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Popular Science Summary

How can we ensure reliable communication at high data rates to meet the grow-
ing demands of modern life? How can we minimize the number of tests and
thus save the cost if we want to test for a rare disease in a large population?
These two questions at first glance seem to be unrelated but a closer look reveals
that they have much in common and we can use similar techniques to answer
both of them. We start by answering the communication question where there
is a growing demand for faster data rates due to popular applications like video
streaming, video calls, and online gaming. The shift towards cloud computing
further expands this need for fast and reliable data transfer. We proceed to
show how we can apply the tools from communication theory in what is called
group testing (GT) for testing of diseases or any anomaly like detecting portions
of large data which has been tampered with in data forensics or detecting faults
in large computer networks.

A communication system transmits information from a source to a destina-
tion through some channel, which can be a cable or air (for wireless commu-
nication). However, channels often introduce disturbances, the most common
being noise, which can make messages unclear, especially at higher data rates.
One way to counteract this is to increase the transmit power, but this can lead
to higher energy consumption and potential damage to equipment or harm to
people. Furthermore increasing the transmit power may lead to increased in-
terference to other users who are also communicating over the medium. An
analogy for this having several people in a room with communication between
pairs. If each pair were to raise their voice it would not result into better
comprehension since the disturbance form other pairs will be worse. A more
efficient method is to use error-correcting codes, or channel codes, which add
controlled redundancy to allow the receiver to correct errors. Claude Shannon
identified a limit to data rate, known as the channel capacity, within which
reliable communication is possible despite noise.

Several error-correcting codes have been developed to meet modern com-
munication needs, including convolutional codes, turbo codes, and low-density
parity check (LDPC) codes. A common approach for describing these codes is
through graphs, where variable nodes represent code bits, and constraint nodes
represent the constraints on those bits.

Channels can also introduce other issues, like intersymbol interference (ISI),
which occurs when signals sent at different times overlap at the receiver. This
can happen in wireless communication when signals bounce off structures, cre-
ating delayed copies that cause interference. To address ISI, equalization is
used, which aims to remove these interfering copies. Although it’s tempting
to address noise and ISI separately, this approach leads to sub-optimal perfor-
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mance. A better solution is to use a receiver that jointly considers both code
and channel, but this is complex and often impractical.

A more manageable solution is turbo equalization, where the equalizer and
decoder exchange information in cycles. This method provides good perfor-
mance with manageable complexity. The performance of coding systems gener-
ally has two regions: the waterfall, where the error rate drops quickly, and the
error floor, where it stabilizes. To get the best performance with turbo equaliza-
tion, the code and equalizer must be aligned. This has traditionally been done
by designing codes, like LDPC codes, for specific channel conditions, but this
approach can lead to bad error floors and inflexibility with changing conditions.

A more robust solution is to use a technique known as spatial coupling. With
spatial coupling blocks of bits are interlinked to form a chain instead of being
processed separately. This results in significant improvement in performance in
the waterfall region without compromising the waterfall. But more importantly
the performance with spatial coupling is robust even if the channel conditions
changes.

The problem of group testing is to reduce the number of tests by testing items
in groups instead of individual testing. The tests can be quantitative whereby
each test shows the number of items which are defective or non quantitative
whereby the test result is positive if at least one item is defective and negative
otherwise. The test setup can be modelled by graphs thus attracting the use the
tools from codes on graphs in channel coding. We show that with LDPC codes
we can solve the problem of quantitative GT with low complexity and reduce the
number of tests significantly. Using spatial coupling the performance of group
testing is improved much more. Furthermore, we show that with spatial coupling
we obtain robust performance with group testing for changing conditions in the
population, particularly with changing fraction of items that are defective.



Abstract

Iterative algorithms are becoming more common in modern systems. This
ranges from algorithms for communication systems receivers, machine learn-
ing, group testing, and various computation problems. The success of these
algorithms lies in the ability to simplify computation by breaking down the sys-
tem into components and exchanging messages on graphs. The graph has the
components as nodes and connections between them as edges. This separation
is needed since attempting to solve the problem without dividing it into parts
results into an optimal solution, the joint maximum a posterior (MAP) solution,
but the computational complexity is prohibitive.

With the systems divided into separate parts it often seems reasonable to use
the best component for each part to achieve good performance. This, however,
results into degraded performance compared to the optimal overall solution. To
get improved performance the components have to exchange information itera-
tively in a number of cycles a process known as belief propagation (BP). This
principle has been applied with much success in various areas such as the design
of turbo codes and low density parity-check (LDPC) codes for reliable commu-
nication. Other examples include iterative receivers for cancelling intersymbol
interference (ISI) and better performance of modulation and coding in coded
modulation.

Choosing component codes for communication systems with iterative sys-
tems is often a process which involves compromises. For example, if one chooses
a strong code to work with a particular detector, the resulting performance
in the waterfall region becomes poor but the error floor is improved whereas
choosing a weak code results in improved waterfall region but poor error floor.
One can also optimize the code, for example, by tuning the degree distribution
of LDPC codes to achieve good performance but the optimization introduces
weak components that compromise the error floor. Furthermore, the optimiza-
tion can work well for a given set of channel conditions, but the optimized code
may not work well if the conditions are changed.

These problems are a result of the fact that we have limitations from two
aspects. First, we are limited by the component (e.g. codes or detectors) choice
which sets the limit on the MAP threshold. A strong code will then have a good
MAP threshold and good error floor wheres a weak code will have a bad MAP
threshold and bad error floor. It is important to note that the MAP threshold
is the best we can do with the choice of the components but it can still be away
from the ultimate information theoretical limit of the system (this corresponds
to the capacity in communication systems for example). A second limitation
comes from the decoding algorithm. The BP algorithm is not globally optimal
for most graph used, thus setting a limit which is termed the BP threshold. A
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strong code has then a bad BP threshold whereas a weak code has a better BP
threshold.

This thesis focuses on improving the performance of iterative algorithms
by tackling the limitations highlighted. We propose improved algorithms and,
more importantly, we apply the concept of spatial coupling to improve the per-
formance and robustness of the systems. We do this in two parts.

In the first part we apply the concept on channels with ISI showing that we
can obtain robust performance with changing channel conditions and changing
detector type. We propose three schemes of coupling and compute the BP and
MAP thresholds as well as perform finite length simulations.

In the second part, we investigate non-adaptive quantitative group testing
using sparse graphs. We propose improvements of the algorithms and show that
with spatial coupling we can obtain improved and robust performance.
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In Paper 1, I investigated the application of spatial coupling in turbo equal-
ization for channels with intersymbol interference (ISI). I did finite length simu-
lations for three different schemes of introducing coupling in turbo equalization.
The schemes are coupling at the input of the channel, coupling the code and
coupling both the code and at the input of the channel. I also derived the ex-
trinsic information transfer (EXIT) chart thresholds for the ISI channels with
additive white Gaussian noise (AWGN). I did the writing with the help of my
supervisor.
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In Paper 2, I investigated the universality of spatial coupling for general
ISI channels for both AWGN and erasures. To do this, I derived an exact
input/output transfer function for a general ISI channel and set up the envi-
ronment for running density evolution (DE), computing MAP thresholds and
finite length simulations. I also did the main part in writing with the help of
my supervisors.

In Paper 3, I extended the work in Paper 2 by looking at the practical im-
plications of the universality of spatial coupling highlighted in Paper 2. This
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spatially coupled LDPC codes with their uncoupled version and the generalized
LDPC (GLDPC) construction. Furthermore, I proved threshold saturation for
the GLDPC based group testing by showing that the recursion satisfied a scalar
admissible system. I also provided additional improvements on the GLDPC de-
coder using concepts learned from the decoder for LDPC codes. With the help
of my supervisors I did the main writing of the paper.

In Paper 6, I proposed a novel scheme for quantitative group testing based
on LDPC codes. The scheme involved introducing hidden nodes by bundling
together items into groups of size q. This introduces constraints in the design
of the test matrix. The bundling does not affect the testing procedure but can
be utilized by the decoder to improve the decoding performance with limited
increase in complexity. I derived the DE equations and computed the thresh-
olds. I also ran finite length simulation of the scheme comparing it with the
conventional LDPC proposed in Paper 4 and the GLDPC scheme. I did the
main writing with the help of my supervisors.

Other Contributions
The following paper is a conference version of Paper 5 but is not included in
this dissertation.
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for Quantitative Group Testing with Low-Density Parity-Check Codes,”
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Chapter 1

Introduction

1.1 Channels with Intersymbol Interference
Communication has become an indispensable part of modern life. We have
witnessed the growth of mobile communication throughout the world which
was initially mainly for voice and short messages. The explosion of the Internet
and its integration in the mobile network have pushed the demand for reliable
communication at higher data rates.

Reliable communication is a challenge since the channel, the medium through
which information propagates from the sender to the receiver, can corrupt the
signal carrying the information. One common source of corruption is noise,
which when added to the signal can corrupt the signal making it unintelligible
to the receiver, especially when the signal has been attenuated after traveling
a long distance. A quick fix to this would be to increase the transmit power
such that the signal is very strong when it reaches the receiver. But this implies
higher energy consumption, and there is a limit to the amount of energy the
electronics in the transmitter can handle without being damaged. More power
would also result in increased interference to other users. The interference could
be worse if each user were to increase their transmit power.

With limited energy resources, what is then the limit to the data rate at
which we can still communicate reliably? How can this be done? The first
question was answered by Claude Shannon in 1948 [1] when he showed that
for given channel conditions like the ratio of signal power to noise power, we
can communicate reliably if the rate is below what is called the capacity of the
channel. An alternative formulation of of Shannon’s limit provides the minimum
signal power required for almost error free communication for given rate. This
can be achieved by using error-correcting codes. This involves introducing some
controlled redundancy to the information bits, which can be exploited by the
decoder at the receiver to correct errors which might have happened in the
transmission process.

The performance of a channel coding scheme is limited by the decoding
algorithm used at the receiver. The best possible performance in terms the
minimum signal power for vanishing bit error rate (BER) is obtained by using
the maximum a posterior (MAP). The limit of the MAP receiver (MAP thresh-
old) can be away from the capacity limit. But MAP receivers for coded systems

3
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are prohibitively complex thus necessitating the use of sub-optimal algorithms.
The most common being the belief propagation (BP). The BP receiver has a
limit (BP threshold) worse than the MAP threshold. A code with good MAP
threshold usually has a poor BP threshold and a code with good BP threshold
has a bad MAP thresholds. In classical code design codes are usually designed
to have good BP thresholds. This however, leads to codes with poor MAP
threshold thus failing to achieve the capacity limit. This dilemma, illustrated
in Fig. 1.1, is addressed in the thesis.

(a) (b)

Figure 1.1: An illustration of the dilemma between the MAP threshold and
BP threshold (a) A code with good MAP threshold (b) A code with good BP
threshold but poor MAP threshold (The limits of the code in (a) are shown in
(b) in faint dotted arrows for comparison).

A simple example of an error correcting code is the repetition code which re-
peats the information bits several times. If some bits are corrupted the decoder
can recover the original bit by making a majority vote on the received bits. This
simple repetition however does not result in efficient error correcting codes as
the achievable data rates can be very far from the capacity. More elaborate
codes have been developed for better error correction [2]. Examples include
algebraic codes like Reed-Solomon codes and BCH codes which can better cor-
rect errors that occur in blocks. Other codes include convolutional codes that
can be encoded and decoded in a stream, making them suitable for streaming
applications. Concatenating two codes often results in stronger codes. Thus,
for example, for digital video broadcasting standard for satellite (DVB-S) and
space communication, Reed-Solomon codes are concatenated by convolutional
codes to get a better performance.

A major breakthrough in channel coding came with the development of turbo
codes in the early 90s. These codes could achieve almost error-free communica-
tion very close to the capacity limit [3]. The key to their performance was the
use of two convolutional codes in parallel which shared the input bits with the
decoders exchanging soft information in a number of iterations. One application
which benefited from this was the 3G mobile communication. Variants of codes
based on the principle have been developed which are collectively known as
turbo-like codes [4]. It was noted that low-density parity-check (LDPC) codes,
which were invented much earlier [5] but were not developed to be practical at
that time, were also based on a similar principle. They were later developed
and could provide similar to better performance [6,7], leading them to be widely
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used in 4G and 5G mobile communications. Both turbo-like codes and LDPC
codes are termed as codes on graphs. The idea behind codes on graphs is having
nodes of a graph which exchange information on a number of iterations in the
decoding process in what is called belief propagation (BP) [8]. The concept of
codes on graphs has made a big impact in the design and analysis of modern
coding theory.

Apart from noise, the transmitted signal may be distorted by the overlap
with other signals transmitted in nearby time slots. This phenomenon is called
intersymbol interference (ISI). A simple example of the phenomenon can be
described by wireless transmission whereby a signal might take more than one
path to reach the receiver. For example, we might have the direct path and
the path taken by bouncing off buildings in a city. If the transmission rate is
increased, the spacing between separate symbols is reduced which might lead
to overlap of the current signal with signals which were sent in previous time
slot but took a longer path. Nyquist provided the formal criteria which the
transmission has to fulfill in order to avoid ISI. In general the Nyquist criteria
for ISI puts a limit for the transmission rate for a limited bandwidth [9].

The effect of ISI could however be mitigated by employing an equalizer at
the receiver. The equalizer cancels or rather attempts to cancel the effect of
the symbols from neighbouring time slots from the current signal. Since the
data are also protected by a channel code, the equalizer passes its output to the
decoder for error correction. It is tempting to treat these two components as
separate entities, but doing that may result in poor performance when compared
to the capacity of the channel. An optimal receiver would be a joint MAP
receiver which would consider both the code and channel together. However,
the complexity of such a receiver is prohibitive. A common solutions is to let
the equalizer and the decoder exchange information iteratively in a number of
iterations. Such a scheme is known as turbo equalization [10, 11] since it uses
the same principle as turbo codes.

In classical code design, choosing codes to work with an equalizer in turbo
equalization often results in some trade-offs between the performance in the
waterfall region (the region with low SNR where the bit-error rate (BER) falls
rapidly) and the error floor region (the region at higher SNR where the BER
remains relatively constant). If a code which is strong in the sense that it has
good performance in AWGN channel is used, the waterfall performance becomes
poor but the error floor becomes good. On the other hand, if a weak code is used
the waterfall performance becomes good but the error floor becomes poor. This
phenomenon is connected to the fact that the BP algorithm is not optimal thus
limiting the performance of iterative receivers away from the MAP threshold.
The stronger code has a better MAP threshold than the weaker code but might
have a poorer BP threshold compared to the weak code. If we were to use
a joint MAP receiver, we would have the strong code perform better both in
terms of waterfall and error floor. A common solution in classical code design
is to optimize the code to fit with a particular channel and equalizer to have
performance close to the capacity limit [12]. The drawback with this approach
is that we need to re-optimize the code if the channel would to change making
it impractical in varying channel conditions. A relatively modern concept of
spatial coupling provides a solution to some of the challenges with classical
code design for iterative receivers.

With spatial coupling, blocks of data are interconnected to form a chain as
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opposed to encoding each block separately as in classical code design. This was
first studied for LDPC codes [13]. It was observed that the performance in the
waterfall region of the spatially coupled LDPC codes where improved consider-
ably without compromising the error floor. This was later shown experimentally
and formally proved to be a result of a phenomenon known as threshold satu-
ration whereby the BP threshold of the spatially coupled code approaches the
MAP threshold of the underlying uncoupled ensemble with BP decoding [14,15].
This opens up a new paradigm in code design whereby the MAP threshold is
the target. We can thus use strong codes and obtain good performance in the
waterfall and error floor regions with BP decoding [16]. Furthermore, spatial
coupling has been shown to exhibit universality whereby the same code can
achieve the capacity under different conditions [17,18].

The purpose of this thesis when studying channels with intersymbol inter-
ference is to show that spatial coupling could be employed in turbo equalization
to remove the trade-offs between the performance in the waterfall and error
floor regions. We also demonstrate with concrete examples how universality of
spatial coupling results in robust performance in situations where the channel
might be changing. The thesis includes three papers on the topic, Paper I, II
and III. In Paper I we introduce spatial coupling in turbo equalization in three
different ways demonstrating that the trade-off between waterfall and error-floor
can be avoided. In Paper II we investigated the universality of spatial coupling
for channels with ISI for both erasures and AWGN. In Paper III we demon-
strated that with spatial coupling the performance we get robust performance
with changing channels as well as using sup-optimal decoders.

1.2 Group Testing with Sparse Graphs
Consider a large population of items with very few of them being "defective".
This could for example be a population of people with a small fraction of in-
dividuals affected by a rare disease. The purpose of group testing (GT) is to
identify the set of items which are defective with minimum number of tests by
testing the items in groups instead of performing individual tests. This was
first introduced by Dorfman in 1943 to test for syphilis among military draftees
for World War II [19]. It results in significant saving in the number of tests
thus reducing cost especially when the number of items which are defective is
very small compared to the population size. Group testing has been applied
in many fields. Examples include DNA sequencing [20] to identify rare traits,
fault searching in electrical and computer networks [21], data forensics [22, 23]
and multi-access communication in wireless communication [24,25].

The design of the tests can either be adaptive or non-adaptive. With adap-
tive GT the tests are carried out in stages whereby the test design at each stage
depends on the outcome of the tests in previous stages. With non-adaptive GT
on the other hand, all the tests are designed beforehand. In general, adaptive
GT uses less tests than non-adaptive GT but non-adaptive GT is attractive for
many applications because the tests can be run in parallel thus saving testing
time.

GT can also be classified into quantitative versus non-quantitative depending
on the outcome of the test results. With quantitative GT the results of each
test indicates how many items participating in the test are defective. With
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non-quantitative GT, however, the test result indicates whether at least one
item in the test is defective. That is, the test is positive if at least one item
in the test is defective and negative if all the items are non-defective. Several
variations exist between the two extremes such as semi quantitative GT testing
which a variation of quantitative GT with the test results indicating a range of
defective items in the test. Another variation includes threshold GT whereby
the test is positive if the number of defective items is above a certain threshold
and negative if the number is below another (possibly different) threshold. This
thesis focuses on non-adaptive quantitative GT.

The test assignment can be modelled by a matrix with the columns repre-
senting the items and the rows the tests. If an item participates in a given test
the entry in the test matrix corresponding to the intersection of the item and
test is one and zero otherwise. This setting has similarities with channel codes
where the test matrix corresponds to the parity-check matrix of a code and the
test results as the syndrome. We can thus apply some of the tools in coding the-
ory particularly codes on graphs to design and analyse the performance of GT.
The corresponding graph in GT has the tests as the constraint nodes and the
items as the variable nodes. For example in non-quantitative GT the algorithm
SAFFRON and its variations [26,27] uses sparse graph codes to design efficient
tests with low complexity decoding. The concept was extended to quantitative
GT in [28] whereby generalized LDPC (GLDPC) codes where used with t-error
correcting BCH codes as the component codes.

The performance of the GLDPC codes is very good for low values of t such as
t = 1 and t = 2 but degrades substantially when t is increased to higher values.
This phenomenon is a result of that the increased error correcting capability
comes at a cost of increasing number of tests which outweighs the benefit. Fur-
thermore, the test design has to be optimized depending on the range of number
of defective items in the population. That is a test design can be optimal when
the fraction of defective items in the population in a given range but when the
number of defective items is increased or decreased the design might perform
poorly requiring a new design.

The purpose of this thesis when it comes to group testing is to examine
closely the design of test using sparse graphs and propose more efficient schemes.
We do this by proposing new schemes based on LDPC codes and improving the
existing schemes. Furthermore we introduce spatial coupling in quantitative
GT to improve the performance and, more importantly, to obtain robust per-
formance for a wider range of scenarios. The thesis includes three papers on the
subject, Paper IV, V, and VI. In Paper IV we introduce the proposed scheme
with LDPC codes. We also introduce spatial coupling to both schemes and
derive the corresponding density evolution equations. In Paper V we prove
that threshold saturation occurs in quantitative GT for both the GLDPC and
LDPC scheme. We also propose an improved decoders for the GLDPC scheme.
In Paper VI we propose an improvement on the scheme with LDPC codes by
introducing hidden nodes in the graph thus enabling the use of non-binary al-
phabet without changing the test operations.
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1.3 Thesis Outline
This thesis is written in the paper collection format and consists of two main
parts. The first part consists of an overview of the research field whereas the
second part contains the research contributions in form of a selection of papers
which covers two areas, one on channels with ISI and the other on group testing.
The first part is divided into five chapters. Chapter 2 contains brief explanations
of various fundamental concepts used in the thesis. In Chapter 3, concepts
pertaining to iterative algorithms on graphs are presented. Several graph-based
codes are presented showing their graphical structures and how message passing
is done. Various ways of computing the decoding thresholds such as density
evolution are also presented for the Gaussian and erasure channel as well as
models for channel with ISI. The concept of spatial coupling is introduced in
this chapter as well. Chapter 4 presents various basic concepts about group
testing. We introduce graph-based GT focusing on quantitative GT. Finally,
in Chapter 5, a summary of the included papers is presented together with the
main conclusions of the thesis as well as suggestions of future research areas.



Chapter 2

Preliminaries

2.1 Discrete Communication Model
A simplified channel model is shown in Fig. 2.1. A block of information bits
u form a data source is input to the channel encoder, which adds controlled
redundancy to produce the coded bits v. The modulator takes the coded bits, q
at a time, and outputs the modulated symbols x. The modulated symbols are

 Encoder ChannelData
Source

 Channel
 Decoder

Data
Sink

Modulator

Figure 2.1: Block diagram showing a simplified discrete communication model.

passed through a channel characterized by the transition probability PY |X(y|x).
We use an upper case letter to denote a random variable (RV) and a lower case
one for its realization.

A channel is called memoryless if for a block of transmitted signal x and
a block of received symbol y the conditional probability PY |X

(
y|x
)

can be
factored as

PY |X
(
y|x
)
=
∏
i

PYi|Xi

(
yi|xi

)
. (2.1)

This means that the output of the channel at time i depends only on the input
xi at the equivalent input time. This is in contrast to channels with memory,
where the output at a particular time is affected by inputs at other times as
well.

At the receiver the channel decoder uses the received signal y to produce a
best possible guess of u denoted as û.

2.1.1 Channel with Additive White Gaussian Noise
For an AWGN channel, the output of the channel is corrupted by additive noise
which is Gaussian distributed with zero mean and variance σ2. That is, if the
input Xi is real, the output Yi is given as

Yi = Xi +Wi ,

9
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where Wi ∼ N (0, σ2). We thus have

PYi|Xi

(
yi|xi

)
=

1√
2πσ2

exp

(
− (Yi −Xi)

2

2σ2

)
.

The channel quality for this channel is usually given as the ratio Eb
N0

of the energy
per bit Eb to the noise spectral density N0 related to σ as N0 = 2σ2. When the
input X is binary the channel is referred as binary AWGN (BI-AWGN).

2.1.2 Binary Erasure Channel
The binary erasure channel is a simple channel model which either erases the
input symbol completely with probability ε or passes through with probability
1− ε. The model is shown in Fig. 2.2. The BEC is a very simple channel model

Figure 2.2: Binary erasure channel model.

which simplifies analysis using mathematical tools. For this reason it is widely
used as tool to gain insight into behaviour of various communication concepts
with some of the results giving close approximation to applications with more
complex model like the BI-AWGN.

2.2 Information Measures
In this section we introduce information measures commonly used in analysing
communication systems.

2.2.1 Entropy
Entropy is a measure of uncertainty about a random variable. For a discrete
RV X, which takes values in the set X with probability mass function (pmf),
PX(x), its entropy H(X) is given as

H(X) = −
∑
x∈X

PX(x) log2 (PX(x)) .

If X is a continuous RV with a support set S the entropy is computed as

H(X) = −
∫
S
fX(x) log2(fX(x)) ,

wherefX(x) is the probability density function. It is common to describe the
entropy of a continuous RV as differential entropy.
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The uncertainty about X provided that another RV Y is known is called
conditional entropy and is given as

H(X|Y ) =
∑
y∈Y

PY (y)H(X|Y = y)

=
∑
y∈Y

PY (y)
∑
x∈X

PX|Y (x|y) log2
(
PX|Y (x|y)

)
.

The conditional entropy is always less than or equal to the unconditional en-
tropy since having additional information can reduce the uncertainty but cannot
increase uncertainty.

2.2.2 Mutual Information
The reduction in uncertainty about a RV X as a result of the knowledge of
another RV Y is quantified by the mutual information between X and Y . That
is

I(X;Y ) = H(X)−H(X|Y ) .

The mutual information is symmetrical meaning that I(X;Y ) = I(Y ;X).

2.2.3 Channel Capacity
The maximum rate we could have and still maintain error free communication
is known as channel capacity C. This limit is given by the maximum mutual
information between the received signal Y and the transmitted signal X. That
is

C = max
PX(x)

I(X;Y ) .

The maximum is taken over all possible distributions PX(x) of the transmitted
signal. It is, however, common to consider the capacity when with the input
constrained to some discrete alphabet with a given distribution. This is often
termed as constrained capacity or maximum information rate.

2.3 Galois Fields
In this section we briefly introduce the concept of fields and Galois fields (or
finite fields). These concepts are useful in describing channels codes especially
algebraic codes. Most of the materials in the section are based on [29].

Fields

A field is a set F of elements together with two binary operators "+" and "·"
that satisfy the following properties:

1. F is a commutative (abelian) group with respect to "+"

2. F is an abelian group with respect to "·"

3. Distributively: ∀a, b, c ∈ F a · (b+ c) = a · b+ a · c .
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Abelian Group

An abelian group is a set of elements G together with an operator "∗" which
satisfy the commutative law [30]. It also called a commutative group. In detail
an abelian group satisfies the following properties:

1. Closure: ∀a, b ∈ G a ∗ b ∈ G

2. Associativity: ∀a, b, c ∈ G a ∗ (b ∗ c) = (a ∗ b) ∗ c

3. Identity element: ∀a ∈ G∃e ∈ G : a ∗ e = a

4. Inverse: ∀a ∈ G∃b ∈ G : a ∗ b = e =⇒ b = a−1

5. Commutativity: ∀a, b ∈ G a ∗ b = b ∗ a .

Galois Fields

A Galois field is a field with finite number of elements. A Galois field with q
elements is denoted as GF(q) or Fq. If q is prime the field is called a prime
field. The order of an element a in a Galois field is the smallest integer k such
that ak = 1. An element whose order equals q − 1 is called a primitive element
and is denoted as α.

For example GF(2) is a prime field with elements {0, 1} with the operators
"+" and "·" corresponding to addition and multiplication modulo 2.

Extension Fields

An extension field is a Galois field where the number of elements q = pm, where
p is a prime number and m is an integer. The non-zero elements of a Galois
field can be represented by powers the primitive element α. For example for a
GF(2m) we have

F2m \ 0 =
{
1, α, α2, . . . α2m−2

}
.

The elements can also be represented as polynomials in α as

a0 + a1 · α+ a2 · α2 · · ·+ am−1 · αm−1 ,

where ai ∈ Fp. The corresponding binary vector representation is given as

(a0, a1, a2 · · · , am−1) .

Extension fields with p = 2 can be efficiently implemented due to their binary
vector representation.

2.4 Channel Codes

2.4.1 Block Codes
Block codes are defined by a mapping of a block of K information bits to a
block of N codeword bits with N > K. The ratio R = K

N is called the rate of
the code. A code is called linear if it contains the all-zero codeword and every
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linear combination of codewords is also a codeword. In other words, a linear
block code C(N,K) is a linear subspace of dimension K of the vector space
FN
2 . The number of non-zero elements in a codeword is called the Hamming

weight of the codeword. The number of positions by which two codewords differ
is called the Hamming distance between the two codewords. The minimum of
these distances is called the minimum distance of the code. By linearity the
minimum distance is equal to the minimum weight of the non-zero codewords.
Linear codes are widely used because they can be encoded and decoded with
higher efficient algorithms. The encoding of linear block codes can be described
using an K × N generator matrix G which contains K linearly independent
codewords. The parity-check matrix H of a linear code C is an (N −K) × N
matrix such that every codeword v of C satisfies the constraint

vHT = 0 .

This means that H is a matrix with elements in F2 (in general for a q−ary
code the elements are members of Fq) such that its null space is C. The code Cd
whose generator matrix is the parity-check matrix H is called a dual code of C.
For example a (K + 1,K) single parity-check code is a dual code of (K + 1, 1)
repetition code.

2.4.2 Convolutional Codes
Convolutional codes (CCs) are characterized by the property that they can be
encoded continuously on a stream such that the output bits at a particular
time slot are a function of not only the current input bits but also of input bits
in previous time slots. The span of time over which bits can still affect the
current output is called the memory of the code m. More formally consider the
sequences of information bits u and code bits v where

u = (u0,u1, . . . ,ut, . . . ) ,

v = (v0, v1, . . . ,vt, . . . ) .

A CC encoder accepts a block of k information bits, ut = (u
(1)
t , . . . , u

(k)
t ) which

is encoded to produce a block of n code symbols, vt = (v
(1)
t , . . . , v

(n)
t ). The code

bits vt are a function of information blocks, ut′ for t′ = t−m, . . . , t. That is

v
(j)
t =

k∑
i=1

m∑
l=0

u
(i)
t−lg

(j)
i,l ,

where g
(j)
i,l equal 1 if v(j)t depends on u

(i)
t−l, otherwise g

(j)
i,l = 0. The vector

g
(j)
i =

(
g
(j)
i,0 , g

(j)
i,1 , . . . , g

(j)
i,m

)
is called the generator vector for the input i and

output j. We can thus express the encoder as

v(j) = u(1) ⃝⋆ g
(j)
1 + u(2) ⃝⋆ g

(j)
2 + · · ·+ u(k) ⃝⋆ g

(j)
k =

k∑
i=1

u(i) ⃝⋆ g
(j)
i ,

where ⃝⋆ is the convolution operator hence the name convolutional codes.
Convolutional encoders can be implemented by using shift registers with m

memory elements. As an example Fig. 2.3 shows a rate 1
2 convolutional code
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Figure 2.3: A feed forward encoder for a rate 1
2 convolutional code.

with one input bit and two output bits with m = 2. The generator vectors are
usually specified using the octal representation. That is the bits are divided
into tuples of size 3 from the right and each tuple is converted to decimal with
the leftmost bit as most significant. The generator vectors for the encoder with
their octal representation are given as

g
(1)
1 =

(
1 0 1

)
= (5)

g
(2)
1 =

(
1 1 1

)
= (7) .

The code can then be abbreviated as a (5,7) CC. The encoding of convolutional
codes can also be represented by a state diagram with the state being determined
by the contents of the shift registers. Fig. 2.4 shows the state diagram for the
(5,7) encoder. The states are represented by the circles while each transition
arrow is marked by the input/output bits. Expanding the state diagram for

Figure 2.4: State diagram for the (5,7) CC encoder in Fig. 2.3.

consecutive time instants we obtain what is known as the trellis of the code.
The trellis for the (5,7) code is shown in Fig. 2.5.

2.4.3 BCH Codes
Bose–Chaudhuri–Hocquenghem codes (BCH codes) form a class of cyclic error-
correcting codes that are constructed using polynomials over a Galois field [29,
31]. The decoding of BCH codes is very efficient since it uses algebraic methods
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Figure 2.5: Trellis diagram for the (5,7) CC encoder in Fig. 2.3.

which can be efficiently implemented in hardware. An interesting feature of
BCH codes is that one can design precisely a code which can correct t errors.
That is for every integers m ≥ 3 and t < 2m−1, there exists a BCH code with
the following parameters,

Block length: N = 2m − 1

Number of parity-check digits: N −K ≤ mt

Minimum distance: dmin ≥ 2t+ 1 .

A binary N−tuple (v0, v1, · · · , vN−1) is a codeword of a t-error correcting BCH
code if and only if the polynomial v(X) = v0+v1 ·X+v2 ·X2+· · ·+vN−1 ·XN−1

has α, α2, . . . α2t as roots. This means for every codeword we have

v(αi) = v0 + v1 · αi + v2 · α2i + · · ·+ vN−1α
(N−1)i = 0

for 1 ≤ i ≤ 2t. In matrix notation this can be written as

(v0, v1, v2 · · · vN−1) ·


1
αi

α2i

...
α(N−1)i

 = 0 .

With this it can be seen that the parity-check matrix H is given as

H =


1 α α2 α3 · · · αN−1

1 α2 (α2)2 (α2)3 · · · (α2)N−1

1 α3 (α3)2 (α3)3 · · · (α3)N−1

...
...

1 α2t (α2t)2 (α2t)3 · · · (α2t)N−1

 .

