
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Model-based Analysis of Individual Atrioventricular Node Conduction Dynamics
During Atrial Fibrillation

Karlsson, Mattias

2024

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Karlsson, M. (2024). Model-based Analysis of Individual Atrioventricular Node Conduction Dynamics During
Atrial Fibrillation. Department of Biomedical Engineering, Lund university.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/59b937f5-e0b8-45d9-9561-6556b5f9c87e


Model-based Analysis of Individual
Atrioventricular Node Conduction
Dynamics During Atrial Fibrillation

Mattias Karlsson

DOcTORAL DISSERTATION
by due permission of the Faculty of Engineering, Lund University, Sweden.

To be defended in E:1406, Ole Römers väg 3, Lund
November 12, 2024, at 13:00

Faculty opponent
Doctor Michela Masè



Organization 

 

 

Department of Biomedical Engineering 

Lund University 

SE 22100 Lund 

Document name 

DOCTORAL DISSERTATION 

Date of issue  

November 2024 

Sponsoring organization 

Fraunhofer-Chalmers Centre 

Author(s) 

Mattias Karlsson 

Title and subtitle 

Model-based Analysis of Individual Atrioventricular Node Conduction Dynamics During Atrial Fibrillation 

Atrial fibrillation (AF) is the most common arrhythmia in the world, leading to a significant burden to patients and the 

healthcare system. It is characterised by rapid and irregular atrial contractions stemming from disorganised electrical activity in 

the atria. The atrioventricular (AV) node regulates heart rate during AF by filtering electrical impulses from the atria. 

 

However, for persistent AF, the regulating capabilities of the AV node are often insufficient in regards to maintaining a 

healthy heart rate. Thus, rate control drugs affecting the conduction properties of the AV node are the most common treatment, 

chosen empirically for each patient. This takes time and may result in a sub-optimal drug choice. Quantifying individual 

differences in AV-nodal function is therefore interesting in order to potentially aid in personalised treatment selection. 

 

This thesis focuses on assessing the conduction properties of the AV node during AF from electrocardiography recordings, 

specifically the refractory period and conduction delay. The thesis comprises an introduction to the anatomy of the heart, AF, 

cardiac modelling, and parameter estimation, as well as four papers. The first paper proposes a mathematical model of the AV 

node where the model parameters could be estimated from 15-minute ECG recordings utilising a genetic algorithm. In the 

second paper, we used the proposed model and introduced a computationally efficient dynamic genetic algorithm to enable 

estimation of 24-hour model parameter trends, with a temporal resolution of one estimate per 1000 RR intervals, to analyse 

individual and drug-dependent differences in the model parameters. In the third paper, the optimisation framework was further 

extended to combine an Approximate Bayesian computation algorithm with the previously proposed genetic algorithm in 

order to quantify the uncertainty of the model parameter estimates. Additionally, a model parameter reduction step was 

introduced to increase interpretability of the results. In the fourth paper an improved optimisation framework consisting of a 

particle filter and an associated smoothing algorithm enabling beat-to-beat temporal resolution was proposed. This temporal 

resolution allows for analysis of beat-to-beat changes in the AV node conduction properties induced by the autonomic nervous 

system.  

 

All-in-all, the work presented in this thesis has made it possible for the first time to assess the conduction properties of the AV 

node during AF based on ECG measurements. 

 

 

 

 
Key words:  

Mathematical modeling, Genetic algorithm, Atrioventricular node, Atrial fibrillation, Particle filter 

Classification system and/or index terms (if any): 

- 

Supplementary bibliographical information: 

- 

Language 

English 

ISSN and key title: 

- 

ISBN 
978-91-8104-179-8 (printed)  

978-91-8104-180-4 (electronic) 

Recipient’s notes 

- 

 

Number of pages 

148 

Price 

- 

Security classification 

- 
 

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant 

to all reference sources permission to publish and disseminate the abstract of the above-mentioned dissertation. 

 
Signature  Date: 12 November 2024 



Public defence
November 12, 2024, at 13:00 in E:1406, E-building, LTH, Ole Römers väg, 223 63 Lund, Sweden.

Supervisors
Docent Frida Sandberg
Dept. of Biomedical Engineering, Lund University, Lund, Sweden
Doctor Mikael Wallman
Dept. of Systems and Data Analysis, Fraunhofer-Chalmers centre, Gothenburg, Sweden
Docent Mats Jirstrand
Dept. of Systems and Data Analysis, Fraunhofer-Chalmers centre, Gothenburg, Sweden
Professor Pyotr G. Platonov
Dept. of Cardiology, Clinical Sciences, Lund University, Lund, Sweden

Faculty opponent
Doctor Michela Masè
Dept. of Industrial Engineering, University of Trento, Trento, Italy

Examination board
Docent Johannes Töger
Dept. of Clinical Physiology, Lund University, Sweden

Professor Philip Gerlee
Dept. of Mathematical Sciences, Chalmers, Gothenburg, Sweden

Docent Seraina Dual
Dept. of Biomedical Engineering and Health Systems, Royal Institute of Technology, Stockholm, Sweden

Deputy member: Professor Bo Bernhardsson
Dept. of Automatic Control, Lund University, Lund, Sweden

Chairman
Docent Christian Antfolk
Dept. of Biomedical Engineering, Lund University, Lund, Sweden

Cover illustration
Artistic representation of the human heart surrounded by signals.
Illustration by: Mattias Karlsson, partly using Microsoft Copilot.

ISBN: 978-91-8104-179-8 (print)
ISBN: 978-91-8104-180-4 (pdf )
Report No. 1/24
Printed by Tryckeriet, E-building, Faculty of Engineering, Lund University, Lund Sweden

©2024 Mattias Karlsson





Dedicated to Eva and Magnus Karlsson.



Populärvetenskaplig
Sammanfattning

Hjärt- och kärlsjukdomar var den vanligaste dödsorsaken i Sverige år 2023, med för-
maksflimmer som den vanligaste arytmin. Idag lever cirka 330000 svenskar med för-
maksflimmer, vilket gör att tillståndet klassas som en folksjukdom. Därför är risken
stor att du som läser detta har en vän eller närstående som lider av förmaksflimmer,
eller kanske rent av gör det själv. Med förmaksflimmer ökar risken för blodpropp och
stroke markant. Av dessa anledningar läggs stora resurser på forskning inom området,
denna avhandling inkluderad.

Hjärtats rytm styrs av en elektrisk aktivering som startar i sinusknutan, belägen i hö-
ger förmak. Normalt aktiveras först förmaken av sinusknutan, varefter den elektriska
impulsen leds vidare via atrioventrikulärknutan (AV-knutan) till kamrarna. Den här
elektriska aktiveringen får hjärtmuskeln att dra ihop sig, vilket gör att blodet pumpas
ut i lungorna och resten av kroppen. Vid förmaksflimmer störs den normala rytmen
från sinusknutan ut av högfrekvent och kaotisk elektrisk aktivitet i förmaken. Lyck-
ligtvis har AV-knutan förmågan att hindra alltför högfrekvent elektrisk aktivitet från
att nå kamrarna, men hjärtrytmen under förmaksflimmer blir ändå snabb och oregel-
bunden.

För att behandla patienter med permanent förmaksflimmer ges som första steg ett lä-
kemedel för att minska pulsen, vanligtvis betablockerare eller kalciumflödeshämmare.
Eftersom alla människor är olika ger de två läkemedelstyperna dock olika resultat för
olika individer, vilket gör att man ofta måste testa flera läkemedel innan man hittar
ett som fungerar bra. Detta tar både tid och riskerar att leda till ett slutgiltigt val av
ett läkemedel som fungerar tillräckligt bra, men ej optimalt. Detta kan i sin tur leda
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till ett onödigt lidande och potentiellt en högre risk för blodpropp och stroke hos
personer med förmaksflimmer.

Eftersom AV-knutan till stor del reglerar pulsen under förmaksflimmer är dess indi-
viduella egenskaper en stor bidragande faktor till ett läkemedels effekt. Därför är det
av intresse att karaktärisera AV-knutans egenskaper individuellt. För att det ska vara
praktiskt möjligt bör karaktäriseringen baseras på vanliga EKG-inspelningar.

Den här avhandlingen handlar om hur man med hjälp av matematisk modellering
och parameteroptimering kan skatta egenskaper relaterade till refraktärtid och över-
ledningshastighet i en individs AV-knuta baserat på EKG-inspelningar, och hur dessa
egenskaper skiljer sig mellan individer samt hur de påverkas av olika läkemedel. Myc-
ket av AV-knutans beteende och egenskaper är fortfarande ett mysterium, men genom
detta arbete har vi kunnat visa hur man med hjälp av matematik och ingenjörskap kan
få en bättre förståelse av AV-knutan, och därmed tagit ett steg i riktning mot skräd-
darsydda behandlingar för folksjukdomen förmaksflimmer.



Abstract

Atrial fibrillation (AF) is the most common arrhythmia in the world, leading to a
significant burden to patients and the healthcare system. It is characterised by rapid
and irregular atrial contractions stemming from disorganised electrical activity in the
atria. The atrioventricular (AV) node regulates heart rate during AF by filtering elec-
trical impulses from the atria.

However, for persistent AF, the regulating capabilities of the AV node are often insuffi-
cient in regards to maintaining a healthy heart rate. Thus, rate control drugs affecting
the conduction properties of the AV node are the most common treatment, chosen
empirically for each patient. This takes time and may result in a sub-optimal drug
choice. Quantifying individual differences in AV-nodal function is therefore interest-
ing in order to potentially aid in personalised treatment selection.

This thesis focuses on assessing the conduction properties of the AV node during AF
from electrocardiography recordings, specifically the refractory period and conduc-
tion delay. The thesis comprises an introduction to the anatomy of the heart, AF,
cardiac modelling, and parameter estimation, as well as four papers. The first paper
proposes a mathematical model of the AV node where the model parameters could be
estimated from 15-minute ECG recordings utilising a genetic algorithm. In the sec-
ond paper, we used the proposed model and introduced a computationally efficient
dynamic genetic algorithm to enable estimation of 24-hour model parameter trends,
with a temporal resolution of one estimate per 1000 RR intervals, to analyse individ-
ual and drug-dependent differences in the model parameters. In the third paper, the
optimisation framework was further extended to combine an Approximate Bayesian
computation algorithm with the previously proposed genetic algorithm in order to
quantify the uncertainty of the model parameter estimates. Additionally, a model
parameter reduction step was introduced to increase interpretability of the results. In
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the fourth paper an improved optimisation framework consisting of a particle filter
and an associated smoothing algorithm enabling beat-to-beat temporal resolution was
proposed. This temporal resolution allows for analysis of beat-to-beat changes in the
AV node conduction properties induced by the autonomic nervous system.

All-in-all, the work presented in this thesis has made it possible for the first time to
assess the conduction properties of the AV node during AF based on ECG measure-
ments.
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Introduction
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Chapter 1

Background and Aims

1.1 Background

Atrial fibrillation (AF), the most common arrhythmia globally, is characterised by
rapid and irregular atrial contractions stemming from highly disorganised electrical
activity within the atria [7]. The prevalence of AF is highly correlated with age, as
shown in Figure 1.1. Importantly, AF is associated with a heightened risk of mortal-
ity, primarily due to complications such as heart failure and stroke [8, 9].

During AF, the atrioventricular (AV) node acts as a gatekeeper between the atria and
ventricles, partially shielding the ventricles from the chaotic electrical activity in the
atria. By blocking and delaying incoming impulses, the AV node protects the ventri-
cles from the rapid and irregular contractions seen in the atria. However, these efforts
are often insufficient to maintain a healthy heart rate during AF.

Fortunately, rate control drugs offer a way to reduce the heart rate by mechanisms
partly acting on the AV node conduction properties. Two types of rate control drugs
are primarily used for AF treatment: β-blockers and calcium channel blockers, each
with distinct physiological effects [7]. Due to the difference in physiological effects
between the drugs, they affect the AV node conduction properties differently. While
both drug types demonstrably decrease heart rate at a population level, their individ-
ual impacts on ventricular activation rate can vary significantly [10]. Notably, one
key physiological distinction between these drug types lies in their influence on the
autonomic nervous system (ANS). This distinction is important, considering the role
of the ANS in initiating and maintaining AF [11]. Consequently, inter-patient vari-
ability in ANS activity might significantly influence individual responses to AF treat-
ment. However, the choice of drug for a specific patient is often made empirically,
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which can lead to a prolonged time until successful treatment and possibly result in a
sub-optimal final choice of drug [7]. Thus, patient-specific information about the AV
node conduction properties could give insights into a drug’s impact on the ventricular
activation rate and in turn guide therapeutic decisions.

This thesis focuses on quantifying variations in AV nodal conduction properties. How-
ever, since directly measuring AV node conduction properties during AF non-invasively
is not feasible, an alternative approach is required.

Mathematical models have served as a cornerstone tool in science and engineering
for centuries. They allow us to describe the world around us, analyse interactions
within complex systems, and make predictions. These advantages, in concert with
the ever-increasing computing power at our disposal, have led to the use of models in
healthcare becoming more prevalent than ever [12, 13].

