provide a buffer for quick

surges in supply. A bulk of products can be purchased for storage when

vendors give price breaks, and then distributed to downstream

customers at a later stage.

• Transportation efficiency: Warehouses are hubs for products usually

located at transportation hubs. A warehouse normally receives bulk

supply of certain kinds of products from a vendor. These products are

redistributed with other kinds of products and delivered to downstream

16

customers. Without warehouses, many vendors need to send products

to many customers, leading to transportation inefficiencies.

There are many types of warehouses. One way to categorize them is according

to their types of stored products and served customers. Examples include retail,

ecommerce and perishable goods warehouses. Vendors can also rent and carry

out warehouse operations themselves in third-party logistics (3PL)

warehouses. Warehouses can also be categorized according to how products

are stored and picked. The most typical warehouse is a so-called picker-to-

parts warehouse [3], which means that pickers move to pick parts, normally

assumed to be stored on racks in some form of rack-layout. Typically, there is

a single depot-location where pickers commence and terminate pick-rounds,

i.e., movements to pick sets of products. After a set of products has been

picked, it is checked and packed for delivery. In the alternative parts-to-picker

warehouse, (mostly) stationary pickers receive products from autonomous

vehicles, and mainly work with sorting, checking and packing efforts [5].

Examples of parts-to-picker warehouses include Robot-based Compact

Storage and Retrieval Systems (RCSRs) and Robotic Mobile Fulfilment

Systems (RMFSs) [6] (Figure 2).

Figure 2: The insides of warehouses can look very different. On the left is an example of a picker-to-parts

warehouse with a conventional layout [7]. In the middle is an RCSR system and on the right an RMFS [6].

The pickers in the latter two cases are only involved with sorting, packing and checking products.

Some authors separate between traditional/manual warehouses and smart

warehouses [8], [9], [10]. Smart warehouses fit within the frameworks of

Industry 4.0 and Logistics 4.0 [9] and are deemed more up to date with the

latest process designs, hardware and/or software to achieve better cost

efficiencies.

For research purposes, common denominators between all warehouses are

sought. Bartholdi & Hackman [1], for example, propose a chronology of five

typical warehouse processes:

17

• Receiving: Products arrive at the warehouse in delivery vehicles

(usually on pallets). The products are checked and staged for put-

away.

• Put-away: The movement of products to storage locations (usually on

pallets).

• Order-Picking: Retrieval of products from storage locations (Section

1.2).

• Checking/Packing: Checking and packing the products in one or

multiple shipment containers (e.g., cartons).

• Shipping: Loading of the packed products in outbound delivery

vehicles, followed by dispatch.

Some authors propose extensions or adjustments to the above process

chronology. Kamali [8], for example, includes replenishment and cross-

docking and Kembro & Norrman [9], regard the packing and sorting of

products as separate processes. Geest et al. [10], also highlight the importance

of tracking/tracing and planning in smart warehouses. Since there are several

types of warehouses, there are also several ways to judge the importance of

each process [11] (for a discussion on how to choose Key Performance

Indicators (KPIs), see Section 3.1.8). Bartholdi & Hackman propose that a

typical distribution of operational expense for receiving, put-away and order-

picking is 10%, 15% and 55%, respectively. Worth noting is that the low

expense of put-away versus order-picking assumes that products are moved to

storage locations in larger quantities, e.g., fully loaded pallets, and then picked

in smaller quantities. In many warehouses, however, vehicles carry the same

quantity of products for both put-away and order-picking, leading to a more

even distribution in expenses. Theoretically, put-away and order-picking can

be considered the same but mirrored process, at least if we state generally that

both involve the movement of products from one set of locations to another set

of locations (origins to destinations). Order-picking is studied more

extensively in the literature compared to put-away [12]. This can be

attributable to the latter being considered equally or less complex, expensive

and/or impactful for customer satisfaction (as it has a less direct impact on the

time between placing an order and receiving it).

18

1.2 Order-Picking Optimization

“Order-picking is the most important process in most warehouses because it

consumes the most labor” [1].

An order consists of one or several products and it can be viewed from two

perspectives: 1. The customer, who selects a set of products from a vendor. 2.

The warehouse provider, who picks and ships the order to the customer. There

are cases where an order is picked and shipped from separate warehouses

(including vendor’s own warehouses), but research on order-picking generally

works within the context of a single warehouse [1].

Due to its significant contribution to operational expense, warehouse managers

are interested in order-picking optimization [1], [3], [11]. If we begin by

approaching this topic from the perspective of a single warehouse-picking-

vehicle, we can ask what the shortest path is for it to pick a set of products. We

do not wish to have vehicles crisscross around the warehouse if this can be

avoided, as this leads to more travel time and operational expense. If we have

a set of products that is larger than what can fit on a single vehicle, we can ask

how picking can be distributed among a fleet of vehicles, again with the basic

idea of avoiding unnecessary travel. We may also ask whether it is possible to

distribute products to vehicles such that the risk of customers getting orders

with the wrong or missing products is reduced. Should orders be split between

vehicles, or should we require that an order is always picked by a single

vehicle? Another approach is to investigate the storage locations of products.

Can we optimize storage locations to reduce order-picking travel costs? There

are several other questions with regard to order-picking optimization, such as

warehouse layouts, worker welfare and demand forecasting. But for

meaningful research contributions, we need a narrow focus. Apart from

delimiting our work to order-picking, we assume that a picker-to-parts system

is used. Further, we optimize order-picking by working with three specific

optimization problems: The Picker Routing Problem (PRP), the Order

Batching Problem (OBP) and the Storage Location Assignment Problem

(SLAP) (Sections 1.3, 1.4 and 1.5, respectively).

19

1.3 Picker Routing Problem (PRP)

The PRP is a Traveling Salesman Problem (TSP) set within a warehouse

environment [13], [14] (Figure 3). As an example, we may have assigned a

vehicle to pick 10 products (in one or several orders) distributed at various

warehouse locations. The task of finding the shortest pick-round for these

products can be formulated as a TSP.

Figure 3: Typical (top-down) visualization of a solution to the TSP (left) and two PRPs, with one obstacle

(middle) and several obstacles (right). Note that all three examples have different origin and destination

locations (blue and red). In the rightmost example, we can also note that products may belong to separate

orders (green or blue color codes), but that this does not affect the PRP solution. In the rightmost example,

we can also see that we may have situations where an aisle must be entered and exited using a single

obstacle corner location, showcasing that the PRP (in that case) is a form of Steiner-TSP.

In a typical warehouse, a set of racks or other obstacles obstruct straight paths

between locations [15]. The obstacles may necessitate multiple visits to the

same location, which results in a TSP version known as the Steiner–TSP [16].

For example, if the warehouse includes an aisle (between racks) that can only

be entered and exited through a single location, we must use the location more

than once to enter/exit the aisle. Similarly, multiple trips along the same path

between locations may be needed.

In terms of graph theory [17], the most general form of a PRP solution is a

walk, i.e., a sequence of vertices (representing locations) connected by a

sequence of edges. It can then be classified as an open walk, where the origin

(first) vertex is different from the destination (last) vertex, or a closed walk,

where the origin and destination are the same (single depot).

For PRP optimization we need all possible shortest paths and costs between

locations, and in Section 3.2.1 we describe how we produce these using

20

warehouse digitization. The way that this data is built and stored is important

because it affects optimization CPU-time and memory requirements.

1.4 Order Batching Problem (OBP)

Order-picking is normally conducted by a fleet of vehicles with known

carrying capacities, such as number of orders, products, weights, or dimension

constraints. A batch denotes a set of orders, and in the OBP, a single vehicle is

assumed to have enough capacity to carry one batch in its entirety. The OBP

asks how one or several batches can best be generated without breaking vehicle

capacity constraints. If we want to minimize travel distance, we try to generate

batches whose union of products are located close to one another (Figure 4).

Figure 4: Example optimization instance (left) and proposed solution (right). We have four orders
(represented in green, red, lime and blue products) and a vehicle capacity of two orders. The solution

shows the selection of orders and pick-rounds for a first and a second vehicle.

Vehicle types and usage in the OBP can be separated into two categories [18]:

1. The Sort-while-pick OBP means that the products in an order are placed in

an order-specific container on the vehicle (e.g., a bin or carton). 2. The Pick-

and-sort OBP means that there is no order-specific container on the vehicle. In

this case, the order is extracted from the vehicle after it has reached the

destination.

21

Figure 5: Examples of vehicles used in warehouses. On the left is a trolley with 6 bins where each bin can
be used to collect an order using sort-while-pick batching [19]. In the middle is a forklift carrying a pallet

on which a set of products or orders is placed, e.g., using pick-and-sort batching [20]. On the right is a

vehicle carrying a pod (a movable rack) [21], deployed in a Robotic Mobile Fulfillment Centre (a type of

parts-to-picker warehouse) [6].

Some authors refer to a Joint Order Batching and Picker Routing Problem

(JOBPRP) to underline that the cost of a batch is computed by optimizing its

corresponding PRP [15], [22]. We use the term OBP instead of JOBPRP (see

Section 1.7.1 for more on this).

1.5 Storage Location Assignment Problem (SLAP)

The SLAP asks where to store products in a warehouse, such that the amount

of material handling (movement) costs is minimized [23]. The locations of

products affect the distance that vehicles need to travel for order-picking.

Therefore, the SLAP qualifies as a means to optimize order-picking. SLAP

optimization is generally conducted periodically (e.g., once per month), and it

requires some form of future-forecasting of order-picking to deduce whether

changing locations of products can help reduce subsequent movement costs.

We term this future-forecasted order-picking the picking-log, and we separate

between two versions of the SLAP depending on how the picking-log is used

during optimization: In the first version, future PRPs are optimized only in

terms of their product locations, but not in terms of their order composition,

i.e., batches are already pre-generated. In the second version, optimization

includes both changing product locations as well as the order composition (i.e.,

22

batches are generated using OBP optimization). We term these versions the

TSP – based SLAP1 and the OBP – based SLAP, respectively.

While the OBP-based SLAP may seem more challenging than the TSP-based

SLAP, there are several other features in the SLAP that can impact the level of

challenge. One of these is (re)assignment scenarios [24]. In the most basic

SLAP formulation, the task is to assign free locations to products that are

newly arrived in the warehouse. Kübler et al. [24] call this the empty storage

location scenario and it is equivalent to put-away. This can be compared to

SLAP formulations that include reassignments, i.e., swapping locations

between products that are already in the warehouse. Compared to the empty

storage location/put-away scenario, reassignments are not mandatory to carry

out, and therefore order-picking optimization savings, due to reassignments,

must exceed the cost of carrying out the reassignments. In Section 3.2.4, we

discuss how these reassignment scenarios can have a significant impact on

optimization performance.

Figure 6: TSP-based SLAP in a reassignment scenario (left). The locations of seven enumerated products

are changed to achieve lower TSP (PRP) distances. The incurred reassignment penalties are not visualized

(See [25] for a full diagram). OBP-based SLAP in an empty storage location scenario (right). Here, four

products are assigned free locations, followed by OBP optimization.

1 While we could have used the term “PRP-based SLAP”, we did not want to restrict our work

on this version to a warehouse environment.

23

1.6 General Research Question

We have identified order-picking as a key process in warehouses and described

the PRP, OBP and SLAP as problems with which order-picking can be

optimized. We proceed to ask the following general research question:

How can an optimization software service be designed and provided for the

PRP, OBP and SLAP?

Before we approach the general research question, we discuss challenges and

context: Standardization (Section 1.7.1) and Software as a Service (SaaS)

(Section 1.7.2). Standardization provides a framework within which we can

place design choices for the optimization software. SaaS provides details on

how the optimization software can be provided as a service. We then break

down the general research question into five concrete research questions

(Section 1.8).

1.7 Challenges and Context

1.7.1 Standardization

Standardization can have several meanings, and in operations research, it is

commonly associated with how process flows can be streamlined to achieve

better cost efficiencies [26], [27], [28]. According to Münsberg et al. [26],

“standardization is essential to ensure a lean operating model”, and Dotoli et

al. [27], cover various standardization methodologies, including VSM, Genba,

Jidoka, Kaizen, PDCA, Poka-Yoke, Muda-removal, KPI analysis and

simulation. According to Shalley et al. [28], “standardization … [is] embodied

in routines, repetition and variance reduction”, and successful companies often

achieve these by adhering to formal documents, including ISO 9000 and Six

Sigma.

Standardization does not necessarily have to concern “lean operating modes”

or “streamlined processes”, however. In a more theoretical sense, it can be

regarded as more aligned with the concept of generalization and the forming

of agreement on the features used to formulate a problem (e.g., in order-picking

optimization). We find significant gaps in research on PRP, OBP and SLAP

optimization in this latter regard (Section 2.3). Lack of standards poses a

24

serious challenge to new research. Presentation of experimental results suffers

without standards regarding the features used in experimentation.

Standardization of features builds on standardization of terminology. The

warehouse terms used in this dissertation come from a large corpus of

nomenclature that is continually revised in parallel with advances in

technology. In related work on order-picking optimization, use of terminology

is far from uniform, including extreme cases when authors refer to operational

problems that are similar, but using different terms (Section 2.3). Without

standards on terminology, difficult choices must be made when choosing

terms. We have already presented examples of such choices, e.g., by using

OBP instead of JOBPRP (Section 1.4). Contrary to the proponents of JOBPRP,

we do not regard inclusion of “PRP” in the JOBPRP title as advantageous

(specifically, because the title can be extended with various other acronyms as

well). We also use vehicle instead of picker and product instead of part. This

does not fit well with the picker-to-parts and parts-to-picker dichotomy

(Section 1.1), since a separation between a picker and a vehicle is needed to

explain parts-to-picker. The use of picker can be traced back to traditional

warehousing, where the picker has been thought of as a human. But these days,

Autonomous Guided Vehicles (AGVs), mobile units, shuttles and pods are

deployed in ways that challenge this convention [6]. This is why we use vehicle

in this dissertation, but it is not optimal either as it dehumanizes pickers if they

are human. Selecting terms can be challenging both logically and ethically.

Standardization can be promoted through simulation and benchmarking [27],

[29]. Publicly shared benchmark data is important for several reasons. Firstly,

it makes it easier to independently reproduce published results. Secondly, it

promotes competition to beat the state of the art on optimization problems,

such as the PRP, OBP and SLAP. Benchmark data can also itself be regarded

as an important descriptor of an optimization problem. Describing

optimization problems in text, compact equations or pseudocode is not always

easy, and benchmark data provide opportunities to approach PRPs, OBPs and

SLAPs from a more data-centric perspective. Well-researched optimization

problems, such as the Traveling Salesman Problem (TSP) and the Vehicle

Routing Problem (VRP) (Section 2.3), are complemented by widely used

benchmark data repositories [30], [31], [32], [33]. New researchers can

therefore download datasets for these problems and start working with

implementation at an early stage of a project. In the PRP, OBP and SLAP

research communities, there are no well-established benchmark repositories,

and new researchers need to decide whether the benchmark data that they find

is adequate. There are many questions concerning how the PRP, OBP and

25

SLAP benchmark data should best be standardized. Should it be binary, text or

JSON? Should it include distances between pairs of locations or information

on obstacles? How many products, orders and pick-rounds should be used and

how should they be distributed? How should we define vehicle capacity?

Should we also work with a dynamic setting, where new information comes in

through time, or a static setting, where all the information is assumed

available? Answers to such questions are provided in terms of related work

(Section 2) and proposed approaches (Section 3).

1.7.2 Software as a Service (SaaS) - Kairos Logic AB

This project is a collaboration between academia (LTH) and industry (Kairos

Logic AB). Kairos Logic AB evolved from the Tenshi AI project at Sony

Mobile Communications Inc. Apart from order-picking consultancy, Kairos

Logic offers Software as a Service (SaaS) for PRP, OBP and SLAP

optimization. The SaaS provides Application Programming Interfaces (APIs)

and cloud service endpoints (URLs) where SaaS customers send HTTP PUT

requests for optimization, followed by reception of optimized responses. The

customer in this context is either a warehouse business or a Warehouse

Management System (WMS) - provider, with examples such as Consafe

Logistics, Landmark Group, Ongoing, Toyota Material Handling Group,

Ahlsell, IKEA and Sony DADC (for convenience, we henceforth refer to the

SaaS customer as a “WMS”, since all warehouses we deal with operate some

form of WMS). Before the endpoint is provided to the WMS customer, a Proof

of Concept (POC) is carried out. Historic data, usually in the form of a

spreadsheet of picking, is analyzed and processed using PRP, OBP or SLAP

optimization. The results of the POC are presented in a consultancy meeting.

After the meeting, the WMS customer can choose to proceed further with more

case studies and/or access to live testing of the service.

This dissertation does not delve into the business potential of this type of

optimization SaaS. Rather, it concerns order-picking optimization within the

SaaS context. This is important to highlight, as it explains several choices with

regard to how the general research question (Section 1.6) can be approached.

In brevity, the proposed optimization methods need to be relatively fast,

standardized and easily maintained so that integration is simple and works for

several customers. In Section 3, we discuss how various industrial contexts

affect architectural choices. In order to handle optimization requests

efficiently, architectural choices are important not only for the optimization

service in isolation, but also for warehouse digitization. We also explain why

26

the optimization service is deployed using Platform as a Service (PaaS) or

Infrastructure as a Service (IaaS) instead of Function as a Service (FaaS).

We provide an example of how the SaaS architecture relates to the

standardization topic discussed in Section 1.7.1. A challenge to this specific

SaaS optimization business is whether the same service should be offered to

multiple warehouses or if it should be tailored for specific warehouses. A

uniform service is desirable from the standardization perspective, but it cannot

be fully achieved if the optimization business is customer-driven: There are

dozens of versions of PRPs, OBPs and SLAPs (Section 2.2 and 2.3), and these

versions translate into a large variety of customer requirements. In practice, the

SaaS-business is often unable to satisfy all requirements of a new customer.

The unfulfilled requirements are usually brought to light during or after the

POC, and the customer commonly demands them to be fulfilled to proceed

further. If the SaaS provider agrees to fulfil the requirements, they usually do

not cause issues if they are implemented as extensions to the existing software

stack. Worse is if the requirements are of the modification type, where some

previously standardized functionality must be changed. Such modifications

can, in the end, lead to improvements to the existing software stack, but it can

also worsen it. In some cases, requirements are not well-defined or unsuitable

for optimization. This is unfortunately quite common because of complexities

involved in PRP, OBP and SLAP optimization, misunderstandings and/or

miscommunications. Examples of this are discussed in Section 4.

1.8 Concrete Research Questions

We now formulate five concrete research questions that we aim to answer in

this thesis:

1. How can SaaS-suitable PRPs and OBPs be formulated? This includes

feature standardization and CPU-time and memory needs in

warehouse digitization.

2. Building on the requirements outlined in 1, how can PRP and OBP

optimization algorithms be designed and benchmarked?

3. How well do the proposed optimization algorithms in 2 perform

against alternative algorithms and are there possible improvements?

4. How can OBP-optimization be utilized within an OBP-based SLAP

optimization algorithm?

27

5. What are the challenges with the OBP-based SLAP and are there

alternative ways to optimize the SLAP?

In Section 1.9, we give a summary of how each question is approached in a

corresponding paper (numbered 1-5). We include pointers to subsequent

sections where the main topics in the papers are discussed.

1.9 Summary of Papers

Paper 1: Formulation of a Layout-Agnostic Order Batching Problem.

Oxenstierna, J., van Rensburg, L. J., Malec, J., & Krueger, V. (2021, June). In

International Conference on Optimization and Learning (pp. 216-226).

Springer International Publishing.

This paper addresses limitations in current research on PRP and OBP

optimization and feature standardization, particularly with regard to warehouse

layouts. Building on existing work, we formulate an Order Batching Problem

(OBP) where optimal PRP optimization is internalized. In the layout-agnostic

OBP, we do not make assumptions regarding how racks or other obstacles are

laid out on a two-dimensional plane. For optimization to work in this scenario,

certain datastructures, such as the distance matrix, must be prepared

beforehand in a warehouse digitization process. In our experiments, we digitize

nine warehouses with various arrangements of polygonal obstacles and

investigate CPU-time and memory requirements. CPU-times and memory

requirements are relevant for a SaaS business because they incur costs from a

cloud service provider. Outline of key topics in the paper:

• Identification of current gaps in related work regarding features used

in PRP and OBP optimization and feature standardization (Section

2.2, 2.3)

• Advantages and disadvantages of layout-agnostic order-picking

optimization (Section 3.1.1).

• Efficiency and scalability with regard to warehouse digitization and

SaaS deployment (Section 3.2.1, 3.4).

28

Paper 2: Layout-Agnostic Order Batching Optimization.

Oxenstierna, J., Malec, J., & Krueger, V. (2021, September). International

Conference on Computational Logistics (pp. 115-129). Springer International

Publishing.

Building on the previous paper, we introduce a heuristic OBP optimization

algorithm, Single Batch Iterated (SBI). It uses the Concorde TSP solver for

optimal PRP cost evaluation and the Sequential Minimal Distance (SMD)

heuristic for batch construction. Experiments show that the algorithm is

competitive against the state-of-the-art on an existing benchmark dataset. A

new benchmark dataset for various layouts and constraints is publicly shared

together with proposed solutions. Outline of key topics in the paper:

• Advantages and disadvantages of including optimal PRP optimization

in an OBP optimization algorithm (Section 2.4.2, 3.2.2).

• The performance of the proposed OBP optimization algorithm against

the state-of-the-art (Section 3.2.3).

• Questions regarding how new benchmark datasets be constructed to

promote standardization (Section 3.3).

Paper 3: Efficient Order Batching Optimization using Seed Heuristics and the

Metropolis Algorithm.

Oxenstierna, J., Malec, J., & Krueger, V. (2022). Springer Nature Computer

Science, 4(2), 107.

In this paper, the previously developed SBI algorithm is improved and tested

one-on-one against Metropolis Batch Sampling (MBS), a type of Markov

Chain Monte Carlo (MCMC) algorithm. On existing benchmark data, SBI is

found to be superior, especially for larger problem instances. This result is

attributable to its effective use of heuristics that help it navigate large search

spaces. Outline of key topics in the paper:

• The main heuristics used in SBI and their effect on optimization

performance (Section 3.2.3).

• Reasons for SBI’s strong performance against MCMC (the MBS

algorithm) (Section 3.2.3).

29

Paper 4: Storage Assignment using Nested Metropolis Sampling and

Approximations of Order Batching Travel Costs.

Oxenstierna, J., Malec, J., & Krueger, V. (2024). Springer Nature Computer

Science, 5(5), 477.

An OBP-based Storage Location Assignment Problem (SLAP) is first

formulated, with the core idea that proposed changes in location assignments

are evaluated using OBP optimization. For optimization of the OBP-based

SLAP, a nested Metropolis algorithm is used. It incorporates the SBI

optimizer, as well as a Quadratic Assignment Problem (QAP)-based cost

approximator. Experiments include tests of the QAP model in isolation, as well

as tests of the overall SLAP optimizer on a new and publicly shared benchmark

dataset. Outline of key topics in the paper:

• Formulation of the OBP-based SLAP (Section 3.2.4).

• Investigations of a QAP model’s ability to predict OBP optimization

costs (Section 3.2.4).

• Performance of the nested Metropolis algorithm when it includes or

excludes the QAP model (Section 3.2.4).

Paper 5: Optimization of the Storage Location Assignment Problem using

Nested Annealing.

Oxenstierna, J., van Rensburg, L. J., Stuckey, P. J., & Krueger, V. (2022,

February). International Conference on Operations Research and Enterprise

Systems (pp. 220-244). Part of the Communications in Computer and

Information Science book series (CCIS, volume 1985).

In this paper, an alternative SLAP model is first formulated: OBP-optimization

is replaced with PRP-optimization, with the argument that this is more suitable

for standardization. The SLAP is optimized using the Concorde TSP solver

and Nested Annealing. In order to improve the computational efficiency of the

algorithm, various heuristics are tested. Results show that restart heuristics and

sub-optimal PRP optimization are especially useful. A new benchmark dataset

is publicly shared. Outline of key topics in the paper:

• Formulation of the TSP-based SLAP and its strengths and weaknesses

compared to the OBP-based SLAP. This includes discussions on

standardization and integration challenges (Section 3.2.4, 3.4.2).

30

• The impact on computational efficiency of restart heuristics and sub-

optimal PRP optimization in SLAP optimization (Section 3.2.4).

1.10 Disposition

In the section on related work (Section 2), we first provide a background on

operations-research, computer-science and warehouse-science (Section 2.1),

followed by descriptions of key features and terms used in order-picking

optimization (Section 2.2). We continue with a discussion on the

standardization challenge (Section 2.3), first with regard to features and terms

(Section 2.3.1), followed by an industrial context (Section 2.3.2). In Section

2.4, we study related work on PRP, OBP and SLAP optimization methods. In

the Approach section (Section 3), we begin by discussing and justifying our

selection of features in PRPs, OBPs and SLAPs (Section 3.1), followed by

optimization methods (Section 3.2). We then discuss benchmarking (Section

3.3) and industrial context (Section 3.4). This is followed by discussions of

industrial projects outside the main scope of this dissertation (Section 4).

Section 3.4 and 4 can be regarded as extensions of Section 1.7, as they

strengthen the argument that standardization and SaaS–specific considerations

provide important challenges and context for the project as a whole. We end

with a conclusion (Section 5).

31

2. Related Work

2.1 Background

The related work originates in the domains of operations-research, computer-

science and warehouse-science. In this section, we motivate why it is suitable

to use these domains when approaching the main research question (Section

1.6).

According to Morse et al. [34], operations research “is an applied science

utilizing all known scientific techniques as tools in solving a specific problem”.

We use scientific techniques from computer-science and warehouse-science to

provide answers on how order-picking optimization can be designed and

provided as a service. Operations-research is particularly suitable since it fits

well with the project’s combined academic – industrial context (Section 1.7.2).

According to Morse et al., a core element of operations-research is the

separation between a research worker and an executive. The role of the

research worker is to “provide the executive with a quantitative basis for

decision” [34]. As a collaboration between a university and a company, we

have a concrete example of an executive, the CEO of the company, whom we

need to convince that our quantitative research can be used as a basis for

decision.

Operations-research has traditionally relied on mathematics for the

“quantitative basis”, but computer-science is similarly a valid option [35].

Apart from a stable grounding in mathematics [36], computer-science connects

well with the service aspect of the main research question. Both the proposed

optimization service and the warehouse systems it connects with operate on

computers. Literature on computer-science sub-topics, such as memory

requirements, computational times and efficiency in optimization, is therefore

relevant. Since the optimization service is cloud-based, computer-science is

used to provide answers on cloud infrastructure and networking.

Compared to operations-research and computer-science, warehouse-science

[1] is a small domain. Authors on order-picking optimization mainly publish

32

in journals with names derived from “operations-research”, “industrial-

engineering” or “production-research” rather than warehouse-science [12].

There are also journals on “inventory management”, “supply chain” and

“logistics”, within which warehouse-science can be considered a subset [37].

We primarily use warehouse-science to provide context for the operational

setting, looking particularly at terminology and descriptions of the order-

picking process. This does not mean that warehouse-science itself should be

categorized as “descriptive”. Bartholdi & Hackman [1] define warehouse-

science in a fashion more akin to operations-research: “the emphasis … is on

developing methodology to optimize warehouse operations”.

As with operations-research, we could regard computer-science as a scientific

technique within warehouse-science. But in this dissertation, we treat

computer-science more independently. For example, we include discussions

on why certain methods are deemed unsuitable for standardized order-picking

optimization. This particularly concerns Machine Learning (ML) and optimal

solutions for the OBP and the SLAP (Section 2.4). We also look at how an

order-picking optimization SaaS can be deployed on the cloud, a topic not

particularly well-researched generally. The SaaS architecture can be used to

investigate ideas on future warehousing. One such hypothesis is that

warehouses are going to become smaller and more flexible in the future [1].

We can ask, for example, whether the SaaS architecture is well-suited for small

and flexible warehouses.

2.2 PRP, OBP and SLAP Features

The PRP, OBP and SLAP are part of a large family of NP-hard combinatorial

optimization problems. They have corollaries in the Traveling Salesman

Problem (TSP) (Section 1.3), the Vehicle Routing Problem (VRP) [22] and the

Location Routing Problem (LRP) [38]. There are many versions of these

problems, most of whom have their primary usecases outside of warehouses

[12], [23], [39], [40]. Since PRPs, OBPs and SLAPs occur inside warehouses,

research on them tend to include warehouse-specific features. Below, we go

through how features are commonly named, designed and used in PRP, OBP

and SLAP optimization:

• Layout: In the majority of literature on order-picking, it is assumed

that the warehouse uses a conventional layout [12], [22], [41], [42]:

Racks are arranged in Manhattan style blocks separated by aisles and

33

blocks of racks are separated by cross-aisles. There are several other

possible layouts [5], [43], [44], [45]. Masae et al. [12], distinguish

between conventional, non-conventional and general layouts. It is

usually assumed that order-picking takes place on a single floor, which

means that the layout is defined on an xy Cartesian plane.

• Locations and zones: It is often assumed that a single product is stored

at each defined location in the warehouse [24]. In some cases, a single

product is stored at multiple locations (Section 4.1). In other cases,

multiple products are stored at a single location. This latter case may

be useful to reduce the size of a digital model of a warehouse, as well

as order-picking optimization complexity [14], [46]. Defining a

surjective relationship between many products to fewer locations

(within a specified area) is similar to a zone in the warehouse [18].

Zones are usually implemented as a form or “load-balancing” of order-

picking throughout the warehouse [47], or to distinguish frequently

picked products from less frequent ones [48]. For example, an ABC

zoning policy can be used, where the A zone includes the most

frequently picked products, followed by B etc. [24], [49], [50]. Various

other zone arrangements exist: Garfinkel [18], for example, studies

scenarios with 10 – 40 zones.

• Depots: Usually, a warehouse is assumed to have a single shared origin

and destination for vehicles [3]. Some authors refer to this as a fixed

or central depot [51]. For cases where there are different origin and

destination locations, the names variable depots, open-trip, multi-

depot TSP and Dial-a-ride problem are used [38], [51], [52]. These

scenarios can occur in warehouses where products are brought to

multiple docking stations. There are also cases when different types of

vehicles have different docking stations.

• Dynamicity: If time-based features are needed to describe and optimize

a problem instance (e.g., a PRP, OBP or SLAP), it is dynamic [33],

[53]. If there are no such features, it is static. The time-based features

can take several forms, such as live information on vehicle locations

(used to avoid traffic congestion, for example), or soft or hard time

constraints on when products or orders need to be picked [52]. For the

SLAP, dynamic seasonal popularities of products may be used.

• Stochasticity: We discuss stochasticity with regard to how PRPs,

OBPs and SLAPs can be digitally represented in simulated problem

instances. Problem instances can be separated into pre-generated and

34

randomly-generated [54]. A random process can be used to generate

data, such as vehicle origin and destination locations, travel times and

order sizes in both of these [33]. But the randomly-generated type does

not provide all the static data needed to run experiments [33]. Instead,

the randomly-generated instance includes information on how to use a

random process to generate static data [52].

Figure 7: Dynamicity and stochasticity [32]. Benchmark instances can be constructed using

either one of the four combinations.

• Order-integrity constraint: This constraint means that orders cannot

be split between vehicles. It follows that the capacity of the vehicle

must always be large enough to carry at least one full order in its

entirety. In reality, however, an order may be too large to fit on a

vehicle, necessitating it to be split (in Section 3.1 we describe how we

handle this scenario). Order-integrity is usually motivated as a means

to avoid additional sorting efforts after picking [52]. It is generally

used in the OBP and less so in alternative picking methods, such as

wave-picking [3].

• Constraints concerning product characteristics: Products may be

hazardous, in need of cooling, specialized picking and/or storage [1].

Light products may need to be picked after heavy ones (so that they

can be placed on top) using precedence constraints [55].

• Traffic rules: When vehicles intersect each other’s paths, they may

cause traffic congestion. Traffic congestion is often considered

important in warehouses, as it serves as a motivation for imposing one-

directional traffic rules and/or certain PRP optimization algorithms

[3], [15]. In the SLAP, it also serves as a motivation to prevent too

many products from being assigned locations close to a depot area

(since this may lead to congestion) [56].

35

• Capacity constraints: Example capacities include number of orders,

products, xyz dimensions and weight. For the OBP, these capacities

can concern vehicles (e.g., weight that a vehicle can carry). For the

SLAP, they can concern locations (e.g., product quantity that can be

stored at a single location).

• Cost function: Cost in PRP, OBP and SLAP optimization is most often

measured in distance [3], followed by travel times and times based on

other features. The time-based costs are more prevalent in literature on

the OBP and the SLAP, since both are more involved with stationary

sorting efforts. For example, in the OBP, the time needed to sort and

check orders after they have been picked can be included [57]. In the

SLAP, administrative times needed to carry out optional product-

location reassignments can be included [24]. Gibson & Sharp [58],

suggest four alternatives to measure distance in a warehouse:

Rectilinear (Manhattan), Euclidean, Chebyshev and aisle. The latter

distance is computed by using known dimensions of aisles and cross-

aisles.

2.3 PRP, OBP and SLAP Standardization

2.3.1 Feature Standardization

There is little consensus regarding the relative importance and relationships

between the features listed in Section 2.2. Even when excluding parts-to-

picker systems, there are many possible combinations of features when

formulating order-picking problems [12], [23], [40], [59]. When defining a

PRP, OBP or SLAP, we can assume that we must choose from some features

listed in Section 2.2. If we need to make a binary decision for seven features,

we get 27 = 128 possible combinations. This number can be compared against

number of papers referred to in review papers on order-picking problems by

Masae et al. [12], Charris et al. [23], Li et al. [60] and Pardo et al. [61]. They

include 149, 71, 172 and 125 papers, respectively. The number of papers on

any specific version of the PRP, OBP or SLAP, based on a combination of

features in Section 2.2, is low and this poses a standardization challenge. Pardo

et al., for example, propose that the OBP can be separated into 36 specific

versions, 18 of which have never been published on [61].

36

The standardization challenge is also visible through differences on

optimization choices, taxonomy and naming of problems. Regarding

optimization choices, Mantel et al. [62], claim that “extensive batching

extinguishes the effect of a clever slotting [SLAP] strategy”, whereas Kübler

et al. [24], include batching in their SLAP strategy to reach “significant

performance improvements”. Regarding taxonomy, Charris et al. [23], Li et al.

[60] and Masae et al. [12], propose different diagrams to describe relationships

between features such as layouts, storage conditions, depots and picking

methodologies (Figure 8, 9 and 10, respectively). For example, Charris et al.

have an arrangement with “SKU-department assignment”, “zoning” and

“storage location assignment” under “storage”, whereas Li et al. divide

“storage assignment” into “random”, “closest open location”, “dedicated”,

“full turnover” and “class based”. Under “batching”, Li et al. put “proximity

batching” and “time window batching”, whereas Charris et al. divide it into

“batch size” and “order batch assignment”. Charris et al. include “sorting” in

their diagram, but this is not included by Li et al. or Masae et al. Meanwhile,

Li et al. include six “routing methods” and Masae et al. include a box on

“depots”, neither of which are present in any other diagrams. In summary, there

are many possible ways to build taxonomies for combinations of features in

order-picking problems.

Figure 8: Taxonomy on storage and order-picking by Charris et al. [23].

37

Figure 9: Taxonomy on order-picking by Li et al. [60].

Figure 10: Taxonomy on order-picking routing by Masae et al. [12].

38

Regarding naming of problems, Mantel et al. [62], Kim & Smith [63] and

Jahani [49] refer to a “slotting problem”, Boysen & Stephan [64] to a “Product

Location Problem” and Garfinkel [18] to a “correlated storage assignment

problem”, when they could have used the “SLAP” term [23], [24], [65], [66].

We can also observe a lack of references in literature on the OBP and SLAP to

literature on their respective counterparts in the Vehicle Routing Problem

(VRP) and the Location Routing Problem (LRP). We could, for example, claim

that the OBP is a type of VRP and then use literature on the VRP when working

on an OBP. An OBP is equivalent to a common VRP if all the orders contain

one product each that never share the same location [23], [67]. A VRP, on the

other hand, is equivalent to an OBP if it is of the following kind: A Steiner

Clustered VRP with Soft Cluster Constraints (Steiner SoftCluVRP). The

SoftCluVRP was introduced by Hintsch & Irnich [68], but it lacks the

requirement that clusters can share locations (“customers” using their

terminology), hence the addition of the Steiner prefix. Different terms are used

to describe the same features in the respective research communities: An OBP

“location” is (often) equivalent to a VRP “customer”, an OBP “order” is

equivalent to a CluVRP “cluster”, the “soft cluster” constraint is equivalent to

the “order-integrity” constraint.

In the case of the SLAP and LRP, there is also a limited exchange of

knowledge. If we look at review papers on the SLAP [23] and the LRP [38],

respectively, we note that neither refers to both problems, despite their

similarities. The main difference between the two is that the LRP is concerned

with finding the best locations for depots, whereas the SLAP is concerned with

finding the best locations for products. But the impact of changing a depot

location and a product location is very similar: Generally, we need to solve a

new routing instance to evaluate the impact of conducting changes in locations,

regardless of whether they are for depots or products.

The evolution of parallel terminologies can also be motivated. A warehouse

has certain differences to the various outdoor usecases that the TSP, VRP and

LRP are usually concerned with. An OBP formulation may be formally

equivalent to a SteinerSoftCluVRP, but they are expected to be applied in

different environments. Apart from considerations concerning warehouse

rack-layouts, vehicles in warehouses tend to be smaller and operating on

smaller timescales compared to outdoor counterparts. The domain of

warehouse vehicles also changes quickly. A warehouse AGV taxonomy

provided by Azadeh et al. [6] is not fixed and can be expected to change as

technology evolves. Hence, even if the “inside warehouse” or “outside

39

warehouse” domains are similar currently, they may diverge in the future, and

this motivates semantic separations.

Figure 11: The PRP, OBP and SLAP have similar problems outside of warehouses. But this does not

necessarily mean that semantic separations are unmotivated.

In terms of features used in benchmarking for order-picking problems, there

exists no well-established standards. For the OBP, instances include Foodmart

[22] and HappyChic [69], both of which describe niche usecases. In Foodmart,

each vehicle carries bins and orders may be split between them. This adds a

bin-packing problem on top of the OBP and renders their version a hybrid

between pick-and-sort and sort-while-pick batching. HappyChic is tied to a

certain layout where vehicles must move uni-directionally around a conveyer

belt of a certain design. In the VRP research community, there are several well-

known instance repositories, such as the Solomon, Christofides, Taillard,

Augerat et al., Fisher and Kilby instances [30], [31], [32], [33]. For the PRP

and SLAP, we are not aware of workable instances. For the TSP, instance

repositories include TSPLIB [70] and Cook [71]. There are benchmark

instances for the LRP, but comparisons between published results are

insufficient. Nagy [40], for example, claims that only four published papers on

LRPs include comparisons of results to those of other authors.

2.3.2 Industrial Context

There does not exist much prior research on optimizing PRPs, OBPs and

SLAPs in the SaaS format described in Section 1.7.2. In this section, we briefly

discuss this topic from the perspective of the WMS, as well as the SaaS

provider.

Cloud-based WMSs are widely considered superior to more traditional

alternatives [72], [73], [74], [75] , but they come with certain caveats, and it is

40

not self-evident that order-picking optimization is something that a WMS

wants to outsource to a SaaS-provider. From the WMS’s perspective,

connection to a SaaS enforces a high level of modularity, leading to

decentralization [1], [76]. This can be advantageous because the engineers of

the WMS only have to write a module which connects to a SaaS. Any

development, maintenance and scaling of the PRP, OBP and SLAP optimizers

are handled by the SaaS providers. But since the WMS developers lose some

degree of control over their system, it can be disadvantageous in terms of

security and legal ramifications [77].

For the WMS team to be interested in using the SaaS, it also needs to be set up

in a way such that it is easy to integrate. Apart from reliability and adhering to

RESTful API principles [78], [79], computational efficiency is also relevant.

The WMS team needs to have information about the amount of cost savings

that can be achieved within a known amount of time. The allowed wait-time

for a request to be answered can have effect on the choice of deployment type

for the SaaS, e.g., Infrastructure as a Service (IaaS), Platform as a Service

(PaaS) and Function as a Service (FaaS) [80], [81]. There are also trade-offs

between holding warehouse-related files in memory in a PaaS or IaaS, making

them instantly available for optimization, versus a FaaS with a cold-start,

where some time is spent loading files into memory before optimization can

begin [81]. In Section 3.4, we provide further details on deployment options.

2.4 Optimization

2.4.1 Problem Formulations

We now study how PRPs, OBPs and SLAPs have been formulated in the

literature. We only look at formulations which use distance as a cost function.

Although Masae et al. [12] and Charris et al. [23] point to several cost

alternatives, we follow Koster et al.’s [3] argument that distance is of primary

importance. This is mainly because alternatives include distance functions, as

well as other functions (for a time-based cost prediction, for example, the

expected distance to be travelled is one of the main inputs [41]).

We begin by formulating a distance-minimizing PRP as a general TSP. One

possible way to formulate a TSP is through two-index Integer Programming

(IP) [82], where there are 𝑛 vertices (one of which is a single origin/destination,

i.e., depot) and all pairwise distances between the vertices are known:

41

𝑚𝑖𝑛 ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗

𝑗≤𝑛
𝑗≠𝑖

0≤𝑖
𝑖≠𝑗

, 𝑑𝑖𝑗 ∈ ℝ+, 𝑥𝑖𝑗 ∈ {0, 1}, (1)

s.t.

∑ 𝑥𝑖𝑗 = 1,

𝑛

𝑖=0
𝑖≠𝑗

 𝑗 = 1, … , 𝑛,
(2)

∑ 𝑥𝑖𝑗 = 1, 𝑖 = 1, … , 𝑛,

𝑛

𝑗=0
𝑗≠𝑖

(3)

𝑢𝑖 − 𝑢𝑗 + 𝑝𝑥𝑖𝑗 ≤ 𝑝 − 1, 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛. (4)

The binary 𝑥 indicates whether a certain edge 𝑖𝑗 (between vertices 𝑖 and 𝑗) is

traversed. The distance between vertices 𝑖 and 𝑗 is 𝑑𝑖𝑗. Constraints (2) and (3)

ensure that each vertex is connected with exactly two edges (one incoming and

one outgoing). The inequality in Equation 4 is needed to ensure that all of the

vertices are connected in a single path, which can be achieved using techniques

on sub-tour elimination. There are several ways to carry it out. Equation 4

shows Miller & Tucker’s [82] formulation. Variable 𝑢 specifies the visiting

order of the vertices (𝑢𝑖 < 𝑢𝑗), and 𝑝 ≥ 𝑛 specifies a maximum number of

vertices visited in a TSP.

As mentioned in Section 1.3, the difference between the TSP and the PRP

mainly concern typical warehouse obstacles. A significant portion of the work

on PRPs focuses on conventional obstacle layouts and how they can be

exploited to make optimization computationally efficient [12]. One example is

Scholz et al. [83], who build on the IP formulation in Equations 1, 2 and 3 with

77 constraints, many of which are tied to the conventional layout (Figure 12).