For an element of GF(2m) represented as a = αi, every element represented as
(αi)2

l

is a conjugate of a. If αj is a conjugate of αi for some i and j then αj

is a root of a polynomial v(X) with coefficients in GF(2) if and only if αi is a
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root of v(X). We can thus omit the rows of H which correspond to conjugates
of any other row. This implies that the matrix H can be reduced to the form

H =


1 α α2 α3 · · · αN−1

1 α3 (α3)2 (α3)3 · · · (α3)N−1

...
...

1 α2t−1 (α2t−1)2 (α2t−1)3 · · · (α2t−1)N−1

 .

To get the binary representation of H we represent each element of GF(2m) by
its binary representation in column form.

Example 2.4.1. Consider as 2-error correcting BCH code with m = 3. We
have N = 23 − 1 = 7. The parity-check matrix is given as

H =

(
1 α α2 α3 α4 α5 α6

1 α3 α6 α9 α12 α15 α18

)
=

(
1 α α2 α3 α4 α5 α6

1 α3 α6 α2 α5 α α4

)
.

Here we have used the fact that α7 = 1. The corresponding binary representation
is given as

H =


0 0 1 0 1 1 1
0 1 0 1 1 1 0
1 0 0 1 0 1 1
0 0 1 1 1 0 1
0 1 0 0 1 1 1
1 1 1 0 1 0 0

 .

2.5 Decoders with Soft Information
The bit-wise MAP decoder is the optimal decoder if we aim to minimize the bit
error rate (BER). For a received sequence y the bit-wise MAP decoder is given
as

ûi = arg max
ui∈{0,1}

P (ui|y) .

Soft decoders output the a posterior probability (APP) in terms of log-likelihood
ratio instead of the hard decision. The log-likelihood ratio L(ui) is commonly
called the L-value and is given by

L(ui) = ln
P (ui = 0|y)
P (ui = 1|y)

.

Where ln(x) is the natural logarithm of x.
The soft information makes the decoders more effective when they are used

in iterative receivers.



Chapter 3

Graph Based Systems

Computations involving functions with many variables can be very complex. If
the function can be factorized into smaller functions, each with a small set of the
variables, the computation complexity can be reduced significantly by exploiting
this factorization [32]. This factorization can be modelled by factor graphs.
This chapter introduces factor graphs and briefly discusses some applications in
communication systems, particularly codes on graphs and iterative receivers for
channels with ISI.

3.1 Factor Graphs
A factor graph is bipartite graph with one set of nodes consisting of constraints
and the other set consisting of variables. The constraints represent conditions
which the variables connected to the constraint node must fulfill. In other words,
these are functions on a set of variables nodes.

Example 3.1.1. Consider a function f(x1, x2, x3, x4, x5) with five variables. If
the function can be expressed as a product

f(x1, x2, x3, x4, x5) = f1(x1, x2)f2(x1, x3, x4)f3(x3, x5)f4(x4, x6)

with four factors, the factor graph for the function can be drawn as shown in
Fig. 3.1.

Figure 3.1: (a) An example of a factor graph with constraints as squares and
variables as circles.

17
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Figure 3.2: (a) The factor graph in Fig. 3.1 redrawn with the root at x1.

3.1.1 Message Passing on Graphs
It is a typical problem to compute marginals for given a function. For exam-
ple we might be interested in computing the marginal f(x1) for the function
f(x1, x2, x3, x4, x5) in Example 3.1.1. To do this we have to sum over all vari-
ables except x1. Using the notation x∼i to denote all variables except xi we
have

f(x1) =
∑
∼x1

f(x1, x2, x3, x4, x5) =[∑
x2

f1(x1, x2)

][ ∑
x3,x4

f2(x1, x3, x4)
∑
x5

f3(x3, x5)
∑
x6

f4(x4, x6)

]
.

This marginalization can be modelled by a tree rooted at variable x1 as
shown in Fig. 3.2. We can thus compute the marginalization by passing mes-
sages in the graph starting with leaf nodes. Each node passes a message to
its parent node by aggregating messages from its children according to some
predefined rule. We need a tree rooted at xi for each variable xi we want to
marginalize. We could however achieve marginalization with respect to all vari-
ables by letting each node pass a message to each edge connected to it based
incoming messages from other edges. The message passed to the node con-
nected to the edge is extrinsic to the node in the sense that it does not derive
any information from the destination node. If the graph has no cycles this
message passing will converge to the optimal global solution after many itera-
tions. The presence of cycles violates the extrinsic assumption thus leading to
degrading of performance. This message passing on graphs is also called belief
propagation (BP) when the messages passed are probabilities.

3.2 Codes on Graphs
Codes can be modelled on bipartite (Tanner) graphs. This idea was introduced
by Tanner [33] and is extensively used to model how larger codes can be con-
structed from smaller codes. In this section we discuss examples of codes on
graphs of interest in this thesis staring with LDPC codes and finishing with
serially concatenated turbo like codes.
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3.2.1 Low-Density Parity-Check Codes
Low-density parity-check (LDPC) codes is a class of linear codes characterized
by having a parity-check matrix H, with a very small fraction of ones. The
parity-check matrix can be represented by a Tanner graph with the bits as the
variable nodes and the checks as the constraint nodes. The parity-check matrix
is actually the adjacency matrix of the graph in the sense that an entry (i, j) of
H is 1 if there is an edge connecting CN i to VN j otherwise the entry is zero.
This can be seen as a concatenation of repetition code (the variables) and single
parity-check code (the checks). These codes, first introduced by Gallager [5],
can be decoded with low complexity by message passing on a graph.

Example 3.2.1. Consider a linear code with parity-check matrix

x1 x2 x3 x4 x5 x6 x7

H =

1 1 0 1 0 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 , (3.1)

where xj is an element of binary Galois field (F2). For any x ∈ F7
2 we have the

membership test function define as

f(x1, . . . x7) =

{
1, if HxT = 0

0, otherwise
. (3.2)

In other words f(x1, . . . x7) is an indicator function whether the sequence is a
valid codeword of the code defined by the parity-check matrix H. This can be
factored by considering each check equation separately as

f(x1, . . . x7) = I{x1 + x2 + x4} · I{x3 + x4 + x6} · I{x4 + x5 + x7} .

The corresponding Tanner factor graph is shown in the figure below. The con-
straint nodes in this graph are the check nodes which are represented using
squares with a plus sign while the VNs are represented by dark circles.

LDPC codes can either be regular or irregular. With regular (dv, dc) codes,
where dv and dc are the VN and CN degrees respectively, each variable node is
connected to dv edges while each check node has dc edges. For irregular codes on
the other hand the nodes have a range of degrees. The degree distribution can
be characterized either from the node or edge perspective using polynomials.
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We describe the degree distribution following the notation in [34]. For the node
perspective we have

L(x) =
∑
i

Lix
i, R(x) =

∑
i

Rix
i .

Here L and R are fractions of VNs and CNs respectively with degree i.
In many scenarios it is more convenient to express the degree distribution

from the edge perspective. That is

λ(x) =
∑
i

λix
i−1, ρ(x) =

∑
i

ρix
i−1 ,

with λi and ρi as the fraction of edges which are connected to VNs and CNs
respectively with degree i. The two perspectives are related as

λ(x) =
L′(x)

L′(1)

ρ(x) =
R′(x)

R′(1)
.

We use f ′(x) to denote the derivative of f(x).
The design rate of a code is defined as the rate of the code if all check

equations are linearly independent. This is given as

R(λ, ρ) = 1− L′(1)

R′(1)
= 1−

∫ 1

0
ρ(x)∫ 1

0
λ(x)

,

where L′(1) and R′(1) represents the average degree of the VNs and CNs respec-
tively. For example for a regular (dv, dc) LDPC code we have

R = 1− dv
dc
.

SISO Decoders for LDPC Codes

The outgoing extrinsic L-values form a VN to an edge ek′,j is given as the sum
of the L-values from the channel Lch and the incoming edges from the other
edges. That is

L(ℓ)
v (ek,j) = Lch(j) +

∑
k′ ̸=k

L(ℓ−1)
c (ek′,j) . (3.3)

This is illustrated in Fig. 3.3 (a). At the CN, Fig. 3.3(b), the update rule is
given as

L(ℓ)
c (ek,j) = +

j′ ̸=j

L(ℓ−1)
v (ek,j′) , (3.4)

where the box plus operator + is defined as

+
j′
L(ℓ−1)
v (ek,j′) = 2 tanh−1

∏
j′

tanh

(
1

2
L(ℓ−1)
v (ek,j′)

) . (3.5)
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(a) (b)

Figure 3.3: Message passed from (a) CN to VN (b) VN to CN. The edges with
outgoing message are in red color while those with incoming messages are in
black.

The operation can be done by taking two values at a time. For pair of L-values
we have

L(v1) +L(v2) = ln
1 + eL(v1)eL(v2)

eL(v1) + eL(v2)

LDPC Codes Constructed from Protographs

It is becoming common to construct LDPC codes with some predefined struc-
ture. A relatively small base graph called the protograph is first designed and
larger graphs of various sizes can be constructed by copying the base graph fol-
lowed by permutation, a process called lifting. The process preserves the rate,
the degree distribution and the computation graph. This can significantly re-
duce the decoding complexity compared to randomized constructions and has
been adopted in various standards such as 5G long term evolution (LTE), wire-
less local area network (WLAN), DVB-S2 and worldwide interoperability for
microwave access (WiMAx). As an example consider the protograph shown in
Fig. 3.4(a). The protograph can be represented as

B =

[
1 1 1
1 1 1

]
.

The protograph has three VN types and two CN types whereby each VN
has degree 2 and every CN has degree 3. To lift it by a factor of three, each
node and edge is copied three times as shown in (b). We then apply a random
permutation of the edges to obtain the full graph in (c).

3.2.2 Convolutional Codes: Graphical Representation
Convolutional codes can also be represented by factor graphs. To do this we
have to introduce hidden VNs which represent the state of the encoder at each
time instant. As an example Fig. 3.5(a) shows a factor graph for a rate 1/2
systematic convolutional code. The trellis section has lengthN . The dark circles
represent the VN corresponding to code bits while the double circles represent
the VN corresponding to the state nodes. The black squares correspond to
the constraints governing the state transition and the input output bits for
the encoder. For convenience we represent the factor graph using compact
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(a)

(b)

(c)

Figure 3.4: Protograph with 3 VN types and 2 CN types. (b) Copying the
protograph 3 times (c) Permuting the edges.

graph notation. This is achieved by grouping nodes with similar distributions
into a single node. Fig. 3.5(b) shows the compact representation of the same
factor graph. We have the systematic bits node u and the parity node v. The
constraints and state node are lumped into a square showing the length of the
trellis section.

(a) (b)

Figure 3.5: (a) Factor graph representation of a rate 1/2 systematic CC. (b)
Compact graph representation of the CC.
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3.2.3 The BCJR Algorithm
The BCJR algorithm, named after its invetors Bahl, Cocke, Jelinek and Raviv
[35] is used for APP decoding for systems defined on trellises. It is widely used
for soft decoding of convolutional codes as well as equalization of ISI channels.
We briefly present the algorithm for a systematic convolutional code with input
bits u = (u1, . . . ,uN ) and output bits v = (v1, . . . ,vN ). It is important to note
that for a systematic CC v contains both the information bits u and the parity
bits vp. The transmitted symbols are assumed to be modulated by BPSK to
symbol sequence x = x1, . . . ,xN . The received sequence is denoted as y.

Consider a trellis section between the time instants t− 1 to t with the state
at time t − 1 denoted as σ′ and the state at time t denoted by σ. The joint
probability of the state transition from σ′ to σ and the received sequence y can
be factored as

PSt−1,St,Yt

(
σ′, σ,yt

)
= PSt−1,Y<t

(
σ′,y<t

)
· PSt,Yt|St−1

(
σ,yt|σ′) · PY>t|St

(
y>t|σ

)
.

Defining

αt−1(σ
′) = PSt−1,Y<t

(
σ′,y<t

)
βt(σ) = PY>t|St

(
y>t|σ

)
γt(σ

′, σ) = PSt,Yt|St−1

(
σ,yt|σ′) ,

we can rewrite the factorization as

PSt−1,St,Yt

(
σ′, σ,yt

)
= αt−1(σ

′) · γt(σ′, σ) · βt(σ) .

The branch metric is computed based on the observed symbols yt and the a
priori probabilities of the input bits P

(
ut

)
. That is

γt(σ
′, σ) = P

(
yt|xt

)
· P
(
ut

)
.

For different scenarios or systems, the branch metric computation might differ.
That is it depends on the channel model, the target bits and the type of code
concatenation. The values of αt and βt are computed recursively in what is
known as the forward and backward recursion respectively. That is

αt(σ) =
∑
σ′

αt−1(σ
′) · γt(σ′, σ) for t = 1, . . . N − 1 ,

βt−1(σ
′) =

∑
σ

βt(σ) · γt(σ′, σ) for t = N, . . . 2 .

If the initial state is known (e.g. the zero state), the boundary condition for
αt(σ) is set as

α0(σ) =

{
1 if σ = 0 ,

0 otherwise.

The same condition applies for βN+1(σ) if the encoder is terminated to end
in the zero state. Otherwise all states are given equal probability which for
convenience can be set to 1.
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The L-value for a given bit ui which is part of the input at time t is computed
as

L(ui) = ln

∑
(σ′,σ):ui=0 = αt−1(σ

′) · γt(σ′, σ) · βt(σ)∑
(σ′,σ):ui=1 = αt−1(σ′) · γt(σ′, σ) · βt(σ)

.

The prior knowledge about ui is contained in this L-value. Most often, the
extrinsic L-value Le(ui) is needed which does not contain the prior of ui. This
is achieved by subtracting the prior L-value La(ui) from L(ui).

3.2.4 Turbo-like Codes
Turbo codes were invented in the early 90s by Berrou et al. [3]. The codes
consisted of parallel concatenated convolutional codes which are decoded by
exchange of information between the two decoders. This technique provided
the first practical codes with performance close to the Shannon limit. We
highlight the parallel concatenated codes (PCC) and the serially concatenated
codes (SCC).

Parallel Concatenated Codes

The idea behind PCC or turbo codes is to encode a sequence u using two (or
more) encoders. An example with two systematic convolutional codes each with
rate 1/2 together with the corresponding factor graph is shown in Fig. 3.6. The

(a) (b)

Figure 3.6: A turbo code with two systematic convolutional encoders. The
encoder is shown in (a) while the factor graph is shown in (b).

sequence u is encoded directly by the upper encoder CU to produce parity bits
vU. The lower encoder CL receives a permuted version of u and produces the
parity bits vL. The output of the encoder is then v = (u,vU,vL) making the
overall rate be 1/3. Different rates can be achieved by puncturing.

Serially Concatenated Turbo Codes

Another variation of turbo codes consists of serially concatenated codes. The
information sequence u is encoded by the outer encoder CO producing the parity
bits vO. The sequence (u,vO), after reordering by an interleaver, is used as the
input of another encoder, the inner encoder CI to produce parity bits vI. The
final output of the encoder is then (u,vO,vI). An example is shown in Fig. 3.7
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(a)

(b)

Figure 3.7: A SCC with two systematic convolutional encoders. The encoder is
shown in (a) while the factor graph is shown in (b).

where the component codes are both systematic, rate 1/2 convolutional codes.
The resulting code rate is 1/4. The BCJR algorithm for the outer code has to
be modified when computing the branch metric by incorporating the prior form
the inner decoder for the systematic and parity bits.

3.3 EXIT Charts
Extrinsic information transfer (EXIT) charts provide a graphical way to visu-
alize the convergence of iterative systems assuming infinitely long blocks [36].
The parameter tracked is the mutual information between the messages passed
between the components and the corresponding code bits. That is with code
bits V and messages L we have the mutual information as

I(V ; L) = H(V )−H(V |L)
= 1−H(V |L) ,

assuming the bits are equally likely to be 0 or 1. In some context it is common
to use the conditional entropy H(V |L) instead of the mutual information. For
a given decoder, we have the mutual information between V and the a priori
messages at the input Ia(V ; L) and the mutual information between V and the
extrinsic messages Ie(V ; L).

3.3.1 EXIT Charts on the BEC
For the BEC the L-values are either ±∞ if the bits are known and 0 if they
are erasures. Let p be the probability that a bit is still an erasure after some
decoding iterations. With known bits the relative entropy H(V |L) = 0 with
probability 1 − p and with erasures H(V |L) = H(V ) = 1 with probability p.



26 Overview of Research Field

The mutual information is then given as I(V ; L) = 1− p. For the BEC we have
an exact transfer function which can be deduced from the erasure probability.

Decoder 
I

Decoder
II

Figure 3.8: Block diagram showing the exchange of soft L-values between two
decoders. Decoder I has in this case access to the received symbols Y while
Decoder II makes the final estimate of the code bits V̂ .

The mutual information at the output is a function of the mutual information
at the input (and the channel condition if the decoder has access to the received
symbols). That is

Ie(V ; L) = f (Ia(V ; L)) .

If we have two decoders, Decoder I and II as shown in Fig. 3.8 , the extrinsic
information at the output of Decoder I, II

e, becomes the a priori information at
Decoder II, III

a , and vice versa. When plotting the transfer functions, the other
function say fII is plotted as an inverse. For the system to converge the two
curves should not intersect at any other point than the point (1, 1), the point
where at least one decoder has no uncertainty about the code bits.

For example for an LDPC code we have the check transfer function given as
g(x) = ρ(x) and the variable transfer function given as f(x; ε) = 1− ελ(1− x)
where ε is the channel erasure probability. For example for a regular (3, 6)
LDPC code we have

g(x) = x5

f(x; ε) = 1− ε(1− x)2 ,

which implies f−1(x; ε) = 1−
√

1−x
ε . Fig. 3.9 shows the EXIT chart for the code

with channel erasure probabilities ε = 0.35 and ε = 0.55. The BP threshold
εBP ≈ 0.429. It is clear from the chart that with ε > εBP the trajectory would
not converge since the two curves cross each other.

3.3.2 Generalized EXIT Function and MAP Threshold
Consider the sequence of symbols X = (X1, . . . , Xn) transmitted through a BEC
with erasure probability ε for all symbols and received symbols Y = (Y1, . . . , Yn).
The Generalized EXIT (GEXIT) function is defined as [37]

G(ε) = lim
n→∞

1

n

∂H(X|Y(ε))

∂ε
=

1

n

n∑
i=1

H(Xi|Y(ε)) .

This represents the average conditional entropy for all symbols for a given
channel parameter ε assuming a MAP receiver. The area below the GEXIT
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Figure 3.9: EXIT chart of a (3, 6) LDPC code for (a) ε = 0.35 (b) ε = 0.55.

Figure 3.10: GEXIT for a (3,6) LDPC code showing the upper bound on the
MAP threshold. In this case εMAP ≈ 0.4881.

curve equals the rate of the code. This phenomenon is known as the area
theorem [37]. The BP GEXIT function, GBP(ε), represents the conditional
entropy when the BP receiver is used instead (with infinite number of iterations).
Since the MAP receiver is better than the BP receiver we have

GBP(ε) ≥ G(ε) .

This together with the area theorem for GEXIT function can be used to derive
an upper bound on the MAP threshold from the BP GEXIT curve. That is for
a code with rate R the MAP threshold εMAP is upper bounded by a positive
number ε̄ such that ∫ 1

ε̄

GBP(ε)dε = R .

Fig. 3.10 shows an example for the case of a regular (3, 6) LDPC code. In the
figure, the shaded area for 0.4881 ≤ ε ≤ 1 equals 1

2 which is the rate of the code.
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3.3.3 EXIT Charts for the AWGN Channel
For a channel with AWGN the L-values can take any real values in [−∞,+∞].
The mutual information is then computed on the distribution of the L-values.
That is

I(V ; L) =
∑

x=−1,+1

PX

(
x
) ∫ +∞

−∞
fL|X

(
L|x
)
ln

fL|X
(
L|x
)∑

x=−1,+1 PX

(
x
)
fL|X

(
L|x
)dL

=
1

2

∑
x=−1,+1

∫ +∞

−∞
fL|X

(
L|x
)
ln

2fL|X
(
L|x
)

fL|X
(
L|+ 1

)
+ fL|X

(
L| − 1

)dL .
The second equality follows from the equal likely assumption i.e. PX

(
x
)
= 1/2.

It is common to use the assumption that the distribution fL|X
(
L|x
)

is Gaussian

with variance σ2
L and mean σ2

L

2 . The mutual information is computed as a
function of σL using what is called the J-function. That is

I(V ; L) = J(σL) = 1−
∫ +∞

−∞

exp
(
− (L−σ2

L/2)

2σ2
L

)
σL

√
2π

ln

(
1 + exp(−L)

)
dL .

The inverse of the J-function is computed using some numerical approximations
or using a look-up table. For the BI-AWGN channel with noise variance σ2

w, σL
is given as

σL =
2

σw
.

For a channel with AWGN, the behaviour of the iterative systems can be
predicted from the EXIT chart with very limited accuracy. This is because,
by passing only one parameter of the distribution between the components in
the iterative receiver, namely the mutual information, we lose much information
about the actual distribution. A more accurate analysis would require passing
the actual distributions between the component decoders. This is what is done
in density evolution.

3.4 Density Evolution
The soft messages (the L-values) passed between components in an iterative
system has a distribution which evolves with iterations until it converges to
some stable distribution depending on the channel quality. Tracking the density
of these messages is what is known as density evolution (DE). The density may
converge to the zero error state or not.

3.4.1 Density Evolution on the BEC
Since the BEC cannot introduce errors, the L-values passed between the CNs
and VNs can either be of infinite magnitude (when the symbol is known) or
zero (when the symbol is unknown). Assuming the all-zero codeword we can
simplify the analysis without losing information about the density of the L-
values by just tracking the probability that the message is an erasure. Here
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we present a DE for a randomized construction of LDPC codes where we could
consider a single edge type.

Let p(ℓ) and q(ℓ) be the probability that a message from a CN and VN
respectively, to an edge is an erasure. Consider a VN with degree dv. The
message from a VN to an edge is an erasure if the symbol was erased by the
channel and all incoming messages from the dv − 1 edges are erasures. That is,

p(ℓ) = ε
(
q(ℓ−1)

)dv−1

.

Hereby the message passed from CN with degree dc to an edge is an erasure if
any of the incoming messages from the other dc − 1 edges is an erasure. That
is,

q(ℓ) = 1−
(
1− p(ℓ−1)

)dc−1

.

For a general LDPC code we have the DE equations given as

p(ℓ) = ελ
(
q(ℓ−1)

)
q(ℓ) = 1− ρ

(
1− p(ℓ−1)

)
with the initialization q(0) = 1.

3.4.2 Density Evolution on the AWGN Channel
For a BI-AWGN channel without memory, the L-values can take a range of
real values from −∞ to ∞. We cannot have the density evolution equations
in a closed form. We could however use a discretized DE as described in [7].
At the VN side with the update rule given in Section 3.3, the density of the
outgoing message from a VN v to an edge ek′,j , p

(
L
(ℓ)
v (ek,j)

)
, is given as the

convolution of the density of the channel L-value Lch and dv − 1 densities of
incoming messages form the other edges. In case of protograph based LDPC
codes each edge will have its own density p

(
L
(ℓ−1)
c (ek,j)

)
. For the unstructured

LDPC codes, however, we have only a single average density p
(
L
(ℓ−1)
c

)
from

CN and the density of the extrinsic L-values is given by

p
(
L(ℓ)
v

)
= p (Lch) ⃝⋆ p

(
L(ℓ−1)
c

)⃝⋆ (dv−1)

,

where ⃝⋆ represents convolution of densities. For an arbitrary VN distribution
we have the output density

p
(
L(ℓ)
v

)
= p (Lch) ⃝⋆

∑
i

λip
(
L(ℓ−1)
c

)⃝⋆ (i−1)

.

Similarly for the extrinsic L-values from the check node for single edge type
LDPC codes we have

p
(
L(ℓ)
c

)
=
∑
i

ρip
(
L(ℓ−1)
v

) ∗ (i−1)

.
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The symbol ∗ represents the density transformation at the CN according to
the CN update rule. To speed up the computation the convolution at the
VN is implemented using an FFT and a lookup table is used for the density
transformation at the CN.

3.5 Channels with Intersymbol Interference
In this section we discuss channels with intersymbol interference (ISI). We first
briefly discuss the underlying continuous model and how the discrete model is
derived from it. We also introduce turbo equalization and capacity limits for
ISI channels.

3.5.1 Discrete Model from Continuous Model

 Encoder ChannelModulator

noise

Figure 3.11: Block diagram showing the transmitter and the ISI channel.

Consider a model shown in Fig 3.11. The transmitter accepts a block of K
information bits, u. The information bits are encoded by the channel encoder
to produce N coded bits v which are put to the modulator which maps them
to a block x of symbols according to some modulation scheme. Each symbol
xi contains q coded bits where q is the modulation order. We assume a pulse
modulator whereby each symbol xi is associated with a pulse p(t). The symbols
are transmitted after every symbol time Ts. We thus have the transmitted
symbol s(t) as

s(t) =
∑
i

xip(t− iTs) .

The received signal r(t) is the convolution of s(t) and the channel impulse
response h(t) corrupted by noise wc(t). The noise is in most parts assumed to
be additive white Gaussian noise (AWGN). We thus have

y(t) = h(t) ∗ s(t) + wc(t)

=
∑
i

xih(t) ∗ p(t− iTs)

=
∑
i

xic(t− iTs) .

Where c(t) = h(t) ∗ p(t) is the combined impulse response of the pulse and
channel. For an ideal channel h(t) is just a scaled Dirac delta function αδ(t).
At the receiver we assume a matched filter matched to c(t). We thus have the
discrete output of the matched filter given as

yi =

∫ ∞

−∞
y(t) ∗ c∗(t− iTs)dt .
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This can be expressed as

yi =

L∑
j=−L

gjxi−j + ηi , (3.6)

where gj =
∫∞
−∞ c(t)c∗(t − jTs)dt, L is the memory of the channel and ηk is

Gaussian colored noise with E[ηk+jη
∗
k] = gjN0. Equation (3.6) represents what

is called the Ungerboeck model [38]. In what is called the Forney model a
whitening filter is applied to obtain white Gaussian noise wk [39]. The Forney
model can thus be expressed as

yk =

L∑
j=0

hjxk−j + wk , (3.7)

where h is a sequence such that g is its auto correlation sequence [40]. In this
thesis the Forney model is assumed for the general ISI problem unless stated
otherwise.

3.5.2 Turbo Equalization for ISI Channels
To mitigate the effect of ISI an equalizer which we refer to as the detector is
usually employed. Operating the detector and the decoder for the code sepa-
rately does not result in good performance. An optimal receiver would be a
joint MAP receiver taking into account both the code and channel constraint.
The complexity of such a receiver is however prohibitive even for channels with
short memories. To get reasonably good performance with feasible complexity,
the detector and the decoder have to exchange information in a number of it-
erations in what is called turbo equalization. In this thesis we assume that the
channel is known perfectly at the receiver. In some works, however, the channel
estimation can also be included in the equalization loop.

Equalization with a MAP Detector

We consider a bit-wise MAP detector which selects the output bit which has
the highest a posterior probability based on the received received block y. That
is,

v̂i = argmax
v∈{0,1}

P (vi = v|y) ,

= argmax
v∈{0,1}

∑
v:vi=v

P (v|y) = argmax
v∈{0,1}

∑
v:vi=v

P (y|v)P (v)
P (y)

,

= argmax
v∈{0,1}

∑
v:vi=v

P (y|v)P (v) . (3.8)

Assuming that the entries of v are uncorrelated, P (y|v)P (v) can be factorized
as

P (y|v)P (v) =
N∏
j=1

P (yj |vj)P (vj) .
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The SISO detector computes the actual probabilities P (vi = 0|y) and P (vi =
1|y) and output the logarithm of their ratios instead of a hard decision v̂i. The
output is called log-likelihood ratio and is given by

L(vi) = ln
P (vi = 0|y)
P (vi = 1|y)

.

We then use the BCJR algorithm [35] to compute these log-likelihood ratios.
The branch metric from state σ′ to σ for the BCJR algorithm for equalization
with bit-wise MAP detector is given as

γ(σ′, σ) = P (yj |vj)P (vj) = exp

(
−|yj − vσ′,σ)|2

N0

)
,

where vσ′,σ is the noiseless channel output when the state changes from σ′ to σ
as a result of input bit vj .

Equalization with a Linear MMSE Detector

We can represent the Forney model (3.7) in a vectorized form as

y = Hx+w , (3.9)

for y =
[
y0 y1 y2 · · · yN−1

]
and x =

[
x0 x1 x2 · · · xN−1

]
. The

N ×N matrix H is given as

H =



h0 0 0 0 · · · 0 0 · · · 0
h0 h1 0 0 · · · 0 0 · · · 0
h0 h1 h2 0 · · · 0 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 h0 h1 h2 · · · hL−1 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 h0 h1 h2 · · · hL−1 0
0 0 · · · 0 h0 h1 h2 · · · hL−1


,

with the assumption that xi = 0 for i < 0. The linear MMSE estimator of x
computes x̂ which minimizes E

{
|x̂− x|2

}
.

To do soft equalization however we compute a linear MMSE estimate x̂i

which minimizes E
{
|x̂i − xi|2

}
. The estimate is given by

x̂i = E {xi}+ Cov {xi,y}Cov {y,y}−1
(y − E {y})

= µi + σih
TΣ−1 (y −Hµ) , (3.10)

where Σ = σ2IN +HV H, σi = Cov {xi, xi} µi = E {xi}, µ = E {x}, h is the
ith column of H and V = diag{σ0 σ1 σ2 · · · σN−1}. The computational
complexity of inverting Σ is prohibitive for large N . To get circumvent this, a
window of size W = W1 +W2 + 1 is used instead of the whole sequence. The
window covers W2 symbols before yi and W1 symbols after yi. If W1 and W2
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are both larger than the memory of the channel L satisfactory performance can
be obtained for relatively small values of W with almost no further gains by
increasing W . The equations are then modified to be

x̂i = µi + σih
T
i Σ

−1
i (yi −Hiµi) . (3.11)

Here Hi is W×(W+L) sub-matrix H[i−W2 : i+W1, i−W2−L : i+W1] of H.
With this model we can extract the soft information by using the assumption the
estimation error ei = x̂i − xi is independent of xi and is Gaussian distributed
with zero mean. Better approximations of the distribution are possible [11]
but results in more complex computation. With this assumption we have that
X̂i|X = xi is distributed as N (xi,Var(Ei)), that is,

L(xi) = ln
p (x̂i −+1)

2
/(2Var(Ei))

p (x̂i −−1)
2
/(2Var(Ei))

.

3.5.3 Capacity for Channels with ISI
The ultimate limit for a noisy ISI channel with input X and output Y is given
by the maximum mutual information between X and Y , maximized over the
distribution of X. As mentioned in Section 2.2.3 it is common to work with con-
strained capacity also commonly called the symmetric information rate (SIR),
where the distribution of X is uniform. That is, we wish to compute the infor-
mation rate

I(X;Y ) = lim
N→∞

1

N
I(X1, X2, . . . XN ;Y1, Y2, . . . YN ) , (3.12)

where Xi is uniformly distributed among the q possible symbols of the modu-
lation alphabet. We know that

I(X;Y ) = H(Y )−H(Y |X) .

For an ISI channel with additive Gaussian noise H(Y |X) can be computed in
closed form but H(Y ) can only be computed numerically [41]. The simulation
steps are as follows

1. Sample a very long sequences xN and yN . That is randomly generate xN
and produce yN by convolution with the channel impulse response.

2. Compute p(yN ). This is done using the BCJR algorithm as follows;
Consider the forward recursion of the BCJR algorithm with

αt(σ) =
∑
σ′

αt−1(σ
′) · γt(σ′, σ) for t = 1, . . . N ,

p(yN ) is then given as p(yN ) =
∑
σ′

αt(σ
′) for t = N .

The algorithm is however adjusted by introducing normalization constants
to avoid numerical issues.

3. Estimate Î(X;Y ) = − 1
N log2

(
p
(
yN
))

−H(Y |X) .
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3.6 Classical Code Design for Iterative Receivers
For good performance the code and the detector have to be matched. If one
simply chooses a strong code, that is, one which performs very well in an AWGN
channel, it does not necessarily imply that the turbo equalizer will work well
even if the equalizer is optimal.

A common classical code design approach is to optimize the degree distri-
bution to maximize performance for given channel conditions. This means the
transmitter has to know the channel as well as the SNR. Common tools used
are EXIT charts and density evolution. We will briefly discuss each of these
two.

