
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Application Specific Instruction-set Processors for Massive MIMO Systems

Attari, Mohammad

2024

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Attari, M. (2024). Application Specific Instruction-set Processors for Massive MIMO Systems. [Doctoral Thesis
(compilation), Department of Electrical and Information Technology]. Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/7b2b60a0-fef5-4793-b074-5b2f847b366b

Application Specific Instruction-set
Processors for Massive MIMO Systems

Doctoral Thesis

Mohammad Attari

Department of Electrical and
Information Technology

Lund, October 2024

Academic thesis for the degree of Doctor of Philosophy (PhD), which, by due permission of the Faculty
of Engineering at Lund University, will be publicly defended on Monday, 11 Nov, 2024, at 9:15 a.m. in
lecture hall E:1406, Department of Electrical and Information Technology, Ole Römers Väg 3, 223 63 Lund,
Sweden. The thesis will be defended in English.

The Faculty Opponent will be professor Andreas Peter Burg, Ecole Polytechnique Federale de Lausanne
(EPFL), Switzerland.

/

Organisation:
LUND UNIVERSITY
Department of Electrical and
Information Technology
Ole Römers Väg 3
223 63 Lund
Sweden

Author:
Mohammad Attari

Title:
Application Specific Instruction-set Processors for Massive MIMO Systems

Document Type:
DOCTORAL THESIS

Date of Issue:
October 2024

Sponsoring Organization(s):
Ericsson AB
European Union REINDEER No. 101013425
BEYOND5 No. 876124

Abstract:
This is an undeniable fact now that wireless systems pervade all aspects of our lives. These systems are evolving at a

rapid clip, connecting more people and devices every single day that goes by. This growth is further fueled by the users’
insatiable appetite for more traffic, be it for online gaming, watching high-fidelity video, downloading huge files, live-
streaming and many more uses. With the advent of internet of things (IoT), which brings a countless number devices and
sensors into the picture, this growth turns into an unstoppable force.

Catering to the connectivity and data rate demands that these applications and devices place on the wireless communi-
cations infrastructure is not a trivial issue. As the old 4G systems are approaching, or rather have already surpassed, their
limits, the new kids on the block are 5G and what comes beyond. These systems are developed specifically to bump up
the data rates, provide better coverage, and increase the overall energy and spectral efficiencies. In order to facilitate this,
a number of key technologies have proven themselves instrumental. One such technology is the massive multiple-input
multiple-output (MIMO), which scales up the number of antennas available in the base station (BS) to the hundreds, in
order to add space as yet another degree of freedom to the system, creating the holy trinity of time-frequency-space. This
is crucial, considering the fact that frequency resources are limited, very expensive, and already overcrowded. This idea
can be, and is being, pushed even further by employing thousands of antennas in systems such as large intelligent surfaces
(LISs).

But it is not all moonlight and roses, as one might think. Incorporating these many antennas in the system puts a huge

burden on data processing and data marshaling subsystems. A centralized approach does not carry the day here, and

distributing the processing is not a piece of cake either. That is what this thesis concerns itself with, i.e., how to develop

processors that are up to par with the requirements of above-mentioned systems in terms of performance and energy

efficiency, yet are malleable enough to adapt to the vagaries of technological evolution. To this end, processor designs

have been proposed here that utilize application-specific instruction set processors (ASIPs) as the firm ground to build the

system upon, which are wedded to customized accelerators where more specialized units are deemed more appropriate to

tackle the case at hand.

Keywords:
Massive MIMO, OFDM, Digital Baseband Processing, 5G and Beyond, VLSI Architecture, Com-
puter Architecture, ASIP, Accelerator, Systolic Array, Matrix Decomposition, SIMD

Classification System and/or Index Terms (if any)
–

Supplementary Bibliographical Information:
–

Key title and ISSN:
Series of Licentiate and Doctoral Theses; 1654-790X, No. 177

Recipient’s Notes:

Language:
English

ISBN (printed):
978-91-8104-247-4

ISBN (digital):
978-91-8104-248-1

Price:Number of Pages:
122

Security Classification:
Unclassified

General Permissions:
I, the undersigned, being the copyright owner and author of the above-mentioned thesis and its abstract,
hereby grant to all reference sources permission to publish and disseminate said abstract.

Signature: Date: 11 October 2024

Application Specific
Instruction-set Processors for

Massive MIMO Systems

Doctoral Thesis

Mohammad Attari

Department of Electrical and
Information Technology

Lund, October 2024

Mohammad Attari
Department of Electrical and Information Technology
Lund University
Ole Römers Väg 3, 223 63 Lund, Sweden

Series of Licentiate and Doctoral Theses
ISSN 1654-790X; No. 177
ISBN 978-91-8104-247-4 (printed)
ISBN 978-91-8104-248-1 (digital)

c© 2024 Mohammad Attari
This thesis is typeset using LATEX 2ε with the body text in Palatino and Goudy
Initials, headings in Helvetica.

Frontispiece: Hand-drawn interpretation of communications and processing-
related concepts.

Printed by Tryckeriet i E-huset, Lund University, Lund, Sweden.

No part of this thesis may be reproduced or transmitted in any form or by
any means without written permission from the author. Distribution of the
original thesis in full, however, is permitted without restriction.

"The lyf so short, the craft so long to lerne,
Th’assay so hard, so sharp the conqueringe"

Geoffrey Chaucer, Parlement of Foules

iii

Abstract

I
t is an undeniable fact now that wireless systems pervade all aspects
of our lives. These systems are evolving at a rapid clip, connecting
more people and devices every single day that goes by. This growth

is further fueled by the users’ insatiable appetite for more traffic, be it for
online gaming, watching high-fidelity video, downloading huge files, live-
streaming and many more uses. With the advent of Internet of Things (IoT),
which brings a countless number devices and sensors into the picture, this
growth turns into an unstoppable force.

Catering to the connectivity and data rate demands that these applications
and devices place on the wireless communications infrastructure is not a
trivial issue. As the old 4G systems are approaching, or rather have already
surpassed, their limits, the new kids on the block are 5G and what comes
beyond. These systems are developed specifically to bump up the data rates,
provide better coverage, and increase the overall energy and spectral efficien-
cies. In order to facilitate this, a number of key technologies have proven
themselves instrumental. One such technology is the massive Multiple-Input
Multiple-Output (MIMO), which scales up the number of antennas available
in the Base Station (BS) to the hundreds, in order to add space as yet another
degree of freedom to the system, creating the holy trinity of time-frequency-
space1. This is crucial, considering the fact that frequency resources are
limited, very expensive, and already overcrowded. This idea can be, and

1OK, it’s not really holy, but who’s counting, so I claim it is.

v

is being, pushed even further by employing thousands of antennas in systems
such as Large Intelligent Surfaces (LISs).

But it is not all moonlight and roses, as one might think. Incorporating
these many antennas in the system puts a huge burden on data processing
and data marshaling subsystems. A centralized approach does not carry the
day here, and distributing the processing is not a piece of cake either. That
is what this thesis concerns itself with, i.e., how to develop processors that
are up to par with the requirements of above-mentioned systems in terms
of performance and energy efficiency, yet are malleable enough to adapt to
the vagaries of technological evolution. To this end, processor designs have
been proposed here that utilize Application-Specific Instruction-set Processors
(ASIPs) as the firm ground to build the system upon, which are wedded
to customized accelerators where more specialized units are deemed more
appropriate to tackle the case at hand.

vi

Popular Science Summary

I
t would not surprise you these days if you pass a bus stop and see 9
people out of 10 having their heads buried deep into their cellphones.
What on Thor’s green earth could they be doing? Well, of course, they

are communicating information wirelessly in one form or another. It could be
that they’re blundering their pieces left and right in a chess game online, or
chatting with someone, or taking their daily dose of funny memes on social
media, or reading the news, or live-streaming, or a gazillion other things that
I can not possibly list here.

One of the myriad of factors that separates us humans from other living
beings is the unique way in which we convey information, either through
language or by non-linguistic means. This desire to carry a message across
has existed since the dawn of our existence and, throughout our rather short
evolutionary history, we have always dreamed of communicating over long
distances. The smoke signals are one of the earliest forms of long-distance
communications that we came up with, yet it was slow and unreliable.
Much later, and as fate would have it, it was via wired means that long-
distance communication became a reality. Although it didn’t take long for the
information we were sending to be carried in the air through the magic of
radio waves, ushering in the wireless communications age.

Nowadays you can not imagine your life without the wireless technology. It
has permeated so thoroughly through the fabric of our society that people take
it for granted and don’t even think about how marvelous it is. Now talking to
your loved ones across the globe is just a few taps away on your cell-phone.
In 2020 the world was hit by the COVID pandemic, but the amazing advances

vii

in communications made it possible for people to stay safe inside their homes
and even work form there. It is not just personal applications that is driving
the wireless communications. The fast-paced nature of business today is a
huge contributing factor.

The ease with which we can communicate means there is a huge amount
of information that needs to scuttle back and forth. To satiate this huge traffic
demand, engineers and researchers have been hard at work to come up with
mechanisms to keep up. This includes the use of fancy-sounding techniques
such as massive MIMO, which incorporates hundreds of antennas to make
better use of the limited resources. Large intelligent surfaces are yet another
technique that try to scale up the number of antennas even further. Having
said all this, the challenges of using these techniques are not easy to overcome.
The processing of data that go through the network poses stiff hurdles to
overcome.

The main processors that run under the hood in your laptop or cell-
phone are so-called general-purpose processors. These processors are good
at doing a wide variety of things, and are capable of running a whole host
of applications, but are not particularly adept at executing very specific tasks
efficiently. That is where this thesis comes into the picture. In this work, I have
investigated the usage of custom-made processors specifically geared for this
kind of custom digital signal processing, while retaining, to some extent, the
flexibility of the afore-mentioned general-purpose processors. The kind of
processing that is needed mostly involves fiddling with numbers arranged
in neat packages known as matrices and vectors. We need to crunch these
numbers, using algebraic algorithms, fast and efficiently, therefore customized
designs are a must. But in a world that change is the only constant, it is not
only desirable, but rather mandatory to keep the system programmable and
flexible to account for the vagaries of the algorithms and technology. As a
result, application-specific instruction set processors, or so-called ASIPs, were
chosen and developed. Additionally, to further bolster their performance,
non-programmable and highly-customized-yet-configurable accelerators were
designed to aid the ASIPs in taking on compute-heavy processing tasks, and
in unison act as a conduit to our digital wireless future

viii

Acknowledgments

T
hanks to the teachings passed down to us from the wise sages of
yore, it is nowadays common knowledge that completing a PhD is
not a solely individual endeavor. Well, for the most part it is, but you

get the picture. There are many people along the way who make it easier2 for
you to traverse this treacherous path to Mount PhD, and they deserve their
fair share of fame as yours truly. To do these people justice even multiple
tomes would not suffice, alas, I’m pressed for space here, and I hope the PhD
gods will take mercy on my poor soul for brazen brevity and negligence.

I admit it, I’m not very good at verbalizing thanks, yet what follows is my
meager attempt at it. First and foremost, I want to thank my main supervisor,
Liang, for his patience and guidance. I am the one who tread the path but
he was the one pointing the way. I know I can be pigheaded sometimes3, so
Liang is probably a saint for overlooking this foible. I am grateful for your
efforts to try to take me out of my hermit lifestyle by taking me to the chess
club, and for inviting me over to your house and introducing me to your two
little princesses, Linea and Linda. I would also like to express my thanks to
my co-supervisor, Ove, for technical discussions and for giving constructive
feedback on my work.

Now, let’s march on to my colleagues and friends in Lund University and
beyond. Here comes the cavalry, in a sort of semi-haphazard order:

Mr. B (a.k.a. Baktash Behmanesh) deserves super special thanks for
providing me with comic relief during my PhD, as well as for Being4 a fellow
gamer. You taught me how to show those metal tracks a lesson during DRC

2Or harder, depending on the deviousness level.
3Confucius he say: "all the frigging time".
4Yes, everything Mr. B-related with capital B.

ix

cleaning, which I knew zilch aBout Beforehand, and you also turned me
into a soldering master. The chip I taped out would not have Been possiBle
without your assistance. To Mr. B’s much, much Better half, Mrs. B (Behshid
Khodaei), I say thanks for Being supportive and also for putting up with
Mr. B. I salute Iman Pasha (also goes by Iman Ghotbi) for always regaling
us with his impressive analytical ability, and also for bringing us cookies and
other things to stuff our faces with. I appreciate the cool and collected Hamid,
for bringing tranquility and serenity to the highly volatile field of electronics.
May you ever remain as cool as a cucumber. Many thanks go to Major (the
honorable Masoud Nouripayam) for being passionate and showing strength
and resilience in the face of hardship, and also for giving me beautiful plants
to liven up my austere-looking office.

I send my gratitude to Luki Boy (others might know him as Lucas Ferreira)
for spicing up the work environment and talking my (and everyone else’s)
head off during office hours. I value the time we have spent together and
look forward for its continual into the posterity. I’m much obliged to Arturo
(the Spaniard) for never taking the bait on my taunts of "you wanna take it
outside?". Everyone knows how that might have turned out5. I’m grateful
to Siyu for the help I got during the torturous last week before my tapeout,
showing me how to run the dreaded LVS. There would be no working chip
without it. I’m thankful to Jesús for his collaborative spirit and his patience
in working with me. I am indebted to Dr. Steffen (the one and only Steffen
Malkowsky) for being there at the start of my PhD (and even before that, in
my PhD interview) and for showing me the ropes with ASIP Designer. Now,
stop watching documentaries! Many thanks to Dumitra for being super cool
and inviting me to go climbing with her. Thanks Krippe (recognized in some
circles with the moniker Kristoffer Westring) for nice chats and encouraging
me to improve my Swedish. Please stop bragging about your chip; mine is
better. I thank Ilayda for the delicious baklava she brought me and for inviting
me to the barbecue she organized. To Mahdi Rezayati Charan, I say thanks
for letting me, unwittingly, dribble elegantly past him in a soccer game, only
to be tackled mightily half a heartbeat later. Thanks for the fun times and
for inviting me over to your place. Sirvan is praiseworthy for setting me up
in the lab, fixing my PCB, and meticulously bonding my chip. I raise my
hat to Mazi and Aida for their help and kindness throughout the years. I
greet my friend Harsh (Harshavardhan Kittur) with cheers for encouraging
me to soldier on in the good old days, and accompanying me to super-duper
rigorous swimming competitions in the gooder6 new days.

5In my favor. All hail!
6Better.

x

I send my small tokens of appreciation to the following people: Vincent for
being kind and letting us use the 1406 room for the defense, Juan (of house
Vidal Alegría) for chess discussions, Juan (of house Sanchez) for patiently
answering my badly formulated 5G questions, Rikard for being my BFF7,
Therese for being kind and inviting me to her PhD party, Sijia for sharing her
work on GitHub, Lina for being a good office-mate, William for lighthearted
banter, Sahar for tolerating my OCD and keeping it cool with my stupid jokes,
Mojtaba for supportive and reassuring words early on in my PhD, Ashkan
for not tackling me in soccer unlike some people, Peng and Feifei for treating
me to dinner, Wei for inviting me over to his place, and Sidra for the nice
conversations.

I owe thanks to the administrative and technical staff in Lund University
for helping me out with various things throughout my PhD. In no particular
order: Elisabeth Nordström, Elisabeth Ohlsson, Linda Bienen, Margit
Billesö, Erik Göthe, Erik Jonsson, and Stefan Moulnd.

Richard Feynman, or rather the problem-solving algorithm that is at-
tributed to him, has earned my salutations for teaching me how to solve
problems. It goes like this: "Write down the problem, think very hard, write
down the answer". Very useful. And, second-last but not least, it seems that
giving thanks to your computer is becoming a thing these days [1], so I would
like to send my regards8 to Zeffa, my tireless Linux machine, who stuck with
me all through these years and carried out my commands unquestionably. I
will forgive you for randomly hanging on me on countless occasions, forcing
me to restart by brute force. Such is life.

Finally, I take the opportunity here to thank my family: My sister Foori
(Farnoosh) for being my big sis and for pushing me to go for PhD, my bro
Hamid for being my little bro, my mom and dad Goli and Papi G (Maryam
and Mahmood) for all the sacrifices they have made for us, my brother-in-law
Arash for working hard and always being there to help, my auntie Mariam
Mortazavi for being my Khaleii and for her boundless hospitality when I came
to Sweden way back when, and my dear nephew Radvin for coming into this
world, calling my D9, and allowing me to let loose with my avuncular love.