At their core, models aim to represent real-world systems in an objective, simplified,
and ultimately useful way. However, it is important to recognise that all models are
inherently simplifications of reality, and as such, they may not capture the full com-
plexity of real-world systems. Despite this limitation, they remain valuable tools. A
common approach involves fitting models to data, allowing us to draw meaningful
conclusions about the underlying phenomena of interest, such as the AV node prop-
erties. This is precisely the approach we will utilise in this thesis.

Figure 1.1: Prevalence of AF in the Italian population, stratified by age and gender, assumed
representative for the European Union [14]. Reprint from [15].



4 Background and Aims

1.2 Motivation and Aims

As previously described, the AV node is known to regulate ventricular activation dur-
ing AF, and its properties can be affected by the ANS as well as by rate control drugs.
Thus, patient-specific information about the AV node and the drug-dependent effect
during AF may prove to be a key factor in personalised treatment selection during
AF. However, there are currently no tools available for non-invasive analysis of the
AV node properties for patients with AF. For such a tool to be clinically relevant, it
should ideally rely solely on non-invasive data, such as electrocardiography (ECG)
recordings, for parameter estimation.

In this thesis, mathematical modelling has been used to assess time-variations in AV
node conduction properties during AF from ECG signals and to study the drug-
dependent effects on these assessments. The extracted information about variations
in AV node properties could be used to guide the treatment strategy on an individ-
ual basis. Therefore, the overall goal is to quantify variations in AV node conduction
properties and the influence of rate control drugs on the AV node and ANS using
non-invasive data. This is addressed in this thesis by the following three aims:

Aim 1: To develop a mathematical model of the AV node that accounts for its electro-
physiological properties, is capable of replicating its behaviour during AF, and which
computational efficiency allows for patient-specific parameter estimation (addressed
in Paper I ).

Aim 2: To set up a framework for reliable estimation of model parameters based on
ECG recordings (addressed in Paper II-IV ).

Aim 3: To evaluate the applicability of the proposed method in a clinical context by
analysing drug-induced and ANS-related changes in AV node conduction properties
during AF (addressed in Paper II-IV ).

1.3 Thesis Outline

This thesis is divided into two parts: Part I, the Introduction, and Part II, the included
research papers. Part I comprises seven chapters, providing foundational knowledge
and context for the research presented in Part II.

The remainder of Part I is organised as follows: Chapter 2 delves into the anatomy
of the heart, with a particular focus on the conduction system. This chapter lays the
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groundwork for modelling the heart during AF. Chapter 3 provides a more detailed
description of AF by explaining its origins, treatment options, and the characteristic
ECG patterns observed during this condition.

Shifting the focus from physiology to engineering, Chapter 4 introduces the concept
of cardiac modelling and provides an overview of existing AV node models, includ-
ing the one presented in Paper I. Chapter 5 introduces optimisation and parameter
estimation concepts and various relevant algorithms. Chapter 6 summaries the four
research papers included in Part II. Finally, Chapter 7 discusses potential future re-
search directions related to this work and thereby concludes the thesis.



Chapter 2

Anatomy of the Heart

A thorough understanding of the heart function during normal sinus rhythm is essen-
tial for understanding it during AF. This chapter provides a detailed examination of
the heart’s anatomy (Section 2.1), encompassing both overall structure and the cellu-
lar mechanisms responsible for a heartbeat. Subsequently, Section 2.2 focuses on the
heart’s conduction system, with particular emphasis on the AV node and the sinoatrial
(SA) node.

2.1 Cardiac Anatomy and Mechanical Function

The heart functions as a muscular pump, continuously propelling blood throughout
the body to deliver oxygen. As illustrated in Figure 2.1, it comprises four chambers:
two atria and two ventricles. Deoxygenated blood from the body enters the right
atrium via the superior and inferior vena cava. Right atrial contraction then pumps
blood into the right ventricle, which subsequently pumps it to the lungs through the
pulmonary arteries for gas exchange. Oxygenated blood from the lungs reaches the
left atrium via the pulmonary veins, and left atrial contraction fills the left ventricle.
Finally, the left ventricle pumps blood via the aorta throughout the rest of the body.

To achieve this pumping function, the heart wall consists primarily of cardiac muscle
tissue, known as the myocardium. The thickness of the myocardium varies across the
chambers, reflecting their distinct workloads. The atria possess thinner walls com-
pared to the ventricles, and the left ventricle has thicker walls than the right ventricle.

6
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Figure 2.1: A schematic figure of the human heart with the conduction system highlighted
in yellow. The figure was created by Felix Plappert with inspiration from [16].

2.1.1 Cardiomyocytes

The myocardium is composed of individual cardiac muscle cells, termed cardiomy-
ocytes. Within each cardiomyocyte reside long contractile fibers known as myofib-
rils. These myofibrils contain thick myosin and thin actin filaments, the fundamental
components responsible for cellular contraction [17]. Contraction is initiated when
myosin heads bind to actin, forming cross-bridges between the filaments. As a source
of energy, the myosin heads can bind and split adenosine triphosphate. This energy is
used to pull the thick and thin filaments along each other, thereby shortening the my-
ofibril. Subsequently, the myosin head binds a new adenosine triphosphate molecule,
detaches from the actin, and repeats the cycle.

The coordinated action of numerous myosin heads within a myofibril collectively con-
tract that myofibril. Similarly, all myofibrils within a cardiomyocyte work together
to contract that cardiomyocyte. For the coordinated contraction of an entire cham-
ber, all cardiomyocytes within that chamber must contract simultaneously. However,
this process is not spontaneous. In a relaxed state, the protein tropomyosin blocks
the binding sites which prevents myosin head attachment. The influx of calcium ions
(Ca2+) triggers a change in the tropomyosin, removing the blockade and enabling
myosin-actin interaction. Calcium originates from two sources: the sarcoplasmic
reticulum, an internal cellular store, and the extracellular space, accessed through
Ca2+-specific ion channels and T-tubules during an action potential – a rapid rise
and a more prolonged fall in membrane potential across the cell membrane [17].
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The generation of an action potential relies primarily on two key components; a rest-
ing membrane potential and the presence of specific ion channels. These specialised
channels allow for the selective diffusion of ions across the plasma membrane, fol-
lowing the principle of diffusion from high to low concentration. This movement of
ions generates an ionic current that alters the membrane potential. Ion channels are
equipped with gates that regulate the passage of ions. Two main types of ion channels
contribute to the action potential; the leaky channels, which open and close seemingly
at random, and the voltage-gated channels, which open upon a change in membrane
potential.

The resting membrane potential in a cardiomyocyte corresponds to the difference in
voltage between the intracellular and extracellular environments. This resting poten-
tial is established by the continuous outward flux of potassium ions (K+) through
numerous leaky K+ channels, and an inward current of sodium ions (Na+) via leaky
Na+ channels. This interplay, along with the action of sodium-potassium pumps ac-
tively transporting Na+ out of the cell and K+ into the cell, creates the stable resting
membrane potential.

When a stimulus, such as an influx of ions from an adjacent cell, disrupts the resting
membrane potential by exceeding a threshold level (Figure 2.2a, phase 4), an action
potential is initiated in the cardiomyocyte. This stimulus marks the beginning of
phase 0 and triggers the opening of voltage-gated Na+ channels, leading to a rapid
rise in membrane potential due to Na+ influx [18]. The Na+ channels then deacti-
vate shortly thereafter, coinciding with the activation of K+ channels, which initiate
the repolarization phase (phase 1) by efflux of K+. During phase 0, Ca2+ channels
are also activated, although with a slower opening and closing compared to the Na+
channels. This delayed activation results in a later influx of Ca2+ that persists for a
longer duration than Na+ influx. The combined effect of Ca2+ influx and continued
K+ efflux creates the plateau phase observed in phase 2. The action potential con-
cludes with phase 3, characterised by the closure of Ca2+ channels and a dominant
outward current of K+ ions, which restores the cell to its resting membrane poten-
tial (phase 4). The cardiomyocytes are linked by intercalated discs, which contain
gap junctions that permit the rapid flow of ions between adjacent cells. This allows
for the fast propagation of action potentials from cell to cell, ensuring synchronised
contraction of the entire heart chamber.
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(a) Cardiomyocyte (b) Pacemaker cell

Figure 2.2: Action potential in a cardiomyocyte (a) and in a pacemaker cell (b). Note that
there is no distinct phase in the pacemaker cell resembling phase 1 or 2 in the cardiomyocyte.
Reprint from [15].

2.2 Conduction System of the Heart

The rhythmic contraction of the myocardium originates from the SA node, located in
the right atrial wall (see Figure 2.1). This specialised region generates action potentials
at a rate determined by the body’s blood demand, which in turn is regulated by the
ANS. The action potentials originating from the SA node conduct rapidly throughout
both atria through the intercalated discs, leading to synchronised atrial contraction.

Before reaching the ventricles, the action potential travels through the AV node, the
sole conduction point between the chambers. Three internodal pathways, charac-
terised by a higher conduction velocity compared to the atrial myocardium, carry
the action potential from the SA node to the AV node [19]. The AV node acts as
a gatekeeper, delaying or blocking incoming electrical impulses based on their rate.
This delay allows for efficient pumping of blood by ensuring proper timing between
atrial and ventricular contractions. When an impulse is conducted by the AV node,
it reaches the bundle of His, which splits into the right and left bundle branches.
These branches further deliver the impulse to the Purkinje fibers (Figure 2.1), trigger-
ing ventricular contraction. Purkinje fibers are specialised cardiomyocytes with a fast
conduction velocity compared to both the internodal pathways and other cardiomy-
ocytes [20].
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During cardiac arrhythmias such as AF, this structured conduction pathway becomes
disrupted. In AF, the rapid electrical activations of the surrounding tissue block the
normal function of the SA node, leaving it unable to initiate a new action potential.
Consequently, the AV node plays a more prominent role.

2.2.1 Sinoatrial Node

As previously mentioned, cardiac electrical activation is normally initiated by the SA
node. In healthy hearts, the SA node maintains a steady pace by virtue of specialised
pacemaker cells that continuously generate action potentials, setting the heart rhythm.
Unlike regular cardiomyocytes, pacemaker cells lack a resting potential and instead
exhibit spontaneous depolarisation immediately after repolarization. To achieve this,
the pacemaker cells in the SA node have specific anatomical features and unique ion
channels. In contrast to the non-SA nodal myocardium, the SA node does not have
a stable resting potential, thereby facilitating pacemaking activity.

The action potential in pacemaker cells, depicted in Figure 2.2b, can be divided into
three phases: a pacemaker potential phase (4), a depolarisation phase (0), and a re-
polarization phase (3). The numbering of these phases corresponds to the five phases
of the action potential in non-pacemaker cardiomyocytes (Figure 2.2a). The most
significant difference between the action potentials of cardiomyocytes and pacemaker
cells lies in phase 4, the resting potential phase. In pacemaker cells, phase 4 begins
immediately after repolarization, with the majority of K+ channels closing, leading
to a reduced outward K+ current [21]. The highly negative membrane potential also
activates hyperpolarisation-activated cyclic nucleotide-gated channels, contributing
to the pacemaker potential by generating an inward current of K+ and Na+ ions.
Additionally, the release of stored calcium within the sarcoplasmic reticulum further
increases the pacemaker potential. This released calcium is exchanged for Na+, result-
ing in an inward current. The final part of phase 4 involves the opening of the so-called
T-type Ca2+ channels, a fast-activating type of calcium channel, along with the slower
activation of L-type Ca2+ channels, transporting Ca2+ ions into the cell. Both these
channels are voltage-gated channels, opening when the membrane potential reaches
a specific threshold. During phase 0, the membrane potential rises rapidly due to the
full activation of the slow L-type channels. Concurrently, both the T-type channels
and the hyperpolarisation-activated cyclic nucleotide-gated channels close. In phase
3, the L-type channels close, and the K+ channels open, leading to repolarization of
the membrane potential. This repolarization generates the electrical impulse that will
subsequently activate the heart and sets the stage for the next cycle, beginning with
phase 4 [21].
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2.2.2 Atrioventricular Node

The AV node plays a critical role in optimising heart function by performing three
key tasks: delaying incoming electrical impulses, filtering out high-frequency atrial
activations, and functioning as a secondary pacemaker. The delay mechanism is the
most important part for healthy hearts, ensuring efficient pumping of blood by allow-
ing sufficient time for ventricular filling after atrial contraction.

Several anatomical and physiological features contribute to the ability of the AV node
to delay impulses. Firstly, the AV node has a lower density of gap junctions compared
to the surrounding atrial myocardium, leading to a slower conduction velocity [22].
Secondly, the AV node cells themselves are smaller in diameter compared to atrial my-
ocytes. This smaller size further reduces the overall conductance velocity within the
node [22]. Finally, the action potential in the AV node also contributes to the delay
process. Unlike atrial cardiomyocytes with a fast upstroke driven by a high density of
Na+ channels, the AV node action potential exhibits a slower rise due to a lower Na+
channel density. Consequently, L-type Ca2+ channels play a more prominent role in
driving the depolarisation phase of the AV node action potential [23].