Code Design for ISI Channels using DE

We can represent a turbo equalizer using factor graphs. Fig. 3.12 shows the
a factor graph for turbo equalization with unstructured irregular LDPC code.
The detector is denoted by the H and has noisy observations z. The density

Figure 3.12: Factor graph for an irregular LDPC code and a detector for an ISI
channel.

passed from the detector to the decoder, p(L(ℓ)
H→v), is a function of the incom-

ing densities from all VNs p(L(ℓ−1)
v→H ) and the noise distribution. Denoting this

function as T we have

p(L
(ℓ)
H→v) = T

(
p(L

(ℓ−1)
v→H ), σ

)
.

It is not possible to obtain T (., .) in closed form for Gaussian noise (it can be
computed for erasure noise) but it can be evaluated via Monte Carlo methods.
For each VN, its outgoing density to an edge is the convolution of the density
p(L

(ℓ)
H→v) from the detector and the dv − 1 incoming densities from other edges,

where dv is the VN degree. The average density from the VNs to a neighboring
CN, p(L(i)

v→c), is then obtained by averaging over the degree distribution λ(x).
At each CN of degree dc, the outgoing density is computed from the dc − 1
incoming densities in a nested fashion using a two-dimensional lookup table for
discretized density evolution [7]. Similar to the VNs, the average density to a
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VN, p(L(i)
c→v), is obtained by averaging over the degree distribution ρ(x). After

IC iterations within the code, the density passed from a VN to the detector,
p(L

(ℓ)
v→H), is the convolution of the incoming dv densities from the neighboring

CNs. The density evolution update equation for the joint BP decoding of the
code and channel is thus given as

p(L(i)
v→c) = p(L

(ℓ−1)
H→v )⃝⋆ λ

(
p(L(i−1)

c→v )
)
,

p(L(ℓ)
c→v) = ρ

(
p(L(i−1)

v→c )
)
,

p(L
(ℓ)
v→H) = L

(
L(IC)

c→v)
)
,

p(L
(ℓ)
H→v) = T

(
p(L

(ℓ)
v→H)

)
.

For a given density a, λ(a) =
∑

j λja
⃝⋆ (j−1), ρ(a) =

∑
j ρja

∗ (j−1) and L(a) =∑
i Lia

⃝⋆ (j). The operator ⃝⋆ represents the convolution of densities while ∗
represents the density transformations at the CN as used in [34].

(a) (b)

Figure 3.13: (a) Block diagram for the design of LDPC codes for ISI channels.
The VN and detector (DET) are combined to a single node (b) The compact
graph notation.

Code Design for ISI Channels using EXIT Charts

As described in Section 3.3 EXIT charts are effective tools in classical code
design. With turbo equalization with LDPC codes we have three components
passing messages, namely the check nodes, the variable nodes and the channel.
To obtain a two-dimensional EXIT chart, it is common practice to combine the
detector and the variable node into a single entity that interacts with the check
node [12]. Fig. 3.13 shows such a figure and the corresponding compact graph
notation. The EXIT chart is plotted with a curve for extrinsic information from
the combined detector and VN IVND

E and the extrinsic information from the
check node ICN

E . It can be seen form the block diagram that IVND
E is a function

of the channel condition (SNR) and the a priori information to the detector as
well the VN degree distribution.
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3.6.1 Waterfall versus Error Floor
The performance of a code in iterative systems in terms of BER can be charac-
terized by two regions namely the waterfall region and error floor region. The
waterfall region is the relatively low SNR region where the BER starts to fall
sharply. This can be predicted from the BP thresholds using EXIT charts (or
more accurately using DE). The error floor region, on the other hand, is the re-
gion at high SNR where the BER tends to remain relatively constant. Typically,
if one chooses a strong code with good MAP threshold the resulting waterfall
performance is poor but the error floor is good. On the other hand, if the code
is weak the waterfall performance is good but the error floor is bad. Fig. 3.14
illustrates this trade-off using an EXIT chart. Note that the detector’s curve

(a) (b)

Figure 3.14: Illustration of the trade-off between error floor and water floor
using an EXIT chart. In (a) the SNR is low so the strong code does not have
a waterfall but the weak code does. In (b) The SNR is increased such to the
point where the strong code has waterfall.

moves upwards with increasing SNR but the curves of the codes are not af-
fected. A strong code has a very steep curve at the edges (making it almost flat
at the middle) while a weak code has a less steep curve at the edges. Since the
waterfall happens when the code and detector do not cross, it can be seen that
the strong code will have its waterfall at a higher SNR.

3.6.2 Changing Channel Conditions
Another challenge when designing codes for iterative systems using classical ap-
proaches is the changing channel conditions. Since we need to take into account
the particular channel conditions in order to optimize the degree distribution
when the channel is changed we cannot guarantee good performance. To get
the best performance we would need to re-optimize the code to match the new
channel conditions. This approach is not practical for scenarios where we expect
the channel to change considerably.
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(a)

(b)

Figure 3.15: (a) Copies of the underlying factor graph (b) SC-LDPC with w = 1.

3.7 Spatial Coupling
With spatial coupling, memory is introduced in the factor graph of the iterative
reciever such that blocks at different time instants are interconnected. This
was first introduced for LDPC codes [13] and later for other classes of codes
such as turbo-like codes [42]. Spatially coupled codes have very good perfor-
mance approaching the capacity for AWGN channels [43]. Furthermore, the
performance in the waterfall region does not result in compromised error floor,
thus proving useful in avoiding the trade-off between waterfall and error floor
performance [16].

We proceed to briefly discuss how spatial coupling is applied in LDPC codes
and turbo-likes codes.

3.7.1 Spatially Coupled LDPC Codes
Consider a regular (dv, dc) LDPC code and its corresponding factor graph. The
factor graph of an SC-LDPC codes is constructed by placing L copies of the
underlying factor graph in L spatial positions in the range L ∈ {1, . . . , L}.
Fig. 3.15(a) shows the compact graph representation of three copies at positions,
t − 1, t, and t + 1 for a (3, 6) regular code. Each spatial position consists of
N VNs, represented by dark circles, and M CNs (M = dv

dc
N), represented by

squares with a cross. The L copies are coupled as follows: each VN at position
t ∈ L is connected to CNs in the range [t, . . . , t+m], where m is referred to as
the coupling memory. Hence, each CN at position t is connected to VNs in the
range [t−m, . . . , t].
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The CNs at the edges have low degree. This makes them more effective at
decoding the VNs connected to them. With high probability the VNs at the
edges are decoded correctly and can thus be considered known when the decoder
decodes VNs deeper in the chain. This results in effective low CN degree for
the inner checks. We thus have a wave-like effect spreading in the coupled chain
from the edges.

3.7.2 Spatially Coupled Turbo-Like Codes
The concept of spatial coupling is not limited to LDPC codes where the con-
straint nodes of the factor graph are single parity-check codes. It can also be
applied to other scenarios where the constraint node is any other function. Here
we introduce spatially coupled turbo-like codes whereby the constraint nodes are
convolutional codes which were first explored by Moloudi et al. [42,44]. Exam-
ples of such codes are the PCC (simply turbo codes), braided codes and SCC.
We focus on the SCC codes as they are closely related to the work in this thesis.

(a)

(b)

Figure 3.16: (a) Encoder for SC-SCC code with m = 1(b) The corresponding
compact graph representation.

Spatially Coupled SCC

An SC-SCC with coupling memory m is constructed as follows. We consider
systematic encoders for both the outer and inner encoder. Consider a block of
information bits ut which is fed to the outer encoder at time t. We also denote
vO,p
t and vI,p

t as the parity bits of the outer and inner encoders, respectively.
Furthermore, we denote the code bits at the output of the outer encoder at time
t as vO

t = (ut,v
O,p
t ). The code bits vO

t are permuted by a permutation Π(1) to
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a sequence ṽO
t which is then divided into m + 1 sequences ṽO

t,j(j = 0, . . . ,m)
of equal length. The input to the inner encoder at time t is the sequence
(ṽO

t,0, ṽ
O
t−1,1, . . . , ṽ

O
t−m,m) after it has been reordered by a permutation Π(2). The

inner encoder then produces the parity bits vI,p
t . The code sequence at time

t is then vt = (ut,v
O,p
t ,vI,p

t ). For t < 0 we assume that vt = 0. Fig. 3.16(a)
shows an encoder for time slots t − 1 and t for coupling memory m = 1. The
corresponding compact graph notation is shown in Fig. 3.16(b). For terminated
SC-SCC, t takes vales in the range (0, . . . , L− 1), where L is the chain length.
The information sequence at the end of the chain is chosen such that vt = 0 for
t > L− 1.

The known bits at the edges (t < 0 and t > L − 1), just like in the LDPC
case, make the decoder more effective in decoding the bits at the edges thus
creating a wave effect.

3.7.3 Threshold Saturation: a New Paradigm in Code De-
sign

The good performance of spatially coupled codes is explained by a phenomenon
known as threshold saturation. With threshold saturation the BP threshold
of the spatially codes approaches the MAP threshold of the underlying code
ensemble. This was first shown in [45] and proved mathematically in [15]. This
opens up a new paradigm in code design whereby the MAP threshold now
matters in code choice. In the classical approach, iterative receivers are designed
by choosing codes whose BP thresholds are better without considering the MAP
threshold. This is due to infeasible complexity of implementing a MAP decoder.
But many codes with bad BP thresholds have good MAP thresholds and vice
versa. Now with threshold saturation we can achieve the good MAP threshold
while using a BP decoder with manageable complexity. This however comes with
some challenges. One of these challenges is in order to minimize the latency. To
achieve this a window decoder is used resulting into some performance loss in
terms of waterfall and error floor. But if the window size is big enough we can
still have an advantage over classical systems.

More important is the universality of spatial coupling which makes it robust
against changes in channel conditions. We can use a single code to achieve
performance close to the capacity regardless of the conditions of the channel [46]
which is a big advantage compared to the classical systems.
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Chapter 4

Group Testing with Sparse
Graphs

4.1 Introduction to Group Testing
The aim of group testing (GT) is to identify items which are defective in a popu-
lation by testing items in groups instead of testing each item individually. For a
population of n items with k of them defective the aim is identify these defective
items using m tests whereby m < n. This can lead to significant reduction in
the number of tests compared to testing each item separately especially if the
number of defective items is very small compared to n. It was first introduced
by Dorfman [19] during World War II for testing army inductees for syphilis.
Several blood samples were mixed and tested together. Since syphilis was a rare
disease, many tests were negative which meant all the individuals in those tests
were ruled as negative resulting into major savings on the number of tests.

The participation of items into tests can be modeled by an m × n matrix
A = (ai,j) called the test matrix. The rows of A correspond to the tests
while the columns correspond to the items and ai,j = 1 if item j participates
in test i otherwise ai,j = 0. The test assignment can also be represented by
a bipartite graph with n variable nodes (VNs) corresponding to items and m
check nodes (CNs) corresponding to tests. An edge connects VN j, vj , and CN
i, ci, if item j participates in test i. In other words, A is the adjacency matrix
of the bipartite graph. The matrix in (4.1) below shows the test assignment
with n = 6 and m = 3.

A =

 1 1 0 1 0 1
0 1 1 1 1 0
1 0 1 0 1 1

 . (4.1)

The corresponding bipartite graph is shown in Fig. 4.1. In this assignment item
1 participates in tests 1 and 3 while item 2 participates in tests 1 and 2.

For non-quantitative group testing the test results can be either positive (rep-
resented by binary value of 1) or negative (represented by binary value of 0).
The test result si of a given test i is given by the OR operation on all the items

41
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Figure 4.1: Bipartite graph corresponding to the assignment matrix in (4.1).

connected to it. That is

si =

n∨
j=1

ai,jxj . (4.2)

We define the rate as the ratio of the number of tests to the number of
items1, that is;

Ω =
m

n
.

This notation is different to the definition of rate used in [47] where the rate is
defined as the amount of information in bits about the items status X gained
per test.

Example 4.1.1. Consider a GT scheme with the test assignment matrix A for
4 tests and 6 items given below with items 1 and 6 being defective.

x1 x2 x3 x4 x5 x6 s (4.3)

A =


0 0 1 1 1 0
1 1 0 1 0 0
0 1 1 0 1 0
1 1 0 0 0 1




0
1
0
1

 . (4.4)

The syndrome s is shown to the right whereby tests 1 and 3 are negative. This
implies that we know for sure that the items connected to them are non-defective
i.e x2 = x3 = x4 = x5 = 0.

On the other hand test 2 is positive which means at least one of x1, x2 and
x4 is defective. Since we know that x2 and x4 are not defective, x1 must be
defective i.e x1 = 1.

With test 4 however we have two possibilities now, either x6 = 1 or x6 = 0.
This can not be resolved with certainty. What value x6 is assigned depends on the
requirement of an application or assumptions made by the decoding algorithm.

1Note that, interpreting A as the parity-check matrix of a code, Ω = 1−R, where R is the
code rate.
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4.1.1 Applications of Group Testing
GT has since been applied in many fields apart from testing for rare diseases in
medicine. For example it is used in molecular biology for identifying rare genetic
conditions [48–50]. In data forensics it is used to identify parts of data which
have been tampered with [22,23]. One-way hash functions are used to generate
a hash for the data. This hash is stored and is compared with a new hash run
on the data. If the two do not match it implies the data has been tempered
with. To know which parts of the data is tempered with we need a hash for each
part which can be demanding for more storage. With GT a hash is generated
for several parts thus saving memory while maintaining the capacity to identify
the tempered parts. Group testing can also be used to detect denial of service
attacks. This was demonstrated in [51] and [52] where the server is divided
into a number of virtual servers corresponding to tests thus detecting which
virtual server receives the greatest traffic and thus determine which users are
providing the largest amount of traffic. In wireless communication GT is used
in identifying users in multi-access communication [25, 53–55]. In this setting
the channels or slots correspond to tests and the devices attempting to access
the channel are the items.

4.1.2 Classification of Group Testing
Adaptive vs Non-adaptive

GT can be either adaptive or non-adaptive depending on how the tests are
designed. With adaptive GT, the tests are done in stages and the test design at
each stage depends on the outcome of the previous stage. For example in the
Dorfman case, if the test result in the first stage is positive, all individuals in
the pool are tested separately, while a negative result is conclusive and has no
followup. For non-adaptive GT however, the tests are all designed in advance.
Adaptive GT results in fewer tests than non-adaptive GT but with non-adaptive
GT the tests can be run in parallel which makes it attractive for time sensitive
applications.

Quantitative vs Non-quantitative

Furthermore we can classify GT as either quantitative or non-quantitative. In
quantitative GT each test result shows how many items in the tests are defective
while with non-quantitative the results are binary, i.e., one if at least one item is
defective and zero otherwise. Some variations exists between these two extremes.
For example, we may have a semi-quantitative GT where the test results give a
number representing a range of possible number of defective items [56].

Exact vs Partial recovery

If we focus on the success of recovery, GT can be classified as either exact
or partial recovery. With an exact recovery criterion, the requirement is that
every defective item is correctly classified as defective, and every non defective
item is correctly classified as non defective. With partial recovery, however,
we may tolerate a small number of incorrectly classified items, perhaps with
different allowances for false positives (non defective items incorrectly classified
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as defective) and false negatives (defective items incorrectly classified as non
defective).

Noiseless vs Noisy testing

In some scenarios the test results can be corrupted to give false positives or
false negatives by the testing procedure itself. This is called noisy testing while
the case where the test results are not corrupted by the procedure is termed as
noiseless testing.

Combinatorial vs. Probabilistic Prior

Classifying according to the distribution of defective items we have combinato-
rial vs probabilistic prior. With combinatorial prior, there is a fixed number of
defectives with the set of defectives being uniformly distributed among the sets
of the given size. With probabilistic prior, each item is independently defective
with some probability γ. Various generalizations exist where the items status
are correlated reflecting some situations like in diseases where people who are
in close contact has a higher chance of having the same status.

4.1.3 Non-quantitative Group Testing with Sparse graphs
In this thesis we consider GT where the adjacency matrix is sparse. That
is, the number of edges is very small compared to the number of maximum
possible m×n. Works with sparse graphs were first introduced in what is called
SAFFRON for non-quantitative GT [26] and its improvement using generalized
LDPC codes [27]. It was shown that with a simple peeling decoder most of the
defective items could be identified with high probability.

4.2 Quantitative GT Based on GLDPC
The work [28] introduced a quantitative group testing scheme based on regular
GLDPC codes where the test matrix A corresponds to the parity-check matrix
of a GLDPC code. Particularly, the construction in [28] is as follows. Consider
a regular (dv, dc) bipartite graph with n VNs and mB CNs and its corresponding
mB × n adjacency matrix B. To construct the test matrix A, each of the dc
non-zero elements in a row of B is replaced by a column of an nu×dc signature
matrix U =

(
1⊤
1×dc

,HT
t
)T, where 11×dc is a 1 × dc all-ones vector and Ht, of

dimensions t log2(dc + 1)× dc, is the parity-check matrix of a t-error correcting
BCH code of length dc. Hence, nu = t log2(dc + 1) + 1, and the total number of
tests is given by m = mBnu. (Note that, for a GLDPC code-based GT scheme,
contrary to the bipartite graph in Fig. 4.1, each of the CNs corresponds to a
bundle of nu tests.)

The rate for the construction in [28] is

Ω =
m

n
=
dv
dc

(
t ⌈log2(dc + 1)⌉+ 1

)
, (4.5)

where the ceiling function ⌈.⌉ takes care of cases where dc + 1 is not a power of
two.
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Example 4.2.1. Consider the case with a regular (2, 4) adjacency matrix B
with n = 14 VNs and mB = 4 CNs defined as

B =


0 1 0 1 1 1 1 0 0 0 0 0 1 1
1 0 1 0 0 0 0 1 1 1 1 1 0 0
1 0 1 1 1 1 0 0 0 0 1 0 0 1
0 1 0 0 0 0 1 1 1 1 0 1 1 0

 ,

and a 1-error correcting BCH code whose parity-check matrix is defined as

H1 =

0 0 1 0 1 1 1
0 1 0 1 1 1 0
1 0 0 1 0 1 1

 .

The signature matrix is then given as

U =


1 1 1 1 1 1 1
0 0 1 0 1 1 1
0 1 0 1 1 1 0
1 0 0 1 0 1 1

 .

This makes the test matrix to be

A =



0 1 0 1 1 1 1 0 0 0 0 0 1 1
0 0 0 0 1 0 1 0 0 0 0 0 1 1
0 0 0 1 0 1 1 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 1 0 1 1 1 0 0
0 0 1 0 0 0 0 0 1 1 1 0 0 0
1 0 0 0 0 0 0 0 1 0 1 1 0 0
1 0 1 1 1 1 0 0 0 0 1 0 0 1
1 0 0 1 0 1 0 0 0 0 1 0 0 1
0 0 1 0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 1 1 1 1 0 1 1 0
0 0 0 0 0 0 0 1 0 1 0 1 1 0
0 0 0 0 0 0 1 0 1 1 0 1 0 0
0 1 0 0 0 0 0 0 1 0 0 1 1 0


Decoding to identify the defective items is performed via peeling decoding,

where, at each iteration, due to the t-error correcting capability of the BCH
codes, a CN connected to t or less unresolved defective items can identify them
and their adjacent edges are peeled off the graph. This is repeated until all
defective items are identified or there is no test with t or less defective items.

The decoding of each CN is done by first identifying if a test that has t or
less defective items by looking at the first row of U . For those tests with t or
less defective items, the decoder proceed to determine the location of defective
items by using the Berlekamp–Massey algorithm [29].

The performance of quantitative GT with the GLDPC scheme does not im-
prove by increasing the strength of the BCH code. It actually degrades after
t = 2 for most of the range of γ. Fig. 4.2 shows a plot of the minimum num-
ber of tests required to successfully resolve all defective items. It can be seen



46 Overview of Research Field

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14

16

18

20

22

24

γ[%]

Ω
[%

] t = 1
t = 2
t = 3
t = 8

Figure 4.2: Minimum rate Ω required to identify all defective items for different
values of γ using the GLDPC scheme.

that for higher values, like t = 8, the performance much worse than that for
small values of ts. This seems contrary to expectations at first glance, as one
would expect that at the same rate a stronger error correction would provide
better performance. In this thesis we investigate why this is the case provid-
ing an explanation for this and an alternative construction which has better
performance.



Chapter 5

Summary and Contributions

In this chapter the main results of the included papers are summarized. Further-
more general conclusions and outlook of further research questions are discussed.
This is done for each of the two parts, ISI channels and group testing.

5.1 Part I: Channels with Intersymbol Interfer-
ence

5.1.1 Research Contributions
Paper I: Spatial Coupling in Turbo Equalization

In this paper we investigate the application of spatial coupling in turbo equaliza-
tion for channels with ISI using fine length simulations and EXIT chart analysis.
We show that choosing an off-the-shelf strong code results in poor waterfall per-
formance but good error floor performance, while using a weak code results in
the opposite namely good waterfall but bad error floor. This behaviour is due to
the sub-optimally of the BP decoding algorithm and not the codes themselves.
That is, if we were to use an optimal decoder the strong code will also have
good waterfall in addition to the good error floor.

We apply spatial coupling and demonstrate that we can have both good
waterfall and good error floor while using the BP algorithm. We apply cou-
pling using three different schemes. In the first scheme, we couple between
the encoder and the channel, resulting into waterfall performance beyond the
threshold predicted by EXIT charts. In the second scheme we use a spatially
coupled code which results in significant improvement compared to coupling
between the encoder and the channel. In the third we use a spatially coupled
code and couple between the encoder and the channel. This results in further
improvement which is not so significant when compared to using only a spatially
coupled code.

Furthermore we investigate the effect of using spatially coupled codes with
sub-optimal linear MMSE equalizer. It is shown that with spatial coupling the
performance of a linear MMSE equalizer is close to the optimal MAP equalizer
thus becoming attractive to use especially when the channel memory is large.

47
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Paper II: On the Universality of Spatially Coupled LDPC Codes over
Intersymbol Interference Channels

In this paper we investigate the universality of spatially coupling in channels
with ISI. We do this using density evolution for both channels with erasures and
AWGN.

For channels with erasures, we derive the exact input/output transfer func-
tion for a general ISI channel. This adds a richer range of channels to the study
of ISI channels with erasures beyond the dicode channel which was the only one
available in literature. We then compute the symmetric information rate for
three different channels and the BP and MAP thresholds using regular LDPC
codes with increasing node degree.

We show with examples how spatial coupling results universally achieves the
SIRs of three different channel using a single LDPC code.

Paper III: Robust Performance Over Changing Intersymbol Interfer-
ence Channels by Spatial Coupling

In this paper we investigate the practical implication of the universality of spatial
coupling for channels with ISI. We do this using density evolution thresholds
and finite length simulations using both the MAP equalizer and the LMMSE
equalizer. In particular we compare spatial coupling with classical code design
using irregular LDPC codes.

With classical code design the degree distribution is optimized for a par-
ticular channel using EXIT charts or density evolution. This results in good
performance for the particular channel designed for but the performance de-
grades severely when the channel is changed. With spatial coupling however,
one regular code with high node degree performs close to the SIR for different
ISI channels. We thus have not only good performance but more importantly
robustness against changing channel conditions.

We also show that with spatial coupling the same code performs well even if
the channel detector is changed. That is, we have good performance even if the
detector is changed form MAP to LMMSE which is not the case with classical
code design.

5.1.2 General Conclusions
In this thesis we investigated the application of spatial coupling to channels with
intersymbol interference. We particularly investigated how it performs well in
comparison to classical code designs especially when the channel conditions or
detector type is changed. This was for the AWGN case and erasures. To achieve
this, we derived the input/output transfer function for the a general BEC thus
expanding the available channels for studying ISI channels with erasures which
were only studied for the dicode channel.

We show that with spatial coupling we could avoid the trade-offs between
the performance in the waterfall region vs the performance in the error floor
region which is often encountered when choosing codes for iterative receivers for
ISI channels. With spatial coupling we could choose a strong code and obtain
good performance for both the waterfall and error floor region.
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We also managed to demonstrate that with spatial coupling we can achieve
the symmetric information rate (i.u.d capacity) of an ISI channel. More im-
portantly this performance is robust against changing channel conditions. This
robustness gives spatial coupling an advantage over classical methods like opti-
mizing codes by tweaking the degree distribution to get the desired performance.
These optimization works but are limited to the particular channel, that is we
can approach close to the capacity of a given channel we optimizing for but if
the channel is changed to another one the performance degrades substantially.

5.1.3 Further Research
Some of the questions which remain to investigated for iterative receivers for
channels with ISI include the following:

• The effect of accuracy of channel state information on the equalization
with and without spatial coupling. We conjecture that with spatial cou-
pling the requirements on the accuracy of the channel estimation can be
relaxed but more work has to be done on this to verify this.

• Another area for further study would be faster-than-Nyquist (FTN) sig-
naling whereby the ISI is created intentionally by packing more pulses
than the Nyquist limit in order to increase bandwidth efficiency. With
FTN there is usually a limit on the compression factor beyond which re-
liable communication even with iterative receivers cannot work well. We
conjecture that with spatial coupling this limit can be pushed further thus
getting higher bandwidth efficiency with low modulation order. Further-
more since the channels impulse response can be long some shortening
techniques are usually employed. Here spatial coupling can be investi-
gated providing a room for better performance with simplified schemes
such as channel shortening.

5.2 Part II: Group Testing with Sparse Graphs

5.2.1 Research Contributions
Paper IV: Low-Density Parity- Check Codes and Spatial Coupling for
Quantitative Group Testing

In this paper we investigated non-adaptive group testing (GT) based on sparse
graphs. It has been shown in previous works that using sparse graphs sub-
stantially improves the performance of group testing. For example the use of
generalized LDPC (GLDPC) codes with t-error correcting BCH codes has shown
a significant gain in quantitative GT. The scheme relies on the local error cor-
rection capability of BCH codes to resolve defective items. In the paper we
propose a simpler algorithm with simple LDPC codes which have no local error
correcting capability. The scheme utilizes two extreme cases; one being when
all items in a tests are non-defective and the other when all items in a test are
defective. We derive exact density evolution equations for the proposed LDPC
scheme and compute the corresponding thresholds. The scheme performs much
better than the GLDPC scheme. This is a result of that with the GLDPC codes
we need a bundle of tests to correct a single error (to correct t errors we need
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tests proportional to t). This cost in number of tests is not counteracted by the
local error correction capability.

We compare the schemes performance using DE thresholds and finite length
simulations. We look at two perspectives of performance; in one the proportion
of defective items is fixed and we determine the minimum rate (the ratio of
number of tests to population size) required for successful detection. This is
the standard perspective in GT literature. We introduce another perspective
whereby the rate is fixed and determine the largest proportion of defective items
which can be successfully recovered. This perspective is more in line with the DE
in channel codes where the graph structure is assumed fixed and some channel
parameter is varied.

Furthermore, we apply spatial coupling to both the GLDPC and LDPC
based scheme. Both schemes improve with coupling but the GLDPC does not
gain much compared to the LDPC scheme. The DE tended to converge to a
stable value suggesting threshold saturation. We do not, however ,prove this
formally in this paper.

Paper V: Spatially Coupled LDPC and GLDPC Codes for Quantita-
tive Group Testing

In paper IV we presented a quantitative GT using LDPC codes and applied spa-
tial coupling. The DE thresholds suggested a convergence to a limit suggesting
threshold saturation.

In this paper we prove that threshold saturation indeed happens in quantita-
tive GT with LDPC codes presented in Paper IV. We show this by proving that
the density evolution recursion for quantitative GT using LDPC codes satisfies
the conditions of being a vector admissible system. We note that among the
two perspective of performance evaluation introduced in Paper IV, the perspec-
tive where the proportion of defectives is fixed is a vector admissible system
while the other perspective does not meet the requirements. We could however
demonstrate that the two perspective are related making it possible to map the
potential thresholds from one perspective to the other.

We also proved threshold saturation for the existing GT with GLDPC codes.
The proof in this case was done by showing that the scheme satisfies the criteria
for being a scalar admissible system. For both schemes we computed the poten-
tial threshold and verified that the coupled thresholds approach the potential
thresholds.

We also investigated why the GLDPC based scheme does not perform well
compared to the LDPC scheme even with spatial coupling. We showed that
this is a result of the limitations of the bounded minimum decoder used by
the scheme. We proposed modifications on the decoder with one modification
utilizing the LDPC decoder we proposed in Paper IV.

Paper VI: LDPC Codes for Quantitative Group Testing with a Non-
Binary Alphabet

This paper focuses on the Quantitative GT with LDPC codes as introduced
in paper IV aiming at improving the decoder. It can be observed that the
decoder in paper IV is a hard decision decoder thus one could postulate that a
soft massages decoder would improve the performance. The complexity of such
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a decoder can however be prohibitive. We propose another approach where
the items are grouped into bundles of q items. These bundles can then take
values from 0 to q thus we have artificially introduced non-binary alphabets.
Motivated by works on counter braids, we design a decoder which bounds the
bundles providing lower and upper bounds. These bounds shrink with iterations
thus becoming more close with the actual value of the bundle. With a few
additional tests accepting items as the conventional (i.e not in bundles) LDPC
based scheme we can then successfully resolve all the items.

We derive the density evolution equations for the proposed decoder. The per-
formance of the decoder is then compared with the conventional LDPC scheme
through DE thresholds and finite length simulations. The results show that the
proposed decoder shows considerable improvement over the conventional LDPC
scheme in paper IV.

5.2.2 General Conclusions
In this thesis we investigated non-adaptive quantitative GT using sparse graphs.
We proposed a scheme using simple LDPC codes which does not have local
error correction. This scheme was analysed by deriving their DE equations and
computing the thresholds which were compared to schemes widely proposed in
the literature which uses generalized LDPC code with BCH component codes.
The BCH codes provide a local error correction capability which results in good
performance. The provided LDPC scheme does not have local error correcting
capability but results in a significantly better performance than the GLDPC
scheme.

We also investigated the reasons for the performance of the GLDPC scheme
concluding that it is caused mainly by the decoding algorithm. That is, bounded
minimum distance decoder is very far from the optimal decoder. We provide an
alternative decoder utilizing the LDPC decoder with improved results.

We further investigated the application of spatial coupling in Quantitative
GT. Both the GLDPC and LDPC based schemes benefits from coupling with
the LDPC scheme showing more gain thus further consolidating the benefits
of the scheme. As in many other scenarios, this benefit from spatial coupling
comes from the phenomenon of threshold saturation which was formally proved
for GT in this thesis.

It was further shown that the proposed LDPC scheme can be improved by
introducing hidden nodes in the graph representing the test assignment. These
hidden nodes are introduced by grouping items into bundles of a chosen size.
This construction, together with a simple bounding decoder inspired by works in
counter braids, results in improved performance without significant complexity
increase.

5.2.3 Further Research
Some interesting research questions which can be explored in group testing
include

• Quantitative group testing with noisy tests. Questions include what noise
models to use and what codes perform best for a given noise model? What
about threshold saturation proof for noisy quantitative group testing?
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• Quantitative GT using sparse graphs with short block lengths. It remains
unclear how cycles affect the performance of GT. What construction cri-
teria should be used to optimize performance with short block length ?
How does the performance scale with population size.

• The performance of the GLDPC based GT can be further investigated
looking for better ways to construct the component codes. As shown in
the thesis, the BCH code and its corresponding minimum distance decoder
can be further improved by decoding them differently. We conjecture
that better performance can be obtained by constructing the component
code with other parameters of consideration than the bounded minimum
decoder.
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Spatial Coupling In Turbo Equalization

In this paper we consider spatial coupling in turbo equalization and
demonstrate that the code design trade-off between the performance in
waterfall and error floor regions can be avoided. We introduce three cou-
pling schemes and compare their performances, where the first method
introduces coupling between the encoder and the channel, while the sec-
ond uses a spatially coupled (SC) code. In the third scheme we use both a
coupled code and couple between the code and the channel. We show by
computer simulations that, with spatial coupling, we can have good per-
formance in both the error floor and the waterfall region with reasonable
decoding latency by using a window decoder. We show this for both the
maximum a posteriori (MAP) and linear minimum mean square (MMSE)
equalizers.

Keywords: Spatial Coupling, Inter-Symbol interference, Equalization, LMMSE
Equalizer.
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ization,” in Proc. IEEE Global Telecom. Conference (GLOBECOM),Taipei, Taiwan,
Dec. 2020

63





PAPER I 65

1 Introduction
Turbo equalization has been shown to be effective in mitigating the effect of
intersymbol interference (ISI) by having the equalizer and decoder exchange
soft information iteratively rather than each component working separately [1],
[2]. This iterative exchange is an instance of belief propagation (BP) and can
be analyzed by factor graphs [3]. An optimal receiver, however, is a MAP
detector of the transmitted symbols taking into account the joint effect of the
code constraints and the ISI channel.