MJ (Mohammad Attari)
Lund, October 2024

7Best Friend Forever.
8Not of the Lansiter variety.
9D for Dayi, which means uncle in Persian.

xi

xii

Contents

Abstract v

Popular Science Summary vii

Acknowledgments ix

Contents xiii

Preface xvii
Structure of the Thesis . xvii

Included Papers . xvii

Acronyms and Abbreviations xxi
. xxi

Mathematical Notations xxv

INTRODUCTION 1

1 Motivation 3
1.1 The Beginnings . 3

1.2 The Exploitation of Limited Resources 4

1.3 The Guidelines . 5

1.4 The Co-design Methodology . 6

1.5 The Contribution . 7

xiii

2 Wireless Communications Principles 9
2.1 Techniques . 9

2.1.1 SISO . 9
2.1.2 MIMO . 10
2.1.3 Multi-user MIMO . 12
2.1.4 Massive MIMO . 13
2.1.5 Distributed Massive MIMO 14
2.1.6 OFDM . 16

2.2 Applications and Requirements . 17

3 Digital Signal Processing and Algorithms 23
3.1 Massive MIMO Algorithms . 23

3.1.1 Matrix-Vector Multiplication 24
3.1.2 Matrix-Matrix Multiplication 24
3.1.3 Matrix Inversion . 24
3.1.4 QRD . 25
3.1.5 Extended QRD . 26
3.1.6 Cholesky . 27

3.2 Distributed Massive MIMO . 28
3.2.1 SVD . 30

3.3 Kernel Operations and Requirements 32

4 Processing Architecture and Digital Hardware 35
4.1 Different Approaches . 35

4.1.1 ASIC . 36
4.1.2 Configurable Architectures 36
4.1.3 Programmable Systems . 37
4.1.4 Hybrid Architecture . 40

4.2 Design Considerations . 41
4.2.1 Programmability . 41
4.2.2 Acceleration and Data-level Parallelism 41
4.2.3 Memory Access Patterns . 42

4.3 Microarchitecture . 42
4.3.1 The ASIP . 43
4.3.2 Multi-Access-Mode Parallel Vector Memory 44
4.3.3 Accelerators . 45

xiv

4.4 Requirements and Performance Evaluation 47

5 Conclusion and the Path Ahead 49
5.1 The Path Ahead . 50

Bibliography 51

APPENDICES 61

A Code Examples 63

xv

Preface

T
his thesis is the culmination of more than five years of work in
the digital ASIC group at the Electrical and Information Technology
department, Lund University, Sweden. The work was supervised by

Professor Liang Liu (main supervisor) and Professor Ove Edfors. As I am not
a person that is given to formality, I have striven10 to keep the tone of the
thesis light and friendly, in order to make it fun for the layperson as well as
for the technically-oriented. Additionally, I have tried to follow the POLA11

in writing the thesis, and I hope you enjoy reading it.

STRUCTURE OF THE THESIS

• INTRODUCTION
The main body of the thesis consists of the publications appended in the
back. The Introduction provides a broader and more comprehensive view
than the very focused publications and ties their work together.

• APPENDICES

A Code Examples
Appendix A provides example C code for selected algorithms imple-
mented in the ASIP.

• PAPERS
The papers forming the main body of the thesis are reproduced in the
back and listed in the following.

10Mayhap in vain /.
11Principle of least astonishment.

xvii

INCLUDED PAPERS

The following papers form the main body of this thesis and the respective
published or draft versions are appended in the back.

Paper I: Mohammad Attari, Jesús Rodríguez Sánchez, Liang Liu, and

Steffen Malkowsky, “An Application Specific Vector Processor for
CNN-based Massive MIMO Positioning”, IEEE International Sympo-
sium on Circuits and Systems (ISCAS), May 2021, doi: 10.1109/IS-
CAS51556.2021.9401528.
Contribution: The main author, under the guidance of the contribut-
ing authors, designed an application-specific instruction set processor
(ASIP) equipped with a CNN accelerator to provide an implementation
for fingerprint-based positioning using massive MIMO technology. The
processor was synthesized and evaluation results were provided.

Paper II: Mohammad Attari, Lucas Ferreira, Liang Liu, and Stef-
fen Malkowsky, “An Application Specific Vector Processor for
Efficient Massive MIMO Processing”, IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 69, no. 9, pp. 3804–3815, Jun. 2022,
doi: 10.1109/TCSI.2022.3182483.
Contribution: The main author, under the guidance of the contributing
authors, was the designer of an ASIP, utilizing vector processing
capabilities in the form of SIMD pipeline, VLIW architecture, and an
8 × 8 systolic array built into the pipeline, for efficient massive MIMO
baseband processing. Additionally, the processor takes advantage of a
parallel memory unit for easy access to matrix elements. The processor
was synthesized in the 22nm process node and evaluation results were
provided with comparison to the state-of-the-art.

Paper III: Mohammad Attari, Jesús Rodríguez Sánchez, and Liang Liu, “A
Floating-Point 16 × 16 SVD Accelerator for Beyond-5G Large Intelligent
Surfaces”, IEEE International Midwest Symposium on Circuits and Systems
(MWSCAS), January 2024, doi: 10.1109/MWSCAS57524.2023.10406077.
Contribution: The main author, under the guidance of the contributing
authors, designed and implemented an ASIC accelerator for SVD matrix
decomposition, utilized in massive MIMO and large intelligent surfaces.
The accelerator was customized for 8 × 8 and 16 × 16 matrices, and was
synthesized and evaluation results were provided.

Paper IV: Mohammad Attari, Jesús Rodríguez Sánchez, Ove Edfors, and

Liang Liu, “A 1095 pJ/b 219 Mb/s Application-specific Instruction-set
Processor for Distributed Massive MIMO in 22FDX”, European Solid-
State Electronics Research Conference - ESSERC, 2024.

xviii

I Paper accepted and presented.
Contribution: The main author, under the guidance of the contributing
authors, proposed an implementation for an ASIP processor trimmed
for distributed massive MIMO systems. The processor comes equipped
with two accelerators attached in the form of a 16 × 16 systolic array
and a 16 × 16 SVD unit. The processor was designed, synthesized,
placed-and-routed, verified, and finally taped out by the main author.
A matching PCB was designed and the chip was successfully measured.

Paper V: Mohammad Attari, Ove Edfors, and Liang Liu, “Accelerator-assisted
Floating-point ASIP for Communication and Positioning in Massive
MIMO Systems”,
I Paper submitted to IEEE Transactions on Very Large Scale Integration
(VLSI) Systems.
Contribution: The main author, under the guidance of the contributing
authors, was the sole designer of an ASIP geared for combined and
efficient communication and positioning in a massive MIMO setup. The
processor was designed with floating-point capabilities, replacing its
fixed-point counterpart for parts of the processing. The processor was
synthesized and evaluation results were provided.

xix

Acronyms and Abbreviations

AI Artificial Intelligence

AR Augmented Reality

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction-set Processor

BPS Bits Per Second

BS Base Station

CGRA Coarse-Grained Reconfigurable Architecture

CISC Complex Instruction Set Computer

CNN Convolutional Neural Network

CPU Central Processing Unit

CSI Channel State Information

DMIMO Distributed massive MIMO

DNN Deep Neural Network

DSA Domain-Specific Architecture

EDA Electronic Design Automation

xxi

FFT Fast Fourier Transform

FPGA Field-Programmable Gate Array

FSM Finite State Machine

GEMM General Matrix Multiply

GK Golub-Kahan

GPP General Purpose Processor

GPU Graphics Processing Unit

HDL Hardware Description Language

IIC Iterative Interference Cancellation

i.i.d. independent and identically distributed

IoT Internet of Things

ISA Instruction Set Architecture

IUI Inter-User Interference

KPI Key Performance Indicator

LIS Large Intelligent Surface

LTE Long-Term Evolution

MAC Multiply ACcumulate

MIMO Multiple-Input Multiple-Output

ML Machine Learning

MMSE Minimum Mean Square Error

MR Maximum Ratio

NN Neural Network

NR New Radio

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

PE Processing Element

xxii

QAM Quadrature Amplitude Modulation

QRD QR-Decomposition

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Threads

SINR Signal-to-Interference plus Noise Ratio

SISO Single-Input Single-Output

SNR Signal-to-Noise Ratio

SVD Singular Value Decomposition

TDD Time-Division Duplex

UE User Equipment

UL Up-Link

VR Virtual Reality

ZF Zero Forcing

xxiii

Mathematical Notations

C Complex field

‖ · ‖2 `2-norm

(·)∗ Complex conjugate

(·)T Matrix/vector transpose

(·)H Matrix/vector conjugate-transpose

(·)−1 Matrix inverse

(·)† Matrix pseudo-inverse

(·)ij (i, j)th element of a matrix

(·)i:j: Submatrix starting from row i and column j

O Order of computational complexity

xxv

INTRODUCTION

1

1
Motivation

T
his chapter serves as a stepping stone into the amazing world of
communications, from the humanity’s early attempts, all the way to
the state-of-the-art systems that we have today, and looking forward

to what we will have in the future. The ultimate purpose here is to throw
some light on the problem of choosing an appropriate substrate as the main
processing platform for the wireless communication systems of posterity.

1.1 THE BEGINNINGS

The primitive human communication started with speech and the devel-
opment of the faculty of language approximately 100,000 years ago [2].
Then symbols were developed about 70,000 years later in the form of cave
paintings. Petroglyphs, or rock carvings, were the next major advancement
in communications that happened around the time the human beings became
agrarian. From there we have pictograms (illustrations for ideas), ideograms
(symbols for ideas), and finally scripts that turned into sophisticated writing
systems. But this is not the whole story.

The concept of communicating something to others extends over to long
distances as well (telecommunications). Smoke signals and drums were
used thousands of years ago to accomplish the long-distance transfer of
information. Physically moving a message from one location to another
also goes back thousands of years. According to legend, Pheidippides, an
Athenian herald, ran from a battlefield near Marathon to Athens, nonstop,
to deliver the announcement of the Greek victory over the Persians in the

3

Application Specific Instruction-set Processors for Massive MIMO Systems

Battle of Marathon (490 BCE)1. Sadly, when he reached Athens he uttered a
single phrase, "nikomen"2, and then dropped dead on the spot to meet his
maker. Pheidippides’ story had an end, but the same can not be said about
human ingenuity. From messenger birds being employed as early as 1350
BCE, if we fast forward to the 19th century, it only took us three millennia
to advance science and technology to make electrical telecommunication
systems possible, with the very first telegram sent by Samuel Morse across
a 3-km length of wire on 11 January 1838. This opened the floodgates of
telecommunications, and it is hard to imagine that anything can put a stop to
the deluge of innovation.

1.2 THE EXPLOITATION OF LIMITED RESOURCES

But like many other things in our world, in this field we are also dealing
with limited resources. Based on Claude Shannon’s discovery [3], a commu-
nications system’s theoretical upper bound on the achieved data rate can be
expressed as

C = B log2(1 + SINR), (1.1)

in which C is the channel capacity measured in Bits Per Second (BPS), B de-
notes the bandwidth of the system expressed in Hz, and Signal-to-Interference
plus Noise Ratio (SINR) encompasses the receiver’s acquired signal power,
divided by the power due to noise and interference. What Equation 1.1
implies is that in order to improve a communication system’s capacity, and by
extension its data rate, one needs to either increase the bandwidth or crank
up the signal power. The latter is the less attractive, or rather less feasible,
alternative due to its logarithmic nature and practical limits on power delivery.
Therefore, we are left with bumping up the bandwidth as the main method of
capacity improvement, as evidenced by the widening of carrier bandwidth in
wireless standards over generations (from 200 kHz in 2G all the way to 100-400
MHz in 5G and 6G [4, 5]). As spectrum is a key connectivity asset, multiple-
antenna techniques, such as Multiple-Input Multiple-Output (MIMO), have
gained popularity as an important method in improving spectral efficiency.
Systems in 4G use 2 × 2 and 4 × 4 MIMO, while in 5G massive MIMO
systems featuring up to 200 antennas are possible. The expectation is that 6G
will scale up the bandwidth to 400 MHz, and will put up to 1024 antenna
elements to use [6].

1As the author is Persian, he’s not too thrilled about this little anecdote, and he
advises the readers to take the whole story with a huge grain of salt.

2We win!

4

1 Motivation

All of these crazy numbers mean that we need processing systems that do
not shy away when it comes to the crazy factor. In the next section I will look
into this issue, and try to provide guidelines to help us ascend safely to the
processing summit.

1.3 THE GUIDELINES

The fast-changing nature of standards and requirements favors flexibility,
while the exorbitant user demands in terms of traffic call for customized
systems. This era has been heralded as the golden age of computer archi-
tecture [7], and with good reason. The general-purpose systems are being
replaced by Domain-Specific Architectures (DSAs), that tackle a narrower
range of tasks but in an extremely efficient manner. This is by no means a
license to use DSAs haphazardly. There must be some order to the madness,
and that is why we set up guidelines to aid us in our decisions. These DSA
guidelines are as follows [8]:

1. Reduce data movement and shuffling by the use of dedicated, less
energy-hungry, memories (e.g. software-controlled scratchpads and
custom storage idioms [9]).

2. Favor arithmetic muscle over beefy pipeline improvements, for instance
by using more number of simpler cores.

3. Exploit the inherent parallelism in the target domain by exposing it in
the programming model (e.g. using Single Instruction Multiple Data
(SIMD)).

4. Use custom data types and smaller data sizes that fit the domain (e.g.
use bfloat16 [10] for machine learning).

5. Use a domain-specific programming language for easier application
porting to the DSA (e.g. Halide [11] for vision processing and Tes-
norflow [12] for Deep Neural Networks (DNNs)).

I will come back to these guidelines in chapter 4, where microarchitecural
discussions take place.

I would be remiss if I did not address the elephant in the room, and yes,
you guessed right, I mean Artificial Intelligence (AI) and Machine Learning
(ML). It is no insignificant feat when AlphaGo had the honor of being the first
computer to beat humans in the ancient game of Go with no handicap [13]
in 2015, while the ship had sailed long before that for the game of chess
in 1997, when IBM’s Deep Blue defeated the reigning world champion Garry
Kasparov. Putting games aside, the communications field is no exception, and

5

Application Specific Instruction-set Processors for Massive MIMO Systems

Specifications & requirements

Profiling, early architecture exploration

Instruction set simulator,
Debugger,
Profiler

Assembler,
Compiler,
Linker

Instruction set
optimization

HW/SW
codesign

Microarchitecture
optimization

RTL generation

Figure 1.1: The hardware-software co-design methodology in ASIP flow.

can join the dark side3. For instance, ML can be used in a communications
system to help in tasks such as positioning.

1.4 THE CO-DESIGN METHODOLOGY

The list of guidelines, codified above, operates as an overarching compass
when it comes to design decisions for DSAs, but it does not specify the
methodology to follow from specifications and requirements to final imple-
mentation. The hardware-software co-design methodology tries to design the
software and hardware components concurrently in order to leverage the syn-
ergy between the duo [14]. This philosophy is embodied in the development
of processors customized for specific applications, which are more widely
known as Application-Specific Instruction-set Processors (ASIPs) [15]. Figure
1.1 diagrams the steps involved in the ASIP co-design flow. In this flow, the
tools aid the designer in gradually specifying and optimizing the instruction
set by keeping the compiler in the loop. The dashed boxes in the figure
portray the automatic generation of the toolchain (i.e. assembler, compiler,
and linker), coupled with the useful accoutrements for simulation (that is,

3"If you can’t beat us ... join us", Agent Smiths in The Matrix Reloaded (2003).

6

1 Motivation

instruction set simulator, debugger, and profiler). This tight interaction eases
the process of hardware/software partitioning and optimization. For instance,
matrix multiplication can be implemented and profiled using a simple design
first. Then, if the performance is not satisfactory, the processor pipeline can
be refined (e.g. by adding SIMD lanes) to make it more adept at parallel
computation. This iterative improvement can be even pushed further by
offloading the matrix multiplication in its entirety to a dedicated unit, such as
a systolic array, if desired.

1.5 THE CONTRIBUTION

Creating systems that are both performant and efficient in handling the
requirements of the wireless technology of the future is going to be a tall order.
In this thesis I will first present the requirements, and then address what is
needed to design systems that meet those requirements in the volatile field
of communications. The content is chiefly based on five papers that put the
spotlight on algorithm-hardware co-design using ASIPs that work in concert
with accelerators. These papers are listed below in chronological order:

• Paper I kicks things off with an implementation for a fingerprint-
based positioning processor in the context of a massive MIMO system.
A configurable Convolutional Neural Network (CNN) accelerator is
paired up with an ASIP to utilize the information obtained from the
wireless channel for localization purposes.

• Paper II untangles some of the linear algorithms that are commonly
encountered in digital massive MIMO processing. The algorithms
are dissected to tease out their operational profiles, and an ASIP is
co-designed to efficiently implement these algorithms. Additionally,
accelerator integration is introduced in places that the ASIP misses the
mark on performance, with the proviso that this integration conforms
to the philosophy of programmer-visibility.

• Paper III steps away from ASIPs momentarily to propose an
Application-Specific Integrated Circuit (ASIC) implementation for the
holy grail of matrix decompositions, i.e. the honorable Singular Value
Decomposition (SVD). The accelerator is designed specifically for dis-
tributed and scalable massive MIMO systems and Large Intelligent
Surfaces (LISs), and supports 32-bit floating-point representation for a
wide dynamic range.