The second function of the AV node is to act as a filter for incoming atrial impulses,
which is more prominent during atrial tachyarrhythmias. This filtering occurs by
blocking or delaying incoming impulses. The blocking occurs when the AV node
cells are in their refractory period, a brief window following an action potential where
the cells are resistant to further excitation. For transmitted impulses, the conduction
velocity can differ, resulting in different conduction delays. These complex patterns
of blocking and delaying within the AV node are possible due to its unique dual path-
way electrophysiology. The AV node comprises two distinct functional pathways: a
fast pathway (FP) and a slow pathway (SP) [24, 25]. The FP has a shorter refrac-
tory period but conducts impulses faster compared to the SP. These differences occur
due to differences in their cellular composition. The FP consists of longer cells with a
larger diameter, while the SP is composed of shorter cells with a smaller diameter [23].
However, the precise anatomical and molecular basis for the pathways of the AV node
is not yet fully understood [26]. Studies using an S1-S2 protocol1 have demonstrated
that conduction occurs primarily through the FP for longer S2 intervals. For shorter
S2 intervals, the AV node utilises both the FP and the SP for impulse conduction [25].
Additionally, the current clinical criterion of dual pathway physiology in the AV node
is a 50 ms jump in the AV conduction curve [27]. However, recent studies challenge
the established association between the AV conduction jump and dual pathway physi-

1When electrodes are used to deliver a pulse train at a constant interval (S1), followed by a single
premature pulse after a shorter interval (S2).
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ology [28], suggesting that the underlying mechanisms of the AV node remain elusive.

The AV node can be characterised by its refractory period and conduction delay in
its two pathways, which will be denoted RPFP , RPSP , CDFP , and CDSP in this
dissertation. Furthermore, the AV node junction, the area where atrial and nodal tis-
sues meet, plays a significant role in AV node conduction properties [29]. Based on
electrophysiological recordings of the rabbit AV node junction, different types of AV
node cells have been classified; the atrial-nodal cells, the nodal cells, and the nodal-His
cells [30, 31].

Another noteworthy aspect of the AV node is its ability to be affected by concealed con-
duction. Concealed conduction refers to a partial activation of the AV node that does
not result in ventricular activation. Despite not generating a ventricular response, con-
cealed conduction can still influence the conduction characteristics of the AV node for
later impulses [32]. Finally, the AV node can also function as a secondary pacemaker
if the SA node fails. In this scenario, the AV node exhibits an intrinsic activation rate
of 20-60 beats per minute [23].

2.3 Autonomic Nervous System Regulation

The ANS regulates the human heart through its sympathetic and parasympathetic di-
visions. The balance between these ensures optimal cardiac function during various
physiological states.

The sympathetic nervous system acts as a physiological activator. It does this by releas-
ing norepinephrine, which binds to β-adrenergic receptors on cardiomyocytes. This
binding affects several calcium mechanisms in the cardiomyocytes, including an in-
creased probability of L-type calcium channels opening and increased storage of Ca2+
in the sarcoplasmic reticulum [11, 33, 34]. These lead to an increased pacemaker
potential and in turn to an increased heart rate (via changes in the SA node) and in-
creased contractility in order to meet heightened demands during exercise or stress
[34]. Furthermore, as an effect of the increased influx of Ca2+ in cardiomyocytes,
increased sympathetic activity is associated with a decrease in AV nodal conduction
delay [35, 36, 37, 38] and refractory period [37, 38].

Conversely, the parasympathetic divisions counterbalance the sympathetic effects and
slow the heart rate by releasing the neurotransmitter acetylcholine [34, 39]. The re-
lease of acetylcholine inhibits the activation of L-type calcium channels, making them
less likely to open, in turn slowing the spontaneous firing rate of pacemaker cells in the
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SA node [40]. Moreover, large doses of acetylcholine are known to decrease AV node
conduction velocity [41]. Note that the activation of the sympathetic and parasympa-
thetic systems is complex, with additional receptors and neurotransmitters influencing
heart rate and contractility [34].

Several factors are known to change the ANS activity and are thus used to test the ANS
function, such as deep breathing, tilt-table test, direct measures from sympathetic
nerve fibers, as well as pharmacological provocation [42, 43, 44]. For this thesis,
the tilt test is of interest since ECG recordings from one are used for Paper IV. In
the context of the ANS, a tilt test evaluates how well the body regulates in response
to a change in posture. By observing the body’s response to the tilt, insights into
the dominance or imbalance within the ANS can be studied. Importantly, a change
from a horizontal position to a head-up-tilt position is associated with an increase in
sympathetic activity [45]. Moreover, heart rate variability is often used as a basis for
ANS activity metrics during normal sinus rhythm [46].



Chapter 3

Atrial Fibrillation

To develop a mathematical model of the AV node for use during AF, a thorough un-
derstanding of the arrhythmia itself is necessary. Consequently, this chapter starts
with a detailed exploration of AF in Section 3.1. This section delves into the mecha-
nisms underlying the origination and classification of AF. Subsequently, Section 3.2
provides an overview of the ECG during AF. Finally, Section 3.3 discusses the various
treatments used to manage AF.

3.1 Mechanisms of Atrial Fibrillation

As previously stated, AF is characterised by rapid and irregular electrical activity within
the atria which disrupts the coordinated beating in the atria and ventricles. This arises
when the electrical impulse triggering atrial activation fails to terminate normally. In-
stead, it whirls in chaotic patterns that override the usual activation initiated by the
SA node. This can happen due to a combination of factors, including alterations of
the structure and electrical properties of the atrial tissue and imbalances in the ANS
[47]. Additionally, enhanced automaticity, leading to an increase in the spontaneous
firing of electrical impulses, appears to be a common part of the triggering mechanism
behind AF. Studies suggest that over 90% of these impulses originate from the pul-
monary veins, with the majority arising from the left superior vein [48, 49]. Although
great progress has been made in understanding the initiation of AF during the last 50
years, debate regarding the precise mechanisms still exists [50, 47].

However, a trigger mechanism alone is insufficient to sustain AF. Additional fac-
tors related to the maintenance of AF are necessary to convert a trigger into an AF
episode [51]. The underlying mechanisms responsible for perpetuating AF remain a
subject of ongoing debate [52, 53]. The two main contenders are multi-wavelet reen-
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try and focal drivers [54]. Additionally, structural and electrical remodelling of the
atria plays an important role in AF maintenance. This remodelling process involves
changes in cardiomyocyte electrophysiology due to fibroblast activation, enhanced
deposition of connective tissue, and fibrosis [7]. The primary electrical consequence
is a reduction in conduction velocity within atrial cardiomyocytes, often attributed
to alterations in L-type Ca2+ channels [55]. These changes can be brought on by
structural heart disease, hypertension, or even AF itself, creating a cycle where ”AF
begets AF” [56]. Consequently, patients with seemingly similar AF symptoms may
exhibit diverse underlying physiological mechanisms, necessitating personalised treat-
ment strategies.

Atrial fibrillation can be categorized into five distinct types: first-diagnosed AF (initial
diagnosis); paroxysmal AF (self-terminating within seven days); persistent AF (lasting
longer than seven days or requiring intervention for sinus rhythm restoration); long-
standing persistent AF (lasting more than a year); and permanent AF (accepted by
both patient and physician) [7]. In permanent AF, variations regulated by the ANS
become particularly relevant, since the two recommended first-line rate control med-
ications – β-blockers and calcium channel blockers – have different physiological
effects relating to the ANS.

3.2 Diagnosis of Atrial Fibrillation

The ECG of a patient with AF exhibits distinct characteristics compared to a healthy
individual’s ECG, thus ECG is used for diagnosing AF. In a healthy heart, as detailed
in Section 2.2, the SA node initiates an action potential that propagates through the
atria, resulting in atrial contraction. This atrial depolarisation manifests on the ECG
as the P-wave, as shown in Figure 3.1. Following conduction through the AV node,
the action potential travels throughout the ventricles, triggering ventricular contrac-
tion. This ventricular depolarisation is reflected on the ECG by the QRS complex.
The sequence of intervals between consecutive R waves on the ECG is termed the
RR interval series. During the QRS complex, atrial repolarization also occurs, but is
masked by the larger ventricular activity and not readily visible on the ECG. Finally,
ventricular repolarization is depicted on the ECG by the T wave.

Three key features are visible on the ECG and used for AF detection and diagnosis:
irregular RR intervals, P-wave absence, and the presence of atrial fibrillatory waves (f-
waves) [51]. The rapid and irregular electrical activity in the atria during AF translates
to rapid and irregular stimulation of the AV node. This, in turn, results in irregular
RR intervals, as depicted in Figure 3.1 and 3.2a. The irregularity of the RR intervals



16 Atrial Fibrillation

Figure 3.1: Characteristics of the ECG during AF (top) and during normal sinus rhythm
(bottom), where the three main differences: RR interval irregularity, P-wave absence, and
presence of f-waves, are seen.

is a basis for several AF-detection algorithms due to its ease and robustness of extrac-
tion from the ECG signal [57, 58]. Notably, the time series of intervals between
consecutive heartbeats can also be extracted from the photoplethysmogram (PPG),
often measured on the skin by smartwatches using a light source and photodetector
combination. Because of this, recent years have seen a rise in the development of
AF-detection algorithms based on PPG signals, with a focus on PPG measurements
from smartwatches, often employing deep learning [59, 60, 61, 62].

3.2.1 Characterisation of f-waves

During normal sinus rhythm, the P-wave represents the depolarisation wave in the
atria. However, due to the rapid and irregular electrical activity in the atria during AF,
a distinct P-wave is absent. Instead, the ECG shows incessant f-waves. While the pres-
ence of f-waves is a vital indicator of AF, detailed f-wave characteristics can provide
further insights into atrial electrical activity. Different techniques exist to estimate
the dominant atrial frequency from the f-waves, such as using the dominant peak
in the frequency spectrum [63], or using a model-based approach [64, 65]. Papers
I-III of this thesis utilises a hidden Markov model for robustly tracking the domi-
nant frequency of f-waves from the ECG signal [66]. Moreover, Paper IV uses the
model-based approach presented in [64, 65] to gain high-resolution estimates of the
f-wave frequency trend. However, these methods require QRS complex removal since
f-waves have a significantly smaller amplitude compared to the QRS complex. Several
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methods can achieve QRS removal, including average beat subtraction [67], adaptive
filtering [68], blind source separation [69], and a voting scheme on four different tem-
plate subtraction algorithms [70]. In all papers in this thesis, the QRS removal was
performed using the commercial CardioLund ECG parser (www.cardiolund.com)
which uses a spatiotemporal average beat subtraction approach.

3.2.2 Characterisation of RR Interval Series

The RR interval series serves as a useful representation of cardiac activity and is com-
monly represented as a time series plot or using a histogram. As shown in Figure 3.2b,
the histograms of the RR interval series for normal sinus rhythm and AF differ sub-
stantially. The histogram during sinus rhythm exhibits a narrow distribution, whereas
the histogram during AF is significantly more scattered. Hence, researchers can anal-
yse data from different models or patients by comparing the number of data points
in each bin [71].

Another visualisation method for the RR interval series is the Poincaré plot, a scatter
plot depicting successive pairs of RR intervals. The Poincaré plot offers the ability
to analyse non-linear aspects of the heart rate by capturing more dynamic features
compared to histograms [51]. During normal sinus rhythm, the Poincaré plot shows
a compact area where all points concentrate, contrasting with the more spread-out
distribution observed during AF, as illustrated in Figure 3.2c.

Papers I-III of this thesis utilises a target function based on the Poincaré plot (see
Section 5.3.3) to estimate model parameters, whereas Paper IV utilises the RR interval
series. Additional methods for characterising the RR interval series during AF include
autocorrelation, Shannon entropy, and root mean square of successive differences [1,
72, 73].

www.cardiolund.com
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(a) RR interval series

(b) Histogram of the RR interval series (c) Poincaré plot of the RR interval series

Figure 3.2: A comparison of the RR interval series (a), the histogram of the RR interval series
(b), and the Poincaré plot of the RR interval series (c) during AF (green) and during normal
sinus rhythm (blue) (data from the MIT-BIH AF Database) [74]. Reprint from [15].

3.3 Management of Atrial Fibrillation

Atrial fibrillation management focuses on three primary objectives. The first is pre-
venting ischemic strokes through anticoagulation therapy, which does not directly
impact AF itself [7]. The second objective targets heart rate control. This approach
aims to achieve a normal heart rate during ongoing AF episodes, thereby improving
patient quality of life and mitigating risks associated with other cardiac conditions,
such as decreased ventricular contractile function. The third objective is rhythm con-
trol, which focuses on terminating or preventing AF episodes altogether. Rate control
is recommended as the first-choice therapy for patients with no or minor AF symp-
toms whereas rhythm control is typically employed when rate control strategies prove
ineffective or for patients with greater AF-related symptoms [7]. For this thesis and
the included papers, rate control will be in focus.
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3.3.1 Rhythm Control

Rhythm control includes restoration and maintenance of a normal sinus rhythm.
Acute restoration can be achieved through either electrical cardioversion, utilising
electrodes placed on the chest, or pharmacological cardioversion, using antiarrhyth-
mic drugs. For pharmacological cardioversion in recent-onset AF, vernakalant [75],
flecainide [76, 77], and propafenone [77] are recommended medications [7]. Long-
term maintenance of sinus rhythm can be achieved through antiarrhythmic drugs –
such as amiodarone [78] and dronedarone [79] – or catheter ablation. Catheter abla-
tion performed by experienced teams has demonstrated superior efficacy compared to
antiarrhythmic drugs [80]. This invasive procedure involves isolating the pulmonary
veins and, in some cases, creating additional ablation lines within the atria. Neverthe-
less, long-term (3-5 years) success of catheter ablation varies considerably from 50 to
80% [81, 82], and estimation of catheter ablation success is difficult due to inconsis-
tency in the definitions of success and wherever single or multiple catheter ablation
procedures were performed [82].