The choice of codes for a turbo equalization usually involves a trade-off be-
tween the performance in the waterfall versus the performance in the error floor
region. Choosing a weak code results in good waterfall performance but bad
error floor, while choosing a strong code results in a bad waterfall performance
but good error floor. This trade-off however is a result of the BP decoding pro-
cess and not the codes themselves, that is, if we use a joint MAP detector with
a sufficiently large codeword length the strong code would result in a better
waterfall performance approaching the MAP threshold of the combined factor
graph.

Spatially coupled low-density parity-check (SC-LDPC) codes have been
shown to exhibit threshold saturation, whereby the BP threshold of the coupled
ensemble approaches the MAP threshold of the uncoupled ensemble, [4], [5], [6].
In [7] it was proved that threshold saturation also occurs in spatially coupled
turbo-like codes. Furthermore, [8] outlined a new trade-off between error floor
and waterfall performance. In particular, it was shown that when spatially
coupled, serially concatenated codes (SCCs) can have both better waterfall
and error floor performance than parallel concatenated codes (PCCs). This
is despite the fact that SCCs have a poorer waterfall performance than PCCs
when not coupled.

SC-LDPC codes were also investigated in coded modulation [9]. It was ob-
served that with spatial coupling the performance of the codes was less sensitive
to the chosen type of mapping, thus demonstrating some universality behavior
with spatial coupling. In [10], spatial coupling between the code and detector
for faster-than-Nyquist signaling and coded modulation was investigated. The
output block of an encoder is split such that the input to the detector is a
combination of various sub-blocks at different times. The work investigated the
best way to split the output from the encoder to optimize convergence with the
fewest number of iterations. Binary erasure channels with memory were studied
in [11], [12]. It was shown that with SC-LDPC codes, threshold saturation also
occurs in this channel. In [12] it was also shown empirically that SC-LDPC
codes exhibit threshold saturation in an ISI channel with AWGN.

In this paper, we first demonstrate the challenge involved in the choice of
codes by examining simulation results with a simple convolutional code versus
a 5G LDPC code as component codes and explain the design trade-off using
extrinsic information transfer (EXIT) charts. We then consider the application
of spatial coupling in three different ways in turbo equalization to show that this
trade-off can be avoided. In the first scheme, we couple between the encoder
and channel leaving the code uncoupled. Then we derive an SC-LDPC code
from the 5G LDPC code and use it without any coupling at the channel and
lastly we couple both at the code and channel level. We show that for both
MAP and MMSE equalizers, the spatially coupled code results in a larger gain
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Figure 1: Block diagram showing the transmitter and the ISI channel.

Figure 2: (a) Combined factor graph of an LDPC code and channel without
coupling (b) compact factor graph representation.

than coupling at the channel input, while coupling both components is only
slightly better than the coupled code alone. We hence managed to show that
with spatial coupling we can use a strong code and obtain best performance in
both the waterfall and error floor regions.

2 Turbo Equalization
A model for the transmitter is shown in Fig. 1 where a block of K information
bits, ut, is encoded by a code of rate Rc = K/N = 1/2 to produce N code
bits vt. These are then permuted to a new sequence ṽt which is mapped to
symbols xt using binary phase shift keying (BPSK) modulation. The input
symbol sequence xt passes through the ISI channel filter with discrete impulse
response h to obtain the output zt. The received symbol sequence is the sum
of zt and AWGN wt. The channel has Mh + 1 taps h[0], . . . , h[Mh], where Mh

is the channel memory. Throughout this paper we use the following channel
from [13]:

h =
[
0.277 0.46 0.688 0.46 0.277

]
. (1)

The system can be represented by a factor graph, which shows the relation-
ship between variables in the system [14]. As an example, Fig. 2 shows a factor
graph of a regular (3, 6) LDPC code and a channel. Black circles represent vari-
ables which have noisy observations at the receiver while white circles represent
variables which are not observed at the receiver. State variables are represented
by double circles and square nodes represent constraints in the code or channel.
Following the notation in [8] we can represent the factor graph in a compact
form by introducing node types and represent variables of equivalent distribu-
tions by a single node. For example, neglecting the edge effects we can represent
a block of input symbols to the channel by a single node xt as shown in Fig. 2(b)
since the messages along connected edges have the same distribution. In the
Figure, code constraints are denoted by C while the channel is denoted by H.
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Figure 3: Comparison of turbo equalization using a MAP equalizer with LDPC
code and a convolutional code demonstrating the trade-off of choosing a weak
versus a strong code. For both codes N = 5120. The dashed line shows the 5G
code with a permutation of length 51200.

To get good results in terms of bit error rate (BER) with relatively low
complexity, the equalizer and decoder exchange information in a number of
iterations. This iterative equalization and decoding is often called turbo equal-
ization [2]. The MAP equalizer is an optimal equalizer and is implemented by a
trellis following the work in [2]. Its complexity however grows as 2qMh , making
it impractical when the memory of the channel or the modulation order (q) is
large. A linear MMSE equalizer, on the other hand, though less accurate does
not suffer from this exponential growth in complexity. The linear equalizer is
implemented using a window approach [2].

The choice of the code usually involves a trade-off between the performance
in the waterfall region and the error floor region. Using a weak code gives good
waterfall performance but results in poor error floor while if we choose a code
which is strong in an AWGN channel, it results in poor waterfall performance
but good error floor. Two codes are used to illustrate this, a (1, 5/7) systematic
convolutional encoder (representinga weak code) and a 5G LDPC code (repre-
senting a strong code). Both codes have block length N = 5120 and the 5G
code is obtained from base graph BG2 by lifting the graph by 256 as detailed
in [15]. The number of iterations between the code and channel is 8 in all sce-
narios, while for the LDPC code we use 30 iterations within the code with a
parallel schedule. It can be seen in Fig. 3 that when C is a convolutional code
(CC) the waterfall performance is good but the error floor is bad, limited by the
performance of the code in an ISI free case. While when C is the LDPC code
it shows very poor waterfall performance. For example the BER is still above
10−1 at an SNR of 6 dB while for the convolutional code it is close to 10−5.
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Figure 4: EXIT chart predicting the performance of 5G LDPC code and (1, 5/7)
CC in turbo equalization.

This trade-off can be explained by observing the EXIT charts [16] for both
codes and the channel in Fig. 4. The EXIT curve of the channel shifts up with
increasing SNR, while those of the codes do not vary with SNR as the codes have
no direct observations. The LDPC code has a nearly flat inverse EXIT function,
which makes it intersect the channel at points of low mutual information (hence
higher BER) for all SNR values below 6.4 dB, while the convolutional code
being a weaker code has a shape which makes it intersect the channel at points
of higher mutual information thus resulting in good waterfall performance. The
waterfall performance of the 5G code can be improved slightly by increasing the
permutation length as shown by the dashed line in Fig. 3 but it can not exceed
the EXIT threshold shown by the vertical dotted line.

As a solution to this problem, a method using irregular convolutional codes,
optimized together with precoders for a desired waterfall performance is pro-
posed in [3]. A drawback of such a solution is that it depends much on the
channel and the equalizer type thus making it unsuitable in changing channel
conditions. It can also result in bad error floors due to the weak component
codes used in the optimization. Furthermore, since there is a limit to the choice
of precoders determined by the memory of the channel [3], for some channels
like the one we chose for this case the use of precoders does not show significant
improvement in the performance. It is also not possible to use a precoder with
linear equalizers without increasing the decoding complexity, which can be done
with MAP equalizers [3].

But this trade-off is not inherent in the system itself but rather in the de-
coding process. If we were able to use a joint MAP decoder for both the code
and the channel, the LDPC code would outperform the convolutional code in
both waterfall and error floor regions. Spatially coupled codes have been shown
to exhibit threshold saturation, where the BP threshold of the coupled codes
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Figure 5: (a) Block diagram of a SCC encoder (b) Compact graph representa-
tion.

approaches the MAP threshold of the underlying uncoupled codes.

3 Spatial Coupling in Turbo Equalization
With spatial coupling, memory is introduced in the factor graph of the turbo
equalization system such that blocks at different time instants are intercon-
nected. Three options are discussed.

3.1 Coupling between Encoder Output and Channel
In [8] it was shown that the waterfall performance of serially concatenated codes
(SCC) is improved significantly when they are spatially coupled. Comparing the
factor graph of a SCC in Fig. 5 and that of the channel and code in Fig. 2, we
observe that the two systems are equivalent. The channel acts as an inner
code, CI , with rate 1 and non-binary outputs zt which have noisy observations,
while the symbols from the outer component code (equivalent to Co) are not
transmitted which can be viewed as punctured symbols in the corresponding
SCC code. Thus we can also couple the output of the code and the channel in
a fashion similar to the one applied in [8] as follows.

Consider a normal system with the code and channel without any coupling.
In this setting each block vt of coded bits is permuted and put into the channel
as shown in Fig. 6(a). In Fig. 6(b) each block of permuted bits ṽt is split into
two sub-blocks of equal lengths. One sub-block is put to the channel at time t
while the other sub-block is connected another sub-block produced at time t+1.
In this way we are effectively introducing blockwise memory between the code
and the channel. The memory in this case is m = 1, since we need output from
one previous block in the past in order to find the current input to the channel.

In general, for a coupled system with memory m, a block of N code bits ṽt

produced by the encoder at time t after interleaving by the permutation Π1, is
split into m+1 sub-blocks ṽt,0, . . . , ṽt,m each having N

m+1 bits. The input to the
channel at time t is a sequence of symbols from the set {ṽt−m,m, . . . , ṽt,0} after
being permuted by a second permutation Π2. This is repeated for t = 0 . . . L−1,
where L is the length of the chain. The code bits ṽt are set to zero for t < 0
and t > L−m− 1. This introduces known bits at the beginning and at the end
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Figure 6: Compact graph representation of (a) channel and code without cou-
pling (b) Coupling between the encoder and channel. (In both figures the symbol
xt is not shown.)

Figure 7: Factor graph representation of coupling between code and channel for
m = 1.

of the chain incurring a rate loss which becomes negligible as L becomes large,
as it can be seen in the rate of the coupled system given by

R =
K(L−m)

NL

= Rc

(
1− m

L

)
,

(2)

which approaches the rate of the code Rc as L grows. These known bits, how-
ever, play an important role in improving performance of the belief propagation
decoder as discussed in Subsection 3.4. Fig. 7 shows the factor graph of such a
system at the start of the chain.

3.2 Using a Spatially Coupled Code
We can also use a spatially coupled code as the component code. We use a
spatially coupled LDPC code constructed as described in [17]. Coupling is done
on the protograph, followed by lifting the protograph by some chosen lifting
factor and some permutations. With coupling memory m = 1, a variable node
vi with degree dvi splits its dvi edges into check nodes at time t and t + 1
. This splits the base matrix B into two sub-matrices B0 and B1 such that
B0+B1 = B. The chain is terminated after L sections. The base matrix of the
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Figure 8: Factor graph representation of turbo equalization with a coupled
LDPC code.

Figure 9: Compact graph representation of turbo equalization with a spatially
coupled code.

terminated convolutional protograph is given by

B[0,L−1] =



B0

B1 B0

B1
. . .
. . . B0

B1


. (3)

For simplicity we illustrate this in Fig. 8 with a regular (3,6) code with base
matrices

B0 =

1 1 0 0 0 0
1 1 1 1 0 0
1 1 1 1 1 1

 , B1 =

0 0 1 1 1 1
0 0 0 0 1 1
0 0 0 0 0 0

 .

(4)
In this scheme every block of M bits at time t is permuted, mapped to symbols
and sent over the channel. Fig. 9 shows the corresponding compact graph rep-
resentation. This scheme is used in order to exploit the advantages of window
decoding as elaborated in Section 3.4, especially reduced latency, as it makes it
possible to decode a block without waiting for the whole chain to be received.

3.3 Coupling at both the Code and the Channel Level
Looking at the overall factor graph, we can see that it is possible to use a
spatially coupled code and at the same time coupling the encoder output blocks,
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Figure 10: Factor graph representation of turbo equalization with coupling at
both the encoder and the channel level.

Figure 11: Compact graph representation of coupling both the code and channel.

thus having a graph as shown in Fig. 10, whereas Fig. 11 shows the compact
graph. The encoding of the code is not affected by the memory introduced at
the input of the channel which is done as in Section 3.1.

3.4 Window Decoding of a Coupled System
In order to get good results with coupling and minimize the latency it is es-
sential to use window decoding. Since blocks which are m or more apart are
not affecting each other directly and the effect further decays with increasing
distance we can decode a block at time t by considering blocks within a window
W , with W ≥ m + 1 [18]. With the scheme introducing memory between the

Figure 12: Window decoder with W = 5, decoding block t with coupling be-
tween the code and channel only. The green dots represents decoded blocks of
bits and the red ones the block being decoded.

code and the channel, as depicted in Fig. 12, the fist input block to the channel
at time t contains known bits which corresponds to log-likelihood ratios (LLRs)
with large magnitudes. These known bits result in improved estimates which
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are passed on to the code as good extrinsic information which can now correct
more errors. As the exchange is repeated the code can correct more and more
errors and spread the good beliefs in the window through the interconnections
between blocks. For the SC-LDPC codes, the almost known bits are provided by
the low-degree check nodes at the beginning of the chain in B0, which provide
more reliable messages.

As the window moves to the next block, the elements from the first block are
now mostly known and the process repeats itself. With window decoding the
effect of known bits can spread into the graph with less complexity compared to
a scheme which would involve the whole chain, as such a system will require a
lot more iterations to spread the effect in the graph. Furthermore, the latency
is reduced as we can decode a block without waiting for the whole chain to
be received. Once we have waited for the first W blocks to decode the first
block, subsequent blocks can be decoded after reception of only one more block.
One drawback of the window decoding scheme is error propagation, since errors
in one block can, in rare cases, affect all subsequent blocks. Solutions to this
drawback are suggested in [19], [20] but in this paper we use window decoding
without any modifications.

4 Performance Analysis
The performance of the different forms of coupling is analyzed through computer
simulations. For all types of coupling we consider L = 100 and the decoder uses
W = 5. The capacity limit shown is the constrained capacity, where the input
to the channel is restricted to be identically and uniformly distributed (i.u.d)
and is computed numerically as described in [21]. Using the MAP equalizer we
can see in Fig. 13 that coupling at the channel alone, results in a gain of about
2 dB for a BER below 10−5. It is interesting to note that this occurs below the
EXIT threshold of the code of 6.4 dB, which can not be exceeded by the code
alone even if we use a very long interleaver. When a spatially coupled code is
used we observe a larger gain of around 4 dB with 1 dB gap to the i.u.d capacity
limit. The gain is 2 dB more than the case with coupling at the channel alone,
but it comes at the cost of changing the code and thus the encoder and decoder.
Using both a spatially coupled code and coupling at the channel results in very
small gain (about 0.05 dB) when compared to using a spatially coupled code
alone.

When a linear MMSE equalizer is used (see Fig. 14), we observe a similar
trend as in the MAP case. Coupling at the channel shows a gain of about 5 dB
while the coupled code shows a gain of around 8.5 dB. The gains in each case
are higher than their MAP counterparts. As a result of this the coupled code
with linear equalizer is only 1 dB away from that of the MAP case, as opposed
to 5 dB difference when no coupling is applied.

These increased performance comes at the cost of increased complexity at
the decoder as each block (except at the boundaries) is visited 5 times (the
window size) making the effective number of iterations five times more than the
uncoupled case.
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Figure 13: The effect of different types of coupling using a MAP equalizer. The
vertical dashed lines at 2.9 dB and 6.4 dB mark the i.u.d capacity limit and the
uncoupled EXIT threshold, respectively.

5 Conclusions
We illustrated three ways of coupling in turbo equalization and analyzed their
performance. We showed that with spatial coupling the trade-off between the
performance in the waterfall versus the error floor region in the choice of codes
can be avoided. We also showed that with spatial coupling we can get good
performance with both MAP or linear MMSE equalizers. Furthermore spa-
tial coupling is superior to other approaches in the design of iterative receivers,
which require a code adaptation to the particular channel, making them imprac-
tical in changing channel conditions. By using window decoding, the improved
performance can be obtained with relatively low latency.
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Figure 14: Simulation results using MMSE equalizer showing the effect of cou-
pling at the channel and using a coupled LDPC code.
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On the Universality of Spatially Coupled
LDPC Codes over Intersymbol

Interference Channels

In this paper, we derive the exact input/output transfer functions of the
optimal a-posteriori probability channel detector for a general ISI channel
with erasures. Considering three channel impulse responses of different
memory as an example, we compute the BP and MAP thresholds for regu-
lar spatially coupled LDPC codes with joint iterative detection and decod-
ing. When we compare the results with the thresholds of ISI channels with
Gaussian noise we observe an apparent inconsistency, i.e., a channel which
performs better with erasures performs worse with AWGN. We show that
this anomaly can be resolved by looking at the thresholds from an entropy
perspective. We finally show that with spatial coupling we can achieve the
symmetric information rate of different ISI channels using the same code.

Keywords: Spatial Coupling, Inter-Symbol interference, Equalization, Threshold
Saturation, Universality.
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1 Introduction
Spatial coupling is a powerful concept that improves the belief propagation (BP)
decoding threshold of the coupled system to the maximum a-posteriori (MAP)
decoding threshold of the underlying uncoupled system. Spatial coupling was
initially introduced in the context of low-density parity-check (LDPC) codes
[1, 2] and subsequently applied to other classes of codes [3, 4] and scenarios
beyond the realm of coding [5].

Threshold saturation was first proven for spatially-coupled LDPC (SC-
LDPC) codes for transmission over the binary erasure channel [6] and later
for the general class of binary memoryless symmetric channels [7]. Threshold
saturation of SC-LDPC codes for transmission over channels with memory was
addressed in [8] for intersymbol-interference (ISI) channels with general noise
model. Particularly, the authors derived the BP generalized extrinsic informa-
tion transfer (GEXIT) curves of the corresponding uncoupled systems, from
which the MAP threshold can be estimated. The computation of the exact
GEXIT curves requires knowledge of the input/output transfer functions of the
a-posteriori probability channel detector, which are in general not available in
closed form. Thus, one needs to resort to Monte Carlo methods to provide an
estimate. For the particular case of the dicode channel with erasures —known
also as the dicode erasure channel (DEC)—, in [9] Pfister derived the corre-
sponding transfer function. This was used in [8] to obtain the exact density
evolution equations for SC-LDPC codes over the DEC, which are needed for
the computation of the GEXIT curves. The authors then showed numerically
that threshold saturation occurs for the DEC.

In this paper, we consider SC-LDPC codes for general ISI channels. Our
main contribution is the derivation of the transfer functions for general ISI
channels with erasures, which allows us to derive the exact density evolution
equations for these channels. We then use these equations to compute BP and
MAP thresholds for SC-LDPC codes over these channels. The numerical results
show that, for large enough coupling memory, threshold saturation occurs for all
considered channels. Furthermore, by increasing the Tanner graph density, we
show that the BP thresholds approach the symmetric information rates (SIRs)
of the corresponding channels, supporting the conjecture in [8] that SC-LDPC
codes can universally approach the SIR of ISI channels. We further consider
SC-LDPC codes over ISI channels with additive white Gaussian noise (AWGN),
which reveal the same behavior.

2 System Model
The system model under consideration is shown in Fig. 1. A binary information
sequence u is first encoded by an SC-LDPC code onto codeword v. We consider
binary transmission, with mapping 0 7→ +1 and 1 7→ −1, over an ISI channel
with either erasures or AWGN. In both cases, the modulated sequence x is first
transmitted over an ISI channel. The sequence at the output of the ISI filter is
denoted by z, whose elements take values on a finite alphabet Z. For the ISI-
erasure channel, each element of z is erased with probability ε. In this case, the
elements of the received sequence, y, take values on the finite alphabet {Z ∪ ?},
with symbol ? denoting an erasure. For the ISI-AWGN channel, z is corrupted
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Figure 1: Block diagram showing the transmitter and the ISI channel.

Figure 2: Compact graph representation for equalization with a (3,6) SC-LDPC
code with coupling memory m = 1.

by AWGN, and the elements of y take on real values.
At the receiver, we consider joint iterative decoding and channel detection,

usually referred to as turbo equalization. In particular, we consider BP decoding
of the SC-LDPC code and optimal channel detection, performed using the BCJR
algorithm over the corresponding trellis. Graphically, decoding is performed
over the factor graph depicted in Fig. 2, which combines the Tanner graph of
the SC-LDPC code (upper part) and the trellis of the ISI channel (lower part).
Specifically, the factor graph is constructed by placing L copies of a (dv, dc)
regular LDPC code of variable node (VN) degree dv and check node (CN) degree
dc in L spatial positions in the range L ∈ {1, . . . , L}. Fig. 2 shows the factor
graph for three spatial positions, t−1, t, and t+1. Each spatial position consists
of N VNs, represented by empty circles, and M CNs, represented by squares
with a cross. The L copies are coupled as follows: each VN at position t ∈ L
is connected to CNs in the range [t, . . . , t +m], where m is referred to as the
coupling memory. Hence, each CN at position t is connected to VNs in the
range [t−m, . . . , t]. The trellises of the ISI channel at each spatial position are
represented by a square labeled with the letter H, referred to as factor node.
The VNs represented by the black circles at the bottom of the figure correspond
to the symbol sequences at the output of the ISI channel (prior to the addition
of the erasures or AWGN), denoted by {zt}. Note that z = (z1, . . . ,zL) (see
Fig. 1). The rectangles at each spatial position between the Tanner graph of
the SC-LDPC code and the channel factor nodes represent multiplexers that
multiplex the N code bits (VNs) at each spatial position into a single binary
sequence (xt, with x = (x1, . . . ,xL)) at the input of the channel.

Decoding is then performed by iteratively passing messages along the edges
of the graph in Fig. 2.
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3 Input/Output Transfer Function of the BCJR
Detector for an ISI Channel with Erasures

In this section, we derive the transfer functions of the BCJR channel detector
for arbitrary ISI channels with erasures. These transfer functions character-
ize the output extrinsic erasure probabilities—from the channel detector to the
SC-LDPC decoder—as a function of the a-priori erasure probabilities and the
channel erasure probability. Particularly, we follow a similar approach to that
in [4, 10] for binary convolutional codes over the binary erasure channel, which
scales well with the channel memory. Compared to the case of binary convo-
lutional codes, however, the nonbinary alphabet of general ISI channels and
the lack of symmetry, which precludes assuming that the all-zero codeword is
transmitted, makes the derivation for a bit more complex.

We consider an ISI channel with memory ν and trellis states s1, s2, . . . , s2ν .
Let y and v be the received vector (affected by erasures) and the output of the
ISI filter, respectively. Note that for ISI channels with erasures the messages
exchanged between the decoder and the channel detector take values on the
ternary alphabet {+1,−1, ?}. We denote by x̂ the message vector from the
decoder to the channel detector.

We define the forward and backward state metric vectors at time τ ,
τ = 1, . . . , n, where n is the length of the ISI channel trellis, as ατ =
(ατ (s1), . . . , ατ (s2ν )) and βτ = (βτ (s1), . . . , βτ (s2ν )), respectively. Note
that ατ and βτ are probability vectors. In the case of erasures, the vec-
tors ατ and βτ take values on a finite set. The sets of values that vectors
ατ and βτ can take on are denoted by Mα = {m(1)

α , . . . ,m
(|Mα|)
α } and

Mβ = {m(1)
β , . . . ,m

(|Mβ |)
β }, respectively, of cardinality |Mα| and |Mβ |. For

the particular case of the DEC, which has memory one and the impulse response
given in Table 1 (CH-I), there are two possible states, s1 = +1 and s2 = −1,
and Mα = Mβ = {(1, 0), (0, 1), (0.5, 0.5)}. Note that, in general, Mα and Mβ

may differ.
The sequences . . . ,ατ−1,ατ ,ατ+1, . . . and . . . ,βτ+1,βτ , βτ−1, . . . form

each a Markov chain, which can be properly described by a probability transi-
tion matrix, denoted by Mα and Mβ , respectively, where the element (i, j) of
Ma, i ∈ {1, . . . , |Ma|}, is the probability of transition from state m

(i)
a to state

m
(j)
a , with a ∈ {α, β}.
Our aim is to derive Mα and Mβ for an arbitrary ISI channel with erasures.

We provide some details for the forward recursion. Let X ∈ {+1,−1}, Z ∈ Z,
and Y ∈ {Z ∪ ?} be the random variable corresponding to the symbol at the
input of the ISI filter, the output of the ISI filter, and the received symbol for
a given trellis section. Further, let X̂ ∈ {+1,−1, ?} be the random variable
corresponding to the incoming message from the decoder. The corresponding
realizations are x, z, y, and x̂. We denote by ε the channel erasure probability,
i.e., the probability that Y is an erasure, and by δ the average probability of era-
sure of a message from the decoder to the channel detector, i.e., the probability
that X̂ is an erasure.

Define P (m(j)
α |m(i)

α ) as the probability of transition from state m
(j)
α to state

m
(i)
α in the forward recursion. This probability can be written as
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Table 1: Discrete impulse responses of the considered ISI channels

CH-I h = [ 0.7071 −0.7071 ] ν = 1

CH-II h = [ 0.408 0.816 0.408 ] ν = 2

CH-III h = [ 0.227 0.46 0.688 0.46 0.227 ] ν = 4

Table 2: Possible observations for DEC channel CH-I with αt=m1
α

X̂, Y 0,0 0, ? ?, 0 1, −2 1, ? ?, −2 ?, ?
αt+1 m1

α m1
α m1

α m2
α m2

α m2
α m3

α

Prob 1
2 δ̄ε̄

1
2 δ̄ε

1
2δε̄

1
2 δ̄ε̄

1
2 δ̄ε̄

1
2 δ̄ε δε

P (m(j)
α |m(i)

α ) =
∑
x̂,y

P (x̂, y,m(j)
α |m(i)

α )

=
∑
x̂,y

P (x̂|m(i)
α )P (y,m(j)

α |x̂,m(i)
α ) , (1)

where we used the shorthand notation P (x̂, y) = P (X̂ = x̂, Y = y).
Now let Zij be the set of all possible values that Z can take in the transition

between state m
(i)
α and state m

(j)
α . Then we have

P (y,m(j)
α |x̂,m(i)

α ) =
∑

z∈Zij

P (y,m(j)
α , z|x̂,m(i)

α )

=
∑

z∈Zij

P (z,m(j)
α |x̂,m(i)

α )P (y|z) . (2)

This follows from the fact that Y is independent of {X̂, αt, αt+1} given Z.
Clearly, P (Y =?|z) = ε and P (Y = z|z) = 1− ε.

To compute P (z,m(j)
α |x,m(i)

α ), we need to consider two cases. If X̂ is an
erasure, we have P (z,m(j)

α |x̂,m(i)
α ) = P (z,m

(j)
α |m(i)

α ) for all z ∈ Zij , since Z is
no longer constrained by X̂. On the other hand, if X̂ is not an erasure, we get
P (z,m

(j)
α |x̂,m(i)

α ) = P (z,m
(j)
α |x,m(i)

α ), where P (z,m(j)
α |x,m(i)

α ) can be zero
for some combinations of {z, x,m(i)

α }. In summary, we obtain

P (x̂, y,m(j)
α |m(i)

α ) =


1
2 δ̄ε̄P (z,m

(j)
α |x,m(i)

α ) x, z
1
2 δ̄ε x, ?

δε̄P (z,m
(j)
α |m(i)

α ) ?, z

δε ?, ?

, (3)

where we used the shorthand notation δ̄ ≜ 1− δ and ε̄ ≜ 1− ε.
In Table 2, we give the probabilities P (x̂, y,m(j)

α |m(1)
α ) in (3) for the DEC.

For this channel, whose impulse response is given in Table 1 (CH-I), Z =
{−2,−1, 0,+1,+2} (when no normalization by 1/

√
2 is applied to the chan-

nel taps). The complete probability transition matrix Mα is given by
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Table 3: Transfer functions of ISI channels

CH-I g(δ, ε) = 4ε2

(δε−δ+2)2

CH-II g(δ, ε) = 4ε3(4δε−4δ−δ2ε+δ2+4)
(δ2ε3−δ2ε2+2δε2−2δ+4)2

CH-III g(δ, ε) see bottom of the page

Mα =

 1
2 (1− δε) 1

2 (1− δε) δε
1
2 (1− δε) 1

2 (1− δε) δε
1
2 − δ

4 (1 + ε) 1
2 − δ

4 (1 + ε) δ
2 (1 + ε)

 .
Similarly, we obtain the backward recursion probability transition matrix as

Mβ =

 1
2 ε̄

1
2 ε̄ ε

1
2 ε̄

1
2 ε̄ ε

1
4 ε̄δ̄

1
4 ε̄δ̄ ε+ 1

2δ −
1
2δε

 .
Now, denote the steady state distribution vector of the forward and backward

Markov chain by πa, which can be computed as the solution to

πa = Ma · πa , (4)

where a ∈ {α, β}. Also, define the |Mα| × |Mβ | matrix T with entries

Tij = p(X̃ = ?|αt = m(i)
α , βt+1 = m

(j)
β ) ,

where X̃ is the message passed from the channel detector to the decoder. In
words, Tij is the average (extrinsic) probability that the symbol passed by the
channel detector to the decoder is an erasure given αt and βt+1. Then, the ex-
trinsic erasure probability of a message from the channel detector to the decoder
is given by

g(δ, ε) = πα · T · πβ ,

which we refer to as the input/output transfer function of the channel detector.
In Table 3, we give the transfer function of three ISI channels of memory

ν = 1 (CH-I), 2 (CH-II), and 4 (CH-III) with erasures, where CH-I corresponds
to the DEC. The impulse response for these channels is given in Table 1.

4 BP and MAP Thresholds for SC-LDPC Codes
over ISI Channels

The receiver applies joint iterative message passing detection and decoding be-
tween the channel and the decoder, in terms of log-likelihood ratios (L-values)
as illustrated in Fig. 2. At iteration ℓ and spatial position t, first the mes-
sages L(ℓ)

H→v,t from the channel detector to the variable nodes are updated with

ε5(−δ6ε6(ε4+4ε3−6ε2+4ε−1)+δ5ε4(2ε5−8ε4+12ε3−4ε2−6ε+4)−δ4ε3(2ε4+5ε3−14ε2+25ε−1)+δ3ε2(8ε4−18ε3+20ε2−18ε+8)+δ2ε(8ε3−20ε2+4ε+8)+40δε2−40δε+64)
(δ3ε7−2δ3ε6+2δ3ε5−2δ3ε4+δ3ε3+2δ2ε3−2δ2ε2+4δε4−4δε3+4δε2−4δε+8)2
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the BCJR algorithm, using the received sequence y and the incoming messages
L
(ℓ−1)
v→H,t from the previous iteration of the channel decoder, where L(0)

v→H,t = 0.
Then Ic decoding iterations are performed between the variable nodes and check
nodes of the SC-LDPC code. At the variable node updates in decoding itera-
tion i, the messages L(ℓ)

H→v,t from the channel are combined with the incoming

messages from the check nodes L(i−1)
c→v,t to produce the outgoing messages L(i)

v→c,t.
These are then used at the check node updates to produce the messages L(i)

c→v,t.
Using Ic > 1 decoding iterations between the channel detector updates reduces
the overall complexity of the receiver.

4.1 Density Evolution for ISI Channels with Erasures
In case of ISI channels with erasures, all L-values exchanged in the message
passing receiver can take the values L = −∞ or L = +∞ if the corresponding
variable is a known −1 or +1, repsectively, or L = 0 if the variable is an
erasure. For this reason, the messages −1, +1 and ’?’ can be exchanged instead
of L-values, and density evolution is equivalent to tracking the evolution of the
erasure probabilities of the variables.

The probability q(ℓ)H,t that an outgoing message L(ℓ)
H→v,t of the channel detec-

tor is an erasure is given by the transfer function derived in Section 3, i.e.,

q
(ℓ)
H,t = g

(
δ
(ℓ−1)
t , ε

)
,

where δ(ℓ−1)
t denotes the erasure probability of the incoming messages L(ℓ−1)

H→v,t
from the previous code-channel iteration.

For the decoding of the SC-LDPC code, the density evolution equations can
be derived fololwing the approach in [11]. At a variable node update, the average
probability that a message L(i)

v→c,t is an erasure is given by

p
(i)
t = q

(ℓ)
H,t ·

1

m+ 1

m∑
j=0

(
q
(i−1)
c,t+j

)dv−1

, (5)

where

q
(i)
c,t =

1

m+ 1

m∑
j=0

(
1−

(
1− p

(i)
t−j

)dc−1
)

(6)

denotes the average erasure probability of the messages L(i)
c→v,t computed at a

check node update. Equations (5) and (6) are valid for a (dv, dc)-regular LDPC
code that is spatially coupled in such a way that edges are spread uniformly
over m+ 1 spatial positions.