• In Paper IV, the SVD accelerator presented in Paper III is integrated
into an ASIP, along with a 16 × 16 systolic array and a parallel memory
module, to be used in a Distributed massive MIMO (DMIMO) system.
The C-programmable processor is taped out and measured.

7

Application Specific Instruction-set Processors for Massive MIMO Systems

• Finally, Paper V introduces a mixed-datatype ASIP, suitable for both
positioning and communication scenarios. The system utilizes a beefed-
up systolic array to support a variety of General Matrix Multiply
(GEMM) sizes efficiently, and it also features a CNN accelerator with
its own memory for the positioning task.

8

2
Wireless Communications Principles

T
his chapter touches upon the modern wireless communications prin-
ciples, introducing the concepts behind Single-Input Single-Output
(SISO), MIMO, massive MIMO, distributed massive MIMO and Or-

thogonal Frequency Division Multiplexing (OFDM).

2.1 TECHNIQUES

2.1.1 SISO

Before we get into the nitty-gritty details of a complicated system, let us
first consider the simple case of a narrowband system with a single transmit
antenna and a single receive antenna, also referred to as a SISO system, as
depicted in Figure 2.1. This system can be modeled1 by

y = hs + n, (2.1)

in which s is the complex-valued transmitted signal, y the received signal,
h the channel gain (impulse response) denoting attenuation and phase shift

y

Wireless
Channel

s
h

signle input signle output

Transmitter Receiver

Figure 2.1: A SISO system.

1Keeping in mind that: "All models are wrong, some are useful" [16].

9

Application Specific Instruction-set Processors for Massive MIMO Systems

introduced by the air interface, and n is the noise2. Now, assuming the
receiver has full knowledge of the channel (that is, it knows h), performing
detection3 can be simply done by

s = y/h− n/h. (2.2)

A SISO system feels right at home when its channel Signal-to-Noise Ratio
(SNR) is high.

2.1.2 MIMO

Current wireless systems employ a technique known as MIMO by utilizing
antenna arrays, both at the input and output, that can exploit the spatial
domain so as to increase the robustness and throughput of the radio link. With
spatial multiplexing multiple antennas can be utilized (both in the transmitter
and receiver) in order to deliver many streams of traffic on the same time-
frequency resource. The word input in MIMO refers to the transmit antennas,
while receive antennas act as outputs to the air interface. Figure 2.2 shows a
MIMO system with MT transmit and MR receive antennas, or an MR × MT
MIMO system.

1

2

MT

1

MR
Wireless
Channel

H11

H12

H1MT

Transmitter Receiver
HM 1R

HM 2R

HM MR T

multiple inputs multiple outputs

Figure 2.2: A MIMO system.

The fundamental concepts related to the MIMO technology can boil down
to spatial diversity, spatial multiplexing, and beamforming. The first two concepts
are diagrammed in Figure 2.3 [17]. Spatial diversity at the transmitter means
that the same signal stream is sent over more than one antenna, increasing the
chance that the signal will arrive successfully at the target without increasing
the data rate. Spatial multiplexing, on the other hand, sends multiple data
streams from a number of antennas, hoping to gain on data rate while

2Additive independent and identically distributed (i.i.d.) circularly symmetric
complex Gaussian noise, to be more exact.

3Technically, this is estimation, which must be followed by symbol selection.

10

2 Wireless Communications Principles

10001111011100001011

1011

1011

1011

1011

1011

Spatial diversity Spatial multiplexing

10001111011100001011

1000

0000

0111

1111

1011

Figure 2.3: Spatial diversity vs. spatial multiplexing.

ignoring the diversity gain. Beamforming concerns itself with steering the
main lobe of the beam towards a target of interest, while possibly trying to
avoid absorbing/delivering interference from/to the other devices. Figure 2.4
shows the concept of beamforming, in a simplified example, from the point
of view of the Base Station (BS) transmitting to a particular target [18]. In part
(a) of the figure Zero Forcing (ZF) is used so the interferers are placed within
the nulls to completely suppress interference, but failing to align the main
lobe on the target4. In (b), the Maximum Ratio (MR) receiver is placed exactly
in the center of the main lobe, with the downside of ignoring the contribution
from interferers. Finally, in part (c) Minimum Mean Square Error (MMSE) is
used as a compromise between interference cancellation and signal-to-noise
ratio.

The narrowband MIMO system is characterized by

y = Hs + n, (2.3)

where H is the complex-valued MR × MT channel matrix, s the MT × 1
transmit signal vector, y the MR× 1 received signal, and n the noise vector. For
simplification purposes, the complex H matrix is assumed to be unchanging
over a small period of time (shorter than the coherence time) in a slow fading
channel. In linear detection methods, after estimating the channel matrix, the
channel effect is compensated by another matrix. The recovery process of
the transmitted vector s from the received signal y is more complicated than
the SISO case discussed previously, as it now involves operations such as
matrix inversion. A simple solution to recover the transmit vector is through
inverting the channel matrix, given by

s = H−1y− H−1n = H−1y + n′. (2.4)

4For the uninitiated, the long tube-looking thing is the main lobe, and the smaller
ones are the side lobes.

11

Application Specific Instruction-set Processors for Massive MIMO Systems

(a) (b) (c)

Figure 2.4: Beamforming, using (a) zero forcing, (b) maximum ratio, and (c)
minimum mean square error. The target is depicted with a cell-phone and
interferers with a crossed-over megaphone.

But since Equation (2.4) requires matrix inversion5, an alternative is to
approximate the desired signal with a least-squares solution according to

s = H†y + n′′, (2.5)

where H† represents the pseudo-inverse of the channel matrix, computed as

H† = (HH H)−1HH . (2.6)

There are also non-linear detection methods, e.g. sphere decoding, that
might become necessary in very demanding channels.

2.1.3 MULTI-USER MIMO

The MIMO technology can be applied to cases where multiple users are
involved in a communication system. Figure 2.5 shows a simple example
system with M = 3 BS antennas serving K = 2 users simultaneously. The
channel matrix here is represented with a K×M, or 2× 3, matrix H.

In this case, as each user is not privy to what the other one is receiving, the
BS has to bear the weight of processing by employing a precoding matrix P,
which is applied to the symbols to compute the transmitted signals with

x = Ps. (2.7)

5Well, OK, nothing wrong with inversion per se, but it is a costly procedure and,
on top of that, requires an invertible matrix. Boo!

12

2 Wireless Communications Principles

H11
H12
H13

H21
H22
H23

Base
Station

s1

s2

s3

x1

x2

x3

y1

y2

Figure 2.5: A multi-user MIMO system.

Depending on how well-conditioned the channel matrix is and the noise
level, the BS can use a ZF, an MR, or an MMSE precoder according to the
following equations, respectively

PZF = HH(HHH)−1, (2.8)

PMR = HH , (2.9)

PMMSE = HH(HHH + βIK)
−1. (2.10)

If interference cancellation is the prime target, then the BS will choose ZF
in order to place the interferers precisely within the nulls. On the other hand,
if the channel matrix is singular or the noise is large, the BS will place its bets
on MR. Finally, MMSE serves as a compromise, by taking the middle ground
between noise enhancement and interference cancellation.

2.1.4 MASSIVE MIMO

It is not exactly a new concept to up the ante on spatial-domain utilization by
increasing the number of antennas in the BS [19]. The idea is that by scaling
the number of antenna elements towards infinity (Figure 2.6), and assuming
ideal conditions, you can reap the beneficial properties by adding the further
exploitation of the spatial domain to the mix [20–23]. The huge number of
antennas in the array provides a high spatial resolution, resulting in precise
signal steering toward the User Equipments (UEs). By operating in Time-
Division Duplex (TDD) mode and exploiting the radio channel reciprocity, the
BS can combine beamforming and precoding to focus the transmitted signals
in a specific direction.

13

Application Specific Instruction-set Processors for Massive MIMO Systems

Figure 2.6: Massive MIMO.

In conventional systems the signals are sent out in all directions, resulting in
Inter-User Interference (IUI). In massive MIMO the signals undergo precoding
in the BS, using the information contained in the Channel State Information
(CSI), in order to make them add up constructively in the intended UEs.
Figure 2.7 demonstrates this concept in a sparse multipath environment. The
transmission of multiple streams of data simultaneously is highly attractive
when the resources are in short supply, but it has the downside of requiring
complex signal processing to separate the data streams. This processing is
typified in operations such as matrix inversion, QR decomposition, Cholesky
decomposition, SVD, etc, which are dealt with in the next chapter.

2.1.5 DISTRIBUTED MASSIVE MIMO

Up to this point when I was talking about massive MIMO I meant collocated
architectures, where all the antennas are located close to each other in order
to reduce the backhaul requirements. To obtain higher spectral efficiency and
improved coverage, a massive MIMO system can be deployed in a distributed
fashion, with the service antennas spread out over an area. This has the
negative impact of having to deal with increased backhaul requirements.
Furthermore, new user experiences such as self-generated content, video

14

2 Wireless Communications Principles

Figure 2.7: Beamforming and precoding in massive MIMO in a multipath
environment.

Figure 2.8: Distributed massive MIMO.

conferencing, etc. mean that wireless systems are seeing an increase in uplink
utilization. Mobile networks today are highly asymmetric, with the downlink
direction having much faster speed than the uplink. Distributed baseband
processing is an appealing solution to this challenge.

15

Application Specific Instruction-set Processors for Massive MIMO Systems

Symbol mapper

s0 = 00s2 = 10

s3 = 11 s1 = 01

10 11 01 11 00 00 10 11

Serial to
parallel

s2 s3 s1 s3 s0 s0 s2 s3

IFFT
Prefix

+
D/A

10 11 01 11 00 00 10 11

s2 s3 s1 s3 s0 s0 s2 s3

Channel
estimation

+
Phase

removal

Prefix
removal

+
A/D

FFT Parallel to
serial

Symbol demapper

s0 = 00s2 = 10

s3 = 11 s1 = 01

Figure 2.9: An OFDM transmitter (left) and receiver (right).

Scaling up the number of antenna elements even further is the name of the
game, when it comes to systems such as LISs [24]. But due to the challenges
presented by central processing limits, these systems often opt for a more
distributed architecture.

2.1.6 OFDM

One way of combating the frequency selectivity phenomenon, without in-
creasing the bandwidth, is through a technique that has withstood the test of
time known as OFDM [25,26]. In OFDM the bandwidth is divided into a series
of orthogonal subcarriers, obviating the need for inter-subcarrier guard bands,
and easing equalization. Each subcarrier, therefore, has a small bandwidth
and low symbol rate, but all the subcarriers, put together, have the same
bandwidth of a wideband single-carrier system. Figure 2.9 sketches an OFDM
transmitter/receiver pair. OFDM has been so successful that it is now the go-
to modulation scheme in modern wireless communication systems (that is
from 4G Long-Term Evolution (LTE) onward).

The simplicity of OFDM, coupled with the fact that time-frequency data
conversion can take advantage of the computationally efficient Fast Fourier
Transform (FFT) and its inverse, led to it being picked up for 4G, as well as 5G
and beyond. Figure 2.10 outlines how OFDM can be adapted to allow inter-
acting with multiple users’ data streams, which in communications parlance
is dubbed as Orthogonal Frequency Division Multiple Access (OFDMA).

16

2 Wireless Communications Principles

Symbol
mapper

1011...1001

Serial to
parallel

Inverse FFT

UE 1

Bits for UE 1

Resource element mapper

Symbol
mapper

1110...0011

Serial to
parallel

Bits for UE K

Cyclic prefix inserter +
analog transmitter

Cyclic prefix remover +
analog receiver

FFT

Resource element selector

Channel estimator +
phase remover

Symbol
demapper

Parallel to
serrial

1011...1001

Figure 2.10: A BS transmitting to multiple UEs using OFDMA (only one UE
is shown on the right).

2.2 APPLICATIONS AND REQUIREMENTS

Wireless connectivity is going to be key in driving future applications in
industrial, entertainment, healthcare, and sport sectors. The environments
in which this connectivity will play a significant role include, but are not
limited to, robot-operated factories, large stadiums, hospitals, nursing homes,
disaster areas, and smart homes. The list of applications is endless, but the
use cases can be shoehorned into three main categories [27]:
• Monitoring and real-time applications.
• Augmented Reality (AR)/Virtual Reality (VR) applications.
• Location-based applications.

The typical use cases are diagrammed in the tri-hexagonal style of Figure
2.11. Each individual use case has its own requirements, which are tab-
ulated in Table 2.1 in terms of the required data rate, accuracy and end-
to-end latency. The 5G-and-beyond standards need to be up to par with
these requirements, and by inspecting the 5G Key Performance Indicators
(KPIs) we can observe that they promise peak data rates of 20 Gbit/s and

17

Application Specific Instruction-set Processors for Massive MIMO Systems

Monitoring & Real-time

Augmented/Virtual
Reality

Location-based

Patient monitoring
Wearable sensors

Smart home

Realtime digital twins
(manufacturing)

Human-robot
co-working

Virtual reality
(gaming)

Augmented reality
(sports)

Augmented reality
professions

Sensors

Tracking
(people in large venues)

Tracking
(goods & inventory)

Tracking
(robots & vehicles)

Location-based
information

Figure 2.11: Use cases.

a perceived user-experienced data rate of 100 Mbit/s [5]. While these are
pretty impressive numbers on their own, the 6G standard is not one to be
outshined in this regard, and as a result, the peak data rate in 6G aims to
reach 1000 Gbit/s, with users predicted to experience 1 Gbit/s speeds. Figure
2.12 employs a spider-web diagram to illustrate the 6G KPIs and pits them
against those of the 5G standard [28].

These requirements imply that the communication system’s infrastructure
must be able to support localization and sensing, with centimeter-level pre-
cision. New scenarios for end user equipments, including ultra low power
and battery-less devices, gesture-activated interfaces, and network-on-device
units are to be expected. Furthermore, adaptation to new network conditions
with AI/ML techniques will become the norm [29].

Now, let us see how the OFDM-based resource grid, which is in common
use in wireless communications systems, ties into this requirements discus-
sion. I start by inspecting the typical frame structure in 5G New Radio (NR),
as outlined in Figure 2.13 [5]. One frame with a duration of T f rame = 10 ms
is divided into ten 1 ms subframes, each consisting of one slot of 14 OFDM
symbols in this case (∆ f = 15 kHz numerology). The allotted precoding time

18

2 Wireless Communications Principles

Table 2.1: Use cases and their requirements [27].

Requirements

Positioning

Use case User data rate accuracy Latency

Augmented reality (sports) < 5 Mbps < 0.5 m < 20 ms

Augmented reality < 45 Mbps (compressed) < 0.1 m < 10 ms

(professions) < 3 Gbps (uncompressed)

Virtual reality (gaming) < 150 Mbps < 0.1 m < 1 ms (control)

< 100 ms (data)

Realtime digital twins 1 Mbps 0.1 m < 1 ms - 50 ms

(manufacturing)

Patient monitoring (wearables) 100 bps - 1 Mbps < 1 m < 200 ms

Human-robot co-working 5 Mbps – 1 ms

Tracking (goods & inventory) < 1 Mbps < 0.1 m < 100 ms - 1 s

Tracking < 1 kbps (positioning) < 1 m < 1 s

(people in large venues) > 1 Mbps (navigation)

Tracking (Robots & vehicles) < 10 Mbps < 0.1 m < 10 ms

Smart home < 50 kbps < 0.1 m < 100 ms

Peak Data Rate
(Gbit/s)

User-experienced
Data Rate

(Gbit/s)

Latency
(ms)

Spectral Efficiency Energy Efficiency

Connection Density
(devices/km2)

Reliability (error rate)

0.1

1

1000

10-7

107

2x
2x

5G

6G

10-6

106

1x
1x

1

0.1 20

Figure 2.12: 6G vs. 5G key performance indicators.

19

Application Specific Instruction-set Processors for Massive MIMO Systems

One frame, Tframe = 10ms

One subframe, Tsubframe = 1ms

0 1 2 3 4 5 6 7 8 9

7 OFDM
symbols

Legend

Uplink pilot

Uplink data

Downlink pilot

Downlink data

Guard

1 OFDM
symbol

S
ub

ca
rr

ie
r

RF + FFT + Channel estimation

14 OFDM
symbols

Precoding

Figure 2.13: Example frame structure in 5G NR.

OFDM symbol

1000x14 OFDM symbols

One resource element

12
00

 s
ub

ca
rri

er
s

16
 s

ub
ca

rri
er

s

5 OFDM symbols Almost-constant
channel

Figure 2.14: One-second snapshot of the resource grid for a 20 MHz band-
width channel with 1200 15-kHz subcarriers and 14000 OFDM symbols.

for the stringent case shown in the left is only around two OFDM symbols, or
just under 150 µs, after the Up-Link (UL) pilots have been received and FFT
and channel estimation are complete.