3.3.2 Rate Control

Rate control is a cornerstone of AF treatment and is recommended for the majority
of patients [7]. Even in cases where a high ventricular rate does not cause immedi-
ate discomfort, leaving it untreated can lead to heart complications such as reduced
pumping capacity [7]. Several pharmacological options exist for rate control, includ-
ing β-blockers, non-dihydropyridine calcium channel blockers, and digitalis. How-
ever, β-blockers and calcium channel blockers are recommended as first-line therapies
[7].

β-blockers, commonly metoprolol or carvedilol, target β-1 receptors in the heart, ef-
fectively reducing the influence of the sympathetic nervous system and consequently
lowering the heart rate. The general effect of β-blockers on the action potential is
complex without any clear trends between different β-blockers [83]. Nevertheless, as
detailed in Section 2.3, stimulation of β-1 receptors enhances inward calcium current
via L-type channels, and blocking of these receptors decreases the conduction veloc-
ity in the AV node [34]. Furthermore, electrophysiological studies of the β-blocker
metoprolol have demonstrated an increased AV nodal refractory period [84]. Addi-
tionally, the β-blocker carvedilol has been shown to prolong the effective refractory
period in the atria during AF, reducing the frequency of impulses into the AV node,
thereby reducing the heart rate [85].
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Non-dihydropyridine calcium channel blockers, such as verapamil or diltiazem, pre-
vent the opening of L-type calcium channels. This results in a weaker upstroke of the
action potential in pacemaker cells and thereby a reduced conduction velocity within
the SA and AV node cells, resulting in a lowering of the heart rate. Electrophysiologi-
cal studies of verapamil and diltiazem have also demonstrated an increased AV nodal
refractory period [86, 87].

Combination therapy employing β-blockers, calcium channel blockers, and digitalis
is also used in some cases [88]. Notably, robust evidence remains limited regarding
the most effective type and intensity of rate control treatment [89, 7]. Ablation of the
AV node with pacemaker implantation is an option, but this is typically reserved as a
last resort when drugs are ineffective [7].

In addition, the FP and SP of the AV node exhibit distinct electrophysiological be-
haviours, as stated in 2.2.2. Therefore, a difference in their response to medications
is expected [90, 26, 91]. For instance, studies have shown that the β-blocker esmolol
has a less pronounced effect on the anterograde refractory period of the SP compared
to the FP [92]. In general, the detailed mechanisms governing AV nodal function
remain under debate, and the precise physiological differences between the pathways
relevant to drug effects are not fully understood [93].





Chapter 4

Cardiac Modelling

Over the years, researchers have developed numerous mathematical models of the
human heart. Depending on their ultimate purpose, they range from whole-heart
models to those focused on specific components such as the AV node. Some models
aim to deepen our understanding of the heart’s function, while others aim to identify
patient-specific characteristics to guide personalised treatment selection. Since this
thesis focuses on modelling the AV node, this chapter will mostly focus on models of
the AV node.

This chapter begins with a broad overview of the field of cardiac electrophysiology
modelling, in Section 4.1. Section 4.2 focuses on models of the AV node; exploring
six different AV node models, the last being the model we propose in Paper I. This
model is specifically designed to assess conduction delay and refractory period within
the AV node during AF.

4.1 Cardiac Electrophysiology Models

We begin our exploration of cardiac electrophysiology modelling by focusing on cell
models. Cell models delve into the electrical activity at the cellular level and model
the interaction of ion channels within the cell membrane, which coordinates the ac-
tion potential. As described in Section 2.1.1, the action potential plays a key role
in the electrophysiology of the heart, heavily influenced by the interplay of Na+, K+,
and Ca2+ channels. Consequently, cellular cardiac electrophysiology models often in-
tegrate representations of these ionic currents. Markov models and Hodgkin-Huxley
models are common choices for this purpose [94, 95]. These models capture the dy-
namic voltage-dependent gating behavior of ion channels across the cell membrane
[95]. By combining such models, researchers can create detailed representations of
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the action potential. The physiological details of these models have increased greatly
from the first computational model of a cardiac action potential by Noble in 1962
[96], to now include e.g. modelled β-adrenergic signalling and updated formulations
for the L-type Ca2+ channel current [94].

It is possible to connect multiple cell models into larger structures. This can be
achieved using a bidomain model, a mathematical model using partial differential
equations to describe the membrane potential and ionic currents of a group of cells
organised in a complex structure [97]. By combining multiple cell models, larger
structures of the heart such as tissues or even the whole heart can be modelled, with
varying physiological detail [98]. These models combine anatomical representations
of the atria, ventricles, and conduction system, and allow for investigation of complex
phenomena of various structures. These types of cardiac models are particularly valu-
able for studying arrhythmias such as AF [99]. However, a detailed description of the
whole heart leads to a large number of parameters and degrees of freedom to describe
the models (possibly several million). This leads to high computational demand and
often precludes the models from using the patient-specific optimisation of model pa-
rameters used in this thesis [99]. While some studies have explored patient-specific
estimation in whole-heart models, this will always require some assumption, since it
is generally impossible to reliably determine the huge number of degrees of freedom
that these models contain.

Therefore, larger structure cardiac models with less physiological detail and fewer pa-
rameters have been developed, such as the eikonal models used to efficiently map the
cardiac activation [100, 101] and repolarization [102]. These types of models have
been used to simulate electrograms and ECGs in human whole hearts [102]. As an
example, whole-heart models are used to guide catheter ablation procedures for AF
by simulating electrical wave propagation and identifying optimal ablation targets
[103, 104]. Another way to reduce computational complexity is to focus on specific
regions of the heart relevant to the research question, such as the AV node. These
techniques for reducing the complexity are not mutually exclusive. As an example,
the model proposed in Paper I describes the AV node as a network of simplified cell
models, hence describing a specific region with reduced level of physiological detail.

4.2 AV Node Models

Several AV node models have been created, ranging in spatial resolution from zero-
dimensional lumped structures to one-dimensional networks with varying complex-
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ity levels tailored to specific intents. This section presents a summary of five AV node
models relevant to the model proposed in Paper I either by having a one-dimensional
structure [105, 106, 107], incorporating interaction between the FP and SP [105,
106, 108], or by having similar purpose of individual assessment of AV node proper-
ties using ECG recordings [109]. Nevertheless, models of the AV nodal recovery curve
have long exited [110] and evolved to incorporate facilitation1 and fatigue [111, 112]
before including concealed conduction [113, 114]. These types of models have suc-
cessfully been used to study atrial tachyarrhythmias such as AF [115, 116].

4.2.1 Inada et al.

Figure 4.1: A
schematic representa-
tion of the AV node
model presented in
[105].

Inada et al. developed a biophysically detailed action
potential model including the SA node, right atrium,
and AV node of a rabbit heart [105]. This one-
dimensional multicellular model represents the heart as
a network of cell models. For the AV node specifi-
cally, the model utilises the three distinct cell types de-
scribed in Section 2.2.2; the atrio-nodal cells (begin-
ning), nodal cells (middle), and nodal-His cells (end),
as shown in Figure 4.1. Each cell type is based on
action potential recordings from rabbit hearts and in-
corporates various ion currents crucial for electrical ac-
tivity. A system of 26 nonlinear ordinary differential
equations governs the action potential dynamics within
each cell. The model replicates the dual pathway phys-
iology of the AV node with 200 sub-models represent-
ing the SP and 150 sub-models representing the FP.
To simulate AF, the model introduces stimuli with ran-
dom intervals into the atrial cells preceding the AV
node.

This comprehensive model captures the physiological charac-
teristics of the AV node tissue and has been used to analyse
various aspects of its function, including the effects of calcium
channel blockers and AV node pacemaking activity.

1Increasing the excitability or responsiveness of the AV node to incoming electrical signals.
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4.2.2 Ryzhii et al.

Ryzhii et al. proposed a one-dimensional representation of the conduction system of
the rabbit from the SA node until the bundle of His comprising a total of 33 cells
[106], where all cells are based on the Aliev-Panfilov model [117]. Compared to the
one-dimensional AV node model proposed by Inada et al. [105], this formulation
offers a computationally more efficient method to capture the essential electrophys-
iological behaviours of the AV node, such as dual pathway physiology. It has been
shown to replicate normal sinus rhythm, AV node automaticity, and the filtering of
rapid atrial rhythms seen in AF. The model was designed to be used as a stand-alone
model, as a part of a three-dimensional model of the atrial, or as a part of a whole-heart
model.

4.2.3 Lian et al.

Lian et al. proposed an AV node model for investigating ventricular pacing, con-
duction delays, and refractoriness within the AV node during AF [107]. This four-
component model incorporates an AF generator, an AV junction component, a ven-
tricular component, and an optional pacing electrode, as shown in Figure 4.2. The
AF generator utilises a Poisson process, a common approach for simulating the ar-
rival of impulses at the AV node. The Poisson process is characterised by a single
parameter, λ, representing the average rate of incoming impulses. The AV junction
is modelled as a zero-dimensional lumped structure, characterising several properties
of the AV node, such as the refractory period and conduction delay. An exponential
recurrence relation describes the dynamics of recovery and delay within the AV junc-
tion. The ventricular components account for the influence of the ventricles on the
AV junction through retrograde waves. Finally, the optional pacing electrode allows
for investigating the effects of external pacing on the AV node. All four components
are interconnected, enabling them to influence the behavior of each other.

Figure 4.2: A schematic representation AV node model presented in [107].
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This model has been used to study the impact of conduction properties and AF rate
on the ventricular response during AF, as well as the electrotonic modulation in the
AV junction. While capable of replicating realistic RR series, the model lacks spatial
resolution in the AV node and dual pathway physiology due to the lumped structure
of the AV junction.

4.2.4 Climent et al.

Climent et al. focused on modelling the conduction delay of the FP and SP within
the AV node during AF using a zero-dimensional model [108]. To represent the
conduction delay in each pathway, the model employs the exponential function seen
in Equation 4.1,

A3H3 = AHmin + β · exp(−(A2A3 −A2H2)/τrec), (4.1)

to calculate a test conduction time A3H3; where AHmin is the minimum observed
time for an atrial impulse to reach the His bundle; A2A3 is the coupling interval be-
tween a conditioning atrial stimulus and a test-stimulus; A2H2 is the conditioning
stimulus conduction time; β is a modulating factor; and τrec the AV node recovery
period. These parameters were determined using data obtained from in vitro pacing
experiments on rabbit hearts. To validate the performance of the model during AF,
irregularly distributed AA intervals as input for both the model and the in vitro prepa-
rations were used.

Moreover, the model captures concealed conduction by calculating the conduction
delay for both pathways. The pathway with the shorter delay retrogradely invades the
other. This model has advanced our understanding of the complex and poorly under-
stood characteristics of conduction time and dual pathway physiology within the AV
node during arrhythmias like AF.

4.2.5 Corino et al.

Corino et al. proposed a statistical model specifically designed to assess AV node
electrophysiology properties from ECG data during AF, with further development
reported in subsequent works [109, 118, 119]. This zero-dimensional lumped model,
shown in Figure 4.3, incorporates key physiological features such as concealed conduc-
tion, relative refractoriness, and dual pathways. The model simulates incoming atrial
impulses to the AV node using a Poisson process. Each impulse can trigger ventricular
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activation through propagation via the SP with a probability α, trigger activation via
the FP with a probability of 1 − α, or be blocked due to the refractory state of the
AV node (τ1 in the SP, τ2 in the FP). The refractory period is modelled by a com-
bination of deterministic and stochastic components. The deterministic component
is split into two parts, representing the two pathways within the AV node, while the
stochastic component is assumed to be uniformly distributed. The mean arrival rate
of atrial impulses is estimated from the atrial activity extracted from the ECG using
spatiotemporal QRST cancellation [67]. The remaining model parameters are esti-
mated by maximising a log-likelihood function.

This model has demonstrated a high degree of accuracy, replicating 88% of RR in-
terval series histograms when compared to empirical data. However, it is limited by
the lumped nature of the model, since several AV node characteristics are grouped
together, limiting the interpretation of these parameters.

Figure 4.3: A schematic representation AV node model presented in [118].

4.2.6 Network Model of the AV Node

The event-based phenomenological model proposed in Paper I is used in Papers I-IV.
It has separate parameters for the refractory period and the conduction delay, making
it possible to study both pathways. It is based on a previous model presented in [71].
The model is similar in structure to the one-dimensional AV node models proposed
by Inada et al. [105] and Ryzhii et al. [106], although, vastly more computationally
efficient. Similar to the model proposed by Corino et al. [109], the purpose of this
model is to assess the electrophysiology properties of the AV node during AF based
on ECG recordings.