42

Figure 12: Visualization of how a conventional layout can be used to build a graph for efficient PRP

optimization [83].

Mostly, however, PRP formulations for conventional layouts do not use this

many constraints or are not as mathematical. Koster et al. [14] and Zunic et al.

[45], for example, describe PRP optimization procedures mostly using words.

For the OBP, cost can also be formulated using indexation of edges, as shown

in Equation 1. One example is Valle et al. [22]:

𝑚𝑖𝑛 ∑ ∑ 𝑑𝑖𝑗𝑥𝑡𝑖𝑗

(𝑖,𝑗)∈𝐴𝑡∈𝑇

. (5)

Apart from using a set of edges 𝐴, distances are only computed on edges that

a single vehicle 𝑡 ∈ 𝑇 (a trolley) traverses. They then add 17 constraints for

order-integrity, sub-tour elimination, symmetry-breaking and heuristics tied to

the conventional layout. Kulak et al. [16] also formulate cost using Equation

5, but they only use 6 constraints (they do not include the conventional layout

explicitly in the formulation).

43

Another way to formulate the OBP is through set-partitioning. Gademann et

al. [41], for example, use the following formulation:

𝑚𝑖𝑛 ∑ 𝑑𝑠𝑥𝑠,

𝑠∈𝑆

 (6)

where 𝑠 denotes a batch selected from the set of all feasible batches 𝑆. 𝑥𝑠 ∈
{0, 1} specifies whether a certain batch is selected in the solution and 𝑑𝑠

denotes the distance needed to pick the products in that batch, i.e., the distance

of a PRP solution. They use the following constraint to ensure that each order

is assigned to exactly one batch: ∑ 𝑎𝑗𝑠𝑥𝑠 = 1𝑠∈𝑆 , for 𝑗 = 1, … , 𝑛, where 𝑎𝑗𝑠

specifies whether order 𝑗 is included in batch 𝑠 and 𝑛 is the number of orders.

Other authors use a similar formulation [5], [42].

For the SLAP, Garfinkel [18] uses the following IP formulation:

𝑚𝑖𝑛 ∑ ∑ 𝑛𝑟𝑐𝑧𝑦𝑟𝑧

𝑧∈𝑍

,

𝑟∈𝑅

 (7)

where 𝑅 denotes orders and 𝑛𝑟 number of repeats of order 𝑟. 𝑧 ∈ 𝑍 denotes

zones in the warehouse and 𝑐𝑧 the cost of entering a zone, 𝑦𝑟𝑧 ∈ {0, 1} is 1 if a

certain zone must be entered to fill a certain order. Note that this formulation

does not include any PRP or OBP explicitly. Instead, order-picking cost is

computed using the number of times that certain zones in the warehouse are

entered by orders. Kübler et al. [24] also provide a crude model of order-

picking using a Quadratic Assignment Problem (QAP) (slightly simplified):

∑ ∑ ∑ ∑ 𝑓𝑚,𝑛𝑑𝑖,𝑗𝑊𝑚,𝑖𝑊𝑛,𝑗

𝑗∈𝑉
𝑗≠𝑖

𝑖∈𝑉𝑛∈𝐴
𝑛≠𝑚

𝑚∈𝐴

, (8)

where 𝑚, 𝑛 ∈ 𝐴 denote products, 𝑖, 𝑗 ∈ 𝑉 denote locations, 𝑓𝑚,𝑛 pick

frequency, 𝑑𝑖,𝑗 distance and 𝑊𝑚,𝑖 a binary indicator that is 1 if product 𝑚 is

picked at location 𝑖 (and respectively for 𝑊𝑛,𝑗). Similar models can be found

within the domain of datamining, where support (frequency) and affinity

(distance) between products are used to compute cost [47], [84].

44

2.4.2 Optimal Solutions

A feasible solution to a PRP, OBP or SLAP is either optimal or sub-optimal.

An optimal solution (by some authors it is referred to as an exact solution [12])

provides the minimum cost as expressed in Equations 1, 5, 6 and 7. But we

also find some disagreement in the literature on the meaning of an optimal

solution. Commonly, it is referred to as the solution with minimal distance

given that edges between vertices are defined such that they do not intersect

obstacles [12], [14], [16], [85]. Other constraints are deemed optional. For

example, it is deemed optional to add constraints that restrict the way that pick-

rounds are formed because of uni-directional traffic rules, or because certain

products cannot be placed below others on a vehicle (Section 2.2). But in real

warehouses, these constraints may not be optional, and we may still use

optimal algorithms when such constraints are included. Scholz et al. [83], for

example, propose optimal algorithms for cases with directional constraints.

In a real warehouse, a PRP, as expressed in Equation 1, can include hundreds

of unique vertices (locations), but it is usually much shorter [14]. For common

PRPs with a few dozen vertices, the Concorde TSP solver can deliver optimal

solutions within a few dozen milliseconds [86]. For 100 vertices, it usually

requires around 0.5 – 1 seconds [87]. Concorde uses Linear Programming,

Cutting Planes, min-max Duality, PQ trees, Lin-Kernigan heuristics, a

Blossom Algorithm and effective ways to achieve sub-tour elimination (it is

130000 lines of C code) [88]. Even though Concorde is publicly available for

research, it is used surprisingly seldom in research on PRPs: In the research

review by Masae et al. [12], only 13.8% of papers on PRPs propose distance-

optimal solutions. Reasons for this low percentage include the attempt to avoid

human pickers getting confused when following a distance-optimal pick-round

through the warehouse [3]. Furthermore, Masae et al. find that the vast majority

of these 13.8% require that the warehouse layout is conventional. Examples of

PRP algorithms that provide optimal solutions specifically for the conventional

layout include Linear Programming, branch and bound and Dynamic

Programming [12], [14], [83]. For optimal PRP optimization on

unconventional layouts, there is little previous work:

it seems that the application of [PRP optimization algorithms] to layouts

different to the model containing parallel aisles and a central depot has

not been considered at all in the literature [89].

For the OBP and SLAP, optimal solutions are only obtainable within

reasonable CPU-time for the smallest problem instances. Briant et al. [15], for

example, propose an OBP algorithm that requires between 300-7200 seconds

45

to generate optimal batches from 20-45 orders. They use a Branch and Price

algorithm. A Master Problem (MP) based on a linear relaxation of all possible

pick-rounds in an OBP is first formulated. Each possible pick-round serves as

a column which can be added to the MP. In each iteration of their algorithm, a

Lagrangian lower bound is computed based on the MP. Then, a Restricted

Master Problem (RMP) is solved to optimality. The RMP only includes a

subset of pick-rounds, which are selected based on a linear relaxation of the

PRP. The optimality-proof of the selection of pick-rounds is based on

heuristics tied to two conventional warehouse layouts and a cutting plane

method. The best pick-rounds are added as columns to the RMP. The

procedure continues until the RMP has been solved to optimality (when

improving columns cannot be found) or a time-out. Finally, the upper bound is

provided by solving the MP with the final set of columns in the RMP. While

the value of providing optimality bounds for the OBP is important, Briant et

al.’s method only works for conventional layouts and requires significant CPU-

time.

For the SLAP, there is not much prior work attempting to find optimal

solutions. Boysen & Stephan [64] propose Bounded Dynamic Programming

(BDP), a type of Held-Karp algorithm where an intersection between lower

and upper bound SLAP solution candidates is formulated. The upper bound is

obtained by a greedy heuristic and the lower bound is obtained through a linear

relaxation, a greedy heuristic and a local-search Held-Karp algorithm. Due to

the exponential complexity of BDP, Boysen & Stephan’s experiments are

restricted to a conventional layout with up to only four racks. Garfinkel [18]

proposes Lagrangian relaxation and various constructive and clustering

heuristics to formulate upper and lower bounds for warehouses with a known

number of zones. The task is to relocate products such that the number of

“multi-zone” orders is minimized. The travel costs are modeled on a zone-

level, which significantly simplifies the problem. Even so, to obtain the

optimal solution for 40 zones and 100 products, Garfinkel reports that a CPU-

time of 3.5 weeks was needed for the experiment.

2.4.3 Sub-optimal Solutions

Common heuristics for distance-sub-optimal PRP optimization include the S-

shape and Largest Gap for conventional layouts [14], [52] (Figure 13). The S-

shape algorithm produces an S-shaped path through the warehouse. The

Largest – Gap algorithm produces a path which goes around a block of racks

and makes incisions into the aisles with pick locations. For warehouses without

46

conventional layout, optimization using Simulated Annealing and Google OR-

tools TSP optimization suite have been proposed [25].

Figure 13: PRP heuristics for a conventional layout (single block) [5]. The black cells denote products to

be picked and the lines show proposed pick-rounds.

For the OBP, sub-optimal algorithms can be divided into heuristics and meta-

heuristics. Heuristic algorithms can be divided into four categories: Priority-

rule based, seed, savings and data mining algorithms [5], [90]. In priority rule-

based algorithms, batches are built by ranking and then assigning orders by

importance, e.g., using First Come First Serve, First Fit and Best Fit. In savings

algorithms, the cost of batches with single orders is first evaluated. This result

is then compared against proposals of pairs and triplets of orders in batches. In

seed-algorithms, batches are generated in two steps: A seed selection step and

a construction step. In the first step, a suitable first order is selected, and orders

are then added to it in the second step, until vehicle capacity is exceeded. There

are many possible heuristics that can be used for this purpose: Ho et al. [91]

propose 11 different heuristics for seed selection and 16 heuristics for

construction. Examples of meta-heuristic algorithms for the OBP include Tabu

Search [90], Ant Colony Optimization [92], Genetic Algorithms [93] and

Variable Neighbourhood Search [94].

47

For the SLAP, sub-optimal algorithms are also divisible into heuristic and

meta-heuristic. As shown in Equations 7 and 8, heuristics can be used to

provide a simplified model of the order-picking assumed to be used in the

warehouse (compared to modeling it more explicitly using PRPs and/or OBPs).

Apart from using the number of times zones are entered (Equation 7) and

distances and pick-frequencies between pairs of products (Equation 8), other

alternatives include Cube per Order Index (COI) [95] and Order Oriented

Slotting (OOS) [62]. COI uses the pick-frequency and volume of a product to

compute the ideal proximity to a depot. COI does not include capability for

multiple products in an order. OOS, on the other hand, is specifically designed

to handle orders with multiple products. Meta-heuristic algorithms for the

SLAP include Simulated Annealing [96], Ant Colony Optimization [97] and

Evolutionary algorithms [56].

2.4.4 Machine Learning (ML)

There have been attempts at introducing pre-trained ML approaches for the

PRP and OBP [98], [99], [100], [101]. They offer to replace decision-time

search for optimization of PRP’s and OBP’s, with pre-trained parameters,

which could provide significant improvements in computational efficiency.

The parametrization can be achieved by mapping locations, obstacles and PRP

or OBP problem instances into a graph where vertices are connected based on

relationships defined in the geometric domain. These parameters can then be

trained on many sets of annotated problem instances to learn to approximate

search policies or solution costs. This approach has both theoretical merits and

flaws.

Concerning the merits, it has already been shown that learning based on

features in a combined geometric and sequential domain is possible [102].

Search algorithms for games such as Chess and Go, including Monte Carlo

Tree Search (MCTS), can be substantially improved by the usage of pre-

trained parameters [102]. Strong results have also been achieved on Starcraft

2 [103] and Dota 2 [104].

The relevance of these achievements for PRP, OBP and SLAP optimization

can be debated. The Starcraft 2 algorithm (AlphaStar) uses a wide array of

game-specific entities and a graph of structured actions that can be applied on

the entities [105]. It is designed for a specific Real Time Strategy (RTS) game

with hidden information. If the environment is turn-based and without hidden

information, as in the case of Go and AlphaZero [102], the similarities to the

PRP, OBP and SLAP are arguably stronger. One core feature of AlphaZero is

48

convergence on optimal play, made possible by its self-play training loop

[100]. This type of convergence is based on the decomposition of a problem

instance into a Markov Chain of states, where the learning of policies to move

from one state to the next is assumed to be a differentiable problem. This

differentiability is, in its turn, dependent on the gradual building of a training

database using experience replay. The objective is stated as generating a policy

which beats any other policy’s performance on the training database.

There is no immediate theoretical hindrance for why this type of approach

could work on problems such as the PRP, OBP and SLAP. The main issue can

rather be attributed to more practical reasons: As laid out in Section 2.2, there

are many types of obstacle layouts, picking methodologies, constraints and

other features in PRPs, OBPs and SLAPs. Realistically, a WMS which

includes ML-based optimization modules would also include various heuristic

modules [99]. To see why heuristics are needed, the OBP can be used as an

example: To get the solution cost of a single OBP candidate solution (i.e., an

assignment of orders and visit sequences to vehicles), a set of TSP’s need to

be optimized. Incorporating learning to approximate TSP costs within an OBP

algorithm is naturally complicated by the NP-hard nature of the TSP. Vinyals

et al. [106] try learning TSP costs, but they do not offer a competitive result

(compared to the Concorde TSP solver, for example). It could still be possible

to incorporate a learnt approximation of TSP costs in an OBP optimizer (cost

approximation has been shown to be effective in OBPs [107]), but the added

burden of development, pre-training and maintenance of such an ML-based

optimizer is significant. In the warehouse domain, learning TSP costs is mostly

feasible if features, such as rack layouts, are heavily restricted, such as in the

work by Seward on conventional layouts [99]. As soon as the TSP is assumed

to be generic, the training data needed increases significantly.

There are order-picking problems other than the PRP, OBP and SLAP that may

be more suitable for ML. One example is demand forecasting, i.e., the

prediction of products or orders that are going to be demanded at a future time.

This topic has not seen an overly large amount of research within the

warehousing domain, but it can draw from a larger body of both practical and

theoretic work within the broader logistics and ecommerce domain [108],

[109]. Abolghasemi et al. [110], for example, propose ML methods to measure

the volatility of demanded products generally, without going into detail on

practical applications. Within ML research, there is a variety of methods and

datasets which target the same type of problems [111]. Spiliotis et al. [108]

apply various ML methods against standard statistical methods in a case-study

to predict the demand for 3300 products. A specific difficulty of their dataset

49

is that certain products occur very sparsely through time. They find that ML

methods are promising for this type of task, especially because of their low

CPU-time requirements (after pre-training), but that some methods

underperform for reasons that they admit are elusive. A well-known problem

with ML methods is that they are “black-box” in nature [99], [112]: It is

difficult to deduce why they underperform or overperform on a certain task,

since their search for parameter combinations is largely autonomous. Hodzic

et al. [113], also conduct a demand forecasting experiment to test the difference

between an ML method, in the form of a Long Short Term Memory cell

(LSTM), against a standard statistical one, in the form of an Adaptive Median.

Their dataset consists of 2913 products, and they find that the LSTM is

stronger than the Adaptive Median when it comes to forecasting the number of

demanded products, but that the Adaptive Median is stronger when it comes to

forecasting the specific products that are demanded.

50

3. Approach

3.1 Feature Selection and Engineering

Before we approach PRP, OBP and SLAP optimization (Section 3.2), we select

and engineer a set of features. For each feature, we attempt to make choices

that are beneficial for standardization (Section 1.7.1) and the SaaS

optimization architecture (Section 1.7.2).

3.1.1 Layout

We propose that standardized order-picking optimization methods need to

have capability to handle polygonal obstacles that are distributed in any

manner in two dimensions. In our papers, we refer to this scenario as the

unconventional layout [114]. In reference to related work, we can also call this

scenario the union of conventional, non-conventional and general layouts

(Section 2.2). A significant amount of related work on order-picking

optimization is designed exclusively for the conventional layout. But we also

note the following:

1. A significant quantity of warehouses do not use conventional layouts.

2. In terms of CPU-time, it is expensive to obtain optimal solutions for

OBPs and SLAPs, even for conventional layouts.

For the PRP, there exist algorithms capable of finding optimal solutions for

conventional layouts at relatively low CPU-time, including approaches based

on linear and dynamic programming (Section 2.4.2). But for the OBP and

SLAP, proposed optimal solutions require CPU-times that can be deemed in

excess of what is SaaS-suitable (Section 3.4.1). Arguably, potential

optimization advantages attained when working exclusively with conventional

layouts are exceeded by the advantages attained from generalizing layouts

[114].

51

Bartholdi & Hackman [1] point to an important disadvantage of un-

conventional layouts that we must address: Added complications in building

and applying a digital model of a warehouse. All pairwise distances between

the locations, i.e., the distance matrix, need to be pre-computed. If we study

conventional layout problem instances, such as “ran-x” or “abc-x” [90], we

note that they include entries such as “Aisle 6 Location 22” and “Aisle 13

Location 29”, as well as information on aisle widths and lengths. From this

information, it is possible to build a distance matrix between the provided

locations at high speed. For the unconventional layout without uniform aisles,

this is not possible (Section 3.2.1). Consequently, the distance matrix must be

built in an onboarding step before a warehouse can start using the optimization

service. The distance matrix must also be kept accessible in memory for the

optimization service to perform well in terms of CPU-time (Section 3.4.1).

3.1.2 Locations and Zones

We propose a distinction between four types of locations:

1. Depot/origin/destination locations: The locations where vehicles start

and end pick-rounds.

2. Obstacle locations: The outlines of racks or other obstacles.

3. Product locations: Each product has one location in the warehouse. In

real warehouses, there are cases when a product is stored in multiple

locations. This complicates order-picking optimization, since

decisions must be made concerning which of the product locations

should be visited. In Section 4.1, we exemplify this scenario and show

why it is unsuitable for standardization.

4. Stop locations: To limit the size of a digital model of a warehouse and

to simplify optimization, many product locations can be set to share a

single “stop location”. For example, if we have 20 products within an

area of 4 𝑚2, we can use a single stop location, instead of 20 different

product locations.

Regarding stop locations, in Section 2.2 we stated that surjective relationships

between many products and fewer locations (in specific areas) are similar to

zones in a warehouse. We can see the similarity if we think of a precision or

granularity regarding the digitization of product locations. We define a stop

location using a fine granularity level, claiming that movements within a few

square meters do not have to be accounted for when finding solutions to order-

52

picking problems. This can help reduce memory and computational

requirements (Section 3.2.1). Order-picking optimization is carried out on the

stop-location level, so the granularity with which stop locations are defined

dictates the precision in optimization: The larger area that we assign to a single

stop location, the lower the achievable precision. In some scenarios, it may be

beneficial to work with multiple levels of surjective products to locations

relationships. For SLAP optimization, for example, we could start with a

broader area for product-location assignment and move gradually toward

assignment of more exact locations.

Arguably, the stop-location term generalizes the zone term. We could use the

zone term instead, but the zone term is usually associated with a coarse

granularity level, defined in terms of larger areas.

3.1.3 Depots

For the PRP, we assume that both the origin and destination can be any location

in the warehouse. We consider requirements of a single depot as strict, since

PRP optimization can be set up for multiple depots with relative ease using

“dummy nodes” [115]. Since we include the PRP in our work on the OBP and

SLAP, we do not regard single-depot configurations as necessary for these

either. SLAP optimization involving the Quadratic Assignment Problem

(QAP) or pick-frequency heatmaps [25] assume a single depot, but could

potentially be modified for the multi-depot case.

3.1.4 Dynamicity and Stochasticity

Standards are lacking on how to define dynamicity in PRPs, OBPs and SLAPs.

For the sake of standardization, we propose that work on static, rather than

dynamic versions of these problems, has precedence. The focus is on the

optimization quality that can be achieved given all the data available in a static

PRP, OBP or SLAP instance. There are many choices regarding how to define

problem instances, even in static settings (Section 2.3).

We only consider stochasticity with regard to instance generation (Section

2.2). We propose pre-generated deterministic instances, following the same

general structures as used in the TSPLIB [70] and Cook [71] instances (Section

2.3.1).

53

3.1.5 Order-integrity

We use order-integrity in our work on the OBP. It follows that a single order

can always fit on a single vehicle in the warehouse. We assume that we are not

aware of whether an order has been split at an earlier stage (by a Warehouse

Management System (WMS), for example) to make this possible. In certain

implementations of order-picking, e.g., single-product picking robots or wave-

picking, order-integrity may not be beneficial for operations. But it is

beneficial from a standardization perspective, as single-product picking or

wave-picking can be modified into OBPs using relatively simple pre-

processing: Single products can be redefined as orders with single products.

3.1.6 Product Constraints and Traffic Rules

Warehouses often contain products that are hazardous, in need of cooling or

specialized placement on a vehicle. We do not consider these types of

specialized products for standardized versions of the PRP, OBP and SLAP.

We work with scenarios where travel costs are assumed equivalent between

pairs of locations. If the warehouse uses uni-directional travel rules in aisles or

cross aisles, they can be imposed using digitization techniques that do not

impact optimization CPU-time (Section 4.5).

3.1.7 Capacity Constraints

Capacity constraints have a significant impact on optimization performance,

but they are challenging to standardize due to the high variability of warehouse

vehicles and picking methods. Possible capacities for vehicles include number

of orders, number of products, xyz dimensions and carry weight. For the

SLAP, capacities can also be defined in terms of number of products or xyz

dimensions for locations. We mainly work with number of orders and/or

products in our experiments on PRPs, OBPs and SLAPs.

3.1.8 Cost Function

There are several choices for cost functions for the PRP, OBP and SLAP,

including distance, time and profitability (Section 2.2). We use distance in our

experiments. From the standardization perspective, distance is beneficial since

it is an unambiguous metric, assuming it is modeled such that it accurately

represents the geometry of a warehouse. Travel distance is often chosen due to

54

its close correlation with travel time [3]. But time may also include components

that are difficult to standardize, e.g., search-times for products, administration

and unexpected delay bottlenecks. Worth noting is that the cost function will

always be delimited to some extent: The warehouse is not the only part in the

logistics chain, and profitability may be affected by factors that are difficult to

optimize [116].

Figure 14: The amount of data needed to work with profitability, time and distance cost functions [100].
Profitability may be of higher interest to managers, but that does not necessarily mean that it is a better cost

function from a standardization perspective or optimization.

Hence, distance is benefited by its simplicity in terms of both implementation

and interpretability. For the SaaS business (Section 1.7.2), it makes sense to

carry out an initial Proof of Concept (POC) for WMS customers in a way that

is as explainable as possible. Work with more complex KPI’s should be

conducted after work with more basic KPI’s has been completed.

We choose the Euclidean norm (Section 2.1) for our computations of shortest

paths and distances. For conventional layouts, heuristic models for distance

can be used (such as counting the number of aisles that are entered) [58]. For

the unconventional layout, Euclidean distance is arguably a stronger choice

than the two alternatives proposed by Gibson & Sharp [58], i.e., Manhattan

and Chebyshev. The main advantage of Euclidean paths and distances are their

stronger descriptive properties. In Figure 15, we suggest that it is easier to draw

conclusions regarding the quality of a Euclidean-based PRP solution, than a

Manhattan alternative. This can be useful if we wish to visually validate the

digitization process (Section 3.2.1). After a warehouse graph has been built, a

few mock PRPs are generated and solved using the Concorde TSP solver, and

these PRPs are then visually inspected for correctness.

55

Figure 15: The same PRP solution using Euclidean (left) and Manhattan (right) paths/distances. In the

Euclidean case, we can see that the path looks close-to-optimal. In the Manhattan case, it is less clear.

3.2 Optimization

3.2.1 Digitization and Preprocessing

As we discussed in Section 3.1.1, our assumption of an unconventional layout

requires the building and storing of a digital model of the warehouse. For this

purpose, we use a warehouse digitization process introduced in 2019 and 2021

[114], [117].

A warehouse can be modeled as a graph 𝐺 = (𝑉, 𝐸), consisting of vertices 𝑉

representing locations in the warehouse, and edges 𝐸, which represent possible

paths to move between the vertices. Janse van Rensburg [117], proposes a

method in which all shortest paths and distances between the vertices is

computed such that obstacles are circumvented. The method can be

summarized as follows:

1. A 2D top-view image of the warehouse is used as reference.

2. Stop locations are added as x, y coordinates and corresponding

mappings between product locations to stop locations are generated.

56

3. Obstacles of any 2D shape and rasterized edges (drawing of lines on a

raster) between locations are plotted/generated.

4. Rasterized edges that include cells located within an obstacle are

removed.

5. Graph 𝐺 is constructed from the locations (represented as vertices) and

the remaining edges.

6. The Floyd-Warshall algorithm is used to compute all shortest walks

and distances between vertices.

Experiments show CPU-time and memory requirements to build various sizes

of 𝐺, shortest walks and distances [114]. The largest graph includes 6491

vertices and 306 obstacles and requires 1.2 GB of memory and ~18 hours CPU-

time. Most warehouse graphs can be constructed using less than 100 MB,

however. Also note that the number of locations can be significantly reduced

if we accept a lower precision of the optimization results (Section 3.1.2).

3.2.2 Picker Routing Problem (PRP) Optimization

For PRP optimization, three sources of TSP optimization software are used:

The Concorde TSP solver (Section 2.4.2), the OR-tools TSP optimization suite

(Section 2.4.3) and Simulated Annealing [119].

A Linux-compatible wrapper to Concorde is available online [86] and it is also

the version used in all our implementations. The ability of Concorde to produce

optimal solutions to the TSP is well-documented, but its ability to produce

optimal solutions to the PRP is not. On the one hand, no attempt to prove

Concorde’s optimality on PRPs is carried out in this project. On the other, no

substantial evidence is identified which indicates that it performs sub-

optimally. When Concorde’s performance on PRPs is compared to its

performance on TSPs, no substantial difference is observed [25]. From visual

inspection of hundreds of solved PRPs and TSPs, sub-optimal looking

solutions are not observed. A counterargument is that it is difficult to know

what an optimal solution looks like, especially when working with PRPs that

are constrained in various ways. For example, we could have unidirectional

travel rules or multiple depots that creates challenges for visual inspection. We

also note that the use of surjective relationships between products and locations

(Section 3.2.1) could have a detrimental impact on Concorde’s performance.

We continue with the CPU-time that Concorde uses. Commonly, PRPs are

shorter than ~50 locations, and Concorde delivers solutions to these in

57

fractions of a second (but with a high variance [87]). Concorde may be fast

enough for PRP optimization in isolation, but it is less clear that it is fast

enough for use within OBP and SLAP optimization. On the one hand, we can

easily motivate using Concorde within OBP and SLAP optimization: It

provides a model for distance-optimal pick-rounds through the warehouse. But

on the other, the number of PRPs that Concorde needs to solve in OBPs and

SLAPs, rises exponentially: Assuming Concorde requires 10ms to solve a

single PRP, it requires 1 minute to solve 6000 PRPs. Even in relatively small

OBP and SLAP instances, there are orders of magnitude more possible PRPs.

As an example, an OBP where 30 orders should be distributed into 5 batches,

may have around 1017 possible PRPs (a rough estimate provided by the

Stirling number).

To reduce CPU-time, we also investigate usage of distance-sub-optimal PRP

optimization within OBP and SLAP optimization [25], [120]. A joint

conclusion from this work is that the combined use of Concorde and sub-

optimal PRP optimization is motivated, but that the large variability in search

space and features makes it is difficult to provide any concrete evidence for

how much one should be used over the other. One could, for example,

hypothesize that the utility of sub-optimal PRP optimization grows with

instance size: We do not carry out experiments of a large-enough scale to

thoroughly test this, however.

For sub-optimal PRP optimization, we primarily use the Google OR-tools TSP

optimization suite [118]. It includes at least five different TSP optimizers, and

per default it selects one automatically. One disadvantage of the OR-tools TSP

optimization suite is that some of its functionality is not extensively

documented. For example, setting it to use “Simulated Annealing” often leads

to worse performance compared to letting it choose optimizer automatically,

while it is not clear why this is the case, nor explained how it does the

automatic selection. Another example is a lack of information regarding how

to control the CPU-time used for TSP optimization. This is crucial information

when deciding on how to trade-off CPU-time against distance minimization,

which is especially relevant if one seeks to use OR-tools as a cost approximator

for TSP solutions produced by Concorde (more on this in Section 3.2.4).

For sub-optimal PRP optimization, we also use a publicly available Simulated

Annealing optimizer [119]. This implementation is slower, in terms of CPU-

time, but simpler compared to OR-tools, and we mainly use it for certain

visualization scenarios.

58

In certain industrial OBP and SLAP scenarios, a case against distance-optimal

PRP solutions can be made. Distance is often not the KPI that a WMS

operation uses, and the industrial setting (Section 1.7.2) is a SaaS that sells

services to a WMS. In other words, the SaaS needs to be mouldable to whatever

KPI the WMS uses. If a WMS provider does not use distances in their KPI

model, the SaaS provider should not require it to work with them. If the WMS

provider uses a more basic cost function to evaluate performance, such as SMD

in the case of the OBP, or a support-distance dot product in the case of the

SLAP, the SaaS provider can avoid PRP optimization altogether. PRP

optimization on a SLAP picking-log using Concorde can be thousands of times

slower than computing a support-distance dot product [25]. Hence, if the WMS

uses an evaluation based on a support-distance dot product, it makes sense for

the SaaS provider to also use it until the customer demands something else.

3.2.3 Order Batching Problem (OBP) Optimization

The set-partitioning formulation by Gademann [41] (Section 2.4.1) is used as

foundation for all our work on the OBP. One difference is the addition of a set

of vehicles:

𝑚𝑖𝑛 ∑ 𝐷(𝑏)𝑥𝑚𝑏,

𝑏∈ℬ

𝑚 ∈ ℳ, (9)

where 𝑏 ∈ ℬ is a batch generated out of the set of all valid batches, 𝐷(𝑏) is the

distance of 𝑏 as provided by PRP optimization, 𝑚 ∈ ℳ is a vehicle selected

from available vehicles and 𝑥𝑚𝑏 a binary variable which is 1 if 𝑚 is assigned

to pick 𝑏. We then add constraints for order-integrity, minimum required

location visits and vehicle capacity [114]. Order-integrity, precedence and

capacity constraints reduce the number of possible batches and thereby the

number of possible PRPs. In a pallet picking usecase with all these constraints

(Section 4.3), the number of possible combinations of pallets on a fork-lift is

so small that optimization often cannot yield significant savings. In other cases,

the number of possible PRPs can be very large. In related work, we find that

optimal OBP optimization suffers from being tailored for specific scenarios

(Section 2.4.2). To model an OBP as a convex optimization problem, for

example, many assumptions must be made with regard to the features (such as

layout and capacity constraints). From the perspective of a SaaS - business

(Section 1.7.2), another issue with optimal optimization is that it requires a

significant amount of CPU-time. For a customer driven SaaS, it is

advantageous if optimization results can be delivered quickly (Section 3.4.1).

59

With this reasoning, we design and provide sub-optimal optimizers for the

OBP [87], [120] (Papers 2 and 3). They are based on heuristics and meta-

heuristics. The main optimizer is called Single Batch Iterated (SBI) and it uses

constructive heuristics in a Seed algorithm (Section 2.4.3). Orders are added

to a batch semi-randomly based on a Sequential Minimal Distance (SMD)

heuristic, which is used to compute (and later query) distance estimates

between orders. Cost evaluation for a candidate batch is achieved using

optimal or sub-optimal PRP optimization. The procedure continues with semi-

randomly generated and evaluated batches until convergence or a pre-

designated timeout. SBI is evaluated in terms of computational efficiency

against optimal OBP results on smaller existing conventional layout instances

[120]: An average gap to optimality of 2.3% is reported against Briant et al.’s

[15] Branch and Price method. Importantly, the proposed sub-optimal results

require significantly lower CPU-times compared to Briant et al. For larger

instances where optimal solutions are not available, we find that solution

improvement often decreases to 1% per minute after 30-60 seconds of

optimization. For example, an initial SBI solution may take 5-10 seconds to

obtain. After 5 minutes of additional optimization, the initial solution is only

improved on by 4-7% [120].

The main meta-heuristic optimizer is called Metropolis Batch Sampling

(MBS). First, an initial solution is generated using the seed and SMD

heuristics. Then, batches are altered iteratively using the Metropolis algorithm

by swapping orders between batches and computing the PRP costs of new

batches. The Metropolis acceptance ratio controls whether new batches and

their corresponding costs are accepted or rejected.

In terms of performance evaluation, there are advantages and disadvantages to

both SBI and MBS. In terms of computational efficiency, SBI performs better

on OBP’s, but it is designed specifically for that problem, relying heavily on

the SMD heuristic. MBS is more easily adopted to optimize other problems,

such as the SLAP, where distance estimates between orders are not necessarily

as directly relevant. On the OBP experiments conducted, the relative strength

of SBI can be explained through two factors: 1. The predictive strength of the

SMD heuristic. 2. The relatively low CPU-time needed to compute SMD, as

well as the temporary storage of SMD values in memory. As is often the case

in the engineering of optimization algorithms, multiple improvements to both

SBI and MBS are developed during the project. For SBI, improvements mainly

regard computational efficiency through reuse of certain computations. For

MBS, improvements include the addition of temperature (i.e., Simulated

60

Annealing), seed selection strategies and more effective usage of cost

approximation.

3.2.4 Storage Location Assignment Problem (SLAP) Optimization

Our proposed optimization models for the SLAP build on our work on PRP

and OBP optimization (Section 3.2.2, 3.2.3). We propose two versions of the

SLAP: The OBP-based SLAP and the TSP-based SLAP2. There are two main

differences:

1. Cost evaluation: In the OBP-based SLAP, solution cost is obtained by

optimizing an OBP. In the TSP-based SLAP, solution cost is obtained

by optimizing multiple PRPs (TSPs).

2. SLAP features: In the OBP-based SLAP, products that are newly

arrived in the warehouse are assigned a location. In the TSP-based

SLAP, the locations of products already in the warehouse are swapped.

Concerning cost evaluation, it is assumed that a SLAP problem-instance

includes a future-forecasted picking-log with information on products that need

to be picked in the warehouse. In the OBP-based SLAP, the picking-log

consists of orders (that need to be batched in an OBP), and in the TSP-based

SLAP, the picking-log consists of pick-rounds (which may have been

generated using OBP optimization at an earlier stage). Some researchers, such

as Kübler et al. [24], also include the forecasting of the picking-log (demand

forecasting) as part of their SLAP optimization model, but we argue that

standardization suffers if this is required. The core question the SLAP asks is

where products should be stored, not to predict the number of products that

will be picked. An issue with demand forecasting is that it is dynamic in nature,

as it is based on seasonal trends. Such trends are difficult to standardize due to

the high variability of products.

Building on our work on OBP optimization (Section 3.2.3), our SLAP

optimizers rely on heuristics and meta-heuristics. The OBP-based SLAP

optimizer uses a Nested Metropolis algorithm and is divided into four layers:

The first (outer) layer runs a Metropolis algorithm, the second layer

approximates the cost of a SLAP sample using a model based on the Quadratic

Assignment Problem (QAP). The third layer computes ground truth OBP costs

using the SBI optimizer for samples which have passed an accept filter based

2 See Section 1.5 for a rationalization for using “TSP” in the title.

61

on the QAP estimates. The fourth layer is comprised of PRP optimization as

used by SBI. See Paper 4 [107] for a diagram of the optimizer.

One key problem with the OBP-based SLAP is that solution quality of a single

SLAP candidate sample (an assignment of products to locations) requires an

OBP to be optimized. An important issue is that there is no proposal with which

to efficiently solve realistically sized OBP instances to optimality (Section

2.4.2). The OBP-optimizer used (SBI) produces sub-optimal solutions. We

could argue that usage of the OBP to obtain SLAP solution costs is a reasonable

choice. After all, if a warehouse uses order-batching, it makes sense to compute

SLAP solution quality using OBP-optimization, even if it the costs are sub-

optimal. Nevertheless, the usage of sub-optimal results to guide a Metropolis

algorithm (for SLAP optimization) can be problematic for two reasons:

1. Stability issues. Building on a line of argumentation by Mantel et al.

[62], an inaccurately evaluated solution candidate will cause a Markov

chain to jump around less ideal search regions. Furthermore, we use

two levels of approximation, since we approximate OBP costs

provided by SBI using a Quadratic Assignment Problem (QAP)

model. While QAP costs are fast to compute, they are not necessarily

proportional enough to OBP costs. Costs in a QAP are provided by the

sum of all pairwise distances between a set of product locations,

multiplied by their pick-frequency. Experiment results show that

usage of the QAP approximations can be beneficial for optimization

of the overall SLAP (at least certain versions) [107], but that its

generalizable properties can be debated.

2. Hyperparameter search space. A combination of hyperparameters in

both the OBP and SLAP optimizers needs to be found. For the OBP

optimizer, these hyperparameters are 𝑁 (number of samples), 𝐶 and 𝑃

(floats controlling the amount of feature-distance between samples).

For the SLAP optimizer they are 𝑁 (number of samples), 𝜆 (float

controlling the amount of distance between samples) and 𝜑 (choice of

relevance values). The search of a strong combination of these

hyperparameters is possible, but it requires a significant amount of

quantitative experimentation. If it takes 4 seconds to obtain an OBP

solution within 10% of optimality (for a “medium” – size instance)

[120], it takes 8 hours to generate 7200 samples. Since the SLAP

search space for but the smallest instances is many orders of

magnitudes higher, 7200 samples is inadequate to guarantee

convergence on a strong solution.

62

From a standardization perspective, we could question whether in-depth

quantitative experiments are suitable for the OBP-based SLAP. Arguably,

feature standardization has precedence. Besides the listed features in Section

2.2, there is little agreement on how to standardize SLAP-specific features,

such as the reassignment distance (the cost needed to swap locations between

products). For the OBP-based SLAP, the easiest reassignment scenario is used,

namely the one where new products appear in the warehouse and reassignment

distance can be set to zero (since the location assignment of new products is

mandatory). This is clearly a simplification of a realistic scenario, where

warehouse managers also want to know when locations between products

already in the warehouse should be exchanged.

The optimization algorithm for the TSP-based SLAP [25] (Paper 5) is similar

to the one above, but Nested Metropolis sampling is replaced with Nested

Annealing (a temperature parameter is added). It excludes the OBP, and

instead, all the order-batching forecasting is assumed to have been carried out

at a prior stage in the overall WMS. While Paper 5 improves the computational

efficiency of the MCMC algorithm by usage of restart heuristics and sub-

optimal TSP optimization, the main focus is on the modeling of a more

standardized reassignment scenario: If new products are predicted to arrive,

they are assigned uniform random free locations in a baseline sample. If they

are already in the warehouse, the baseline sample keeps them at their current

locations. The picking-log is then passed on to the SLAP optimizer which finds

suitable location swaps between products, considering both optimal distances

of TSP solutions for the picking-log, as well as sub-optimal reassignment

distances.

We report cost savings around 23% after 1 hour of optimization of the OBP-

based SLAP and cost savings around 30% after 8 hours of optimization of the

TSP-based SLAP. The reassignment distance in the TSP-based SLAP may

pose a more serious problem than the sub-optimal estimates in the OBP-based

SLAP. The issue with the former is that minimization of reassignment distance

is not easily achieved alongside minimization of picking-log distance. To

minimize the latter, many products need to exchange locations with other

products. But the reassignment distance is positively correlated with the

number of location exchanges [25].

63

3.3 Benchmarking

PRP, OBP and SLAP features should be described in instances such that they

are as representable as possible, while allowing for simple experiment

reproducibility. Currently, there is little agreement regarding a benchmark

standard for the PRP, OBP and SLAP.

The representation of a warehouse’s layout is one point of contention. In

instances designed for the conventional layout, such as Foodmart [22],

HappyChic [69], ran1-3 and abc1-3 [121], features such as “number of aisles”

and “intra-aisle-distance” are used to describe the layout. There are also

instance file formats for the conventional layout that include a distance matrix.

For the layout-agnostic case, neither of these options are appealing. Features,

such as number of aisles and intra-aisle-distance, cannot be used, and the

distance matrix takes up a lot of space in the instance, while still not providing

enough information to allow a recreation of the warehouse layout, nor of exact

picking paths through the warehouse.

We propose a different approach, but it also has caveats. In our generated

instances [25], [87], [107], [120], we leave out the distance matrix, and instead

provide the coordinates of all locations, including the ones for polygonal

obstacles. The distance matrix must then be generated in such a way that no

path between two locations intersect any obstacle. The main problem with this

approach is that the distance matrix must be reproduced before minimized

distances can be checked for correctness. We still argue against including the

distance matrix directly in the instance, since the distance matrix is only one

of several files needed to properly validate an experiment. To validate an

experiment, the distance matrix itself needs to be validated, and for that, only

two options are possible: Either to provide the whole graph of shortest paths in

the instance, or to provide the data needed to generate the graph. The shortest

paths and distances can take up as much as 50 megabytes of memory for a

warehouse with 500 locations [114], which is arguably excessive for

benchmark data.

64

3.4 Industrial context

3.4.1 SaaS CPU-time and Deployment Options

A key issue is the time it takes between an optimization request being sent from

the WMS customer and receival of the response from the SaaS. In this section,

we discuss why this topic is important and how SaaS CPU-time can be

minimized.

Since results to common PRPs in warehouses can be obtained in fractions of a

second, it makes sense to offer a PRP optimization service as “instantaneous”

and/or even “optimal” (using the Concorde TSP solver with a license, for

example). The customer sends a request for PRP optimization and

“instantaneously” gets a response with the shortest possible pick-round. In

order to achieve this, we must assume that the optimization server has the

digital files of a warehouse stored in memory (Section 3.1.1). If we assume

that we wish to offer the same service for all warehouses, we should assume

that there will be warehouses whose digitization files are going to take up

significant memory. Since it takes time to load these files from disk into

Random Access Memory (RAM) such that they can be used by the optimizer,

we need to keep these files highly accessible. The most significant file in this

regard is the distance matrix, i.e., the file which provides all pairwise distances

between locations in a warehouse. If we assume that we want to store the

distance between two locations in 16 bits, we need 1.6 ∗ 109 bits (200 MB) for

a distance matrix with 10000 locations (we do not wish to half it since we may

want to include capability for asymmetrical distances). While we can reduce

the number of locations (Section 3.2.1), we can also assume that we need

memory for other types of data. For PRP visualization (Section 4.4), for

example, we need to have shortest walks between the product visits in the PRP,

and these take up more memory than the distance matrix [114]. Assuming that

the digital files for a warehouse take up 1 GB, it can take a few seconds to load

them into RAM. Following this reasoning, we ask two questions:

1. Is a WMS customer willing to wait a few seconds for a response to a

basic optimization request? For example, we can imagine a scenario

when the customer sends a PRP request with five pick locations to test

the service for the first time.

2. What are the loading speeds and costs from storage for different SaaS

deployment options, like Infrastructure, Platform and Function as a

Service (IaaS, PaaS and FaaS)?

65

Regarding the first question, the WMS customer can be assumed to already

use PRP optimization in some form (e.g., if the warehouse uses a conventional

layout, it may use simple heuristics like the S-shape algorithm). It may not be

as good as the Concorde TSP solver in terms of distance minimization, but it

is likely very fast. To ensure customer satisfaction, we suggest that the files

needed for optimization by the SaaS should be pre-loaded into RAM.