Figure 2.14 sketches the time-frequency grid for a 20 MHz channel band-
width in a one-second period. The resource grid in the time domain consists
of a 100 frames, which translates to 14,000 OFDM symbols. For this system
in a 128 × 16 massive MIMO setting, and with a 15 kHz subcarrier spacing,

20

2 Wireless Communications Principles

Table 2.2: Required inversions per second (with the same coherency
assumptions for all cases).

Su
bc

ar
ri

er
sp

ac
in

g

B
an

dw
id

th

#S
ub

ca
rr

ie
rs

#O
FD

M
sy

m
bo

ls
in

on
e

se
co

nd

#R
es

ou
rc

e
el

em
en

ts
in

on
e

se
co

nd

#I
nv

er
si

on
s/

s

15 kHz 20 MHz 1200 14000 16.8M 210k
15 kHz 50 MHz 3300 14000 46.2M 580k
30 kHz 100 MHz 3300 28000 92.4M 1.16M
60 kHz 100 MHz 1650 56000 92.4M 1.16M
60 kHz 200 MHz 3300 56000 184.8M 2.3M

there will be 1200 subcarriers. This means there exist a total of 1200 × 14000,
or 16.8 M, resource elements6 in one second. Assuming the channel remains
almost constant over 16 subcarriers and 5 OFDM symbols, as visualized with
the highlighted block in the figure, 75 × 2800 or 210k channel inversions
need to performed every second. For the more extreme case of a 100 MHz
channel bandwidth with 60 kHz subcarrier spacing, there are 1650 subcarriers
and 56000 OFDM symbols in one second, which amounts to a total number
of 92.4 M resource elements, which in turn leads to approximately 1.16M
channel inversions/s. This is further elaborated in Table 2.2, which explores
more scenarios.

To sum up, here I considered the requirements from the standpoint of appli-
cations and the whole system. In the following chapter I will switch to second
gear by putting a premium on the algorithms that show up in communications
processing, and consider the requirements form their vantage point.

6A resource element is the smallest time-frequency unit of one OFDM symbol and
one subcarrier.

21

3
Digital Signal Processing and

Algorithms

I
n his chapter I will get into the meat of algorithms that crop up re-
peatedly in digital signal processing for communications, positioning,
and matrix decompositions. Now, onto details!

3.1 MASSIVE MIMO ALGORITHMS

For the discussions here I consider an OFDM-based massive MIMO system
with linear algorithms. Under favorable channel conditions, the massive
number of antennas allows linear algorithms to approach the performance
of their non-linear counterparts [21]. For the ZF algorithm, the relevant
part of the channel state matrix, H, is used to perform symbol detection
(a.k.a. postcoding). The communication algorithm for a multi-user MIMO
system, comprised of M antenna elements and K UEs, can be summarized as
follows. An estimate for the transmitted symbol vector ŷ ∈ C is acquired by
multiplying the M× 1 received data vector r by the K ×M detection matrix
Wdet, expressed as

ŷ = Wdetr. (3.1)

The detection matrix Wdet in Equation (3.1) is obtained from the informa-
tion contained in the estimated UL channel matrix H. For the ZF algorithm,
the Wdet is equivalent to the pseudo-inverse of the estimated channel matrix
H†, couched in mathematical terms as

Wdet = H† = (HHH)−1HH. (3.2)

23

Application Specific Instruction-set Processors for Massive MIMO Systems

m00 v0
v0×

m01 m02
m10 m11 m12
m20 m21 m22

v1
v2

=
m00
m10
m20

× + v1× + v2×
m01
m11
m21

m02
m12
m22

Figure 3.1: A 3×3 by 3×1 matrix-vector multiplication example.

A mere inspection of Equation (3.2) reveals that the process involves the
calculation of the Gramian matrix (HHH), followed by its inversion and a
subsequent multiplication with HH. Finally, the detection is accomplished in
equation (3.1) by a final multiplication with the received data vector r. This
means three matrix operations are involved:
• Matrix-vector multiplication
• Matrix-matrix multiplication
• Matrix inversion

The subsections below will try to take a sneak peek and look at these
operations in more detail.

3.1.1 MATRIX-VECTOR MULTIPLICATION

Matrix-vector multiplication can be viewed either as a number of vector dot
products or, alternatively, as the sum of a number of scalar-vector products.
Figure 3.1 depicts the latter for a 3×3 matrix multiplied by a 3×1 vector.
In this case the matrix-vector multiplication turns into three vector-scalar
multiplications, and two vector additions.1

3.1.2 MATRIX-MATRIX MULTIPLICATION

Matrix-matrix multiplication follows the same concept discussed previously,
except that it involves multiple matrix-vector multiplications. Figure 3.2
portrays an example for a 3×3 matrix multiplied by a 3×2 matrix. Here, the
matrix-matrix multiplication is equivalent to six vector-scalar multiplications
and 4 vector additions. Both methods mesh well with a hardware system that
has vector-based capabilities.

3.1.3 MATRIX INVERSION

Matrix inversion is a time-consuming operation, and thereby decompositions
are used to speed up the process. Typical examples are QR-Decomposition
(QRD) [31], extended QRD, and Cholesky decomposition [32], accompanied

1You might not like the numbering system starting from 0, but I only opted to
stand on the shoulders of giants [30].

24

3 Digital Signal Processing and Algorithms

m00
×

m01 m02
m10 m11 m12
m20 m21 m22

m00
m10
m20

× + × + ×
m01
m11
m21

m02
m12
m22

n00 n01
n10 n11
n20 n21

n00 n10 n20

=
r00 r01
r10 r11
r20 r21

m00
m10
m20

× + × + ×
m01
m11
m21

m02
m12
m22

n01 n11 n21

Figure 3.2: A 3×3 by 3×2 matrix-matrix multiplication example.

Algorithm 1 Modified Gram-Schmidt QRD

Input: K×K complex matrix A
Output: Unitary matrix Q and upper triangular matrix R

1: Q← 0K
2: R← 0K
3: V ← A
4: for i← 1 to K do
5: rii ← ‖V(:, i)‖2
6: Q(:, i)← V(:, i)/rii
7: for j← i + 1 to K do
8: rij ← Q(:, i) · V(:, j)
9: V(:, j)← V(:, j)− rijQ(:, i)

10: end for
11: end for

with backward- and/or forward substitutions. Depending on the different
number of users and antennas one of these factorization methods can be used.

3.1.4 QRD

The QRD algorithm can be used to decompose a complex square matrix A into
an upper triangular matrix R, and a unitary matrix Q [33]. The mathematical
representation of this is expressed as

A = QR. (3.3)

Given that Q is a unitary matrix (QHQ = I), we can see that Q’s conjugate
transpose (i.e. its Hermitian) is equivalent to its inverse, hence for Q we have

25

Application Specific Instruction-set Processors for Massive MIMO Systems

Algorithm 2 Back substitution

Input: K×K upper-triangular matrix A
Output: B as the solution to AB = IK

1: B← IK
2: for i← K to 1 do
3: for j← i + 1 to K do
4: bi ← bi − aijbj
5: end for
6: bi ← bi/aii
7: end for

Q−1 = QH, and the inverse of A is now simply acquired by

A−1 = (QR)−1 = R−1Q−1 = R−1QH. (3.4)

Obtaining QH is trivial, whereas taking the inverse of the upper-triangular
matrix R, which has real-valued diagonal elements, is more involved and
requires the employment of back-substitution. Algorithms 1 and 2 provide
the pseudo code for the modified Gram-Schmidt QRD and back substitution,
with complexities of O(K3) and O(K2), respectively [34, 35]. The resulting
matrices (QH and R−1) are then multiplied according to Equation 3.4 in order
to obtain the inverse of A.

3.1.5 EXTENDED QRD

The calculation of the QRD, as mentioned in the previous section, involves
the extra step of obtaining the inverse of R, which can be circumvented by
recruiting the extended QRD algorithm [36]. Doing so involves the extension
of matrix A with an identity matrix, which yields a 2K×K matrix given by

Aext =

[
A

IK

]
. (3.5)

Application of the QRD algorithm on this extended matrix leaves us with

Aext =

[
A

IK

]
= QextRext =

[
Q1

Q2

]
R, (3.6)

where

Q2R = I, (3.7)

26

3 Digital Signal Processing and Algorithms

Algorithm 3 Extended QRD

Input: K×K complex matrix A
Output: Unitary matrix Q and Rinv

1: Q← A
2: Rinv ← IK
3: for i← 1 to K do
4: r1← ‖Q(:, i) + Rinv(:, i)‖2
5: Q(:, i)← Q(:, i)/r1
6: Rinv(:, i)← Rinv(:, i)/r1
7: for j← i + 1 to K do
8: r2← Q(:, i) ·Q(:, j) + Rinv(:, i) · Rinv(:, j)
9: Q(:, j)← Q(:, j)−Q(:, i)r2

10: Rinv(:, j)← Rinv(:, j)− Rinv(:, i)r2
11: end for
12: end for

which implies

R−1 = Q2. (3.8)

Now the derivations of Q and R−1 happen organically and the need for
explicit back-substitution is obviated. Algorithm 3 lists the pseudo code for
the extended QRD algorithm.

3.1.6 CHOLESKY

The Cholesky decomposition [33] factorizes the complex matrix A into an up-
per triangular matrix and its conjugate transpose, expressed mathematically
as

A = LHL. (3.9)

The inverse of A is then calculated with

A−1 = (LHL)−1 = L−1(LH)−1, (3.10)

in which L is an upper triangular matrix, and LH is a lower triangular matrix.
Consequently, L−1 and (LH)−1 can be acquired using backward-substitution
and forward-substitution, respectively. The complexity of the decomposition
itself is O(K3), while both of the substitutions have a complexity of O(K2).
The final inversion of the matrix A is then carried out by a simple matrix

27

Application Specific Instruction-set Processors for Massive MIMO Systems

Algorithm 4 Cholesky

Input: K×K complex matrix A
Output: Lower triangular matrix L such that LLH = A

1: L← 0K
2: s← 0
3: for i← 1 to K do
4: s(i : K)← A(i : K, i)
5: for j← 1 to i− 1 do
6: s(i : K)← s(i : K)− L(i : K, j) ∗ lij
7: end for
8: L(i : K, i)← s(i : K)/

√
s(j)

9: end for

Algorithm 5 Forward substitution

Input: K×K upper-triangular matrix A
Output: B as the solution to AB = IK

1: B← IK
2: for i← 1 to K do
3: for j← 1 to i− 1 do
4: bi ← bi − aijbj
5: end for
6: bi ← bi/aii
7: end for

multiplication according to Equation 3.10. The pseudo code for the Cholesky
algorithm is listed in Algorithm 4, and Algorithm 5 does the same for forward
substitution.

3.2 DISTRIBUTED MASSIVE MIMO

Let us now examine the algorithms from the DMIMO point of view. There
are different DMIMO algorithms, e.g., [37] [38], but for the discussion here
we make use of the linear detection algorithm with distributed Iterative
Interference Cancellation (IIC) in [37] as an example. The purpose of pro-
cessing distribution is to achieve local dimensionality reduction and local
data consumption [39]. Assuming a panelized architecture, the p-th panel
calculates its own Mp × Np detection matrix Qp, which is then applied to the
Mp × 1 received vector yp at the said panel according to

28

3 Digital Signal Processing and Algorithms

Algorithm 6 Decentralized IIC algorithm for the p-th panel.

Input: K×K covariance matrix Zp−1 f romprecedingneighboringpanel
Input: Mp×Mp local channel matrix H p
Output: K×K covariance matrix Zp to succeeding neighboring panel

1: [U p, Sp] = SVD(Zp−1)

2: H̃ p = H pU pS−1/2
p

3: Qp = SVD(H̃ p)(:, 1 : Np)

4: Zp = Zp−1 + ρHH
p QpQH

p H p

x̂p = QH
p yp. (3.11)

To obtain the final detection result, the locally computed x̂p vectors from
the various panels need to be aggregated. This aggregation of partial results,
which is carried out in a root processing node, is equivalent to

x̂ = ∑ QH
p yp = ∑ x̂p. (3.12)

In most cases not all the UEs are served by each panel in this DMIMO setup,
and as a result the inter-panel interconnection bandwidth can be reduced
by making Np to be smaller than Mp. Each channel update triggers the
generation of the detection matrix Qp, which is a solution to a local opti-
mization problem that maximizes the sum-rate capacity with a dimensionality
reduction constraint. The calculation of Qp requires the Mp × K local channel
state information Hp, and the K × K Zp−1 matrix received from the previous
immediate neighboring panel. This latter matrix is a covariance matrix that
holds information about existing inter-user-interference.

Algorithm 6 lists the steps that comprise the IIC method. The Zp−1
contribution matrix is first factorized using SVD ([37]), yielding

[Up, Sp] = SVD(Zp−1), (3.13)

in which Sp is the diagonal matrix housing the singular values, and Up
is the left unitary matrix. Now, dimensionality reduction is achieved by
obtaining the Qp matrix, which contains the Np strongest singular vectors
of H̃p, calculated by

H̃p = HpUpS−1/2
p , (3.14)

29

Application Specific Instruction-set Processors for Massive MIMO Systems

Qp = SVD(H̃p)(:, 1 : Np). (3.15)

In the last step of local processing, the new covariance matrix Zp is
computed and will be passed down to the neighboring panel for interference
mitigation purposes, according to

Zp = Zp−1 + HH
p QpQH

p Hp. (3.16)

One thing to take away from the discussion above is that SVD is a potent
weapon in a researcher’s arsenal, and one could even say that it is the crown
jewel of linear algebra. Hence, its efficient calculation is all too apparent, and
I linger a bit here by taking a detour and devoting the next section to further
look into this aspect.

3.2.1 SVD

The time-honored SVD is arguably the holy grail of matrix decompositions
[40], and finds utility in modern science and engineering in a wide variety
of systems, that run the gamut from wireless communications to artificial
intelligence [37, 41–43].

The two main methods of SVD calculation are based on the Jacobi algorithm
[44] and the Golub-Kahan (GK) algorithm [45,46]. In the former, rotations are
applied to the input matrix in sweeps to nullify the off-diagonal elements.
These rotations are unitary transformations performed by left and/or right
multiplications, either in two-sided or one-sided manner. The GK method,
on the other hand, follows a two-phased methodology, with the first phase
performing matrix bidiagonalization, and the second phase carrying out
diagonalization of the bidiagonal input matrix. Both of these algorithms
undergo repetitions in an iterative manner, which continues until the singular
values converge.

Here, I will use the GK algorithm as described in [42], which as mentioned
above takes a dual-phase approach to the problem. The first phase of
decomposition yields three matrices, two of which are unitary matrices which
flank a third bidiagonal matrix. Thereafter, the bidiagonal matrix undergoes
rotation transformations (by application of Givens rotations [47]), which ends
up with the desired diagonal singular values matrix.

The first phase of bidiagonalization can be performed in different ways. For
instance, using Givens rotations to zero out one element at a time, or applying
Householder reflections to introduce multiple zeros at once. Figure 3.3 depicts
how the latter method is applied for a small 4 × 4 toy example matrix. Each
step involves picking a partial column or row x, and zeroing out all of its

30

3 Digital Signal Processing and Algorithms

a00

Housholder

a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

b00 b01 b02 b03
0 b11 b12 b13
0 b21 b22 b23
0 b31 b32 b33

b00 c01 0 0
0 c11 c12 c13
0 c21 c22 c23
0 c31 c32 c33

b00 c01 0 0
0 d11 d12 d13
0 0 d22 d23
0 0 d32 d33

b00 c01 0 0
0 d11 e12 0
0 0 e22 e23
0 0 e32 e33

b00 c01 0 0
0 d11 e12 0
0 0 f22 f23
0 0 0 f33

Sub-column or sub-row used
to calculate the Houlseholder vector

Submatrix modified after
Householder application

Housholder

Housholder Housholder Housholder

Figure 3.3: Example 4 × 4 matrix bidiagonalization using the Householder
reflections.

elements but the first one. In order to calculate the Householder vector v the
first element of vector x is updated, as specified by

x1 +
x1

‖x1‖
‖x‖, (3.17)

and this updated x is used to obtain the Householder vector by

v =
x
‖x‖ . (3.18)

The submatrix Bi:j: = B(i :; j :) of the input matrix B is then updated
according to

Bi:j: − 2vv∗Bi:j:, (3.19)

Bi:j: − 2Bi:j:vv∗, (3.20)

for the column and row cases, respectively. After the descent down the diag-
onal is complete, we are left with a bidiagonal matrix. The undesirable non-
zero elements on the superdiagonal are chased down along the diagonal by
successively applying Givens rotations. This nullification process is visualized
in Figure 3.4, which shows one iteration that results in a new bidiagonal
matrix with superdiagonal elements that have diminished values. This
constitutes one iteration, and is repeated until the superdiagonal elements
are nullified, and the diagonal values converge to their singular real-valued
cousins. The SVD calculation is not trivial, and its computational complexity
for an input N × N complex-valued matrix A is proportional to O(N3).