The model depicts the AV node as a network of 21 interconnected nodes, as shown
in Figure 4.4. These nodes are categorized into three functional groups; FP, SP, and a
coupling node. Each pathway is represented by ten individual nodes, corresponding
to a localised region within the AV node. An impulse arriving at a node can either
propagate to all its neighbouring nodes after a conduction delay or be blocked if the
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node is in its refractory period. The refractory period and conduction delay for the
pathway node i is updated for each incoming impulse n according to Equation 4.2,
4.3 and 4.4,

Ri(n) = Rmin +∆R(1− e−t̃i(n)/τR) (4.2)

Di(n) = Dmin +∆De−t̃i(n)/τD (4.3)

t̃i(n) = ti(n)− ti(n− 1)−Ri(n− 1), (4.4)

where ti(n) is the arrival time and t̃i(n) the diastolic interval preceding the impulse.
A negative value of t̃i(n) indicates the node is currently in its refractory phase, conse-
quently blocking any incoming impulses. The refractory period and conduction delay
for each pathway is defined by three parameters each: a minimum value (RFP

min and
RSP

min for the refractory period, DFP
min and DSP

min for the conduction delay), a maxi-
mum prolongation (∆RFP ,∆RSP ,∆DFP and∆DSP ), and a time constant (τFP

R ,
τSPR , τFP

D , and τFP
D ). Notably, the parameters are identical for all nodes within a

pathway. However, due to the varying arrival times of impulses at each node, the ac-
tual values of the refractory period and conduction delay will differ between nodes at
any given time. Furthermore, the coupling node represents the connection between
the end of the AV node and the bundle of His, the bundle of His itself, and the Purk-
inje fibers. Here, both the refractory period and conduction delay are set to constant
values.

Impulse generation can be modelled by a Poisson process with a mean arrival rate (λ)
derived from the ECG (as in paper I-III ), or extracted from endocardial recordings
(as in Paper IV ). These impulses propagate throughout the network in an event-based
manner, allowing for efficient computation using a modified version of Dijkstra’s algo-
rithm [120]. Using a network model allows for several interesting properties besides
the model parameters themself to be studied, such as the amount of concealed con-
duction and the ratio of impulses propagating through the different pathways.

Each time a heartbeat is simulated with the model, the refractory period and con-
duction delay for each node activation are calculated using Equation 4.2 and 4.3,
respectively. Thus, a vector of the refractory periods and conduction delays is gen-
erated for the nodes in the FP and the SP. The median of these vectors can be used
to estimate the refractory period and conduction delay of each pathway, instead of
the 12 model parameters. This is utilised in Papers III and IV to study the proper-
ties of the AV node, as a contrast to only studying the changes in parameter values,
facilitating interpretation of the results.
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Figure 4.4: A schematic representation of the network model, divided into the slow pathway
(red), fast pathway (green), and coupling node (yellow). The input is created using a Poisson
process, representing atrial activation, and the output represents ventricular activation [1].



Chapter 5

Model Fitting and Parameter
Estimation

Having established a mathematical model, the next step towards individual estima-
tion of AV node properties involves fitting the model parameters based on clinical
measurements. This can be achieved by finding the optimal value (minimum or max-
imum) of a target function quantifying the difference between model output and
clinical measurements.

This chapter starts with discussing target functions, in Section 5.1. The chapter con-
tinues with discussing the importance of quantifying uncertainty and different meth-
ods to achieve this in Section 5.2. Building on the previous sections, Section 5.3
describes several optimisation algorithms, where specific focus is placed on the ge-
netic algorithm, as Papers I-III utilises it. This chapter closes with a short section on
mixed-effect modelling, useful for understanding the results of Paper II.

5.1 Target Functions

In order to estimate model parameters, a function quantifying how closely the model
output aligns with clinical measurements needs to be defined. This function is known
as the target function, and its inverse is called the error function. How the target
function is defined determines the resulting fit to clinical data, and thus what truly
is modelled. Therefore, a target function should preferably capture all relevant infor-
mation about a system. However, a more complex target function often results in
optimisation difficulties, hence a trade-off between complexity and ease of optimisa-
tion exists.

30
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Target functions can be categorised into probabilistic target functions, quantifying
the difference using probability theory, and heuristic target functions, using a more
pragmatic quantification of the differences. Generally, heuristic target functions are
more flexible and can be tailored to a specific problem. As an example, we proposed
to use a heuristic target function based on the Poincaré plot (see Section 3.2.2) in
Paper I, where the differences between Poincaré plots of a measured and simulated
RR interval series are quantified. This increased the complexity of a previously used
target function for the AV node model based on the histogram of the RR series [121],
to also include dynamics of the RR series. In turn, this necessitated a more complex
optimisation algorithm, highlighting the trade-off between complexity and ease of
optimisation.

Using a probabilistic target function can be challenging since setting up a probabilistic
representation of the problem is often difficult. Nevertheless, Bayes’ theorem provides
a mathematical expression for a probabilistic representation including the relationship
between prior knowledge, observed data, our confidence in the model, and the result-
ing posterior distribution, as shown in Equation 5.1 [122].

p(θ|y) = p(y|θ) · p(θ)
p(y)

(5.1)

Here, θ represents some model parameters and y represent observed data. Further-
more, in the case where only a single model structure is considered, the evidence
p(y) acts as a normalisation constant. The likelihood function, p(y|θ), describes the
probability of observing y given θ. The prior probability distribution, p(θ), encodes
the initial belief about possible parameter values. By applying Bayes’ theorem, the
prior beliefs are updated using the data, resulting in the posterior distribution p(θ|y),
which can be used as a probabilistic target function, relevant for the work in Paper IV.
Using p(θ|y) as a target function and searching for its maximum results in a so-called
maximum a posteriori estimate of θ. Similarly, a maximum-likelihood estimate is
obtained using the same approach and setting p(θ) to one. However, a more com-
mon approach when using a Bayesian formulation of the target function is to quantify
aspects of p(θ|y) such as the mode or credibility regions, as is done in Paper III-IV.
This can be used as a tool for uncertainty quantification, which will be discussed in
the next section.

5.2 Uncertainty Estimation

A crucial aspect of model parameter estimation lies in quantifying their associated un-
certainty. Without a proper measure of uncertainty, it is difficult to assess the quality
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and reliability of the estimated parameters. This uncertainty encompasses both the
inherent variability in the parameter estimation process and the impact of the param-
eters on the model output.

A straightforward approach for understanding the uncertainty involves running the
optimisation algorithm multiple times and analysing the spread of the resulting pa-
rameter values, as employed in Paper I. However, this approach is computationally
expensive and does not theoretically guarantee a reliable uncertainty estimate.

To derive a more nuanced interpretation for a better understanding of a specific pa-
rameter’s influence on the model output, sensitivity analysis is often employed. The
most common and basic approach is the one-at-a-time method, where each parameter
is individually perturbed while all others remain fixed [123]. While this technique can
provide some insights, it neglects the potential influence of parameter interactions. A
more robust alternative is variance-based sensitivity analysis, with Sobol’s method as
a prominent example. This method offers a global sensitivity analysis approach [124].
Sobol’s method allows for the calculation of ”total-effect” indices, which quantify the
contribution of each parameter to the overall variance of the model output, includ-
ing the variance arising from interactions with other parameters. For models with
analytical tractability, these indices can also be calculated analytically, but commonly
Monte Carlo simulations are used for estimation [125]. Paper II utilised a variation
of Sobol’s method to estimate parameter uncertainty, focusing the sensitivity analysis
on a limited region around the optimal parameter set.

However, Sobol’s method does not directly quantify uncertainty but rather focuses on
assessing the sensitivity of the output to changes in the inputs. Probability distribu-
tions of the model parameters (p(θ|y) seen in Equation 5.1), on the other hand, pro-
vide a comprehensive picture of the uncertainty. However, quantifying the probabil-
ity distribution can be challenging, and methods approximating p(θ|y) with Markov
chain Monte Carlo based methods such as the Metropolis–Hasting algorithm [126],
Gibbs sampling [127], and particle filters [128] are often used (e.g. in Paper IV ).
To use these methods, p(y|θ) needs to be evaluable. If it is not possible to evaluate
p(y|θ), the approximate Bayesian computation (ABC) algorithm (see Section 5.3.6)
can instead be used to approximate p(θ|y), as was done in Paper III. However, a model
for generating data and sufficient statistics1 needs to be defined to use the ABC algo-
rithm, which is not always possible. Since these methods provide an approximation
of the entire posterior distribution p(θ|y), they can be used to obtain a maximum a
posteriori estimate of the model parameters as well as an associated uncertainty.

1A summary of the data that are as informative as the entire dataset itself.
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5.3 Optimization Algorithms

While the simplest form of optimisation reduces to finding zeros of the derivative of
an analytically tractable function, most real-world problems cannot be described us-
ing an analytically tractable function. Instead, different optimisation algorithms are
needed to find the optimum for heuristic and probabilistic target functions lacking an
analytic solution. Below we describe six important algorithms: the gradient descent al-
gorithm, particle swarm optimisation, the genetic algorithm, the particle filter, as well
as the smoothing algorithm for approximating p(θ|y) when p(y|θ) can be evaluated,
and the ABC algorithm for approximating p(θ|y)without directly evaluating p(y|θ).

An additional layer of complexity arises when optimisation occurs in a dynamic en-
vironment. Here, the clinical measurements, and consequently the optimal solution,
changes over time. The challenge becomes not only finding the optimum but also to
track it as the environment evolves. This is known as a dynamic optimisation prob-
lem, which is particularly relevant for estimating changes in model parameters over
time, offering valuable insights in many real-world scenarios such as in Papers II-IV.
A critical challenge when tracking the optimum of the target function in a dynamic
optimisation lies in maintaining diversity within the optimisation algorithm. In this
work, this translates to diversity in the collection of candidate solutions an optimisa-
tion algorithm explores. Here, diversity refers to the variety of parameter sets explored
during the search process. Loss of diversity can hinder the ability of the algorithm to
find new optima as the target function changes. As a consequence, a significant re-
search focus has been placed on developing methods to maintain population diversity
through clever replacement strategies for candidate solutions [129, 130], specifically
relevant for Paper II and III. Solving a dynamic optimisation problem can be achieved
using any of the presented algorithms.

The choice of optimisation algorithm depends heavily on the specific problem and
the target function at hand. The vast number of optimisation algorithms makes it
impossible to cover them all in this thesis. Therefore, this work will focus on and
discuss a selection of approaches particularly relevant to optimising parameters within
AV node models.

5.3.1 Gradient descent

Perhaps the most widely known optimisation algorithm is gradient descent. It lever-
ages the concept of the gradient, or an approximation of it, to iteratively minimise the
error function [131]. In each step, the gradient of the target function is evaluated at
the current parameter vector. This gradient indicates the direction with the steepest
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descent, guiding the next step of the algorithm towards the minimum of the error
function. The update rule for gradient descent is captured by Equation 5.2:

xn+1 = xn − γ∇F (xn), (5.2)

where xn represents the current parameter vector, xn+1 the updated parameter vec-
tor after the step, ∇F (xn) denotes the gradient of the error function evaluated at x,
and γ the step size, controlling the magnitude of the update step. The simplicity and
effectiveness of gradient descent make it a valuable tool when the gradient can be read-
ily calculated. However, it suffers from two main drawbacks. First, it is susceptible to
getting trapped in local minima, potentially leading to suboptimal solutions. Hence,
the result can be highly dependent on the initial choice of parameter values. Second,
the selection of the step size is crucial. A value that is too small can lead to slow con-
vergence, while a value that is too large might cause the algorithm to overshoot the
optimum entirely, hindering convergence.

5.3.2 Particle swarm optimisation

Particle swarm optimisation is inspired by swarm intelligence, particularly the move-
ment and social interaction observed in flocks of birds or schools of fish [132, 133].
In the algorithm, a swarm of particles explores the search space, where each parti-
cle represents a set of model parameters to be estimated. The algorithm has found
applications in various fields in recent years, including optimising the efficiency of
solar power towers [134] and aiding decision-making in marine oil spill responses
[135]. The particle swarm optimisation algorithm can define different subsets within
the search space or among the particles themselves, called topologies. Each particle
explores the space independently, guided by its best-found solution and by the best-
found solution of its assigned topology; evaluated on the target function. The update
rule for the position of a particle is calculated by Equation 5.3.

vn+1 = w1vn + w2r1(p− xn) + w3r2(g − xn). (5.3)

Here, vn represents the velocity of the particle in the previous step; p represents the
best-found position of the particle; g the best position found by any particle in the cur-
rent topology; r1 and r2 are random vectors introduced for stochasticity; w1, w2, w3

are weighting factors that control the influence of previous velocity, the best-found so-
lution of the particle, and the topological best solution, respectively; vn+1 represents
the velocity update for the next step; and xn denotes the current parameter set of the
particle. Following this velocity update, the position of the particle is calculated using
Equation 5.4,
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xn+1 = xn + vn+1. (5.4)

Although versatile, particle swarm optimisation is not guaranteed to find a maximum
of the target function. However, the broadness of the search makes it less likely to
get stuck in local optima compared to the gradient descent and the genetic algorithm.
The nature of the algorithm makes it very suitable for use on dynamic optimisation
problems since the particles will move around the error surface when the surface is
changing, gradually improving on previously found solutions for slowly changing er-
ror surfaces [136, 137].