Regarding the second question, the files can be kept accessible in RAM if we

deploy a server using IaaS or PaaS (Section 2.3.2). For a FaaS-based solution,

the files need to be loaded upon request receival (cold start). Due to

complexities involved with this latter option, the relative cheapness of keeping

one or a few servers idling (at least for a small-scale SaaS business) we suggest

a non-FaaS option. Deployment pricing is a complex topic, however, and FaaS

may be a preferable choice with only small adjustments to the cloud business

operation. When it comes to selecting between IaaS and PaaS, we do not regard

either as superior. An IaaS may have more bare-metal options compared to a

PaaS, but assuming we need load-balancing and auto-scaling, among other

customizable tools, the final system can end up looking similar following both

alternatives.

For OBP and SLAP optimization, “instantaneous” CPU-time is often

unfeasible. As we have discussed in Section 2.4 and 3.2.3, optimization of

realistic OBP and SLAP instances require significant CPU-time to reach

competitive cost savings. In our industrial work, however, we observe that

warehouse managers often push for optimization responses to be delivered as

fast as possible. Because of this, we include a “computational_time” parameter

in the OBP and SLAP request APIs, where the customer can specify the

maximum allotted CPU-time for the optimization request. If the customer does

not use this parameter, the default option is set to “minimal”, i.e., the service

assumes that the request should be optimized as fast as possible. We inform

customers about the relationship between optimization savings and CPU-time,

but we often find that they prefer this “minimal” option. The reason for this

can partly be attributed to integration challenges (Section 3.4.2).

3.4.2 SaaS – WMS Integration Challenges

From the SaaS-business perspective, it is relatively easy to explain to a

potential WMS customer how PRP optimization can be integrated into their

existing system: After the WMS has constructed a pick-round, they translate it

to the format of an optimization request, send it to the SaaS, and within a pre-

designated timeout (e.g., 1 second), they obtain a response with an optimized

66

pick-round. If a response is not received before the timeout, the WMS proceeds

to use the pick-round they have from earlier.

For OBP optimization, it is more difficult to define such timeouts. A key

component in OBP optimization is the computation of distance estimates

between input orders (e.g., using SMD). But since the number and contents of

input orders may vary widely between different warehouses, it is difficult for

the SaaS to predict the CPU-time that may be required for this type of distance

estimation. Furthermore, there are variations of OBP request-response set ups

that the SaaS needs to have capability for, such as:

1. Single batch: The WMS sends a set of orders to the SaaS and receives

a single batch in response, together with the orders that are excluded

from the batch.

2. Multi batch: The WMS sends a set of orders to the SaaS and receives

a set of batches in the response.

The WMS may need to implement polling as a way to integrate request-

response cycles robustly: In the polling set up, the WMS first sends a request

and then polls the SaaS until a response is ready for collection. Additionally,

it is clearly more complex for the WMS to post-process an OBP optimization

response than a PRP response: The WMS should (ideally) check that the SaaS-

proposed batches are valid: Are batches within vehicle capacity limits, are

included/excluded orders duplicated etc. Besides such tests on the WMS end,

the batches may need to go through additional software to be translated into

pick-rounds.

For SLAP optimization, integration is more difficult. Firstly, it can generally

be assumed that CPU-times are going to be high enough to necessitate polling

or a similar solution. Secondly, the WMS needs to share a picking-log (Section

3.2.4), i.e., order-picking data that will be used for optimization cost estimates.

WMS’s usually store such data, but extracting and sharing it can be

challenging. Thirdly, it needs to share the products that should be assigned or

re-assigned a location in the SLAP request, as well as available (empty)

locations (if relevant). This type of sub-selection is necessary as requests

cannot be arbitrarily large for a reasonable SLAP optimization set up. WMS

customers may be reluctant to implement this sub-selection, however.

As a SaaS provider, we often find that negotiations with WMS customers get

stranded due to these types of integration challenges. The challenges for OBP

and SLAP optimization described above may be regarded as technically

surmountable on our SaaS end. For example, the initial work on OBP-based

67

SLAP optimization was deemed too complex for integration and therefore we

commenced work on the TSP-based SLAP. There are often several additional

challenges on the WMS end that we do not see, however. WMS’s are complex

and often imperfect, with brittle dependencies and limitations on what can be

achieved. Oftentimes, the WMS providers are on a tight budget and cannot

allocate a sufficient number of man-hours for SaaS integration. Sometimes, a

WMS manager enthusiastically starts to integrate OBP and SLAP

optimization, only to give up after finding problems that they themselves were

not initially aware of.

3.4.3 Number of Warehouses per Cloud Container

Kairos Logic AB uses a custom version of the Google Cloud Platform’s (GCP)

Appengine Flexible. It uses a docker image to build PaaS containers. The

image includes a URL that points to a cloud bucket that holds warehouse files

(distance matrix etc.). When a new container is launched, it starts by

downloading the files from the URL and loads them into RAM. An important

question is the number of warehouses that should be included in the bucket

that the URL points to. We explore two possibilities:

1. The URL points to a bucket with the files for a single warehouse. The

container instance is dedicated to a single warehouse.

2. The URL points to a bucket with the files for all warehouses. The

container instance is deployed with enough memory to include all

warehouses.

The first option is more scalable from a technical standpoint, since we assume

that there will always be a container capable of storing all the relevant files for

a single warehouse. It is more expensive cost-wise, however, since the minimal

number of container instances is going to be equal to the number of

warehouses. If no requests come in from a specific warehouse, there will still

be a dedicated server running for it.

The second option is cheaper, since it allows the minimal number of instances

to be 1 (Appengine Flexible minimum). On the other hand, it clearly comes

with scalability issues, as the amount of RAM for a single container instance

is limited.

68

4. Additional Projects

4.1 Products with multiple locations

It is common that warehouses store the same product in multiple locations.

Usually, these locations are close to one another and used to reduce the risk of

a product running out in a single location. For order-picking optimization, this

constitutes a problem, as we need to choose which location a vehicle should

visit to pick a product. Furthermore, the vehicle might need to visit more than

one location for the product quantity in the order to be filled. It is difficult to

motivate the inclusion of this scenario in standardized PRP, OBP or SLAP

optimization. The scenario is intertwined with product put-away and

replenishment, which are not part of the main scope of the dissertation (Section

1.1).

4.2 Batching based on truck loading precedence

The OBP model in this dissertation (Section 3.2.3) does not delve into what

happens with orders after they have been picked and delivered to the depot(s).

But in real warehouses, the OBP is just one step in a logistics chain. One of

Kairos Logic AB’s clients asked whether OBP optimization can be extended

to encompass the next step in their logistics chain. A portion of one of their

warehouses has a staging area, where picked batches are placed before they are

loaded into delivery trucks. After loading, the delivery trucks are sent on an

outdoor path with delivery points, where the batch closest to the back door is

unloaded at the first delivery point, followed by a batch further inside for the

second delivery point and so on. The batches should be placed in the staging

area such that the one closest to the delivery truck is the one to be unloaded at

the last delivery point. This set up comes with certain implications: Firstly, two

types of batches can be identified. The first type is the warehouse vehicle batch,

which is a collection of orders which are close to each other in the warehouse.

The second type is the delivery truck batch, which is one per delivery point.

This second batch may be much larger than the first, since a delivery point may

contain more orders than can fit on a single warehouse vehicle.

69

The approach chosen for this problem is to optimize an OBP for every delivery

point. The first OBP is for the last delivery point and if it has 50 orders, then

an OBP is constructed with these 50 orders. There are no flat walls inside the

delivery truck to separate the delivery point batches, as the orders are instead

stacked more efficiently using a 3D knapsack problem optimizer. Ideas to

integrate this knapsack optimizer with the OBP proved overly complex for the

implementation. The placement of the batches before the delivery truck

loading is therefore only a rough estimate of how the orders are subsequently

placed inside the truck.

4.3 Pallet stacking and safety

The capacity constraints of a warehouse vehicle can take various forms. For

the OBP experiments in this dissertation, capacity is often described in number

of orders. This is adequate when the vehicle carries bins, one for each order,

or when orders are first prepared as empty shipment boxes that are placed on

the warehouse vehicle. These bins or boxes are filled with the products

belonging to the respective order as the vehicle moves around the warehouse.

It is also common that orders are fully packed pallets that are loaded by a

forklift at the pick locations. The stacking of pallets is constrained in various

ways. In one project, the aim is to stack as many pallets as possible on a forklift,

where the stacking depends on the carrying capacity of a pallet, i.e., the weight

that can be placed on top of a pallet, as well as their length, width and height

dimensions and the length of the fork. Usually, the dimensions permit a single

tower of pallets to be placed on the fork, but if the width of these pallets is low

enough, a second tower can be placed in front of the first.

Quantitatively, this type of pallet stacking is relatively trivial. The number of

possible stacks is usually not that large (normally, 1-4 pallets are placed on the

forklift) and oftentimes the stack is made up of several pallets picked from the

same location. There are also caveats with targeting this type of problem for

quantitative optimization.

Firstly, pushing the bounds for number of pallets on a forklift poses a safety

hazard. In one project, the safety of the stacking was originally judged by

experienced human pickers. But management wanted to improve efficiency

and informed them that they should stack pallets as proposed by optimization

software. As is often the case with software, however, it can only partially

replace the judgement of experienced human pickers. One conclusion of this

project is that the pickers tend to care less about safety when a software dictates

70

what should be placed on the fork and how. Subsequently, an incident with a

broken pallet ensued. The cause was a forklift that was improperly stacked

because of a misunderstanding between warehouse management and Kairos

Logic.

Another, less critical caveat with this type of optimization is that the forklift

needs to unpack the stack every time a new pallet is to be added to it. For

example, if a forklift carries three pallets when it arrives at a new pick location,

it needs to unload them from the fork, before loading them again with the new

pallet. Distance minimization becomes more questionable as a KPI for an

implementation of this procedure. Apart from the time needed to unpack and

pack the stack of pallets, the picking path through the warehouse can rarely be

the shortest one: If the forklift is set to pick the bottom and inner-most pallet

first, followed by one on top or in front of it etc. adhering to constraints, the

picking path is decided by where the pallets are located, rather than by PRP

optimization. Some alternatives are possible, where the stack gets re-arranged

at some pick locations. While there is no doubt that all these considerations

can be included in an optimization model, it is questionable whether it can be

standardized for multiple types of forklifts and pallet types.

4.4 Graphical User Interface (GUI)

For a company or research project engaged with PRP, OBP and SLAP

optimization, it is important to be able to visualize order-picking before and

after optimization. It is important both as a debugging tool, to ensure

correctness before and after optimization, and to convey a message for

potential investors, customers and researchers. The main point of the

visualization is to present the workings of the optimization process in a

pedagogic and intuitive way. Generally, the difficulty in creating good

visualizations follows the complexity of the problem: PRP optimization is

easier to visualize than OBP optimization and OBP optimization is easier to

visualize than SLAP optimization. The main idea of PRP optimization can be

visualized by showing a single or a few pick-rounds before and after

optimization. OBP optimization requires the showing of one pick-round per

batch, so one can see that the products in a batch are relatively close to each

other. SLAP optimization requires the showing both of multiple pick-rounds,

as well as a path or multiple paths related to the reassignment penalty.

The visualizations thus tend to include multiple pick-rounds, even for small

problem instances, and if these are plotted together on a single picture, it

becomes cluttered and difficult to understand. One fix for this problem is to

71

use a GUI with buttons to click through pick-rounds and to toggle between

before/after. At Kairos Logic, a proprietary GUI is used internally (mainly for

debugging), but below one project is described which aims at extending the

GUI as a service for customers.

The core idea is that the customer should participate in steps involved in

digitizing the warehouse and optimizing PRPs, OBPs and SLAPs. One

identified problem is that customers often doubt the results of optimization. An

interactive GUI provides the means for customers to learn more and to

participate in both the digitization and optimization of their warehouse.

Concerning digitization (Section 3.2.1), a GUI can provide the customer with

the possibility to add obstacles, unidirectional traffic zones and pick locations

manually using drag and drop or a coordinate textbox. After a “submit” button

is pressed, the pick-locations are connected, and the shortest paths and

distances are generated using the Floyd-Warshall graph algorithm (or similar).

After the digitization files have been generated, the GUI shows a picture of all

the generated edges.

Concerning optimization, the GUI can help convince the warehouse or WMS

customer that their existing operation can be improved. Without the GUI, the

customer only has access to an API and documentation describing required and

optional fields in an optimization request. After they send the request, they

obtain the optimized response, which includes information on the sequence

with which products need to be picked, how much distance saving was

achieved and how much CPU-time was spent. It is understandable that a

customer may not trust some of this information. To help convince them, they

can get a visualization of the request and response inside a GUI.

This type of customer-accessible GUI should not be enforced, but rather

provided as an optional assistance tool. The customer needs to run some form

of integration script which builds the optimization request from information in

the WMS, translates this information into a request according to the SaaS API,

and sends it to the service URL. After the response has been received, its data

needs to be integrated back into the WMS. Forcing the customer to carry out

this WMS – SaaS integration in a GUI takes away flexibility on their end.

In summary, a GUI provides opportunities for improved customer relations

and satisfaction, but it also strengthens the argument that the developed

optimization technology needs to be fast, simple, and flexible (Section 1.7.2).

Assuming the business is customer-driven, and that customers have different

ideas of how they want optimization to be visualized, the GUI development

rate can be expected to be high. The customer only sees the results of

72

optimization once the optimizer has finished its job, so it is clearly an

advantage if it is fast. Apart from time needed for development, one argument

against the GUI project is that it risks giving competitors information with

which to reverse-engineer features of the SaaS. For a small-scale SaaS,

strengthened customer relations arguably outweigh this risk.

4.5 Directed and mixed graphs

The optimization methods described in Section 3.2 assume that the distance

matrix is symmetrical, i.e., vehicles can turn on the spot and the distance

between two locations is equal. Real warehouses, however, often include areas

where vehicles are permitted to travel in only one direction. When a graph of

the warehouse is built with vertices and edges, it is directed if the edges only

permit travel in one direction, and mixed if some edges permit travel in one

direction and some permit travel in both directions. A brief description of the

process with which directed and mixed graphs are handled is provided below.

The digitization process is mainly restricted by the requirements of the

Concorde TSP solver, since the proposed optimization methods rely on it to a

significant extent. Concorde only works with symmetric distance matrices. For

directed and mixed graphs, the distance matrix is instead asymmetric, so a

required pre-processing step is to translate the asymmetric matrix to a

symmetric one. For details on how this can be done, see Hahsler & Kurt [122].

Briefly, the procedure includes the extension of the asymmetric matrix with

dummy vertices and edges with very large or small distances. The dummy

vertices are added to the TSP before optimization, and after optimization. The

procedure is like the one used for symmetric distances and multi-depot TSPs,

but instead of adding one dummy node to the matrix, it adds one dummy node

for each location in the TSP.

Directed and mixed graphs are not deemed suitable for standardized PRP, OBP

and SLAP optimization. They would be interesting if they significantly affect

the performance of TSP optimization (as against bi-directional graphs). For

TSP optimization using Simulated Annealing or OR-tools, no difference in

performance is observed. For Concorde, some decrease in performance is

observed, but it is not deemed significant enough for a closer study. Concorde

uses various geometric heuristics, and the usage of dummy vertices and edges

with very large distances slows it down in some cases (in the end it always

seems to find an optimal solution). Directed or mixed graphs also counteract

standardization as they add some complexity in the description of problem

instances. The published TSPLIB instances do not include weighted edges or

73

a distance matrix, as these can instead be produced based on the provided

product and obstacle coordinates. Including edges and their directions would

add to the size of the instances. One alternative way is to include the directed

areas as lists of coordinates with corresponding lists of permitted directions,

but this adds complexity. Before further work on directed and mixed graphs is

warranted, researchers need to find agreement on what the format for layout-

agnostic PRP, OBP and SLAP instances should be. The proposed format of the

generated instances is a suggestion, which may be discarded at a future date in

favor of a different format.

4.6 TSP optimization using Google maps API

The only non-warehouse POC involves computing paths for washing

deliveries using the Google Maps Distance API [123]. This API offers both

distance calculations and visualizations of planned outdoor routes. The POC is

aimed at seeing whether a light-weight service can be provided based on $200

worth of free monthly requests that the API offers. One limitation of the API

is that Google’s common TSP optimization service, “optimizeWaypoints”, has

a maximum of 8 locations (it also costs $0.01 per request). Alternatively, a

possibility is to precompute a distance matrix and then optimize the TSP using

OR-tools. Google provides a distance matrix API, but it is quite expensive:

The API charges per element in the distance matrix and 1000 elements costs

$5. This equates to 40000 elements costing $200. In other words, the 200$

quota only suffices to compute a distance matrix with 200 locations. This is

not enough to cover all the locations that the washing delivery service may

visit in a month. A conclusion drawn is that Google Maps Distance API is most

suitable for companies whose delivery vehicles do not make more than 8 stops.

This POC also shows that one of the main hurdles when developing routing

services outdoors is the construction or purchase of a distance matrix.

74

5. Conclusion

In this dissertation, we studied how order-picking optimization can be designed

and provided as Software as a Service (SaaS) for Warehouse Management

Systems (WMS). We investigated three optimization problems related to

order-picking:

1. The Picker Routing Problem (PRP), where we optimize the shortest

path that a vehicle travels to pick a set of products.

2. The Order Batching Problem (OBP), where we optimize how orders

are distributed among a fleet of vehicles, as well as the corresponding

PRP for each vehicle.

3. The Storage Location Assignment Problem (SLAP), where we assign

or reassign locations for products. After a candidate assignment or

reassignment has been found, solution cost is obtained by optimizing

PRPs or OBPs.

In related work, there are many proposals for how to select and engineer

features for the PRP, OBP and SLAP. Example features include warehouse

layouts, locations, dynamicity, stochasticity, capacity and travel constraints

and cost functions. We make proposals for how features can be selected and

engineered to promote standardization. We use these features to build and

publicly share benchmark datasets. We also discuss warehouse digitization and

how datastructures can be pre-stored in memory to achieve reduced CPU-times

for subsequent PRP, OBP and SLAP optimization.

Concerning optimization, we propose heuristic and meta-heuristic algorithms.

For PRP optimization, we primarily use the Concorde TSP solver. Common

PRPs rarely exceed a few dozen locations and Concorde is capable of finding

solutions to those in fractions of a second. Sub-optimal PRP optimization, in

the form of Google OR-tools TSP optimization suite is also effective for

common PRPs, as it can find close-to optimal solutions faster than Concorde.

For OBP optimization, we mainly rely on constructive Seed heuristics and

Sequential Minimal Distance (SMD) heuristics. We also use Markov Chain

75

Monte Carlo (MCMC) in the form of a Metropolis algorithm. Our OBP

optimizers construct candidate batches and evaluates them by optimizing their

corresponding PRPs optimally or sub-optimally. Experiment results show that

the Seed and SMD heuristics outperform the Metropolis algorithm. For smaller

OBP instances, we found that close-to-optimal results can be achieved within

a few seconds. For larger instances, we found that solution improvement

quickly slows down. For example, costs obtained after 5-10 seconds are only

4-7% higher than costs obtained after 5 minutes. Warehouse managers often

prefer OBP solutions to be obtainable quickly, at a small increase in solution

cost.

For periodical SLAP optimization, we found that significant improvements are

achievable using MCMC, but that many questions remain with regard to

standardization and integration challenges. Apart from questions on what PRP

and/or OBP features to include in SLAP optimization models, we have

additional features that also need consideration. One such feature is the cost

for carrying out a swap between products that are already in the warehouse.

Since this type of reassignment is optional and not a requirement, a

reassignment penalty term needs to be included in the cost function.

Due to the many possible feature combinations in PRPs, OBPs, and SLAPs, as

well as varying requirements from WMS customers, integrating an

optimization SaaS with them is often challenging. However, customers are

generally willing to engage in discussions about order-picking optimization

and participate in Proof of Concepts (PoC) as part of consultancy efforts.

The lack of standardization across different systems and processes remains a

key challenge. The leveraging of effective optimization methods (including

methods utilizing Machine Learning) suffers without standardized data

formats and operational protocols. This challenge is emblematic of the

interdisciplinary nature of the problem, where computer and warehouse

science must converge to deliver solutions that are not only efficient but

adaptable to diverse operational environments. For a customer-driven SaaS,

the human aspect is also important. Customer requirements are not always

practical or aligned with operational realities, and balancing optimization with

human factors is critical. Excessive optimization, for instance, can increase

safety risks by pushing systems or workers beyond sustainable operational

limits. Striking a balance between efficiency, safety, and adaptability is

essential, underscoring the need for both technical innovation and pragmatic

collaboration.

76

6. References

[1] J. Bartholdi and S. Hackman, Warehouse and distribution science

Release 0.98. Supply Chain and Logistics Institute, 2019.

[2] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge

university press, 2004.

[3] R. de Koster, T. Le-Duc, and K. J. Roodbergen, ‘Design and control of

warehouse order picking: A literature review’, European Journal of

Operational Research, vol. 182, no. 2, pp. 481–501, 2007.

[4] ‘REDCD (creative commons)’. [Online]. Available:

https://commons.wikimedia.org/wiki/File:Regional_European_Distribut

ion_Center_in_Duisburg.jpg

[5] S. Henn, S. Koch, and G. Wäscher, ‘Order batching in order picking

warehouses: a survey of solution approaches’, in Warehousing in the

global supply chain, Springer, 2012, pp. 105–137.

[6] K. Azadeh, R. De Koster, and D. Roy, ‘Robotized and Automated

Warehouse Systems: Review and Recent Developments’,

Transportation Science, vol. 53, 2019.

[7] ‘PACCAR Parts - Lancaster PDC_2 (crative commons)’. 2013.

[Online]. Available:

https://www.flickr.com/photos/truckpr/9688738292

[8] A. Kamali, ‘Smart warehouse vs. traditional warehouse’, CiiT

International Journal of Automation and Autonomous System, vol. 11,

no. 1, pp. 9–16, 2019.

[9] J. Kembro and A. Norrman, ‘The transformation from manual to smart

warehousing: an exploratory study with Swedish retailers’, The

International Journal of Logistics Management, vol. 33, no. 5, pp. 107–

135, 2022.

[10] M. van Geest, B. Tekinerdogan, and C. Catal, ‘Design of a reference

architecture for developing smart warehouses in industry 4.0’,

Computers in Industry, vol. 124, p. 103343, 2020.

[11] M. D. M. Francielly Hedler Staudt Gülgün Alpan and C. M. T.

Rodriguez, ‘Warehouse performance measurement: a literature review’,

77

International Journal of Production Research, vol. 53, no. 18, pp.

5524–5544, 2015, doi: 10.1080/00207543.2015.1030466.

[12] M. Masae, C. H. Glock, and E. H. Grosse, ‘Order picker routing in

warehouses: A systematic literature review’, International Journal of

Production Economics, vol. 224, p. 107564, 2020.

[13] H. Ratliff and A. Rosenthal, ‘Order-Picking in a Rectangular

Warehouse: A Solvable Case of the Traveling Salesman Problem’,

Operations Research, vol. 31, pp. 507–521, 1983.

[14] K. J. Roodbergen and R. Koster, ‘Routing methods for warehouses with

multiple cross aisles’, International Journal of Production Research,

vol. 39, no. 9, pp. 1865–1883, 2001.

[15] O. Briant, H. Cambazard, D. Cattaruzza, N. Catusse, A.-L. Ladier, and

M. Ogier, ‘An efficient and general approach for the joint order

batching and picker routing problem’, European Journal of

Operational Research, vol. 285, no. 2, pp. 497–512, 2020.

[16] O. Kulak, Y. Sahin, and M. E. Taner, ‘Joint order batching and picker

routing in single and multiple-cross-aisle warehouses using cluster-

based tabu search algorithms’, Flexible Services and Manufacturing

Journal, vol. 24, no. 1, pp. 52–80, 2012.

[17] D. Jungnickel, ‘Basic graph theory’, Graphs, Networks and Algorithms,

pp. 1–33, 2013.

[18] M. Garfinkel, ‘Minimizing multi-zone orders in the correlated storage

assingment problem’, PhD Thesis, School of Industrial and Systems

Engineering, Georgia Institute of Technology, 2005.

[19] ‘Picking Trolley (crative commons)’. 2019. [Online]. Available:

https://commons.wikimedia.org/wiki/File:Online_Groceries_Picking_T

rolley.jpg

[20] ‘TMHE’s New Order Picker – BT Optio OSE250 (creative commons)’.

2011. [Online]. Available:

https://www.flickr.com/photos/toyotamheurope/6284072035

[21] X. Xiang, C. Liu, and L. Miao, ‘Storage assignment and order batching

problem in Kiva mobile fulfilment system’, Engineering Optimization,

vol. 50, no. 11, pp. 1941–1962, 2018, doi:

10.1080/0305215X.2017.1419346.

[22] C. A. Valle, J. E. Beasley, and A. S. da Cunha, ‘Optimally solving the

joint order batching and picker routing problem’, European Journal of

Operational Research, vol. 262, no. 3, pp. 817–834, 2017.

[23] E. Charris, J. Rojas-Reyes, and J. Montoya-Torres, ‘The storage

location assignment problem: A literature review’, International

Journal of Industrial Engineering Computations, vol. 10, 2018.

78

[24] P. Kübler, C. H. Glock, and T. Bauernhansl, ‘A new iterative method

for solving the joint dynamic storage location assignment, order

batching and picker routing problem in manual picker-to-parts

warehouses’, Computers & Industrial Engineering, vol. 147, p. 106645,

2020.

[25] J. Oxenstierna, L. J. van Rensburg, P. J. Stuckey, and V. Krueger,

‘Optimization of the Storage Location Assignment Problem Using

Nested Annealing’, in International Conference on Operations

Research and Enterprise Systems, in Communications in Computer and

Information Science book series, vol. 1985. Springer, 2022, pp. 220–

244. [Online]. Available: https://www.springer.com/series/7899

[26] T. Münsberg, L. Hvam, S. Lundsteen, M. Støjfer-Hønberg, M. Csik,

and L. Tsintzou, ‘Four Initiatives to Standardize Warehouses to

Increase Digitalization and Automation’, in 2022 IEEE International

Conference on Industrial Engineering and Engineering Management

(IEEM), IEEE, 2022, pp. 1164–1168.

[27] M. Dotoli, N. Epicoco, M. Falagario, N. Costantino, and B. Turchiano,

‘An integrated approach for warehouse analysis and optimization: A

case study’, Computers in Industry, vol. 70, pp. 56–69, 2015.

[28] C. E. Shalley and L. L. Gilson, ‘Creativity and the management of

technology: Balancing creativity and standardization’, Production and

Operations Management, vol. 26, no. 4, pp. 605–616, 2017.

[29] C. A. Voss, P. Åhlström, and K. Blackmon, ‘Benchmarking and

operational performance: some empirical results’, International Journal

of Operations & Production Management, vol. 17, no. 10, pp. 1046–

1058, 1997.

[30] J. Mańdziuk and M. Świechowski, ‘UCT in Capacitated Vehicle

Routing Problem with traffic jams’, Information Sciences, vol. 406–

407, pp. 42–56, 2017.

[31] M. Okulewicz and J. Mańdziuk, ‘The impact of particular components

of the PSO-based algorithm solving the Dynamic Vehicle Routing

Problem’, Applied Soft Computing, vol. 58, pp. 586–604, 2017.

[32] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia, ‘A review of

dynamic vehicle routing problems’, European Journal of Operational

Research, vol. 225, no. 1, pp. 1–11, 2013.

[33] H. Psaraftis, M. Wen, and C. Kontovas, ‘Dynamic Vehicle Routing

Problems: Three Decades and Counting’, Networks, vol. 67, 2015.

[34] P. M. Morse, G. E. Kimball, and S. I. Gass, Methods of operations

research. Courier Corporation, 2003.

79

[35] A. Thesen, Computer methods in operations research. Academic Press,

2014.

[36] A. H. Eden, ‘Three paradigms of computer science’, Minds and

machines, vol. 17, pp. 135–167, 2007.

[37] B. D. Williams and T. Tokar, ‘A review of inventory management

research in major logistics journals: Themes and future directions’, The

International Journal of Logistics Management, vol. 19, no. 2, pp. 212–

232, 2008.

[38] S. T. W. Mara, R. Kuo, and A. M. S. Asih, ‘Location-routing problem:

a classification of recent research’, International Transactions in

Operational Research, vol. 28, no. 6, pp. 2941–2983, 2021.

[39] M. Mansouri, F. Lagriffoul, and F. Pecora, ‘Multi Vehicle Routing with

Nonholonomic Constraints and Dense Dynamic Obstacles’, 2017.

[40] G. Nagy and S. Salhi, ‘Location-routing: Issues, models and methods’,

European Journal of Operational Research, vol. 177, no. 2, pp. 649–

672, 2007, doi: https://doi.org/10.1016/j.ejor.2006.04.004.

[41] N. Gademann and V. de S. Velde, ‘Order batching to minimize total

travel time in a parallel-aisle warehouse’, IIE Transactions, vol. 37, no.

1, pp. 63–75, 2005.

[42] Y. A. Bozer and J. W. Kile, ‘Order batching in walk-and-pick order

picking systems’, International Journal of Production Research, vol.

46, no. 7, pp. 1887–1909, 2008.

[43] M. Bortolini, M. Faccio, E. Ferrari, M. Gamberi, and F. Pilati, ‘Design

of diagonal cross-aisle warehouses with class-based storage assignment

strategy’, The International Journal of Advanced Manufacturing

Technology, vol. 100, no. 9, pp. 2521–2536, Feb. 2019.

[44] E. Cogo, E. Žunić, A. Beširević, S. Delalić, and K. Hodžić, ‘Position

based visualization of real world warehouse data in a smart warehouse

management system’, in 2020 19th International Symposium

INFOTEH-JAHORINA (INFOTEH), IEEE, 2020, pp. 1–6.

[45] E. Zunic, A. Besirevic, R. Skrobo, H. Hasic, K. Hodzic, and A.

Djedovic, ‘Design of optimization system for warehouse order picking

in real environment’, in 2017 XXVI International Conference on

Information, Communication and Automation Technologies (ICAT),

IEEE, 2017, pp. 1–6.

[46] M. Yu and R. B. M. de Koster, ‘The impact of order batching and

picking area zoning on order picking system performance’, European

Journal of Operational Research, vol. 198, no. 2, pp. 480–490, 2009.

[47] M. Kofler, A. Beham, S. Wagner, and M. Affenzeller, ‘Affinity Based

Slotting in Warehouses with Dynamic Order Patterns’, no. Advanced

80

Methods and Applications in Computational Intelligence, pp. 123–143,

2014.

[48] M.-C. Chen and H.-P. Wu, ‘An association-based clustering approach

to order batching considering customer demand patterns’, Omega, vol.

33, no. 4, pp. 333–343, 2005.

[49] P. Jahani, ‘Dynamic warehouse optimization using predictive

analytics.’, Electronic Theses and Dissertations. Paper 2582., 2016,

doi: https://doi.org/10.18297/etd/2582.

[50] N. C. Truong, T. G. Dang, and D. A. Nguyen, ‘Building management

algorithms in automated warehouse using continuous cluster analysis

method’, in AETA 2017-Recent Advances in Electrical Engineering and

Related Sciences: Theory and Application, Springer, 2018, pp. 1068–

1077.

[51] M. B. M. D. Koster, E. S. V. der Poort, and M. Wolters, ‘Efficient

orderbatching methods in warehouses’, International Journal of

Production Research, vol. 37, no. 7, pp. 1479–1504, 1999.

[52] S. Henn, ‘Algorithms for on-line order batching in an order picking

warehouse’, Computers & Operations Research, vol. 39, no. 11, pp.

2549–2563, 2012.

[53] P. Kilby, P. Prosser, and P. Shaw, ‘Dynamic VRPs: A study of

scenarios’, University of Strathclyde Technical Report, vol. 1, no. 11,

1998.

[54] V. Beiranvand, W. Hare, and Y. Lucet, ‘Best practices for comparing

optimization algorithms’, Optimization and Engineering, vol. 18, pp.

815–848, 2017.

[55] I. Žulj, C. H. Glock, E. H. Grosse, and M. Schneider, ‘Picker routing

and storage-assignment strategies for precedence-constrained order

picking’, Computers & Industrial Engineering, vol. 123, pp. 338–347,

2018, doi: https://doi.org/10.1016/j.cie.2018.06.015.

[56] I. G. Lee, S. H. Chung, and S. W. Yoon, ‘Two-stage storage assignment

to minimize travel time and congestion for warehouse order picking

operations’, Computers & Industrial Engineering, vol. 139, p. 106129,

2020, doi: https://doi.org/10.1016/j.cie.2019.106129.

[57] I. Nieuwenhuyse, R. De Koster, and J. Colpaert, ‘Order batching in

multi-server pick-and-sort warehouses’, Katholieke Universiteit

Leuven, Open Access publications from Katholieke Universiteit Leuven,

2007.

[58] G. P. Sharp and D. R. Gibson, ‘Order batching procedures’, European

Journal of Operational Research, no. 58, 1992.

81

[59] K. Braekers, K. Ramaekers, and I. V. Nieuwenhuyse, ‘The vehicle

routing problem: State of the art classification and review’, Computers

& Industrial Engineering, vol. 99, pp. 300–313, 2016.

[60] Y. Li, R. Zhang, and D. Jiang, ‘Order-Picking Efficiency in E-

Commerce Warehouses: A Literature Review’, Journal of Theoretical

and Applied Electronic Commerce Research, vol. 17, no. 4, pp. 1812–

1830, 2022.

[61] E. G. Pardo, S. Gil-Borrás, A. Alonso-Ayuso, and A. Duarte, ‘Order

batching problems: Taxonomy and literature review’, European

Journal of Operational Research, vol. 313, no. 1, pp. 1–24, 2024.

[62] R. Mantel, P. Schuur, and S. Heragu, ‘Order oriented slotting: A new

assignment strategy for warehouses’, European Journal of Industrial

Engineering, vol. 1, pp. 301–316, 2007.

[63] B. S. Kim and J. S. Smith, ‘Slotting methodology using correlated

improvement for a zone-based carton picking distribution system’,

Computers & Industrial Engineering, vol. 62, no. 1, pp. 286–295, 2012.

[64] N. Boysen and K. Stephan, ‘The deterministic product location problem

under a pick-by-order policy’, Discrete Applied Mathematics, vol. 161,

no. 18, pp. 2862–2875, 2013.

[65] J. Gu, M. Goetschalckx, and L. F. McGinnis, ‘Research on warehouse

operation: A comprehensive review’, European journal of operational

research, vol. 177, no. 1, pp. 1–21, 2007.

[66] D. Ming-Huang Chiang, C.-P. Lin, and M.-C. Chen, ‘Data mining

based storage assignment heuristics for travel distance reduction’,

Expert Systems, vol. 31, no. 1, pp. 81–90, 2014.

[67] J.-F. Cordeau, G. Laporte, M. Savelsbergh, and D. Vigo, ‘Vehicle

Routing’, in Transportation, handbooks in operations research and

management science, vol. 14, 2007, pp. 195–224.

[68] T. Hintsch and S. Irnich, ‘Exact solution of the soft-clustered vehicle-

routing problem’, European Journal of Operational Research, vol. 280,

no. 1, pp. 164–178, 2020.

[69] M. Bué, D. Cattaruzza, M. Ogier, and F. Semet, ‘A Two-Phase

Approach for an Integrated Order Batching and Picker Routing

Problem’, 2019, pp. 3–18.

[70] G. Reinelt, ‘TSPLIB - A Traveling Salesman Problem Library’,

INFORMS J. Comput., vol. 3, pp. 376–384, 1991.

[71] W. Cook, ‘TSP test data’. 2009. [Online]. Available:

https://www.math.uwaterloo.ca/tsp/data/index.html

82

[72] M. H. Bhoir and M. R. P. Principal, ‘Cloud computing for supply chain

management’, International Journal of Innovations in Engineering

Research and Technology, vol. 1, no. 2, pp. 1–9, 2014.

[73] G. A. Raj, M. K. Sampath, and V. Venkatesh, ‘Opportunities for Cloud

Based Software as a Service (SaaS) Warehouse Management System an

Indian Industry Insight’, SAMVAD, vol. 6, no. 2, pp. 43–60, 2013.

[74] N. Andiyappillai, ‘Factors Influencing the Successful Implementation

of the Warehouse Management System (WMS)’, International Journal

of Computer Applications, vol. 177, pp. 21–25, 2020.

[75] V. N. H. Nguyen, ‘SaaS, IaaS, and PaaS: Cloud-computing in Supply

Chain Management. Case study: Food Service Ltd.’, 2021.

[76] L. Novais, J. M. Maqueira, and Á. Ortiz-Bas, ‘A systematic literature

review of cloud computing use in supply chain integration’, Computers

& Industrial Engineering, vol. 129, pp. 296–314, 2019, doi:

https://doi.org/10.1016/j.cie.2019.01.056.

[77] C. Esposito, A. Castiglione, and K.-K. R. Choo, ‘Challenges in

Delivering Software in the Cloud as Microservices’, IEEE Cloud

Computing, vol. 3, no. 5, pp. 10–14, 2016, doi:

10.1109/MCC.2016.105.

[78] J. Innerbichler, S. Gonul, V. Damjanovic-Behrendt, B. Mandler, and F.

Strohmeier, ‘NIMBLE collaborative platform: Microservice

architectural approach to federated IoT’, in 2017 Global Internet of

Things Summit (GIoTS), IEEE, 2017, pp. 1–6.

[79] I. Gunawan, W. Witanti, and F. Renaldi, ‘Integration of Supply

Management System in Auto Parts Company Using Web Services’, in

Journal of Physics: Conference Series, IOP Publishing, 2021, p.

012022.

[80] D. Rani and R. K. Ranjan, ‘A comparative study of SaaS, PaaS and

IaaS in cloud computing’, International Journal of Advanced Research

in Computer Science and Software Engineering, vol. 4, no. 6, 2014.

[81] L. F. Albuquerque Jr, F. S. Ferraz, R. Oliveira, and S. Galdino,

‘Function-as-a-service x platform-as-a-service: Towards a comparative

study on FaaS and PaaS’, in ICSEA, 2017, pp. 206–212.

[82] C. E. Miller, A. W. Tucker, and R. A. Zemlin, ‘Integer programming

formulation of traveling salesman problems’, Journal of the ACM

(JACM), vol. 7, no. 4, pp. 326–329, 1960.

[83] A. Scholz, S. Henn, M. Stuhlmann, and G. Wäscher, ‘A new

mathematical programming formulation for the single-picker routing

problem’, European Journal of Operational Research, vol. 253, no. 1,

pp. 68–84, 2016.

83

[84] K.-W. Pang and H.-L. Chan, ‘Data mining-based algorithm for storage

location assignment in a randomised warehouse’, International Journal

of Production Research, vol. 55, no. 14, pp. 4035–4052, 2017.

[85] R. de Koster and E. V. D. Poort, ‘Routing orderpickers in a warehouse:

a comparison between optimal and heuristic solutions’, IIE

transactions, vol. 30, no. 5, pp. 469–480, 1998.

[86] W. Cook, ‘Concorde TSP Solver’. 2020. [Online]. Available:

http://www.math.uwaterloo.ca/tsp/concorde/index.html

[87] J. Oxenstierna, J. Malec, and V. Krueger, ‘Layout-Agnostic Order-

Batching Optimization’, in International Conference on Computational

Logistics, Springer, 2021, pp. 115–129.

[88] D. Applegate, W. Cook, S. Dash, and A. Rohe, ‘Solution of a Min-Max

Vehicle Routing Problem’, INFORMS Journal on Computing, vol. 14,

pp. 132–143, 2002.

[89] A. Fumi, L. Scarabotti, and M. Schiraldi, ‘The Effect of Slot-Code

Optimization in Warehouse Order Picking’, International Journal of

Business and Management, vol. 5, 2013.

[90] S. Henn and G. Wäscher, ‘Tabu search heuristics for the order batching

problem in manual order picking systems’, European Journal of

Operational Research, vol. 222, no. 3, pp. 484–494, 2012.

[91] Y.-C. Ho, T.-S. Su, and Z.-B. Shi, ‘Order-batching methods for an

order-picking warehouse with two cross aisles’, Computers &

Industrial Engineering, vol. 55, no. 2, pp. 321–347, 2008.

[92] J. Li, R. Huang, and J. B. Dai, ‘Joint optimisation of order batching and

picker routing in the online retailer’s warehouse in China’,

International Journal of Production Research, vol. 55, no. 2, 2017.

[93] C. Cergibozan and A. Tasan, ‘Genetic algorithm based approaches to

solve the order batching problem and a case study in a distribution

center’, Journal of Intelligent Manufacturing, pp. 1–13, 2020.

[94] B. Aerts, T. Cornelissens, and K. Sörensen, ‘The joint order batching

and picker routing problem: Modelled and solved as a clustered vehicle

routing problem’, Computers & Operations Research, vol. 129, p.

105168, 2021, doi: https://doi.org/10.1016/j.cor.2020.105168.

[95] C. Kallina and J. Lynn, ‘Application of the Cube-per-Order Index Rule

for Stock Location in a Distribution Warehouse’, Interfaces, vol. 7, no.

1, pp. 37–46, 1976.

[96] R.-Q. Zhang, M. Wang, and X. Pan, ‘New model of the storage location

assignment problem considering demand correlation pattern’,

Computers & Industrial Engineering, vol. 129, pp. 210–219, 2019, doi:

https://doi.org/10.1016/j.cie.2019.01.027.

84

[97] L. Yingde and J. S. Smith, ‘Dynamic slotting optimization based on

skus correlations in a zone-based wave-picking system’, 2012.

[98] L. Begnardi, H. Baier, W. van Jaarsveld, and Y. Zhang, ‘Deep

Reinforcement Learning for Two-sided Online Bipartite Matching in

Collaborative Order Picking’, in Asian Conference on Machine

Learning, PMLR, 2024, pp. 121–136.

[99] C. Seward, ‘Optimizing Warehouse Operations with Machine Learning

on GPUs’, Nvidia Developer. [Online]. Available:

https://developer.nvidia.com/blog/optimizing-warehouse-operations-

machine-learning-gpus/

[100] J. Oxenstierna, ‘Warehouse vehicle routing using deep reinforcement

learning’. Uppsala University M.Sc. Thesis, 2019.

[101] G. Dunn, H. Charkhgard, A. Eshragh, S. Mahmoudinazlou, and E.

Stojanovski, ‘Deep Reinforcement Learning for Picker Routing

Problem in Warehousing’, arXiv preprint arXiv:2402.03525, 2024.

[102] D. Silver et al., ‘Mastering the game of go without human knowledge’,

nature, vol. 550, no. 7676, pp. 354–359, 2017.

[103] O. Vinyals et al., ‘Grandmaster level in StarCraft II using multi-agent

reinforcement learning’, Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[104] C. Berner et al., ‘Dota 2 with large scale deep reinforcement learning’,

arXiv preprint arXiv:1912.06680, 2019.