31

Application Specific Instruction-set Processors for Massive MIMO Systems

Givens

b00 c01 0 0
0 d11 e12 0
0 0 f22 f23

0 0 0 f33

Elements used to calculate
the 2x2 Givens rotation matrix

Submatrix modified after
Givens application

g00 0 0 0
g10 g11 e12 0
0 0 f22 f23

0 0 0 f33

h00 h01 h02 0
0 h11 h12 0
0 0 f22 f23

0 0 0 f33

h00 i01 0 0
0 i11 i12 0
0 i21 i22 f23

0 0 0 f33

h00 i01 0 0
0 j11 j12 j13
0 0 j22 j23
0 0 0 f33

h00 i01 0 0
0 j11 k12 0
0 0 k22 k23
0 0 k32 k33

Givens

Givens

Givens

Givens

h00 i01 0 0
0 j11 k12 0
0 0 l22 l23
0 0 0 l33

Givens

Figure 3.4: Example 4 × 4 matrix diagonalization step using Givens rotations.

3.3 KERNEL OPERATIONS AND REQUIREMENTS

The algorithms listed in the previous sections can act as guidelines as to
what operations are needed in order to support efficient processing. Table 3.1
collects a list of kernel operations that are constituent parts of the mentioned
algorithms.

By inspecting these kernel operations we can derive these guidelines:
• The system needs to be able to handle basic vector operations efficiently.

This includes operating on multiple elements in parallel (e.g. vector-
vector addition).

• Vector reduction operations (e.g. vector norm) appear frequently.
• Scalar-vector operations are also typical (e.g. scalar-vector multiplica-

tion).
• Vector element access is commonly needed, either to modify an element

or to extract it for use in another operation.
• Higher-order matrix operations (e.g. matrix-matrix multiplication) ben-

efit from special treatment, beyond what vector operations can provide
on their own.

• Some calculations (e.g. SVD) can take advantage of a dedicated unit
specially customized for the task.

These guidelines will help us in our decision-making abilities when it comes
to the micro-architectural development covered in the next chapter.

To help analyze the performance requirements, let us take a look at the ZF
detection formula again, as per

(HHH)−1HHr. (3.21)

32

3 Digital Signal Processing and Algorithms

Table 3.1: Example kernel operations.

Description Symbol Operation

Matrix multiplication A× B Cij = ∑k Aik × Bkj

Hadamard (element-wise) vector product a� b (a)i × (b)i

Element-wise vector addition/subtraction a± b (a)i ± (b)i

Vector dot product a · b ∑i(ai × b∗i)

Vector-scalar product a× s (a)i × s

Vector element modify a[n] = s an = s

Vector-vector element product a× b[n] (a)i × bn

Vector norm ‖a‖
√

a · a
Vector norm inverse 1/‖a‖ 1/

√
a · a

This needs a Gramian matrix calculation (HHH), Gramian inversion, one
matrix-vector multiplication (HHr), and one final matrix-vector multiplication.
I showed in the previous chapter that even a system with 20 MHz bandwidth
requires 210k channel inversions per second. This amounts to an allotted time
of just below 3 µs per inversion! For a more complete analysis let us compile
the numbers for different user speeds. To calculate the coherence times for
different UE speeds [35] we can use

Tp =
0.69c

2πvmax fc
, (3.22)

where Tp is the time between uplink pilots, vmax the maximum supported
UE speed, c the light speed, and fc the carrier frequency. Assuming a carrier
frequency of fc = 3.7 GHz is selected, Table 3.2 lists the requirements for
two different systems, one with 20 MHz bandwidth and the other with 50
MHz bandwidth, both with a subcarrier spacing of 15 kHz. This further
substantiates the significance of efficient matrix processing capabilities.

Table 3.2: Requirements in terms of inversions/s for two different systems.

UE Speed [km/h] 5 50 100

Coherence Bandwidth nb [#subcarriers] 16 16 16

Coherence Time [ms] 7.2 0.73 0.36

Coherence Time nt [#OFDM symbols] 100 10 5

#Inversions/s (20 MHz bandwidth) 10.5 k 105 k 210 k

#Inversions/s (50 MHz bandwidth) 26 k 262 k 525 k

33

Application Specific Instruction-set Processors for Massive MIMO Systems

Table 3.3: Information rate requirements for example scenarios.
Su

bc
ar

ri
er

sp
ac

in
g

B
an

dw
id

th

To
ta

l
su

bc
ar

ri
er

s

#O
FD

M
sy

m
bo

ls
in

on
e

se
co

nd

#R
es

ou
rc

e
el

em
en

ts
in

on
e

se
co

nd

#U
se

rs

#M
od

ul
at

io
n

sc
he

m
e

In
fo

rm
at

io
n

ra
te

(b
ps

)

15 kHz 20 MHz 1200 14000 16.8M 8 32-QAM 672M
15 kHz 20 MHz 1200 14000 16.8M 8 64-QAM 806M
15 kHz 50 MHz 3300 14000 46.2M 8 64-QAM 2217M
30 kHz 100 MHz 3300 28000 92.4M 8 64-QAM 4435M
60 kHz 100 MHz 1650 56000 92.4M 8 64-QAM 4435M
60 kHz 100 MHz 1650 56000 92.4M 16 64-QAM 8870M
60 kHz 200 MHz 3300 56000 184.8M 16 128-QAM 20700M

When it comes to the data rate requirements, we can use the following

I = NrKMbits, (3.23)

where I is the information rate, Nr the total number of resource elements
contained in one second, K number of users, and Mbits the number of bits used
for modulation. Table 3.3 details the information rate for a number of different
scenarios in tabular form2. So, for instance, for a 20 MHz-bandwidth system
using a subcarrier spacing of 15 kHz, with K = 8 users, and 64-Quadrature
Amplitude Modulation (QAM) scheme the information rate I will come down
to 806 Mbps. Cranking up the bandwidth to 100 MHz and subcarrier spacing
to 60 kHz, and leaving the other factors intact, will change the rate to 4,435
Mbps. It is already evident form this investigation that the hardware must
not only be pliant in dealing with the varied number of algorithms, but it also
needs to be performant. This is a subject that merits its own chapter, and that
is the topic that I will flesh out in the one that follows.

2The numbers in the table are chiefly to show the scaling. In reality, the modulation
scheme in some of the cases is probably of a lower order.

34

4
Processing Architecture and Digital

Hardware

D
igital systems have transformed the way we approach life in a dra-
matic fashion. The pace at which more and more1 components could
be put into a chip was so consistent that it was given a law, namely

the Moore’s Law [48, 49]. This fast growth and the accompanying complexity
meant that designs took different paths and fell into certain categories over
time. In this chapter, I will take a brief look into each one, and then select
a combination in order to implement the communication and positioning
efficiently. Before engaging the downward descent into various architectural
techniques, it has to be noted that without proper software support even the
best hardware design falls short2.

4.1 DIFFERENT APPROACHES

In the discussion that follows, I will sift through some of the common
categories that are used to classify hardware architectures according to certain
criteria. Figure 4.1 helps to visualize roughly where in the performance-
flexibility spectrum each of these architectures fall into. But the caveat is that
not every design falls squarely into just one category, and the line between
these categories is blurred, in a way that makes shoehorning a certain design
into one class nigh impossible. Nevertheless, this catalog, amorphous as it
may seem sometimes, assists us in wading through the complex process of
picking the right architecture for the job at hand.

1One could say: Moore and Moore.
2As Michael Kagan, NVIDIA’s CTO elegantly put it: "Without software, chips are

just expensive sand" [50].

35

Application Specific Instruction-set Processors for Massive MIMO Systems

Performance

Flexibility

ASIC

CGRA

FPGA

ASIP

GPP
Progra

mmabl
e

Co
nfi
gu
ra
ble

Figure 4.1: Flexibility vs. performance.

4.1.1 ASIC

An ASIC is a chip that is fully, or partially, customized for a specific applica-
tion, or set of applications. Full-custom ASICs are built from the ground up,
whereas semi-custom ASICs can take advantage of pre-designed functional
blocks, in order to reduce design complexity. Full customization means that
the designers can even go down to the transistor level. The designers choose
the ASIC route if the design specifications put a premium on area and/or
energy efficiency, low latency, high throughput, or a combination of the above.

There exist many ASIC designs that are made to cater to specific areas. The
Tensor Processing Unit (TPU) by Google [51,52] is a custom ASIC with tens of
thousands of small Multiply ACcumulate (MAC) units and a large, software-
managed, on-chip memory, specially tuned for accelerating the inference
phase of Neural Networks (NNs). Since their introduction, there have been
various versions of TPUs with focus on training and inference [53, 54]. FFT
and its inverse are central to many applications, and low-latency requirements
all but make an ASIC implementation mandatory [55]. The decoding process
in MIMO detection is yet another case where a high-throughput ASIC imple-
mentation is a must [56]. Other example ASICs that cover a wide spectrum of
fields include [56, 57].

4.1.2 CONFIGURABLE ARCHITECTURES

As tantalizing as it sounds to utilize ASICs for every design, in practical terms
it is not always feasible, or sometimes even desirable, due to manifold reasons,
inducing the exorbitant costs of designing ASICs, the required knowhow,
and the time-to-market constraints. One middle-ground approach to achieve
acceptable performance while keeping costs low is to use configurable archi-

36

4 Processing Architecture and Digital Hardware

tectures. In these systems the logic, routing, or both are configurable. The
amount of configurability depends on the level of granularity. In systems
like Field-Programmable Gate Arrays (FPGAs) the granularity is low and
down to the bit level, while on the opposite side of the isle sit Coarse-
Grained Reconfigurable Architectures (CGRAs), where huge logic blocks can
be configured to select among a handful of operations. The three prominent
characteristics of CGRAs can be summarized as, domain specific flexibly,
spatial and temporal configurability, and data-driven execution [58].

One could argue that the inception of configurable architectures was mate-
rialized all the way back in the Electronic Numerical Integrator and Computer
(ENIAC) machine [59], which was configured by program switches and
plug-board wirings. Xilinx started the highly-successful FPGA computing
era [60] when they introduced their first product3 [61] in 1985. There are
numerous examples of CGRAs introduced over the years such as MATRIX
[62], in which instruction storage and distribution and data storage and
computation resources are united, Plasticine [63], which is a CGRA with direct
support for parallel patterns, SARA [64], a reconfigurable dataflow accelerator
with distributed memory and more flexible and large-scale datapaths, and
DSAGEN [65], that utilizes a small number of hardware primitives and a
primitive-aware compiler that almost achieves the performance of hand-tuned
programs. Other notable systems can be found in [66–69].

4.1.3 PROGRAMMABLE SYSTEMS

GENERAL-PURPOSE CPU

General-purpose Central Processing Units (CPUs) are a class of digital com-
puting systems that are designed to, in crude terms, handle anything you can
throw at them4. These architectures run by executing commands issued based
on a finite set of instructions5. These instructions can be either very simple
or highly complex, and the proponents of each went on to create two schools
of thought. If the whole Instruction Set Architecture (ISA) is designed based
on simple instructions, the architecture is considered to follow the Reduced
Instruction Set Computer (RISC) principles, and if the machine is composed of
complex instructions mixed in with the simple ones, it is known as Complex
Instruction Set Computer (CISC).

The first RISC machine can be traced back to CDC 6600 [70], designed way
back in 1964, followed by the IBM 801 [71] as the first modern machine that

3Xilinx XC2064, the first commercially viable FPGA.
4Excluding the kitchen sink.
5So, if the processor could speak, the instructions would be its words and the

whole set of instructions its vocabulary.

37

Application Specific Instruction-set Processors for Massive MIMO Systems

ushered in the RISC era, while the CISC machines are as old as Methuselah6

himself, and seem to have been present since the Big Bang! The most
promising RISC architecture today is the RISC-V7 ISA [72, 73], which is an
open ISA8. The battle between the two methodologies raged on for many
years, but due, partly, to the seminal works such as [74], and, mostly, to
their inherent simplicity, the RISC systems proved too much for their CISC
counterparts in the end, and the industry finally settled on the former. This
by no means indicates that CISC is dead; on the contrary, CISC designs are still
alive and kicking. Case in point, the most popular ISA for PCs, workstations
and cloud computing as of 2024 is based on the CISC x86 architecture, with a
software developer’s manual spanning over 5000 pages! [75, 76]. The catch
is that these systems internally translate the complex instructions to their
simpler cousins on the fly, and that is how they coexist peacefully with pure
RISC machines, at least for now.

This category has a wide variety of architectures, but its principal selling
point is its ability to perform any functionality asked by the user accord-
ing to a program, written mostly in high-level languages nowadays. This
extreme flexibility comes at the cost of losing performance, to the the point
that General Purpose Processors (GPPs) pale in comparison to the custom
designs when it comes to performance in a specific task. But this did not
stop researchers and computer architects to try and find ways to amp up
performance through clever techniques such as pipelining, branch prediction,
and exploiting memory hierarchies. Despite these valiant efforts, the domain-
neutral CPU does not hold a candle to architectures that are more conversant
with parallelization of large amounts of compute, as I will show next.

GPU

A Graphics Processing Unit (GPU) is a special from of a CPU that really
shines in applications made specifically to run graphics. But over time these
processors have evolved and are now capable of taking on much more than
just graphics. One distinguishing difference to CPUs is the size of each
processing unit and the number of processing units available on the chip. If
CPUs feature from a few to about a 100 beefy cores, the GPUs can boast core
counts in the thousands9, albeit cores that are skinny by comparison. With

6Noah’s grandfather in the Bible, a patriarchal figure purported to have lived to
the ripe age of 969, the longest ever claimed!

7Pronounced "risk-five".
8Sometimes referred to as an open-source ISA, which is a misnomer, as there is no

source code here. It is just an open architecture specification.
9For instance, NVIDIA’s top-of-the-line GeForce RTX 4090 GPU packs quite a

punch with a whopping 16,384 cores [77].

38

4 Processing Architecture and Digital Hardware

these many processing cores the GPUs can launch thousands of threads of
execution in a so-called Single Instruction Multiple Threads (SIMT) execution
model. SIMT is a close cousin of the SIMD model, where each instruction
is applied to multiple data items at the same time to gain performance at
the cost of area. The many threads endow GPUs with tremendous parallel
processing capabilities, and render10 them a treasure trove of compute power
to tap into for embarrassingly parallel workloads. Therefore, it is no surprise
that the standard-bearer for high-performance computing appearing in all the
top 10 supercomputers in the world is the GPU [78].

ASIP

The final puzzle piece in the programmable processor category is the ASIP.
An ASIP is similar in concept to a general-purpose CPU, with the exception
that it is customized to run certain applications much more efficiently. What
this means is that the processor’s ISA is extended/modified to include instruc-
tions that are usually omitted in a general-purpose architecture, for instance
instructions that are targeted at, and expedite, communications algorithms,
audio/video processing, and machine learning, to name a few. So even
though ASIPs might be able to run any application, that is not their life’s
purpose 11.

Additionally, the software tools that enable designing ASIPs play an impor-
tant role. Not only do they make designing ASIPs easier, but they also provide
the compiler for the designed processor in a process known as compiler-
in-the-loop. This shortens the design time and lowers complexity, as the
designers can focus their efforts on the hardware, while the tool relieves the
hardware designer from the tedium of creating a compatible compiler. Figure
4.2 demonstrates the compiler-in-the-loop concept. The designer provides
a description of the processor’s ISA and microarchitecture, detailing the
available instructions, pipeline structure and functional units in a dedicated
language such as nML [79]. The ASIP Electronic Design Automation (EDA)
tool then generates a compatible compiler tool chain, including the assembler,
linker, debugger, profiler, and instruction-set simulator. The designer then can
use these tools to check correct functionality and desired performance, and if
not satisfied go back and change the processor model, and rinse and repeat.
Finally, when the design meets the criteria, the ASIP tool’s Register Transfer
Level (RTL) generator can be invoked to obtain the processor’s description in

10Pun intended ,.
11When it comes to an ASIP’s worldview, and to take a page from George Orwell’s

Animal Farm: all instructions are equal but some instructions are more equal than
others.

39

Application Specific Instruction-set Processors for Massive MIMO Systems

Processor Model

Instruction
set

ADD SUB MUL

AND OR XOR

LOAD STORE ...

Algorithm (C/C++)

Optimizing C/C++ Compiler

Assmbler Linker

Binary

Debugger
&

Profiler

Instruction
Set

Simulator

RTL Generator

Synthesizable RTL

Figure 4.2: ASIP flow.

a Hardware Description Language (HDL). The design can then be synthesized
and implemented on an FPGA or taped out to be manufactured into a chip.

On the surface it might seem that ASIPs are a new concept, but their origin
can be traced back to the 1980s. The White Dwarf [80] is one of the first of such
application-specific processors that came with a retargetable compiler able to
generate highly parallel and efficient code for the processor. The work in [81]
describes the hardware-software co-design in an ASIP setting, and some more
recent examples can be found in [82, 83]. The notable tools by major silicon
companies are ASIP Designer [84] by Synopsys, Tensilica Xtensa [85] from
Cadence, and Codasip Studio [86] by Codasip. For the proprietary-averse
user, OpenASIP [87, 88] provides an open-source alternative.