5.3.3 Genetic algorithm

The genetic algorithm is inspired by biological evolution, specifically Darwin’s con-
cept of natural selection [138, 139]. It incorporates elements of mutation, crossover,
and selection to achieve optimisation. A genetic algorithm operates on a population
of individuals, where each individual represents one set of model parameters. These
individuals are here denoted xn,i, where n refers to the generation and i indicates a
specific individual within a population of I individuals. The initial population is gen-
erated randomly. Each of the I individuals is subsequently evaluated using a target
function, often referred to as a fitness function in this context. The next generation
of individuals is then created through a combination of selection, crossover, and mu-
tation. A pseudocode for a genetic algorithm is shown in Algorithm 1.

Selection mimics natural selection by choosing two ”parents” from the existing popu-
lation. Two common selection methods are tournament selection and roulette wheel
selection [140]. In tournament selection, a small group of individuals is randomly
chosen, and the individual with the highest fitness score is selected with a certain prob-
ability of reproduction. In roulette wheel selection, each individual has a probability
of selection that is directly proportional to their fitness score. This means individu-
als with higher fitness scores occupy a larger portion of the figurative roulette wheel
and are therefore more likely to be chosen as parents. Crossover mimics breeding in
nature. It combines genetic information from two parents by swapping parts of their
chromosomes (parameter values in our case) to create a new offspring for the next
generation [141]. This exchange of genetic material allows for the creation of novel
solutions that might not have been present in the original population. Mutation, on
the other hand, introduces random alterations in the genetic makeup of an individual,
promoting diversity and potentially leading to the exploration of new regions in the
search space [142]. This interplay between selection, crossover, and mutation drives
the population towards improved solutions over successive generations.
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Algorithm 1 Pseudocode for a genetic algorithm algorithm
Initialization (n=0):
Randomly generate x0,i

while not terminated do
Evaluate xn,i

for i = 1:I/2
Select two individuals from xn,i

Create two new individuals using crossover (Figure 5.1a)
Mutate the two new individuals (Figure 5.1b)

end
Evaluate termination criteria
n = n + 1

end

An example of selection, crossover, and mutation is illustrated in Figure 5.1. Here,
two individuals, xn,i and xn,j , are first selected with a probability based on their fit-
ness values. Following selection, two crossover points, c1 and c2, are randomly chosen
between 1 and the total number of parameters within the individuals (Figure 5.1a).
The parameter values between these crossover points are then swapped between the
parents to create two offspring, xn+1,i and xn+1,j . Further, each parameter within
these offspring has a probability of being mutated, as depicted in Figure 5.1b. This
process of creating new individuals through selection, crossover, and mutation contin-
ues until the next generation (n+1) reaches the same population size as the previous
generation. The entire process iterates until a termination criterion is met. Common
termination criteria include finding an individual with a fitness value exceeding a pre-
defined threshold, reaching a fixed number of generations, or observing no significant
improvement in the best solution over successive generations [143].

Genetic algorithms have been successfully applied to solve complex problems such as
designing specialised antennas [144] or predicting the inflation rate [145]. As with
particle swarm optimisation, a genetic algorithm cannot guarantee to find the opti-
mal solution. Nevertheless, the ability of the population to adapt to changing envi-
ronments makes genetic algorithms well-suited for dynamic optimisation problems,
where the fitness landscape itself evolves over time, similar to how changes in climate
cause real-world animals to evolve. Due to selection and mutation, the individuals
in a genetic algorithm can drastically change their parameter values from one gener-
ation to the next, making it suitable for tracking optimum in rapidly changing error
surfaces in dynamic optimisation problems [136, 137].
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(a) Two point crossover

(b) Mutation

Figure 5.1: Figure (a) depicts a schematic representation of crossover in a genetic algorithm,
where two individuals (left) are recombined to create two offspring (right). Following this
crossover operation, Figure (b) shows a mutation event affecting the offspring individuals.

5.3.4 Particle filters

Using a probabilistic target function (see Section 5.1), it is possible to approximate
the posterior probability distribution (p(θ|y)) from the optimisation algorithm. For
linear state-space systems with Gaussian noise, the Kalman Filter can be used for
parameter estimation [146]. However, this is not the case for the AV node model
presented in Paper I. Instead, a particle filter can be used to approximate the solutions
for the so-called filtering problem – estimating the posterior distribution (p(θ|y)) of
the model parameters (θ) based on past and present observations (y).

Particle filters are a type of Monte Carlo method used to approximate p(θ|y) in po-
tentially non-linear and non-Gaussian state-space systems [128, 147]. Particle filters
work by approximating the posterior probability distribution of the system state using
a set of weighted particles. These particles represent possible states of the system over
time, and their weights reflect how well they agree with the observed data. Using the
model presented in Paper I, one particle represents one set of model parameters.

The particle filter algorithm can be described by four phases: initialisation, weighting,
resampling, and propagation, illustrated in Figure 5.2. Initialisation deals with creat-
ing a set of particles representing the prior probability distribution of the system state.
The weight of each particle is then updated based on how well it aligns with the latest
observation using a probabilistic target function. Each particle is then resampled with
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replacement, favouring those with higher weights. Lastly, each particle is propagated
forward in time based on a defined dynamics model, describing the system and pro-
cess noise. These steps are repeated for each new observation to update the posterior
distribution. By iteratively executing these steps, the particle filter provides an approx-
imate solution for the filtering problem, allowing for the estimation of system states
and their associated uncertainties.

Particle filters have previously been used for cardiac applications such as atrial flutter
detection [148], to robustly track heart rate [149], and to automatically annotate
ultrasound videos of the fetal heart [150]. For Paper IV in this thesis, a particle
filter is used to estimate the AV node properties for each heartbeat using a normal
distribution centred at the time of a measured heartbeat as the target function.

Figure 5.2: The four phases of a particle filter, where the weight of the particles is represented
by their size.

5.3.5 Smoothing algorithm

While particle filters address the filtering problem using only past and current observa-
tions, smoothing algorithms aim to address the smoothing problem. This estimation
incorporates information from both past and future observations. Smoothing algo-
rithms become particularly useful when the complete time series of observations is
available, and insights into past states might be valuable.



39

A common smoothing algorithm used in conjunction with particle filters is the for-
ward filtering backward sampling algorithm [151, 152]. This algorithm operates in
two passes, the forward and backward pass. The forward pass utilises a standard parti-
cle filter to approximate the solutions to the filtering problem for each observation. In
the backward pass, a particle is selected from the last observation, based on its weight,
and propagated backward in time to the position of one of the particles in the pre-
vious observation. Which previous particle that gets selected is based on its original
normalised weight (W ) in the forward pass, and on the likelihood that the selected
particle (θt+1) was created from the previous ones (θt), according to Equation 5.5.

ŵt = Wt pt+1(θt+1|θt). (5.5)

Here, ŵt is the updated weight at time t, Wt is the original normalised weight at time
t, and pt+1 denotes the likelihoods that θt+1 was created from θt. Thus, pt+1 is the
probabilistic target function used in the forward pass (particle filter).

This selecting of a particle and updating of weights is continued for all observations,
starting at the last iteration and going backward, to create one entire state trajectory,
encompassing the information from past and current observations via the forward
pass, and information from future observations via the backward pass. Repeating
this process multiple times thus generates an approximate solution for the smoothing
problem. As for the particle filter, the target function for a smoothing algorithm also
needs to be described as a probability density function. For this thesis, the smoothing
problem is solved using a smoothing algorithm in Paper IV.

5.3.6 Approximate Bayesian Computation

The ABC algorithm can be used to approximate the posterior probability distribution
using a heuristic target function. It provides a framework for approximating the pos-
terior distribution (p(θ|y)) for any target function, as long as the model can generate
simulated data [153, 154] and sufficient statistics can be defined. The core idea be-
hind ABC involves comparing simulated data from a model with observed data (y)
using a target function (or distance metric in ABC terminology). The algorithm works
iteratively. First, data is simulated from the model using a prior distribution (p(θ))
for the parameters, as shown in Figure 5.3. Then, the target function is evaluated for
each simulation. Based on the results and a predefined threshold, parameter sets that
generate simulated data closely resembling the observed data are retained, while the
rest are discarded. The posterior distribution of the parameters is updated based on
the retained parameter sets. By iteratively performing this process while updating the
prior distribution with the previous posterior distribution and iteratively adjusting
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the threshold, ABC gradually builds an approximation of the posterior distribution
of the parameters.

Figure 5.3: One iteration of the ABC algorithm. The distributions in the figure represent the
observed and simulated data.

5.4 Mixed-effect Modeling

Estimating parameters in a dynamic optimisation problem leads to estimated model
parameter trends, thus a time series of the model parameters. Analysing these trends
by fitting them to a model that describes the parameter behavior over time can be
valuable. When dealing with biomedical data, which frequently involves multiple pa-
tients and drugs, the mixed-effects model structure becomes particularly relevant due
to its ability to account for fixed and random effects [155]. A linear mixed-effects
model was employed in Paper II to estimate the drug-dependent differences in circa-
dian variation within the parameter trends.

A mixed-effects model allows for the separation of the overall drug effect on a pop-
ulation (described by the fixed effects) from the individual response of each patient
(captured by the random effects). A linear mixed-effects model can be mathematically
represented by Equation 5.6,

y = Xβ +Zu+ ϵ, (5.6)

where y is the known vector of observations, β is the unknown vector of fixed effects,
u is the unknown vector of random effects, ϵ is the unknown vector of random errors,
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and X and Z are the known design matrices relating the observations to the fixed
and random effects, respectively. Moreover, mixed-effect models have their own set
of specialised optimisation algorithms, which the interested reader can find detailed
information about in [156, 157].



Chapter 6

Summary of Papers

The four papers included in this thesis address the three aims stated in Section 1.2.

To develop a mathematical model of the AV node that accounts for its electrophysio-
logical properties, is capable of replicating its behaviour during AF, and which compu-
tational efficiency allows for patient-specific parameter estimation (aim 1) is addressed
in Paper I, where a model of the AV node is presented.

To set up a framework for reliable estimation of model parameters based on ECG
recordings (aim 2) is addressed in Papers I-IV. All frameworks in the included papers
are used to estimate the model parameters yielding results with varying degrees of tem-
poral resolution and interoperability. In general, increasing the temporal resolution
results in a larger uncertainty in the estimate, and with a larger uncertainty comes an
increasing demand to quantify the uncertainty in order to evaluate the reliability of
the estimate. The model parameters in Paper I are estimated from 15-minute ECG
segments and the reliability was analysed by running the framework 200 times for
each simulated patient. In Paper II, we estimated 24-hour trends of the model param-
eter, with a resolution of one sample per 1000 RR intervals. Additionally, a variant
of Sobol’s method [124] was used to derive the uncertainty for each estimated param-
eter. Further, in Paper III the uncertainty was more accurately quantified using the
ABC algorithm to approximate the posterior distribution of the model parameters to
better quantify the robustness of the estimates. Lastly, in Paper IV, a particle filter
was used to provide beat-to-beat estimates of the posterior distribution of the model
parameters.

To evaluate the applicability of the proposed method in a clinical context by analysing
drug-induced and ANS-related changes in AV node conduction properties during AF
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(aim 3) is addressed in Papers II-IV. In Paper II, we analysed the drug-dependent
effect on circadian variations in the AV node properties by combining a genetic algo-
rithm with a linear mixed-effects model, showing that β-blockers and calcium channel
blockers have slightly different effects on the circadian variation of the AV node prop-
erties. In Paper III-IV we estimate the trends of the AV node conduction delay and
refractory period and associated posterior distributions, rather than the original model
parameters, increasing the interpretability, and thereby the applicability, of the results.
Moreover, an attempt to predict the average heart rate after drug treatment was made
in Paper III, which showed that time-variations in the AV node properties correlated
with treatment outcome for metoprolol. Furthermore, in Paper IV we estimated the
AV node conduction delay and refractory period with a beat-to-beat resolution during
a tilt test to analyse the influence of the ANS.
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6.1 Paper I: Non-invasive Characterization of Human
AV-Nodal ConductionDelay and Refractory Period
During Atrial Fibrillation

In this study we proposed a novel network model based on the work presented in [71]
(the reference model). This novel model, also presented in Section 4.2.6, introduces a
coupling node within the network model to address the reference model’s shortcom-
ings in representing clinical RR interval series dynamics. The refractory period and
conduction delay of the coupling node are independent of the diastolic interval and
the other pathway nodes. The paper also presents an associated workflow that utilises
a problem-specific target function based on the Poincaré plot, leveraging the dynam-
ics observed in the RR interval series, as well as a problem-specific genetic algorithm
for optimisation.