A message L(ℓ)
v→H,t passed to the channel detector after Ic decoding itera-

tions is erased if all dv messages L(Ic)
c→v,t are erased. The corresponding erasure

probability is hence equal to

δ
(ℓ)
t =

1

m+ 1

m∑
j=0

(
q
(i−1)
c,t+j

)dv

.
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Table 4: Thresholds of (3,6) LDPC code for ISI channels with erasures and
AWGN

CH-I CH-II CH-III
Erasures AWGN Erasures AWGN Erasures AWGN

εBP, γBP 0.5689 1.703 0.7055 2.598 0.8254 5.474
εMAP, γMAP 0.6387 1.160 0.7519 1.509 0.8482 2.975

hBP 0.8530 0.8510 1.5870 1.5147 3.3010 2.9177
hmax 1.500 1.500 2.250 2.250 4.000 4.000

hBP/hmax 0.5689 0.5673 0.7055 0.6732 0.8254 0.7294

hMAP 0.9580 0.9195 1.6918 1.6200 3.3926 3.2146

hMAP/hmax 0.6387 0.6130 0.7519 0.7197 0.8482 0.8036
εISR, γISR 0.6404 0.823 0.7530 1.437 0.8506 2.960

The average GEXIT function can be expressed as [12]

1

n

dH(X|Y, S0)

dε
=

1

n

n∑
i=1

H(Zi|Y∼i, S0) ,

where the channel parameter is taken to be hi = ε.
From the GEXIT function we can thus define the generalized BP EXIT

(GB-EXIT) function, hBP
i , as the joint iterative decoding of Zi from Y∼i and

S0. The exact GB-EXIT function is computed in the same fashion as in [12].
That is,

hBP =
∑
i,j

P (m(i)
α )H(Zi|αt = m(i)

α , βt+1 = m
(j)
β )P (m

(j)
β ) .

The GB-EXIT function is used as described in [12] to compute an upper bound
εMAP on the MAP threshold. The SIR also can be computed using the state
distribution of the Markov chain from Section 3. Using the notation X for
the sequence X1X2 . . . Xt the SIR is computed using the expression I(X ;Y) =
H(Y)−H(Y|X ), with H(Y|X ) = hb(ε), where hb(·) denotes the binary entropy
function. The entropy rate H(Y) can be computed by using the definition [9]

H(Y) = lim
t→∞

H(Yt|Y t−1) =

|Mα|∑
i=1

Pαt(m
(i)
α )H(Y |αt = m(i)

α ).

Pαt
(m

(i)
α ) is the i-th entry in the steady state distribution πα1 computed with-

out using a-priori inputs from the code. This can be obtained from the steady
state distribution πα(ε, δ) by setting the erasure probability from the code to
1, i.e., πα1(ε) = πα(ε, 1).

4.2 Density Evolution for ISI Channels with AWGN
For channels with AWGN, no explicit transfer functions are available for com-
puting the probability densities p(L(ℓ)

H→v,t) of the outgoing messages at the chan-
nel detector. For this reason we use Monte Carlo simulations for the BCJR de-
tector to determine these densities from the incoming densities p(L(ℓ)

v→H,t) and
the noise distribution.
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Table 5: Thresholds of regular codes with spatial coupling for ISI channels with
erasures and AWGN

Erasures AWGN
Code Channel εBP ε1 ε3 ε6 εMAP εISR γBP γ1 γ3 γ10 γMAP γISR

(3, 6) CH-I 0.5689 0.6386 0.6386 0.6386 0.6387 0.6404 1.703 1.330 1.240 1.178 1.160 0.823

CH-II 0.7055 0.7519 0.7519 0.7519 0.7519 0.7530 2.598 1.598 1.587 1.535 1.509 1.437
CH-III 0.8254 0.8482 0.8482 0.8482 0.8482 0.8506 5.474 3.019 3.010 2.998 2.975 2.960

(4, 8) CH-I 0.5100 0.6399 0.6401 0.6401 0.6404 0.6404 2.441 0.896 0.877 0.866 0.853 0.823

CH-II 0.6618 0.7528 0.7528 0.7528 0.7530 0.7530 3.596 1.494 1.478 1.458 1.448 1.437
CH-III 0.7997 0.8501 0.8501 0.8501 0.8501 0.8506 6.745 3.100 3.061 2.993 2.963 2.960

(5, 10) CH-I 0.4647 0.6400 0.6403 0.6403 0.6404 0.6404 3.029 0.877 0.852 0.844 0.834 0.823

CH-II 0.6275 0.7526 0.7529 0.7529 0.7530 0.7530 4.348 1.483 1.461 1.450 1.437 1.437
CH-III 0.7775 0.8503 0.8503 0.8503 0.8503 0.8506 7.550 3.036 3.000 2.987 2.960 2.960

(6, 12) CH-I 0.4647 0.6378 0.6403 0.6403 0.6404 0.6404 3.517 0.853 0.844 0.829 0.823 0.823

CH-II 0.6000 0.7504 0.7529 0.7530 0.7530 0.7530 4.938 1.483 1.461 1.450 1.437 1.437
CH-III 0.7588 0.8504 0.8504 0.8504 0.8504 0.8506 8.123 3.036 2.990 2.980 2.960 2.960

For the message passing decoding of the SC-LDPC code we use discretized
density evolution [13], which is exact up to the numerical accuracy and the
resolution of the underlying quantization. During the i-th iteration within the
code, at the variable nodes the message densities p(L(i)

v→c,t) along an edge can
be obtained as the convolution of the density p(L(ℓ)

H→v,t) from the channel with

the dv − 1 densities p(L(i)
c→v,t) of incoming messages from the other edges. This

can be implemented efficiently using the FFT. At the check nodes, the densities
p(L

(i)
c→v,t) are computed from the dc−1 incoming densities p(L(i)

v→c,t) in a nested
fashion from a two-dimensional lookup table [13]. After the Ic iterations between
check and variable nodes are completed, the density p(L

(ℓ)
v→H,t) of messages

passed to the channel is obtained as the convolution of all dv message densities
p(L

(Ic)
c→v,t).
The GEXIT function for the BIAWGNC with ISI can be defined as [8]

G(h) =
1

n

dH(X|Y, S0)

dh

where
h = H(Zi|Yi) = H(Zi)− I(Yi;Zi), (7)

with

I(Yi;Zi) =

∫ ∞

−∞

∑
zi

P (yi, zi)log2

{
P (yi|zi)∑

z′
i
P (z′i)P (yi|z′i)

}
dy.

The entropy h is a function of the channel parameter ε which is chosen for
convenience to be ε = − 1

2σ2 . The signal-to-noise ratio parameter used in this
paper, γ is the ratio of bit energy, Eb, to the noise spectrum density, No, in
decibels. Using the GBP-EXIT function, an upper bound γMAP on the MAP
threshold is computed as described in [8]. The SIR is computed numerically
using the method described in [14].

5 Numerical Results
If we compare the BP thresholds of the channels by looking at the channel era-
sure probability ε in Table 4 for the regular (3,6) code we observe that CH-III



has the best performance (the threshold occurs at the highest erasure proba-
bility) followed by CH-II while CH-I has the worst performance. On the other
hand, if we look at the Gaussian channel we notice that the ordering is reversed
with CH-I having the best threshold (at lowest SNR) and CH-III has the worst
performance. Thus we see an apparent inconsistency in the performance of the
channels when erasures are changed to AWGN. This is also true for the MAP
threshold and the ISR.

In Table 5 we see the same phenomenon when different codes are used. That
is, the channel ranking for the BP and MAP thresholds as well as the ISR is
reversed for all codes when changing from erasures to AWGN.

But we can also characterize the thresholds in terms of the entropy h =
H(Zi|Yi). This is defined in (7) for the Gaussian channel, while for the erasure
channel we observe that

H(Zi|Yi) = ε̄H(Zi|Yi ̸= ?) + εH(Zi|Yi = ?) = εH(Zi),

since Zi is known with certainty when Yi is not erased and it is independent of
it when it is erased.

Representing the thresholds in terms of entropy, we now observe in Table
4 that the ranking of the channels is unchanged when changing between era-
sures and AWGN. I.e., CH-III has the best performance with both AWGN and
erasures by having thresholds which are at the highest entropy, while CH-I has
the worst performance. This could be attributed to the fact the CH-III has the
highest H(Zi) (labelled hmax in the table). But if we normalize the threshold
by dividing by hmax the ranking is unchanged. It is interesting to note that the
BP entropies hBP for erasures and AWGN are relatively close to each other for
a given ISI channel. On the other hand, their gap is still to large for making an
accurate prediction from the erasure to the Gaussian case.

In Table 5 we can also see that with uncoupled regular codes the MAP
threshold improves with increasing variable node degree, while the BP threshold
becomes worse. With spatially-coupled codes, we observe that the BP thresholds
approach the MAP thresholds of the uncoupled codes for all three channels. It
is also interesting to see that for the (5,10) and (6,12) code the MAP threshold is
equal or very close to the ISR for all three channels. This demonstrates that with
spatial coupling we can universally approach the ISR of different ISI channels
using a single code. This makes spatially coupled codes superior to uncoupled
irregular codes that need to be optimized for a particular ISI channel, which
cannot guarantee robust performance if the channel is changed.

6 Conclusions
We have derived exact transfer function for three different channels using a
method which can be applied to any arbitrary ISI channel. We have further
shown that to compare the behaviour of ISI channels with erasures and AWGN,
the proper parameter is the entropy H(Zi|Yi), by which we can observe a consis-
tent behaviour. Finally we have shown numerically that with spatially coupled
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LDPC codes we can universally achieve the SIR of different ISI channels.
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Robust Performance Over Changing
Intersymbol Interference Channels by

Spatial Coupling

We show that spatially coupled low-density parity-check (LDPC) codes
yield robust performance over changing intersymbol interfere (ISI) chan-
nels with optimal and suboptimal detectors. We compare the performance
with classical LDPC code design which involves optimizing the degree dis-
tribution for a given (known) channel. We demonstrate that these classical
schemes, despite working very good when designed for a given channel, can
perform poorly if the channel is exchanged. With spatially coupled LDPC
codes, however, we get performances close to the symmetric information
rates with just a single code, without the need to know the channel and
adapt to it at the transmitter. We also investigate threshold saturation
with the linear minimum mean square error (LMMSE) detector and show
that with spatial coupling its performance can get remarkably close to that
of an optimal detector for regular LDPC codes.

Keywords: Spatial Coupling, Inter-Symbol interference, Equalization, Threshold
Saturation, Universality, Robust performance, Degree optimization
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Figure 1: Block diagram showing the transmitter and the ISI channel.

1 Introduction
Spatially coupled codes were first studied in [1, 2] in the context of low-density
parity-check (LDPC) codes and later applied to other classes of codes [3]. They
are known to exhibit remarkably good performance in a range of coding scenar-
ios [4–6] and scenarios beyond coding as well [7,8]. This good performance is a
consequence of the fact that the belief propagation (BP) threshold of the coupled
code approaches the threshold of the underlying uncoupled code with maximum
a-priori (MAP) decoding, a phenomenon known as threshold saturation. This
phenomenon was proved in [9,10] for binary memoryless symmetric (BMS) chan-
nels. For such channels, it has been shown that spatially coupled LDPC codes
can universally achieve capacity with BP decoding [10].

In [11], it was shown that threshold saturation also occurs for channels with
memory. The authors also showed that, with regular codes of high node degree,
the BP threshold of the coupled code approaches the symmetric information
rate (SIR) of the simple dicode channel. In [12], the same phenomenon was
demonstrated for three different intersymbol interference (ISI) channels with
larger memory, and it was shown that a single code universally achieves the SIR
of the three considered ISI channels. It can be observed that spatial coupling
opens up a new paradigm of code design whereby the global MAP threshold,
which was considered practically unattainable, now matters and can be achieved
with the locally optimal BP decoding. One may then choose a code with good
MAP threshold (which often implies bad BP threshold) and apply spatial cou-
pling to attain the MAP threshold with BP decoding.

In this paper, we apply spatially coupled LDPC codes to turbo equaliza-
tion demonstrating that their universality provides practical advantages when
compared to classical code design. Classical code design for turbo equaliza-
tion usually involves optimizing a code for a particular channel. For LDPC
codes, this often means optimizing the degree distribution for the considered
channel [13–15]. The shortcoming is that a degree distribution optimized for a
given channel may perform poorly over a different channel. Furthermore, one
needs to know the channel at the transmitter. In contrast, due to their uni-
versal behavior, no optimization is required for spatially coupled LDPC codes,
hence there is no need to know the channel and they are expected to provide
superior performance for scenarios where the channel changes. We compare the
robustness of regular spatially coupled LDPC codes across three different ISI
channels against optimized irregular LDPC codes in terms of thresholds and
finite length simulations. We also show that with regular codes the suboptimal
linear minimum mean square error (LMMSE) detector, which has a very poor
performance when compared to the optimal detector, has a performnce quite
close to the BCJR detector when spatially coupled LDPC codes are used with
both of them.

The remainder of the paper is organized as follows. After introducing the
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Figure 2: Factor graph of turbo equalization with an irregular LDPC code.

considered system model in Section 2, we first discuss classical code design
for ISI channels with irregular LDPC codes to highlight the weakness of such
approach in Section 3. In Section 4, we describe code design with spatially
coupled LDPC codes for an optimal detector and how their universality can
overcome these problems. In Section 5, we consider a suboptimal LMMSE
detector, discuss threshold saturation in this setting and show that we cannot
simply use the area bound to provide a meaningful upper bound for the coupled
threshold for such a detector. We then propose a method to approximate such
threshold. Finally, the paper is concluded in Section 6.

2 System Model
The system model is shown in Fig. 1. A sequence of k information bits u is
encoded onto a codeword v of length n. The codeword is then mapped into a
sequence of symbols x using binary phase shift keying (BPSK) modulation with
the mapping 0 7→ +1 and 1 7→ −1. The sequence x is transmitted over an ISI
channel of memory ν. The output of the channel filter, z, is the convolution of x
and the impulse response of the channel, h, which has ν+1 taps. Table 1 shows
the impulse responses of the considered ISI channels. The impulse responses are
normalized such that ||h|| = 1. This makes the signal energy at the receiver,
Ez, equal to the signal energy, Ex, at the input of the ISI channel. The received
sequence, y, is the result of corrupting z by additive white Gaussian noise. We
define γ = Eb/N0, where Eb is the average energy per information bit and
N0 = 2σ2 the noise spectrum density. Note that Eb/N0 = Ez/RN0, where R is
the rate of the code.

At the receiver, the channel detector and the decoder exchange information
iteratively, a process widely known as turbo equalization. We use BP decoding
to decode the LDPC code while for the channel we consider two types of detec-
tors—the optimal detector, implemented by applying the BCJR algorithm, and
the suboptimal LMMSE detector. The detectors are implemented as described
in [16]. We thus have message exchanges within the decoder, i.e., between check
nodes (CNs) and variable nodes (VNs) for IC iterations, and message exchanges
between the VNs and the detector for ID iterations, as depicted by Fig. 2. The
messages exchanged are log-likelihood ratios.
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3 Code Design for Turbo Equalization with Ir-
regular LDPC Codes

We consider irregular LDPC codes with polynomials λ(x) and L(x) representing
the VN degree distribution from an edge and node perspective, respectively,
while the CN degree distribution from an edge perspective is represented by
ρ(x). The design rate for such a code is given by R(λ, ρ) = 1 −

∫ 1
0
ρ(x)∫ 1

0
λ(x)

. We
consider a design rate of 1/2 for all scenarios. To achieve good performance
with turbo equalization with classical code design, the LDPC code needs to be
specifically designed for a given channel. One approach is to optimize the degree
distribution such that the BP threshold is maximized. This can be achieved via
density evolution. We briefly describe density evolution for irregular LDPC
codes over an ISI channel.

The density passed from the detector to the code, p(L(ℓ)
H→v), is a function

of the incoming densities from all VNs p(L(ℓ−1)
v→H ) and the noise distribution.

Denoting this function as T we have

p(L
(ℓ)
H→v) = T

(
p(L

(ℓ−1)
v→H ), σ

)
.

It is not possible to obtain T (., .) in closed form for Gaussian noise (it can
be computed for erasure noise [12]), but it can be evaluated via Monte Carlo
methods. For each VN, its outgoing density to an edge is the convolution of
the density p(L(ℓ)

H→v) from the detector and the dv − 1 incoming densities from
other edges, where dv is the VN degree. The average density from the VNs
to a neighboring CN, p(L(i)

v→c), is then obtained by averaging over the degree
distribution λ(x). At each CN of degree dc, the outgoing density is computed
from the dc − 1 incoming densities in a nested fashion using a two-dimensional
lookup table for discretized density evolution [17]. Similar to the VNs, the
average density to a VN, p(L(i)

c→v), is obtained by averaging over the degree
distribution ρ(x). After IC iterations within the code, the density passed from
a VN to the detector, p(L(ℓ)

v→H), is the convolution of the incoming dv densities
from the neighboring CNs. The density evolution update equation for the joint
BP decoding of the code and channel is thus given as

p(L(i)
v→c) = p(L

(ℓ−1)
H→v )⃝⋆ λ

(
p(L(i−1)

c→v )
)

p(L(ℓ)
c→v) = ρ

(
p(L(i−1)

v→c )
)

p(L
(ℓ)
v→H) = L

(
L(IC)

c→v)
)

p(L
(ℓ)
H→v) = T

(
p(L

(ℓ)
v→H)

)
where for a given density a, λ(a) =

∑
j λja

⃝⋆ (j−1), ρ(a) =
∑

j ρja
∗ (j−1) and

L(a) =
∑

i Lia
⃝⋆ (j). The operator ⃝⋆ represents the convolution of densities while

∗ represents the density transformations at the CN as used in [18].
To find a code for a particular channel, we use a two-step searching scheme.

In the first step, a list of codes is generated using the EXIT chart design method.
This is done by combining the code’s VNs with the detector and fitting the EXIT
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Table 1: Discrete impulse responses of the considered ISI channels

CH-I h = [ 0.7071 −0.7071 ] ν = 1

CH-II h = [ 0.408 0.816 0.408 ] ν = 2

CH-III h = [ 0.227 0.46 0.688 0.46 0.227 ] ν = 4

Table 2: Codes optimized for the BCJR detector

CH-I CH-II CH-III
i λi ρi i λi ρi i λi ρi

2 0.3075 2 0.3963 2 0.5935
3 0.3208 3 0.3589 3 0.0243
5 0.0180 0.0436 4 0.0458 6 0.8856
6 0.0377 5 0.0153 0.0189 7 0.1144
7 0.9456 6 0.9128 11 0.0182
8 0.0108 8 0.0225 17 0.3639
10 0.0130 9 0.0592
13 0.0446 13 0.1583
16 0.0876 17 0.0120
18 0.1708

curve of the combined node with that of the CNs. The method is used according
to the description in [13] but with the modification that we use CNs with more
than one degree. The fitting is done manually at an SNR close to the SIR of the
channel. The SIR values were calculated using a numerical method described
in [19]. Due to the approximate nature of the EXIT chart approach, a list of
NZ codes whose curves closely fit (imperfections are allowed where we might
have a small crossing of the curves) around the SIR rate are generated. In the
second step, we perform density evolution for each of the NZ codes and select
the code with the best BP threshold. Table 2 shows the codes obtained for
the BCJR detector while those for the LMMSE detector are shown in Table 3.
With this procedure, we can find codes with threshold close to the SIR of the
particular channel the code is designed for. This approach, however, does not
guarantee that a code designed for a specific channel performs well for other
ISI channels or a time-varying channel. Tables 4 and 5 show the BP thresholds
of the designed codes for each of the three considered channels1. In the tables
each bold entry represents the threshold of a code matched to the channel it
was designed for. We observe that when a code designed for a given ISI channel
is applied to a different channel, the gap to the SIR can be large. For example,
the code designed for CH-II under the LMMSE detector has a threshold 0.1 dB
away from the corresponding SIR, but the code threshold of the same code is
nearly 3 dB away for channel CH-III.

4 Code Design with Spatially Coupled Codes
We now consider spatially coupled LDPC codes with a BCJR detector. The
whole system can be described by a factor graph which combines the graph

1With a slight abuse of notation, we use the term BP thresholds for the system with
LMMSE detector as well, even though it is not locally optimal as the BCJR detector.
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Table 3: Codes optimized for the LMMSE detector

CH-I CH-II CH-III
i λi ρi i λi ρi i λi ρi

2 0.2652 2 0.3131 2 0.4792 0.0270
3 0.2921 3 0.2805 3 0.0357
4 0.0489 0.0270 4 0.0123 0.0496 4 0.0172 0.0696
5 0.0663 6 0.1662 5 0.0209 0.0150
6 0.0178 8 0.7841 7 0.0632
8 0.9067 10 0.0139 8 0.8252
12 0.0306 16 0.2225 19 0.4348
14 0.0681 20 0.1578 50 0.0122
18 0.0419
20 0.2355

Table 4: Code design and changing channel with BCJR

Designed
for

BP threshold when applied to SIR
CH-I CH-

II
CH-
III

CH-I 0.93 1.65 4.55 0.82

CH-II 1.42 1.51 4.11 1.44

CH-III 3.29 3.32 3.25 2.96

representing the channel constraints and the Tanner graph of the LDPC code.
Specifically, the factor graph is constructed by placing L copies of a (dv, dc)
regular LDPC code of VN degree dv and CN degree dc in L spatial positions
in the range L ∈ {1, . . . , L}. Fig. 3 shows the factor graph for three spatial
positions, t−1, t, and t+1. Each spatial position consists of N VNs, represented
by empty circles, and M CNs (M = dv

dc
N), represented by squares with a cross.

The L copies are coupled as follows: each VN at position t ∈ L is connected to
CNs in the range [t, . . . , t+m], where m is referred to as the coupling memory.
Hence, each CN at position t is connected to VNs in the range [t −m, . . . , t].
The constraints of the ISI channel at each spatial position are represented by
a square labeled with the letter H, referred to as factor node. Each of the
VNs represented by the black circles at the bottom of the figure (denoted by
{zt}) represent a block of N symbols at the output of the ISI channel before
being corrupted by noise. This means that z = (z1, . . . ,zL) (see Fig. 1). The
rectangles at each spatial position between the Tanner graph of the SC-LDPC
code and the channel factor nodes represent multiplexers that multiplex the
N code bits at each spatial position into a single binary sequence (xt, with
x = (x1, . . . ,xL)) at the input of the channel. This makes n = NL. Decoding
is then performed by iteratively passing messages along the edges of the graph
in Fig. 3.

Owing to the universality of spatially coupled LDPC codes, we perform code
design for ISI channels in two steps. We first pick a regular code with high node
degree and then apply spatial coupling to achieve good performance over all
channels. We apply this principle and consider the (5, 10) and (6, 12) regular
LDPC codes. In Table 6 we give the thresholds for the uncoupled codes (labeled
γBP) and those of the coupled codes for different coupling memories (labelled
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Table 5: Code design and changing channel with LMMSE

Designed
for

BP threshold when applied to SIR
CH-I CH-

II
CH-
III

CH-I 1.02 1.96 6.53 0.82

CH-II 1.37 1.54 5.80 1.44

CH-III 3.52 3.44 3.35 2.96

γ(m)). We also show the corresponding MAP thresholds and the SIRs as well. It
is observed that uncoupled regular LDPC codes have poor BP threshold, with a
gap up to 5 dB from the SIR. The MAP thresholds, however, are almost equal
to the SIRs2. Due to threshold saturation, the BP threshold of spatially coupled
LDPC codes are close to the SIR for the three different ISI channels. For the
(6, 12) code, the threshold for memory m = 6 is good for all channels and better
than the ones of the optimized codes in Table 4.

In Fig. 4, we give simulation results for the (6, 12) code for CH-II and CH-III
and compare it to the irregular LDPC code designed for CH-II. For the spatially
coupled LDPC code, we use m = 6 and L = 500 with N = 10 000, which gives
the design rate R = 0.494. The code is decoded using window decoding [20]
with a window size of W = 30, resulting in a decoding latency of WN = 300 000
symbols. Within the window, we use IC = 30 iterations in the code and ID = 20
iterations between the code and the channel. For the irregular code, we use a
block length of n = 300 000 and the parity-check matrix is generated by the
progressive edge growth algorithm [21]. We use IC = 30 iterations within the
code and ID = 20 iterations between the code and the channel. The results
indicate a convergence to the thresholds in Tables 4 and 6, whereby the gaps
are smaller for the uncoupled code. The irregular code designed for CH-II
performs very well for that particular channel, but the performance deteriorates
significantly when the channel is changed to CH-III. The coupled code shows
good performance for both channels.

5 Spatially Coupled Codes with the LMMSE De-
tector

In this section, we consider the use of spatially-coupled LDPC codes with a
suboptimal channel detector, namely the LMMSE detector. For the LMMSE
detector, we also observe in Table 6 that the BP threshold of spatially coupled
LDPC codes improves with increasing memory. It is not clear, however, which
value the coupled threshold saturates to. This is because using the generalized
extrinsic information transfer (GEXIT) bounding technique as for the BCJR
detector will not give us a meaningful bound. This can be observed by noting
that the upper bound to the MAP threshold is based on the following facts.
The GEXIT of an ISI channel with entropy h = H(Z|Y ) and initial state S0 is

2The MAP thresholds for the system with BCJR detector were obtained from [12] where
they were obtained using the area theorem.
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Figure 3: Compact graph representation for equalization with a (3,6) SC-LDPC
code with coupling memory m = 1.

defined as [11]

G(h) =
1

n

dH(X|Y , S0)

dh
.

The conditional entropy rate H(X|Y , S0) can be thought of as the output
of the globally optimal receiver (MAP receiver). But if we use a locally optimal
receiver (using BP) instead, the output entropy will be greater than or equal to
that of a globally optimal receiver. This is because the globally optimal receiver
will reduce the uncertainty about X compared to the locally optimal receiver.
By definition, the integral of the GEXIT equals the rate of the code as n grows
to infinity and it is equal to zero below the MAP threshold. We thus have

R = lim
n→∞

∫ 1

hMAP
G(h) ≤

∫ 1

hMAP
GBP(h) ,

where GBP(h) is obtained from a BP decoder with both the block length
n and number of iterations ID approaching infinity. This provides a way to
compute an upper bound for the MAP threshold [22]. This is done by finding
h̄ such that it is the largest positive number such that∫ 1

h̄

GBP(h) = R.

This bound is tight for a receiver with the BCJR detector. If we change the
detector to a suboptimal detector like the LMMSE, the message passing receiver
is no longer locally optimal thus the performance of the whole sytem is degraded.
As a result, the LMMSE detector will result into greater entropy than the BCJR
detector. This implies that∫ 1

hMAP
GBCJR(h) ≤

∫ 1

hMAP
GLMMSE(h).

Thus if we were to apply the same bounding technique, we would have an upper
bound higher than that of the receiver with the BCJR detector. But since we
know that the performance will be degraded by using a suboptimal detector,
this bound becomes meaningless.
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Figure 4: Simulation results with BCJR detector. Dashed lines show the per-
formance of the irregular code optimized for CH-II while solid lines are for that
of the (6,12) with m = 6. The solid short vertical lines are the corresponding
SIRs while the long vertical lines with diamonds mark the BP thresholds.

Table 6: Thresholds of regular codes with spatial coupling for ISI channels with
BCJR and LMMSE detectors

BCJR LMMSE
Code Channel γBP γ(1) γ(6) γ(10) γMAP γSIR γBP γ(1) γ(6) γ(10) γArea γSIR

(5, 10) CH-I 3.03 0.88 0.85 0.84 0.83 0.82 3.55 0.98 0.97 0.97 1.08 0.82

CH-II 4.35 1.483 1.45 1.45 1.44 1.44 5.84 1.71 1.68 1.68 1.82 1.44

CH-III 7.55 3.04 2.99 2.99 2.96 2.96 13.31 3.62 3.59 3.58 3.71 2.96

(6, 12) CH-I 3.52 0.85 0.84 0.83 0.82 0.82 4.18 0.98 0.96 0.96 1.12 0.82

CH-II 4.94 1.48 1.45 1.45 1.44 1.44 7.00 1.71 1.68 1.67 1.85 1.44

CH-III 8.12 3.04 2.98 2.98 2.96 2.96 14.15 3.69 3.59 3.56 3.72 2.96

We can however approximate this value using the positive gap condition for
the EXIT curves [23]. This is done by combining the detector and the VNs
of the LDPC code and computing the area between the EXIT curve of the
combined node, hf, and that of the CN, hg. An estimate of the BP threshold of
the coupled system is given by finding the SNR at which the area between the
curves transitions from negative to positive as Eb/N0 is increased. If we denote
the function which gives the entropy of a symmetric Gaussian with mean µ by
ψ(µ), the average output entropy from VNs to a CN, hE,VN, is given by

hE,VN =
∑
i

λiψ
(
(i− 1)ψ−1(hE,CN) + ψ−1(hE,DET)

)
(1)

where hE,CN is the average entropy from a CN and hE,DET is the output entropy
from a detector. The output entropy of the detector is a function of the a-priori
entropy to the detector hA,DET and Ez/N0,

hE,DET = D
(

hA,DET,
Ez

N0

)
.
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The function D is computed by Monte Carlo simulations and for a given Ez/N0

it can be approximated by a third order polynomial in the a-priori entropy,

D
(

hA,DET,
Ez

N0

)
= c3h3

A,DET + c2h2
A,DET + c1hA,DET + c0 , (2)

where
hA,DET =

∑
i

Liψ
(
iψ−1(hE,CN)

)
. (3)

Substituting (3) and (2) into (1), we obtain the EXIT curve of the combined
variable-detector node hf for a given SNR.

For the CN, we use the dual approximation [18, p. 236] to obtain the output
entropy as

hE,CN = 1−
∑
i

ρiψ
(
(i− 1)ψ−1(1− hE,VN)

)
.

We use a numerical approximation for ψ(µ) and ψ−1(µ) based on the numerical
approximations given in [13] for the J(σ) function which gives the mutual infor-
mation of a symmetric Gaussian density. We use the fact that for a symmetric
Gaussian density, µ = σ2

2 which implies J(σ) = 1 − ψ(σ
2

2 ). We thus have the
recursion

hg(v) = 1−
∑
i

ρiψ
(
(i− 1)ψ−1(1− v)

)
hf(u) =

∑
i

λiψ
(
(i− 1)ψ−1(u) + ψ−1

(
DL(u)

))
where

DL(u) = D
(∑

i

Liψ
(
iψ−1(u)

)
,
Ez

N0

)
.

Fig. 5 illustrates how this recursion can be used to approximate the coupled
threshold for the LMMSE detector. In Table 6, we denote this approximate
value by γArea. It can be seen that the coupled threshold for higher memory
seems to saturate to a value close but not equal to γArea. It appears that γArea

is a pessimistic estimate as the coupled threshold always exceeds it. On the
other hand, γArea provides an efficient way to roughly predict the coupling gain
directly from the uncoupled graph.

We can notice in Table 6 that the LMMSE detector without coupling per-
forms quite bad when compared to optimized irregular codes in Table 3. With
coupling, however, the thresholds are improved significantly. In contrast to the
case with the BCJR detector in Section 4, the coupled codes with the LMMSE
detector do not always outperform the optimized codes for the matched channels
but they are nevertheless very close to them and we still have the robustness
with changing channels.

We can also notice in Table 6 that the linear detector without coupling
yields poor thresholds when compared to the optimal detector for the same
code and channel, especially for channels with severe ISI (for example in CH-II
and CH-III). The situation, however, changes significantly when spatial coupling
is introduced. We see that the linear detector achieves performance very close
to the optimal detector with spatial coupling. For CH-III, for example, the BP
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Figure 5: Approximating the coupled threshold of an (6,12) LDPC code and
LMMSE equalizer for CH-II using the EXIT chart paradigm. The net area
between the curve is zero at Eb

N0
= 1.85 dB.

threshold of the (5, 10) and (6, 12) codes with LMMSE detector without coupling
is more than 5 dB away from the threshold with the BJCR detector. With
coupling, however, the gap is only a fraction of dBs for all coupling memories.
In Fig. 6 this effect is shown with simulation results for the (6,12) code with the
same settings as for the BCJR case discussed above for CH-III. In the figure
we can clearly notice the narrowing of the gap between the two detectors when
spatially coupled LDPC codes are applied.