4.1.4 HYBRID ARCHITECTURE

Systems nowadays are highly complex, and in order to meet their computa-
tional needs seek help from specialized computing resources. Even though
ASIC architectures fill a niche that hit the efficiency jackpot, sacrificing some
performance in favor of gaining flexibility is more crucial in certain situations.
For instance, in the communications sphere this applies to BSs that need to
support multiple wireless technologies, e.g. LTE, LTE-A, 5G and beyond.
Consequently, a heterogeneous architecture, with a combination of ASIP to
allow programmability and specialized units to attain performance goals, hits
the sweet spot between flexibility and efficiency, and that is the route I have
taken for this work, which will be expounded upon in the upcoming sections.

40

4 Processing Architecture and Digital Hardware

4.2 DESIGN CONSIDERATIONS

The following subsections will touch on some of the factors that help steer us
towards a suitable design.

4.2.1 PROGRAMMABILITY

Did I mention that we are in the golden age of computer architecture with
accelerators paving the way? Yes, I did [7]. But in this volatile field,
fixed-function implementations alone can not cope with the ever-changing
requirements and could become obsolete quickly. I showed in chapter 3 that
there are a variety of algorithms and computational methods that need to
be supported. As a result, flexibility is highly prized [89], and algorithm-
hardware co-design methodology provides a satisfactory answer, with ASIPs
as a convenient vehicle to facilitate this process [90]. The resulting hardware
is flexible enough to run different programs at a high abstraction level (e.g. C
language), and adapt to the vagaries of the field, and at the same time it can
benefit from fixed-function units by integrating it seamlessly with the rest of
the processor. Therefore, a RISC architecture with some CISC enhancements
fits the bill perfectly.

4.2.2 ACCELERATION AND DATA-LEVEL PARALLELISM

Even though flexibility is an important factor in allowing the design to
adapt itself to disparate circumstances, there are tasks that lend themselves
to customized architectures that lean towards more hardwired functionality.
As I demonstrated in the preceding chapters, matrix computations feature
prominently in the algorithms encountered in communications and position-
ing applications. Giving some of the key operations such as GEMM, SVD,
and CNN special treatment, by executing them on dedicated customized
units, will be highly beneficial. As a result, the processor can gear itself
with a systolic array to expedite GEMM, an SVD accelerator to tackle the
SVD factorization, and a CNN module to cater to the demands of CNN
computations. All of these units compensate the loss in programmability with
commensurate gain in performance, and on top of that, they are kept visible to
the programmer through compiler intrinsics12 that allow easy access in code
and the chance to configure the said units.

Many of the algorithms discussed up to this point show inherent data-level
parallelism. The SIMD execution model is a good fit to exploit this parallelism,

12Intrinsics are hardware-aware functions in a high-level programming language
that allow developers to directly access low-level machine instructions or processor
features.

41

Application Specific Instruction-set Processors for Massive MIMO Systems

and can be made to work very well inside a processor pipeline. Exposing the
SIMD parallelism in the programming model13 of the ASIP platform is pretty
straightforward. In this model the overhead of instruction fetch and dispatch
is amortized over multiple data items. Due to its versatility, I have used it in
the implementation of the ASIP itself as well as the accelerators attached to
the processor. The sub-sections under the microarchitecture section will take
a peek at the details of the implementation.

4.2.3 MEMORY ACCESS PATTERNS

Manipulating a matrix requires access to its elements, which sometimes
manifests itself as access to multiple elements at the same time, most notably
in the form of rows, columns and diagonals. Now, when it comes to hardware,
every access has a cost, and having fast and uniform access to any row,
column, or diagonal of a matrix is not only desirable, but essential.

In order to attain a better grasp of the impact of the different operations
required in massive MIMO baseband processing on access patterns. These
operations, along with the required access patterns, are listed in Table 4.1.
Keeping this in mind, the designed hardware must be able to aggregate access
to multiple elements in as few cycles as possible. In order to realize this, a
dedicated memory unit is developed that, in cooperation with the compiler,
brings visibility to the programmer, as discussed in the microarchitecture
section.

Table 4.1: Different operations in massive MIMO processing and the needed
access modes.

Operation Access modes

HH H Row

HH H + αI Row, Diagonal

(HH H + αI)−1 Row, Diagonal, Column

General matrix multiplication Row or Column

SVD Row, column and diagonal

4.3 MICROARCHITECTURE

Now it is time to put the points that I discussed above into practice. I will
start with the ASIP itself as the focal architectural point, with the rest of the

13Refer to chapter one.

42

4 Processing Architecture and Digital Hardware

Table 4.2: Design considerations and requirement.

Tasks Flexibility Parallelism Memory access

efficiency

Detection ZF, MMSE, MR SIMD, partial SIMD, Medium

Cholesky, QRD, ... element-wise

GEMM Matrix size SIMD High

(#antennas, #users)

2D FFT Matrix size SIMD High

(#antennas, #subcarriers)

SVD Matrix size SIMD, partial SIMD, Medium

element-wise

CNN Layer structure Mostly SIMD High

units revolving around it. For this I am going to use the processors presented
in papers IV and V as examples. Table 4.2 maps the tasks that need to be
carried out to the different design considerations and requirements. Armed
with this information, the detection process, due to its higher flexibility
requirements and less efficient access patterns, can avail itself of the more
malleable ASIP, while the other tasks can subscribe to configurable or fixed-
function accelerators, in order to bring the full power of the processor to bear.
With this analysis in mind, I will put on my hardware designer hat, and, in
what follows, look at the proposed architectural details.

4.3.1 THE ASIP

Figure 4.3 diagrams the bird’s-eye view of the processor and the accompa-
nying accelerators and memories, with the supportive connective tissue. The
ASIP was designed with the ASIP Designer [84] tool from Synopsys, and is
based on the up-and-coming RISC-V architecture. But the baseline RISC-V is
not up to par with the computational demands of the algorithms we have seen
so far, and as a result, the processor comes equipped with a 16-wide SIMD
vector core. This core has its own vector register file and execution pipeline,
and has enough accessories to make it able to support the kernel operations
that I tabulated in Table 3.1.

This vector core amplifies the processing capabilities of the processor, but
it falls short to satiate all the computational demands. Thankfully, the more
customized units come to the rescue, in the form of a 16 × 16 systolic array
and an SVD accelerator, that significantly boost the processor’s matrix-related

43

Application Specific Instruction-set Processors for Massive MIMO Systems

RISC-V Core

Instruction
Memory

Data
Memory

JTAG Programmer

Debug
Client

Vector Core
(16-wide SIMD)

Memory
Controller

Vector Memory

SVD
Accelerator

Systolic
Array

Vector
Register

File

Scalars

S
IM
D

A
LU

Sum

conjugate

index

broadcast

ID EX1 EX2 WB

Figure 4.3: 1000-foot view of the ASIP.

performance. Finally, all of these additions to the processor would be utterly
useless if the memory subsystem was not able to follow suit. To remedy this,
a memory controller and parallel memory unit cooperate with the processor
and the accelerators to facilitate fast access to matrix elements.

4.3.2 MULTI-ACCESS-MODE PARALLEL VECTOR MEMORY

I already established that we want swift access to multiple matrix elements to
efficiently perform calculations. To make this a reality, a multi-access-mode
parallel vector memory [91] is provided in hardware that enables one-cycle
access to a row/column/main diagonal of a matrix. This is accomplished
by utilizing many banks in the vector memory, which are straddled by data
shufflers, as sketched out in Figure 4.4. The memory controller takes the role
of an arbiter that mediates between the different units that vie for access to the
memory. The input data shuffler swizzles the incoming vector elements based
on the requested access mode (row/column/diagonal) for memory writes,
and the output shuffler does the same thing for memory reads. In case of
16 memory banks this setup enables one-cycle access to a row, column or the
main diagonal of a 16 × 16 matrix. For bigger matrices an extra cycle is added
for each 16-element packet.

44

4 Processing Architecture and Digital Hardware

v0 v1 v15v14

Bank 0

Mode

Mode
Input Data Shuffler

Output Data Shuffler

Bank 1 Bank 14 Bank 15

v0 v1 v15v14

v0 v1 v15v14v0 v1 v15v14

Mode

SVD address

Memory Controller

Mode

Systolic address

Mode

Core address

SVD data

Systolic data

Core data

A
dd

re
ss

0

1

14
15

Figure 4.4: Parallel vector memory subsystem.

4.3.3 ACCELERATORS

As mentioned previously, the accelerators can aid the processor to take on
heavier workloads. The SVD accelerator [42] for instance, is designed to speed
up the SVD factorization and supports 8 × 8 and 16 × 16 complex-valued
single-precision floating-point matrices. The large dynamic range provided
by the floating-point representation makes the system more malleable when
it comes to precision requirements. The data-level parallelism inherent in the
two-phase GK algorithm dovetails nicely with the SIMD model, and hence
provides a fertile ground for exploitation. This is manifested in the first phase
by bi-diagonalizing the input matrix using Householder transformations,
which is subsequently followed by a diagonalization phase involving the
iterative application of Givens rotations until the singular values converge.

The affinity of the GK algorithm to vector arithmetic makes it a suitable
candidate for SIMD implementation. Figure 4.5 captures the innards of the
accelerator that adjoins the ASIP to keep a rein on the complexity of the SVD
algorithm. In order to cache14 the currently worked-on values, the accelerator
has its own vector register and a scalar register buffers. Both phases of the GK
algorithm are choreographed by a scheduler, which is a Finite State Machine
(FSM) that is cajoled into action by the programmer in C code. The vector and

14Cache, also known as "little brain attic" as Sherlock Holmes put it: "A man should
keep his little brain attic stocked with all the furniture that he is likely to use, and the
rest he can put away in the lumber-room of his library, where he can get it if he wants
it" [92].

45

Application Specific Instruction-set Processors for Massive MIMO Systems

Vector Registers Scalar
Registers

re
ad

 d
at

a

w
rit

e
da

ta

m
od

e

Vector Selector

SVD

Scheduler

index
[]

to Memory Controller

+ Scalar Selector-*

fr
om

 c
us

to
m

 in
st

ru
ct

io
ns

1*+-a2+b2

Figure 4.5: SVD accelerator.

scalar components comprising the datapath are the engines that support the
required atomic operations, such as the square root and its inverse. The FSM
dictates the flow of data between the different modules by picking the relevant
data from the buffers, and steering them toward the appropriate datapath
components. The SVD accelerator has a direct line of contact with the vector
memory to make sure it does not starve for data.

The systolic array serves as another example of an accelerator that can tackle
GEMM in a much more performant manner. The enlisted 16 × 16 array
has a total of 256 Processing Elements (PEs) or cells15, fully embracing the
SIMD model of execution. Each PE is furnished with a MAC and internal
storage, and the data marshaling is controlled in hardware by a programmer-
facing scheduler. Custom instructions are used to get the accelerator off the
ground running, by supplying matrix addresses and multiplication type to the
scheduler, which then takes over to orchestrate the dataflow fully in-silicon.

The accelerators covered here are but mere examples. The ASIP can cooper-
ate with a menagerie of accelerators as the need arises. For instance, the idea
of using the CSI for positioning purposes has been explored before [93, 94].
The work in [95] presents a CNN module that uses CSI-based positioning and
paper V incorporates that module in a mixed-datatype system with multiple
vector memories.

15The term "cell" was coined by Robert Hooke since the organism reminded him of
the monks’ living quarters. In our scenario they look anything but.

46

4 Processing Architecture and Digital Hardware

Table 4.3: Throughput for the developed ASIP, for a system with the
dimension of 128×16, utilizing the ZF algorithm and OFDM, running at 800

MHz.

System dimension 128×16

UE speed [km/h] 5 50 100

System Parameters

Coherence bandwidth nb [#subcarriers] 16 16 16

Coherence time [ms] 7.2 0.73 0.36

Coherence time nt [#OFDM symbols] 100 10 5

ASIP Performance

Clock cycles to detect nbnt 39.7k 5.8k 3.9k

Calculation time to detect nbnt [µs] 49.6 7.2 4.9

Throughput [Gb/s] 3.1 2.1 1.5

4.4 REQUIREMENTS AND PERFORMANCE EVALUATION

Section 3.3 in chapter 4 outlined the requirements from a system standpoint.
Here I supply what the ASIP can do in terms of throughput. Table 4.3 shows16

the ASIP capabilities in terms of detection throughput for a massive MIMO
system with 128 antennas serving 16 UEs for ZF. The ASIP has the raw
processing power of churning out 320k inversions/s, and by juxtaposing this
number with those of the system requirements in Table 3.2, we can see that
one ASIP can readily handle the task for a system operating in a 20 MHz
bandwidth. For a much wider bandwidth of 100 MHz, multiple ASIPs need
to be employed to be up to the mark.

16For a more complete analysis look up paper V.

47

5
Conclusion and the Path Ahead

I
n this thesis I made a case for using ASIPs as the bedrocks on
which future digital wireless processing systems are built upon. The
guidelines for DSA design, as mentioned in the outset in chapter

1, championed the use of dedicated memories, emphasized compute over
fancy architectural constructs, asked for exposing the parallelism to the
programming model, encouraged the use of customized data types, and
espoused the use of domain-specific languages to ease the burden of porting
the application. This set of guidelines is in line with the algorithm-hardware
codesign methodology, which is perhaps the only viable way left to computer
architects to squeeze every drop of performance out of the machines they
design.

In chapters 2 and 3 I introduced the principles on which communications
systems rely on and I listed the applications of future wireless systems and
their concomitant requirements. The algorithms that make these systems tick
were given central stage, and their constituent parts were laid bare. I then
went a few rungs further down the ladder to break apart the algorithms
into kernel operations that any system worth its salt must support. Finally, I
capped things off by listing the system requirements.

I demonstrated that the ASIP flow lifts the hassle of compiler design and
maintenance, while bringing the much-vaunted programmability to the table.
This flexibility is crucial, as the algorithms and computations that need to
be supported in current and future wireless systems cover a broad spectrum.
But I also brought up the fact that modern designs rarely fall into a distinct
category, and ASIPs are no exception to that rule. Consequently, heavier
computational tasks can be siphoned off to accelerators as offload engines that
can sit amicably alongside their ASIP guardians. In light of this, in chapter

49

Application Specific Instruction-set Processors for Massive MIMO Systems

4 I peered beneath the microarchitecture of an example ASIP paired with
accelerators and custom memory subsystem to drive the point home.

5.1 THE PATH AHEAD

So, in this thesis I poked and prodded at the ASIPs and tried to convince
the reader that, allied with accelerators, they earn their keep as vessels to
navigate through the maze of algorithms. That said, there is a lot of work left
to be done, and here I enumerate some of the most pressing ones that I think
warrant some extra discussion.

• The ML models are getting bigger and more varied as time goes by. The
CNN accelerator presented in Paper I is not able to cater to this wide
range of models in its current incarnation. Therefore, I think it might
be beneficial to trade off some performance in favor of flexibility by
creating a tighter interaction between the ASIP and the accelerator. This
can perhaps be achieved by paring down the accelerator into parallel
primitive units, and deciding in code how those units are engaged.

• The SVD accelerator proposed in Paper III currently supports only 32-
bit floating-point numbers. It would be interesting to try out reduced-
precision flavors and measure their impact. Furthermore, the accelera-
tor is currently optimized for matrix sizes equal to or smaller than 16 ×
16. It could stand to benefit from a redesign to make it able to support
bigger matrix sizes.

• The designs that I covered in this thesis concern themselves with
positioning and communications scenarios. Another application that
warrants attention is sensing, which is going to be crucial in automated
systems and monitoring settings.

• One avenue of research could be the investigation of multiple-core
ASIP designs, with heterogeneous cores featuring disparate accelerators
and compute capabilities. This would be a much more challenging
endeavor, but tools such as ASIP Designer can prove to be useful allies
in bringing the problem to heel.

50

Bibliography

[1] I. Ghotbi, “Reconfigurable Receiver Front-Ends for Advanced Telecom-
munication Technologies,” Doctoral Thesis (compilation). ISBN 978-91-
8039-861-9 Oct. 2023.

[2] J. Bolhuis, I. Tattersall, N. Chomsky, and R. Berwick, “How Could
Language Have Evolved?” PLoS Biology, 2014. doi: 10.1371/jour-
nal.pbio.1001934

[3] C. E. Shannon, “A mathematical theory of communication,” The Bell Sys-
tem Technical Journal, vol. 27, no. 3, pp. 379–423, 1948. doi: 10.1002/j.1538-
7305.1948.tb01338.x

[4] 3GPP, “Base Station (BS) radio transmission and reception (3GPP TS
38.104 version 18.6.0 Release 18),” 3GPP, Tech. Rep. ETSI TS 138 104
V18.6.0 (2024-08), 2024.