[105] D. Google, AlphaStar public repository. (2017). [Online]. Available:

https://github.com/google-deepmind/alphastar

[106] O. Vinyals, M. Fortunato, and N. Jaitly, ‘Pointer networks’, Advances

in neural information processing systems, vol. 28, 2015.

[107] J. Oxenstierna, J. Malec, and V. Krueger, ‘Storage Assignment Using

Nested Metropolis Sampling and Approximations of Order Batching

Travel Costs’, SN Computer Science, vol. 5, no. 5, p. 477, Apr. 2024,

doi: 10.1007/s42979-024-02711-w.

[108] E. Spiliotis, S. Makridakis, A.-A. Semenoglou, and V.

Assimakopoulos, ‘Comparison of statistical and machine learning

methods for daily SKU demand forecasting’, Operational Research,

vol. 22, no. 3, pp. 3037–3061, 2022.

[109] M. Seyedan and F. Mafakheri, ‘Predictive big data analytics for supply

chain demand forecasting: methods, applications, and research

opportunities’, Journal of Big Data, vol. 7, no. 1, p. 53, 2020.

[110] M. Abolghasemi, E. Beh, G. Tarr, and R. Gerlach, ‘Demand forecasting

in supply chain: The impact of demand volatility in the presence of

promotion’, Computers & Industrial Engineering, vol. 142, p. 106380,

2020, doi: https://doi.org/10.1016/j.cie.2020.106380.

85

[111] C. S. Bojer and J. P. Meldgaard, ‘Kaggle forecasting competitions: An

overlooked learning opportunity’, International Journal of Forecasting,

vol. 37, no. 2, pp. 587–603, 2021, doi:

https://doi.org/10.1016/j.ijforecast.2020.07.007.

[112] Y. Freund and R. E. Schapire, ‘Experiments with a New Boosting

Algorithm’. 1996.

[113] K. Hodžić, H. Hasić, E. Cogo, and Ž. Jurić, ‘Warehouse demand

forecasting based on long short-term memory neural networks’, in 2019

XXVII International Conference on Information, Communication and

Automation Technologies (ICAT), IEEE, 2019, pp. 1–6.

[114] J. Oxenstierna, L. J. van Rensburg, J. Malec, and V. Krueger,

‘Formulation of a Layout-Agnostic Order Batching Problem’, in

Optimization and Learning, B. Dorronsoro, L. Amodeo, M. Pavone,

and P. Ruiz, Eds., Cham: Springer International Publishing, 2021, pp.

216–226.

[115] C. Xie and J. Duthie, ‘An excess-demand dynamic traffic assignment

approach for inferring origin-destination trip matrices’, Networks and

Spatial Economics, vol. 15, pp. 947–979, 2015.

[116] J. Won and S. Olafsson *, ‘Joint order batching and order picking in

warehouse operations’, International Journal of Production Research,

vol. 43, no. 7, pp. 1427–1442, 2005, doi:

10.1080/00207540410001733896.

[117] L. J. van Janse van Rensburg, ‘Artificial intelligence for warehouse

picking optimization - an NP-hard problem’, Master’s Thesis, Uppsala

University, 2019.

[118] S. Kruk, Practical Python AI Projects: Mathematical Models of

Optimization Problems with Google OR-Tools. Apress, 2018.

[119] R. Noshy, Traveling Salesman Optimization. [Online]. Available:

https://github.com/rameziophobia/Travelling_Salesman_Optimization

[120] J. Oxenstierna, J. Malec, and V. Krueger, ‘Efficient order batching

optimization using seed heuristics and the metropolis algorithm’, SN

Computer Science, vol. 4, no. 2, p. 107, 2022.

[121] B. Menéndez, E. G. Pardo, A. Alonso-Ayuso, E. Molina, and A.

Duarte, ‘Variable neighborhood search strategies for the order batching

problem’, Computers & Operations Research, vol. 78, pp. 500–512,

2017.

[122] M. Hahsler and H. Kurt, ‘TSP – Infrastructure for the Traveling

Salesperson Problem’, Journal of Statistical Software, vol. 2, pp. 1–21,

2007.

86

[123] Google Maps Platform, Google Maps Distance API. [Online].

Available:

https://developers.google.com/maps/documentation/distance-matrix

87

7. Papers

Contribution Statement

For each paper, Johan Oxenstierna provided an initial version, which was then

revised to the final form in collaboration with co-authors. Johan Oxenstierna

carried out at least 90% of the implementation work in all papers.

88

Formulation of a Layout-Agnostic Order Batching

Problem

Johan Oxenstierna, Louis Janse van Rensburg, Jacek Malec and Volker Krueger

Abstract

To date, research on warehouse order-batching has been limited by reliance on

rigid assumptions regarding rack layouts. Although efficient optimization

algorithms have been provided for conventional warehouse layouts with

Manhattan style blocks of racks, they are limited in that they fail to generalize

to unconventional layouts. This paper builds on a generalized procedure for

digitization of warehouses where racks and other obstacles are defined using

two-dimensional polygons. We extend on this digitization procedure to

introduce a layout-agnostic minisum formulation for the Order Batching

Problem (OBP), together with a sub-problem for the OBP for a single vehicle,

the single batch OBP. An algorithm which optimizes the single batch OBP

iteratively until an approximate solution to the OBP can be obtained, is

discussed. The formulations will serve as the fundament for further work on

layout-agnostic OBP optimization and generation of benchmark datasets.

Experimental results for the digitization process involving various settings are

presented.

1. Introduction

Order-picking is “the process of retrieving products from storage areas in

response to a specific customer request” where “customer request” denotes a

shipment order consisting of one or several products [1]. Order-picking is

89

accountable for as much as 55% of all operating expenses in a warehouse and

is considered an important process to optimize [2]. Order-batching is a

common method with which to conduct order-picking. It means that each

picker (vehicle) is set to pick a so-called batch of one or more orders [3]. As

an optimization problem order-batching is known as the Order Batching

Problem (OBP) [4] or the Joint Order Batching and Picker Routing Problem

(JOBPRP) [5]. The Picker Routing Problem is a sub-problem of the OBP for

one vehicle and is here treated as equivalent to the Traveling Salesman

Problem (TSP) [6]. This paper follows the convention that an “OBP” can

include TSP optimization without having to include TSP optimization in the

name of the problem (such as the JOBPRP) [4]. The Picker Routing Problem

is henceforth referred to as TSP and the Order Batching Problem, which

includes TSP optimization, as OBP. In the literature the OBP is usually

formulated as a specific form of the more well-known Vehicle Routing

Problem (VRP) [7], with two key amendments:

• Order-integrity: In the OBP products in one order cannot be picked by

more than one vehicle [8] whereas in the VRP this constraint is not

used (there is no notion of a warehouse shipment “order” in the VRP)

[7].

• Obstacle-layout: We can observe two types of obstacle layouts (see

Fig 1): In the conventional layout, racks are laid out in a Manhattan

style blocks. In the unconventional layout, racks or other obstacles can

be freely placed (see Fig 2. for examples). The unconventional layout

includes the case when there are no racks or obstacles at all. All

previous work on the OBP seems to require explicitly a conventional

layout [5], [8]–[10], while the VRP does not have this requirement.

Fig. 1. Example of a conventional layout (left) with 30 racks, 16 aisles and 3 cross-aisles. Adding
a single or a few irregular racks or other obstacles to the conventional layout renders it
unconventional.

90

Fig. 2. Eight examples of unconventional warehouse layouts. a) and b) show cases where the layout has been

built to fit within a non-rectangular outer wall. e) is the so called “fishbone” layout.

The aim of this paper is to formulate an OBP where orders and order-integrity

are preserved, but where the layout is generalized towards any layout with or

without polygonal obstacles. This is in line with a future research

recommendation by Masae et al. [11]: “there is a strong need for developing

[…] algorithms for […] non-conventional warehouses”. Below are some

reasons for why this is important:

• It allows warehouses with unconventional layouts to formulate and

optimize OBP’s. This includes warehouses divided into zones where

each zone has a conventional layout.

• It allows OBP optimization to be used as a tool with which to optimize

warehouse layouts beyond conventional layouts.

• Problems in non-warehouse domains, such as agriculture, mining,

road and aerial logistics to be explored as OBP’s. The OBP is

fundamentally similar to batch processing [12] where each process

91

consists of constrained sub-processes (similar to order-integrity), and

the Key Performance Indicator (KPI) depends on how well the sub-

processes operate when they are combined. These types of broadened

perspectives on the OBP can only be pursued if it is generalized

beyond conventional layouts.

The paper continues with a literature review (Section 2), followed by the OBP

formulation (Section 3). The formulation builds on a digitization process which

generates the distances and shortest paths between all defined locations for a

given warehouse [13]. The feasibility of the digitization process is examined

in experiments involving various warehouse configurations (Section 4).

2. Literature Review

The OBP is a specific form of the Vehicle Routing Problem (VRP) [7] and a

specific VRP-variant known as the Steiner-VRP [14]. A key feature of the

Steiner-VRP is that multiple visits to same location (representing a vertex in a

graph) are allowed [5], [8], [10], [14]. OBP’s and VRP’s are known to be NP-

hard [15], [16]. OBP’s have been formulated using integer programming (e.g.

[14]) or set-partitioning (e.g. [4]), with a heavy reliance on heuristics for a

conventional warehouse layout. The conventional layout is modeled such that

obstacles (racks) are arranged with parallel “aisles” (between racks) and

parallel “cross-aisles” (between sections of racks) [9], [14]. Using such

restrictive definitions for aisles and cross-aisles makes it possible to formulate

heuristics that reduce the solution space of an OBP. Briant et al. [9], for

example, use cutting planes and various relaxation heuristics to formulate an

OBP which they then propose optimality bounds for. They use a conventional

layout with 8 aisles and 3 cross-aisles, which corresponds to the size of the

warehouse shown in Fig. 2 d).

92

Fig. 3. A Steiner-VRP (left) plotted against the proposed layout-agnostic OBP in a setting without any

obstacles. The dots denote products and the colors orders which the products belong to. The outlined green

and red products in the middle share the same location. The difference between the Steiner-VRP and the

OBP seen here is solely due to the order-integrity constraint. The vehicle distances may be longer in the

OBP but the products which they are assigned to carry are more associated (by order color in this

example). Order-integrity is used to e.g. reduce a later time-consuming sorting effort or to reduce pick-

error i.e. the risk of the wrong product going into the wrong order.

The conventional layout appears in formulations as “number of aisles” [8], “the

cross-distance between two consecutive aisles” [4], “number of vertices in the

subaisle” [14] or “intra-aisle distance” [17]. They are used as required inputs

for OBP optimization. Some authors have called for formulations involving

more layouts than the conventional layout [11], [18]–[21]. Without the

conventional layout, however, it is a challenging task to effectively constrain

an OBP solution space. This can for instance be exemplified in the scenario

when there are no obstacles, and each order contains a single product. In that

case the OBP is equivalent to a Steiner-VRP, and this problem has no yet

proposed optimal solution [14]. Proposed OBP optimization algorithms for the

conventional layout include dynamic programming [9], datamining [22],

clustering [10] and meta-heuristics such as Tabu Search [23], Ant Colony

Optimization [15] and Genetic Algorithms [24]. In the VRP research domain

problem formulations are generally not concerned with obstacle layouts [25].

Instead the only requirement in a VRP is usually a cost matrix, providing the

travel distance or time between all pairs of locations [7], [26]. In a VRP it is

generally assumed that this cost matrix already exists, or that it is produced in

93

a prior data collection process. In research on the OBP, on the other hand,

plenty of attention is usually given to how to produce the cost matrix and how

to define shortest paths or TSP’s in an environment with obstacles. This can

also be seen in some papers on VRP’s that include obstacles (e.g. [27] and

[28]). Concerning where vehicles begin and end their trips, most OBP papers

assume that the origin and destination location is the same (usually this

location is named depot). If this is not the case, the OBP is denoted multi-depot

or a Dial-A-Ride-Problem (DARP) [21]. An example of this is when vehicles

have one location where they drop off their picked orders, and where there are

one or several locations where they can start their rides.

3. Problem Formulation

3.1 Preliminaries

The proposed OBP formulation is based on an undirected, symmetric and

weighted graph. Without obstacles (racks or other) no graph is needed since

distances between all pairs of locations in that case can be assumed to be

Euclidean. Also, in the obstacle free case, the shortest path between any two

locations can be assumed to be a single edge. With obstacles, however, shortest

distances must be calculated based on the shortest paths that circumvent

obstacles, and this is achieved here using the Floyd-Warshall graph algorithm

[13], [29]. Concerning number of depots the below formulation assumes both

an origin and a destination location for vehicles is formulated (but they can

share the same coordinates).

First a set of locations is defined as ℒ ⊂ ℝ+ × ℝ+. This set consists of different

types of locations: 𝑙𝑠 ∈ ℒ is the starting (origin) location for all vehicles. 𝑙𝑑 ∈
ℒ is the destination location for all vehicles. ℒ𝒫 ⊂ ℒ is the set of product

locations. ℒ𝒰 ⊂ ℒ is a union of sets of obstacles: ℒ𝒰 = ∪𝑖 𝑢𝑖, 𝑖 ∈ ℕ+ where

each 𝑢𝑖 is a polygonal obstacle with a set of corner locations 𝑢𝑖 =

{𝑙𝑖
1, 𝑙𝑖

2, . . . , 𝑙𝑖
𝑘} ⊆ ℒ𝒰, 𝑘 ∈ ℕ+. All of the locations can thus be summarized as a

union: ℒ = {𝑙𝑠} ∪ {𝑙𝑑} ∪ ℒ𝒫 ∪ ℒ𝒰. The products which are to be collected are

defined as a set 𝒫 = {𝑝1, 𝑝2, … , 𝑝𝑛}, 𝑛 ∈ ℕ+. Each product 𝑝 ∈ 𝒫 has a

location 𝑙𝑜𝑐𝑝: 𝒫 → ℒ𝒫 , weight 𝑤𝑝: 𝒫 → ℝ+ and volume 𝑣𝑜𝑙𝑝: 𝒫 → ℝ+. The

unassigned orders which are to be batched are defined as a subset of all

94

possible combinations of products 𝒪 ⊂ 2𝒫. The locations of the products in an

order 𝑜 ∈ 𝒪 are defined as a function 𝑙𝑜𝑐𝑜: 𝒪 → 2ℒ𝒫 . Order weight and

volume quantities are defined as 𝑤𝑜: 𝒪 → ℝ+ and 𝑣𝑜𝑙𝑜: 𝒪 → ℝ+. 𝑤(𝑜) =
∑ 𝑤(𝑝)𝑝∈𝑜 , 𝑣𝑜𝑙(𝑜) = ∑ 𝑣𝑜𝑙(𝑝)𝑝∈𝑜 . Vehicles are defined as ℳ =

{(𝑤, 𝑣𝑜𝑙, 𝑘, 𝑖𝑑)| 𝑤, 𝑣𝑜𝑙, 𝑖𝑑 ∈ ℝ+, 𝑘 ∈ ℕ+} where 𝑤 denotes weight capacity,

𝑣𝑜𝑙 denotes volume capacity, 𝑘 denotes the maximum number of orders the

vehicle can carry and 𝑖𝑑 a unique identifier of a vehicle. The capacities of a

single vehicle 𝑚 ∈ ℳ are provided using functions 𝑤𝑚: ℳ →
ℝ+, 𝑣𝑜𝑙𝑚: ℳ → ℝ+ and 𝑘𝑚: ℳ → ℕ+.

The digital model of the warehouse is represented as a graph with a set of

vertices 𝒱 = {𝑣1, 𝑣2, … , 𝑣𝑛}, 𝑛 = |ℒ|. 𝒱 consists of different types of vertices

denoted as follows: 𝑣𝑠 ∈ 𝒱 is a starting (origin) vertex for vehicles, 𝑣𝑑 ∈ 𝒱 is

a destination vertex for vehicles, 𝒱ℒ𝒫
⊂ 𝒱 is a set of product location vertices

and 𝒱𝒰 ⊂ 𝒱 is a set of obstacle corner vertices. The union of all vertices, 𝒱 =

{𝑣𝑠} ∪ {𝑣𝑑} ∪ 𝒱ℒ𝒫
∪ 𝒱𝒰, are defined similarly to the locations apart from one

important difference: There may be several products in one location and there

is one vertex per product location, not one vertex per product (this is to limit

the size of the graph). To get a set of locations from a corresponding set of

vertices the function 𝑙𝑜𝑐𝒱: 𝒱 → ℒ is used. To get a set of vertices from a set of

locations is similarly provided by the function 𝑣 ℒ: ℒ → 𝒱.

The set of possible batches is defined as ℬ ⊂ 2𝒪, 𝑏 ∈ ℬ, 𝑏 ∈ 2𝒪, 𝑏 ≠ ∅. The

locations of the products in the batch can be obtained using function 𝑙𝑜𝑐𝑏: ℬ →
2ℒ𝒫 . 𝑙𝑜𝑐(𝑏) =∪𝑜∈𝑏 𝑙𝑜𝑐(𝑜). Similarly, the vertices in the batch are 𝑣𝑏: ℬ →

2 𝒱ℒ𝒫 . 𝑣(𝑏) =∪𝑜∈𝑏 𝑣(𝑙𝑜𝑐(𝑜)). Batch weight and volume quantities are

defined as 𝑤𝑏: ℬ → ℝ+ and 𝑣𝑜𝑙𝑏: ℬ → ℝ+. The number of orders in a batch

is defined as 𝑘𝑏: ℬ → ℕ+ or |𝑏|.

The set of edges E is defined such that each edge is an ordered pair 𝑒 ∈ 𝐸 =
{(𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝒱, i ≠ 𝑗} where 𝑖 is an origin and 𝑗 a destination vertex. 𝐸

excludes any edge which passes through the hull of any polygon in 𝒰 (for

details on how this can be achieved see [13]). Edges between adjacent corners

in any polygon 𝑢 ∈ 𝒰 are not excluded in 𝐸. The edges and vertices are then

used to construct the symmetric undirected weighted graph 𝐺 = (𝒱, 𝐸).

A shortest paths distance matrix 𝐷: 𝒱 × 𝒱 → ℝ+ provides the minimum sum

of edge distances between any two vertices in 𝒱 without crossing any hull in

ℒ𝒰. Each edge cost 𝑑𝑙𝑜𝑐(𝑖),𝑙𝑜𝑐(𝑗) ∈ 𝐷 (henceforth 𝑑𝑖𝑗) is between two

vertices, 𝑖, 𝑗 ∈ 𝒱, 𝑖 ≠ 𝑗. If there exists an unobstructed path between

𝑙𝑜𝑐(𝑖) and 𝑙𝑜𝑐(𝑗) (which does not go through any obstacle hull) the distance

95

is Euclidean ‖𝑙𝑜𝑐(𝑖) − 𝑙𝑜𝑐(𝑗)‖. If obstacles must be bypassed to go from

𝑙𝑜𝑐(𝑖) to 𝑙𝑜𝑐(𝑗), however, the distance is a sum of Euclidean distances

following the shortest path between them (without crossing obstacles). The

Floyd-Marshall graph algorithm is used to compute these shortest paths and

distances exactly [13].

The set of vertices, including origin and destination vertex, that have to be

visited to pick a batch is defined as 𝒱𝑏 = {𝑣𝑠} ∪ 𝑣(𝑏) ∪ {𝑣𝑑}, 𝑏 ∈ ℬ. A

function can then be built which provides the sequence of vertex visits in a

batch TSP solution:

𝑇𝑏: 𝒱𝑏 → {𝑣𝑖}𝑖=1
𝑛 , 𝑛 = |𝒱𝑏|, (1)

𝑇(𝑏)𝑖 = {

𝑣𝑠 𝑖 = 1
𝑣𝑘 1 < 𝑖 < 𝑛
𝑣𝑑 𝑖 = 𝑛

(2)

where 𝑣𝑘 ∈ 𝑣(𝑏) and 𝑖 gives the sequence of visits. The distance of a batch

TSP solution is similarly provided in a function:

𝐷𝑏: 𝑇(𝑏)𝑖 → ℝ+, 𝑖 ∈ ℕ+, 𝑖 ≤ |𝑇(𝑏)|. (3)

𝐷(𝑏) = ∑ 𝑑𝑇(𝑏)𝑖𝑇(𝑏)𝑗
, 𝑖, 𝑗 ∈ ℕ+, 𝑗 = 𝑖 + 1, 𝑖 < |𝑇(𝑏)| (4)

Note 𝐷𝑏could be renamed 𝐷𝑇𝑏
 to clarify that the distance of a batch is

computed over a certain path to visit all the products in the batch.

𝒱, 𝐸, 𝐺 and 𝐷 are assumed to be produced in a digitization preprocessing step

and the computational effort at this stage is assumed to not be included in

subsequent OBP optimization. Out of 𝒱, 𝐸, 𝐺 and 𝐷 only 𝐷 is needed as input

for OBP optimization assuming vehicles are capable of finding the shortest

path between any two locations on their own. 𝒱, 𝐸, 𝐺 are also needed for

directions on how to follow the shortest path, and if visualizations of edges are

sought, both of which are arguably important in an industrial OBP optimization

service. One example of a visualization of 𝐺 and a small OBP optimization

instance can be seen in Fig. 4 below:

96

Fig. 4. Visualization of the digital graph (𝐺) of a warehouse, and an example OBP with two orders, two

vehicles and vehicle capacity of one order. Each blue line is an edge 𝑒 ∈ 𝐸 that connects two vertices

(𝑖, 𝑗), 𝑖, 𝑗 ∈ 𝒱. The white hulls are racks (obstacles) laid out in an “unconventional” way and no edges pass

through them. The orange vertices show a subset of 𝒱𝒰 and the green and yellow vertices along the racks

are the sought products in 𝒱ℒ𝒫
 (where color indicates which order it belongs to). Note one of the products

is visited by both vehicles. At the bottom the origin and destination, 𝑣𝑠 and 𝑣𝑑 can be seen (blue and red

respectively). The OBP solution is here shown as the red and lime edges following the shortest paths between

𝑣𝑠, the yellow or green vertices and 𝑣𝑑 (the two paths are obtained using 𝑇𝑏 above).

3.2 General OBP formulation

A set-partitioning formulation with an exponential number of binary variables

is used to formulate the layout-agnostic general OBP. The binary decision

variable 𝑥𝑚𝑏 is used to indicate whether batch 𝑏 ∈ ℬ is assigned to vehicle

𝑚 ∈ ℳ (𝑥𝑚𝑏 = 1, if 𝑚 is assigned to 𝑏, 𝑥𝑚𝑏 = 0 otherwise). The binary

decision variable 𝑥𝑚𝑜 is used to indicate whether order 𝑜 ∈ 𝒪 is assigned to

vehicle 𝑚 ∈ ℳ (𝑥𝑚𝑜 = 1 if 𝑚 is assigned 𝑜, 𝑥𝑚𝑜 = 0 otherwise). The

binary decision variable 𝑥𝑚𝑙 is used to indicate whether vehicle 𝑚 visits

location 𝑙 ∈ ℒ𝒫 (𝑥𝑚𝑙 = 1 if 𝑚 visits 𝑙, 𝑥𝑚𝑙 = 0 otherwise).

𝑚𝑖𝑛 ∑ 𝐷(𝑏)𝑥𝑚𝑏 ,

𝑏∈ℬ

𝑚 ∈ ℳ

s.t.

s.t.

(5)

97

∑ 𝑥𝑚𝑜

𝑚 ∈ ℳ

= 1, ∀𝑜 ∈ 𝒪

(6)

∑ 𝑥𝑚𝑙

𝑙∈𝑙𝑜𝑐(𝑜)

≥ 𝑥𝑚𝑜, ∀𝑜 ∈ 𝒪, 𝑚 ∈ ℳ
(7)

𝑞(𝑏) ≤ 𝑞(𝑚)𝑥𝑚𝑏 , 𝑏 ∈ ℬ, 𝑞 ∈ {𝑤, 𝑣𝑜𝑙, 𝑘}, 𝑚 ∈ ℳ

(8)

The optimization aim of the OBP (5) is to assign batches to vehicles such that

the sum of the distances of all batches is minimized. (6) ensures that each

unassigned order is assigned to exactly one vehicle (order-integrity). (7)

ensures that every product location in every order assigned to a vehicle is

visited at least once. This inequality is what renders the OBP a general Steiner-

VRP. (8) ensures capacity of vehicles is never exceeded.

3.3. Single batch OBP formulation

The general OBP formulation is problematic to work with due to the large

number of possible combinations of vehicles and batches. Below is a proposal

for a more tractable problem where the aim is to find a batch for an already

selected vehicle. After vehicle m has been selected the aim is to assign as many

orders as possible to it while keeping batch distance at a minimum:

𝑎𝑟𝑔𝑚𝑖𝑛
𝑏∈ℬ

𝐷(𝑏) (9)

∃𝑞(𝑞(𝑏) + 𝑞(𝑜) ≥ 𝑞(𝑚)), ∀𝑜 ∈ 𝒪, 𝑜 ∉ 𝑏, 𝑞 ∈ {𝑤, 𝑣𝑜𝑙, 𝑘} (10)

where 𝑘(𝑜) (i.e. the number of orders in an order) is 1. The aim in the single

batch OBP (9) is to, for a given vehicle 𝑚, find a single batch 𝑏 with the

minimal batch distance. Constraints (6), (7), and (8) from the general OBP still

apply (for the given vehicle). Constraint (10) is further added to ensure that the

number of orders in the batch is as large as possible (for all unassigned orders

there exists a weight, volume or number of orders quantity which will exceed

vehicle capacity if the order is added to the batch). Without this maximization

of number of orders an optimization algorithm would always create a batch

with just a single order because this would produce the minimal batch distance.

The single batch OBP formulation is a specific version of the so called

98

minimum cost maximal knapsack packing problem (MCMKP) if distance is

treated as “profit” and number of orders as knapsack “weight” (according to

the definition by [30]). Note in the formulation here batch “weight” and

“volume” are not included in the maximization since this would impose

decision making over the importance of the different quantities (which one is

most important to maximize while not exceeding vehicle capacity). The

intention of the single batch OBP formulation is to provide the means with

which to build an efficient single batch OBP optimization algorithm. This

algorithm can then be used to produce one batch at a time within an algorithm

which optimizes the general OBP, as proposed in Algorithm 1 below:

Algorithm 1 runs with the assumption that there are always enough vehicles to

choose from, and it creates single batches until there are no more unassigned

orders left. The total cost is expressed in the TSP path distances of the

batches 𝐷(𝑏). After a batch has been created its orders are removed from 𝒪.

4. Experimental results

This section evaluates the computational effort and memory requirement

needed to generate the datastructures used by the formulation in Section 3. The

only datastructure needed for OBP optimization is the distance matrix 𝐷, but

graph 𝐺, including shortest paths between all locations are also included (Table

1).

99

Computational time and memory requirement grows fast with number of

locations in the digitization procedure. The largest instance included 6491

defined locations and required 18 hours of CPU-time. Please note the

computation only has to be run once (and re-run if the obstacle layout is

changed in the warehouse). Once the graph has been generated, distances and

shortest paths can be queried quickly by pre-allocating them in Random Access

Memory (RAM), which is why RAM usage is also a relevant parameter.

“Number of locations”, denoted as |ℒ| in Section 3, and the number of products

in each defined location, varies depending on precision sought in the

digitization process. For example, the warehouse denoted c9543_ARA, holds

around 40000 products, but there are only 4037 defined locations. Each

location in that case represents the products within an area of around 3 𝑚2 on

the horizontal axis and 5 shelf levels on the vertical axis, with a total of around

10 products represented by every defined location. Clearly, a faster digitization

process would be achieved if more products were mapped to the same

locations, but then the digital model would be less precise. The tradeoff

between memory and CPU-time on the one hand, and digitization precision on

the other, is an interesting topic left for future work.

Table 1. Experimental results for the digitization of distances and shortest paths.

100

5. Conclusion

This paper set out to formulate an Order Batching Problem (OBP) that does

not depend on the way in which racks or other obstacles are laid out in the

warehouse. A digitization procedure to generate necessary datastructures was

first described. A minisum set-partitioning formulation with an exponential

number of binary variables was introduced for the layout-agnostic OBP. A

more tractable version of the OBP, the single batch OBP, was additionally

formulated where the aim is to find a single batch for an already specified

vehicle. Experiments evaluating CPU-times and memory footprints for

generating necessary datastructures was presented. In ensuing work new layout

agnostic OBP optimization algorithms and benchmark instances will be

introduced.

References

[1] R. de Koster, T. Le-Duc, and K. J. Roodbergen, ‘Design and control of

warehouse order picking: A literature review’, European Journal of

Operational Research, vol. 182, no. 2, pp. 481–501, 2007, doi:

https://doi.org/10.1016/j.ejor.2006.07.009.

[2] X. Jiang, Y. Zhou, Y. Zhang, L. Sun, and X. Hu, ‘Order batching and

sequencing problem under the pick-and-sort strategy in online

supermarkets’, Procedia Computer Science, vol. 126, pp. 1985–1993,

2018, doi: https://doi.org/10.1016/j.procs.2018.07.254.

[3] G. P. Sharp and D. R. Gibson, ‘Order batching procedures’, 58, no.

European Journal of Operational Research, 1992.

[4] N. Gademann and V. de S. Velde, ‘Order batching to minimize total

travel time in a parallel-aisle warehouse’, IIE Transactions, vol. 37, no.

1, pp. 63–75, 2005.

[5] C. A. Valle and B. A. Beasley, ‘Order batching using an approximation

for the distance travelled by pickers’, no. European Journal of

Operational Research, 2019.

[6] H. Ratliff and A. Rosenthal, ‘Order-Picking in a Rectangular Warehouse:

A Solvable Case of the Traveling Salesman Problem’, Operations

Research, vol. 31, pp. 507–521, 1983.

101

[7] J.-F. Cordeau, G. Laporte, M. Savelsbergh, and D. Vigo, ‘Vehicle

Routing’, in Transportation, handbooks in operations research and

management science, vol. 14, 2007, pp. 195–224.

[8] Y. A. Bozer and J. W. Kile, ‘Order batching in walk-and-pick order

picking systems’, International Journal of Production Research, vol. 46,

no. 7, pp. 1887–1909, 2008, doi: 10.1080/00207540600920850.

[9] O. Briant, H. Cambazard, D. Cattaruzza, N. Catusse, A.-L. Ladier, and

M. Ogier, ‘An efficient and general approach for the joint order batching

and picker routing problem’, European Journal of Operational

Research, vol. 285, no. 2, pp. 497–512, 2020, doi:

https://doi.org/10.1016/j.ejor.2020.01.059.

[10] O. Kulak, Y. Sahin, and M. E. Taner, ‘Joint order batching and picker

routing in single and multiple-cross-aisle warehouses using cluster-based

tabu search algorithms’, Flexible Services and Manufacturing Journal,

vol. 24, no. 1, pp. 52–80, Mar. 2012, doi: 10.1007/s10696-011-9101-8.

[11] M. Masae, C. H. Glock, and E. H. Grosse, ‘Order picker routing in

warehouses: A systematic literature review’, International Journal of

Production Economics, vol. 224, p. 107564, 2020, doi:

https://doi.org/10.1016/j.ijpe.2019.107564.

[12] P.-Y. Chang, P. Damodaran *, and S. Melouk, ‘Minimizing makespan

on parallel batch processing machines’, International Journal of

Production Research, vol. 42, no. 19, pp. 4211–4220, 2004, doi:

10.1080/00207540410001711863.

[13] L. J. van Rensburg, ‘Artificial intelligence for warehouse picking

optimization - an NP-hard problem’, M.Sc., Uppsala University, 2019.

[14] C. A. Valle, J. E. Beasley, and A. S. da Cunha, ‘Optimally solving the

joint order batching and picker routing problem’, European Journal of

Operational Research, vol. 262, no. 3, pp. 817–834, Nov. 2017, doi:

10.1016/j.ejor.2017.03.069.

[15] J. Li, R. Huang, and J. B. Dai, ‘Joint optimisation of order batching and

picker routing in the online retailer’s warehouse in China’, International

Journal of Production Research, vol. 55, no. 2, pp. 447–461, 2017, doi:

10.1080/00207543.2016.1187313.

[16] H. Psaraftis, M. Wen, and C. Kontovas, ‘Dynamic Vehicle Routing

Problems: Three Decades and Counting’, Networks, vol. 67, 2015, doi:

10.1002/net.21628.

[17] M. Bué, D. Cattaruzza, M. Ogier, and F. Semet, ‘A Two-Phase Approach

for an Integrated Order Batching and Picker Routing Problem’, 2019, pp.

3–18.

102

[18] M. Bortolini, M. Faccio, E. Ferrari, M. Gamberi, and F. Pilati, ‘Design

of diagonal cross-aisle warehouses with class-based storage assignment

strategy’, The International Journal of Advanced Manufacturing

Technology, vol. 100, no. 9, pp. 2521–2536, Feb. 2019, doi:

10.1007/s00170-018-2833-9.

[19] A. Fumi, L. Scarabotti, and M. Schiraldi, ‘The Effect of Slot-Code

Optimization in Warehouse Order Picking’, International Journal of

Business and Management, vol. 5, 2013, doi: 10.5772/56803.

[20] K. R. Gue and R. D. Meller, ‘Aisle configurations for unit-load

warehouses’, IIE Transactions, vol. 41, no. 3, pp. 171–182, 2009, doi:

10.1080/07408170802112726.

[21] S. Henn, ‘Algorithms for on-line order batching in an order picking

warehouse’, Computers & Operations Research, vol. 39, no. 11, pp.

2549–2563, 2012, doi: https://doi.org/10.1016/j.cor.2011.12.019.

[22] M.-C. Chen and H.-P. Wu, ‘An association-based clustering approach to

order batching considering customer demand patterns’, Omega, vol. 33,

no. 4, pp. 333–343, 2005, doi:

https://doi.org/10.1016/j.omega.2004.05.003.

[23] S. Henn and G. Wäscher, ‘Tabu search heuristics for the order batching

problem in manual order picking systems’, European Journal of

Operational Research, vol. 222, no. 3, pp. 484–494, 2012, doi:

https://doi.org/10.1016/j.ejor.2012.05.049.

[24] Ç. Cergibozan and A. Tasan, ‘Genetic algorithm based approaches to

solve the order batching problem and a case study in a distribution

center’, Journal of Intelligent Manufacturing, pp. 1–13, 2020, doi:

10.1007/s10845-020-01653-3.

[25] K. Braekers, K. Ramaekers, and I. V. Nieuwenhuyse, ‘The vehicle

routing problem: State of the art classification and review’, Computers

& Industrial Engineering, vol. 99, pp. 300–313, 2016, doi:

https://doi.org/10.1016/j.cie.2015.12.007.

[26] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia, ‘A review of

dynamic vehicle routing problems’, European Journal of Operational

Research, vol. 225, no. 1, pp. 1–11, 2013, doi:

https://doi.org/10.1016/j.ejor.2012.08.015.

[27] M. Mansouri, F. Lagriffoul, and F. Pecora, ‘Multi Vehicle Routing with

Nonholonomic Constraints and Dense Dynamic Obstacles’, 2017, doi:

10.1109/IROS.2017.8206195.

[28] D. D. Bochtis and C. G. Sørensen, ‘The vehicle routing problem in field

logistics part I’, Biosystems Engineering, vol. 104, no. 4, pp. 447–457,

2009.

103

[29] R. D. Santis, R. Montanari, G. Vignali, and E. Bottani, ‘An adapted ant

colony optimization algorithm for the minimization of the travel distance

of pickers in manual warehouses’, European Journal of Operational

Research, vol. 267, no. 1, pp. 120–137, 2018.

[30] F. Furini, I. Ljubić, and M. Sinnl, ‘An effective dynamic programming

algorithm for the minimum-cost maximal knapsack packing problem’,

European Journal of Operational Research, vol. 262, no. 2, pp. 438–448,

2017, doi: https://doi.org/10.1016/j.ejor.2017.03.061.

Layout-Agnostic Order-Batching Optimization⋆

Johan Oxenstierna1,2[0000−0002−6608−9621], Jacek Malec1[0000−0002−2121−1937],
and Volker Krueger1[0000−0002−8836−8816]

1 Dept. of Computer Science, Lund University, Box 118, SE-221 00 LUND
{johan.oxenstierna,jacek.malec,volker.krueger}@cs.lth.se

https://rss.cs.lth.se/
2 Kairos Logic AB, Lund, Sweden

Abstract. Order-batching is an important methodology in warehouse
material handling. This paper addresses three identified shortcomings in
the current literature on order-batching optimization. The first concerns
the overly large dependence on conventional warehouse layouts. The sec-
ond is a lack of proposed optimization methods capable of producing
approximate solutions in minimal computational time. The third is a
scarcity of benchmark datasets, which are necessary for data-driven per-
formance evaluation. This paper introduces an optimization algorithm,
SBI, capable of generating reasonably strong solutions to order-batching
problems for any warehouse layout at great speed. On an existing bench-
mark dataset for a conventional layout, Foodmart, results show that the
algorithm on average used 6.9% computational time and 105.8% travel
cost relative to the state of the art. New benchmark instances and pro-
posed solutions for various layouts and problem settings were shared on
a public repository.

Keywords: order-batching Problem · Order Picking · Discrete opti-
mization

1 INTRODUCTION

There are many optimizable processes within warehouse operations. One of
these is order-picking, which refers to the retrieval of shipment orders, where
each order contains one or several products (items stored in the warehouse) [23].
As much as 55% of all operating expenses in a warehouse are allocated for
order-picking [21]. A common method with which to conduct order-picking is
order-batching, where each picker (vehicle) is set to pick a batch of one or
more orders [37]. Within optimization literature order-batching is known as the
Order-Batching Problem (OBP) [15] or the Joint Order-Batching and Picker
Routing Problem (JOBPRP) [39]. The Picker Routing Problem is the Traveling

⋆ Supported by the Wallenberg Autonomous Systems Program.

Salesman Problem (TSP) [33] applied in warehouses (henceforth the Picker
Routing Problem is referred to as TSP). Most of the literature assesses quality
of batches based on travel cost estimation while still calling the problem an
OBP (without incorporating picker routing in the term), and this paper follows
this convention. The OBP is usually formulated as a special version of the more
well known Vehicle Routing Problem (VRP) [13]. While the general objective
in the OBP is the same as in the VRP, i.e., to assign a set of vehicles to visit
a set of locations at minimum travel cost, the literature on the OBP includes
two distinguishing features:

– Order-integrity : In the OBP products of one order cannot be picked by more
than one vehicle [18] whereas in the VRP this constraint is not used (orders
are not defined in the VRP) [13].

– Obstacle-layout : As far as we are aware, all previous work on the OBP
requires a certain form of obstacle layout in the warehouse (the conventional
layout) (e.g. [5,24,38]). The conventional layout means that warehouse racks
are placed in Manhattan style blocks with parallel aisles and cross-aisles (see
Figure 1 a). The VRP does not have this requirement.

We are not aware of any reference in the literature which suggests a proportion of
conventional versus unconventional layouts in the warehousing domain. Figure 1
includes examples of unconventional layouts used in industry. We see an overly
large reliance on conventional layouts as a shortcoming in research on OBP
optimization.

Fig. 1: Examples of warehouse layouts. All except a) are unconventional.

A second identified shortcoming concerns the subject of an OBP optimization
module’s required computational time, versus the ease with which it can be

105

integrated with a Warehouse Management System (WMS). The WMS manages
the overall operation of a warehouse and there is a complex interaction between
processes such as order-picking, delivery scheduling, quality assurance, location
tracking, packing, verification, shipping, replenishment, yard management, la-
bor management etc., and time margins are usually tight [4]. The WMS gets
orders for picking dynamically during the workday. If a subset of these orders
are sent to an optimization module, which will select some of them to be picked
by a vehicle, it is therefore preferable, from an optimization point of view, to
have this selection and corresponding picking tour computed before new or-
ders have arrived to the warehouse. The simplest form of integration is by a
synchronous request/response cycle between the WMS and the optimization
module, instead of an asynchronous setup where the WMS first sends a request
for optimization followed by the collection of a response at a later time (when
the original request may already be obsolete). Synchronous request/response is
only possible if optimization can be completed within a few seconds. This paper
showcases the kind of OBP optimization performance achievable in such a short
time.

A third identified shortcoming is a scarcity of publicly shared benchmark
datasets on the OBP. These types of datasets are crucial to allow for experiment
reproducibility and peer collaboration.

Our contributions are as follows:

1. The introduction of an optimization algorithm, SingleBatchIterated (SBI),
with capability of producing fast approximate solutions to the OBP, irre-
spective of warehouse layout. SBI’s performance is evaluated against the
state of the art on Foodmart, a publicly available dataset, which models
a warehouse with a conventional layout. The evaluation concerns distance
minimization as well as computational time.

2. The introduction of a publicly shared OBP dataset with six types of ware-
house layouts and 203 test-instances. Optimization results using SBI and
various settings are included in each instance.

2 LITERATURE REVIEW

OBP’s for warehouses with conventional layouts have been formulated using
integer programming (e.g. [39]) or set-partitioning (e.g. [15]). The conventional
layout appears in these formulations as required input parameters such as “num-
ber of aisles” [5], “intra-aisle distance” [7], “the cross-distance between two
consecutive aisles” [15] or “number of vertices in the subaisle” [39]. Some au-
thors have requested investigations into more layouts than the conventional
layout [14, 16, 18, 27]. One benefit of this generalization is that more problem
scenarios within logistics could be explored as OBP’s. One drawback is that it

106

is very challenging to reduce the OBP solution space without taking advantage
of regularities in the layout [39].

Authors often discuss OBP optimization with regard to two fundamental
components: 1. Order to vehicle assignments. 2. Solving the TSP’s needed to
visit all products in the proposed order assignments. The two components can
either be optimized jointly [39] or in separate phases [3,38]. The TSP component
is often optimized using linear time S-shape or Largest-gap heuristics [18, 35]
which are specifically designed for conventional layouts. The order to vehicle as-
signment component is often optimized using so called proximity batching, which
heuristically ensures vehicles are assigned orders whose pick products are lo-
cated close together [15]. Sharp & Gibson [37] propose First-Come-First-Served
(FCFS), Space Filling Curve (SFC) and Sequential Minimal Distance (SMD)
heuristics to ensure closeness between batched products. Rosenwein [36] pro-
poses Minimum Additional Aisle (MAA) and Centre of Gravity (COG) heuris-
tics. Ho et al. [20] propose 25 different heuristics to initialize and then add one
order at a time to a batch until vehicle capacity is exceeded. These heuristics
are sometimes collectively referred to as seed heuristics or seed algorithms [22].
Another heuristic optimization method for order to vehicle assignment is the
so called Clark & Wright (C&W) savings algorithm [5]. In this algorithm travel
cost to pick individual orders are first estimated and then compared against the
cost required to pick larger collections of orders. This algorithm is known to pro-
duce batches with less travel cost than seed algorithms, while the computational
effort is 100-200 times greater [22].

The OBP optimization objective can be stated as minimizing the sum of
all TSP solution costs needed to pick all products (henceforth referred to as
minisum) [5,6] or to minimize the maximum TSP solution costs (minimax) [18].
Solution cost is mostly expressed in terms of distance or time. The latter is more
complex but also more realistic to work with as it involves predicting vehicle
velocities, time to search for and pick items on shelves etc.