Compared to the reference model, the model proposed in Paper I demonstrates the
ability to replicate the dynamics present in the RR interval series extracted from ECG
recordings. These dynamics are visualised in the Poincaré plot and autocorrelation
function depicted in Figure 6.1. As seen in Figure 6.1, the reference model struggled
with transmitting an impulse fast following a slow impulse; whereas the proposed
model did not. Furthermore, the problem-specific genetic algorithm enabled reliable
estimation of the model parameters from ECG recordings. The parameter estimation
was evaluated using measured ECG data and simulated data. The estimation results
suggested that the proposed model has the potential to assess drug-dependent varia-
tions in AV nodal conduction properties.

The model proposed in this paper is fitted to clinical measurements in Papers II-IV to
estimate the AV node properties. Therefore, this first paper lays the ground for the
remaining papers in this thesis.
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Figure 6.1: A comparison of the Poincaré plot (left) and autocorrelation (right) between
the model and workflow proposed in Paper I (top), and the reference model and workflow
proposed in [71] (bottom).
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6.2 Paper II: ECG Based Assessment of Circadian
Variation in AV-nodal Conduction During AF —
Influence of Rate Control Drugs

In this study we used the model introduced in Paper I to investigate circadian varia-
tions in the conduction delay and refractory period of the AV node. In contrast to the
genetic algorithm utilised in Paper I, this paper proposes a problem-specific genetic
algorithm designed for dynamic optimisation. This algorithm dynamically adjusts its
hyperparameters during optimisation based on changes observed in the RR interval
series characteristics. This allows the algorithm to efficiently search for new model
parameter sets during periods of rapid change in RR interval characteristics while also
effectively converging towards optimal solutions during periods of slower change, al-
lowing 24-hour analysis of the model parameters.

The proposed workflow was employed to estimate trends in the AV node model pa-
rameters over 24 hours with a resolution of one estimate per 1000 RR intervals. This
analysis utilised ambulatory ECG data from 60 patients, acquired at baseline and un-
der the influence of four different rate control drugs: two calcium channel blockers
and two β-blockers [10].

Estimated model parameter trends were used in a mixed-effects model of a cosine to
quantify drug-dependent mean (αm) and circadian variation (βm) in the AV node
properties. This analysis revealed significant drug-dependent differences in the con-
duction properties, as illustrated in Figure 6.2. Notably, the difference was most
pronounced for the maximum prolongation of the conduction delay (∆DFP and
∆DSP ), where β-blockers demonstrated a greater reduction in circadian variation
compared to calcium channel blockers [10].
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Figure 6.2: The fixed effect deviation from baseline for the linear mixed-effect model with
corresponding 95% confidence intervals for the cosinor mean (top) and cosinor amplitude
(bottom) for each of the twelve model parameters and four drugs. The confidence intervals
not overlapping zero indicate a significant difference from baseline (p < 0.05).
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6.3 Paper III: Model-based Estimation of AV-nodal
Refractory Period and Conduction Delay Trends
from ECG

In this study, we used the genetic algorithm presented in Paper II combined with an
ABC algorithm to estimate the posterior distribution of the model parameters. This
allows for a more nuanced interpretation of the results compared to point estimate
as the posterior distribution represents a probability distribution over the parameter
space. In addition, the characterisation of the AV node in Paper II is limited by the 12
model parameters’ intrinsic complex dependencies, where a large change in the model
parameters could result in a small change in the refractory period or conducting delay
of the model nodes, making their interpretation a non-trivial task. Estimates of the
refractory period and conduction delay of the slow and fast pathway of the AV node
(RPFP , RPSP , CDFP , and CDSP ), were therefore used for the analysis instead
of using the original 12 model parameter estimates.

Using the same dataset as in Paper II, Holter ECG from 51 patients with permanent
AF during baseline was analysed, with a resolution of 10 minutes [10]. Furthermore,
the predictive power of variations in RPFP , RPSP , CDFP , and CDSP on the
resulting heart rate reduction after treatment with four rate control drugs was investi-
gated.

Diurnal variability in RPFP , RPSP , CDFP , and CDSP did not correlate with
treatment outcome. Nor were machine learning tools able to predict drug efficacy
based on diurnal variability. However, a significant correlation was found between
the variability in the 10-minute estimates of RPFP and CDFP and the resulting
heart rate reduction using the β-blocker metoprolol.

Reducing the 12 original parameters to four AV node properties facilitates a more com-
prehensible analysis, which is vital for effective communication of the results. This,
combined with estimating the full posterior distribution, makes it possible to provide
24-hour trends of the AV node properties with detailed uncertainty. An example of
this is shown in Figure 6.3, where a high variability in the AV node properties can be
seen.
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Figure 6.3: The median (dotted) and the 95% credibility region of the estimated refractory
period (top) and conduction delay (bottom) for the FP (blue) and SP (red) for one patient.
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6.4 Paper IV: ECG-based Beat-to-beat Assessment of
AV Node Conduction Properties during AF

Based on the findings in Paper III, where the treatment outcome of the β-blocker
metoprolol was correlated with variability in the 10-minute AV node property esti-
mates, a natural next step was to investigate changes in AV node conduction proper-
ties with a higher temporal resolution. In Paper III, the temporal resolution was 10
minutes, which is quite low compared to e.g. the influence of the autonomic nervous
system, which is known to modulate AV node conduction with beat-to-beat resolu-
tion [158].

Therefore, the fourth paper proposes to estimate the four AV node properties for each
heartbeat using a particle filter and a smoothing algorithm. Using this approach, the
full posterior distribution of the four AV node properties could be estimated for each
heartbeat as shown in Figure 6.4, and high-frequency dynamics in the AV-node con-
duction properties could be studied.

The four AV node properties were denoted ϕ = [RFP , RSP , DFP , and DSP ].
Using endocardial (invasive) recordings with simultaneous ECG recordings, the AV
node properties for both cases could be estimated and compared. Additionally, sim-
ulated data was created allowing comparison to ground truth, showing an especially
low error in RSP (mean absolute error of 51 ± 12 ms). Furthermore, the AV node
properties based on ECG recordings during a tilt test protocol were also analysed,
where a sympathetic dominance of the ANS is assumed during head-tilt-up. From
this analysis, RFP , RSP , and DFP decreased significantly (p < 0.05) during head-
up tilt compared with the horizontal position, which is in accordance with known
changes from the literature (see Section 2.3).

By increasing the time resolution while keeping the advantages seen in Paper III of es-
timating the full posterior distribution of the four AV node properties, it was possible
to assess changes to the AV node conduction properties at a beat-to-beat resolution
of an individual AV node, something not previously possible. These changes capture
information of the ANS activity, which could be used to gain new information about
the AV node during AF, and possibly guide treatment selection in the future.
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Figure 6.4: Estimates of AV node properties using the particle filter based on endocardial
recordings (PF-EGM) and the particle filter based on ECG recordings (PF-ECG). The modes
are shown with lines and the 80% credibility region as shaded background.



Chapter 7

Outlook and Conclusion

To conclude this thesis, the three aims stated in Chapter 1 have all been addressed.
However, the aims are a way of concretizing the challenge of assisting in personalised
treatment selection during AF. As of today, the optimal treatment for a given patient
is still often chosen empirically, which can lead to a prolonged time until successful
treatment and possibly result in a sub-optimal final choice of drug. We believe that
assessing the AV node conduction properties could give insights into the individual
AV node, and in turn, assist in treatment selection. The drug-dependent differences
from Paper II seen in Figure 6.2 indicate a different drug-induced effect between β-
blockers and calcium channel blockers on circadian variations. Moreover, the results
from Paper III indicate an increased effect of the β-blocker metoprolol on the average
heart rate for patients with a high 10-minute variability in their AV node properties.
These findings hint at a possibility of using time variations of the AV node properties
as a guide for treatment selection, however a high inter-patient variability combined
with a relatively low number of patients (60 in Paper II-III ) stresses a need to verify
the results in a larger population.

Since Paper III indicates a correlation between short-term variability and drug effect,
and Paper IV introduces a methodology yielding higher temporal resolution, it would
be of interest to combine these works. However, applying the methodology from Pa-
per IV to the 24-hour ECG segments used in Paper III would be difficult from a
computational and data-handling viewpoint, and several improvements to the parti-
cle filter would need to be addressed. Nevertheless, if possible, it could yield valuable
insights into the workings of the AV node during AF.

Another issue with the ECG-based approach is the signal-to-noise ratio in the signals.
When estimating properties on a beat-to-beat resolution, the data quality is highly
influential. This includes (but is not limited to) motion artifacts in ambulatory ECG,
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the accuracy of R peak detection, and analysis of f-waves and signal quality. It can thus
be difficult to know if alterations to the AV node properties originate from measure-
ment errors such as these, or actual changes in the AV node. Fortunately, electrodes
and the whole ECG system are improving year after year, which hopefully can mit-
igate this issue. With that said, newer studies also need to be conducted with this
new equipment. In Paper IV, as an example, we used data from the Intracardiac AF
Database [159] recorded in the year 2000, due to the difficulties of accessing invasive
and non-invasive recordings of the heart during AF simultaneously.

In this work, ECG has been used as the primary non-invasive measurement. Nonethe-
less, the rise of PPG recordings from smartwatches is still ongoing. It is possible to
extract the RR interval series from PPG recordings, thus basing the AV node estimates
solely on the RR interval series could be of interest. Doing so would lose virtually all
information about the atria, which is of great importance during AF. Nevertheless,
this convenience may be attractive for large-scale studies or applications in the future.
However, further research is needed to determine if the loss of atrial information is
acceptable for accurate AV node function assessment.

In conclusion, this work has for the first time analysed time-variations in AV node
conduction properties based on ECG recordings in a cohort of patients in order to
study the drug- and ANS-induced changes. By doing this, quantifiable differences in
their effects on conduction properties between β-blockers and calcium channel block-
ers could be observed (Paper II ). As previously discussed, there are still improvements
that could be made, and additional studies that could be performed. In addition,
newer data with higher signal quality could improve the results and improve our un-
derstanding of the AV node. Nevertheless, with over 100 years of studies of the AV
node, it can yet be identified as a riddle wrapped up in a mystery, inside an enigma
[160].
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During atrial fibrillation (AF), the heart relies heavily on the atrio-ventricular (AV) node

to regulate the heart rate. Thus, characterization of AV-nodal properties may provide

valuable information for patient monitoring and prediction of rate control drug effects. In

this work we present a network model consisting of the AV node, the bundle of His, and

the Purkinje fibers, together with an associated workflow, for robust estimation of the

model parameters from ECG. The model consists of two pathways, referred to as the

slow and the fast pathway, interconnected at one end. Both pathways are composed of

interacting nodes, with separate refractory periods and conduction delays determined by

the stimulation history of each node. Together with this model, a fitness function based

on the Poincaré plot accounting for dynamics in RR interval series and a problem specific

genetic algorithm, are also presented. The robustness of the parameter estimates is

evaluated using simulated data, based on clinical measurements from five AF patients.

Results show that the proposed model and workflow could estimate the slow pathway

parameters for the refractory period, RSPmin and 1RSP, with an error (mean ± std) of

10.3 ± 22 and −12.6 ± 26 ms, respectively, and the parameters for the conduction

delay, DSPmin,tot and 1DSPtot , with an error of 7 ± 35 and 4 ± 36 ms. Corresponding results

for the fast pathwaywere 31.7± 65,−0.3± 77, 17± 29, and 43± 109ms. These results

suggest that both conduction delay and refractory period can be robustly estimated

from non-invasive data with the proposed methodology. Furthermore, as an application

example, the methodology was used to analyze ECG data from one patient at baseline

and during treatment with Diltiazem, illustrating its potential to assess the effect of rate

control drugs.

Keywords: atrial fibrillation, atrioventricular node, rate control, mathematical modeling, genetic algorithm, ECG,

cardiac electrophysiology

1. INTRODUCTION

Atrial fibrillation (AF) is the most widespread sustained cardiac arrhythmia with an estimated
prevalence of 2–4% in the adult population (Benjamin et al., 2019). During AF, the electrical
activity in the atria is highly disorganized, leading to a rapid and irregular ventricular rhythm. In
order to reduce these effects, rate control drugs constitute one of the primary therapeutic options
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(Hindricks et al., 2020). These drugs are not designed to
terminate AF, but rather to lower the heart rate. They do this
by modulating the conduction through the AV node, preventing
some electrical signals emanating from the atria from being
transmitted to the ventricles, thereby reducing the ventricular
activation rate. Thus, rate control is often sufficient to improve
AF-related symptoms (Hindricks et al., 2020). The choice of
first-line rate control drugs can vary between beta-blockers and
non-dihydropyridine calcium channel blockers, with digoxin as a
second-line option (Hindricks et al., 2020). However, the current
method of finding the best treatment for a given patient is
largely based on trial and error (Hindricks et al., 2020). Thus,
patient specific characterization of AV node properties would be
beneficial to achieve optimal rate control.

Functionally, the AV node consists of two pathways,
connected to each other before entering the bundle of His
(Kurian et al., 2010). The two pathways are referred to as the slow
pathway (SP) and the fast pathway (FP), where the FP conducts
impulses faster than SP but has a longer refractory period.
During sinus rhythm, the impulses are typically conducted
through the FP due to its faster conduction rate. During AF,
however, conduction may alternate between SP and FP as a
result of the rapid arrival of atrial impulses. This, together with
concealed conduction, i.e., impulses inside the AV node that do
not lead to ventricular activation but still affect the conduction
characteristics of following impulses, gives rise to the complex
blocking and delay behavior the AV node has been shown
to possess.