6 Conclusions
We have demonstrated that spatially coupled LDPC codes are robust against
both changing channel conditions and changing detector type when compared
to classical code design. We can just use one LDPC code with high node degree
with spatial coupling and attain universally good results for a number of ISI
channels with BP decoding. It also makes the use of the suboptimal linear
MMSE detector quite competitive with the BCJR detector. This can be of
great practical value especially with situations in which applying the BCJR
detector can be prohibitively complex due to, e.g., large channel memory.
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Figure 6: Simulation results comparing the BCJR vs LMMSE detector without
coupling (dashed lines) and with coupling (solid lines) for a (6,12) LDPC code
and CH-III.

References

[1] A. J. Feltström and K. S. Zigangirov, “Time-varying periodic convolutional
codes with low-density parity-check matrix,” IEEE Trans. Inf. Theory,
vol. 45, no. 6, pp. 2181–2191, Jun. 1999.

[2] M. Lentmaier, A. Sridharan, D. J. Costello, Jr., and K. S. Zigangirov, “It-
erative decoding threshold analysis for LDPC convolutional codes,” IEEE
Trans. Inf. Theory, vol. 56, no. 10, pp. 5274–5289, Oct. 2010.

[3] S. Moloudi, M. Lentmaier, and A. Graell i Amat, “Spatially coupled turbo-
like codes,” IEEE Trans. Inf. Theory, vol. 63, no. 10, pp. 6199–6215, 2017.

[4] A. Yedla, P. S. Nguyen, H. D. Pfister, and K. R. Narayanan, “Universal
codes for the gaussian MAC via spatial coupling,” in Proc. Allerton, Mon-
ticello, IL, USA, Sept. 2011, pp. 1801–1808.



110 PAPER III

[5] F. Jardel, J. Boutros, V. Dedeoglu, M. Sarkiss, and G. Rekaya-Ben Oth-
man, “Spatial coupling for distributed storage and diversity applications,”
in Proc. COMNET, Tunis, Tunisia, Nov. 2015, pp. 1–5.

[6] K.-H. Wang, W. Hou, S. Lu, P.-Y. Wu, Y.-L. Ueng, and J. Cheng, “Im-
proving polar codes by spatial coupling,” in Proc. ISITA, Singapore, Oct.
2018, pp. 432–436.

[7] S. Kudekar and H. D. Pfister, “The effect of spatial coupling on compressive
sensing,” in Proc. Allerton, Monticello, IL, USA, Sept./Oct. 2010, pp. 347–
353.

[8] V. Aref, N. Macris, and M. Vuffray, “Approaching the rate-distortion
limit with spatial coupling, belief propagation, and decimation,” IEEE
Trans. Inf. Theory, vol. 61, no. 7, pp. 3954–3979, 2015.

[9] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold saturation
via spatial coupling: Why convolutional LDPC ensembles perform so well
over the BEC,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 803–834, Feb.
2011.

[10] S. Kudekar, T. Richardson, and R. L. Urbanke, “Spatially coupled en-
sembles universally achieve capacity under belief propagation,” IEEE
Trans. Inf. Theory, vol. 59, no. 12, pp. 7761–7813, 2013.

[11] P. S. Nguyen, A. Yedla, H. D. Pfister, and K. R. Narayanan, “Threshold
saturation of spatially-coupled codes on intersymbol-interference channels,”
in Proc. IEEE Int Conf. on Communications (ICC), Ottawa, ON, Canada,
June 2012, pp. 2181–2186.

[12] M. M. Mashauri, A. G. i Amat, and M. Lentmaier, “On the universality of
spatially coupled LDPC codes over intersymbol interference channels,” in
Proc. ITW, Kanazawa, Japan, Oct.2021.

[13] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-
check codes for modulation and detection,” IEEE Trans. Communications,
vol. 52, no. 4, pp. 670–678, 2004.

[14] N. Varnica and A. Kavcic, “Optimized low-density parity-check codes for
partial response channels,” IEEE Communications Letters, vol. 7, no. 4,
pp. 168–170, 2003.

[15] L. Kong, G. Han, Y. L. Guan, K. Cai, and K.-S. Chan, “Exit chart based
LDPC codes design for 2D ISI channels,” in Proc. Digest APMRC, Singa-
pore, Oct./Nov. 2012, pp. 1–2.

[16] M. Tüchler and A. C. Singer, “Turbo equalization: An overview,” IEEE
Trans. Inf. Theory, vol. 57, no. 2, pp. 920–952, 2011.

[17] S.-Y. Chung, G. Forney, T. Richardson, and R. Urbanke, “On the design
of low-density parity-check codes within 0.0045 db of the shannon limit,”
IEEE Communications Letters, vol. 5, no. 2, pp. 58–60, 2001.

[18] T. Richardson and R. Urbanke, Modern Coding Theory. USA: Cambridge
University Press, 2008.



PAPER III 111

[19] D. M. Arnold, H. A. Loeliger, P. O. Vontobel, A. Kavcic, and W. Zeng,
“Simulation-based computation of information rates for channels with mem-
ory,” IEEE Trans. Inf. Theory, vol. 52, no. 8, pp. 3498–3508, Aug 2006.

[20] M. Zhu, D. G. M. Mitchell, M. Lentmaier, D. J. Costello, and B. Bai,
“Braided convolutional codes with sliding window decoding,” IEEE
Trans. Communications, vol. 65, no. 9, pp. 3645–3658, 2017.

[21] X.-Y. Hu, E. Eleftheriou, and D. Arnold, “Regular and irregular progressive
edge-growth Tanner graphs,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp.
386–398, 2005.

[22] C. Measson, A. Montanari, T. J. Richardson, and R. Urbanke, “The general-
ized area theorem and some of its consequences,” IEEE Trans. Inf. Theory,
vol. 55, no. 11, pp. 4793–4821, 2009.

[23] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Wave-like solutions of
general 1-D spatially coupled systems,” IEEE Trans. Inf. Theory, vol. 61,
no. 8, pp. 4117–4157, 2015.



112 PAPER III







Low-Density Parity-Check Codes and
Spatial Coupling for Quantitative Group

Testing

A non-adaptive quantitative group testing (GT) scheme based on sparse
codes-on-graphs in combination with low-complexity peeling decoding was
introduced and analyzed by Karimi et al.. In this work, we propose a
variant of this scheme based on low-density parity-check codes where the
BCH codes at the constraint nodes are replaced by simple single parity-
check codes. Furthermore, we apply spatial coupling to both GT schemes,
perform a density evolution analysis, and compare their performance with
and without coupling. Our analysis shows that both schemes improve with
increasing coupling memory, and for all considered cases, it is observed
that the LDPC code-based scheme substantially outperforms the original
scheme. Simulation results for finite block length confirm the asymptotic
density evolution thresholds.

Keywords: Quantitative Group testing, Spatial Coupling, Low density parity check
codes, Generalized Low density parity check codes
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1 Introduction
The general goal of group testing (GT) [1] is to identify the set of k defective
items among a population of n items by efficiently pooling groups of items
in order to reduce the total number of required tests m < n. In the sub-linear
regime [2], where the prevalence γ = k/n tends to zero as n increases, it has been
demonstrated that sparse codes-on-graphs [3], can identify all defective items
with high probability with low-complexity iterative (peeling) decoding [4, 5].
In [6] and [7], this idea was extended from non-quantitative to quantitative GT
using t-error correcting BCH codes at the constraint nodes of a generalized low-
density parity-check (GLDPC) code with regular and irregular variable node
(VN) degrees, respectively. It turns out that the strongest codes, with largest
VN degree dv and decoding radius t, do not perform best with iterative decoding.
Instead, the minimum number of required tests in [6, 7] is achieved for t = 2
and the distribution of dv has to be chosen carefully for every t.

Spatial coupling of regular graphs is an attractive alternative to the sensitive
optimization of irregular graphs, thanks to the threshold saturation phenomenon
that leads to robust performance with iterative decoding even for large dv. First
observed for low-density parity-check (LDPC) codes [8,9], this behavior extends
to other graph-based systems such as GLDPC codes [10] or iterative decoding
and detection [11, 12]. To the best of our knowledge, however, the concept of
spatial coupling has never been applied to GT schemes.

Our main contribution in this paper is two-fold: first, we propose a novel
quantitative GT scheme based on LDPC codes as an alternative to the GLDPC
code-based GT scheme in [6, 7]. A corresponding peeling decoder is presented,
which cannot rely on local error correction of the component codes (since t = 0)
but instead takes advantage of the cases where either all or none of the items
within a test are defective. Second, we apply spatial coupling to both schemes.
We further perform a density evolution analysis of the LDPC code-based GT
scheme and of the coupled schemes to investigate the effect of increasing coupling
memory for various combinations of dv and t.

We consider two scenarios for evaluating the schemes. In the first scenario,
we fix the proportion of defective items γ (prevalence) and compute the mini-
mum required rate Ω, defined as the number of tests per item. This allows for a
comparison with the results presented in [6]. In the second scenario, in order to
study threshold saturation, we consider a fixed graph structure with rate Ω and
analyze how much γ can be increased while still maintaining reliable recovery
of the items. For both scenarios, it can be observed that spatial coupling im-
proves the performance as the coupling memory w increases. In particular, the
best thresholds γth are achieved for larger values of dv. We prove theoretically
that threshold saturation occurs in both scenarios. Remarkably, the density
evolution analysis also shows that the proposed LDPC code-based GT scheme
significantly outperforms the GLDPC code-based GT scheme of [6, 7]. This is
also true for the coupled schemes. Finally, we present finite block length sim-
ulation results for the LDPC code-based and GLDPC code-based GT schemes
that confirm the behavior observed in the asymptotic analysis.
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2 System Model
We consider a population of n items, each of which is defective with probability
γ, referred to as the prevalence. We represent the n items by a binary vector
x = (x1, . . . , xn), where xi = 1 if item i is defective and xi = 0 if it is not.
Vector x is unknown and the goal of the GT scheme is to infer it.

The GT consists of m tests and can be represented by an m×n test matrix
A = (ai,j), where row i corresponds to test i, column j corresponds to item j,
i.e., xj , and ai,j = 1 if item j participates in test i and ai,j = 0 otherwise.

Here, we consider noiseless, non-adaptive quantitative group testing, where
the result of each test correctly gives the number of defective items in the test.
The result of the i-th test, denoted by si, is therefore given by

si =

n∑
j=1

xjai,j .

We collect the results of the m tests in the syndrome vector s = (s1, . . . , sm).
It holds

s = xAT .

Based on the syndrome, the goal of GT is to estimate x via a decoding operation.
The assignment of items to tests can be conveniently represented by a bi-

partite graph consisting of n variable nodes (VNs) corresponding to the n items
and m constraint nodes (CNs) corresponding to the m tests. An edge between
VN j, vj , and CN i, ci, is drawn if item xj participates in test i, i.e., if ai,j = 1.

Fig. 1 shows the bipartite graph corresponding to a scenario with 6 items
and 3 tests with assignment matrix

A =

 1 1 0 1 0 1
0 1 1 1 1 0
1 0 1 0 1 1

 . (1)

The bipartite graph representation of quantitative GT traces a connection
with codes-on-graphs. Hence, the theory of codes-on-graphs can be used to
design good test matrices A and analyze their properties.

3 Preliminaries: Group Testing Based on GLDPC
Codes

The work [6] introduced a quantitative group testing scheme based on regular
GLDPC codes where the test matrix A corresponds to the partity-check matrix
of a GLDPC code. Particularly, the construction in [6] is as follows. Consider a
regular (dv, dc) bipartite graph with n VNs and mB CNs and its corresponding
mB × n adjacency matrix B. To construct the test matrix A, each of the dc
non-zero elements in a row of B is replaced by a column of an nu×dc signature
matrix U =

(
1⊤
1×dc

,HT

)
T, where 11×dc is a 1 × dc all-ones vector and H, of

dimensions t log2(dc + 1) × n, is the parity-check matrix of a t-error correcting
BCH code of length dc. Hence, nu = t log2(dc + 1) + 1, and the total number of
tests is given by m = mBnu. (Note that, for a GLDPC code-based GT scheme,
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v1 v2 v3 v4 v5 v6

c1 c2 c3
Figure 1: Bipartite graph corresponding to the assignment matrix in (1).

contrary to the bipartite graph in Fig. 1, each of the CNs corresponds to a
bundle of nu tests.)

We denote by Ω the rate of the GT scheme, i.e., the ratio between the
number of tests and the number of items.1 For the construction in [7],

Ω =
m

n
=
dv
dc

(
t ⌈log2(dc + 1)⌉+ 1

)
, (2)

where the ceiling function ⌈.⌉ takes care of cases where dc + 1 is not a power of
two.

Decoding to recover x is performed via peeling decoding, where at each iter-
ation, due to the t-error correcting capability of the BCH codes, a CN connected
to t or less unresolved defective items can identify them and their adjacent edges
are peeled off the graph.

The probability that a defective item remains unidentified over iterations
can be tracked via density evolution. Let p(ℓ) the probability that a defective
item remains unidentified at iteration ℓ and q(ℓ) the probability that a CN is
resolved at iteration ℓ. The quantities p(ℓ) and q(ℓ) are given by the following
density evolution equations [7],

q(ℓ) =

t−1∑
i=0

(
dc − 1

i

)(
p(ℓ−1)

)i (
1− p(ℓ−1)

)dc−1−i

p(ℓ) =γ (1− q(ℓ−1))dv−1 .

4 Quantitative Group Testing Based on LDPC
Codes

In this section, we propose a novel GT scheme based on LDPC codes in which the
test matrix A is the parity-check matrix of an LDPC code or, correspondingly
is obtained from the bipartite graph of an LDPC code (as the one in Fig. 1).

4.1 Proposed GT Scheme
We consider a regular (dv, dc) bipartite graph, where each VN is connected to
dv CNs and each CN is connected to dc VNs. The rate of the LDPC code-based

1Note that, interpreting A as the parity-check matrix of a code, Ω = 1−R, where R is the
code rate.
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GT scheme is Ω = dv

dc
, which can also be obtained from (2) by setting t = 0.

Similar to LDPC codes over the binary erasure channel and GLDPC code-
based GT, decoding can be performed via peeling decoding. Peeling decoding
gives rise to a sequence of residual graphs. Decoding is successful if eventually
the decoder manages to peel off all VNs from the original graph, resulting in an
empty graph.

Let d(ℓ)c the degree of a generic CN c at iteration ℓ and s(ℓ) the corresponding
syndrome (after the contribution of the resolved items in previous iterations
has been removed). The proposed peeling decoding algorithm is based on the
following observation: If s(ℓ) = 0, then all VNs connected to c are non-defective
and can be resolved. Furthermore, if s(ℓ) = d

(ℓ)
c , then all VNs connected to c are

defective and can also be resolved. Otherwise, none of the connected VNs can
be resolved by considering c. This observation yields to the following peeling
decoding algorithm:

1. Initialization: Set s(ℓ)i = si and all items as unresolved

2. For ℓ ≥ 1: For each CN ci in the residual graph at iteration ℓ,

• If s(ℓ)i = 0 declare all connected VNs as non-defective items and peel
off their adjacent edges

• If s(ℓ)i = d
(ℓ)
ci declare all connected VNs as defective items, subtract

1 from the syndrome of their neighboring CNs, and peel off their
adjacent edges

3. If the resulting residual graph is empty or no edges have been peeled off
in Step 2 (i.e., decoding stalls), stop the decoding. Otherwise, increase ℓ
and return to 2)

4.2 Density Evolution
In this section, we derive the density evolution equations of the peeling decoding
algorithm introduced in this section. For convenience, we group the VNs into
two classes, the class of VNs corresponding to defective items, which we call
defective VNs, and the class of VNs corresponding to non-defective items, which
we call non-defective VNs.

Let p(ℓ)0 be the probability that a message from a non-defective VN to a
CN at iteration ℓ is an unresolved message, and p

(ℓ)
1 the probability that a

message from a defective VN to a CN at iteration ℓ is unresolved. Also let q(ℓ)0

be the probability that a message from a CN to a non-defective VN is a resolved
message, and q

(ℓ)
1 be the probability that a message from a CN to a defective

VN is resolved.

Proposition 1. The quantities p(ℓ)0 , p(ℓ)1 , q(ℓ)0 , and q(ℓ)1 are given by the following



PAPER IV 121

density evolution equations:

q
(ℓ)
0 =

dc−1∑
i=0

(
dc − 1

i

)
γi(1− γ)dc−1−i

(
1− p

(ℓ−1)
1

)i
(3)

q
(ℓ)
1 =

dc−1∑
i=0

(
dc − 1

i

)
γi(1− γ)dc−1−i

(
1− p

(ℓ−1)
0

)dc−1−i

(4)

p
(ℓ)
0 =

(
1− q

(ℓ−1)
0

)dv−1

(5)

p
(ℓ)
1 =

(
1− q

(ℓ−1)
1

)dv−1

. (6)

Proof. The probability that i out of the dc − 1 VNs connected to CN through
its adjacent edges except the one on which the outgoing message is sent are
defective, is given by a binomial distribution with parameters dc − 1 and γ,
BN (() dc − 1, γ).

A message from a CN c to a non-defective VN is resolved if all incoming
messages from defective VNs are resolved or all VNs connected to c are non-
defective. If the number of defective items connected to c is i, then, this occurs
with probability (1− p

(ℓ−1)
1 )i. Considering that i is binomially distributed and

summing over all i, we obtain (3).
Similarly, a message from a CN c to a defective VN is resolved if all incoming

messages from non-defective VNs are resolved or all VNs connected to c are
defective (i.e, i = dc − 1), yielding (4). Finally, a message from a non-defective
or defective VN to a CN is unresolved if all its incoming dc − 1 messages are
unresolved, yielding (5) and (6). ■

5 Group Testing with Spatial Coupling
In this section, we apply the concept of spatial coupling to the LDPC code-based
GT scheme introduced in the previous section and the GLDPC code-based GT
proposed in [6].

5.1 Group Testing Based on Spatially-Coupled LDPC
Codes

Similar to SC-LDPC codes, the Tanner graph of a terminated SC-LDPC code-
based GT is constructed by placing L copies of the bipartite graph of a (dv, dc)-
regular LDPC code-based GT in L spatial positions, each consisting of nb VNs
and m CNs. We refer to L as the coupling length and to nb as the component
code block length. The L copies are then coupled as follows: each VN at spatial
position τ ∈ [L] is connected to dv CNs at positions in the range [τ, τ+w], where
w is referred to as the coupling memory. For each connection, the position of
the CN is uniformly and independently chosen from that range. Further, each
CN at spatial position τ ∈ [L] is connected to dc CNs at positions in the range
[τ, τ − w].

As for SC-LDPC codes, the lower degree of the CNs at the boundaries of
the coupled chain yield to a wave-like decoding effect where a decoding wave
propagates from the boundaries of the chain inward.
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The rate of the SC-LDPC code-based GT scheme is

ΩSC =
(
1 +

w

L

)
Ω , (7)

with Ω = dv

dc
. Note that coupling implies an increase in the number of tests by a

factor of w
L compared to the uncoupled case—akin to the rate loss of SC-LDPC

codes—that vanishes as L becomes large.
The density evolution equations for SC-LDPC code-based GT are given in

the following proposition.

Proposition 2. The quantities p(ℓ)0,τ , p
(ℓ)
1,τ , q

(ℓ)
0,τ , and q

(ℓ)
1,τ are given by the fol-

lowing density evolution equations:

q
(ℓ)
0,τ =

1

w + 1

w∑
j=0

dc−1∑
i=0

BN (() dc − 1, i, γ)
(
1− p

(ℓ−1)
1,τ−j

)i
q
(ℓ)
1,τ =

1

w + 1

w∑
j=0

dc−1∑
i=0

BN (() dc − 1, i, γ)
(
1− p

(ℓ−1)
0,τ−j

)dc−1−i

p
(ℓ)
0,τ =

1

w + 1

w∑
j=0

(
1− q

(ℓ−1)
0,τ+j

)dv−1

p
(ℓ)
1,τ =

1

w + 1

w∑
j=0

(
1− q

(ℓ−1)
1,τ+j

)dv−1

.

5.2 Group Testing based on Spatially-Coupled GLDPC
Codes

The coupling of GLDPC code-based GT is performed in a similar way as for SC-
LDPC code-based GT. However, contrary to SC-LDPC code-based GT, which
is obtained by coupling the bipartite graph corresponding to the test matrix A,
the coupling of GLDPC code-based GT is performed over the bipartite graph
corresponding to the adjacency matrix B.

The rate of the SC-GLDPC code-based GT scheme is also given by (7), with
Ω given in (2).

The density evolution equations for SC-GLDPC code-based GT are given in
the following proposition.

Proposition 3. The quantities q(ℓ)τ , and p(ℓ)τ are given by the following density
evolution equations:

q(ℓ)τ =
1

w + 1

w∑
j=0

t−1∑
i=0

(
dc − 1

i

)(
p
(ℓ−1)
τ−j

)i (
1− p

(ℓ−1)
τ−j

)dc−1−i

p(ℓ)τ =
1

w + 1

w∑
j=0

γ
(
1− q

(ℓ−1)
τ+j

)dv−1

.
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Table 1: Ωth for γ = 0.15% with GLDPC code-based group testing

coupling memory
t dv w = 0 w = 1 w = 2 w = 5 w = 10

1

2 3.3588 3.3574 3.3564 3.3564 3.3564
3 2.2374 1.9968 1.9956 1.9956 1.9956
4 2.3715 2.0432 2.0328 2.0320 2.0320

2

2 2.2472 2.1286 2.1277 2.1268 2.1268
3 2.4574 1.9506 1.9310 1.9310 1.9310
4 2.8612 2.1726 2.1268 2.0650 2.0650

3

2 2.1926 1.9655 1.9639 1.9629 1.9623
3 2.7106 2.1056 2.0443 2.0415 2.0408
4 3.3713 2.2504 2.0637 2.0369 2.0364

5

2 2.4079 2.0580 2.0367 2.0364 2.0364
3 3.0622 2.3407 2.1884 2.1686 2.1686
4 3.7795 2.2653 2.2655 2.1691 2.1691

6 Numerical Results

6.1 Density Evolution Thresholds
The density evolution equations derived in Sections 4.2, 5.1, and 5.2 can be
used to analyze the behavior of GT in the limit of large n, and more precisely
to compute the GT threshold. In particular, for a fixed prevalence γ, the GT
threshold Ωth is defined as the minimum rate—the minimum number of tests
per item—required for perfect detection of the defective items. Conversely, for
a fixed rate Ω, the GT threshold γth is defined as the maximum prevalence that
allows perfect detection of the defective items.2

Here, we give density evolution results for the proposed LDPC code-based
and spatially-coupled GT schemes and compare them with the GLDPC code-
based scheme in [6].

In Table 1, we give Ωth for a prevalence γ = 100/216 for GLDPC code-based
GT.3 The uncoupled case, w = 0, corresponds to the scheme in [6]. We can see
that coupling improves the threshold Ω (except for t = 1 and dv = 2), and the
improvement increases with increasing t and dv. For both the uncoupled and
coupled cases, the best threshold is obtained for t = 3 and dv = 2.

In Fig. 2, we plot threshold Ωth as a function of the prevalence γ (both in
percentage) for the proposed LDPC code-based GT scheme with dv = 5, the
GLDPC code-based GT scheme of [6] with t = 2 and dv = 2, and the coupled
versions of both. We observe that the LDPC code-based GT scheme significantly
outperforms the scheme in [6]. Spatial coupling improves Ωth for both schemes,
with the largest improvement for the proposed LDPC code-based GT scheme.

2We consider the threshold Ωth, as this is the quantity considered in [6]. However, from a
coding perspective, it is interesting to fix the rate of the scheme and compute γth, which is
akin to the belief propagation threshold for codes-on-graphs.

3We use this prevalence as it is the one considered in [6, Fig. 2]
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Figure 2: Ωth as a function of γ for LDPC code-based and GLDPC code-based
schemes. Dashed lines are for the uncoupled schemes, while solid lines are for
the coupled schemes.

Finally, in Tables 2 and 3, we give γth for Ω = 5% for GLDPC code-based and
LDPC code-based GT, respectively. For LDPC code-based GT (Table 3), we
observe that with coupling the threshold improves with increasing dv (similarly
to LDPC codes). Compared to GLDPC code-based GT (Table 2), LDPC code-
based GT achieves significantly higher thresholds. Furthermore, we generally
observe that the thresholds tend to converge to a constant value for a large
enough coupling memory w.

6.2 Simulation Results
In this section, we give simulation results for finite block length. In Fig. 3, we
plot the misdetection rate, i.e., the fraction of defective items not identified, as
a function of the prevalence γ for the proposed LDPC code-based GT scheme
with no coupling (dashed lines) and coupling (solid lines) for dv = 3, 5, and 10,
and rate Ω = 0.05. The block length of the uncoupled scheme is n = 153000.
For the coupled scheme, we consider w = 5, L = 200, and component code
block length nb = 102000. Further, the coupled scheme is decoded by iterating
on the entire chain (not using a window decoder). We observe that coupling
significantly improves performance, particularly for large dv, in agreement with
the density evolution results (cf. Table 3). The density evolution thresholds are
given by the vertical lines. We remark that the latency (defined as the number
of items that need to be tested before delivering test results) of the coupled
scheme is much larger than that of the uncoupled scheme. The former is nbL,
while the latter is n. Note, however, that increasing n for the uncoupled scheme
marginally improves its performance (the limit is given by the density evolution
threshold), hence the figure highlights how much one can gain with coupling if
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Table 2: γth for Ω = 5% with GLDPC Code-Based Group Testing

coupling memory
t dv w = 0 w = 1 w = 2 w = 5 w = 10

1

2 0.2487 0.2502 0.2502 0.2502 0.2502
3 0.3708 0.4166 0.4166 0.4166 0.4166
4 0.3510 0.4395 0.4425 0.4425 0.4425

2

2 0.3983 0.4257 0.4257 0.4257 0.4257
3 0.3372 0.4242 0.4288 0.4288 0.4288
4 0.2884 0.4120 0.4318 0.4333 0.4333

3

2 0.3784 0.4211 0.4227 0.4227 0.4227
3 0.3189 0.4257 0.4379 0.4379 0.4395
4 0.2441 0.3662 0.3983 0.4028 0.4028

5

2 0.3418 0.3998 0.4044 0.4044 0.4044
3 0.2686 0.3784 0.4044 0.4089 0.4089
4 0.2014 0.3159 0.3616 0.3769 0.3769

Table 3: γth for Ω = 5% with LDPC Code-Based Group Testing

coupling memory
dv w = 0 w = 1 w = 2 w = 5 w = 10

3 0.4555 0.5544 0.5508 0.5559 0.5559
4 0.5982 0.8423 0.8532 0.8540 0.8540
5 0.6416 0.9682 1.0270 1.0274 1.025
6 0.6464 1.0044 1.1196 1.1325 1.1327
7 0.6353 0.9999 1.1585 1.1978 1.1980
10 0.5773 0.9188 1.1272 1.2814 1.2816

latency is not a problem.
In Fig. 4, we plot the misdetection rate for uncoupled (dashed lines) and

coupled (solid lines) GLDPC code-based GT with t = 3, dv = 3, and Ω =
0.05. Further, we consider two component code block lengths, nb = 153000 and
nb = 10200. For nb = 153000, we assume full decoding, while for nb = 10200
we assume a sliding window (SW) decoding [13] with window size W = 15.
The latency of the coupled scheme is therefore nbW , i.e., the latencies of the
uncoupled scheme and coupled scheme with SW decoding are identical. Notably,
for SW decoding and the same latency, coupling still outperforms the uncoupled
scheme. As for the LDPC code-based GT scheme, coupling with full decoding
significantly improves performance.

In Fig. 5, we consider the scenario with fixed prevalence γ and varying rate
Ω, corresponding to [6, Fig. 2]. For GLDPC code-based GT with t = 2 and
dv = 2, we plot the misdetection rate as a function of the number of tests per
defective item. Each point in this plot corresponds to a different rate Ω. We
observe for the uncoupled scheme (dashed) that the curve flattens as the number
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Figure 3: Misdetection rate for uncoupled (dashed) and coupled (solid) LDPC
code-based GT.

of tests increases, while it decays very steeply for the coupled scheme (solid).

7 Conclusions and Discussion
Our results show that the scheme we proposed, which uses LDPC , outperforms
the the scheme using GLDPC codes. This means for the same fraction of defec-
tives items the LDPC scheme requires less tests than the GLDPC scheme. The
same is true also if we consider a fixed number of tests and estimate how many
defective items can we resolve. The good performance of the LDPC codes comes
from the fact that the it does not use any local error correction capability i.e
t = 0, thus each test can be processed alone. This loss of local error correction
is more than compensated by the performance of the overall system when all
tests interact. This is not true for the GLDPC scheme which uses local error
correction capability meaning that the decoder needs a bin of t log2(dc + 1) + 1
tests to resolve at most t defective items. This penalty in the number of tests
per test bin is not compensated by the performance of the overall system.

We have also demonstrated that threshold saturation occurs when spatial
coupling is applied to group testing. We prove this by showing that the recursion
for group testing with LDPC scheme constitutes a vector admissible system.
The computed potential threshold together with finite length simulation results
show that spatial coupling improves the performance of group testing. We get
not only improvement in thresholds but also the error floor is reduced when
blocks of finite length are used.

We also observe that spatial coupling provides consistency in performance
with increasing variable node degree, dv. Without coupling, performance im-
proves as dv is increased from 3 to 6 but starts to degrade for high values. With
coupling, however, the performance is consistently improving with dv. This is
because the performance without coupling is determined by the BP decoder
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Figure 4: Misdetection rate for uncoupled (dashed) and coupled (solid) GLDPC
code-based GT with t = 3 and dv = 3.

which is has its limitations when dv is increased. The MAP threshold, on the
other hand, improves with dv and coupling approaches the performance of a
MAP decoder hence the consistency.
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Figure 5: Misdetection rate as a function of the number of tests per defective
item for GLDPC code-based GT with t = 2 and dv = 2, and γ = 0.15%.
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Spatially Coupled LDPC and GLDPC
Codes for Quantitative Group Testing

We recently proposed a quantitative group testing (GT) scheme
with low-complexity peeling decoding based on low-density parity-check
(LDPC) codes. Based on finite length simulations and a density evo-
lution analysis we were able to demonstrate that simple (dv, dc)-regular
LDPC codes can be more efficient for GT than existing generalized LDPC
(GLDPC) code constructions based on BCH component codes. Even larger
gains were numerically observed in combination with spatial coupling. In
this paper, we use vector admissible systems to prove threshold saturation
and compute the corresponding potential thresholds. We furthermore
prove threshold saturation for the GLDPC scheme and obtain the corre-
sponding potential thresholds which still show a gap to the LDPC scheme.
We observe that one reason for this comes from the sub-optimal decoder
used in the GLDPC scheme and suggest ways to improve it by exploiting
the LDPC decoder.

Keywords: Quantitative Group testing, Spatial Coupling, Low density parity check
codes, Threshold Saturation, Vector admissible system
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Codes for Quantitative Group Testing with a Non-Binary Alphabet“, To be submitted
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1 Introduction
Group testing (GT) is a technique of efficiently identifying items of inter-
est (which we call defective items) in a population by testing items in groups.
With GT much fewer tests are needed to successfully identify all defective
items compared to naive individual testing of items, especially if the number of
defective items is much lower than the population size n. GT can be classified
based on the test results as quantitative or non-quantitative. With quanti-
tative GT each test results indicates how many of the items in the test are
defective while for non-quantitative GT the test results indicated if at least
one item is defective. Over variants exists between the two extremes such as
threshold GT [1] where the test result is positive if the number of defective
items is greater than a predefined threshold. Another variation which is semi-
quantitative GT where the test result indicates a range of possible number of
defective items [2]. The problem of GT has a close connection to the problem
of error correcting codes. This has led to the application of various tools from
coding theory to GT, one being the use of sparse codes-on-graphs. It has been
demonstrated that sparse codes-on-graphs, in combination with low complexity
peeling decoding, are able to identify all defective items with high probability
for both non-quantitative [3,4] and quantitative GT [5,6]. We consider noiseless
non-adaptive, quantitative GT, in which the result of each test shows the exact
number of defective items.

In a previous work [7], we proposed a novel peeling decoder for GT that
allowed us to use simple low-density parity-check (LDPC) codes instead of gen-
eralized LDPC (GLDPC) codes based on t-error correcting codes [5, 6].