There is a broad array of focus areas in the literature on OBP optimiza-
tion, reflecting different types of warehouse models and constraints. Chew &
Tang [11], for example, examine the relationship between the travel cost of a
vehicle, number of available vehicles and where products are stored in the ware-
house. The latter is an optimization problem on its own called the Storage Lo-
cation Assignment Problem (SLAP) [9]. It is rarely studied in conjunction with
batching although there is a clear interdependence [18,29]. If there are different
origin and destination locations for vehicles the OBP is said to be a multi-depot
or Dial-A-Ride Problem (DARP) [18]. A basic multi-depot example is whenever
vehicles are set to drop off their picked orders at one pre-designated location,
then move to another pre-designated location to collect empty boxes, i.e. orders
that have not been picked yet, before moving out to collect a new batch. If all
products that need to be picked are assumed to be known apriori the OBP is
said to be static or off-line as opposed to dynamic or on-line [40]. Proposed op-

107

timization programs for the OBP versions described above include integer and
mixed integer [5], dynamic programming [6], data mining [10], clustering [24]
and meta-heuristics such as Tabu Search [19], Ant Colony Optimization [26]
and Genetic Algorithms [8].

Computational time used for OBP optimization and its relevance within
warehouse operations is a topic only discussed on a high level if at all in the
literature. Some authors set timeouts for optimization but these are only ar-
bitrarily defined to simulate a ”tolerable” time horizon [24]. The largest test-
instance results with 30 - 5000 orders in Briant et al. [6], were achieved after
optimization was set to run between 30 minutes to 2 hours. Briant et al., do not
discuss whether a WMS provider would be interested in allocating 30 minutes
for generating 6 optimized batches out of 30 unassigned orders.

There exist two OBP benchmark datasets: Foodmart [39] and HappyChic [6]
which are designed for static OBP’s and two conventional layouts. The vast ma-
jority of benchmarking in OBP research is not carried out on public datasets,
but instead on a described model/simulation of a warehouse with a conventional
layout. For comparison, in the related research domain on the Vehicle Rout-
ing Problem (VRP), there are several widely used benchmark datasets which
researchers use to evaluate optimization performance, including the Solomon,
Christofides, Taillard, Augerat et al., Fisher and Kilby instances [28, 30–32]. A
commonly used data format for VRP instances is TSPLIB [17]. We have ex-
tended on TSPLIB to introduce new OBP instances in the experimental part
of this paper (Section 5).

3 PRELIMINARIES

In this section we define all relevant terms and parameters that will be needed
for the reminder of the paper. For better readability, we keep the definitions on
an intuitive level and use mathematical precision only where necessary.

A batch b is defined as a set of orders from customers, selected out of a
set of unassigned orders. The unassigned orders are denoted O and the set of
all possible batches is denoted B. Each order contains a set of products and
each product has a volume and weight. A batch is picked by a vehicle, m,
selected out of a set of available vehicles, m ∈ M . The vehicle’s capacities are
expressed in number of orders, weight and volume. Each product has a location
in the warehouse. The union of all locations in a batch b is retrievable with a
function locb. The sequence of location visits a vehicle follows to pick a batch
(including an origin and a destination location for the vehicle) is computable
with a function T b. Note T b gives a solution to a Traveling Salesman Problem
(TSP). The distance of T b is computable with a function Db. The Db function
makes use of a distance matrix which contains the shortest distance between
all locations in a given warehouse (without crossing obstacles). The distance

108

matrix is assumed pre-computed. For a presentation of the digitization steps
followed to produce it see [34].

The optimization objective of the minisum OBP [5,15,19] is to assign batches
to vehicles such that the distance required to pick the orders is minimized, while
not breaking any of the following constraints:

1. Each unassigned order is assigned to exactly one vehicle (order-integrity).
2. Each product location in each order assigned to a vehicle must be visited

at least once.
3. Capacities of vehicles may never be exceeded.

The proposed optimization algorithm (Section 4) makes use of an optimization
module which optimizes a more tractable form of the OBP, the so called single
batch OBP. The optimization objective of the single batch OBP is to find a
single batch b with the minimal batch distance. Constraints 2 and 3 still apply
for the single batch version of the problem. The following additional constraint
is added:

4. The number of orders in a single batch must be as large as possible.

Without this last constraint i.e. the maximization of number of orders, a single
batch optimization algorithm would always create a batch with just a single or-
der. This is because the minimal batch distance is always achieved if the batch
is made up of just a single order. Note that it is possible to define constraint 4
as both a constraint and an objective. Constraint 4 is delimited from including
weight and volume of products in the maximization since this would necessi-
tate decision making over whether weigth, volume or number of orders is more
important. Both above models are concerned with static OBP’s (Section 2) i.e.
ones where all unassigned orders can be batched at any time.

4 OPTIMIZATION ALGORITHM

In this section we will introduce the SingleBatchIterated (SBI) optimization al-
gorithm, which produces an approximate solution to the minisum OBP. Inter-
nally it makes use of the SingleBatch algorithm, which produces an approximate
solution to the single batch OBP (Section 3). SingleBatch is shown in the lower
rectangular box in Fig 2. It is used to produce single batches and corresponding
picking tours iteratively until there are no more unassigned orders left.
A vehicle is first selected from a set of vehicles (a) and a subset of unassigned
orders from the set of all unassigned orders is selected (b). This subset selection
is done to reduce the amount of computational time needed for the subsequent
optimization. A single batch b as well as a TSP solution for that batch are then
computed using the SingleBatch optimization algorithm (c). The distance of

109

Fig. 2: Flowchart showing Sin-
gleBatchIterated (SBI). First
unassigned orders are processed
according to priority and a sub-
set of orders is then sent to the
SingleBatch optimization algo-
rithm (lower box), which pro-
duces a single batch and the TSP
solution required to pick that
batch. The algorithm runs until
all unassigned orders have been
batched.

the TSP solution is added to the total cost of the OBP solution (initialized as
0). The selected vehicle is dispatched to pick batch b (d). The orders in b are
removed from the set of unassigned orders (e). The steps in Fig 2 correspond
to Algorithm 1 shown below.

Algorithm 1: SBI

cost ← 0
while O do

m← select vehicle(M)
Os ← select subset(O)
b← single batch(Os,m,D)
cost = cost +D(b)

end

Algorithm 2: SingleBatch

single batch(Os,m,D)

// Phase 1
bord ← seed algorithm(Os,m,D)
// Phase 2
btour ← solve tsp(b,D)
return b

The SingleBatch algorithm, Algorithm 2, takes a subset of unassigned orders
Os, a vehicle m and the distance matrix D as input. Order selection using one
of two seed algorithms is used to initialize a batch and assign orders to it (bord)
until vehicle capacity runs out. A tour to pick the batch (btour) is computed
using the Concorde TSP solver (details for Concorde are beyond the scope of
this paper, for details see [2, 12]). The SingleBatch function returns the batch
(including the orders and the tour).

SBI requires that there are enough vehicles to batch all orders. This delim-
itation is used because the vehicle selection part is handled by the Warehouse
Management System (WMS) in the intended industrial application (the WMS
takes over the full handling of the upper rectangle in Fig 2, i.e., it decides when
and which vehicles should be assigned a batch).

The purpose of the SingleBatch seed algorithm (inside Algorithm 2) is to
return a batch of orders that allows subsequent TSP optimization (for the
locations in that batch) to result in a short distance. One way to achieve a
batch selection quickly is to use heuristics such as Sequential Minimal Distance

110

(SMD) [37] or Centre of Gravity (COG) [36], and these are tested and compared
in the experimental part of this paper. SMD and COG can be used to output a
scalar value (”distance”) that estimates the distance that would be achieved if
the locations of the products of two orders were used to formulate and optimize
a TSP. The ”seed algorithm” works sequentially by adding an order at a time to
a sequence of assigned orders (i.e. the single batch). The ”seed order” denotes
the order which was last added to the sequence (while the sequence is being
populated). SMD and COG are used to search for an unassigned order, with a
low ”distance” to the seed order, to add next. The first order in the sequence
can for example be selected randomly [37]. In SingleBatch’s seed algorithm it is
instead selected as the order with the least sequential minimal distance (SMD)
or the shortest distance to the centre of gravity (COG) (depending on which
is used). To enable this the vehicle origin location is used as a first seed place-
holder. Using SMD or COG for the first order selection is motivated by the
SingleBatch optimization objective which states that the distance of the batch
should be as short as possible regardless of how many orders end up in that
batch.

SMD is computed using the following:

SMD(s, o) =
∑
i∈s

min
j∈o
|dij |, o ∈ O, o ̸∈ b, s ∈ b (1)

where dij is the distance between product i in order s (the seed) and product j
in unassigned order o. SMD(s, o) is then calculated as the sum of these minimal
distances dij . Sharp & Gibson [37] present a way in which to compute dij in the
conventional layout scenario. For the unconventional layout scenario it is given
as dij ∈ D (D is the shortest paths distance matrix, assumed pre-computed).

The COG heuristic was introduced by Rosenwein [36] and is for a single
order given as:

COG(o) =
1

|o|
∑
p∈o

ap (2)

where ap denotes the location of the product, and |o| is the number of products
in the order. The COG of two orders is given by the Manhattan distance between
two order COG’s: COG(s, o) = |COG(s)− COG(o)| where s and o denote the
seed order and an unassigned order, respectively. Note this version of COG
does not make use of distance matrix D and hence does not take the warehouse
layout into account.

Once the order with the least SMD or COG has been found it is added to
the batch and set as the new seed. New orders are then added in the same way
until vehicle capacity is full or there are no more unassigned orders left.

111

5 EXPERIMENTS

In this section we first discuss the datasets used i.e. Foodmart and the new test
instances generated. Then,

1. we discuss OBP results using our SBI approach on the datasets in terms of
distance minimization, as well as computational times.

2. we compare results using a seed algorithm running either the SMD or COG
heuristics.

3. we compare computational times required by the seed algorithm and the
TSP solver.

5.1 Datasets

Foodmart Foodmart contains test-instances for static OBP’s and a conven-
tional layout. It was introduced by Valle et al. [39] and includes 135 test-
instances with up to 50 unassigned orders and 7 larger testing-instances with
50 to 5000 orders. The layout has 3 cross-aisles and a maximum of 8 aisles (see
Fig. 1 a)). There is only a single origin and destination location.

In Foodmart each vehicle carries 8 bins, where each bin has a volume capac-
ity of ”40 V ”. Each product has a volume ranging from 1 to 40 V , and if an order
contains products whose sum of V ’s exceeds 40, or exceeds the volume left in
any of the 8 bins, the order may be split between different bins on the same ve-
hicle. This way to formulate vehicle capacity is specific to Foodmart. There are
many possible alternatives, e.g. maximum number of orders [25], products [5],
volume [8] or weight [24]). The number of available vehicles is unlimited in
Foodmart.

Presented results for Foodmart in [6,39] include optimal OBP results for 130
test-instances where the number of orders to be batched varies between 5 - 100.
These instances can therefore be used to evaluate our approach against optimal
results on conventional layouts. We believe the gap between SBI’s results and
optimal results can be used as an estimate of how far away from optimality
SBI’s results are on unconventional layouts.

Generated test-instances Six different types of warehouse layouts on a
80× 80 grid were first generated with the following name-tags: ”No obstacles”,
”conventional layout with 3 cross-aisles and 12 aisles”, ”1 single rack”, ”12
racks”, ”NR1” and ”NR2” (see Fig 4). ”NR” stands for non-regular. The un-
conventional layouts were chosen as simplified representations of real examples
seen in the industry (see Figure 1).

Using the generated layouts, 203 test-instances on a modified TSPLIB for-
mat were then generated (30-40 instances for each layout) 3. The modifications

3 https://github.com/johanoxenstierna/OBP instances
112

made to the TSPLIB are described in a text file in the provided link. For sim-
plicity vehicle capacity is the same for all vehicles and only expressed in number
of orders (between 2-30) in these instances, and experiments involving more ca-
pacity types (e.g. volume, weight, number of products, Foodmart type bins and
combinations of capacities and/or vehicle types) are left for future work. The
number of vehicles in the instances is set as the ceiling of number of unas-
signed orders divided by the vehicle number of orders capacity (denoted kM):

|M | = ⌈ |O|
kM ⌉. Concerning where the products are placed in the warehouse (see

Section 2 for an explanation for why this is relevant in OBP’s), either 1, 2 or
4 rectangular storage assignment zones are used. These zones are placed any-
where on the grid and are generated in two steps: First a random x, y storage
zone centroid coordinate within the 80 × 80 grid is generated. Then storage
locations for products (for each order in the generated instance) are generated
such that the Manhattan distance between the product location and the storage
zone centroid coordinate do not exceed a specified distance 4. Each of the six
layout types has a differing origin and destination location where vehicles start
and end their tours.

5.2 Experimental Results

Since the vehicles in Foodmart use bins into which orders are placed the Sin-
gleBatch algorithm was first adapted to be able to handle that particular ca-
pacity type. To be exact, the modification was conducted within the call to the
”seed algorithm” function in Algorithm 2. Three modifications were made: 1.
The batch object b was modified to include a key-value dictionary ”bins” with
8 enumerated keys and corresponding values to keep track of how much volume
has been taken up in each bin. 2. A function check candidate order(b, o) (inside
”seed algorithm”), which checks if a candidate order can be added to a batch
without breaking constraints, was modified to find the bin which, if the order
is added to it, comes as close as possible to the 40 volume capacity without
breaking it. 3. If there exists such a bin its key is returned, the order is added
to the batch and the given bin is updated with the added volume. If the order
cannot be added to any bin in this batch it is excluded and added to a different
batch at a later stage. Only SMD was used as order selection heuristic for the
Foodmart experiment.

The OBP experimental results are summarized in Table 1 (Foodmart) and
Table 2 (generated instances). On the Foodmart instances an average of 105.8%
distance and 6.9% computational time was achieved relative to reported optimal
results in [6,38]. The result shows that fast approximate OBP optimization can
be accomplished with a relatively small penalty in added distance.

4 it is is called ”min distance to slotting zone” and can be found in a specs JSON in
each instance.

113

Concerning the comparison of the SMD and COG heuristics, results only
concern the generated instances (since COG was not used on Foodmart). It
was found that, on the 203 generated OBP instances, SBI with SMD yielded
solutions with 97.9% distance and 131% computational time, relative to SBI
with COG. Within SingleBatch, the seed algorithm on average used only 7.3%
of the total computational time versus the TSP solver Concorde’s 92.7%. On
average, the seed algorithm requires 0.05 — 0.1 seconds to construct a batch
using SMD, whereas Concorde requires anywhere between 0.001 – 3 seconds
to solve a batch TSP, depending on various factors such as number of product
locations in the batch (see Fig. ??).

Fig. 3: CPU-time (y-axis) of
the SingleBatch algorithm
versus number of products
in the single batch OBP’s
(x-axis) (this figure excludes
results on Foodmart and
”NR1”).

No attempt was made to infer how features such as layout, storage zones and
depot locations affect the computational times shown in Fig. ??. Concorde has
a high degree of internal variance when it comes to computational time [1,2,12].
It would therefore require a large number of OBP test instances to make this
type of inference.

6 CONCLUSION

This paper introduced an optimization algorithm, SingleBatchIterated (SBI),
capable of producing strong approximate solutions to the OBP at minimal com-
putational time for both conventional and unconventional warehouse layouts.
The algorithm was evaluated on the Foodmart benchmark dataset, where it
showed that OBP solutions could be obtained at great speed and with a rela-
tively low penalty in added distance compared to optimal results. Additionally,
a new OBP dataset with several types of layouts, depot locations and stor-
age zone settings was introduced. Proposed solutions using SBI were uploaded
together with visualizations of the new instances.

114

The vast majority of computational time in SBI was allocated to TSP solv-
ing rather than order selection. Results show that this is mostly due to the TSP
solver Concorde, which has a high internal variance in terms of computational
time. Instead of replacing Concorde with a TSP optimizer which is more sta-
ble with regard to computational time, it is deemed more relevant to allocate
more computational time at the order selection phase. As Fig. ?? and Table 2
show, most OBP instances were optimized in well under 1 second, which allows
for more optimization in many scenarios. One alternative could be to add the
savings algorithm (Section 2) as an alternative for order selection and to use
it if there are relatively few products in the batch. Further work on dataset
generation is also needed, especially for OBP instances involving dynamicity
and more vehicle capacity options.

References

1. Applegate, D., Cook, W., Dash, S., Rohe, A.: Solution of a Min-Max Vehicle
Routing Problem. INFORMS Journal on Computing 14, 132–143 (2002)

2. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The traveling salesman
problem: a computational study. Princeton university press (2006)

3. Azadnia, A., Taheri, S., Ghadimi, P., Samanm, M., Wong, K.: Order Batching
in Warehouses by Minimizing Total Tardiness: A Hybrid Approach of Weighted
Association Rule Mining and Genetic Algorithms (Scientific World Journal) (2013)

4. Bartholdi, J., Hackman, S.: Warehouse and distribution science Release 0.98
(2019)

5. Bozer, Y.A., Kile, J.W.: Order batching in walk-and-pick order picking systems.
International Journal of Production Research 46(7), 1887–1909 (2008)

6. Briant, O., Cambazard, H., Cattaruzza, D., Catusse, N., Ladier, A.L., Ogier, M.:
An efficient and general approach for the joint order batching and picker routing
problem. European Journal of Operational Research 285(2), 497 – 512 (2020)

7. Bué, M., Cattaruzza, D., Ogier, M., Semet, F.: A Two-Phase Approach for an
Integrated Order Batching and Picker Routing Problem. pp. 3–18 (2019)

8. Cergibozan, C., Tasan, A.: Genetic algorithm based approaches to solve the order
batching problem and a case study in a distribution center. Journal of Intelligent
Manufacturing pp. 1–13 (2020)

9. Charris, E., Rojas-Reyes, J., Montoya-Torres, J.: The storage location assignment
problem: A literature review. International Journal of Industrial Engineering Com-
putations 10 (2018)

10. Chen, M.C., Wu, H.P.: An association-based clustering approach to order batching
considering customer demand patterns. Omega 33(4), 333 – 343 (2005)

11. Chew, E.P., Tang, L.C.: Travel time analysis for general item location assignment
in a rectangular warehouse. European Journal of Operational Research 112(3),
582 – 597 (1999)

12. Cook, W.: Concorde TSP Solver (2020), http://www.math.uwaterloo.ca/tsp/concorde/index.html
13. Cordeau, J.F., Laporte, G., Savelsbergh, M., Vigo, D.: Vehicle Routing. In: Trans-

portation, handbooks in operations research and management science, vol. 14, pp.
195–224 (2007)

115

Fig. 4: Six examples of instances (one for each layout type) and solutions (from
top left to bottom right) using SBI with the SMD heuristic. The larger red and
blue dots are the origin and destination locations for vehicles. Each smaller dot
denotes a product and their color denotes the order which the product belongs
to.

116

Table 1: This table shows experimental results on a subset of the Foodmart
dataset

117

Table 2: This table summarizes the experimental results on 14 types of instances
(Foodmart can be seen in the lowest row).

14. Fumi, A., Scarabotti, L., Schiraldi, M.: The Effect of Slot-Code Optimization in
Warehouse Order Picking. International Journal of Business and Management 5
(2013)

15. Gademann, N., Velde, V.d.S.: Order batching to minimize total travel time in a
parallel-aisle warehouse. IIE Transactions 37(1), 63–75 (2005)

16. Gue, K.R., Meller, R.D.: Aisle configurations for unit-load warehouses. IIE Trans-
actions 41(3), 171–182 (2009)

17. Hahsler, M., Kurt, H.: TSP – Infrastructure for the Traveling Salesperson Prob-
lem. Journal of Statistical Software 2, 1–21 (2007)

18. Henn, S.: Algorithms for on-line order batching in an order picking warehouse.
Computers & Operations Research 39(11), 2549 – 2563 (2012)

19. Henn, S., Wäscher, G.: Tabu search heuristics for the order batching problem in
manual order picking systems. European Journal of Operational Research 222(3),
484 – 494 (2012)

20. Ho, Y.C., Su, T.S., Shi, Z.B.: Order-batching methods for an order-picking ware-
house with two cross aisles. Computers & Industrial Engineering 55(2), 321 – 347
(2008)

21. Jiang, X., Zhou, Y., Zhang, Y., Sun, L., Hu, X.: Order batching and sequenc-
ing problem under the pick-and-sort strategy in online supermarkets. Procedia
Computer Science 126, 1985 – 1993 (2018)

22. Koster, M.B.M.D., Poort, E.S.V.d., Wolters, M.: Efficient orderbatching methods
in warehouses. International Journal of Production Research 37(7), 1479–1504
(1999)

23. Koster, R.d., Le-Duc, T., Roodbergen, K.J.: Design and control of warehouse order
picking: A literature review. European Journal of Operational Research 182(2),
481 – 501 (2007)

118

24. Kulak, O., Sahin, Y., Taner, M.E.: Joint order batching and picker routing in single
and multiple-cross-aisle warehouses using cluster-based tabu search algorithms.
Flexible Services and Manufacturing Journal 24(1), 52–80 (2012)

25. Le-Duc, T., Koster, R.M.B.M.d.: Travel time estimation and order batching in a
2-block warehouse. European Journal of Operational Research 176(1), 374–388
(2007)

26. Li, J., Huang, R., Dai, J.B.: Joint optimisation of order batching and picker routing
in the online retailer’s warehouse in China. International Journal of Production
Research 55(2) (2017)

27. Masae, M., Glock, C.H., Grosse, E.H.: Order picker routing in warehouses: A
systematic literature review. International Journal of Production Economics 224,
107564 (2020)

28. Mańdziuk, J., Świechowski, M.: UCT in Capacitated Vehicle Routing Problem
with traffic jams. Information Sciences 406-407, 42 – 56 (2017)

29. Nieuwenhuyse, I., De Koster, R., Colpaert, J.: Order batching in multi-server pick-
and-sort warehouses. Katholieke Universiteit Leuven, Open Access publications
from Katholieke Universiteit Leuven (2007)

30. Okulewicz, M., Mańdziuk, J.: The impact of particular components of the PSO-
based algorithm solving the Dynamic Vehicle Routing Problem. Applied Soft Com-
puting 58, 586 – 604 (2017)

31. Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L.: A review of dynamic vehicle
routing problems. European Journal of Operational Research 225(1), 1 – 11 (2013)

32. Psaraftis, H., Wen, M., Kontovas, C.: Dynamic Vehicle Routing Problems: Three
Decades and Counting. Networks 67 (2015)

33. Ratliff, H., Rosenthal, A.: Order-Picking in a Rectangular Warehouse: A Solvable
Case of the Traveling Salesman Problem. Operations Research 31, 507–521 (1983)

34. Rensburg, L.J.v.: Artificial intelligence for warehouse picking optimization - an
NP-hard problem. Master’s thesis, Uppsala University (2019)

35. Roodbergen, K.J., Koster, R.: Routing methods for warehouses with multiple cross
aisles. International Journal of Production Research 39(9), 1865–1883 (2001)

36. Rosenwein, M.B.: A comparison of heuristics for the problem of batching orders
for warehouse selection. International Journal of Production Research 34, 657–664
(1996)

37. Sharp, G., Gibson, D.: Order batching procedures. European Journal of Opera-
tional Research (58) (1992)

38. Valle, C., Beasley, B.: Order batching using an approximation for the distance
travelled by pickers (European Journal of Operational Research) (2019)

39. Valle, C., Beasley, J.E., da Cunha, A.S.: Optimally solving the joint order batching
and picker routing problem. European Journal of Operational Research 262(3),
817–834 (2017)

40. Yu, M., Koster, R.B.M.d.: The impact of order batching and picking area zoning
on order picking system performance. European Journal of Operational Research
198(2), 480 – 490 (2009)

119

120

Efficient Order Batching Optimization using Seed

heuristics and the Metropolis algorithm

Johan Oxenstierna, Jacek Malec and Volker Krueger

Abstract

Order Picking in warehouses is often optimized using a method known as

Order Batching, which means that one vehicle can be assigned to pick a batch

of several orders at a time. There exists a rich body of research on Order

Batching Problem (OBP) optimization, but one area which demands more

attention is computational efficiency, especially for optimization scenarios

where warehouses have unconventional layouts and vehicle capacity

configurations. Due to the NP-hard nature of the OBP, computational cost for

optimally solving large instances is often prohibitive. In this paper we compare

the performance of two approximate optimizers designed for maximum

computational efficiency. The first optimizer, Single Batch Iterated (SBI), is

based on a Seed Algorithm, and the second, Metropolis Batch Sampling

(MBS), is based on a Metropolis algorithm. Trade-offs in memory and CPU-

usage and generalizability of both algorithms is analysed and discussed.

Existing benchmark datasets are used to evaluate the optimizers on various

scenarios. On smaller instances we find that both optimizers come within a few

percentage points of optimality at minimal CPU-time. For larger instances we

find that solution improvement continues throughout the allotted time but at a

rate which is difficult to justify in many operational scenarios. SBI generally

121

outperforms MBS and this is mainly attributed to the large search space and

the latter’s failure to efficiently cover it. The relevance of the results within

Industry 4.0 era warehouse operations is discussed.

1. Introduction

Order Picking is the process in which sets of products (orders) are retrieved

from locations in a warehouse. Order Batching is a method in which vehicles

can be assigned to pick several orders at a time. Order Batching can be

formulated as an optimization problem known as the Order Batching Problem

(OBP) (Gademann et al., 2001) or the Joint Order Batching and Picker Router

Problem (JOBPRP) (Valle et al., 2017), where the Picker Router Problem is a

Traveling Salesman Problem (TSP) applied in a warehouse environment

(Ratliff & Rosenthal, 1983). We consider the OBP and JOBPRP versions

equivalent if solutions to the OBP are assumed to include TSP solutions

(henceforth we use the term OBP to refer to this version). There are several

other versions and focus areas in OBP’s, including dynamicity, traffic

congestion, depot setups and obstacle layouts. One focus area is optimization

aimed towards maximum computational efficiency. As will be laid out in

Section 2, computational efficiency has both direct and indirect impacts on the

quality of warehouse operations. Authors generally consider it to be important,

but there are significant differences in how CPU-times and timeouts are used.

Although the variability of OBP versions and corresponding results concerning

computational efficiency is high, we believe more research in this domain is

warranted. We delimit our work to OBP’s where the objective is to minimize

aggregate distances, and as measurement of computational efficiency we use

the rate with which aggregate distance is reduced through CPU-time. We use

the following two OBP optimizers: Single Batch Iterated (SBI) (Oxenstierna

et al., 2021, 2022) and Metropolis Batch Sampling (MBS) (introduced in this

paper). We compare the aggregate distance result between the two optimizers,

and also compare against results on public OBP benchmark datasets. We use a

distance based OBP cost because this is the predominant Key Performance

Indicator (KPI) in benchmark datasets. Although a KPI based on capital cost

is what is mostly sought by warehouse management, it is more complex: There

are a multitude of features that can go into capital, such as time-based aspects

of work, traffic congestion, maintenance, ergonomics etc. A distance based

122

KPI allows for a simpler model and a more generalized way in which to

reproduce benchmark data and results.

We only work with CPU-times in the range 0 – 300 seconds. Results are

compared with previous work by Aerts et al. (2021) and Henn & Wäscher

(2012) who have proposed approximate optimization results for sets of smaller

instance sizes. For smaller instances we also assess results against optimal

results on the Foodmart dataset (Briant et al. 2020). For larger instances we

use L09_251 (Oxenstierna et al., 2022). As far as we are aware, there exists no

standard benchmark format in OBP research, rendering experiment

reproducibility difficult. Further discussions on how to represent key OBP

features in reproducible data is highly relevant. Our research contributions are

as follows:

• An investigation into the importance of computational efficiency in

OBP optimization.

• Experiments regarding computational efficiency of two OBP

optimizers on existing test-instances.

2. Literature Review

In this section we first present how the OBP and some of its key features are

formulated in the literature. Then we present commonly used OBP

optimization algorithms and heuristics. Finally, we present how computational

efficiency has been motivated and evaluated for different OBP models.

As several studies have pointed out, the Order Batching Problem (OBP) shares

significant similarities with the more well-known Vehicle Routing Problem

(VRP) (Cordeau et al., 2007; Valle et al., 2017; Valle & Beasley, 2019). Aerts

et al. (2021) distinguish three points of separation between the OBP and a

common VRP:

1. Order-integrity constraint: In the OBP, products belonging to an order

may only be picked by one vehicle, whereas there exists no concept of

orders or order-integrity in the common VRP.

123

2. Number of visits constraint: In the OBP the same location may be

visited several times by various vehicles, whereas a location may only

be visited once in the common VRP.

3. Obstacle-layout: In the OBP it is assumed that there exists an obstacle

layout, whereas there is no such assumption in the common VRP.

Concerning the latter point, most of the research on the OBP assumes that the

warehouse uses a conventional layout, which means racks are arranged with

parallel aisles (between racks) and parallel cross-aisles (between sections of

racks) (Masae et al., 2020). If these conditions are not met the layout is

unconventional (see Figure 1).

Figure 1: Examples of the conventional (top) and a unconventional (bottom) layout warehouse, and OBP’s

with four orders from Oxenstierna et al., (2022). The colored diamonds denote origin and destination
locations. The colored dots denote products and the orders which they belong to. In the solutions (right of

the arrows), one vehicle is assigned to pick the red and lime orders and a second vehicle is assigned to pick

the blue and green orders.

Aerts et al. argue that the OBP can be modelled as a Clustered VRP (CluVRP)

with weak cluster constraints. Weak cluster constraints mean that a vehicle

may visit the locations in several clusters of locations in any sequence. The

CluVRP was first introduced by Defryn & Sörensen (2017) and according to

Aerts et al. (2021) it is equivalent to the OBP since clusters can be mapped as

orders. In experiments they utilize this problem on a conventional layout

warehouse and on OBP scenarios involving up to 100 orders.

For conventional layouts, proposed optimization algorithms include integer

programming (Valle et al., 2017), clustering (Kulak et al., 2012), datamining

(Chen & Wu, 2005), dynamic programming (Briant et al., 2020) meta-

heuristics and heuristics. Examples of meta-heuristics include Variable

Neighborhood Search (Aerts et al., 2021), Tabu Search (Henn & Wäscher,

2012), Ant Colony Optimization (Li et al., 2017) and Genetic Algorithms

124

(Cergibozan & Tasan, 2020). The heuristic algorithms can be divided into three

categories: Priority rule-based algorithms, savings algorithms and seed

algorithms (Henn et al., 2010). Priority-rule based algorithms build batches by

sorting orders according to a heuristic, for example First-Come-First-Serve,

First-Fit or Best-Fit. In savings algorithms batches with single orders are first

initialized and evaluated. Then, pairs, triplets and larger batches of orders are

constructed and the combination with the best total result is retrieved (Henn &

Wäscher, 2012). In seed algorithms batches are generated in two phases: Seed-

selection and order addition. In the first phase an initial seed order is selected.

In order-addition orders are then added to the seed order. There are many

choices for seed algorithms, with corresponding advantages and disadvantages

depending on the usecase (Ho et al., 2008; Kulak et al., 2012; Scholz et al.,

2017). One example is the Sequential Minimal Distance (SMD) heuristic

(Sharp & Gibson, 1992), where the sum of minimal distances between products

in the seed order and remaining orders is computed:

𝑆𝑀𝐷(𝑠, 𝑜) = ∑ 𝑚𝑖𝑛
𝑗∈𝑜

|𝑑𝑖𝑗| ,

𝑖∈𝑠

 𝑜 ∈ 𝒪, 𝑜 ∉ 𝑏, 𝑠 ∈ 𝑏
(1)

where 𝑠 denotes a seed order in batch 𝑏, where 𝑜 denotes an order which does

not exist in 𝑏, and where 𝑖 and 𝑗 denote products in order 𝑠 and 𝑜 respectively.

Whenever there are more than two products in a batch, some form of TSP

optimization is often used within the OBP optimizer. For conventional layouts,

the highly efficient S-shape or Largest Gap algorithms are commonly used

(Henn, 2012; Roodbergen & Koster, 2001). We are not aware of any attempts

to extend these to unconventional layouts. Given a distance matrix is provided,

however, TSP’s can be optimized reasonably fast using OR-tools (Kruk, 2018)

or Concorde (D. Applegate et al., 2002; D. L. Applegate et al., 2006).

Concorde, for example, is almost guaranteed to find the shortest path of a TSP

with 100 nodes in less than one second (D. L. Applegate et al., 2006).

OBP models can be divided into static and dynamic: Dynamic models are

generally more realistic than static ones (incoming orders are there assumed to

be known beforehand). The literature still tends to model OBP’s as static since

dynamicity incurs more complexity (Scholz et al., 2017).

The importance of computational efficiency in OBP optimization can be

derived from two types of factors. The first type has an immediate impact on

operations in the warehouse. As an example, optimization should ideally be

faster than the time it takes a vehicle to finish a picking round (Henn, 2012;

125

Scholz et al., 2017). Otherwise, vehicles must wait in an idle state at the depot

while optimization finishes.

The second type concerns a larger perspective with flexible 4.0 industry-era

integration and business utility. As an example, if an OBP optimization module

is deployed on the cloud as a 3rd party software service (SaaS), a Warehouse

Management System (WMS) client may be more interested in buying it if it is

safe and simple to integrate. Longer CPU-times generally make it harder to set

up a system (at least as a microservice) so that these two conditions are fulfilled

(Esposito et al., 2016). Furthermore, rental and electricity cost of servers can

naturally be assumed to rise with CPU-times (Naumenko & Petrenko, 2021).

In the broader literature on the OBP, the second type of factors are rarely

discussed. CPU times are chosen to be “tolerable” (Kulak et al., 2012),

“reasonable” (Bozer & Kile, 2008) or “acceptable” (Aerts et al., 2021; Scholz

et al., 2017), but often lack in concrete explanations of what these terms entail.

Some examples are provided below for how researchers have used CPU-times

and timeouts in optimization experiments with OBP’s.

For approximate optimization, Henn & Wäscher (2012) use timeouts between

1 – 180 seconds for a heuristic optimizer and OBP’s where 40 – 100 unassigned

orders are to be batched. Aerts et al. (2021), use timeouts between 1 and 60

seconds on the same instance set and propose a meta-heuristic algorithm

specifically designed to terminate at around 60 seconds, since solution

improvement is found to be insignificant beyond that point. Both Aerts et al.

and Henn & Wäscher’s algorithms come to within 5% of the best solution

overall within the first 10% of optimization time. Scholz et al. (2017)

experiment with instances of similar size but in a dynamic setting and report a

much lower efficiency: 70% of maximum allowed CPU-time is necessary to

reach within 5% of best solution overall. Efficiency also decreases non-linearly

with instance size in their results: For 10 orders their optimizer needs 2

seconds, for 100 orders it needs 11 minutes, and for 200 orders 60 minutes.

Henn (2012) also presents an algorithm for dynamic OBP’s and sets it to self-

terminate after 60 seconds, partly due to operational considerations (to avoid

vehicles from idling at the depot). Many publications do not present concrete

results for timeouts or rate of solution improvement, or a low number of

experiments (Azadnia et al., 2013; Bué et al., 2019; Jiang et al., 2018). Kulak

et al. (2012) and Li et al. (2017), for example, present highly efficient meta-

heuristic optimizers, but only on 5 to 10 instances, and do not include rate of

solution improvement in their results. For authors presenting algorithms

capable of finding optimal solutions to static OBP’s, Henn & Wäscher (2012)

126

set timeouts between 2 – 1328 seconds for instances with up to 60 orders.

Gademann et al. (2001), set timeouts to 10 – 30 minutes for up to 100 orders.

Valle et al. (2017) and Briant et al. (2020), on the Foodmart dataset, present

timeouts in the range 300 seconds to 2 hours to obtain optimal results for 20-

45 orders.

These examples show that computational efficiency in OBP optimization is

difficult to judge generally. Choice of static or dynamic modelling, optimal

versus approximative optimization, experimental setup, instance sizes and the

technology level of used software and hardware, are all aspects that can have

a complex effect on results in this regard.

3. Problem Formulation

We define the OBP objective as the assignment of batches to vehicles such

that the aggregate distance needed to pick the batches is minimized. Each batch

𝑏 consists of a set of one or several orders 𝑏 ∈ 2𝒪, where each 𝑜 ∈ 𝒪 is a subset

of products 𝑜 ∈ 2𝒫. Each product 𝑝 ∈ 𝒫 is a set which includes a unique

product identifier, an order identifier, weight 𝑤 and volume 𝑣𝑜𝑙, 𝑤, 𝑣𝑜𝑙 ∈ ℝ+.

The sum of weight, volume or number of orders in a batch can be retrieved

with function 𝑞(𝑏), 𝑞 ∈ 𝑤, 𝑣𝑜𝑙, 𝑘. The 𝑥, 𝑦 location coordinates of all products

is defined as set ℒ𝒫, and the location of a product is retrievable with function

𝑙(𝑝). The locations of the products in an order are retrievable with function

𝑙(𝑜) =∪𝑝∈𝑜 𝑙(𝑝), and all locations in a batch are retrievable with function

𝑙(𝑏) =∪𝑜∈𝑏 𝑙(𝑜). We define a single origin location for all vehicles 𝑙𝑠, a single

destination location 𝑙𝑑 and a set of polygonal obstacle location sets ℒ𝒰. The

aggregate of all locations is ℒ = {𝑙𝑠} ∪ {𝑙𝑑} ∪ ℒ𝒫 ∪ ℒ𝒰.

We build undirected graph 𝐺 = (𝑉, 𝐸). Each vertex in 𝑉 represents a unique

location in ℒ and function 𝑣(𝑙) gives a vertex for a location. The vertices in

batch 𝑏 includes the origin and destination vertices 𝑣(𝑏) = 𝑣(𝑙𝑠) ∪ 𝑣(𝑙(𝑏)) ∪

𝑣(𝑙𝑑). 𝐸 represents the set of all Euclidean edges between all locations that

circumvent obstacles in ℒ𝒰. Distance matrix 𝐷 and shortest paths between all

edges is computed using the Floyd-Warshall algorithm. How 𝐸 and shortest

paths can be constructed with polygonal obstacles is beyond the scope of this

paper; for details see (Rensburg, 2019). We also permit a surjective

relationship of products to locations, i.e., several types of products can be

stored at the same location and the location represents several real locations in

127

the warehouse. This can be useful to help reduce the memory footprint of 𝐺.

The path to pick batch 𝑏 is retrievable with the following function:

𝑇(𝑏) = {𝑣𝑖}𝑖=1
𝑛 , 𝑛 = |𝑣(𝑏)|,

(2)

𝑣𝑖 = {

𝑣𝑠 𝑖 = 1
𝑣𝑘 1 < 𝑖 < 𝑛
𝑣𝑑 𝑖 = 𝑛

(3)

and represents the solution to a Traveling Salesman Problem (TSP). The

distance of 𝑇(𝑏) is retrievable with function 𝐷(𝑏) = ∑ 𝑑𝑇(𝑏)𝑖𝑇(𝑏)𝑗
, 𝑖, 𝑗 ∈

ℤ+, 𝑗 = 𝑖 + 1, 𝑖 < |𝑇(𝑏)|, where 𝑑 ∈ ℝ+ represents scalar entries in distance

matrix 𝐷. Vehicles are defined as 𝑚 ∈ ℳ where each vehicle has capacities

expressed in weight 𝑤, volume 𝑣𝑜𝑙 and number of orders 𝑘. The scenario

where a vehicle 𝑚 is assigned a batch, order, and/or product location is defined

with binary variables 𝑥𝑚𝑏, 𝑥𝑚𝑜 and 𝑥𝑚𝑙, respectively. We then use the

following OBP formulation:

𝑚𝑖𝑛 ∑ 𝐷(𝑏)𝑥𝑚𝑏,

𝑏∈ℬ

𝑚 ∈ ℳ

s.t.

s.t.

(4)

∑ 𝑥𝑚𝑜

𝑚 ∈ ℳ

= 1, ∀𝑜 ∈ 𝒪

(5)

∑ 𝑥𝑚𝑙

𝑙∈𝑙𝑜𝑐(𝑜)

≥ 𝑥𝑚𝑜, ∀𝑜 ∈ 𝒪, 𝑚 ∈ ℳ
(6)

𝑞(𝑏) ≤ 𝑞(𝑚)𝑥𝑚𝑏, 𝑏 ∈ ℬ,

𝑞 ∈ 𝑤, 𝑣𝑜𝑙, 𝑘, 𝑚 ∈ ℳ

(7)

128

where (4) states the objective, i.e., minimize distances for all generated batches

ℬ, where (5) enforces order-integrity, where (6) enforces all locations in all

orders to be visited at least once and where (7) ensures vehicle capacities are

never exceeded. Since this OBP is highly intractable we also use a less

ambitious objective in the single batch OBP:

𝑎𝑟𝑔𝑚𝑖𝑛
𝑏∈ℬ

𝐷(𝑏) (8)

where the aim is to find a single batch for an already selected vehicle. For this

case we also enforce the single batch to come as close as possible to vehicle

capacity: ∃𝑞(𝑞(𝑏) + 𝑞(𝑜) ≥ 𝑞(𝑚)), ∀𝑜 ∈ 𝒪, 𝑜 ∉ 𝑏, 𝑞 ∈ 𝑤, 𝑣𝑜𝑙, 𝑘.

4. Optimization Algorithms

4.1 Single Batch Iterated (SBI)

SBI (Algorithm 1) is a heuristic multi-phase optimizer. In the core of the

algorithm unassigned orders 𝒪 are iteratively sent as input to the SMD

(Sequential Minimal Distance) function, together with distance matrix 𝐷, a

randomly chosen available vehicle and a semi-stochastic seed order index. The

SMD function builds a single batch 𝑏 by first selecting a seed order according

to the seed index and then adds orders to it according to minimal distances

(Equation 1). Batch 𝑏 is then removed from the set of unassigned orders and

the procedure repeats until all orders have been batched into ℬ. An

approximate solution to the OBP (Equation 4) is thus obtained by pre-selecting

vehicles and approximately solving a single batch OBP for each vehicle

(Equation 8).

129

Algorithm 1: Single Batch Iterated (SBI)

Number of iterations (𝑁) is used here for brevity and in the implementation

(Section 5) a time-based condition is used to stop the outer loop. The purpose

of the 𝑖 index is to reduce the probability that the same solution is obtained

multiple times, and, if used, it can be set to 𝑁 = |𝒪|, for example. The paths

to visit all locations in batches 𝑏 ∈ ℬ, 𝑇(𝑏) and their distance, ∑ 𝐷(𝑏)𝑥𝑚𝑏𝑏∈ℬ ,
is computed using the OR-tools TSP optimization suite1 (in the TSP function).

OR-tools is set to finish quickly by using a number-of-iterations parameter,

which is set to grow linearly with number of vertices in the TSP. In the

update_best function, the aggregate distance between the new OR-tools cost

(𝑦) is compared against the best OR-tools cost obtained so far (�̂�). If the new

cost is lower, the TSP’s are optimally solved using Concorde2 and if this is

better than the previous Concorde best, the result is stored as the new best in

𝑦∗.