[5] E. Dahlman, S. Parkvall, and J. Skold, 5G NR: The Next Generation Wireless
Access Technology, 1st ed. USA: Academic Press, Inc., 2018. ISBN
0128143231

[6] H. Holma, H. Viswanathan, and P. Mogensen. (2021) Extreme massive
MIMO for macro cell capacity boost in 5G-Advanced and 6G. [Online].
Available: https://onestore.nokia.com/asset/210786

[7] J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” Commun. ACM, vol. 62, no. 2, pp. 48–60, jan 2019. doi:
10.1145/3282307. [Online]. Available: https://doi.org/10.1145/3282307

[8] J. L. Hennessy and D. A. Patterson, Computer Architecture, Sixth Edition:
A Quantitative Approach, 6th ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2017. ISBN 0128119055

51

https://onestore.nokia.com/asset/210786
https://doi.org/10.1145/3282307

Application Specific Instruction-set Processors for Massive MIMO Systems

[9] M. Pellauer, Y. S. Shao, J. Clemons, N. Crago, K. Hegde, R. Venkatesan,
S. W. Keckler, C. W. Fletcher, and J. Emer, “Buffets: An efficient and
composable storage idiom for explicit decoupled data orchestration,” in
Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASPLOS
’19. New York, NY, USA: Association for Computing Machinery,
2019. doi: 10.1145/3297858.3304025. ISBN 9781450362405 pp. 137–151.
[Online]. Available: https://doi.org/10.1145/3297858.3304025

[10] “The bfloat16 numerical format.” [Online]. Available: https://cloud.
google.com/tpu/docs/bfloat16

[11] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe, “Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing
pipelines,” SIGPLAN Not., vol. 48, no. 6, pp. 519–530, jun
2013. doi: 10.1145/2499370.2462176. [Online]. Available: https:
//doi.org/10.1145/2499370.2462176

[12] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems,” 2015, software available
from tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[13] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot
et al., “Mastering the Game of Go with Deep Neural Networks and
Tree Search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016. doi:
10.1038/nature16961

[14] S. Ha and J. Teich, Handbook of Hardware-Software Codesign, 1st ed.
Springer Publishing Company, Incorporated, 2017. ISBN 9401772681

[15] D. Liu, Embedded DSP Processor Design: Application Specific Instruction Set
Processors. Morgan Kaufmann, 2008.

[16] G. Box, “Science and Statistics,” Journal of the American Sta-
tistical Association, vol. 71, no. 356, pp. 791–799, 1976. doi:
10.1080/01621459.1976.10480949

[17] R. L.Haupt, Wireless Communications Systems. John Wiley and Sons, Inc,
2020.

[18] C. Cox, An Introduction to 5G. John Wiley and Sons Ltd, 2021.

[19] T. L. Marzetta, “Noncooperative Cellular Wireless with Unlimited
Numbers of Base Station Antennas,” IEEE Transactions on Wire-
less Communications, vol. 9, no. 11, pp. 3590–3600, 2010. doi:
10.1109/TWC.2010.092810.091092

52

https://doi.org/10.1145/3297858.3304025
https://cloud.google.com/tpu/docs/bfloat16
https://cloud.google.com/tpu/docs/bfloat16
https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1145/2499370.2462176
https://www.tensorflow.org/

References

[20] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive
MIMO for next generation wireless systems,” IEEE Communications Mag-
azine, vol. 52, no. 2, pp. 186–195, 2014. doi: 10.1109/MCOM.2014.6736761

[21] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors,
and F. Tufvesson, “Scaling Up MIMO: Opportunities and Challenges
with Very Large Arrays,” IEEE Signal Processing Magazine, vol. 30, no. 1,
pp. 40–60, 2013. doi: 10.1109/MSP.2011.2178495

[22] E. Björnson, E. G. Larsson, and T. L. Marzetta, “Massive MIMO: ten
myths and one critical question,” IEEE Communications Magazine, vol. 54,
no. 2, pp. 114–123, 2016. doi: 10.1109/MCOM.2016.7402270

[23] H. Yang and T. L. Marzetta, “Energy Efficient Design of Massive MIMO:
How Many Antennas?” in 2015 IEEE 81st Vehicular Technology Conference
(VTC Spring), 2015. doi: 10.1109/VTCSpring.2015.7145809 pp. 1–5.

[24] S. Hu, F. Rusek, and O. Edfors, “Beyond Massive MIMO: The Potential
of Data Transmission With Large Intelligent Surfaces,” IEEE Transac-
tions on Signal Processing, vol. 66, no. 10, pp. 2746–2758, 2018. doi:
10.1109/TSP.2018.2816577

[25] R. W. Chang, “Synthesis of band-limited orthogonal signals for mul-
tichannel data transmission,” The Bell System Technical Journal, vol. 45,
no. 10, pp. 1775–1796, 1966. doi: 10.1002/j.1538-7305.1966.tb02435.x

[26] S. Weinstein and P. Ebert, “Data Transmission by Frequency-Division
Multiplexing Using the Discrete Fourier Transform,” IEEE Transactions
on Communication Technology, vol. 19, no. 5, pp. 628–634, 1971. doi:
10.1109/TCOM.1971.1090705

[27] REINDEER. (2021) REINDEER deliverable D1.1: Use case-driven
specifications and technical re-quirements and initial channel model.
[Online]. Available: https://doi.org/10.5281/zenodo.5561844

[28] S. Research. 6G The Next Hyper Connected Experience for All. [Online].
Available: https://cdn.codeground.org/nsr/downloads/researchareas/
20201201_6G_Vision_web.pdf

[29] H. Viswanathan and P. E. Mogensen, “Communications in the 6G
Era,” IEEE Access, vol. 8, pp. 57 063–57 074, 2020. doi: 10.1109/AC-
CESS.2020.2981745

[30] E. W. Dijkstra. (1982) Why numbering should start at zero.
[Online]. Available: https://www.cs.utexas.edu/~EWD/transcriptions/
EWD08xx/EWD831.html

[31] W. Gander, Algorithms for the QR decomposition, ser. Seminar für
Angewandte Mathematik: Research report, 1980. [Online]. Available:
https://books.google.se/books?id=G_UecgAACAAJ

53

https://doi.org/10.5281/zenodo.5561844
https://cdn.codeground.org/nsr/downloads/researchareas/20201201_6G_Vision_web.pdf
https://cdn.codeground.org/nsr/downloads/researchareas/20201201_6G_Vision_web.pdf
https://www.cs.utexas.edu/~EWD/transcriptions/EWD08xx/EWD831.html
https://www.cs.utexas.edu/~EWD/transcriptions/EWD08xx/EWD831.html
https://books.google.se/books?id=G_UecgAACAAJ

Application Specific Instruction-set Processors for Massive MIMO Systems

[32] D. S. Watkins, Fundamentals of matrix computations. USA: John Wiley and
Sons, Inc., 1991. ISBN 0471614149

[33] L. N. Trefethen and D. Bau, Numerical Linear Algebra. SIAM, 1997. ISBN
0898713617

[34] M. Attari, L. Ferreira, L. Liu, and S. Malkowsky, “An Application
Specific Vector Processor for Efficient Massive MIMO Processing,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 9, pp.
3804–3815, 2022. doi: 10.1109/TCSI.2022.3182483

[35] S. Malkowsky, “Massive mimo: Prototyping, proof-of-concept and im-
plementation,” Doctoral Thesis (monograph). ISBN 978-91-7895-115-4
Apr. 2019.

[36] D. Wubben, R. Bohnke, V. Kuhn, and K.-D. Kammeyer, “MMSE extension
of V-BLAST based on sorted QR decomposition,” in 2003 IEEE 58th
Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484),
vol. 1, 2003. doi: 10.1109/VETECF.2003.1285069 pp. 508–512 Vol.1.

[37] J. Rodríguez Sánchez, F. Rusek, O. Edfors, and L. Liu, “Distributed and
Scalable Uplink Processing for LIS: Algorithm, Architecture, and Design
Trade-Offs,” IEEE Transactions on Signal Processing, vol. 70, pp. 2639–2653,
2022. doi: 10.1109/TSP.2022.3171094

[38] J. Rodríguez Sánchez, F. Rusek, O. Edfors, M. Sarajlić, and L. Liu,
“Decentralized Massive MIMO Processing Exploring Daisy-Chain Archi-
tecture and Recursive Algorithms,” IEEE Transactions on Signal Processing,
vol. 68, pp. 687–700, 2020. doi: 10.1109/TSP.2020.2964496

[39] J. Rodríguez Sánchez, “Systems with Massive Number of Antennas:
Distributed Approaches,” Doctoral Thesis (compilation). ISBN 978-91-
8039-228-0 2022.

[40] S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering: Machine
Learning, Dynamical Systems, and Control. Cambridge University Press,
2019, ch. 1.

[41] J. Chen and V. K. N. Lau, “Multi-stream iterative SVD for massive MIMO
communication systems under time varying channels,” in 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2014. doi: 10.1109/ICASSP.2014.6854181 pp. 3152–3156.

[42] M. Attari, J. R. Sánchez, and L. Liu, “A Floating-Point 16 × 16 SVD Ac-
celerator for Beyond-5G Large Intelligent Surfaces,” in IEEE International
Midwest Symposium on Circuits and Systems, 2023. doi: 10.1109/MWS-
CAS57524.2023.10406077 pp. 967–971.

54

References

[43] M. Narwaria and W. Lin, “SVD-Based Quality Metric for Image and
Video Using Machine Learning,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 42, no. 2, pp. 347–364, 2012. doi:
10.1109/TSMCB.2011.2163391

[44] G. E. Forsythe and P. Henrici, “The Cyclic Jacobi Method for Computing
the Principal Values of a Complex Matrix,” Transactions of the American
Mathematical Society, vol. 94, no. 1, pp. 1–23, 1960.

[45] G. Golub and W. Kahan, “Calculating the Singular Values and
Pseudo-Inverse of a Matrix,” Journal of the Society for Industrial
and Applied Mathematics Series B Numerical Analysis, vol. 2, no. 2,
pp. 205–224, 1965. doi: 10.1137/0702016. [Online]. Available: https:
//doi.org/10.1137/0702016

[46] G. H. Golub and C. F. van Loan, Matrix Computations, 4th ed. The
Johns Hopkins University Press, 2013, pp. 486–494. ISBN 1421407949
9781421407944

[47] W. Givens, “Computation of Plain Unitary Rotations Transforming
a General Matrix to Triangular Form,” Journal of the Society for
Industrial and Applied Mathematics, vol. 6, no. 1, pp. 26–50, 1958. doi:
10.1137/0106004. [Online]. Available: https://doi.org/10.1137/0106004

[48] G. E. Moore, “Cramming more components onto integrated circuits,
reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114
ff.” IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 33–35,
2006. doi: 10.1109/N-SSC.2006.4785860

[49] G. E. Moore, “Progress in digital integrated electronics [Technical literai-
ture, Copyright 1975 IEEE. Reprinted, with permission. Technical Digest.
International Electron Devices Meeting, IEEE, 1975, pp. 11-13.],” IEEE
Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 36–37, 2006. doi:
10.1109/N-SSC.2006.4804410

[50] P. Brans, “Nvidia’s Michael Kagan: Building on AI’s "iPhone
Moment" to Architect Data Processing’s Future,” EE Times Europe, pp.
11–12, November 2023. [Online]. Available: https://www.eetimes.eu/
ee-times-europe-magazine-november-2023/

[51] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter perfor-
mance analysis of a tensor processing unit,” in 2017 ACM/IEEE 44th
Annual International Symposium on Computer Architecture (ISCA), 2017. doi:
10.1145/3079856.3080246 pp. 1–12.

55

https://doi.org/10.1137/0702016
https://doi.org/10.1137/0702016
https://doi.org/10.1137/0106004
https://www.eetimes.eu/ee-times-europe-magazine-november-2023/
https://www.eetimes.eu/ee-times-europe-magazine-november-2023/

Application Specific Instruction-set Processors for Massive MIMO Systems

[52] N. P. Jouppi, C. Young, N. Patil, and D. Patterson, “A domain-specific
architecture for deep neural networks,” Commun. ACM, vol. 61,
no. 9, pp. 50–59, aug 2018. doi: 10.1145/3154484. [Online]. Available:
https://doi.org/10.1145/3154484

[53] N. Jouppi, G. Kurian, S. Li, P. Ma, R. Nagarajan, L. Nai,
N. Patil, S. Subramanian, A. Swing, B. Towles et al., “TPU v4:
An Optically Reconfigurable Supercomputer for Machine Learning
with Hardware Support for Embeddings,” in Proceedings of the 50th
Annual International Symposium on Computer Architecture, ser. ISCA ’23.
New York, NY, USA: Association for Computing Machinery, 2023.
doi: 10.1145/3579371.3589350. ISBN 9798400700958. [Online]. Available:
https://doi.org/10.1145/3579371.3589350

[54] N. P. Jouppi, D. Hyun Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,
G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma et al., “Ten Lessons From Three
Generations Shaped Google’s TPUv4i : Industrial Product,” in 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), 2021. doi: 10.1109/ISCA52012.2021.00010 pp. 1–14.

[55] M. Mahdavi, O. Edfors, V. Öwall, and L. Liu, “A Low Latency FFT/IFFT
Architecture for Massive MIMO Systems Utilizing OFDM Guard Bands,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 7,
pp. 2763–2774, 2019. doi: 10.1109/TCSI.2019.2896042

[56] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bolcskei, “VLSI implementation of MIMO detection using the sphere
decoding algorithm,” IEEE Journal of Solid-State Circuits, vol. 40, no. 7, pp.
1566–1577, 2005. doi: 10.1109/JSSC.2005.847505

[57] M. Kuhn, S. Moser, O. Isler, F. Gurkaynak, A. Burg, N. Felber, H. Kaeslin,
and W. Fichtner, “Efficient ASIC implementation of a real-time depth
mapping stereo vision system,” in 2003 46th Midwest Symposium on
Circuits and Systems, vol. 3, 2003. doi: 10.1109/MWSCAS.2003.1562575
pp. 1478–1481 Vol. 3.

[58] L. Liu, J. Zhu, Z. Li, Y. Lu, Y. Deng, J. Han, S. Yin, and
S. Wei, “A Survey of Coarse-Grained Reconfigurable Architecture and
Design: Taxonomy, Challenges, and Applications,” ACM Comput. Surv.,
vol. 52, no. 6, oct 2019. doi: 10.1145/3357375. [Online]. Available:
https://doi.org/10.1145/3357375

[59] H. Goldstine and A. Goldstine, “The Electronic Numerical Integrator and
Computer (ENIAC),” IEEE Annals of the History of Computing, vol. 18,
no. 1, pp. 10–16, 1996. doi: 10.1109/85.476557

56

https://doi.org/10.1145/3154484
https://doi.org/10.1145/3579371.3589350
https://doi.org/10.1145/3357375

References

[60] S. M. Trimberger, “Three Ages of FPGAs: A Retrospective on the First
Thirty Years of FPGA Technology,” Proceedings of the IEEE, vol. 103, no. 3,
pp. 318–331, 2015. doi: 10.1109/JPROC.2015.2392104

[61] W. S. Carter, I. Duong, R. R. Freman, H. Hsieh, J. Y. Ja, J. E. Mahoney, N. T.
Ngo, and S. L. Sac, “A user programmable reconfigurable logic array,”
1986. [Online]. Available: https://api.semanticscholar.org/CorpusID:
60420567

[62] Mirsky and DeHon, “MATRIX: a reconfigurable computing architecture
with configurable instruction distribution and deployable resources,”
in 1996 Proceedings IEEE Symposium on FPGAs for Custom Computing
Machines, 1996. doi: 10.1109/FPGA.1996.564808 pp. 157–166.

[63] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis,
A. Pedram, C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfig-
urable architecture for parallel patterns,” in 2017 ACM/IEEE 44th An-
nual International Symposium on Computer Architecture (ISCA), 2017. doi:
10.1145/3079856.3080256 pp. 389–402.

[64] Y. Zhang, N. Zhang, T. Zhao, M. Vilim, M. Shahbaz, and K. Oluko-
tun, “SARA: Scaling a Reconfigurable Dataflow Accelerator,” in 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), 2021. doi: 10.1109/ISCA52012.2021.00085 pp. 1041–1054.

[65] J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, and T. Nowatzki, “DSAGEN:
Synthesizing Programmable Spatial Accelerators,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA),
2020. doi: 10.1109/ISCA45697.2020.00032 pp. 268–281.

[66] B. Bougard, B. De Sutter, S. Rabou, D. Novo, O. Allam, S. Dupont, and
L. Van der Perre, “A Coarse-Grained Array based Baseband Processor
for 100Mbps+ Software Defined Radio,” in 2008 Design, Automation and
Test in Europe, 2008. doi: 10.1109/DATE.2008.4484763 pp. 716–721.

[67] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi et al., “A configurable
cloud-scale DNN processor for real-time AI,” in Proceedings of the 45th
Annual International Symposium on Computer Architecture, ser. ISCA ’18.
IEEE Press, 2018. doi: 10.1109/ISCA.2018.00012. ISBN 9781538659847
pp. 1–14. [Online]. Available: https://doi.org/10.1109/ISCA.2018.00012

[68] C. Kim, M. Chung, Y. Cho, M. Konijnenburg, S. Ryu, and J. Kim, “ULP-
SRP: Ultra low power Samsung Reconfigurable Processor for biomedical
applications,” in 2012 International Conference on Field-Programmable Tech-
nology, 2012. doi: 10.1109/FPT.2012.6412157 pp. 329–334.