Despite of losing the local error correction capability in this construction,
it is possible to take advantage of two extreme scenarios: one when all items
connected to a test are non-defective, and the other when all items connected
to a test are defective. Based on this we were able to show that LDPC codes,
with t = 0, are more efficient for GT than GLDPC codes with t > 0. As shown
in Fig. 1, the LDPC scheme requires much fewer tests than the GLDPC scheme
for the same number of defective items k. For example, for k = 800 the GLDPC
scheme requires slightly more than 8700 tests while the LDPC scheme requires
around 5400 tests. The gap is widening with increasing k. Furthermore, we were
able to show in [7] that the performance can be improved further by applying
spatial coupling. The improvement increased with coupling memory w, reaching
a relatively stable value for higher w. These numerical results suggested that
threshold saturation may occur for GT with LDPC codes.

In this work, we prove that threshold saturation indeed occurs for the quan-
titative GT scheme based on LDPC codes. The proof is done by showing that
the density evolution (DE) recursions for GT with LDPC codes satisfy the con-
ditions for being a vector admissible system [8]. We also show that threshold
saturation occurs for quantitative GT with GLDPC codes. Furthermore we
highlight some of the reasons why GLDPC based GT does not work well the
main one being the suboptimality of the bounded minimum distance (BMD)
decoder. We provide ways to improve the decoder for the GLDPC.
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Figure 1: A comparison of GT based on LDPC- and GLDPC codes, showing
the total number of tests m required for a population size n = 216.

2 Preliminaries

2.1 System Model
We consider a population of n items represented by a binary vector x =
(x1, . . . , xn), where xi = 1 if item i is defective and xi = 0 if it is not defective.
Each item is defective with probability γ. A GT scheme aims at recovering x
using m tests where m < n.

A GT scheme can be represented by an m× n adjacency matrix A = (ai,j),
where ai,j = 1 if item j participates in test i and ai,j = 0 otherwise. We
consider quantitative GT without noise, where the result of each test gives the
exact number of defective items participating in the test. Collecting the results
of all tests in a vector s = (s1, . . . , sm), called the syndrome, we have

s(c) = xAT .

The assignment of items to tests can be conveniently represented by a bipartite
graph consisting of n variable nodes (VNs) corresponding to the n items and m
constraint nodes (CNs) corresponding to the m tests. An edge between VN j,
and CN i is drawn if item xj participates in test ci, i.e., if ai,j = 1.

Fig. 2 shows the (2, 4) bipartite graph corresponding to a scenario with n = 6
items and m = 3 tests with assignment matrix

A =

 1 1 0 1 0 1
0 1 1 1 1 0
1 0 1 0 1 1

 . (1)
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Figure 2: Bipartite graph corresponding to the assignment matrix in (1).

We define the ratio of the number of tests m to the population size n as the
rate Ω. That is

Ω =
m

n
.

2.2 Two Different Performance Measures
We consider two scenarios for evaluating the performance of a GT scheme.
In the first scenario, we fix the proportion γ of defective items and evaluate
the minimum rate Ωth at which all defective items can be detected with high
probability. This corresponds to the conventional GT perspective, where the
number of defective items is fixed and the aim is to reduce the total number of
tests required for successful decoding. In the second scenario, we fix the rate
Ω and determine the highest fraction γth of defectives that can be tolerated for
successful decoding. This scenario was first introduced in [7] and is more closely
related to the threshold definition in channel coding, where the graph is fixed in
terms of node degrees. In some applications, like multi-access communication
[9, 10], this corresponds to asking the question how much traffic a network can
tolerate for given channel resources.

2.3 Quantitative Group Testing Based on GLDPC Codes
The work [5] introduced a quantitative group testing scheme based on regular
GLDPC codes where the test matrix A corresponds to the parity-check matrix of
a GLDPC code with a t-error correcting BCH code as the component code. We
first briefly discuss BCH codes and then present how the GLDPC is constructed
and the corresponding density evolution.

2.4 BCH Codes
Bose–Chaudhuri–Hocquenghem codes (BCH codes), named after its inventors,
form a class of cyclic error-correcting codes that are constructed using polyno-
mials over a Galois field (GF). A Galois field is a field with finite number of
elements. A Galois field with q elements is denoted as GF(q). The order of
an element a in a Galois field is the smallest integer r such that ar = 1. An
element whose order equals q − 1 is called a primitive element and is denoted
as α. Details about Galois fields can be found in [11,12].

The decoding of BCH codes is very efficient since it uses algebraic methods.
An interesting feature of BCH codes is that one can design precisely a code
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which can correct t errors. That is for every integers m ≥ 3 and t < 2m−1, there
exists a BCH code with the following parameters,

Block length: N = 2m − 1

Number of parity check digits: N −K ≤ mt

Minimum distance: dmin ≥ 2t+ 1 .

A binary N−tuple (v0, v1, · · · , vN−1) is a code word of a t correcting BCH code
if and only if the polynomial v(X) = v0 + v1 ·X + v2 ·X2 + · · ·+ vN−1 ·XN−1

has α, α2, . . . α2t as roots. This means for every codeword we have

v(αi) = v0 + v1 · αi + v2 · α2i + · · ·+ vN−1α
(N−1)i = 0

for 1 ≤ i ≤ 2t. In matrix notation this can be written as

(v0, v1, v2 · · · vN−1) ·


1
αi

α2i

...
α(N−1)i

 ∗ = 0 .

With this it can be seen that the parity check matrix H is given as

H =


1 α α2 α3 · · · αN−1

1 α2 (α2)2 (α2)3 · · · (α2)N−1

1 α3 (α3)2 (α3)3 · · · (α3)N−1

...
...

1 α2t (α2t)2 (α2t)3 · · · (α2t)N−1

 .

For an element of GF(2m) represented as a = αi, every element represented as
(αi)2

l

is a conjugate of a. If αj is a conjugate of αi for some i and j then αj

is a root of a polynomial v(X) with coefficients in GF(2) if and only if αi is a
root of v(X). We can thus omit the rows of H which correspond to conjugates
of any other row. This implies that the matrix H can be reduced to the form

H =


1 α α2 α3 · · · αN−1

1 α3 (α3)2 (α3)3 · · · (α3)N−1

...
...

1 α2t−1 (α2t−1)2 (α2t−1)3 · · · (α2t−1)N−1

 . (2)

To get the binary representation of H we represent each element of GF(2m)
by its binary representation in column form.

Example 2.1. Consider as 2-error correcting BCH code with m = 3. We have
N = 23 − 1 = 7. The parity check matrix is given as

H =

(
1 α α2 α3 α4 α5 α6

1 α3 α6 α9 α12 α15 α18

)
=

(
1 α α2 α3 α4 α5 α6

1 α3 α6 α2 α5 α α4

)
.
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Here we have used the fact that the order of the primitive element is 7, that is
, α7 = 1. The corresponding binary representation is given as

H =


0 0 1 0 1 1 1
0 1 0 1 1 1 0
1 0 0 1 0 1 1
0 0 1 1 1 0 1
0 1 0 0 1 1 1
1 1 1 0 1 0 0

 .

2.5 Construction of GLDPC Based Test Matrix
The construction of a GLDPC based GT matrix is as follows [5]. Consider a
regular (dv, dc) bipartite graph with n VNs and mB CNs and its corresponding
mB × n adjacency matrix B. To construct the test matrix A, each of the dc
non-zero elements in a row of B is replaced by a column of an nu×dc signature
matrix U =

(
1⊤
1×dc

,HT
)T, where 11×dc is a 1 × dc all-ones vector and H, of

dimensions t log2(dc + 1)× dc, is the parity-check matrix of a t-error correcting
BCH code of length dc. Hence, nu = t log2(dc + 1) + 1, and the total number of
tests is given by m = mBnu. (Note that, for a GLDPC code-based GT scheme,
contrary to the bipartite graph in Fig. 2, each of the CNs corresponds to a
bundle of nu tests.)

Example 2.2. Consider a regular adjacency matrix given as

B =


1 0 1 0 1 0 1 0 1 0 1 0 0 1
0 1 1 0 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 1 0 0 1 1 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 1 0

 ,

with dv = 2 and dc = 7 for a population of n = 14. The number of CNs is then
4. The signature matrix for t = 1 is given as

U =


1 1 1 1 1 1 1
0 0 1 0 1 1 1
0 1 0 1 1 1 0
1 0 0 1 0 1 1

 .
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The test matrix is then given as

A =



0 1 0 1 1 1 1 0 0 0 0 0 1 1
0 0 0 0 1 0 1 0 0 0 0 0 1 1
0 0 0 1 0 1 1 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 1 0 1 1 1 0 0
0 0 1 0 0 0 0 0 1 1 1 0 0 0
1 0 0 0 0 0 0 0 1 0 1 1 0 0
1 0 1 1 1 1 0 0 0 0 1 0 0 1
1 0 0 1 0 1 0 0 0 0 1 0 0 1
0 0 1 0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0 0 1 0 0 1
0 1 0 0 0 0 1 1 1 1 0 1 1 0
0 0 0 0 0 0 0 1 0 1 0 1 1 0
0 0 0 0 0 0 1 0 1 1 0 1 0 0
0 1 0 0 0 0 0 0 1 0 0 1 1 0



We denote by Ω the rate of the GT scheme, i.e., the ratio between the
number of tests and the number of items.1 For the construction in [6],

Ω =
m

n
=
dv
dc

(
t ⌈log2(dc + 1)⌉+ 1

)
, (3)

where the ceiling function ⌈.⌉ takes care of cases where dc + 1 is not a power of
two.

2.6 Decoding of GLDPC Based GT
To recover x, decoding is performed by each component code. Only components
with t or less defective items can be decoded. This can be read form the first
row of each component (corresponding to the all one row in U). Decoding is
done as follows. The syndrome is initiated as s(0) = s.

1. Identify component codes with t or less defective items. If no component
satisfying this is found the decoder halts.

2. For each component code with t or less defective items do the following

(a) Calculate the error location polynomial Λ(x)
using the Berlekamp–Massey algorithm.

(b) Factorize Λ(x) to determine the error locations.

(c) Label items indexed by the error locations as defective

3. Peel off resolved items form the graph

4. Recompute the syndrome s(ℓ) and restart from Step 1.
1Note that, interpreting A as the parity-check matrix of a code, Ω = 1−R, where R is the

code rate.
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Note that the Berlekamp–Massey algorithm [12, pg. 209] requires 2t syn-
drome alphabets in GF(2m) but H in (2) has only t equations. The other t
components can be generated by using the fact that for a polynomial f(x) with
coefficients in GF(2) the following holds [12, pg. 42]

f(α2) = (f(α))
2
. (4)

2.7 DE for Uncoupled GLDPC Code Based GT
The probability that a defective item remains unidentified over iterations can
be tracked via density evolution. Let p(ℓ) the probability that a defective item
remains unidentified at iteration ℓ and q(ℓ) the probability that a CN is resolved
at iteration ℓ. The quantities p(ℓ) and q(ℓ) are given by the following density
evolution equations [6],

q(ℓ) =

t−1∑
i=0

(
dc − 1

i

)(
p(ℓ−1)

)i (
1− p(ℓ−1)

)dc−1−i

(5)

p(ℓ) =γ (1− q(ℓ−1))dv−1 . (6)

This can readily be seen from the fact that a test sends a message resolved to
a defective VN if among the other dc − 1 VNs less than t are defective and
unresolved.

3 Quantitative Group Testing Based on LDPC
Codes

In this section, we propose a novel GT scheme based on LDPC codes in which the
test matrix A is the parity-check matrix of an LDPC code or, correspondingly
is obtained from the bipartite graph of an LDPC code (as the one in Fig. 2).

3.1 Proposed GT Scheme
We consider a regular (dv, dc) bipartite graph, where each VN is connected to
dv CNs and each CN is connected to dc VNs. The rate of the LDPC code-based
GT scheme is Ω = dv

dc
, which can also be obtained from (3) by setting t = 0.

Similar to LDPC codes over the binary erasure channel and GLDPC code-
based GT, decoding can be performed via peeling decoding. Peeling decoding
gives rise to a sequence of residual graphs. Decoding is successful if eventually
the decoder manages to peel off all VNs from the original graph, resulting in an
empty graph.

3.2 Peeling Decoding

Let d(ℓ)c be the degree of a CN c at iteration ℓ and s(ℓ) the corresponding
syndrome. The decoding algorithm is based on the following observation: if
s(ℓ) = 0, then all VNs connected to c are non-defective and can be resolved.
Furthermore, if s(ℓ) = d

(ℓ)
c , then all VNs connected to c are defective and can

also be resolved. Otherwise, none of the connected VNs can be resolved by
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considering c. The degree d(ℓ)c is updated by removing all resolved items in pre-
vious iterations while s(ℓ) is updated by subtracting the contribution of resolved
defective items in each CN. This is summarized in Algorithm 1.

Algorithm 1 Decoding of LDPC code-based GT

INPUT: syndrome s, graph G (with m tests and n items)
Output: x
1: Initialization ℓ = 1, G1 = G, continue=TRUE,
2: xj = unresolved for j = 1 : n, s(1)i = si and d(1)ci = dc ∀i
3: while continue==TRUE do
4: found=FALSE
5: for i = 1 to m do
6: if s(ℓ)i = 0 then
7: Set all items connected to ci to 0
8: Peel the items set to 0 from the graph Gℓ

9: found=TRUE
10: else if s(ℓ)i = d

(ℓ)
ci then

11: Set all items connected to ci to 1
12: Peel the items set to 1 from the graph Gℓ

13: found=TRUE
14: end if
15: end for
16: ℓ = ℓ+ 1
17: if found==FALSE or Gℓ is empty then
18: continue=FALSE
19: end if
20: end while

3.3 DE for Uncoupled LDPC Code Based GT
It can be observed that a test or an item sends two possible message types,
resolved or unresolved. If the message is resolved it represents the actual value
of the item, i.e., 0 or 1. It was shown in [7] that the DE equations for the
decoder discussed is given by

q
(ℓ)
0 =

dc−1∑
i=0

(
dc − 1

i

)
γi(1− γ)dc−1−i

(
1− p

(ℓ−1)
1

)i
(7)

q
(ℓ)
1 =

dc−1∑
i=0

(
dc − 1

i

)
γi(1− γ)dc−1−i

(
1− p

(ℓ−1)
0

)dc−1−i

(8)

p
(ℓ)
0 =

(
1− q

(ℓ−1)
0

)dv−1

(9)

p
(ℓ)
1 =

(
1− q

(ℓ−1)
1

)dv−1

. (10)

Here q(ℓ)0 and q
(ℓ)
1 are the probabilities that a CN sends a message resolved to

a non-defective and defective VN, respectively, during iteration ℓ. While p(ℓ)0
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Figure 3: The minimum rate Ωth for a range of γ for both GLDPC and LDPC
based schemes without spatial coupling. For the GLDPC dv = 2 except for
t = 1 where dv = 3.

and p
(ℓ)
1 are the probabilities that a VN sends a message unresolved to a CN

given that the VN is non-defective and defective, respectively. In this section
we derive an alternative but equivalent set of DE equations to those in [7]. The
alternative equations are easier to handle, especially for the proof of threshold
saturation. Let x(ℓ)0 be the probability that a message from a CN to a non-
defective VN is unresolved , and x

(ℓ)
1 be the probability that a message from a

CN to a defective VN is unresolved. Also, let y(ℓ)0 be the probability that an
item is non-defective and sends a message unresolved to a CN, and y

(ℓ)
1 be the

probability that an item is defective and sends a message unresolved to a CN. It
can be observed that x(ℓ)0 = 1− q

(ℓ)
0 and x(ℓ)1 = 1− q

(ℓ)
1 , while y(ℓ)0 = (1− γ)q

(ℓ)
0

and y(ℓ)1 = γp
(ℓ)
1 .

Proposition 4. The quantities y(ℓ)0 , y(ℓ)1 , x(ℓ)0 , and x(ℓ)1 are given by the follow-
ing DE equations:

x
(ℓ)
0 =1−

(
1− y

(ℓ−1)
1

)dc−1

(11)

x
(ℓ)
1 =1−

(
1− y

(ℓ−1)
0

)dc−1

(12)

y
(ℓ)
0 =(1− γ)

(
x
(ℓ−1)
0

)dv−1

(13)

y
(ℓ)
1 =γ

(
x
(ℓ−1)
1

)dv−1

. (14)
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Proof. A message from a CN c to a non-defective VN is resolved if none of
the defective items (if any) among all dc − 1 other items sends a message un-
resolved, i.e., it is connected to zero unresolved defective items. This happens
with probability (1− y(ℓ−1)

1 )dc−1. We can then compute x(ℓ)0 as the complement
of this. Similarly, a message from a CN c to a defective VN is resolved if it has
no unresolved non-defective item among the dc − 1 other items. This happens
with probability (1− y

(ℓ−1)
0 )dc−1.

A non-defective item sends a message unresolved to a CN if all of the incom-
ing messages from the other dv − 1 CNs are unresolved. Thus the probability
that an item sends a message unresolved given that it is non-defective is given by(
x
(ℓ−1)
0

)dv−1

, which when multiplied by (1− γ) gives y(ℓ)0 . The same reasoning

applies for y(ℓ)1 . ■

Fig. 3 shows the thresholds of uncoupled LDPC codes for a range of γs
without spatial coupling. The GLDPC scheme is also shown for comparison. It
can be observed that the LDPC scheme outperforms the GLDPC scheme for
most of the range. The performance for the LDPC scheme, however, is not
consistent with increasing dv for the whole range. For example, for γ = 0.4%
we have the dv = 6 as the best followed by dv = 10 with dv = 4 being the worst.
For γ = 1.8, however, dv = 4 is the best and dv = 10 the worst.

4 Quantitative GT with Spatially Coupled LDPC
codes

With spatial coupling, blocks of VNs are interconnected in contrast to classical
GT where each block is treated separately. This is inspired by works on spatially
coupled LDPC (SC-LDPC) codes [13–15], which have shown to perform very
well. Each block can be seen as occupying a spatial position τ , i.e., we have
nb VNs and mb CNs at each spatial position. The coupling is done as follows:
each VN at spatial position τ is connected to dv CNs at positions in the range
[τ, τ + w] with the positions chosen uniformly at random. The parameter w
is referred to as the coupling memory. Further, each CN at spatial position
τ is connected to dc VNs at positions in the range [τ, τ − w]. The chain is
terminated after L positions, L denoting the coupling length. The degree of all
VNs is kept constant while the CNs at the edges have lower degrees compared
to the inner CNs. This also means that we have w more tests at the end of the
chain resulting in a slight increase in the rate of the coupled scheme ΩSC given
as

ΩSC =
(
1 +

w

L

)
Ω , (15)

with Ω = dv

dc
. The rate increase vanishes as L is increased. The lower degree of

the CNs at the boundaries of the coupled chain yield a wave-like decoding effect
where a decoding wave propagates from the boundaries of the chain inward.
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4.1 DE for Spatially Coupled LDPC Code Based GT
Based on the description above, the DE equations for GT based on spatially
coupled LDPC codes are given as

x
(ℓ)
0,τ = 1− 1

w + 1

w∑
j=0

(
1− y

(ℓ−1)
1,τ−j

)dc−1

(16)

x
(ℓ)
1,τ = 1− 1

w + 1

w∑
j=0

(
1− y

(ℓ−1)
0,τ−j

)dc−1

(17)

y
(ℓ)
0,τ = (1− γ)

1

w + 1

w∑
j=0

(
x
(ℓ−1)
0,τ+j

)dv−1

(18)

y
(ℓ)
1,τ = γ

1

w + 1

w∑
j=0

(
x
(ℓ−1)
1,τ+j

)dv−1

. (19)

4.2 Proof of Threshold Saturation for LDPC Based GT
In this section we provide a proof of threshold saturation for the LDPC code-
based GT scheme. We first present two approaches which seem intuitive and
explain why they fail and then present a third which is successful. The first two
approaches use the perspective of fixed Ω which, as mentioned in Section 2.2,
is more in line with threshold analysis for channel codes. We thus first convert
the recursion to a scalar by a series of substitutions and try to prove that the
the resulting system fulfills the conditions of being a scalar admissible system as
highlighted in [16]. In the second approach we use a vector recursion and try to
show whether the system is a vector admissible system [8]. The third approach
uses the vector recursion with the perspective that the proportion of defectives
is fixed and we change the rate Ω. We first define a scalar admissible system
and a vector admissible system and proceed to present the approaches used.

Definition 1. [16] A scalar recursion (f, g) defined by x(0) = 1 and

x(ℓ) = f
(
g
(
x(ℓ−1)

)
; ε
)
.

parameterized by ε ∈ [0, 1], is a scalar admissible system if f : [0, 1] × [0, 1] →
[0, 1] and g : [0, 1] → [0, 1] are strictly increasing in all arguments. Also we have
f(x; 0) = f(0; ε) = g(0) = 0 and f(x) and g(x) have continuous second order
derivatives on [0, 1] with g′(x) > 0 for x ∈ (0, 1).

Definition 2. [8] A vector recursion (f, g) defined by x(0) = 1 and

x(ℓ) = f
(
g(x(ℓ−1)); ε

)
.

parameterized by ε ∈ [0, 1], is a vector admissible system if the vector-valued
functions f (x) = [f1(x), · · · , fd(x)] and g(x) = [g1(x), · · · , gd(x)] are
twice continuously differentiable, strictly increasing in all arguments (w.r.t. the
partial order). It is also assumed that f (x; 0) = f (0; ε) = g(0) = 0, that
f (1; ε) ∈ [0, 1)d and that g′(x) is symmetric positive definite.
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Table 1: Comparison of potential thresholds with scalar recursion for LDPC
based GT and BP threshold with coupling for Ω = 5%

dv = 3 dv = 4 dv = 5 dv = 6 dv = 10

γ∗ 0.63 1.20 1.74 2.24 3.81
BP m = 10 0.55 0.85 1.03 1.13 1.28

First Approach: Fixing Ω with Scalar Recursion

Substituting (13) into (12) we obtain

x
(ℓ)
1 =1−

(
1− (1− γ)

(
x
(ℓ−1)
0

)dv−1
)dc−1

. (20)

Substituting (11) into (20) we obtain the scalar recursion

x
(ℓ)
1 =1−

(
1− (1− γ)

(
1−

(
1− y

(ℓ−1)
1

)dc−1
)dv−1

)dc−1

(21)

y
(ℓ)
1 =γ

(
x
(ℓ−1)
1

)dv−1

.

It can be shown that the recursion is a scalar admissible system. But it can be
noticed that the recursion tracks only the probabilities connected to defective
VNs. This masks the fact that the decoder has to access the non-defective VNs
as well. Table 1 shows the potential thresholds as well as the BP threshold
for coupling memory m = 10. It can be seen that the potential thresholds are
too good when compared to the one obtained to the actual system with high
coupling memory. So this rearrangement of the equations, while mathematically
possible, cannot be physically realized when coupling is considered as it would
imply separating the defective items and non-defective items.

Second Approach: Fixing γ with Vector Recursion

If we now examine the case where the rate Ω is fixed and the proportion γ of
defectives is varied we observe that (17) can be rewritten as

fγ (x0, x1; γ) =
[
(1− γ) · xdv−1

0 , γ · xdv−1
1

]
(22)

gγ (y0, y1) =
[
1− (1− y1)

dc−1, 1− (1− y0)
dc−1

]
, (23)

where the f (·) and g(·) are denoted by the parameter of interest γ. It can be
observed that fγ (x0, x1; γ) cannot satisfy the conditions for a scalar admissible
system since one part is increasing with γ while another part is decreasing with
γ.

We could, however, estimate the potential threshold γ∗ from the curve ob-
tained by computing Ωth for a system with variable rate as shown in Fig. 5. This
is done by drawing a horizontal line from the Ω axis to the curve and taking the
γ value at the point of intersection as the γ∗th.
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Third Approach: Fixing Ω with Vector Recursion

We first consider the scenario where γ is fixed and the rate, Ω is changed by
changing dc (for a given dv). Since dc can be varied from 1 (best) to ∞ (worst),
we have to define a parameter ε(dc) such that ε(1) = 0 and ε(∞) = 1. The
function

ε(dc) = 1− 1

dc

satisfies these requirements.
We can rewrite the DE equations (12)–(14) as

f (y0, y1; dc) =
[
1− (1− y1)

dc−1, 1− (1− y0)
dc−1

]
(16)

g(x0, x1) =
[
(1− γ) · xdv−1

0 , γ · xdv−1
1

]
. (17)

Note that f (·) and g(·) have been changed compared to the second approach to
reflect the parameter of interest which is now dc. Substituting ε into (16) we
obtain

f (y0, y1; ε) =
[
1− (1− y1)

ε
1−ε , 1− (1− y0)

ε
1−ε
]

(18)

g(x0, x1) =
[
(1− γ) · xdv−1

0 , γ · xdv−1
1

]
. (19)

It can be shown that f (y0, y1; ε) is monotonically increasing with y and ε for
ε ∈ [0, 1] and f (0, 0; ε) = f (y0, y1; 0) = 0. Furthermore,

g′(x) = (dv − 1)

[
(1− γ)xdv−2

0 0

0 γxdv−2
1

]
thus

|g′(x)| = (dv − 1)γ(1− γ)(x0x1)
dv−2 > 0

for x0, x1 > 0. This implies that g′(x) is positive definite. We thus have a vector
admissible system. We can then use the equation [8]

U(x; ε) =

∫ x

0

((
z − f (g(z); ε)

)
Dg′(z)

)
· dz , (20)

to evaluate the potential threshold ε∗, defined as

ε∗ = sup{ε ∈ [0, 1] |min
x

U(x; ε) ≥ 0} . (21)

D is a positive diagonal matrix which we set to the identity matrix in this case.
The line integral for computing U(x; ε) in (20) is path independent [8]. We can
thus choose to compute the integral along a straight line in the direction defined
by the vector from origin to x. That is, we have z parameterized by λ as z(λ)
and

z(λ) = λx =⇒ z1(λ) = λx1, z2(λ) = λx2 .

U(x; ε) = (1− γ)xdv−1
1

(
(1− ε)

1−(1−γxdv−1
2 )

1
1−ε

γxdv−1
2

+ (dv−1)
dv

x1 − 1

)
+ γxdv−1

2

(
(1− ε)

1−(1−(1−γ)xdv−1
2 )

1
1−ε

(1−γ)xdv−1
1

+ (dv−1)
dv

x2 − 1

)
(23)
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Hence we can write the potential function as [8]

U(x; ε) =

∫ 1

0

((
z(λ)− f (g(z(λ)); ε)

)
Dg′(z(λ))

)
· z′(λ)dλ . (22)

The integral can be evaluated in closed form and is given in (23). Fig. 4 shows
a 3 dimensional plot of the potential function for dv = 6 with γ = 1%. To
compute ε∗, x1 and x2 are each incremented by a small number ∆ from 0 to 1
thus forming a two dimension grid. The value of U is computed for each point
in the grid followed by evaluation of the minimum. This is done for each value
of ε. The potential threshold is then determined using (21).
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Figure 4: A 3D plot of the potential function U(x; ε) for dv = 6, γ = 1% with
ε∗ = 0.9924. The z axis is limited to 1 (values lager than 1 are not shown).
U(x; ε) is above the z = 0 plane since ε = 0.9667 < ε∗.

The coupled system is guaranteed to converge to the zero point for all ε < ε∗.
The minimum rate Ωth, required for a coupled system can then be computed
from ε∗ as

Ω∗
th =

dv
dc

= dv(1− ε∗) .

An upper bound on ε∗ corresponds to an upper bound on dc, which in turn
gives a lower bound on Ωth

2. Fig. 5 shows the results of a plot of Ω∗
th versus γ

for various values of dv. The results show that Ω∗
th improves (gets smaller) with

increasing dv. We see a tendency to converge for higher values of dv. We have not
2It can be noted that only integer values of dc are admissible for the regular graphs. If the

value of Ω implies a non-integer dc, we take the closest lower value of dc which corresponds to
a slightly higher Ω.
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Figure 5: The minimum rate Ω∗
th for a fixed γ computed from the potential

threshold ε∗.

however, been able to ascertain whether this corresponds to some fundamental
limit.

Table 2 shows the BP thresholds of LDPC based GT for different values of
dv for fixed γ = 1 and L = 5000 with increasing coupling memory. The results
are computed using the recursions in (11)-(14) for the uncoupled case and (16)-
(19) for the coupled case. The value of dc is increased from some small value
(high rate) until the recursions are not able to converge to the zero point. It
can be seen that for each dv the threshold approaches the potential threshold
Ω∗

th as predicted. Furthermore without coupling, the order of performance with
dv is not consistent but with coupling the performance is consistent with higher
degrees showing better performance (lower rate).

On the other hand, Table 3 shows the DE results for a fixed rate Ω = 5%
and L = 5000. We use the same DE equations but fix dv and dc (thus fixing Ω)
and increase γ. The results show the same trend as in the fixed γ case where the
performance is less consistent with dv without coupling but a more consistent
improvement with increasing dv when coupling is applied.

Fig. 6 shows the results of simulations with finite block length for Scenario
1 (fixed γ) for both the LDPC and GLDPC code based GT. The block size for
the uncoupled and coupled case are both equal to 105. For the coupled case, we
consider w = 5, L = 200 and the decoding is done on the full graph (not using a
window decoder). It can be seen that even without coupling the LDPC scheme
outperforms the GLDPC scheme and coupling widens the gap between the two
more. As predicted by the threshold analysis, the performance of dv = 10 is
poorer than dv = 6 without coupling, but this changes with coupling where
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Table 2: Ω∗
th in % for γ = 1% with LDPC Code-Based Group Testing

dv w = 0 w = 1 w = 2 w = 5 w = 10 Ω∗
th[%]

4 7.27 5.71 5.63 5.63 5.63 5.63
5 6.94 5.15 4.95 4.95 4.95 4.95
6 7.06 5.00 4.65 4.58 4.58 4.58
7 7.22 5.04 4.49 4.40 4.40 4.38
8 7.41 5.13 4.47 4.26 4.26 4.26
9 7.63 5.23 4.48 4.17 4.17 4.17
10 7.87 5.38 4.57 4.13 4.13 4.13
15 9.32 6.20 5.10 4.14 4.08 4.08
20 10.70 7.02 5.71 4.38 4.07 4.07

Table 3: γ∗th for Ω = 5% with LDPC Code-Based Group Testing

dv w = 0 w = 1 w = 2 w = 5 w = 10 γ∗th[%]

4 0.60 0.84 0.85 0.85 0.85 0.85
5 0.64 0.96 1.02 1.03 1.02 1.02
6 0.65 1.00 1.11 1.13 1.13 1.13
7 0.64 1.00 1.16 1.19 1.19 1.19
8 0.62 0.98 1.16 1.23 1.23 1.23
9 0.60 0.95 1.15 1.26 1.26 1.26
10 0.58 0.92 1.13 1.27 1.28 1.28
15 0.49 0.78 0.98 1.26 1.29 1.29
20 0.42 0.67 0.86 1.18 1.26 1.29

dv = 10 becomes better. In this example, it can also be observed that for the
GLDPC scheme, the gain with coupling is smaller than for the LDPC scheme,
but the error floor is lowered significantly.

In the next part of the paper we explore ways to improve quantitative GT
base on GLDPC codes.

5 Improving Quantitative GT Based on GLDPC
Codes

As it has been observed in Section 3 the LDPC based quantitative GT out-
performs the GLDPC based scheme. In this section, we highlight some of the
reasons for the inferior performance of the GLDPC based scheme and show what
can be done to improve its performance. Three improvements are considered in
this section for the GLDPC based scheme. First we formally introduce coupling,
prove threshold saturation and compare the potential thresholds with those of
the LDPC counterpart. Then we propose two ways to improve the decoder for
better performance.
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Figure 6: Misdetection rate as a function of number of tests per defective items
for a fixed γ = 1% for uncoupled (dashed) and coupled (solid) GT scheme.

5.1 Threshold Saturation for GLDPC Based GT
For GLDPC codes coupling is done on the adjacency matrix B. We thus have
a similar procedure as for the LDPC described in Section 4 with the exception
that the CNs now correspond to rows of B instead of A. The lower degrees at
the boundaries increase the likelihood of having tests with t or fewer defective
items, leading to better resolving of items.