Since the number of SMD computations between orders is approximately

cubic to number of orders, |𝒪| ∑(|𝒪| − 𝑖), 𝑖 ∈ [|𝒪| − 1], we use an SMD

order-order enumerated matrix which is populated through the optimization

procedure: If SMD between two orders does not exist in the matrix, it is

1 https://developers.google.com/optimization/routing/tsp, collected 13-09-2021.

2 http://www.math.uwaterloo.ca/tsp/concorde/index.html, collected 16-09-2021.

https://developers.google.com/optimization/routing/tsp
http://www.math.uwaterloo.ca/tsp/concorde/index.html

130

computed and pushed to the matrix. Once the value is stored it is subsequently

queried. Caching SMD’s reduces number of calls to SMD from cubic to

square, at an insignificant increase in memory usage (~25 megabytes for 5000

orders assuming 8 bits per cell in the matrix). It should be noted that this only

works for an SMD algorithm where the seed is defined as a single order, which

cannot provide more than a noisy estimate of the subsequent TSP solution

distance for batches with more than two orders. We still deem pairwise order-

order SMD caching suitable, since distance estimates are inaccurate even if

SMD’s for larger collections of orders are computed (TSP optimization is

required for accurate estimates). Caching could also be used to store all

generated single batches and their solved TSP’s in a hash tree or equivalent, to

prevent the same TSP to be optimized twice (memoization). We leave an

implementation of this for future work.

One potential issue with SBI is its reliance on the SMD heuristic. Although

SMD makes sure the distance between orders is always minimized for a given

batch, the number of orders to select from decreases through the single-batch

while-loop in Algorithm 1. Hence, the last batch which is created in the while-

loop can be assumed to be of worse quality in terms of distance minimization

relative to the first.

4.2 Metropolis Batch Sampling (MBS)

MBS is a heuristic multi-phase optimizer which uses distance matrix 𝐷, the

Concorde TSP solver (in the TSP function below) and the SMD heuristic to

compute distance between orders. The main difference between SBI and MBS

is that the latter only uses the SMD function to produce an initial solution. A

Metropolis algorithm (Mackay, 1998) is then used to improve on it using the

following procedure:

131

Algorithm 2: Metropolis Batch Sampling

The upper while-loop is equivalent to the one in Algorithm 1. The lower for-

loop consists of a Metropolis algorithm where each new sample is drawn from

a previous one. The function new_sample(ℬ𝑖) uses the following stationary

distribution to describe the probability for a given new sample:

𝑞(ℬ𝑖+1|ℬ𝑖) = 𝑒−2𝐶𝐻𝑑(ℬ𝑖, ℬ𝑖+1)𝑃
 (9)

where C and P are constants and where the 𝐻𝑑(ℬ𝑖, ℬ𝑖+1) function denotes the

number of swapping operations needed to obtain ℬ𝑖+1 from ℬ𝑖. A swapping

operation is defined as a switch of position of two orders in an enumerated set

of batches. Since number of swaps to go from ℬ𝑖 to ℬ𝑖+1 is always equal to

number of swaps to go from ℬ𝑖+1 to ℬ𝑖, the 𝑞 distribution is symmetrical, i.e.,

𝑞(ℬ𝑖+1|ℬ𝑖) = 𝑞(ℬ𝑖|ℬ𝑖+1). A swap is only permitted if vehicle weight and

volume capacity constraints are not broken.

132

The TSP’s of the batches in the new sample are then solved using Concorde

(Section 2) in the TSP function, and the aggregate cost is stored in 𝑦𝑖+1. The

accept probability α is computed based on the following balance condition

(Tak et al., 2018): If 𝑦𝑖+1 < 𝑦𝑖 the new sample is always accepted. If 𝑦𝑖+1 ≥
𝑦𝑖 the sample may still be accepted if a uniform random value is less than α. α

depends on the ratio 𝑦𝑖/𝑦𝑖+1.

Contrary to SBI, the search space of MBS is guaranteed to include the global

optimum, provided the sampling function can output any ℬ that does not break

constraints and enough computational time. This may just as well be a liability,

however, since the search space may be too large for the algorithm to see

optimization gains within reasonable time. We add bias parameter γ ∈ ℝ+ to

allow for experiments where the search space of the algorithm is more

restricted. Without the use of γ, the probability is high that the algorithm steps

away from the SBI local minimum ℬ1 in the very first iteration (which is likely

to happen if 𝑦1/𝑦2 is close to one).

The best sample is assumed to be stored throughout the optimization procedure

(sample storage is omitted from the pseudo-code). Just as with Algorithm 1, a

number of iterations parameter 𝑁 ∈ ℤ+ is shown as stopping condition in

Algorithm 2 for brevity, but in the experiments in Section 5, a CPU-time

condition is used instead. Establishing a suitable 𝑁 for converge is possible by

studying covariance of samples, but it is challenging in the OBP case: ℬ𝑖 is a

set of orders where the orders may contain a variable number of products at

variable locations. Heuristics would thus be needed to quantify covariance

between two samples.

133

5. Experiments

5.1 Benchmark datasets

The publicly shared OBP datasets Foodmart3, L6_2034 and L09_2515 are used

for experimentation. Foodmart was introduced by Valle et al. (2017) and

models a warehouse with a conventional layout and a maximum of 8 aisles and

3 cross-aisles. A feature in Foodmart is that vehicles carry bins and that vehicle

capacity is expressed as a volume unit per bin. If an order cannot fit in a single

bin, splitting it between different bins is permitted. SBI and MBS are not

designed for this feature (it constitutes an extra bin packing problem within the

OBP), so a greedy heuristic module is attached to the optimizers for the

Foodmart experiment (for details see Oxenstierna et al., 2021).

L6_203 and L09_251 model scenarios for one conventional and up to six

unconventional warehouse layouts and multiple depots. In these instances,

vehicle capacity is expressed in number of orders and total number of orders

generally range between 4-50. All but 6 Foodmart instances also fit within this

range. For total number of orders in the range 50-1000 we use L09_251.

Number of orders only gives a rough idea of how much CPU-time might

reasonably be needed to optimize an OBP instance. Number of products per

order and vehicle capacities are further examples of features that have a

considerable impact. To classify instances by size, we use the amount of

computational time needed to obtain the SMD baseline solution: 0-2, 2-4, 4-7

or >7 seconds. The resulting number of instances for the four classes are as

follows: 0-2 s: 335, 2-4 s: 179, 4-7 s: 91, >7 s: 56. The maximum permitted

CPU-time for the 0-2 s instances is set to 20 seconds and 300 seconds for the

remaining ones. For all our experiments we use Intel Core i7-4710MQ 2.5 GZ

4 cores, 16 GB RAM.

3 https://pagesperso.g-scop.grenoble inp.fr/~cambazah/ batching/, collected 19-05-2022 (135

instances).

4 https://github.com/johanoxenstierna/OBP_instances, collected 19-05-2022 (257 instances).

5 https://github.com/johanoxenstierna/L09_251, collected 19-05-2022 (269 instances).

https://github.com/johanoxenstierna/OBP_instances
https://github.com/johanoxenstierna/L09_251

134

5.2 Experiment results

Aggregations of all results are presented in Figure 2, Figure 3, Table 1 and

Table 2 (Appendix). In Figure 2, the relative improvement rates from the

baseline are shown for the two optimizers and four instance size classes. The

shades around the lines represent 95% confidence intervals.

In terms of rate of solution improvement, SBI performs stronger than MBS

across all instance size classes, and the difference grows with instance size.

The MBS results shown are for parameter values 𝐶 = 0.1, 𝑃 = 1, γ = 10

(Section 4.2), retrieved from early testing. A γ value of 1 (the standard

Metropolis algorithm), yields weaker results.

Overall, the solution improvement rates for the two smaller instance classes

(blue and orange) corroborate those of Henn & Wäscher (2012) and Aerts et

al. (2021): Improvements are significant in the initial stage of optimization (1-

4% improvement over baseline within the first 10% of optimization) and then

taper off. In our case all instances with up to 100 orders require no more than

2 seconds to obtain the SBI baseline.

The Foodmart instances (all except 6) fit within the smallest class and there we

compare our strongest results against optimal results in Briant et al. (2020): On

average a gap to optimality of 2.3% is achieved after a maximum of 10

seconds. The average gap between the baseline solution and the best solution

found is 3.2% on Foodmart. On generated instances in L6_203 the

corresponding gap is 3.5%. For the larger two instance classes (>4 seconds to

find a baseline solution), the pattern is similar, but more time is needed to reach

the same percentage improvement over the baseline.

135

Figure 2: Optimization time versus relative OBP distances in percentages, for four instance size classes (661

total instances). The smallest instances (blue) end at a 20 second timeout.

136

Figure 3: Optimization time versus standardized absolute distance savings, for four instance size classes.

In terms of absolute distance rate of improvement, we first standardize the data

such that the average pick round is of similar length between the three datasets.

The absolute distance improvements for the four instance size classes are

shown in Figure 3. One observable pattern in Figure 3 is that larger OBP’s tend

to see more solution improvement. One explanation for this is that the

137

probability of finding a strong baseline decreases with larger instances, and

possible optimization gains can therefore be assumed to also be larger. The red

curves (>7 s), for example, yield weaker results in the beginning and stronger

results in the end, relative to the green curves (4-7 s). It takes around 4 minutes

to get there, however. Since there are only 56 instances in the red class, more

data would be needed to investigate this pattern further and to narrow the

confidence intervals.

The best achieved rates of solution improvement decrease to less than <1% /

minute after the initial gains taper off (after 30 – 60 seconds for the larger

instances in Figure 2). In terms of standardized distance, this is on average

equivalent to around 18% of the length of a single batch TSP solution (~12

standardized distance units).

As discussed in Section 2, judgement of results in light of previous work is

challenging due to the high variability of OBP models. Overall, we believe 1%

/ min is a slow rate of improvement and that it would be difficult to justify in

many OBP scenarios, especially when considering the advantages of short

CPU-times discussed in Section 2.

There are several possible reasons why MBS performs worse than SBI. One

is that the relatively general application of the Metropolis algorithm faces a

search space which is far too large for it to adequately sample within the

allotted time. Even with a high amount of extra bias, imposed through

manually added parameter 𝛾, MBS is not able to find and improve on samples

faster than SBI. The purely heuristic and more biased SBI optimizer has no

global optimum guarantee due to the SMD heuristic, but it instead guarantees

that each sample is a relatively strong local minimum. Using the semi-

stochastic seed index within the SMD function (Section 4.1) also makes sure

that the SBI local minimums are uncorrelated to some extent. Another possible

advantage of SBI is that it uses an approximate TSP optimizer to filter out

promising samples before solving them optimally. Tests show that both TSP

optimizers (Concorde and OR-tools) perform relatively similar in terms of

CPU-time on the given instance set: Its TSP’s are often quite short (5 – 20

locations) and there is a significant amount of static CPU-time software

overhead relative to the actual TSP optimization for these cases. The main

optimization result is that the SMD heuristic proves useful, at least in terms of

computational efficiency, the way it is used within the SBI optimizer and for

the OBP version at hand.

138

6. Conclusion

We investigated computational efficiency in approximate Order Batching

Problem (OBP) optimization. In previous work, computational efficiency has

not been given enough attention, especially when considering unconventional

warehouse layouts and vehicle types (Aerts et al., 2021). It is an important

topic that affects operational costs both directly and indirectly, however. In

experiments we studied the computational efficiency of two approximate

optimizers, Single Batch Iterated (SBI) and Metropolis Batch Sampling

(MBS). They both begin by obtaining an initial solution using the Sequential

Minimal Distance (SMD) heuristic. SBI then improves on this solution by

rerunning the SMD selection procedure using a semi-stochastic seed-order

index, whereas MBS improves on the initial solution using a Metropolis

algorithm.

For OBP instances with up to 100 orders and a few seconds of CPU-time, both

optimizers yield distances only a few percentage points higher than results

obtained at timeout (or optimal results where such are available). The result

corroborates previous research claims: Fast approximate optimization is a

practicable choice in common OBP scenarios (Bozer & Kile, 2008; Kulak et

al., 2012).

For larger instances, with 100 – 1000 orders, more time is required to obtain

similar optimization gains. The standardized absolute distance saved through

the optimization procedure grows similarly for all instance sizes. In SBI’s case

this can be explained since weak batches (with products located far from each

other) are only constructed whenever there are few orders left to select from

(SMD prevents this in other cases). This phenomenon occurs an equal number

of times regardless of instance size and the amount of possible solution

improvement in larger instances is thus relatively low. MBS does not face this

particular issue, but on the other hand it has no mechanism to reduce the vast

search space. MBS generally performs worse than SBI within the 5 minute

timeout, particularly on larger instances.

Regardless of instance size, we conclude that that the value in spending

significantly more CPU-time to obtain a result a few percentage points better

than a baseline, must be weighed against the less measurable and indirect costs

that come with lower computational efficiency. Although several authors have

problematized large CPU-time requirements for OBP optimization (Bozer &

Kile, 2008; Kulak et al., 2012; Valle & Beasley, 2019), it is challenging to

139

judge optimization efficiency generally due to the large variability of OBP

usecases (Section 2).

For future work we believe the investigation can be widened to include more

optimizers. MBS could be replaced by similar but more biased MCMC

algorithms, such as Simulated Annealing (Rajasekaran & Reif, 1992) or Basin

Hopping (Wales & Doye, 1997). Heuristics to add even more bias to these

algorithms might be needed, however. Examples include mode-jumping (Tak

et al., 2018) and restarts (Yu et al., 2021), which prevent convergence on local

minima. Also, the number of required samples (𝑁) for convergence could be

estimated for various MCMC algorithms by calculating covariance between

generated samples. That way, maximum CPU-time can be set in a more

informed manner. For SBI, the Sequential Minimal Distance (SMD) heuristic

could be replaced by alternatives which may be more suitable for the

unconventional layout. We believe there are significant savings to be made in

optimization if more memory is allocated to store and reuse parts of expensive

computations. Modeling of OBP’s and data-driven performance evaluation are

also of primary importance. Currently there exists no standard format for OBP

benchmark datasets and this poses a serious threat to scientific reproducibility.

Since there are many possible versions of OBP’s, the community needs to

discuss how a standard format for OBP benchmark data can be designed to

balance realism with simplicity and reproducibility.

Compliance with ethical standards: Funding: This work was partially

supported by the Wallenberg AI, Autonomous Systems and Software Program

(WASP). Conflict of Interest: The authors declare that they have no conflict of

interest. This article does not contain any studies with human participants or

animals performed by any of the authors.

140

References

Aerts, B., Cornelissens, T., & Sörensen, K. (2021). The joint order batching and picker routing

problem: Modelled and solved as a clustered vehicle routing problem. Computers &

Operations Research, 129, 105168. https://doi.org/10.1016/j.cor.2020.105168

Applegate, D., Cook, W., Dash, S., & Rohe, A. (2002). Solution of a Min-Max Vehicle Routing

Problem. INFORMS Journal on Computing, 14, 132–143.

Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2006). The traveling salesman

problem: A computational study. Princeton university press.

Azadnia, A. H., Taheri, S., Ghadimi, P., Samanm, M. Z. M., & Wong, K. Y. (2013). Order

Batching in Warehouses by Minimizing Total Tardiness: A Hybrid Approach of Weighted

Association Rule Mining and Genetic Algorithms. Scientific World Journal.

Bozer, Y. A., & Kile, J. W. (2008). Order batching in walk-and-pick order picking systems.

International Journal of Production Research, 46(7), 1887–1909.

Briant, O., Cambazard, H., Cattaruzza, D., Catusse, N., Ladier, A.-L., & Ogier, M. (2020). An

efficient and general approach for the joint order batching and picker routing problem.

European Journal of Operational Research, 285(2), 497–512.

https://doi.org/10.1016/j.ejor.2020.01.059

Bué, M., Cattaruzza, D., Ogier, M., & Semet, F. (2019). A Two-Phase Approach for an

Integrated Order Batching and Picker Routing Problem (pp. 3–18).

Cergibozan, Ç., & Tasan, A. (2020). Genetic algorithm based approaches to solve the order

batching problem and a case study in a distribution center. Journal of Intelligent

Manufacturing, 1–13. https://doi.org/10.1007/s10845-020-01653-3

Chen, M.-C., & Wu, H.-P. (2005). An association-based clustering approach to order batching

considering customer demand patterns. Omega, 33(4), 333–343.

https://doi.org/10.1016/j.omega.2004.05.003

Cordeau, J.-F., Laporte, G., Savelsbergh, M., & Vigo, D. (2007). Vehicle Routing. In

Transportation, handbooks in operations research and management science (Vol. 14, pp.

195–224).

Defryn, C., & Sörensen, K. (2017). A fast two-level variable neighborhood search for the

clustered vehicle routing problem. Computers & Operations Research, 83, 78–94.

https://doi.org/10.1016/j.cor.2017.02.007

Esposito, C., Castiglione, A., & Choo, K.-K. R. (2016). Challenges in Delivering Software in

the Cloud as Microservices. IEEE Cloud Computing, 3(5), 10–14.

https://doi.org/10.1109/MCC.2016.105

Gademann, A. J. R. M. (noud), Van Den Berg, J. P., & Van Der Hoff, H. H. (2001). An order

batching algorithm for wave picking in a parallel-aisle warehouse. IIE Transactions,

33(5), 385–398.

Henn, S. (2012). Algorithms for on-line order batching in an order picking warehouse.

Computers & Operations Research, 39(11), 2549–2563.

141

Henn, S., Koch, S., Doerner, K. F., Strauss, C., & Wäscher, G. (2010). Metaheuristics for the

order batching problem in manual order picking systems. Business Research, 3(1), 82–

105.

Henn, S., & Wäscher, G. (2012). Tabu search heuristics for the order batching problem in

manual order picking systems. European Journal of Operational Research, 222(3), 484–

494.

Ho, Y.-C., Su, T.-S., & Shi, Z.-B. (2008). Order-batching methods for an order-picking

warehouse with two cross aisles. Computers & Industrial Engineering, 55(2), 321–347.

Jiang, X., Zhou, Y., Zhang, Y., Sun, L., & Hu, X. (2018). Order batching and sequencing

problem under the pick-and-sort strategy in online supermarkets. Procedia Computer

Science, 126, 1985–1993.

Kruk, S. (2018). Practical Python AI Projects: Mathematical Models of Optimization Problems

with Google OR-Tools. Apress.

Kulak, O., Sahin, Y., & Taner, M. E. (2012). Joint order batching and picker routing in single

and multiple-cross-aisle warehouses using cluster-based tabu search algorithms. Flexible

Services and Manufacturing Journal, 24(1), 52–80. https://doi.org/10.1007/s10696-011-

9101-8

Li, J., Huang, R., & Dai, J. B. (2017). Joint optimisation of order batching and picker routing in

the online retailer’s warehouse in China. International Journal of Production Research,

55(2), 447–461. https://doi.org/10.1080/00207543.2016.1187313

Mackay, D. J. C. (1998). Introduction to Monte Carlo Methods. Learning in Graphical Models.

Masae, M., Glock, C. H., & Grosse, E. H. (2020). Order picker routing in warehouses: A

systematic literature review. International Journal of Production Economics, 224,

107564.

Naumenko, T., & Petrenko, A. (2021). Analysis of Problems of Storage and Processing of Data

in Serverless Technologies. Technology Audit and Production Reserves, 2(2), 58.

Oxenstierna, J., Malec, J., & Krueger, V. (2021). Layout-Agnostic Order-Batching

Optimization. International Conference on Computational Logistics, 115–129.

Oxenstierna, J., Malec, J., & Krueger, V. (2022). Analysis of Computational Efficiency in

Iterative Order Batching Optimization. Proceedings of the 11th International Conference

on Operations Research and Enterprise Systems - ICORES, 345–353.

https://doi.org/10.5220/0010837700003117

Rajasekaran, S., & Reif, J. H. (1992). Nested annealing: A provable improvement to simulated

annealing. Theoretical Computer Science, 99(1), 157–176. https://doi.org/10.1016/0304-

3975(92)90177-H

Ratliff, H., & Rosenthal, A. (1983). Order-Picking in a Rectangular Warehouse: A Solvable

Case of the Traveling Salesman Problem. Operations Research, 31, 507–521.

Rensburg, L. J. van. (2019). Artificial intelligence for warehouse picking optimization—An NP-

hard problem [Master’s Thesis]. Uppsala University.

Roodbergen, K. J., & Koster, R. (2001). Routing methods for warehouses with multiple cross

aisles. International Journal of Production Research, 39(9), 1865–1883.

142

Scholz, A., Schubert, D., & Wäscher, G. (2017). Order picking with multiple pickers and due

dates – Simultaneous solution of Order Batching, Batch Assignment and Sequencing,

and Picker Routing Problems. European Journal of Operational Research, 263(2), 461–

478. https://doi.org/10.1016/j.ejor.2017.04.038

Sharp, G. P., & Gibson, D. R. (1992). Order batching procedures. European Journal of

Operational Research, 58.

Tak, H., Meng, X.-L., & Dyk, D. A. van. (2018). A Repelling–Attracting Metropolis Algorithm

for Multimodality. Journal of Computational and Graphical Statistics, 27(3), 479–490.

https://doi.org/10.1080/10618600.2017.1415911

Valle, C. A., & Beasley, B. A. (2019). Order batching using an approximation for the distance

travelled by pickers. European Journal of Operational Research.

Valle, C. A., Beasley, J. E., & da Cunha, A. S. (2017). Optimally solving the joint order batching

and picker routing problem. European Journal of Operational Research, 262(3), 817–

834.

Wales, D. J., & Doye, J. P. K. (1997). Global Optimization by Basin-Hopping and the Lowest

Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms. Journal of

Physical Chemistry A, 101, 5111–5116.

Yu, V. F., Winarno, Maulidin, A., Redi, A. A. N. P., Lin, S.-W., & Yang, C.-L. (2021).

Simulated Annealing with Restart Strategy for the Path Cover Problem with Time

Windows. Mathematics, 9(14). https://doi.org/10.3390/math9141625

143

Appendix

Table 1: Aggregation of SBI test-instance results into categories based on number of orders in the OBP’s.

Within each category the average over all results is shown. Whenever the specified time is not relevant or

the optimizer failed to obtain a result within its scope, a minus sign (-) is shown. The distances shown are

standardized.

144

Table 2: Aggregation of MBS test-instance results into categories based on number of orders in the OBP’s.

Within each category the average over all results is shown. Whenever the specified time is not relevant or

the optimizer failed to obtain a result within its scope. The distances shown are standardized.

145

Storage Assignment using Nested Metropolis

Sampling and Approximations of Order Batching

Travel Costs

Johan Oxenstierna, Jacek Malec and Volker Krueger

Abstract

The Storage Location Assignment Problem (SLAP) is of central importance in

warehouse operations. An important research challenge lies in generalizing the

SLAP such that it is not tied to certain order-picking methodologies,

constraints, or warehouse layouts. We propose the OBP-based SLAP, where

the quality of a location assignment is obtained by optimizing an Order

Batching Problem (OBP). For the optimization of the OBP-based SLAP, we

propose a nested Metropolis algorithm. The algorithm includes an OBP-

optimizer to obtain the cost of an assignment, as well as a filter which

approximates OBP costs using a model based on the Quadratic Assignment

Problem (QAP). In experiments, we tune two key parameters in the QAP

model, and test whether its predictive quality warrants its use within the SLAP

optimizer. Results show that the QAP model’s per-sample accuracy is only

marginally better than a random baseline, but that it delivers predictions much

faster than the OBP optimizer, implying that it can be used as an effective filter.

We then run the SLAP optimizer with and without using the QAP model on

industrial data. We observe a cost improvement of around 23% over 1 hour

with the QAP model, and 17% without it. We share results for public instances

on the TSPLIB format.

146

1. Introduction

Charris et al. (2018) gives the following definition of a Storage Location

Assignment Problem (SLAP): The “allocation of products into a storage space

and optimization of the material handling (…) or storage space utilization

[costs]”. The relationship between material handling costs, on the one hand,

and storage assignment, on the other, can be showcased in an example: If a

vehicle needs to pick a set of products, its travel cost clearly depends on where

the products are stored in the warehouse. At the same time, the development

of an effective storage strategy needs to consider various features in material

handling, such as vehicle constraints, traffic conventions and picking

methodologies.

In this paper, we work with a version of the SLAP which is particularly

generalizable. Kübler et al. (2020), name this version the “joint storage

location assignment, order batching and picker routing problem”. The main

characteristic of this problem is the inclusion of two optimization problems in

the SLAP:

1. The Order Batching Problem (OBP), where vehicles are assigned to

carry sets of orders (an order is a set of products) (Koster et al., 2007).

2. The Picker Routing Problem, where a short picking path of a vehicle

is found for the products that the vehicle is assigned to pick. The Picker

Routing Problem is a Traveling Salesman Problem (TSP) applied in a

warehouse environment (Ratliff & Rosenthal, 1983).

Henceforth, we refer to this version as the OBP-based SLAP. A key advantage

of using the OBP within the SLAP is the added flexibility and generality of the

order on a conceptual level: For example, optimizing the OBP-based SLAP

gives opportunity to also optimize the TSP-based SLAP (Oxenstierna et al.,

2023). When it comes to product locations, the sole difference between the

OBP and the OBP-based SLAP is that locations for all products are assumed

fixed in the former while, in the latter, they are assumed mutable (for a subset

of locations in our case).

147

Figure 1: Example storage assignment of four products and subsequent order-picking for the SLAP model
used in the paper. Rectangles denote warehouse racks. Red and blue diamonds denote origin/destination for

picking paths. Colored dots denote products and the four orders they belong to. Black crosses denote

available locations for the new products. Note that products are often more spread out than what is shown

in this example.

It is of scientific importance to be able to compare optimization approaches

and solutions. For the SLAP, this is made difficult by the many versions of the

problem. As the extensive literature review by Charris et al. (2018) shows,

there is little consensus regarding which versions are more important, or

specifically, which features would represent a standardized version. Examples

of such features are dynamicity, warehouse layout, vehicle types, cost

functions, reassignment scenarios and picking methodologies. There is also a

shortage of benchmark datasets for any version of the SLAP, which prevents

the reproducibility of experiments (Aerts et al., 2021; Kofler et al., 2014). As

part of our contribution for a standardized version, we suggest a modified

TSPLIB format (Reinelt, 1991) (Section 6). There are several ways in which

to balance between simplicity, reproducibility and industrial applicability

when developing SLAP versions and corresponding instances, however. From

148

the generalization perspective, our model is advantageous in two main areas:

Order-picking methodology and warehouse layout. But it is weak in two other

areas: dynamicity and reassignment scenarios. We describe the meaning of

these choices further in the light of prior work (Section 2) and in our problem

formulation (Section 4). We invite the community to debate which features are

more or less important for a standardized version.

In Section 5, we introduce our SLAP optimizer. It is based on the Metropolis

algorithm, a type of Markov Chain Monte Carlo (MCMC) method. A core

feature of the optimizer is that the quality of a location assignment candidate

is retrieved by optimizing an OBP. Due to the OBP’s NP-hardness, it must be

optimized in a way that trades off solution quality with CPU-time. For this

purpose, we use an OBP optimizer with a high degree of computational

efficiency (Oxenstierna et al., 2022). Within the SLAP optimizer, the OBP

optimizer is still computationally expensive, and we show that it can be

assisted by fast cost approximations from a Quadratic Assignment Problem

(QAP) model. Finally, we test the performance of the SLAP optimizer with

and without inclusion of the QAP approximations. Cost improvements are

around 23% over 1 hour with the QAP model, and 17% without. In summary,

we make three concrete contributions:

1. Formulation of an OBP-based SLAP optimization model and a

corresponding benchmark instance standard.

2. QAP approximation model to predict OBP travel costs and

experiments on generated instances to test whether the use of QAP

approximations within a SLAP optimizer can be justified.

3. An OBP-based SLAP optimizer (QAP-OBP) and experiments on

industry instances to test its computational efficiency. Comparison of

results with and without usage of QAP approximations.

149

2. Related work

This section goes through general strategies for conducting storage location

assignment, as well as ways in which their quality can be evaluated. Various

SLAP formulations and proposed optimization algorithms are covered. Our

primary focus will be on the standard picker-to-parts arrangement. We

specifically refer to the work of Kübler et al. (2020), as their proposed model

aligns with ours.

There exist numerous general strategies for conducting storage location

assignment (Charris et al., 2018). Three key strategies are Dedicated, Class-

based and Random:

• Dedicated: Each product is assigned to a specific location which never

changes. This strategy is suitable if the product collection changes

rarely and simplicity is desired. Additionally, human pickers can

leverage this strategy by familiarizing themselves with specific

products and their corresponding locations, which might speed up their

picking (Zhang et al., 2019).

• Random: Each product can be assigned any available location in the

warehouse. This is suitable whenever the product collection changes

frequently.

• Class-based (zoning): The warehouse is partitioned into sections, and

the products are classified based on their demand. Each class is

assigned a zone. The outline of the zone can be regarded as dedicated

in that it does not change, whereas the placement of each product in a

zone is assumed to be random (Mantel et al., 2007). Class-based

storage assignment can therefore be regarded as a middle ground

between dedicated and random.

The quality of a location assignment is commonly evaluated based on some

model of aggregate travel cost. For this purpose, a simplified simulation of

order-picking in the warehouse can be used (Charris et al., 2018; Mantel et al.,

2007). Some proposals include the simulation of order-picking by the Cube per

Order Index (COI) (Kallina & Lynn, 1976). COI includes the volume of a

product and the frequency with which it is picked (historically or future-

forecasted). Products with high pick frequency and relatively low volume are

subsequently assigned to locations close to the depot. Since orders may contain

products which are not located close to each other, COI is only adequate for

order-picking scenarios where orders contain one product and vehicles carry

150

one product at a time. This may be sufficient for pallet picking or when certain

types of robots are used (Azadeh et al., 2019). Mantel et al. (2007), introduced

Order Oriented Slotting (OOS) where the number of products in an order may

be greater than one. A similar model to OOS is used by Fontana &

Nepomuceno (2017), Lee et al. (2020) and Žulj et al. (2018). The picking cost

of an order in OOS can in some cases be modeled using a Quadratic

Assignment Problem (QAP) (Mantel et al., 2007). The QAP computes the sum

of element-wise products of weights and frequencies (Abdel-Basset et al.,

2018) and for an order this can be translated into distances between products

and how often they are picked. Nevertheless, a QAP on its own is often not

sufficient to model a SLAP without extensive use of heuristics and constraints

for warehouse layouts and picking methodologies (Mantel et al., 2007). For a

layout-agnostic OBP-based SLAP, graph-based QAP techniques could be

attempted, but hitherto they have only been applied on related problems (X.

Wu et al., 2021; Zhou & De la Torre, 2016).

There is only limited research on SLAPs where vehicles are expected to carry

multiple orders and where an Order Batching Problem (OBP) is integrated into

the SLAP optimization process. One example is Xiang et al. (2018) and Yang,

(2022), who use this approach in a robotic warehouse where the vehicles are

pods or mobile racks, which is not easily comparable to a picker-to-parts

system. Another example is Kübler et al. (2020), which we look closer at

below.

Travel distance or time are commonly used to evaluate SLAP solution quality

in the above mentioned models, but there are several alternatives and

extensions. Lee et al. (2020), for example, study the effect of location

assignment and traffic congestion in a warehouse. Assigning too many

products to locations close to the depot (the goal in common COI) may lead to

traffic congestion, which should ideally be considered in an industrial model.

Lee et al. (2020), formulate Correlated and Traffic Balanced Storage

Assignment (C&TBSA) as a multi-objective problem with travel cost on the

one hand, and traffic congestion avoidance on the other. Larco et al. (2017),

include worker welfare in their evaluation of solution quality. If picking is

conducted by humans who move products from shelves onto a vehicle, the

weight and volume, as well as the height of the shelf the product is placed on,

can have an impact on worker welfare. Parameters such as "ergonomic

loading," "human energy expenditure," or "worker discomfort" (Charris et al.,

2018) can be used to quantify worker welfare.

The SLAP can be categorized into two main groups based on the number of

location assignments required. Either the assignment is a “re-warehousing”

151

operation, which means that a large portion of the warehouse’s products are

(re)assigned (Kofler et al., 2014). Often, however, only a small subset of

products are (re)assigned, and this is referred to as “healing” (Kofler et al.,

2014). Solution proposals involving healing often look closely at different

types of scenarios for carrying out initial assignments for new products in the

warehouse, or reassignments for products already in the warehouse. Kübler et

al. (2020), propose four such scenarios.

I. Empty storage location: A product is assigned to a previously

unoccupied location.

II. Direct exchange: A product changes location with another product.

III. Indirect exchange 1: A product is moved to another location which is

occupied by another product. The latter product is moved to a third,

empty location.

IV. Indirect exchange 2: A product is moved to a new location which is

occupied by a second product. The second product is moved to a new

location which is occupied by a third product. The third product is

moved to the original location of the first product.

The above scenarios are all associated with varying levels of effort, ranging

from the lightest in scenario I, to the heaviest in IV. Kübler et al. quantify these

efforts by including both physical and administrative times, which are

transformed to effort terms by proposed proportionalities.

Concerning SLAP optimizers, proposals include models capable of obtaining

optimal solutions, such as Mixed Integer Linear Programming (MILP),

dynamic programming and branch and bound algorithms (Charris et al., 2018).

The warehouse environment is often simplified to a significant degree when

optimal solutions are sought (Charris et al., 2018; Garfinkel, 2005; Kofler et

al., 2014; Larco et al., 2017). The main simplification relates to order-picking

using COI or OOS. Other simplifications involve limiting the number of

products (Garfinkel, 2005), number of locations (J. Wu et al., 2014), or by

requiring the conventional warehouse rack layout (Kübler et al., 2020). The

conventional layout assumes Manhattan style blocks of aisles and cross-aisles,

and it is used almost exclusively in existing literature on the SLAP (we are

only aware of two exception cases using the “fishbone” and “cascade” layouts

(Cardona et al., 2012; Charris et al., 2018).

Most proposed SLAP optimizers provide non-exact solutions using heuristics

or meta-heuristics. One example is multi-phase optimization where the first

phase proposes possible locations for products, and the second phase carries

152

out the assignments and evaluates them (Wutthisirisart et al., 2015). In Kübler

et al. (2020), a heuristic zoning optimizer is used to generate location

assignments, and a Discrete Evolutionary Particle Swarm Optimizer (DEPSO)

is used to optimize an OBP for the evaluation of the assignments. DEPSO is a

modification of a standard PSO algorithm that addresses the risk of

convergence on local minima and allows for a discrete search space. Other

heuristic or meta-heuristic approaches include Genetic and Evolutionary

Algorithms (Ene & Öztürk, 2011; Lee et al., 2020), Ant Colony Optimization

(Yingde & Smith, 2012) and Simulated Annealing (Zhang et al., 2019). If TSP

optimization is desired within a SLAP, S-shape or Largest Gap algorithms

(Roodbergen & Koster, 2001) are often utilized. For TSP-optimization on

unconventional layouts with a pre-computed distance matrix, Google OR-tools

or Concorde have been proposed (Oxenstierna et al., 2022; Rensburg, 2019).

Evaluating the quality of results in prior work is challenging due to the

variability of SLAP models. Below are a few examples where result quality is

judged based on a percentage saving in travel distance or time: For

conventional warehouse layouts, reassignment costs and dynamic picking

patterns, Kofler et al. (2014), report best savings around 21%. Kubler et al.

(2020), report best savings around 22% in a similar scenario. Zhang et al.

(2019) report best savings around 18% on simulated data with thousands of

product locations, but without reassignment costs. In a similar setting, for a

few hundred products, Trindade et al. (2022) report best savings around 33%.

153

3. Nested Metropolis sampling

The proposed optimizer (Section 5) is based on a nested Metropolis algorithm

first introduced by Christen & Fox (2005). The Metropolis algorithm is a type

of Markov Chain Monte Carlo (MCMC) method, which first draws a sample

𝑥𝑖+1 based on a desired feature distance (excluding costs) to a previous sample

𝑥𝑖. The distance is given by some probability distribution 𝑞(𝑥𝑖+1|𝑥𝑖), and it is

usually chosen such that the distance between 𝑥𝑖+1 and 𝑥𝑖 is low with a high

probability (Mackay, 1998). The accept probability is then computed based on

some function that takes the costs of the new and previous samples as input

(van Ravenzwaaij et al., 2018). Common Metropolis sampling assumes that

there is only one cost function, 𝑓∗, and since we wish to include an

approximation of this cost, 𝑓, we use a modification (Christen & Fox, 2005).

Nested Metropolis sampling is shown in flowchart form in Figure 2.

After a first sample 𝑥𝑖 has been initialized (i), a new sample 𝑥𝑖+1 is generated

(ii) and its cost approximated 𝑓(𝑥𝑖+1) (iii). If the approximation is deemed

strong enough (probabilistically) relative to 𝑓(𝑥𝑖), the sample is promoted (iv)

to the next step where its ground-truth cost 𝑓∗(𝑥𝑖+1) is computed (v). The

accept filter (vi) is only used for promoted samples.

For a cost minimization problem, the promote and accept probabilities can be

computed based on the following equations (Christen & Fox, 2005):

𝛼(𝑥𝑖+1|𝑥𝑖) = 𝑚𝑖𝑛(1, 𝑓(𝑥𝑖)/𝑓(𝑥𝑖+1)) (1)

𝛼∗(𝑥𝑖+1|𝑥𝑖) = 𝑚𝑖𝑛(1, 𝑓∗(𝑥𝑖)/𝑓∗(𝑥𝑖+1)) (2)

where 𝛼(𝑥𝑖+1|𝑥𝑖) denotes the promote probability and 𝛼∗(𝑥𝑖+1|𝑥𝑖) the accept

probability.

154

Figure 2: Nested Metropolis Sampling. The inner loop computes a cheap (in terms of CPU-time)
approximation of a sample cost and if the approximation is strong, the sample is promoted to the outer loop

where an expensive ground-truth cost is computed.

155

4. Problem formulation

4.1 Objective function

The objective function in the OBP-based SLAP is based on the ones

formulated in Henn & Wäscher (2012) and Oxenstierna, van Rensburg, et al.

(2021), i.e., the minimization of cost in an Order Batching Problem (OBP):

𝑓∗(𝑥) = 𝑚𝑖𝑛 ∑ 𝐷𝑥(𝑏)𝑎𝑣𝑏 ,

𝑏∈ℬ

𝑣 ∈ 𝑉, ℬ ⊂ 2𝒪
(3)

where 𝒪 denotes orders, where ℬ denotes batches and where 𝐷𝑥(𝑏) denotes

the distance of a TSP solution, i.e., the distance needed to pick batch 𝑏 ∈ ℬ.

Batch 𝑏 is a set of orders and 𝑣 ∈ 𝑉 denotes a vehicle. Each vehicle can carry

one batch and the number of orders that can fit in the batch is governed by

vehicle capacity (such as dimensions, bins, number of orders or products).

𝑎𝑣𝑏 denotes a binary variable set to 1 if vehicle 𝑣 is assigned to pick 𝑏 and 0

otherwise. Orders consist of products 𝒪 ∈ 2𝒫, where each product 𝑝 ∈ 𝒫 is a

tuple consisting of a unique key (Stock Keeping Unit), a Cartesian location

𝑙𝑜𝑐(𝑝), and a positive quantity of how many 𝑝 are available at 𝑙𝑜𝑐(𝑝). The

locations of all products are given by location assignment vector 𝑥, where the

elements represent products and the indices locations (each index is mapped to

a Cartesian coordinate).

The mapping of location keys to coordinates and computation of distances

between pairs of locations is based on a digitization pipeline for warehouses

on any 2D obstacle layout and usage of the Floyd-Warshall graph algorithm.

Details on this digitization pipeline and the OBP (including TSP-optimization

for 𝐷𝑥(𝑏) and usage of vehicle capacity in 𝑎𝑣𝑏) are beyond the scope of this

paper, so for specifics we refer to Oxenstierna, van Rensburg, et al., (2021) and

Rensburg (2019).

The difference between the OBP and the OBP-based SLAP mainly concerns

product locations. In Oxenstierna, van Rensburg, et al. (2021) each product 𝑝

∈ 𝒫 “has a [fixed] location”, meaning that 𝑥 in 𝑓∗(𝑥) is immutable. In the

OBP-based SLAP, however, a subset of products 𝒫𝑠 ⊂ 𝒫 do not have fixed

locations, which means that some elements in 𝑥 can change indices in the

vector. The OBP-based SLAP objective consists of finding location

assignment 𝑥, such that the OBP in Equation 3 is minimized:

156

argmin
𝑥

∑ 𝐷𝑥(𝑏)𝑎𝑣𝑏,

𝑏∈ℬ

𝑣 ∈ 𝑉, ℬ ⊂ 2𝒪
(4)

This objective lacks reassignment costs and is therefore a version of the “empty

storage location” scenario I in Kübler et al. (2020) (Section 2). Exclusion of

reassignment costs is motivated for this scenario, since the initial location

assignment of new products in a warehouse is not optional, but a requirement.

The other of Kübler et al.’s scenarios are all reassignments. Contrary to the

initial assignments that we work with, reassignments can produce an increased

travel cost, as potential gains in order-picking must be weighed against

reassignment costs.

Although reassignments should ideally be included in a complete SLAP model,

a standardized SLAP needs to be a trade-off between simplicity and

complexity. In the TSP-based SLAP (Oxenstierna et al., 2023) it is shown that

the optimization of reassignments is NP-hard and not easily combined with

order-picking optimization within a SLAP. The TSP-based SLAP includes

reassignments, but uses the TSP instead of the OBP to optimize order-picking.

The OBP-based SLAP excludes reassignments, but includes the OBP, a

significantly more challenging problem than the TSP. As is often the case in

literature on the SLAP, choice of optimization model depends on which

features are considered more important for the usecase at hand.

4.2 Fast OBP Cost Approximation

One key difficulty with the OBP-based SLAP is that the OBP poses a highly

intractable problem. Even for relatively small OBP instances, a significant

amount of CPU-time is needed to obtain substantial cost improvements

(Kübler et al., 2020; Oxenstierna et al., 2022). In the case of the OBP-based

SLAP, this means that it would require a large amount of CPU-time to

minimize cost for many assignment candidates 𝑥 (Equation 4). To alleviate this

problem, we propose to include an approximation of 𝑓∗(𝑥):

157

𝑓(𝑥) = ∑ ∑ ∑ ∑ 𝑤𝑝1𝑝2

𝑙2∈ℒ𝒫

𝑙1≠l2

𝑙1∈ℒ𝒫𝑝2∈𝒫
𝑝1≠𝑝2

𝑑𝑙1𝑙2

𝑥 × 𝑎(𝑝1, 𝑙1)𝑎(𝑝2, 𝑙2)

𝑝1∈𝒫

(5)

where 𝑤 denotes weight, where 𝑑𝑙1𝑙2

𝑥 denotes distance between two locations

𝑙1, 𝑙2and 𝑎(𝑝, 𝑙) a function which returns 1 if product 𝑝 is located at location 𝑙
and 0 otherwise. 𝑓(𝑥) is the element-wise summation of weights times

distances. The cell values in the weight matrix represent the number of times

two products, 𝑝1, 𝑝2, appear in the same order 𝑜 ∈ 𝒪. The (shortest) distances

between all pairs of product locations are assumed pre-computed and stored in

memory. We refer to Equation 5 as the Quadratic Assignment Problem (QAP)

model. Note that we never minimize it. For the 𝑓(𝑥) approximation to be of

use, we proceed to discuss how its ability to predict 𝑓∗(𝑥) can be evaluated.