57

https://api.semanticscholar.org/CorpusID:60420567
https://api.semanticscholar.org/CorpusID:60420567
https://doi.org/10.1109/ISCA.2018.00012

Application Specific Instruction-set Processors for Massive MIMO Systems

[69] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris, M. Schuette,
and A. Saidi, “The reconfigurable streaming vector processor (RSVP/spl
trade/),” in Proceedings. 36th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, 2003. MICRO-36., 2003. doi: 10.1109/MI-
CRO.2003.1253190 pp. 141–150.

[70] J. E. Thornton, “Parallel operation in the control data 6600,” in
Proceedings of the October 27-29, 1964, Fall Joint Computer Conference,
Part II: Very High Speed Computer Systems, ser. AFIPS ’64 (Fall, part
II). New York, NY, USA: Association for Computing Machinery, 1964.
doi: 10.1145/1464039.1464045. ISBN 9781450378888 pp. 33–40. [Online].
Available: https://doi.org/10.1145/1464039.1464045

[71] G. Radin, “The 801 minicomputer,” in Proceedings of the First International
Symposium on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS I. New York, NY, USA: Association
for Computing Machinery, 1982. doi: 10.1145/800050.801824. ISBN
0897910664 pp. 39–47. [Online]. Available: https://doi.org/10.1145/
800050.801824

[72] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, “The
RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 2.0,”
Tech. Rep. UCB/EECS-2014-54, May 2014. [Online]. Available: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

[73] A. Waterman, “Design of the RISC-V Instruction Set Architecture,”
Ph.D. dissertation, EECS Department, University of California, Berkeley,
Jan 2016. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2016/EECS-2016-1.html

[74] D. A. Patterson and D. R. Ditzel, “The case for the reduced instruction
set computer,” SIGARCH Comput. Archit. News, vol. 8, no. 6, pp.
25–33, oct 1980. doi: 10.1145/641914.641917. [Online]. Available:
https://doi.org/10.1145/641914.641917

[75] Intel. (2024) Intel 64 and IA-32 Architectures Software Developer
Manuals. [Online]. Available: https://www.intel.com/content/www/
us/en/developer/articles/technical/intel-sdm.html

[76] Intel. (2024) Intel 64 and IA-32 Architectures Software Developer’s
Manual Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and
4. [Online]. Available: https://cdrdv2.intel.com/v1/dl/getContent/
671200

[77] NVIDIA. (2023) NVIDIA ADA GPU ARCHITECTURE. [Online]. Avail-
able: https://images.nvidia.com/aem-dam/Solutions/Data-Center/l4/
nvidia-ada-gpu-architecture-whitepaper-V2.02.pdf

58

https://doi.org/10.1145/1464039.1464045
https://doi.org/10.1145/800050.801824
https://doi.org/10.1145/800050.801824
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html
https://doi.org/10.1145/641914.641917
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://images.nvidia.com/aem-dam/Solutions/Data-Center/l4/nvidia-ada-gpu-architecture-whitepaper-V2.02.pdf
https://images.nvidia.com/aem-dam/Solutions/Data-Center/l4/nvidia-ada-gpu-architecture-whitepaper-V2.02.pdf

References

[78] E. Strohmaier, J. Dongarra, H. Simon, M. Meuer, and H. Meuer. (2024)
Top 500 - The List. [Online]. Available: https://top500.org/

[79] A. Fauth, J. Van Praet, and M. Freericks, “Describing instruction set pro-
cessors using nML,” in Proceedings the European Design and Test Conference.
ED and TC 1995, 1995. doi: 10.1109/EDTC.1995.470354 pp. 503–507.

[80] A. Wolfe, M. Breternitz, C. Stephens, A. Ting, D. Kirk, R. Bianchini,
and J. Shen, “The White Dwarf: a high-performance application-specific
processor,” in [1988] The 15th Annual International Symposium on Computer
Architecture. Conference Proceedings, 1988. doi: 10.1109/ISCA.1988.5231
pp. 212–222.

[81] M. Gschwind, “Instruction set selection for ASIP design,” in Proceed-
ings of the Seventh International Workshop on Hardware/Software Codesign
(CODES’99) (IEEE Cat. No.99TH8450), 1999. doi: 10.1145/301177.301187
pp. 7–11.

[82] Q. Dinh, D. Chen, and M. D. F. Wong, “Efficient ASIP design
for configurable processors with fine-grained resource sharing,”
in Proceedings of the 16th International ACM/SIGDA Symposium
on Field Programmable Gate Arrays, ser. FPGA ’08. New York,
NY, USA: Association for Computing Machinery, 2008. doi:
10.1145/1344671.1344687. ISBN 9781595939340 pp. 99–106. [Online].
Available: https://doi.org/10.1145/1344671.1344687

[83] Shahabuddin, Shahriar and Mämmelä, Aarne and Juntti, Markku and
Silvén, Olli, “ASIP for 5G and Beyond: Opportunities and Vision,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 3, pp.
851–857, 2021. doi: 10.1109/TCSII.2021.3050785

[84] Synopsys. ASIP Designer. [Online]. Available: https://www.synopsys.
com/dw/ipdir.php?ds=asip-designer

[85] Cadence. Tensilica. [Online]. Available: https://www.
cadence.com/en_US/home/tools/silicon-solutions/compute-ip/
tensilica-xtensa-controllers-and-extensible-processors.html

[86] Codasip. Codasip. [Online]. Available: https://codasip.com/

[87] K. Hepola, J. Multanen, and P. Jääskeläinen, “OpenASIP 2.0: Co-
Design Toolset for RISC-V Application-Specific Instruction-Set Pro-
cessors,” in 2022 IEEE 33rd International Conference on Application-
specific Systems, Architectures and Processors (ASAP), 2022. doi:
10.1109/ASAP54787.2022.00034 pp. 161–165.

[88] (2024) OpenASIP - Open Application-Specific Instruction-set Processor
toolset. [Online]. Available: https://github.com/cpc/openasip

59

https://top500.org/
https://doi.org/10.1145/1344671.1344687
https://www.synopsys.com/dw/ipdir.php?ds=asip-designer
https://www.synopsys.com/dw/ipdir.php?ds=asip-designer
https://www.cadence.com/en_US/home/tools/silicon-solutions/compute-ip/tensilica-xtensa-controllers-and-extensible-processors.html
https://www.cadence.com/en_US/home/tools/silicon-solutions/compute-ip/tensilica-xtensa-controllers-and-extensible-processors.html
https://www.cadence.com/en_US/home/tools/silicon-solutions/compute-ip/tensilica-xtensa-controllers-and-extensible-processors.html
https://codasip.com/
https://github.com/cpc/openasip

Application Specific Instruction-set Processors for Massive MIMO Systems

[89] L. Van der Perre, L. Liu, and E. G. Larsson, “Efficient DSP and Circuit
Architectures for Massive MIMO: State of the Art and Future Directions,”
IEEE Transactions on Signal Processing, vol. 66, no. 18, pp. 4717–4736, 2018.
doi: 10.1109/TSP.2018.2858190

[90] T. Nowatzki, V. Gangadhan, K. Sankaralingam, and G. Wright, “Pushing
the limits of accelerator efficiency while retaining programmability,” in
2016 IEEE International Symposium on High Performance Computer Architec-
ture (HPCA), 2016. doi: 10.1109/HPCA.2016.7446051 pp. 27–39.

[91] Y. Liu, L. Liu, and V. Öwall, “Architecture design of a memory sub-
system for massive MIMO baseband processing,” IEEE Trans. Very Large
Scale Integration Systems, vol. 25, no. 10, pp. 2976–2980, 2017. doi:
10.1109/TVLSI.2017.2732062

[92] A. Doyle, The Five Orange Pips and Other Cases, ser. The Penguin English
Library. Penguin Books Limited, 2012. ISBN 9780141974668. [Online].
Available: https://books.google.se/books?id=UJLeA50QxPEC

[93] J. Vieira, E. Leitinger, M. Sarajlic, X. Li, and F. Tufvesson, “Deep convo-
lutional neural networks for massive MIMO fingerprint-based position-
ing,” in 2017 IEEE 28th Annual International Symposium on Personal, Indoor,
and Mobile Radio Communications (PIMRC). IEEE, 2017.

[94] S. De Bast and S. Pollin, “MaMIMO CSI-Based Positioning using CNNs:
Peeking inside the Black Box,” in 2020 IEEE International Conference on
Communications Workshops (ICC Workshops), 2020. doi: 10.1109/ICCWork-
shops49005.2020.9145412 pp. 1–6.

[95] M. Attari, J. Rodríguez Sánchez, L. Liu, and S. Malkowsky, “An Ap-
plication Specific Vector Processor for CNN-Based Massive MIMO Po-
sitioning,” in 2021 IEEE International Symposium on Circuits and Systems
(ISCAS), 2021. doi: 10.1109/ISCAS51556.2021.9401528 pp. 1–5.

60

https://books.google.se/books?id=UJLeA50QxPEC

APPENDICES

61

A
Code Examples

I
n this appendix, C code examples are given for selected algorithms.
The intrinsic functions, which guide the compiler to map the function
name to appropriate hardware datapaths, are distinguished in code

by appending _c at the end.

63

 1 void cholesky(vcbfloat16* in, vcbfloat16* out)
 2 {
 3 for(int j = 0; j < 16; j++)
 4 {
 5 vcbfloat16 s = read_col_shuffled_c(&in[j]);
 6
 7 for (int k = 0; k <= j-1; k++)
 8 {
 9 vcbfloat16 tmp =
10 read_col_shuffled_c(&out[k]) *
11 read_col_shuffled_c(&out[k])[j];
12 s = s - tmp;
13 }
14
15 cbfloat16 one_by_sqrt = inverse_sqrt_c(s[j]);
16 store_col_shuffled_c(&out[j], s * one_by_sqrt, 15, j);
17 }
18 }

Figure A.1: C code for Cholesky.

64

A Code Examples

 1 void qrd(
 2 vcbfloat16* gramian_mat, vcbfloat16* r_mat, vcbfloat16* q_mat
 3)
 4 {
 5 for (int i = 0; i < 16; i++)
 6 {
 7 vcbfloat16 vi = read_col_shuffled_c(&gramian_mat[i]);
 8 cbfloat16 norm = vec_norm_c(vi, vi);
 9 vcbfloat16 r = read_row_shuffled_c(&r_mat[i]);
10 r = vec_index_modify_c(r, i, norm);
11 cbfloat16 inorm = inverse_c(norm);
12 vcbfloat16 qi = vec_mul_c(vi, inorm);
13 store_col_shuffled_c(&q_mat[i], qi);
14 for (int j = i+1; j < 16; j++)
15 {
16 vcbfloat16 vj = read_col_shuffled_c(&gramian_mat[j]);
17 cbfloat16 dot = vec_dot_c(qi, vj);
18 r = vec_index_modify_c(r, j, dot);
19
20 vj = vj - (qi * r[j]);
21 store_col_shuffled_c(&gramian_mat[j], vj);
22 }
23 store_row_shuffled_c(&r_mat[i], r);
24 }
25 }

Figure A.2: C code for QRD.

65

 1 void ext_qrd(vcbfloat16* q_mat, vcbfloat16* rinv_mat)
 2 {
 3 for (int i = 0; i < 16; i++)
 4 {
 5 vcbfloat16 qi = read_col_shuffled_c(&q_mat[i]);
 6 vcbfloat16 ii = read_col_shuffled_c(&rinv_mat[i]);
 7 vcbfloat16 tmp = qi + ii;
 8 cbfloat16 dot = vec_dot_c(tmp, tmp);
 9 cbfloat16 inorm = inverse_sqrt_c(dot);
10 qi = vec_mul_c(qi, inorm);
11 ii = vec_mul_c(ii, inorm);
12 store_col_shuffled_c(&q_mat[i], qi);
13 store_col_shuffled_c(&rinv_mat[i], ii);
14
15 for (int j = i+1; j < 16; j++)
16 {
17 vcbfloat16 qj = read_col_shuffled_c(&q_mat[j]);
18 vcbfloat16 ij = read_col_shuffled_c(&rinv_mat[j]);
19 cbfloat16 r_ij =
20 scalar_add_c(vec_dot_c(qj, qi), vec_dot_c(ij, ii));
21 qj = qj - qi * r_ij;
22 ij = ij - ii * r_ij;
23 store_col_shuffled_c(&q_mat[j], qj);
24 store_col_shuffled_c(&rinv_mat[j], ij);
25 }
26 }
27 }

Figure A.3: C code for extended QRD.

66

A Code Examples

 void matrix_mul_16x16_by_16x16(
 vcbfloat16* a_in, vcbfloat16* b_in, vcbfloat16* mul_out
)
 {
 for (int ra = 0; ra < 16; ra++)
 {
 vcbfloat16 sum = 0;
 vcbfloat16 a = read_row_shuddled_c(&a_in[ra]);
 for (int rb = 0; rb < 16; rb++)
 {
 vcbfloat16 b = read_row_shuddled_c(&b_in[rb]);
 sum = vec_mac_c(sum, b, index_2nd_c(a, rb));
 }
 store_row_shuddled_c(&mul_out[ra], sum);
 }
 }

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

Figure A.4: C code for 16×16 by 16×16 matrix multiplication.

67

 void gramian(vcbfloat16* h_in, vcbfloat16* gr_out)
 {
 for (int col = 0; col < 16; col++)
 {
 vcbfloat16 sum = 0;
 for (int row = 0; row < 128; row++)
 {
 vcbfloat16 a = read_row_shuufled_c(&h[row]);
 sum = vec_mac_c(sum, conj_index_2nd_c(a, col));
 }
 store_row_shuufled_c(&gr_out[col], (vcbfloat16)sum);
 }

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

Figure A.5: C code for Gramian calculation.

68

A Code Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

 void matrix_mul_gnereal(
 vcbfloat16* a_in, vcbfloat16* b_in, vcbfloat16* mul_out,
 int num_rows_a, int num_cols_a,
 int num_rows_b, int num_cols_b
)
 {
 int num_a_row_blocks = num_rows_a >> 4;
 int num_a_col_blocks = num_cols_a >> 4;
 int num_b_col_blocks = num_cols_b >> 4;

 const int N = NUM_VEC_LANES;

 for (
 int b_col_block_index = 0;
 b_col_block_index < num_b_col_blocks; b_col_block_index++
)
 {
 for (
 int a_row_index = 0;
 a_row_index < num_rows_a; a_row_index++
)
 {
 vcbfloat16 sum = 0;

 for (
 int a_col_block_index = 0;
 a_col_block_index < num_a_col_blocks;
 a_col_block_index++
)
 {
 int a_index =
 a_row_index +
 (a_col_block_index * N * num_a_row_blocks);
 vcbfloat16 a = read_row_shuffled_c(&a_in[a_index]);

 for (int rb = 0; rb < N; rb++)
 {
 int b_index =
 rb + (a_col_block_index * N) +
 (b_col_block_index * num_a_col_blocks * N);
 vcbfloat16 b = read_row_shuffled_c(&b_in[b_index]);
 sum = vec_mac_c(sum, b, index_2nd_c(a, rb));
 }
 }

 int mul_index = a_row_index +
 (b_col_block_index * num_a_col_blocks * N);
 store_row_shuffled_c(&mul_out[mul_index], sum);
 }
 }
 }

Figure A.6: C code for general matrix multiplication.

69

	Abstract
	Popular Science Summary
	Acknowledgments
	Contents
	Preface
	Structure of the Thesis
	Included Papers

	Acronyms and Abbreviations
	

	Mathematical Notations
	INTRODUCTION
	Motivation
	The Beginnings
	The Exploitation of Limited Resources
	The Guidelines
	The Co-design Methodology
	The Contribution

	Wireless Communications Principles
	Techniques
	SISO
	MIMO
	Multi-user MIMO
	Massive MIMO
	Distributed Massive MIMO
	OFDM

	Applications and Requirements

	Digital Signal Processing and Algorithms
	Massive MIMO Algorithms
	Matrix-Vector Multiplication
	Matrix-Matrix Multiplication
	Matrix Inversion
	QRD
	Extended QRD
	Cholesky

	Distributed Massive MIMO
	SVD

	Kernel Operations and Requirements

	Processing Architecture and Digital Hardware
	Different Approaches
	ASIC
	Configurable Architectures
	Programmable Systems
	Hybrid Architecture

	Design Considerations
	Programmability
	Acceleration and Data-level Parallelism
	Memory Access Patterns

	Microarchitecture
	The ASIP
	Multi-Access-Mode Parallel Vector Memory
	Accelerators

	Requirements and Performance Evaluation

	Conclusion and the Path Ahead
	The Path Ahead

	Bibliography

	APPENDICES
	Code Examples