Here we prove threshold saturation for the GLDPC based quantitative GT
using the decoder proposed in [5] whose DE equations are given in (5)-(6). We
consider the scenario where the rate Ω is fixed and γ is varied. We can readily
obtain a scalar admissible system by defining x(ℓ) = 1 − q(ℓ), which represents
the probability that a CN send a message unresolved to a defective VN. We
thus have the recursion as

g(x) = 1−
t−1∑
i=0

(
dc − 1

i

)
xi (1− x)

dc−1−i (24)

f(y) = γ ydv−1 , (25)

It can readily be seen that f(y) is strictly increasing in both y and γ. For
g(x) we have the negative term as a binomial cdf which can be shown to be
decreasing with x, implying g(x) is increasing with x. Hence the recursion is a
scalar admissible system. The potential function is then given as [16]

U(x; γ) = xg(x)−G(x)− F (g(x); γ) ,
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Figure 7: A plot of the potential function U(x; γ) for GLDPC based group
testing with BMD decoder for t = 1 and dv = 3 and Ω = 5% for different values
of γ. It can be observed that γ∗th = 0.417.

where F (x) =
∫ x

0
f(z)dz = γ

dv
xdv and G(x) =

∫ x

0
g(z)dz. We cannot easily have

a general closed form for G(x) but we can compute it for given values of dc and
t. Fig. 7 shows the potential function for t = 1, dv = 3. The potential threshold
for GLDPC based GT is plotted in Fig.8 for a range of Ωs. For comparison,
the potential thresholds of the LDPC based scheme are also plotted in the
same figure. It can be seen that potential thresholds of the GLDPC scheme is
worse than the LDPC scheme with the gap increasing with increasing γ. The
gap between GLDPC and LDPC also increases with coupling which implies the
GLDPC scheme benefits less from spatial coupling.

5.2 Improving the GLDPC Decoder using Non-defective
Items

Since the decoder uses the t-error correction capability of BCH codes whereby
the defective items are considered as the "errors" we can improve the decoder
by also considering the non-defective items as the "errors". This has almost no
effect at the start of the decoding iterations since almost all tests have more
than t non-defective items. As the peeling progresses we can then encounter the
situation whereby the number of defective items might be more than t but the
number of non-defective items is less than t. To decode for non-defective items
the following is done. For each individual test i in A with degree d(ℓ)c,i we define
a complement syndrome sci as

sci = d
(ℓ)
c,i − s

(ℓ)
i for i = 1, 2, . . . ,m . (26)
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Figure 8: The potential thresholds for the GLDPC scheme for t = 1. The
potential thresholds for the LDPC scheme are also shown for comparison. It
can be seen that the LDPC scheme is better with the gap increasing with γ

In other words we define the new syndrome as the count of non-defective items.
It can be noted that this new syndrome is obatined without additional tests
but by simply manipulating the original test results using equation (26). We
can then apply the same decoder as for the defective items discussed above. For
convenience we refer the decoder identifying positions of defectives as the "ones-
decoder" while the one identifying positions of non-defectives as the "zeros-
decoder".

It can be observed that when a BCH decoder has identified the "error"
positions, these positions are given the label 1 while it infers the remaining
items connected to a CN in the pruned graph to be zero. This means that non-
defective items can be resolved by the ’ones-decoder’ as well. The same applies
to the ’zeros-decoder’ that it also labels the remaining items as ones. Notice that
these labels affect the unresolved items only since the pruned graph has does
not contain any resolved items thus ruling out any label oscillations. We refer
to the decoder which uses both the ones and zeros as the double-sided decoder
(DSD) and the conventional decoder as the single-sided decoder (SSD).

The DE equations (5)-(6) have to be modified to include the probabilities
for non-defective items. Let q(ℓ)0 and q

(ℓ)
1 be the probabilities that a CN sends

a message resolved to a non-defective and defective VN, respectively, during
iteration ℓ. Also let p(ℓ)0 denote the probability that an item is non-defective
and sends a message unresolved to a CN, and p(ℓ)1 the probability that an item
is defective and sends a message unresolved to a CN.

Proposition 5. The quantities q(ℓ)0 , q(ℓ)1 , p(ℓ)0 , and p(ℓ)1 are given by the following
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DE equations

q
(ℓ)
1 =

t−1∑
i=0

BN
(
dc − 1, i, p

(ℓ−1)
1

)
+(

1−
t−1∑
i=0

BN
(
dc − 1, i, p

(ℓ−1)
1

)) t∑
i=0

BN
(
dc − 1, i, p

(ℓ−1)
0

)
,

q
(ℓ)
0 =

t−1∑
i=0

BN
(
dc − 1, i, p

(ℓ−1)
0

)
+(

1−
t−1∑
i=0

BN
(
dc − 1, i, p

(ℓ−1)
0

)) t∑
i=0

BN
(
dc − 1, i, p

(ℓ−1)
1

)
,

p
(ℓ)
1 = γ

(
1− q

(ℓ−1)
1

)dv−1

,

p
(ℓ)
0 = (1− γ)

(
1− q

(ℓ−1)
0

)dv−1

.

Proof. The DE equations are derived using the assumption that the two de-
coders access the same updated value from each of the VNs. A message from
a CN to a VN corresponding to a defective item is unresolved if both the
’ones-decoder’ and the ’zeros-decoder’ cannot resolve it. The ’ones-decoder’
cannot resolve a VN corresponding to a defective item if more than t − 1
of the other dc − 1 VNs connected to the CN are defective and sends the
message unresolved in the previous iteration. This happens with probability
1 −

∑t−1
i=0 BN

(
dc − 1, i, p

(ℓ−1)
1

)
. The ’zeros-decoder’ cannot resolve a defective

VN if more than t of the other VNs are non-defective and unresolved which
happens with probability 1−

∑t
i=0 BN

(
dc − 1, i, p

(ℓ−1)
0

)
. The probability of at

least one of the two decoders succeeding is given by

1−

(
1−

t−1∑
i=0

BN
(
dc − 1, i, p

(ℓ−1)
1

))(
1−

t∑
i=0

BN
(
dc − 1, i, p

(ℓ−1)
0

))
.

Expanding this gives q(ℓ)1 . We can use the same arguments to obtain q
(ℓ)
0 . The

message from a defective VN to a CN is unresolved if all the other dv − 1 CNs
send the message unresolved. Thus the probability that an item is defective

and sends the message unresolved is given by p(ℓ)1 = γ
(
1− q

(ℓ−1)
1

)dv−1

. Similar

reasoning gives p(ℓ)0 for the non-defective VN. ■

Table 4 shows thresholds in terms of maximum γ which can be resolved with
vanishing error probability for different values of Ω for both the SSD and the
DSD. It can be seen that for t = 1 and dv = 2 the DSD has better thresholds for
all rates. But with higher values of dv the two decoders cannot be distinguished
for the accuracy we used except for Ω as high as 35%. For t = 2 and higher (not
shown in this paper) the two decoders do not exhibit any noticeable difference in
thresholds. The real effect of the DSD is observed with finite length simulations
as shown in Fig. 9. The DSD has the error floor significantly reduced compared
to the SS decoder.



Table 4: Comparison of the GLDPC with and without DSS decoder different
fixed values of Ω showing maximum γ

t dv
Ω = 5% Ω = 25% Ω = 35%

SS DSD SSD DSD SSD DSD

1

2 0.25 0.27 1.81 2.39 2.56 3.56
3 0.37 0.37 2.56 2.56 4.11 4.13
4 0.35 0.35 2.14 2.14 3.39 3.39

2

2 0.39 0.39 2.80 2.80 3.97 3.97
3 0.33 0.33 2.28 2.28 3.20 3.20
4 0.28 0.28 1.75 1.75 2.74 2.74

5.3 Improving the GLDPC Decoder using the LDPC De-
coder

One would have expected that increasing the error correcting capability t of
the component BCH code would improve the performance but this is not the
case. If we look at (3), we see that the rate increases almost linearly with
t. This increase in the number of tests is not compensated by the increase in
performance. The LDPC scheme can be seen as having t = 0 thus eliminating
the term with t. But even if the parameters are adjusted such that we have a
fixed rate, the performance is inferior to the LDPC based scheme.

One reason for this performance gap lies in the decoder. First, to decode the
test results using the algebraic decoder of BCH codes, we need the test results
except the all ones row to be reduced modulo 2 (to either 0 or1). This results in
a loss of information. Secondly, the BMD decoder is not an optimum decoder
even if we were to consider only hard information. This is because there are
error patterns with weight more than t which could potentially be corrected.
The combination of these two weaknesses makes the decoder sub-optimal.

It can be observed that the component code H of the GLDPC scheme is in
fact an irregular LDPC code. Each component code can be decoded using the
decoding algorithm for the LDPC based GT as described in Section 3.2. We
can thus improve the GLDPC performance by utilizing the LDPC decoder. The
algorithm works as follows.

1. The BMD decoder resolves all tests with t or fewer defective items

2. The LDPC decoder is run on each component code for those tests with
more than t defective/non-defective items

3. If any of the steps (1) − (2) has resolved any item the algorithm restarts
step (1) otherwise the algorithm halts.

We refer to this modified decoder as the low-density decoder (LDD). This
new decoder results in a significant improvement in the waterfall performance
of the GLDPC based GT. Fig. 9 shows the effect of this improvement when in
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Figure 9: Comparison of the GLDPC (t = 2, dv = 2) with the SSD in [5], the
DSD as well as the LDD for γ = 1%. Also shown is the LDPC with dv = 6.

comparison to the original BMD decoder in [5] and the LDPC based scheme.
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LDPC Codes for Quantitative Group
Testing with a Non-Binary Alphabet

We propose and analyze a novel scheme based on LDPC codes for quan-
titative group testing. The key underlying idea is to augment the bipar-
tite graph by introducing hidden non-binary variables to strengthen the
message-passing decoder. This is achieved by grouping items into bun-
dles of size q within the test matrix, while keeping the testing proce-
dure unaffected. The decoder, inspired by some works on counter braids,
passes lower and upper bounds on the bundle values along the edges of the
graph, with the gap between the two shrinking with the decoder iterations.
Through a density evolution analysis and finite length simulations, we show
that the proposed scheme significantly outperforms its binary counterpart
with limited increase in complexity.

Keywords: Quantitative Group testing, Low density parity check codes, Counter
braids

Mgeni Makambi Mashauri, Alexandre Graell i Amat, and Michael Lentmaier, ‘LDPC
Codes for Quantitative Group Testing with a Non-Binary Alphabet“, Submitted to
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1 Introduction
Group testing (GT) finds application across a variety of fields, including
medicine, data forensics, and communications [1–3]. Sparse codes-on-graphs
with message passing decoding have recently been shown to be efficient for
GT when the fraction of defective items is very small [4, 5]. In multi-access
communications, for example, the goal is to accommodate many devices in a
network with limited time and spectral resources. In massive machine-type
communication (MMTC), a network has to handle traffic from a large popu-
lation of sensors and other intelligent devices [6]. Only a few of these devices
are active at any particular time. A network with time slots is an instance of
a GT problem with the slots as tests and the devices as items. This has been
investigated in various works [3, 7, 8]. Quantitative GT captures the model
known as the adder channel [9], as well as the so-called collision with known
multiplicity [10,11].

Karimi et al. [4,5] proposed a quantitative GT scheme based on generalized
LDPC (GLDPC) codes with t-error correcting BCH codes as component codes.
Following up on this scheme, we discovered in [12] that GT based on simple
LDPC codes, with t = 0 and a peeling decoder of lower complexity, is more
effective in reducing the number of tests. In the same work, it was shown that
spatial coupling improves both the LDPC and GLDPC scheme.

In this work, we introduce q-bundles of items as a method to further improve
the uncoupled LDPC code scheme in [12] through a non-binary alphabet and a
corresponding novel decoder that is inspired by counter braids [13, 14]. A few
extra conventional tests without bundles are added to resolve individual items
from the estimated bundles, reducing the overall number of required tests com-
pared to the original scheme in [12]. Furthermore, we derive density evolution
equations for the proposed decoder and compute the corresponding decoding
thresholds. Finite-length simulations for a large population size are presented
and compared to the asymptotic thresholds.

2 System Model
We consider a population of n items represented by a binary vector x =
(x1, . . . , xn), where xi = 1 if item i is defective and xi = 0 if it is not. Each
item is defective with probability γ.

The GT scheme aims at recovering x using m tests, where m < n, and can
be represented by an m × n adjacency matrix A = (ai,j), whereby ai,j = 1
if item j participates in test i and ai,j = 0 otherwise. We consider noiseless
quantitative GT whereby the result of each test indicates the exact number of
defective items participating in the test. The result of all tests can be collected
in a vector s = (s1, . . . , sm), referred to as the syndrome, where si is the result
of test i. We thus have

si =

n∑
j=1

xjai,j and s = xAT .

The test assignment can alternatively be visualized through a bipartite graph
corresponding to matrix A with n variable nodes (VNs) representing the items
and m constraint nodes (CNs) representing the tests. In this work, we consider
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a regular (dv, dc) bipartite graph whereby each VN is connected to dv CNs and
each CN is connected to dc VNs.

3 Proposed Non-Binary Group Testing Scheme
We propose a GT scheme whereby items are grouped into bundles of size q. From
the bipartite graph perspective, this corresponds to introducing non-binary vari-
ables, which take values in [0, q]. The underlying idea is that non-binary vari-
ables strengthen the message-passing decoder, leading to improved performance
as we shall see in Sections 5 and 6. The grouping puts restrictions on the test as-
signment matrix A and the corresponding graph. We describe the construction
of the graph in the following.

We augment the conventional bipartite graph for GT by introducing addi-
tional nh hidden VNs and nh CNs corresponding to bundles of q items. The m
tests are then divided into two sets, CN z and CN x, of cardinality mz and mx,
respectively. Tests in CN z are connected to hidden VNs, while tests in CN x

are connected to VNs corresponding to items. We refer to VNs corresponding
to items as conventional VNs. We denote by dv and dv,x the degree and lower-
degree of conventional VNs; each conventional VN is connected to dv CNs in
CN x∪CN z and to dv,x CNs in CN x. Furthermore, we denote by dv,z the degree
of hidden VNs; each hidden VN is connected to dv,z CNs in CN z. Note that
dv = dv,x + dv,z. Similarly, we denote by dc and dc,z the degree of CNs in CN x

and CN z, respectively. In correspondence to the tests in CN z and CN x, the
syndrome s is also split into two parts, sq(c) and sx(c).

Fig. 1 shows the augmented graph corresponding to a GT scheme with n = 8
items, m = 6 tests, and 4 bundles of q = 2 items each. The bundles are
represented by the 4 hidden VNs labeled z1, . . . , z4 and the 4 hidden CNs labeled
f1, . . . , f4. Here, dv = 3, dv,x = 1, and dv,z = 2. The corresponding adjacency
matrix A is given by

A =


1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

 .

It can be seen from the graph that z = f(x) =
∑

i:xi∈Nx(f)
xi, where Nx(f) is the

set of items grouped in bundle f . Compared to a conventional bipartite graph,
we have thus introduced additional hidden CNs f and VNs z.

The number of edges adjacent to conventional VNs must be equal to number
of edges adjacent to CNs in CN x. Hence, mxdc = ndv,x. Furthermore, the
number of edges adjacent to hidden VNs must be equal to number of edges
adjacent to CNs in CN z. Thus, mzdc,z = nhdv,z. We set dc,z = dc/q, so that all
CNs are connected to dc conventional VNs (in the case of CNs in CN z, via the
corresponding hidden VN).

It is important to highlight that the tests performed on the items are obliv-
ious to the bundles. However, the decoder can take advantage of the bundles.
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Figure 1: Graphical representation of a system with q = 2, dc = 4, dv = 3,
dv,x = 1 and dv,z = 2. Tests are represented by square with a plus sign while
empty squares represents bundles. In this case CN z = {c1, c2, c3, c4} while
CN x = {c5, c6}. All tests have the same degree dc = 4 since each edge from a
bundle to a test corresponds to two edges in the overall graph.

4 Message Passing Decoder
In correspondence to the augmented graph in Fig. 1, there are three interactions
in the message passing decoder: i) a test-bundle interaction, whereby CNs in
CN z pass messages to the hidden VNs corresponding to the bundles and vice-
versa, ii) an item-bundle interaction, whereby conventional VNs pass messages
to the hidden CNs representing the bundles and vice-versa, and iii) a test-item
interaction, whereby CNs in CN x and conventional VNs exchange messages.
We use a scheduling wherein the messages are first passed from CNs in CN z to
hidden VNs, then from hidden VNs to hidden CNs, then from hidden CNs to
conventional VNs, and finally from conventional VNs to CNs in CN x. This is
then followed by the reverse, starting from CNs CN x to conventional VNs and
so on.

4.1 Test-Bundle Messages
In the test-bundle interaction, the optimal local decoder is a symbol-wise a-
posterior-probability (APP) decoder that can be implemented in a trellis. The
complexity of such a decoder, however, becomes infeasible with increasing check
node degree dc,z. To reduce complexity, we use a hard decision decoder similar
to the one used in [14] for counter braids (with some minor modifications). The
simplification is achieved by neglecting the actual distribution of the value of
a bundle and assigning a uniform distribution from some minimum value to
a maximum value. This means that instead of passing a vector with q + 1
entries, the decoder passes lower and upper bounds only. For convenience, we
use L-bound and U-bound for the lower and upper bounds, respectively.

The message passed from a CN c ∈ CN z to a hidden VN z at iteration ℓ is
a pair of values [L

(ℓ)
c→z,U(ℓ)

c→z] given as

L(ℓ)c→z = max

s(c)− ∑
z′∈T (c)\z

U(ℓ−1)
z′→c , 0

 , (1)
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U(ℓ)
c→z = min

s(c)− ∑
z′∈T (c)\z

L
(ℓ−1)
z′→c , q

 . (2)

The L-bound L
(ℓ)
c→z comes from the fact that the value of the syndrome corre-

sponding to CN c is equal to the sum of the values of its neighboring hidden
VNs. The L-bound is then obtained assuming all these values take on their max-
imum, i.e., the corresponding U-bound, and knowing that it cannot be negative.
The U-bound U(ℓ)

c→z is obtained similarly.
The message from a hidden VN z to a CN c ∈ CN z is

L(ℓ)z→c = max

{
max

c′∈T (z)\c
L
(ℓ−1)
c′→z , L

(ℓ)
f→z

}
(3)

U(ℓ)
z→c = min

{
min

c′∈T (z)\c
U(ℓ−1)

c′→z , U(ℓ)
f→z

}
, (4)

where L
(ℓ)
f→z and U(ℓ)

f→z are given by

L
(ℓ)
f→z =

∑
x∈N (f)

L
(ℓ)
x→f and U(ℓ)

f→z =
∑

x∈N (f)

U(ℓ)
x→f . (5)

Similarly, the message from a hidden VN z to a hidden CN f is

L
(ℓ)
z→f = max

c∈T (z)
L(ℓ)c→z, U(ℓ)

z→f = min
c∈T (z)

U(ℓ)
c→z . (6)

4.2 Item-Bundle Messages
In the item-bundle interaction, the message passed from a hidden CN f to a
conventional VN x is the pair of integers

L
(ℓ)
f→x = max

{
L
(ℓ−1)
z→f −

∑
x′∈N (f)\x

U(ℓ−1)
x′→f , 0

}
(7)

U(ℓ)
f→x = min

{
U(ℓ−1)

z→f −
∑

x′∈N (f)\x

L
(ℓ−1)
x′→f , 1

}
, (8)

while the message passed from a conventional VN to a hidden CN is

L
(ℓ)
x→f = max

c∈Ts(x)
L(ℓ−1)
c→x and U(ℓ)

x→f = min
c∈Ts(x)

U(ℓ−1)
c→x , (9)

where c ∈ Ts(x) is the set of CNs in CN x connected to x.

4.3 Test-Item Messages
For the test-item interaction, the message exchange is similar to that of the test-
bundle interaction with q = 1. Note that, for each unresolved conventional VN,
the L-bound is 0 and U-bound is 1. Furthermore, for a resolved conventional
VN, the L-bound equals to the U-bound. Thus, the message from a CN c ∈ CN x

to a conventional VN x is

L(ℓ)c→x =max
{
s(c)−

∑
x′∈T (c)\x

U(ℓ−1)
x′→c , 0

}
(10)

U(ℓ)
c→x =min

{
s(c)−

∑
x′∈T (c)\x

L
(ℓ−1)
x′→c , 1

}
, (11)
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and the message from a conventional VN x to a CN c ∈ CN x is

L(ℓ)x→c =max

{
max

c′∈Ts(x)\c
L
(ℓ−1)
c′→x , L

(ℓ−1)
f→x

}
(12)

U(ℓ)
x→c =min

{
min

c′∈Ts(x)\c
U

(ℓ−1)
c′→x ,U

(ℓ−1)
f→x

}
. (13)

It can be shown that the decoder for the test-item interaction is equivalent to
the decoder in [12].

5 Density Evolution
In this section, we derive the density evolution equations for the decoder dis-
cussed above. For the test-bundle interaction, we have to determine the prob-
ability mass function (pmf) of the U-bound and L-bound on the value of the
bundle. Let Z be the random variable corresponding to bundle z. The U-bound
on Z cannot be smaller than the value of Z and the L-bound cannot be greater
than the value of Z. This means that the pmfs are implicitly conditioned on
the value of Z.

Unless stated otherwise, we use the notation PX

(
x
)
= P

(
X = x

)
for the

pmf and FX

(
x
)

for the cdf.

5.1 Density Evolution for Test-Bundle Interaction
We first begin with the message passed from a CN c ∈ CN z to a hidden VN
z. Making reference to (1), let Su

∼z =
∑

z′∈T (c)\z U(ℓ−1)
z′→c . The pmf of Su

∼z is
obtained as the convolution of the individual conditional pmfs P

U
(ℓ−1)

z′→c
|Z

(
y|z
)
.

The pmf for the L-bound is then

P
L
(ℓ)
c→z|Z

(
i|z
)
=


(
1− FSu

∼z

(
s(c)− 1

))
i = 0

PSu
∼z

(
s(c)− i

)
0 < i ≤ z

0 otherwise .
(14)

Similarly, referring to (2) for the U-bound and letting Sl
∼z =

∑
z′∈T (c)\z L

(ℓ−1)
z′→c ,

we have

PU(ℓ)
c→z|Z

(
i|z
)
=


FSl

∼z

(
s(c)− q

)
i = q

PSl
∼z

(
s(c)− i

)
z ≤ i < q

0 otherwise .
(15)

For the message from the hidden VNs to the CNs in CN z, as it can be seen
in (3), the lower can be evaluated in two steps. First U1, the maximum among
the L-bound from tests, is determined and then this is compared with L

(ℓ)
f→z

computed from the items. The pmf of U1 is the (dv,z − 1)th order statistics of
dv,z − 1 i.i.d discrete random variables with pmf P

L
(ℓ−1)

c′→z
|Z

(
i|z
)
. This is given

by [15, page 42]

PU1|Z
(
u1|z

)
=F

L
(ℓ−1)

c′→z
|Z

(
u1|z

)dv,z−1

− F
L
(ℓ−1)

c′→z
|Z

(
u1 − 1|z

)dv,z−1
.
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In the second step, we have to compute the pmf of the maximum of two in-
dependent random variables with pmfs PU1|Z

(
u1|z

)
and P

L
(ℓ)
f→z|Z

(
µ|z
)
. This is

given by

P
L
(ℓ)
z→c|Z

(
i|Z
)
=PU1|Z

(
i|z
)
F
L
(ℓ)
f→z|Z

(
i|z
)
+

FU1|Z
(
i− 1|z

)
P
L
(ℓ)
f→z|Z

(
i|z
)
, (16)

since the maximum is i if {U1 = i and L
(ℓ)
f→z ≤ i} or {U1 < i and L

(ℓ)
f→z = i}.

We can apply similar reasoning for the U-bound, where we compute the
minimum instead and have

PL1|Z
(
y|z
)
=

dv,z−1∑
k=1

BN
(
dv,z − 1, k,FU(ℓ)

c→z|Z

(
y|z
))

−

BN
(
dv,z − 1, k,FU(ℓ)

c→z|Z

(
y − 1|z

))
(17)

and

PU(ℓ)
z→c|Z

(
i|Z
)
=PL1|Z

(
i|z
) (

1− FU(ℓ)
f→z|Z

(
i− 1|z

))
+(

1− FL1|Z
(
i|z
))

PU(ℓ)
f→z|Z

(
i|z
)
, (18)

where L1 is the minimum among the dv,z − 1 U-bounds from tests. To find the
distribution of Su

∼z and Sl
∼z, we need to know the vector zc consisting of dc,z bun-

dles connected to CN c. We thus have two steps in evaluating P
L
(ℓ)
c→z|Z

(
i|z
)

(and
PU(ℓ)

c→z|Z

(
i|z
)
): First, generate zc and compute P

L
(ℓ)
c→z|Z,Zc

(
i|z, zc

)
for each dis-

tinct z in zc, then evaluate the mean for all possible realization of Zc, i.e,

P
L
(ℓ)
c→z|Z

(
i|z
)
=
∑
zc

P
L
(ℓ)
c→z|Z,Zc

(
i|z, zc

)
PZc

(
zc
)
. (19)

Evaluating (19) is computationally infeasible. However, since the sum of zc
equals the syndrome s(c) which is distributed as BN (dc, γ), it can be seen that
for small values of γ the cdf of S(c) approaches one very fast. For example, if we
allow for an error ε < 10−6 for dc = 160 and γ = 1% we have 1−FS(c)

(
s(c)

)
< ε

for s(c) = 10. The error is much smaller for lower values of γ and dc. For
such small values of syndrome we can easily list all possible realizations of Zc.
Noting that the order of permutation does not matter we can then compute the
probability of the corresponding (dc,z,p) multinomial random variable, where p
is a vector with pi ∼ BN (q, i, γ) for i = 0 . . . q.

5.2 Density Evolution for Item-Bundle Interaction
For the item-bundle interaction we have the density evolution as follows. As
it can be seen in (7), a hidden CN f with Z = z, sends an L-bound of 1 to
a VN x (which is defective) if the L-bound L

(ℓ)
z→f = z and all the q − z non-

defective items have their U-bound U(ℓ)
x→f = 0 (for the remaining z−1 defectives,

U(ℓ)
x→f = 1). LetN0 denote the number of resolved items among the non-defective
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members of a bundle. We thus have

P
L
(ℓ)
f→x|X,Z

(
1|1, z

)
= PL(ℓ−1)

z→f |Z,X

(
z|z, 1

)
PN0|Z,X

(
q − z|z, 1

)
= PL(ℓ−1)

z→f |Z

(
z|z
)
PN0|Z

(
q − z|z

)
(20)

= PL(ℓ−1)
z→f |Z

(
z|z
) (

P
U

(ℓ−1)

x′→f
|X

(
0|0
))q−z

. (21)

The first equality comes from the fact that if Z is known, the number of resolved
items among the non-defectives will not be affected if X = 1. The second
equality is due to the fact that N0 is distributed as BN

(
q − z,P

U
(ℓ−1)

x′→f
|X

(
0|0
))

.

We can therefore compute P
L
(ℓ)
f→x,X

(
1, 1
)

as

P
L
(ℓ)
f→x,X

(
1, 1
)
=

q∑
z=1

P
L
(ℓ)
f→x|X,Z

(
1|1, z

)
PX,Z

(
1, z
)
,

with

PX,Z

(
1, z
)
= PX

(
1
)
PZ|X

(
z, 1
)

= γ

(
q − 1

z − 1

)
γz−1(1− γ)q−z ,

giving PL(ℓ)
f→x|X

(
1|1
)
= PL(ℓ)

f→x,X

(
1, 1
)
/PX

(
1
)
. Similarly, from (8), a CN f with

Z = z, sends U(ℓ)
f→x = 0 to a non-defective item if the U-bound U

(ℓ−1)
z→f = z and

all the j defective items have L(ℓ)
x→f = 1. This gives

P
U

(ℓ)
f→x|X,Z

(
0|0, z

)
= P

U
(ℓ−1)
z→f |Z

(
z|z
)
PN1|Z

(
z|z
)

= P
U

(ℓ−1)
z→f |Z

(
z|z
) (

PL(ℓ−1)

x′→f
|X

(
1|1
))z

. (22)

We can thus write

P
U

(ℓ)
f→x,X

(
0, 0
)
=

q−1∑
z=0

P
U

(ℓ)
f→x|X,Z

(
0|0, z

)
PX,Z

(
0, z
)
,

with

PX,Z

(
0, z
)
= (1− γ)

(
q − 1

q − z

)
γz(1− γ)q−1−z .

We can then compute P
U

(ℓ)
f→x|X

(
0|0
)
= P

U
(ℓ)
f→x,X

(
0, 0
)
/PX

(
0
)
.

For the message from a VN x to the hidden CN f, from (9) the L-bound of a
defective item, L(ℓ)

x→f will be 1 if at least one of the CNs in CN x sends a L-bound
of 1. Thus we have

P
L
(ℓ)
x→f |X

(
1|1
)
= 1−

(
1− PL(ℓ−1)

c→x |X

(
1|1
))dv,x

(23)

Similar arguments gives

P
U

(ℓ)
x→f |X

(
0|0
)
= 1−

(
1− P

U
(ℓ−1)
c→x |X

(
0|0
))dv,x

. (24)

Furthermore from (5) the pmf of L(ℓ)f→z is obtained as the convolution of q random
variables with PL(ℓ)

x→f |X

(
y|x
)
. The same is true for U(ℓ)

f→z.
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5.3 Density Evolution for Test-Item Interaction
For the test-item interaction we have the following probabilities. From (10), the
L-bound from a CN in CN x to a defective item is 0 if at least one item among
the other dc − 1 items is non-defective and sends an U-bound of 1 (i.e., it is
unresolved). Thus we have

P
L
(ℓ)
c→x|X

(
1|1
)
=
(
1− (1− γ)PU(ℓ−1)

x′→c
|X

(
0|0
))dc−1

. (25)

Similarly, for the message to a non-defective item we have

PU(ℓ)
c→x|X

(
0|0
)
=
(
1− γP

L
(ℓ−1)

x′→c
|X

(
1|1
))dc−1

. (26)

Referring to (12), the L-bound from a defective item to a CN c is 0 if the
L-bound from a CN f is zero and none of the other CNs c sends an L-bound of
1. We then have

P
L
(ℓ)
x→c|X

(
1|1
)
=

1−
(
1− P

L
(ℓ−1)

c′→x
|X

(
1|1
))dv,x−1 (

1− P
L
(ℓ−1)
f→x |X

(
1|1
))

. (27)

With similar reasoning we have

PU(ℓ)
x→c|X

(
0|0
)
=

1−
(
1− P

U
(ℓ−1)

c′→x
|X

(
0|0
))dv,x−1 (

1− P
U

(ℓ−1)
f→x |X

(
0|0
))

. (28)

6 Results and Discussion
In this section, we present numerical results obtained from our asymptotic den-
sity evolution analysis and compare the thresholds with results from finite length
simulations. In Table 1, we give the threshold γth, i.e., the maximum fraction of

Table 1: γth for Ω = 5% for different values dv and dv,x

q dv,x dv = 4 dv = 5 dv = 6 dv = 7 dv = 8

1 0.598 0.641 0.646 0.635 0.618
4 2 0.590 0.660 0.694 0.706 0.702
5 2 0.592 0.672 0.725 0.746 0.744
10 3 0.549 0.636 0.693 0.774 0.694

defective items that can be successfully resolved for q = 4, 5, and 10 for Ω = 5%
and different values of dv. The results are obtained from the density evolution
equations. The conventional setting q = 1 is also shown for comparison. For
the three considered values of q, the best performance is achieved for dv = 7.
The q with best performance, however, is not the same for all dv. For each q
and dv, the value of dv,x is optimized to yield the best performance. The best
performance is achieved for dv,x = 2 for q = 4, 5 and for dv,x = 3 for q = 10.
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Figure 2: Minimum Ω for different values of γ for various bundle sizes q.

This means that adding more tests in CN z helps in resolving bundles, but to
get the resolution down to the level of items we need some tests to resolve at
least some of the items. This explains why dv,x < 2 does not work well.

In Fig. 2, we plot the threshold Ωth, i.e., the minimum achievable rate ob-
tained from the density evolution equations, as a function of γ . With q = 10
the performance is best for small values of γ, but poor for higher values. We
conjecture that this is due to the suboptimality of BP decoding, and that spatial
coupling will solve the problem. On the other hand, q = 5 performs better than
the baseline system q = 1 for all γ.

In Fig. 3, we plot the misdetection rate of the proposed scheme with q =
5 and q = 10 as a function of γ and fixed rate Ω = 5% (corresponding to
m = 10500) for a finite length simulation with n = 210000. For comparison,
we also plot the performance of the LDPC code-based scheme in [12], and the
GLDPC code-based scheme in [4]. As predicted by the thresholds in Table 1,
the proposed LDPC code-based GT scheme with non-binary variables performs
significantly better than the LDPC code-based scheme in [12] (i.e., for q = 1).
Furthermore, the LDPC code-based schemes perform significantly better than
the GLDPC code-based scheme in [4].

Our results demonstrate that the grouping of items into bundles within the
test matrix A of a quantitative GT scheme allows us to apply efficient non-
binary message passing decoding with improved performance at an affordable
complexity. The scheme is compatible with standard testing, and the structure
of the test matrix is only slightly affected by the bundling while the overall
weights of the columns or rows of A can be preserved.
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