Assuming a dataset of finite samples with approximated and ground truth costs

(𝑥, 𝑓(𝑥), 𝑓
∗(𝑥)) ∈ 𝑋, |𝑋| ∈ ℤ+, 𝑓(𝑥), 𝑓∗(𝑥) ∈ ℝ+

, the predictive quality of 𝑓(𝑋)

versus 𝑓∗(𝑋) is obtainable through softmax cross-entropy (Bruch et al., 2019;

Cao et al., 2007):

ℙ(𝑓(𝑥𝑖)) =
𝑒𝑓(𝑥𝑖)

∑ 𝑒𝑓(𝑥𝑗)|𝑋|
𝑗=1

(6)

ℙ(𝑓∗(𝑥𝑖)) =
𝑓∗(𝑥𝑖)

∑ 𝑓∗(𝑥𝑗)
|𝑋|
𝑗=1

(7)

𝐿 = −
1

|𝑋|
∑ ℙ(𝑓∗(𝑥𝑖)) 𝑙𝑜𝑔ℙ(𝑓(𝑥𝑖))

(𝑥𝑖,𝑓(𝑥𝑖),𝑓∗(𝑥𝑖))

(8)

where ℙ(𝑓(𝑥𝑖)) and ℙ(𝑓∗(𝑥𝑖)) denote the probabilities of approximate and

ground truth costs of sample 𝑥𝑖, respectively, where (𝑥𝑖, 𝑓(𝑥𝑖), 𝑓
∗(𝑥𝑖)) ∈ 𝑋. 𝐿

is the loss, i.e., a distance heuristic between 𝑓(𝑋) and 𝑓∗(𝑋). This approach

can be extended into Normalized Discounted Cumulative Gain (NDCG)

(Bruch et al., 2019):

158

𝑁𝐷𝐶𝐺 =
𝐷𝐶𝐺

𝐼𝐷𝐶𝐺

(9)

𝐷𝐶𝐺 = ∑
𝑟𝑒𝑙(𝜋𝑓(𝑋)(𝑖))

𝑙𝑜𝑔2(𝜋𝑓(𝑋)(𝑖) + 1)

|𝑋|

𝑖=1

(10)

𝐼𝐷𝐶𝐺 = ∑
𝑟𝑒𝑙(𝜋𝑓∗(𝑋)(𝑖))

𝑙𝑜𝑔2(𝜋𝑓∗(𝑋)(𝑖) + 1)

|𝑋|

𝑖=1

(11)

𝜋𝑓(𝑋) is a ranking (an ordering of samples 𝑋 according to their costs 𝑓(𝑋)) and

𝑟𝑒𝑙(𝜋𝑓(𝑋)(𝑖)) is the relevance at rank 𝜋𝑓(𝑋)(𝑖). 𝐼𝐷𝐶𝐺 denotes an ideal value,

where𝑟𝑒𝑙(𝜋𝑓∗(𝑋)(1)) > 𝑟𝑒𝑙(𝜋𝑓∗(𝑋)(2)) > ⋯ > 𝑟𝑒𝑙(𝜋𝑓∗(𝑋)(|𝑋|)), i.e., the

case when the relevance of a sample corresponds with how highly it is ranked.

Bruch et al. (2019) argue that NDCG is a stronger choice than softmax cross-

entropy whenever cost is non-binary, which is the case in 𝑓∗(𝑥) (Equation 3).

In Figure 13 (Appendix) an example is shown where NDCG is computed from
|𝑋| samples.

In summary, we can quantify the predictive quality of the QAP model by its

ability to rank a list of samples 𝑋 against a ground truth ranking by the OBP

optimizer. Since the nested Metropolis algorithm in Section 3 only stores two

samples at any iteration, we modify the algorithm to instead work with more

samples (Section 5). We also want to avoid the computation of 𝑓∗(𝑋) in each

iteration, so in the optimization algorithm we only compute

𝑓∗(𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝑓(𝑋)). In Section 7, we conduct an experiment to test the

validity of using the NDCG-based 𝑓∗(𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝑓(𝑋)) in SLAP optimization.

In Section 6 we also discuss choice of datatype for the relevance values.

159

5. Optimization Algorithm

5.1 Overview

The proposed optimization algorithm includes three main modules: 1. a sample

(location assignment) generator. 2. a fast cost approximator based on a model

of the Quadratic Assignment Problem (QAP). 3. an Order Batching Problem

(OBP) optimizer. In this paper, we mainly focus on how QAP approximations

can be effectively utilized within the nested Metropolis sampler described in

Section 3. In Sections 5.2 and 5.3, we therefore describe two main

modifications. The final version (QAP-OBP) is shown in flowchart form in

Figure 3 and pseudocode in Algorithm 1.

Figure 3: QAP-OBP optimization algorithm.

160

Sample 𝑥 contains both the assigned products (products already in the

warehouse) and the unassigned products 𝒫𝑠 (Section 4). 𝑥1 is initialized such

that products 𝒫𝑠 are assigned free locations in 𝑥 randomly without replacement.

Choices for iterations 𝐾, the cost distance function ∆ and constant 𝑐1 are

discussed in Section 7.

5.2 Sample Generator

The input to the sample generator (step ii in Figure 3) is a single sample 𝑥𝑖 and

the output is a list of new samples 𝑋𝑖+1. There are two main parameters in use

by the sample generator. 𝑁 ∈ ℤ+ dictates how many new samples are

generated, i.e., |𝑋𝑖+1|, and λ ∈ ℝ+ dictates how much each new sample in 𝑋𝑖+1

161

differs from 𝑥𝑖. The way 𝑁 and λ are utilized to generate new samples is shown

in Algorithm 2.

Every time the sample generator is called, an empty list is first initialized.

Then, for 𝑁 iterations, a new sample 𝑥 is generated by first copying 𝑥𝑖 and then

by computing 𝑚, the number of products for which the index in 𝑥 can change.

For 𝑚 we use a truncated Poisson distribution with rate λ and upper bound

𝑚 ≤ |𝒫𝑠|. A uniform random selection of 𝑚 products, 𝒫𝑚, are then removed

from 𝑥. For each 𝑝 ∈ 𝒫𝑚, a uniform random free index (either an empty

location or an index holding a product in 𝒫𝑠) in 𝑥 is then selected such that the

quantity (𝑞) of the product does not exceed the location’s capacity. After 𝑥 has

been filled, it is appended to 𝑋𝑖+1.

162

5.3 Promote and Accept Thresholds and Cost Computations

After a list of samples 𝑋𝑖+1 has been generated (step ii in Figure 3), their costs

are approximated using the QAP model (iii). The sample with the lowest cost

approximation is then always promoted (iv). Steps ii, iii and iv in both the

nested Metropolis sampler and QAP-OBP (Figure 2 and Figure 3, respectively)

are the same considering that the final output is a single promoted sample.

There are advantages and disadvantages of both versions regarding how they

conduct this selection. In the nested Metropolis sampler in Figure 2, the

promote probability depends on the ratio of approximated cost between

previous and new single samples. In QAP-OBP, the sample generator is instead

set to output 𝑁 = |𝑋𝑖+1| candidates, followed by argmin (compare step iv in

Figure 2 and 3). This modification simplifies evaluation of the QAP model’s

accuracy, since we can set up an experiment to compute OBP costs on the same

samples (Figure 5). Generating multiple samples could also facilitate

parallelization, which, for future work, could reduce the QAP model’s CPU-

time. The main consideration, however, is that it simplifies the original

algorithm for a particularly complex optimization scenario, where it cannot be

expected to behave according to Christen & Fox’s (2005) performance

guarantees. The problem with the original algorithm is that it assumes optimal

𝑓∗(𝑥) costs, but these are not generally available for OBPs (Oxenstierna et al.,

2022) (as far as we are aware, there exists no proposal for how to obtain

optimal results for but the smallest OBP instances within reasonable CPU-

time). A relatively minor problem with the modification is that it requires

tuning of the number of samples (𝑁) that the sample generator is outputting

each iteration. The reason we use a Metropolis algorithm instead of possibly

more capable meta-heuristic alternatives, is mainly due to implementation. The

Metropolis algorithm does not have many parameters which could be tuned

based on iterations 𝐾 (such as the temperature in Simulated Annealing) and

therefore, a time-based condition can be used instead of 𝐾 to terminate the

algorithm (we will use this in Section 7.2.3).

Concerning computation of 𝑓∗(𝑥) we use the Single Batch Iterated (SBI)

optimizer and its main features are its high computational efficiency and its

ability to handle warehouses with unconventional rack layouts (Oxenstierna et

al., 2022). OBP optimization and its internal use of TSP optimization, is

beyond the scope of this paper, and we here treat SBI as a black-box which

outputs a 𝑓∗(𝑥) for Equation 3. The sample 𝑥 with the lowest 𝑓∗(𝑥) found is

always stored throughout the optimization procedure (sample storage is

omitted in Figure 2, Figure 3 and the pseudo-code).

163

6. Datasets

For this paper, we have generated and shared instances in L17_5331, which are

based on OBP instances in L6_2032 and L09_2513. We also use data from a

real warehouse (Aba Skol AB). The generated instances use the TSPLIB

format (Reinelt, 1991) with certain amendments for the SLAP, including 6

types of warehouse obstacle layouts, various depot configurations, vehicle

capacities and orders (see Figure 1 for an example of one of the layouts).

L17_533 does not include any unidirectional travel rules, meaning that the

distance between any two locations is equal both ways. The number of orders

range between 4 to 1000 and number of products range between 10 to 3000.

The products that are to be assigned a location, 𝒫𝑠, are tagged as “SKUsToSlot”

in the instance set. The “assignmentOptions” includes the available empty

locations and how cost is to be computed (it is always set to the “empty storage

location” scenario). For analysis, instances are categorized according to

vehicle capacities, number of orders, products and parameters 𝑁 and λ.

Figure 4: Top-view of the Aba Skol AB warehouse. The picking zones are color-coded. The red circle

denotes the most commonly used depot location.

1 https://github.com/johanoxenstierna/L17_533, collected 13-02-2023.

2 https://github.com/johanoxenstierna/OBP_instances, collected 15-01-2023.

3 https://github.com/johanoxenstierna/L09_251, collected 15-01-2023.

164

The industrial warehouse dataset (Figure 4) contains 210277 products in 37014

orders collected using batch picking over a 4-month period. There are 1289

pick-locations (in the graph representation) and most batches exist within one

of six picking zones, but 24.4% include picks from several zones. As with the

generated instances, shortest distances and paths between any two locations

are assumed equal. For a proof of concept, we select product subsets from this

data to be of relevance to warehouse management and real-world utility, on the

one hand, and comparability to the generated instances, on the other. We build

150 subsets from 3-week periods with selections of between 50-1800 products

for 𝒫 and between 10 and 225 corresponding products for 𝒫𝑠. The subset

selection is random apart from that the products in a subset must exist within

the same 3-week period. Number of free locations is given on a per-product

basis, since each product has specific constraints regarding where it can be

placed, and on average it varies between 50 – 481 locations. For parameters

𝑁 and λ, we explore suitable values on the generated instances within shorter

optimization runs, followed by longer runs with chosen constants on the real

dataset.

165

7. Experiments

7.1 Overview and Constants

The experiments are divided into two parts. The first part involves tuning the

QAP model and comparing its ability to rank SLAP assignment samples

against an OBP ground truth model and a random baseline (Figure 5).

Figure 5: Steps involved to obtain QAP predictive quality on samples generated from an instance.

 A SLAP test-instance (orders with products) is first loaded (i) and 𝑥1

initialized (products 𝒫𝑠 are assigned free locations in 𝑥1 randomly) (ii). Then,

𝑁 location assignments, 𝑋𝑖+1, are generated according to Algorithm 2 (iii). The

cost of the generated assignments is estimated using the QAP model and the

OBP optimizer SBI (iv). The samples and costs are used to compute IDCG and

DCG (v). IDCG is computed from the ranking of costs according to the OBP

166

optimizer and DCG is computed from the ranking of costs according to the

QAP model. A random DCG value is also pre-computed using the average of

106 random rankings. This random baseline represents the case when 𝑓(𝑋𝑖+1)

and 𝑎𝑟𝑔𝑚𝑖𝑛𝑥+1 𝑓(𝑋𝑖+1) (steps iii and iv in Figure 3) cannot help produce a

lower value in 𝑓∗(𝑥𝑖+1) (step v) (Freund et al., 2003; Freund & Schapire,

1996). Relevance values 𝑟𝑒𝑙(𝜋𝑓∗(𝑋)) and 𝑟𝑒𝑙(𝜋𝑓(𝑋)) are chosen to be the

ordinal ranks of samples 𝑥 according to respective cost functions. For 𝑁

samples, the values are 𝑟𝑒𝑙(𝜋𝑓∗(𝑋)) = (𝜋𝑓∗(𝑋)(𝑁), 𝜋𝑓∗(𝑋)(𝑁 − 1), … ,

𝜋𝑓∗(𝑋)(1)) and 𝑟𝑒𝑙(𝜋𝑓(𝑋)) = (𝜋𝑓(𝑋)(𝑁), 𝜋𝑓(𝑋)(𝑁 − 1), … , 𝜋𝑓(𝑋)(1)) (this

corresponds to the set up shown in Figure 13 in Appendix). The DCG value

obtained from the QAP model is then used to compute NDCG according to

Equation 9 (vi). The predictive quality is finally calculated by subtracting the

achieved NDCG value with the random NDCG baseline, with a positive value

implying that the QAP model is stronger. We also record the CPU-time needed

for the QAP model and the OBP-optimizer, respectively. The tuning of the

QAP model concerns parameters 𝑁 (number of samples) and λ (rate of change

for the samples) to maximize NDCG. We further investigate whether NDCG

is impacted by other factors, including warehouse layout and instance size.

Instance size is used to provide a quantification of instance difficulty, and here

we restrict it to number of orders, total number of products |𝒫| and products

which are to be assigned a location |𝒫𝑠|. The latter number, |𝒫𝑠|, is computed

as 5-10% of |𝒫| in the instance.

We proceed with a second experiments part, where we run the SLAP optimizer

(Algorithm 1) on the industrial instances with and without the QAP model. For

the experiments without the QAP model, 𝑁 = 1 and lines 11 and 12 in

Algorithm 1 are removed. This second part is carried out after suitable

constants for 𝑁 and λ values have been found on the L17_533.

In order to find such constants, we run the steps in Figure 5 for 10 𝑁 values

ranged between 1 – 200 and 10 λ values set between 5 – 50% of |𝒫𝑠|. For the

experiments to test 𝑁, we use λ = 15% of |𝒫𝑠|. For the experiment to test λ,

we use 𝑁 = 50. For the cost distance function ∆ we use a scaled sigmoid,

which is set to approach 1 when the ratio 𝑓∗(𝑥𝑖)/𝑓∗(𝑥𝑖+1) exceeds 1.05. This

means that sample 𝑥𝑖+1 is unlikely to be accepted if its cost is 5% higher than

that of 𝑥𝑖. For each instance, the global best OBP result is tracked and uploaded

as the current best result. We refer to the documentation in L17_533 for further

details. We use Intel Core i7-4710MQ 2.5 GZ 4 cores, 32 GB RAM, Python3,

Cython and C.

167

7.2 Results

7.2.1 The impact of parameters 𝑁 and 𝜆 on QAP predictive quality

Concerning 𝑁, we first observe that the average predictive quality of the QAP

model is equivalent to the random baseline when 𝑁 = 1 (Figure 6). We further

observe that mean predictive quality rises steadily until 𝑁 is 20, after which it

tapers off.

Figure 6: Boxplot showing number of samples (𝑁) against QAP predictive quality. The red line denotes the

NDCG random baseline. The box edges show the first and third quartiles of the data (Q1, Q3) and the

whiskers show (Q1 – 1.5 * IQR, Q3 + 1.5 * IQR), where IQR is the Inter Quartile Range.

The result clearly shows that the QAP model is able to rank samples better than

the random baseline (negative values imply the opposite). The positive initial

trend could be impacted by the choice of ordinal relevance values 𝑟𝑒𝑙(𝜋𝑓(𝑋))

for the NDCG computation (Section 7.1), which could favour the baseline for

smaller 𝑁.

Concerning rate of change of new samples λ, the best results are achieved when

it is set toward the lower end of the 5-50% range of |𝒫𝑆| (Figure 7). This

provides some validation for the use of a Metropolis algorithm, since it shows

that a Markov Chain can be used to nudge samples closer towards lower costs.

Otherwise, NDCG would be similar regardless of the x-axis in Figure 7. This

result is in line with Oxenstierna et al., (2023), where a slightly stronger pattern

is observed on the related TSP-based SLAP.

168

Figure 7: How much new samples are changed compared to previous samples (λ) against QAP predictive

power.

7.2.2 The impact of other factors on QAP predictive quality

Results for all factors are shown in Table 1, 2 and 3 (Appendix). We find that

QAP predictive quality decreases as instance size increases (Figure 8). This

may be due to that the quality of 𝑓∗(𝑥) costs provided by the OBP optimizer

decrease with instance size (they are sub-optimal, see Section 5.3), making

analysis of results for larger instance classes more difficult in general. We find

that the fraction of CPU-time required by the QAP model versus the OBP

optimizer is between 0.006-0.019, or around 50-150 times faster. The

difference is largest for the largest instances and smallest for the smallest

instances (Table 2). We do not observe any relationship between QAP

predictive quality and warehouse layout.

Overall, the result provides evidence that QAP approximations of OBP costs

within an OBP-based SLAP optimizer may be justified. Its predictive quality

may decrease with instance size, relative to the OBP optimizer (Figure 7), but

its relative usage of CPU-time also decreases. Another way to visualize the

performance difference between the QAP model and the random baseline is

through a frequency distribution (Figure 9).

169

Figure 8: Instance size, in terms of number of orders, versus the predictive quality of the QAP model and the

random baseline.

Figure 9: Frequency distribution of NDCG values (20 bins) from QAP and random ranking of samples

when 𝑁 = 20 and 𝜆 = 10% (of |𝒫𝑆|).

170

7.2.3 SLAP optimization with and without QAP approximation

We report results from running the QAP-OBP SLAP optimizer (Section 5) on

the industrial dataset with and without the use of QAP approximations. Apart

from general settings (Section 7.1), 𝐾 is set to 108 and the algorithm is set to

terminate after 60 minutes (which, given maximum OBP and QAP CPU-times,

ensures iterations never exceed 𝐾). 𝜆 is set to 10% of |𝒫𝑆| and 𝑐1 = 1. 𝑁 is set

to 20, which means that the QAP model will have a relatively small impact on

overall CPU-time. 𝑁 could theoretically be set to a much larger number, but

this may not necessarily yield better results. The QAP model in the form of

Equation 5 likely needs to be further developed before its extended use can be

motivated. One risk with setting 𝑁 to a large number is that the SLAP

optimizer will spend too much time in search regions with a low QAP cost,

rather than in regions with a low OBP cost.

In Figure 10, we see that Algorithm 1, on average, improves cost by around

23% in 1 hour. Without QAP approximations, cost improves by around 17%.

Figure 10: SLAP optimization cost improvements with and without the QAP model during 1 hour. The

shaded areas denote 95% confidence intervals.

171

Figure 11: QAP-OBP SLAP cost improvement using QAP approximations for 5 categories of instance sizes

(in terms of |𝒫𝑠|). Shaded areas denote data within 1 standard deviation.

Figure 12: Same as Figure 11, but without using QAP approximations.

The size of the instances has a significant impact on computational efficiency.

In Figure 11 and 12, we see that the impact of instance size, in terms of number

of products that are assigned a location, |𝒫𝑠|, has a similar effect on

computational efficiency regardless of whether the QAP is used. The stronger

performance of the smaller instances can largely be attributed to more samples

172

being generated within the 60 minutes. On average, cost improvement

continues throughout the time, which is explainable due to the large SLAP

search space.

8. Conclusion

In this paper, we:

• formulate an optimization model for the Storage Location Assignment

Problem (SLAP), where the costs of assignments are evaluated using

Order Batching Problem (OBP) optimization.

• share generated SLAP test instances, with the goal to standardize

formats and comparability between solution approaches.

• propose a Quadratic Assignment Problem (QAP) model to quickly

approximate OBP costs in SLAP optimization. The QAP model is

tested and tuned on the generated instances.

• propose a SLAP optimizer (QAP-OBP), which we test on industrial

instances with a 1 hour optimization timeout.

Within the QAP-OBP optimizer, the QAP and OBP modules are utilized in a

Metropolis algorithm, where samples are modified by a variable amount each

iteration. The algorithm is nested such that OBP costs are only computed for

samples with relatively strong QAP cost approximations.

In order to motive the use of the QAP model within the algorithm, experiments

are first conducted to test its predictive quality against costs obtained by the

OBP optimizer and a random baseline. Results show that QAP predictive

quality is stronger than the baseline, and that they are around 50-150 times

faster to compute than the cost obtained when using the OBP optimizer.

We then proceed to run the SLAP optimizer with and without the QAP

approximations. We find that the optimizer performs better when using the

QAP approximations, with cost improvements of around 23% after 1 hour.

This result is in line with results in related work on SLAPs that are less difficult

in some regards (for example concerning warehouse layouts), but more

difficult in others (dynamicity or larger number of products).

173

For future work, the parameter which controls the number of samples that

should be approximated by the QAP model for every OBP cost computation,

𝑁, could be tuned. The QAP computations could be significantly sped up by

the use of parallelization and Graphical Processing Units (GPU), extending its

utility within the SLAP optimizer for larger 𝑁. Also, alternative optimization

approaches could be explored. These include meta-heuristic techniques such

as Simulated Annealing or Particle Swarm Optimization. The QAP cost

approximator could also be developed for a Machine Learning approach and

used in a similar fashion as the weak estimators in boosting or aggregate

bootstrapping. The factorial search space remains a fundamental problem for

learning, however. Finally, we invite discussions into how to best represent

SLAP features in public benchmark data and which features to choose for a

standardized version of the problem.

Acknowledgements

This work was partially supported by the Wallenberg AI, Autonomous

Systems and Software Program (WASP) funded by the Knut and Alice

Wallenberg Foundation. We also convey thanks to Kairos Logic AB for

software.

Compliance with ethical standards: Funding: This work was partially

supported by the Wallenberg AI, Autonomous Systems and Software Program

(WASP). Conflict of Interest: The authors declare that they have no conflict of

interest. This article does not contain any studies with human participants or

animals performed by any of the authors.

174

References

Abdel-Basset, M., Manogaran, G., Rashad, H., & Zaied, A. N. H. (2018). A

comprehensive review of quadratic assignment problem: Variants, hybrids and

applications. Journal of Ambient Intelligence and Humanized Computing, 1–

24.

Aerts, B., Cornelissens, T., & Sörensen, K. (2021). The joint order batching

and picker routing problem: Modelled and solved as a clustered vehicle routing

problem. Computers & Operations Research, 129, 105168.

https://doi.org/10.1016/j.cor.2020.105168

Azadeh, K., De Koster, R., & Roy, D. (2019). Robotized and Automated

Warehouse Systems: Review and Recent Developments. Transportation

Science, 53.

Bruch, S., Wang, X., Bendersky, M., & Najork, M. (2019). An Analysis of the

Softmax Cross Entropy Loss for Learning-to-Rank with Binary Relevance.

Proceedings of the 2019 ACM SIGIR International Conference on the Theory

of Information Retrieval (ICTIR 2019), 75–78.

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., & Li, H. (2007). Learning to Rank:

From Pairwise Approach to Listwise Approach. Proceedings of the 24th

International Conference on Machine Learning, 227, 129–136.

https://doi.org/10.1145/1273496.1273513

Cardona, L. F., Rivera, L., & Martínez, H. J. (2012). Analytical study of the

Fishbone Warehouse layout. International Journal of Logistics Research and

Applications, 15(6), 365–388.

Charris, E., Rojas-Reyes, J., & Montoya-Torres, J. (2018). The storage location

assignment problem: A literature review. International Journal of Industrial

Engineering Computations, 10.

Christen, J. A., & Fox, C. (2005). Markov Chain Monte Carlo Using an

Approximation. Journal of Computational and Graphical Statistics, 14(4),

795–810.

Ene, S., & Öztürk, N. (2011). Storage location assignment and order picking

optimization in the automotive industry. The International Journal of

Advanced Manufacturing Technology, 60, 1–11.

https://doi.org/10.1007/s00170-011-3593-y

175

Fontana, M. E., & Nepomuceno, V. S. (2017). Multi-criteria approach for

products classification and their storage location assignment. The International

Journal of Advanced Manufacturing Technology, 88(9), 3205–3216.

Freund, Y., Iyer, R., Schapire, R. E., & Singer, Y. (2003). An efficient boosting

algorithm for combining preferences. Journal of Machine Learning Research,

4(Nov), 933–969.

Freund, Y., & Schapire, R. E. (1996). Experiments with a New Boosting

Algorithm.

Garfinkel, M. (2005). Minimizing multi-zone orders in the correlated storage

assingment problem. School of Industrial and Systems Engineering, Georgia

Institute of Technology.

Henn, S., & Wäscher, G. (2012). Tabu search heuristics for the order batching

problem in manual order picking systems. European Journal of Operational

Research, 222(3), 484–494.

Kallina, C., & Lynn, J. (1976). Application of the Cube-per-Order Index Rule

for Stock Location in a Distribution Warehouse. Interfaces, 7(1), 37–46.

Kofler, M., Beham, A., Wagner, S., & Affenzeller, M. (2014). Affinity Based

Slotting in Warehouses with Dynamic Order Patterns. Advanced Methods and

Applications in Computational Intelligence, 123–143.

Koster, R. de, Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of

warehouse order picking: A literature review. European Journal of

Operational Research, 182(2), 481–501.

Kübler, P., Glock, C. H., & Bauernhansl, T. (2020). A new iterative method

for solving the joint dynamic storage location assignment, order batching and

picker routing problem in manual picker-to-parts warehouses. Computers &

Industrial Engineering, 147, 106645.

Larco, J. A., Koster, R. de, Roodbergen, K. J., & Dul, J. (2017). Managing

warehouse efficiency and worker discomfort through enhanced storage

assignment decisions. International Journal of Production Research, 55(21),

6407–6422. https://doi.org/10.1080/00207543.2016.1165880

Lee, I. G., Chung, S. H., & Yoon, S. W. (2020). Two-stage storage assignment

to minimize travel time and congestion for warehouse order picking

operations. Computers & Industrial Engineering, 139, 106129.

https://doi.org/10.1016/j.cie.2019.106129

176

Mantel, R., Schuur, P., & Heragu, S. (2007). Order oriented slotting: A new

assignment strategy for warehouses. European Journal of Industrial

Engineering, 1, 301–316.

Oxenstierna, J., Malec, J., & Krueger, V. (2022). Efficient Order Batching

Optimization Using Seed Heuristics and the Metropolis Algorithm. SN

Computer Science, 4(2), 107.

Oxenstierna, J., Rensburg, L. van, Stuckey, P., & Krueger, V. (2023). Storage

Assignment Using Nested Annealing and Hamming Distances. Proceedings of

the 12th International Conference on Operations Research and Enterprise

Systems - ICORES, 94–105. https://doi.org/10.5220/0011785100003396

Oxenstierna, J., van Rensburg, L. J., Malec, J., & Krueger, V. (2021).

Formulation of a Layout-Agnostic Order Batching Problem. In B. Dorronsoro,

L. Amodeo, M. Pavone, & P. Ruiz (Eds.), Optimization and Learning (pp.

216–226). Springer International Publishing.

Ratliff, H., & Rosenthal, A. (1983). Order-Picking in a Rectangular

Warehouse: A Solvable Case of the Traveling Salesman Problem. Operations

Research, 31, 507–521.

Reinelt, G. (1991). TSPLIB - A Traveling Salesman Problem Library.

INFORMS J. Comput., 3, 376–384.

Rensburg, L. J. van. (2019). Artificial intelligence for warehouse picking

optimization—An NP-hard problem [Master’s Thesis]. Uppsala University.

Roodbergen, K. J., & Koster, R. (2001). Routing methods for warehouses with

multiple cross aisles. International Journal of Production Research, 39(9),

1865–1883.

van Ravenzwaaij, D., Cassey, P., & Brown, S. D. (2018). A simple

introduction to Markov Chain Monte–Carlo sampling. Psychonomic Bulletin

& Review, 25(1), 143–154. https://doi.org/10.3758/s13423-016-1015-8

Wu, J., Qin, T., Chen, J., Si, H., & Lin, K. (2014). Slotting Optimization

Algorithm of the Stereo Warehouse. Proceedings of the 2012 2nd International

Conference on Computer and Information Application (ICCIA 2012), 128–

132. https://doi.org/10.2991/iccia.2012.31

Wu, X. (Bruce), Lu, J., Wu, S., & Zhou, X. (Simon). (2021). Synchronizing

time-dependent transportation services: Reformulation and solution algorithm

using quadratic assignment problem. Transportation Research Part B:

Methodological, 152, 140–179. https://doi.org/10.1016/j.trb.2021.08.008

177

Wutthisirisart, P., Noble, J. S., & Chang, C. A. (2015). A two-phased heuristic

for relation-based item location. Computers & Industrial Engineering, 82, 94–

102. https://doi.org/10.1016/j.cie.2015.01.020

Yang, N. & others. (2022). Evaluation of the joint impact of the storage

assignment and order batching in mobile-pod warehouse systems.

Mathematical Problems in Engineering, 2022.

Yingde, L., & Smith, J. S. (2012). Dynamic Slotting Optimization Based on

SKUs Correlations in a Zone-based Wave-picking System. IMHRC

Proceedings, 12.

Zhang, R.-Q., Wang, M., & Pan, X. (2019). New model of the storage location

assignment problem considering demand correlation pattern. Computers &

Industrial Engineering, 129, 210–219.

https://doi.org/10.1016/j.cie.2019.01.027

Zhou, F., & De la Torre, F. (2016). Factorized Graph Matching. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 38(9), 1774–

1789. https://doi.org/10.1109/TPAMI.2015.2501802

Žulj, I., Glock, C. H., Grosse, E. H., & Schneider, M. (2018). Picker routing

and storage-assignment strategies for precedence-constrained order picking.

Computers & Industrial Engineering, 123, 338–347.

https://doi.org/10.1016/j.cie.2018.06.015

178

Appendix

NDCG flowchart: The below example shows how Normalized Discounted

Cumulative Gain (NDCG) can be computed from input permutations (products

to locations), approximated (𝑓) and ground truth (𝑓∗) values. Note that 𝑓(𝑋)

denotes a sorting of 𝑋 according to the cost valuation of elements in the cost

step. Also note that relevance values can be formulated in several ways.

Figure 13: NDCG procedure flowchart.

179

Table 1: Summary of instances and results for different types of warehouse layouts. Also an aggregate of the

results concerning the predictive quality of the QAP model.

180

Table 2: Summary of results with regard to instance size. These results exclude instances with more than

435 products. All values are averages over instances with a certain number of products (num_products).

181

Table 3: Results on 60 minute optimization runs.

Optimization of the Storage Location Assignment
Problem using Nested Annealing

Johan Oxenstierna1,4[0000−0002−6608−9621], Louis Janse van Rensburg3, Peter
J.Stuckey2[0000000321860459], and Volker Krueger1[0000−0002−8836−8816]

1 Dept. of Computer Science, Lund University, Lund, Sweden {johan.oxenstierna,
volker.krueger}@cs.lth.se

2 Faculty of Information Technology, Monash University, Australia
peter.stuckey@monash.edu

3 Flux Robotics, Australia
louis@fluxrobotics.ai

4 Kairos Logic AB, Lund, Sweden

Abstract. The Storage Location Assignment Problem (SLAP) has a significant
impact on the efficiency of warehouse operations. We propose a multi-phase
optimizer for the SLAP, where the quality of an assignment is based on dis-
tance estimates of future-forecasted order-picking. Candidate assignments are
first sampled using a Markov Chain accept/reject method. Order-picking Travel-
ing Salesman Problems (TSPs) are then modified according to the assignments
and solved. The model is graph-based and generalizes to any obstacle layout
in two dimensions. We investigate whether optimization speed-ups are possible
using methods such as cost approximation, rejection of samples with low ap-
proximate cost and restarts from local minima. Results demonstrate that these
methods improve performance, with total travel-cost reductions of up to 30%
within 8 hours of CPU-time. We share a public repository with SLAP instances
and corresponding benchmark results on the generalizable TSPLIB format.

Keywords: Storage Location Assignment Problem, Nested Annealing, Ham-
ming Distances.

1 Introduction

The Storage Location Assignment Problem (SLAP) concerns the search for suitable
locations for products in a warehouse. There exist dozens of proposed versions and op-
timization methods for the SLAP [5]. We work with a standard picker-to-parts scenario
where racks and other obstacles can be laid out freely on a two-dimensional plane and
where vehicles may start and end their paths at any location. In order to evaluate the
quality of a location assignment, we combine two costs. The first cost consists of the
travel distance needed to complete a given picking-log, i.e., a set of pick-rounds (se-
quences of product visits). A pick-round is equivalent to a Steiner Traveling Salesman

Fig. 1: Example of a SLAP with products enumerated 1-7 and an unconventional
obstacle-layout [28]. The picking-log consists of three pick-rounds (TSPs) and their
optimal solutions give the picking-log distance. The initial baseline assignment (top)
has a longer picking-log distance compared to a candidate (sample) assignment (bot-
tom left). In this example, the reassignment path needed to move the products accord-
ing to the sample (bottom right), is longer than any possible savings concerning the
picking-log (more pick-rounds are needed for savings).

Problem (TSP) [36], where the origin and destination locations may be different and
where the same location may be revisited by one or several vehicles. We obtain the
picking-log distance by solving all TSPs given a location assignment of products. The
second cost is the travel distance needed to move the products such that the assignment
is obtained, in a single reassignment path. We refer to this model as the TSP-based
SLAP. A visualization of the TSP-based SLAP is provided in Figure 1.

In Section 2 we discuss strengths and weaknesses of proposed SLAP models in the
literature. The TSP-based SLAP can be compared to the closely related Order Batching
Problem (OBP)-based SLAP [26], where the picking-log is replaced by a set of orders
(where an order is a set of products). The OBP-based SLAP requires the batching of
orders into pick-rounds, as well as the subsequent TSP optimization of these pick-
rounds, before quality of a proposed location assignment can be estimated. While the
theoretical optimization gains may be higher in the OBP-based SLAP, its larger search
space also adds significant challenges [33, 17].

Choice of SLAP-model is inevitably a trade-off between simplicity, on the one
hand, and complexity, on the other. Regarding the former, there is a need in research to

183

discuss what a relatively simple and standardized version of the SLAP should entail,
since there is little consensus on the matter [5]. Apart from order batching, examples
of other optional features include various forms of dynamicity, warehouse layout, ve-
hicle types, cost functions and reassignment scenarios. The TSP-based SLAP excludes
order-batching and dynamicity and uses distance instead of more realistic but com-
plex cost alternatives, such as time-based costs. Nevertheless, the TSP-based SLAP
still poses a highly intractable problem. This is partly attributable to the reassignment
distance. Hypothetically, more location reassignments are needed to obtain a lower
picking-log distance, but more reassignments also lead to a longer reassignment dis-
tance. Thus, an equilibrium point between two adversarial problems must be found to
attain a strong solution. One final and relatively novel feature of the TSP-based SLAP
is that it does not assume a specific warehouse layout. Although this makes cost calcu-
lation more computationally expensive, by disallowing heuristics based on presumed
rack-placements, it allows for a higher degree of generalization.

In Section 5 we introduce our optimization algorithm. It is based on Simulated An-
nealing and a Hamming-distance location-swap heuristic. Restarts from local minima,
as well as two cost approximators, are investigated to potentially improve computa-
tional efficiency (cost improvement through CPU-time). One of the cost approximators
is based on sub-optimal TSP optimization, while the other is based on a pick-frequency
heatmap. In Section 6 we introduce three datasets, including a publicly shared bench-
mark instance set on the TSPLIB format [11], and corresponding computational re-
sults.

Our contributions are summarized as follows:

1. A SLAP optimizer using a novel version of the Simulated Annealing algorithm
and experiments to test its computational efficiency.

2. Performance comparison of two cost-approximators utilized within the optimizer.
3. A publicly shared SLAP instance set on the TSPLIB format.

This paper is an extension of a ICORES-2023 paper [28]. Apart from a thorough
revision of the text, the extension includes new data (dataset 3 in Section 6.3), a new
cost approximator (Section 5.3), re-runs of previous experiments, as well as new ex-
periments and results (Section 6 and Section 8).

2 Literature Review

In this section we discuss how the SLAP has been described and optimized in pre-
vious work. We particularly refer to the extensive literature review by Charris et al.
[5]. There are several strategies for conducting a storage location assignment. These
include Dedicated, Random and Class-based.

– Dedicated: The locations of products are assumed to never change. This strategy is
suitable if the collection of products does not change much through time. If human

184

picking is used, this approach has the advantage that pickers can learn to associate
products with locations, allowing for speed-ups in picking [43].

– Random: Products can be assigned any location in the warehouse. This is particu-
larly suitable if the collection of products changes frequently.

– Class-based (zoning): Each product is assigned a class and the warehouse is di-
vided into zones. Each zone contains one or several classes of products. Class-
based storage can incorporate dedicated and random strategies for certain zones
and/or classes [23]

The quality of a location assignment can be modeled in several ways. In a human pick-
ing scenario, Larco et al. [18] show that there exists a relationship between the height
at which products are placed and worker welfare. Worker welfare can be quantified
by estimating parameters such as “ergonomic loading”, “discomfort” or “expenditure
of human energy” [5]. On a similar note and for autonomous vehicle or shuttle based
storage and retrieval systems (AVS/R), there exists a model which has the objective to
minimize “energy consumption” [2].

Another way to judge solution quality is through datamining, using computations
such as support, confidence and lift [25]. These can also be used to propose concrete
location assignments [14, 43]. Datamining is primarily focused on the statistical anal-
ysis of products and their relationships, but it is often combined with order-picking in
a SLAP.

A third proposal studies the effect of traffic congestion. Bottlenecks can be caused
if, for example, too many products with high pick-frequency are placed close to the
depot. Lee et al. [19], propose Correlated and Traffic Balanced Storage Assignment
(C&TBSA), a multi-objective SLAP model which aims to minimize traffic congestion,
while also minimizing aggregate order-picking cost.

Order-picking has many variations, depending on obstacle layout, picking strategy
and travel conventions [5, 23, 31, 41]. Concerning obstacle layout, we distinguish be-
tween two types: Conventional and Unconventional. In the conventional layout, ware-
house racks are assumed to be organized in Manhattan style blocks with parallel aisles
and cross-aisles. Conventional layouts are used in the majority of research on both
order-picking and the SLAP [5, 15]. The unconventional layout includes the “fishbone”
and “cascade” layouts [4, 5], as well as all other layouts that are not conventional. Re-
gardless of layout, the picking path of a vehicle can be formulated as a Traveling Sales-
man Problem (TSP) where paths cannot intersect obstacles [12, 31]. For conventional
layouts, the TSP is often optimized using S-shape or Largest-Gap algorithms [32]. For
unconventional layouts, Google OR-tools or Concorde have been proposed [27, 31].

As mentioned in Section 1, the SLAP can be optimized as a joint problem with an
Order Batching Problem (OBP). Proposals include Kübler et al. [17], Xiang et al. [40]
and Maruyama et al. [24]. While these authors argue for this approach, arguments also
exist against it, at least for certain settings [23]. One issue with the OBP-based SLAP
is that the OBP is highly intractable in its own right, thus adding to the difficulties
involved in optimizing an already challenging problem.

185

If order-batching is not included in the SLAP, heuristics such as Cube per Or-
der Index (COI) [13] and Order Oriented Slotting (OOS) [23] have been proposed.
COI assumes that products with relatively high pick-frequency and low volume should
be placed close to depot. COI does not include associations between products and is
therefore mainly suitable for pick-rounds with few picks, such as pallet-picking or
certain AVS/R systems [2]. OOS, on the other hand, is specifically designed for sce-
narios where orders may contain more than one product. Mantel et al. [23] introduce
a Quadratic Assignment Problem (QAP) heuristic which computes distances between
products and the number of times products appear in the same order. The quality of a
candidate location assignment can then be estimated using QAP. Similar methods to
OOS are used by Žulj et al. [44], Fontana and Nepomuceno [8] and Lee et al. [19].

The SLAP usecase can be divided into two categories depending on the number
of products that are to be moved. “Re-warehousing” is the case when a large propor-
tion of products are moved, whereas a smaller proportion is moved in “healing” [14].
Movements can be conducted in many ways, each accompanied by a (re)assignment
“effort”. Kübler et al. [17] propose the following (re)assignment effort scenarios:

i Product A is moved to an unoccupied location.
ii Product A swaps location with product B.

iii Product A is moved to a location occupied by product B. Product B is moved to
a new location. If there is a product C occupying the new location, the procedure
continues until a final product is placed at an empty location.

Scenario i comes with the least (re)assignment effort and the effort grows through
scenarios ii and iii. Apart from travel distance, time used for product removal/placement
on shelves as well as administrative time, can be added to the effort computation [17].

When it comes to optimization algorithms for the SLAP, both exact and non-exact
methods have been proposed. The exact algorithms include dynamic programming,
branch and bound algorithms and Mixed Integer Linear Programming (MILP) [5]. The
SLAP search space is often reduced in scope when exact solutions are sought. These
include restricting the number of locations [38], number of products [9, 21] or by only
working with conventional warehouse layouts [3].

More commonly, non-exact heuristic or meta-heuristic algorithms are used. Pro-
posals include Particle Swarm Optimization (PSO) [17], Genetic and Evolutionary Al-
gorithms [7, 19, 20] and Simulated Annealing [14, 43]. The SLAP is often optimized in
multiple phases using these methods. One example is to first generate candidate prod-
ucts for location assignments using datamining, and to then evaluate various candidate
assignments using order-picking optimization [14, 39].

It is challenging to judge optimization results in previous work due to the multitude
of variations in SLAP models [5]. For results including reassignment costs, conven-
tional warehouse layouts, dynamic picking patterns and meta-heuristic optimization,
Kofler et al. [14] report best savings around 21%. In a similar scenario, Kübler et al.
[17] report best savings around 22%. Excluding reassignment costs, Zhang et al. [43]

186

report best savings around 18% on simulated data with thousands of product loca-
tions. In similar settings, Trindade et al. [35] report best savings around 33%, using
a multi-phase optimizer, and Chiang et al. [25] report best savings around 13% using
datamining heuristics and integer programming.

3 Simulated Annealing

Simulated Annealing, which draws inspiration from the annealing process in metal-
lurgy [14], has a useful analogue with SLAP optimization: A poor storage assignment
can be viewed as more energetic as it leads to more travel for picking in the ware-
house. As the SLAP is optimized, products are reassigned to new locations using a
decreasing temperature. As temperature cools, products become fixed in a lower en-
ergy state where picking travel costs are reduced. There are many complicating factors
in the SLAP which can prevent a smooth decent toward an improved storage assign-
ment, however. In the remainder of this section, we describe the Simulated Annealing
algorithm and how it may be modified to help attain stronger results in the SLAP.

A key component in Simulated Annealing (Algorithm 1) is the sample function.
In each iteration i, sample xi+1 is drawn based on a desired distance to sample xi. This
distance is computed using the probability distribution q(xi+1|xi), without involving
the cost of the samples (henceforth we refer to this as the feature-distance). The q
distribution is often chosen to be Normal, so that the distance between xi and xi+1 is
low with high probability [22]. The cost∗ function computes/retrieves the cost (f ∗)
of the new/previous sample (the first sample is retrieved from memory after the first
iteration). The accept probability α∗ is based on a cost-distance function ∆ (which
outputs a negative value if the new cost is lower than the previous) and a decreasing
temperature function T [29]. Functions for q, T and ∆ are further discussed in Section
5.

Simulated Annealing is a type of Markov Chain Monte Carlo (MCMC) method and
one advantage of this type of method is that its bias-variance tradeoff can be tuned us-
ing relatively few parameters [10]. A known disadvantage is that only two samples are
stored in memory at any given time, which risks leading the Markov Chain to conver-
gence on weak local minima [22]. Several methods have been proposed to reduce this
risk, including mode-jumping [34], Nested Annealing [29] and Basin Hopping [37].
These methods split the search space into regions which are then subjected to local
search. Another method is the Restart Strategy (SARS), which restarts the search from
a random new sample whenever a “non-improving” local minimum is found [42].

Simulated Annealing can be modified to include a cost approximator, f , which
provides fast cost estimates of f ∗, to potentially increase computational efficiency.
Christen and Fox [6] propose to use f to reject new samples that are unlikely to yield
an improvement in f ∗ over the previous sample. The common MCMC accept method
is accordingly split into two parts: Promote (f ∗ cost evaluation for a sample with a
strong f) and accept (update xi for the next iteration to be a sample with a strong f ∗).

187

Algorithm 1 Simulated Annealing
1: xi: Sample (an assignment).
2: f ∗(xi): Ground truth cost of sample xi.
3: q: Feature-distance function.
4: ∆: Cost-distance function.
5: N: Number of iterations.
6: T : Temperature function.
7: x1: Initial sample (baseline).
8: for i = 1, ...,N do
9: t← T (i)

10: xi+1← sample(q(xi+1|xi))
11: f ∗(xi), f ∗(xi+1)← cost∗(xi,xi+1)
12: α∗← exp(−c1∆(f ∗(xi+1), f ∗(xi))/t)
13: u←U(0,1) // random uniform
14: if u < α∗ then // sample accepted
15: xi← xi+1
16: end if
17: end for

In our optimization algorithm (Section 5), we utilize this concept and split Simulated
Annealing into promote based on a fast and less accurate costs computed in f , and
accept based on slow and more accurate costs computed in f ∗.

4 Problem Formulation

4.1 Objective Function

The objective in the TSP-based SLAP is to minimize the aggregate travel distance to:

1. Complete a given picking-log (a set of pick-rounds) B .
2. Carry out any proposed location reassignments in a single reassignment path R .

Each pick-round b ∈ B is a list of products. The set of all locations (including pick-
locations, origin and destinations and obstacle corners in 2D Cartesian space) is de-
noted L and the set of all pick-locations is denoted L(P). The set of all products in B
is denoted P . Each product p ∈ P is defined as a tuple including a unique key (Stock
Keeping Unit), a pick location l(p) ∈ L(P) and a positive pick frequency count F(p).
Each pick location is a tuple consisting of a unique key, a capacity and a location
(represented as a node in a graph). A product is located at strictly one location and
a location stores strictly one product. A product is allowed to move from its initial
location to a new one as long as the new location’s capacity is not exceeded.

188

A SLAP solution candidate (also referred to as sample or assignment) is repre-
sented as permutation vector x ∈ X , where the elements are enumerated product keys
and the indices are enumerated locations. For an example warehouse with 3 locations,
sample x = (2,1,3) means that product 2 is assigned location 1, 1 assigned 2 and
3 assigned 3. Each sample x contains positive permutation integers in range 1 to m,
2≤m≤ |P | and each permutation x has ground truth cost f ∗(x). m denotes the number
of products that are subject to location change, and it does not necessarily have to be
equal to the number of products in the warehouse, but could instead be manually set to
limit the search space. Sample x1 represents the baseline product location assignment
(the initial locations of the products). In order to evaluate performance in optimization
experiments, costs f ∗(x2), f ∗(x3), ..., f ∗(xN) are compared against f ∗(x1).

The objective in the TSP-based SLAP, is to find a sample assignment x such that
picking-log cost ∑b∈B D(b) and reassignment cost D(R) are minimized:

argmin
x

((∑
b∈B

D(b))+λD(R)) (1)

Constant λ is used to weigh the two cost terms. Below we show how the picking-log
and reassignment costs are computed using Euclidean distances.

4.2 Picking-log distance

The cost of all pick-rounds in picking-log B is computed using distance ∑b∈B D(b).
D(b) is the distance of the solution to the Traveling Salesman Problem (TSP) repre-
sented by product locations in b:

D(b) = dl(originb),l(p1)+dl(p|b|),l(destinationb)+∑dl(pi),l(p j), j = i+1,0 < i < |b| (2)

where dl(pi),l(p j) denotes the distance between the locations of pi, p j ∈ b, and where
dl(originb),l(p1) connects an origin location and dl(p|b|),l(destinationb) a destination location
to the path. The location of a product l(pi) is obtained from an index in the loca-
tion assignment sample x. This index is stored for each product and updated whenever
it changes location. We assume shortest distances and corresponding shortest paths
(needed if path visualization is sought) between pairs of locations are queryable from
Random Access Memory (RAM). All shortest paths and distances are pre-computed
using the Floyd-Warshall graph algorithm, using a warehouse digitization process be-
yond the scope of this paper [31]. This process includes capability for uni-directed and
mixed graphs, but in this paper we only work with bi-directed graphs (meaning that the
distance between two locations is equal in both directions). We allow the origin and
destination locations in the pick-rounds to be any locations in L (concerning TSP opti-
mization, this is sometimes referred to as a Multi-Depot TSP or Dial-a-ride Problem).
In Section 5 we describe how TSP optimization works for the multi-depot requirement.

189

4.3 Reassignment distance

Reassignment path R and its distance D(R) is based on direct and indirect exchange
scenarios (scenarios ii and iii in Section 2) with the following assumptions: Since there
are an equal amount of products and locations in the SLAP, scenarios ii and iii represent
a bijective relationship between products and locations. When products change loca-
tions, the bijection can take three forms: Direct exchange, e.g. x1 = (1,2) to x2 = (2,1)
(product 2 goes to location 1 and 1 goes to 2), indirect exchange, e.g. x1 = (1,2,3) to
x2 = (3,1,2) (1 goes to 2, 2 goes to 3 and 3 goes to 1), or a combination of both. We
also assume that the operation to change locations of products, using direct and indirect
exchanges, can be carried out by a single vehicle traveling along a single path through
the warehouse, without intermediate stops at the depot. Algorithm 2 shows how this
single reassignment path can be constructed, just from information in the initial assign-
ment x1 and a subsequent sample x1+i, generated during optimization iteration i < N.

Algorithm 2 Reassignment Path and Distance
1: x1: Initial assignment sample (baseline solution).
2: x: Sample obtained during SLAP optimization.
3: xm← copy(x)
4: D(Rbest)← ∞

5: for j = 1, ...,K do // iterations.
6: R ← list()
7: while xm not_empty do
8: r← list()
9: while not_completed(r) do

10: add_to_subcycle(r,x,xm,x1)
11: end while
12: R += r
13: end while
14: shuffle_and_flatten(R)
15: D(Rbest)← update_best(R ,Rbest)
16: end for

r denotes a sub-cycle of locations (a sequence that starts and ends at the same
location). The add_to_subcycle function has two cases:

1. If the r sequence is empty, a random new element is removed from xm and its initial
location (the index for that product in x1) is added to r.

2. If r is not empty, the new location of the last added product in r is first found in x
and added to r. The product located at that “next” location is found in x1, matched
in and then removed from xm.

190

If the added location to r is equivalent to the first one in r, the sub-cycle is com-
pleted and r is added to R . After xm is emptied, R is first randomly shuffled and then
flattened (the inner lists of sub-cycles are converted into a single list). The distance
D(R) is then computed as the sum of all location to location distances in R , plus
the distance from an origin depot location to the first location in R and the last loca-
tion in R to a destination depot location. At each iteration, the update_best(R ,Rbest)
function updates the lowest minimum found by comparing distance D(R) and dis-
tance D(R best). For Algorithm 1 and our modifications to it in Algorithm 3, D(R) is
included in the cost∗ and cost functions.

In summary, reassignment path R is a solution to a constrained, linked-list TSP
where a product is dropped off and another product picked up at each location. The
vehicle conducting the reassignment path is assumed to be able to carry the whole
quantity (frequency F(p) in our case) of any single product located at any single loca-
tion. A model of the reassignment path involving vehicle-capacities, enforcing return
trips to depot when a product quantity exceeds vehicle capacity, is left for future work.

5 Optimization Algorithm

5.1 Assignment sampling using Markov Chain Monte Carlo (MCMC) and
Hamming Distances

As described in Section 3, the Simulated Annealing algorithm includes two distribu-
tions to describe the amount of distance between samples xi and xi+1: Feature-distance
q and cost-distance ∆. For sampling to be effective, there should exist some degree
of proportionality between these two distributions. If the feature-distance between xi
and xi+1 is relatively low, the distance between costs f ∗(xi) and f ∗(xi+1) should also
be relatively low. The cost-distance in a SLAP is in the domain R+, as it represents
Euclidean travel distances in the warehouse. The feature-distance between two sam-
ples is represented by the difference between two assignments. We hypothesize that
the feature-distance can be computed using a Hamming distance heuristic. Hamming
distance is a count of the number of non-identical elements between two permutation
vectors (which are equivalent to assignments) [30]. The following sampling distribu-
tion is then proposed to utilize this Hamming distance (based on bounds proposed by
Christen and Fox [6]):

q(xi+1|xi) = e−CHd(xi,xi+1)
P

(3)

where C and P are hyperparameters in R+, and Hd denotes Hamming distance. We
propose to use this sampling function within Algorithm 1. Below we propose methods
which may improve computational efficiency (cost reduction through CPU-time) of
Algorithm 1.

191

5.2 TSP optimization and cost caching

We utilize two TSP optimizers to compute the picking-log distances of assignment
samples. For optimal TSP solutions we use the Concorde TSP solver 5 [1]. For ap-
proximate TSP solutions we use the OR-tools TSP optimization suite6 [16]. In order
to limit the CPU-time of OR-tools, we use the solution_limit parameter. For both these
TSP optimizers, multi-depot scenarios are handled by modifying the input distance
matrix with a dummy location whose distance is zero to the origin and destination, and
whose other distances are set to infinity.

Before we apply TSP optimization to compute picking-log distance of an assign-
ment sample, we reduce CPU-time through a filtering technique. Given the usage of
sampling distribution q (Equation 3), we note that many pick-rounds will often not
contain products that had their location changed. For example, assume we start with
assignment x1 = (2,1,3) and two pick-rounds in the picking-log, one containing prod-
ucts 1 and 2 and the other containing product 3. Picking-log distance is then computed
by TSP-optimizing the two pick-rounds (to keep the example small, we disregard the
fact that TSP optimization only yields savings for longer pick-rounds). Assume we
then swap locations of products 1 and 2: x2 = (1,2,3). Since product 3 remains at
its initial location, there is no need to re-optimize the pick-round which contains that
product. To enable this reduction of redundant TSP-optimization, we cache the TSP
costs (both optimal and approximate) of any pick-round once computed. These costs
are then queried for the pick-round until one or several product locations are changed,
at which point the TSP gets re-optimized and the costs updated (only after promotion
in the case of f ∗).

5.3 Heatmap-based approximation

In order to motivate SLAP optimization, results need to be as interpretable and visually
representable as possible. One problem with TSP optimization within a SLAP is that
results cannot be easily visualized. Visualizing TSPs entails showing them before and
after SLAP optimization. Figure 1 and Figure 8 (Appendix) are examples. Interpreta-
tion of these types of figures becomes very challenging when the picking-log contains
hundreds of pick-rounds.

One possible way with which to visualize SLAP optimization in a single figure,
is a heatmap. Figure 2 is an example which shows number of picks at 2700 locations
(several locations share a single cell in the heatmap). The lower picture shows the
result after SLAP optimization. To achieve this movement of the "hotter" products
closer to depot, a dot product is first computed between the pick frequency count of
each product F(p) and the distance of their locations from an origin location and to a
destination location:

5https://math.uwaterloo.ca/tsp/concorde/downloads /downloads.htm, collected 27-05-2022.
6https://developers.google.com/optimization/routing/tsp, collected 12-06-2022.

192

|L |

∑
i=1

F(pi)(dl(origin),l(pi)+dl(pi),l(destination)) (4)

Location swaps are then conducted based on this dot product. For the heatmap ex-
ample in Figure 2, 200 swaps were conducted to achieve a reduction of cost, according
to Equation 4, of around 35%. Apart from the visual interpretability, an additional ad-
vantage of using Equation 4 is that it is very fast to compute. In Section 6 we conduct an
experiment to investigate whether there is any correlation between this approximation
and optimal TSP cost. The predictive quality of Equation 4 is likely weak, but if CPU-
time is low enough it could still outmatch the alternative f approximation achieved
by the OR-tools TSP optimizer. Note that this approach only works for cases when all
pick-rounds in the picking-log use the same origin and destination location.

Fig. 2: Heatmap of picking in a warehouse with a single depot location (the black
square). The colorbar shows how many picks occur within a given cell.

5.4 Nested Annealing

In Section 3 we suggested that the computational efficiency of Simulated Annealing
(Algorithm 1) can be increased if there exists a function f which can quickly esti-

193

mate f ∗ . We then proceeded to propose two suggestions for such an f : One using
sub-optimal TSP optimization (OR-tools), and one using a heatmap based approxima-
tion. In Algorithm 3, we show how either of these can be utilized within a modified
Simulated Annealing algorithm:

Algorithm 3 Nested Annealing (based on computational ef-
ficiency in cost estimation
1: xi: Sample (candidate solution).
2: f (xi): Less accurate fast cost estimate.
3: f ∗(xi): More accurate slow cost estimate.
4: q: Feature-distance function.
5: ∆: Cost-distance function.
6: α: Probability that sample xi+1 is promoted.
7: α∗: Probability that sample xi+1 is accepted.
8: N: Number of iterations.
9: T : Temperature function.

10: x1: Initial assignment sample (baseline).
11: for i = 1, ...,N do
12: t← T (i)
13: xi+1← sample(q(xi+1|xi))
14: f (xi), f (xi+1)← cost(xi,xi+1)
15: α← exp(−c1∆(f (xi+1), f (xi))/t)
16: u←U(0,1) // random uniform
17: if u < α then // sample promoted
18: f ∗(xi), f ∗(xi+1)← cost∗(xi,xi+1)
19: α∗← exp(−c2∆(f ∗(xi+1), f ∗(xi))/t)
20: u←U(0,1)
21: if u < α∗ then // sample accepted
22: xi← xi+1
23: end if
24: end if
25: end for

After a sample xi+1 is generated, its cost is estimated using f . If the sample passes
the promote filter on Line 17, cost∗ is computed using f ∗. Note that the cost and
cost∗ functions include reassignment distance D(R) (Algorithm 2). Since Algorithm
2 does not guarantee optimality for D(R), cost∗ does not guarantee optimality either,
and hence we refer to f ∗ as “more accurate” rather than optimal. Hyperparameters
c1,c2 ∈R+ may be set differently. Christen and Fox [6] suggest setting c1 > c2 so that
the promotion of a sample is less likely than the acceptance of a promoted sample.
For the temperature function T we use a shifted and scaled reverse sigmoid (decreas-

194

ing) that gives temperatures in range [1,0]. For the cost-distance function ∆ we use a
shifted and scaled sigmoid that gives values in range [0,1]. Nested Annealing was first
introduced by Rajasekaran and Reif [29], but they do not use cost approximation and
base the nesting on variable set temperatures in local search regions. Algorithm 3 of-
fers an alternative nesting strategy, based on a trade-off between predictive speed and
accuracy.

5.5 Restarts

Due to the large search space of the SLAP, the MCMC sampling function xi+1 ←
sample(q(xi+1|xi)), may benefit from occasional restarts (Section 3). Yu et al. [42],
propose restarts from randomly generated samples. Their test-problems do not include
reassignment distances, however, and in the SLAP, randomly generated samples can
be expected to have a significantly higher cost than x1 due to reassignment distance
D(R). As a solution to this problem, we instead propose restarts from local minima.
The best minimum found through optimization is denoted xbest and it is used as restart
sample with an increasing probability. Forcing restarts from xbest is motivated because
its local neighbourhood cannot be extensively searched for in any but the smallest
SLAP test-instances. A second minimum is denoted xlowR and it is used as a restart
sample with a decreasing probability. Forcing restarts from xlowR is designed to target
a low reassignment distance D(R). The first such local minimum is xlowR = x1, whose
D(R) = 0. xlowR = x1 can be assumed to be a strong local minimum, due to its lack of
reassignment distance, but after f ∗(x1) has been beaten by f ∗(x1+i), xlowR is updated
at regular intervals to a previously generated sample which has a relatively low f ∗ cost
and D(R). In Section 6 we propose probability distributions for xbest and xlowR, as well
as optimization results with and without the use of restarts.

6 Experiments

6.1 Overview

We carry out experiments to investigate the following topics with regard to computa-
tional efficiency (cost reduction through CPU-time), in chronological order specified
below:

1. Utility of Hamming-distance based sampling (q).
2. Utility of restarts.
3. Comparison of two cost approximators for use within Algorithm 3.
4. Comparison of Algorithm 1 and Algorithm 3 (using best settings from 2 and 3).
5. Other features (such as layout and number of products and pick-rounds).

All experiments are carried out using Intel Core i7-4700MQ, 2.40GHz, 4 cores and
Python3 (with heavy use of Cython) and C.

195

6.2 Parameters

For all experiments, the number of products open for location reassignment (m) is set
to be equivalent to the number of products in the test-instance. The number of reassign-
ment path optimization iterations (K in Algorithm 2) is set to 300. After optimization
has completed, the reassignment path is re-optimized with K set to 10000. The accept
probability computation is set to be equivalent between Algorithm 1 and 3 (c2 = 1 and
equivalent ∆ and T functions). The ∆ function is set to approach 1 when the ratio of
the distance between a new sample and a previous sample exceeds 1.05: This means
that if a new sample has a distance 5% higher than the previous sample, it is unlikely
to be promoted and/or accepted. c1 in Algorithm 3 is set to 2, which makes it more dif-
ficult for a sample to be promoted than accepted once promoted. The reverse sigmoid
probability distribution q, which gives the number of location changes between a new
and a previous sample, is set to approach zero when number of location changes ex-
ceeds 20. For all experiments where a restart strategy is used, sample xi+1 can be built
from either xi, xbest or xlowR (Section 5). The probability to pick one of the latter two
is governed by a sigmoid and reverse sigmoid, respectively, with probabilities in range
[0,0.2] and [0.2,0], stretched over N iterations. In all iterations where neither xbest nor
xlowR is picked, xi is used (no restarts). λ and N are set depending on the dataset.

6.3 Datasets

The following three datasets are used:

1. 266 TSPLIB instances7 modified for the SLAP and shared in a public repository8.
These instances include 6 different types of warehouse layouts (including one with
no obstacles). The number of products open for location reassignment vary be-
tween 5-427 in these instances. The initial locations for all products (baseline as-
signment x1) in these instances is selected using a random uniform distribution.
Solution proposals are uploaded for each of these instances using Algorithm 3 af-
ter a maximum of 20000 iterations (N). Experiments to test utility of Hamming
distances and restarts are conducted on this dataset. λ is set to 1 for experiments
on this dataset.

2. Data from a real warehouse with a conventional layout. The provided picking-
log includes 260 unique products and 260 product locations. There are 200 pick-
rounds and most products are picked in several pick-rounds. The experiments
where Algorithm 1 and 3 are compared are run on this dataset. Algorithm 1 and 3
are run 10 times each on this dataset, with varying random seeds and a maximum
CPU-time set to 8 hours. λ is set to 1 for experiments on this dataset.

3. Data from a real warehouse with an unconventional layout. Specific to this dataset
is that there is only a single origin/destination and that some products are not

7https://github.com/johanoxenstierna/OBP/instances, collected 19-10-2022.
8https://github.com/johanoxenstierna/L40_266, collected 14-11-2022.

196

located in the warehouse apriori. These products are assigned random initial lo-
cations. There are also more locations than products in this dataset. The empty
locations are utilized in optimization by placing a mock product at each of them.
By flagging these products, they can be excluded from cost computation, while re-
maining open for product locations swaps. This dataset also contains longer pick-
rounds than the other two (with an average of 29 picks per pick-round). The ex-
periments where the two cost approximators are compared are conducted on this
dataset, using a maximum CPU-time of 4 hours. λ is set to 0 for experiments on
this dataset: This removes the reassignment distance and thus ensures that the two
approximators can be compared against an optimal f ∗.

In all three datasets, the capacity of all locations is assumed to be identical, meaning
that any product can be placed at any location. We compare costs of samples against the
baseline x1, where each product is fixed to its initial location, where optimal picking
costs are computed in D(B) and where D(R) = 0.

6.4 Experiment results

Utility of Hamming-distance based sampling Results show that many location reas-
signments are needed to reach the best reductions in travel cost (Figure 3). Also, more
reduction in cost is achieved when the Hamming distance (number of location changes)
between a previous sample and a new one is relatively low (Figure 4). On average, the
cost of sample f ∗(xi+1) is more reduced compared to a previous sample f ∗(xi) if fewer
location changes are attempted. This result empirically validates the Hamming distance
distribution q(xi+1|xi) and its bias toward conducting fewer location changes at each
step in the Markov Chain (Equation 3).

Utility of Restarts Results with and without restarts (Section 5) are shown in Figure
5. Given the same amount of optimization iterations (N = 30000) on dataset 2, the best
results for both Algorithm 1 and 3 are obtained using restarts. Restarts enforce revisits
to local minima with relatively short total travel costs f ∗ or reassignment costs D(R)
(Section 5). Since fewer reassignments mean that fewer pick-rounds contain products
whose locations change, total TSP optimization CPU-time is significantly lower when
restarts are used. This is achieved by the caching of TSP costs (Section 5). Furthermore,
few reassignments mean that the optimization of the reassignment path requires less
CPU-time to reach a relatively strong solution. As can be observed, Algorithm 1 and
3 without restarts (lighter blue and green) quickly jump up in cost. This is mainly
attributed to the relatively low cost in assignment x1, where D(R) = 0, which is never
revisited once stepped away from and never improved on (without restarts).

Comparison of the two cost approximators for Algorithm 3 Results on dataset 3 are
summarized in Table 2. We first study the coefficient of determination R2 (goodness of

197

Fig. 3: The total number of product location reassignments needs to be large to achieve
the best total travel costs in f ∗(xbest) (dataset 2).

fit) between approximations f against f ∗. For OR-tools, R2 = 0.97 and for the heatmap,
R2 = 0.15. Even though the heatmap approximation is thousands of times faster to
compute compared to TSP-optimizing the picking-log using OR-tools, OR-tools still
results in more savings than the heatmap approximation. Due to its high speed, the
heatmap approximation allows for more samples to be generated and higher initial
savings, but due to its weaker predictive quality it, in the end, loses out to the TSP
approximation.

The weakness of the heatmap approximation can be attributed to a combination
of two factors. The first is that a swap of two products may result in a frequently
picked product being located further from the depot, incurring an increased heatmap
cost, while TSP distance, on the contrary, is reduced (this can be observed in Figure
8). The second factor is its bias to promote samples where high-frequency products
are moved closer to depot. This type of bias risks leading the search to a pre-mature
convergence on a local minimum. In order to prevent convergence on a local minimum,
many samples are needed which temporarily increase TSP costs, but these types of
samples are not often promoted in Algorithm 3 when the heatmap approximation is
used.

Although OR-tools outperforms the heatmap approximation, one noted issue with
the former is its high minimal CPU-time. The CPU-times of OR-tools are averaging 0.1
seconds to optimize a single TSP, whereas the corresponding CPU-time for Concorde
is averaging 0.2 seconds. We could not achieve a lower value using the solution_limit

198

Fig. 4: Distribution (violin) plot showing number of location changes against picking-
log distance D(B) (blue) and reassignment distance D(R) (orange) when moving from
a previous sample to a new sample in the Markov Chain. The mean cost of both D(B)
and D(R) increase when more location changes are attempted in new samples. This
plot excludes any xi and xi+1 pairs where either were restarts back to a local minimum.

parameter after several tests. On dataset 1 and 2, this CPU-time is potentially advan-
tageous, since OR-tools delivers TSP distances within 1-2% of optimality (Table 2).
This high approximation quality is explainable since pick-rounds b ∈ B rarely exceed
15 locations in length in those datasets. On dataset 3, when the pick-rounds are 29 prod-
ucts on average, OR-tools is within 6% of optimality. We did not attempt to tune the
CPU-time and the solution_limit parameter in OR-tools to maximize its utility within
Algorithm 3.

Finally, we compute goodness of fit between both cost approximators and R(D) for
any generated samples (while λ was set to zero for dataset 3, R(D) was still computed
and logged). In both cases, R2 was close to zero. While this may seem disadvantageous,
it also means that R (D) has a high variance and low bias, thus preventing Algorithm
3 from converging on weak local minima. We also note that R2 increases for promoted
samples and even more so for accepted samples (reaching as high as R2 = 0.57 for ac-
cepted samples). This provides further validation for Algorithm 3 and its cost function
(Equation 1): The Markov Chain tends to converge on regions where picking-log cost
is low and where reassignment costs are low as well.

Algorithm 1 compared to Algorithm 3 When the best settings found are utilized
in Algorithm 3 (Nested Annealing with the OR-tools TSP cost approximation and
restarts), it outperforms Algorithm 1 (Simulated Annealing without cost approxima-
tion and with restarts) within the given CPU-time (Figure 6). The Markov chain in

199

Fig. 5: Algorithm 1 and Algorithm 3 with and without restarts for 30000 iterations on
dataset 2 [28]. The costs shown are for f ∗(xi+1).

Algorithm 3 is more biased compared to the one in Algorithm 1, due to more samples
being rejected. Algorithm 1 searches through less attractive search regions, which re-
duces risk of convergence on local minima, so if given more CPU-time it could reach
stronger results.

Other features Aggregate averages of results on the generated instances (dataset
1) and Algorithm 3 are shown in Table 1 (Appendix). The elements for columns
f (xi), f ∗(xi), f (xi+1), f ∗(xi+1), f ∗(xbest), D(R)1 D(R)300 are all shown as percentages
against the distance of the baseline cost f ∗(x1) (100%). D(R)1 and D(R)300 denote the
distance of the reassignment path after Algorithm 2 has been run for 1 and 300 iter-
ations, respectively. The rows are aggregated averages based on number of products
shown in column 1, from a total of 5279885 samples on the instance set (with 3-12
minutes CPU-time on each instance).

The relationship between number of location changes and D(R) can be seen in
Figure 7. As more location swaps are carried out, the amount of reassignment distance
increases, but the rate of increase slows down. One possible misconception is that
the gradient should go down to zero as the reassignment path cannot exceed some
hypothetical maximum. This is unlikely to occur, however, since the reassignment path
may need to go back and forth through the warehouse several times to perform many
reassignments.

No correlation was found between the warehouse layout and features such as total
cost improvement, reassignment distance and/or number of final proposed location re-

200

Fig. 6: Aggregate CPU-time against shortest total travel cost (f ∗(xbest)) on the real
warehouse dataset (20 optimization runs): Blue is Algorithm 1, green is Algorithm 3
and red is the cost of baseline assignment x1 (100%). The shadowed areas represent
95% confidence intervals [28]

.

assignments. This is explainable since both TSP-optimizers (OR-tools and Concorde)
and the reassignment path optimizer (Algorithm 2) are layout-agnostic (Section 1).

7 Conclusion

This paper proposes a new optimization model for the Storage Assignment Location
Problem (SLAP). In the Traveling Salesman Problem (TSP)-based SLAP, future fore-
casted picking is assumed to be static, while the warehouse rack layout can have any
shape in two dimensions. In order to optimize the TSP-based SLAP, we propose a
Nested Annealing algorithm. The algorithm is an extension of Simulated Annealing
and generates assignment samples using a Hamming distance function and two sam-
ple filters. The algorithm requires fast and reasonable accurate cost approximations,
and we propose two alternatives: One based on sub-optimal TSP optimization, and the
other based on a pick-frequency heatmap. In order to reduce risk of convergence on a
weak local minimum, we propose a restart heuristic, which forces occasional revisits
to previously generated and relatively strong samples. Since products cannot be reas-
signed to new locations for free, a model for the reassignment path and reassignment

201

Fig. 7: Number of location changes vs. reassignment distance (as a percentage of base-
line costs) (Algorithm 3 and dataset 3).

distance is proposed. This cost is computed and added to the cost of any generated
sample.

To evaluate the proposed optimizer using various SLAP scenarios and optimiza-
tion settings, experiments were conducted on three datasets: A set of publicly shared
test-instances on the generalizable TSBLIB format, as well as two datasets from real
warehouses. Results show that Nested Annealing yields cost savings of up to 30%
within 8 hours of CPU-time. This result is in line with results in prior work, where
strong assumptions are made with regard to warehouse layout (but where dynamicity
may be included or where number of products is larger) [14, 17, 35]. Concerning the
cost approximators, results show that sub-optimal TSP optimization outperforms the
pick-frequency heatmap approach. While the former is thousands of times slower than
the latter, it nevertheless achieves a better result due to its higher predictive accuracy.

For future work, heuristics to increase the amount of bias could be investigated.
One cause of high variance in the proposed algorithm is that any product is allowed to
swap location with any other product. Instead, products could be set up to be allocated
to certain areas in the warehouse. This type of zoning is not trivially achieved, however,
and could, if not carefully handled, lead to premature convergence on local minima.
We concluded this after early tests and instead pursued cost approximation and the
promote filter as another means to constrain the search space.

A topic which we did not explore extensively in this paper is the λ constant (Section
4) and its effect on optimization. We set it to either 0 or 1 and only concluded that it
significantly slows down effective search when used. Instead of a constant, it could be
set to change during optimization to potentially improve performance. For example, λ

could be set to start at a low value and then grow linearly.
202

A final proposal involves analysis of the picking log and how it relates to potential
cost savings. Zhang et al. [43] and Kofler et al. [14] use datamining heuristics to show
that potential cost savings (the "reassignment potential") are correlated to the way in
which products in pick-rounds are distributed. It is challenging to make use of such
heuristics to make concrete proposals for reassignments in a Markov Chain, however.
The SLAP remains a highly intractable problem.

Acknowledgements

This work was partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation. We
also convey thanks to Kairos Logic AB for software.

References

1. Applegate, D., Cook, W., Dash, S., Rohe, A.: Solution of a Min-Max Vehicle Routing Prob-
lem. INFORMS Journal on Computing 14, 132–143 (2002)

2. Azadeh, K., De Koster, R., Roy, D.: Robotized and Automated Warehouse Systems: Review
and Recent Developments. Transportation Science 53 (2019)

3. Boysen, N., Stephan, K.: The deterministic product location problem under a pick-by-order
policy. Discrete Applied Mathematics 161(18), 2862 – 2875 (2013)

4. Cardona, L.F., Rivera, L., Martínez, H.J.: Analytical study of the Fishbone Warehouse lay-
out. International Journal of Logistics Research and Applications 15(6), 365–388 (2012)

5. Charris, E., et al.: The storage location assignment problem: A literature review. Interna-
tional Journal of Industrial Engineering Computations 10 (2018)

6. Christen, J.A., Fox, C.: Markov Chain Monte Carlo Using an Approxima-
tion. Journal of Computational and Graphical Statistics 14(4), 795–810 (2005),
http://www.jstor.org/stable/27594150

7. Ene, S., Öztürk, N.: Storage location assignment and order picking optimization in the au-
tomotive industry. The International Journal of Advanced Manufacturing Technology 60,
1–11 (May 2011). https://doi.org/10.1007/s00170-011-3593-y

8. Fontana, M.E., Nepomuceno, V.S.: Multi-criteria approach for products classification and
their storage location assignment. The International Journal of Advanced Manufacturing
Technology 88(9), 3205–3216 (Feb 2017)

9. Garfinkel, M.: Minimizing multi-zone orders in the correlated storage assingment problem.
PhD Thesis, School of Industrial and Systems Engineering, Georgia Institute of Technology
(2005)

10. Gidas, B.: Nonstationary Markov chains and convergence of the annealing algorithm. Jour-
nal of Statistical Physics 39(1), 73–131 (Apr 1985). https://doi.org/10.1007/BF01007975,
https://doi.org/10.1007/BF01007975

11. Hahsler, M., Kurt, H.: TSP – Infrastructure for the Traveling Salesperson Problem. Journal
of Statistical Software 2, 1–21 (2007)

12. Henn, S., Wäscher, G.: Tabu search heuristics for the order batching problem in manual
order picking systems. European Journal of Operational Research 222(3), 484–494 (2012),
publisher: Elsevier

203

13. Kallina, C., Lynn, J.: Application of the Cube-per-Order Index Rule for
Stock Location in a Distribution Warehouse. Interfaces 7(1), 37–46 (1976),
http://www.jstor.org/stable/25059400

14. Kofler, M., Beham, A., Wagner, S., Affenzeller, M.: Affinity Based Slotting in Warehouses
with Dynamic Order Patterns (Advanced Methods and Applications in Computational In-
telligence), 123–143 (2014)

15. Koster, R.d., Le-Duc, T., Roodbergen, K.J.: Design and control of warehouse order picking:
A literature review. European Journal of Operational Research 182(2), 481 – 501 (2007)

16. Kruk, S.: Practical Python AI Projects: Mathematical Models of Optimization Problems
with Google OR-Tools. Apress (2018)

17. Kübler, P., Glock, C., Bauernhansl, T.: A new iterative method for solving the joint dynamic
storage location assignment, order batching and picker routing problem in manual picker-
to-parts warehouses 147, 106645 (2020)

18. Larco, J.A., Koster, R.d., Roodbergen, K.J., Dul, J.: Managing ware-
house efficiency and worker discomfort through enhanced storage as-
signment decisions. International Journal of Production Research
55(21), 6407–6422 (2017). https://doi.org/10.1080/00207543.2016.1165880,
https://doi.org/10.1080/00207543.2016.1165880

19. Lee, I.G., Chung, S.H., Yoon, S.W.: Two-stage storage assignment to minimize travel
time and congestion for warehouse order picking operations. Computers & Industrial
Engineering 139, 106129 (2020). https://doi.org/https://doi.org/10.1016/j.cie.2019.106129,
https://www.sciencedirect.com/science/article/pii/S0360835219305984

20. Li, J., Moghaddam, M., Nof, S.Y.: Dynamic storage assignment with product affinity and
ABC classification—a case study. The International Journal of Advanced Manufactur-
ing Technology 84(9), 2179–2194 (Jun 2016). https://doi.org/10.1007/s00170-015-7806-7,
https://doi.org/10.1007/s00170-015-7806-7

21. Liu, C.M.: Clustering techniques for stock location and order-picking in
a distribution center. Computers & Operations Research 26(10), 989–
1002 (1999). https://doi.org/https://doi.org/10.1016/S0305-0548(99)00026-X,
https://www.sciencedirect.com/science/article/pii/S030505489900026X

22. Mackay, D.J.C.: Introduction to Monte Carlo Methods. In: Learning in Graphical Models
(1998)

23. Mantel, R., et al.: Order oriented slotting: A new assignment strategy for warehouses. Eu-
ropean Journal of Industrial Engineering 1, 301–316 (2007)

24. Maruyama, K., Yamazaki, T.: Improved efficiency of warehouse picking by co-optimization
of order batching and storage location assignment. Journal of Advanced Mechani-
cal Design, Systems, and Manufacturing 16(5), JAMDSM0052–JAMDSM0052 (2022).
https://doi.org/10.1299/jamdsm.2022jamdsm0052

25. Ming-Huang Chiang, D., Lin, C.P., Chen, M.C.: Data mining based storage assignment
heuristics for travel distance reduction. Expert Systems 31(1), 81–90 (2014), publisher: Wi-
ley Online Library

26. Oxenstierna, J., Krueger, V., Malec, J.: New benchmarks and optimization model for the
Storage Location Assignment Problem. In: 3rd International Conference on Innovative In-
telligent Industrial Production and Logistics, IN4PL 2022. SciTePress (2022)

27. Oxenstierna, J., Malec, J., Krueger, V.: Analysis of Computational Efficiency in Iterative
Order Batching Optimization. In: Proceedings of the 11th International Conference on Op-
erations Research and Enterprise Systems - ICORES,. pp. 345–353. SciTePress (2022).
https://doi.org/10.5220/0010837700003117

204

28. Oxenstierna, J., Rensburg, L.v., Stuckey, P., Krueger, V.: Storage Assignment Using Nested
Annealing and Hamming Distances. In: Proceedings of the 12th International Conference
on Operations Research and Enterprise Systems - ICORES,. pp. 94–105. SciTePress (2023).
https://doi.org/10.5220/0011785100003396, backup Publisher: INSTICC ISSN: 2184-4372

29. Rajasekaran, S., Reif, J.H.: Nested annealing: a provable improvement to simulated anneal-
ing. Theoretical Computer Science 99(1), 157–176 (1992)

30. Rathod, A.B., Gulhane, S.M., Padalwar, S.R.: A comparative study on distance measuring
approches for permutation representations. In: 2016 IEEE international conference on ad-
vances in electronics, communication and computer technology (ICAECCT). pp. 251–255.
IEEE (2016)

31. Janse van Rensburg, L.J.v.: Artificial intelligence for warehouse picking optimization - an
NP-hard problem. Master’s thesis, Uppsala University (2019)

32. Roodbergen, K.J., Koster, R.: Routing methods for warehouses with multiple cross aisles.
International Journal of Production Research 39(9), 1865–1883 (2001)

33. Schapire, R.: Using Output Codes to Boost Multiclass Learning Problems (Feb 2001)
34. Tak, H., Meng, X.L., Dyk, D.A.v.: A Repelling–Attracting Metropolis Algorithm for Mul-

timodality. Journal of Computational and Graphical Statistics 27(3), 479–490 (Jul 2018).
https://doi.org/10.1080/10618600.2017.1415911,

35. Trindade, M.A.M., Sousa, P., Moreira, M.: Ramping up a heuristic procedure for storage
location assignment problem with precedence constraints. Flexible Services and Manufac-
turing Journal 34 (09 2022). https://doi.org/10.1007/s10696-021-09423-w

36. Valle, C., Beasley, J.E., da Cunha, A.S.: Optimally solving the joint order batching and
picker routing problem. European Journal of Operational Research 262(3), 817–834 (2017)

37. Wales, D.J., Doye, J.P.K.: Global Optimization by Basin-Hopping and the Lowest Energy
Structures of Lennard-Jones Clusters Containing up to 110 Atoms. Journal of Physical
Chemistry A 101, 5111–5116 (1997)

38. Wu, J., Qin, T., Chen, J., Si, H., Lin, K.: Slotting Optimization Algorithm of the Stereo
Warehouse. In: Proceedings of the 2012 2nd International Conference on Computer
and Information Application (ICCIA 2012). pp. 128–132. Atlantis Press (May 2014).
https://doi.org/https://doi.org/10.2991/iccia.2012.31, https://doi.org/10.2991/iccia.2012.31

39. Wutthisirisart, P., Noble, J.S., Chang, C.A.: A two-phased heuristic
for relation-based item location. Computers & Industrial Engineering
82, 94–102 (2015). https://doi.org/https://doi.org/10.1016/j.cie.2015.01.020,
https://www.sciencedirect.com/science/article/pii/S036083521500039X

40. Xiang, X., Liu, C., Miao, L.: Storage assignment and order batch-
ing problem in Kiva mobile fulfilment system. Engineering Optimization
50(11), 1941–1962 (2018). https://doi.org/10.1080/0305215X.2017.1419346,
https://doi.org/10.1080/0305215X.2017.1419346

41. Yu, M., Koster, R.B.M.d.: The impact of order batching and picking area zoning on order
picking system performance. European Journal of Operational Research 198(2), 480 – 490
(2009)

42. Yu, V.F., Winarno, Maulidin, A., Redi, A.A.N.P., Lin, S.W., Yang, C.L.: Simulated An-
nealing with Restart Strategy for the Path Cover Problem with Time Windows. Math-
ematics 9(14) (2021). https://doi.org/10.3390/math9141625, https://www.mdpi.com/2227-
7390/9/14/1625

43. Zhang, R.Q., et al.: New model of the storage location assignment prob-
lem considering demand correlation pattern. Computers & Industrial Engineer-

205

ing 129, 210–219 (2019). https://doi.org/https://doi.org/10.1016/j.cie.2019.01.027,
https://www.sciencedirect.com/science/article/pii/S0360835219300294

44. Žulj, I., Glock, C.H., Grosse, E.H., Schneider, M.: Picker routing and storage-
assignment strategies for precedence-constrained order picking. Computers & Industrial
Engineering 123, 338–347 (2018). https://doi.org/https://doi.org/10.1016/j.cie.2018.06.015,
https://www.sciencedirect.com/science/article/pii/S0360835218302869

206

8 Appendix

Examples of pick-rounds before and after 100 iterations of SLAP optimization (left
and right respectively). The SLAP can be challenging even when there are only six
pick-rounds in the picking-log. While it is relatively easy to spot suitable swaps of
locations for pick-rounds involving few products, it is more difficult when pick-rounds
are long. One of the products is picked in all of the pick-rounds, and as that product is
moved, it affects total distance in an unforseeable manner.

Fig. 8: Pictures of optimally solved pick-rounds (TSP’s) before (left) and after SLAP
optimization (right). The product which is picked in all pick-rounds is the lower-
rightmost one in the upper two pictures (before and after it was moved).

207

Table 1: Aggregate averages of results from 5279885 generated samples for opti-
mization runs on the 266 publicly shared instances. The results are aggregated based
on ranges of number of products (the first column).

208

Table 2: Aggregate averages of results on dataset 3, where the two cost approxima-
tors are compared. The CPU-times are here for predictions of single TSPs.

209