In order to understand this blocking and delay behavior,
mathematical modeling has become an increasingly important
tool. Several models of the AV node and its function during AF
have previously been proposed, including various descriptions
of the conduction delay (Jørgensen et al., 2002; Mangin et al.,
2005; Climent et al., 2011) and the refractory period (Rashidi
and Khodarahmi, 2005). A model for simulating the ventricular
activation capable of replicating both conduction delay and
refractory period during AF was proposed by Lian et al. (2006).
Another model capable of replicating both conduction delay
and refractory period, based on the action potential of the AV
node cells and modeled by ordinary differential equations, was
proposed by Inada et al. (2009).

However, none of these models were developed with the
purpose of ECG based estimation of AV node parameters on
a patient specific basis. The models presented in Rashidi and
Khodarahmi (2005) and Lian et al. (2006) did not fit parameter
values to data, the models presented in Climent et al. (2011) and
Inada et al. (2009) were fitted to data from rabbits. The models
presented in Jørgensen et al. (2002) and Mangin et al. (2005)
were fitted to AF patients, but invasive data was required. To
make a model useful in a clinical setting, it should ideally allow
for fitting to non-invasive data such as surface electrocardiogram
(ECG). A statistical model developed for estimation of AV node
parameters from ECG data during AF was first presented in
Corino et al. (2011). This model has later been updated and
proven to replicate patient specific histograms of the time series
between two successive R waves on the ECG (RR interval series)
extracted from ECG data, as well as to assess the effect of rate

control drugs on the AV node (Henriksson et al., 2015). It
is a lumped model structure that still accounts for concealed
conduction, relative refractoriness, and dual pathways. However,
it lumps conduction delay and refractory period together, making
the estimated model parameters difficult to interpret.

In this work we present a network model of the AV
node, able to estimate patient specific conduction delay and
refractory period from ECG, building on previous work
presented in Wallman and Sandberg (2018). The model consists
of interconnected nodes forming two pathways, providing a
balance between complexity and computational efficiency, and
represents both spatial and temporal dynamics of the AV-node.
With novel additions to the model structure by including effects
from the bundle of His and Purkinje fibers, as well as a tailored
workflow taking advantage of dynamics in the data, the model
allows for estimation of parameters governing both refractory
period and conduction delay in a robust manner from non-
invasive data during AF. The ultimate aim of this work is to
monitor and predict the outcome of treatment with rate control
drugs in clinical settings to assist in treatment selection. In order
to do this, a robust characterization of the AV node is needed, and
thus the purpose of this study is to: (1) Describe and motivate
the model; (2) Present a tailored workflow for estimation of
parameters; (3) Demonstrate that presented combination of
model and workflow leads to robust parameter estimates that
mimic measured data well.

2. MATERIALS AND METHODS

The model of the AV node will be explained in section 2.1,
followed by a description of the data used to evaluate said model
in sections 2.2 and 2.3. In section 2.4, the methodology for
model parameter estimation is explained; which combined with
the optimization algorithm described in section 2.5 constitutes
the workflow.

2.1. Network Model of the Human AV Node
The model of the AV node, shown in Figure 1, consists of
a network of nodes and is based on the model presented in
Wallman and Sandberg (2018). The model consists of two
pathways, representing the SP and the FP, connected with a
coupling node. Each pathway is modeled with 10 nodes, where
each node corresponds to a localized part of the AV node.
Each node can block incoming impulses or send them through
adding a conduction delay. All nodes but the coupling node
sends impulses to all other nodes connected to it, whereas the
coupling node only receives impulses. A new refractory period
[Ri(n)] and conduction delay [Di(n)] are calculated every time
a node (i) receives a new impulse (n). The refractory period and
conduction delay are based on the stimulation history of the node
and are described using exponential functions. These exponential
functions have previously been used to fit AV node characteristics
(Shrier et al., 1987; Lian et al., 2006; Wallman and Sandberg,
2018), and can be seen in Equations (1–3).

Ri(n) = Rmin + 1R(1− e−t̃i(n)/τR ) (1)
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FIGURE 1 | A schematic representation of the proposed model. The arrow indicates the direction an impulse can conduct, and the colors represent nodes with the

same parameter sets. For simplicity, only a subset of the ten nodes in each pathway are showed.

Di(n) = Dmin + 1De−t̃i(n)/τD (2)

t̃i(n) = ti(n)− ti(n− 1)− Ri(n− 1) (3)

Here t̃i(n) refers to diastolic interval preceding impulse n, ti(n)
the arrival time of impulse n at node i, and ti(n−1) and Ri(n−1)
the arrival time and refractory period of impulse n − 1 at node
i, respectively. If t̃i(n) is negative, the node will still be in its
refractory period and thus the impulse will be blocked. The
model parameters defining minimum refractory period, Rmin;
maximum prolongation of refractory period, 1R; time constant
τR; minimum conduction delay,Dmin; maximum prolongation of
conduction delay, 1D; and the time constant τD, are assumed to
be fixed for the nodes in the SP and FP, respectively.

The coupling node models the total refractoriness and
conduction delay introduced by the connection between the AV
node and the bundle of His, the Purkinje fibers, and the bundle
of His. This node has a separate set of parameters, representing
separate functional properties, and will be denoted the His and
Purkinje (HP) node. The refractory period for the Purkinje fibers
is assumed to not affect the ventricular activation during AF.
Thus, the whole refractory period for the HP node is determined
by the bundle of His. However, the conduction delay for the HP
node is viewed as the time it takes an impulse to travel from the
start of the bundle of His to the end of the Purkinje fibers. The
conduction delay from the start of the bundle of His until the end
of the Purkinje fibers has clinically been showed to have a mean
of 60 ms with a standard deviation of 10 ms for patients suffering
from AF (Deshmukh et al., 2000). Thus, the conduction delay for
the HP node is fixed at 60 ms. The HP node’s refractory period is
estimated by the mean of the ten shortest RR intervals, RRmin.

This results in 12 free parameters for the proposed
model, denoted as a parameter vector θ = [RFPmin, 1RFP,
τFPR , RSPmin, 1RSP, τ SPR , DFP

min, 1DFP, τFPD , DSP
min, 1DSP, τ SPD ]. It

is assumed that the first node of each pathway is simultaneously
stimulated for incoming impulses from the atria. The model
can then be used to produce a RR interval series with minimal
computational demands using a modified version of Dijkstra’s
algorithm (Wallman and Sandberg, 2018). A link to the code for
the model together with a basic user example can be found at

section 5. The total minimum conduction delay and maximum
prolongation, defined as DFP

min,tot = NnD
FP
min; 1DFP

tot = Nn1DFP;

DSP
min,tot = NnD

SP
min; 1DSP

tot = Nn1DSP; where Nn = 10
are the number of nodes in each pathway, are introduced for
convenience of presentation.

2.2. ECG Data
This study was based on ambulatory ECG data from the RATe
control in Atrial Fibrillation (RATAF) study, which is approved
by the regional ethics committee and the Norwegian medicines
agency and was conducted in accordance with the Helsinki
Declaration (Ulimoen et al., 2013). The RATAF study contains
24-h Holter recordings of 60 patients under baseline and during
treatment with four different rate reducing drugs. All patients had
permanent AF, no heart failure or symptomatic ischemic heart
disease, an age of 71 ± 9 (mean ± std), and 70% were men. To
evaluate the presented model, we selected 15 min ECG segments,
one for each of five patients, obtained under baseline conditions
between 1:00 and 3:00 pm. These five patients were selected to
be representative for the whole data set, with varying RR interval
series characteristics and an average heart rate ranging between
63 and 140 bpm. In addition, corresponding ECG data obtained
during treatment with Diltiazem was also used for one of the
five patients.

The RR interval series were extracted from the ECG signals
by first detecting the R peaks, before removing RR intervals
preceding and following ectopic beats identified based on
heartbeat morphology (Lagerholm et al., 2000). Along with this,
the mean arrival rate of the atrium-to-atrium (AA) intervals
was estimated from the f-waves in the ECG by first extracting
the atrial activity from the ECG using spatiotemporal QRST
cancellation (Stridh and Sornmo, 2001), before tracking the atrial
fibrillatory rate (AFR) using a method based on a hiddenMarkov
model (Sandberg et al., 2008). Finally, correction of the atrial
fibrillatory rate by taking the atrial depolarization time into
account was used to obtain an estimate of the arrival rate. Here,
we denote the true mean arrival rate λ, and the estimated mean
arrival rate λ̂. One value of λ̂ was obtained for each ECG segment
(Corino et al., 2013).
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TABLE 1 | Characteristics of the data extracted from ECG and the simulated data, respectively, for all five patients.

Parameter Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

MEASURED DATA

Average HR (ms) 76.4 62.7 90.6 111.9 139.9

λ̂ (Hz) 8.45 9.13 6.73 9.03 10.04

SIMULATED DATA

Average HR (bpm) 75.3 62.3 93.1 110.5 139.5

λ (Hz) 8.45 9.13 6.73 9.03 10.04

SP ratio (%) 54 60 85 77 92

RFPmin (ms) 210 390 379 465 378

1RFP (ms) 516 475 594 1.47 383

τ FPR (ms) 168 217 222 113 145

RSPmin (ms) 205 313 280 257 287

1RSP (ms) 469 422 233 0.00 103

τSPR (ms) 220 40 204 172 227

DFP
min (ms) 4.77 1.13 1.44 9.05 6.43

1DFP (ms) 11.2 20.6 16.0 20.3 34.4

τ FPD (ms) 155 237 40.0 40.0 145

DSP
min (ms) 21.1 25.4 21.7 16.0 20.2

1DSP (ms) 51.9 15.1 4.62 3.74 2.47

τSPD (ms) 89.9 232 166 91.1 165

2.3. Simulated Data
Simulated data were created by fitting the model to the RR
interval series from the five patients, cf. section 2.5, and using the
resulting estimated model parameters to simulate an RR interval
series of 20 min. The sequence of atrial impulses arriving to the
AV node, and thus the input to the model, were simulated using
a Poisson process with the mean arrival rate set to the value of λ̂

estimated for each patient (Corino et al., 2011; Henriksson et al.,
2015). The parameter values used for the simulated data, along
with average heart rate of the simulated RR interval series, are
summarized in Table 1.

2.4. Model Parameter Estimation
To evaluate howwell themodelmatches the extracted RR interval
series, a fitness function comparing the model output to the
RR interval series is used. In order to take the dynamics of the
RR interval series into account, the Poincaré plot is used as a
basis for the fitness function. The Poincaré plot is a scatter plot
of successive pairs of RR intervals. To use the Poincaré plot
as a fitness function, the RR interval series is binned into two
dimensional bins centered between 250 and 1,800 ms in steps of
50 ms, resulting inN = 961 bins. The error function is computed
according to Equation (4).

ǫ = 1

N

N
∑

i=1

(

(xi − x̃i)
2/

√

x̃i

)

(4)

Here ǫ is the error value, and x̃i and xi the number of RR
intervals, in the i-th bin, of the measured data and model
output, respectively. The normalization by

√
x̃i is introduced to

avoid bins with a large number of data points to dominate the
optimization. The square root is used as a trade-off between
no normalization, making the bins with a large number of data
points dominate, and normalization with the wholemeasured bin
counts, making the accuracy of every bin have the same weight
regardless of how much of the data are in that bin. A schematic
representation of the parameter estimation process can be seen
in Figure 2.

2.5. Genetic Algorithm
An initial study of how ǫ varies with varying model parameter
values revealed a highly chaotic structure with a large
number of local minima. This prompted us to minimize ǫ

using a genetic algorithm (GA). A brief description of the
algorithm is given below, with more detailed information in
the Supplementary Section 1. Due to the high dimensional
parameter space and the risk of premature convergence early
in the optimization, a variant of an island model was used
(Wahde, 2008). A schematic representation of the GA is shown
in Figure 3. As visible in the figure, the full GA can be divided
into two sections. The first section consists of five separate GA.
This was implemented by restarting the algorithm five times
with 300 individuals in each generation. The individuals in each
starting run were initialized using a latin hypercube sampling
in the ranges: {RSPmin,R

FP
min} ∈ [250, 600] ms; {1RSP,1RFP} ∈

[0, 600] ms, {τ SPR , τFPR } ∈ [50, 300] ms; {DSP
min,D

FP
min} ∈ [0, 30] ms;

{1DSP,1DFP} ∈ [0, 75] ms; {τ SPD , τFPD } ∈ [50, 300] ms. These
starting runs last for six generations, and after each run the
best 150 of the individuals are saved and used in the second
section, the main GA. Thus, the main GA uses a population
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FIGURE 2 | A block diagram of the AV node model parameter estimation workflow, starting with a measured ECG signal and ending with estimated parameters.

FIGURE 3 | A schematic representation of the genetic algorithm. Circles represent stages of the algorithm with constant number of individuals and LRR. Numbers in

circles correspond to the number of iterations before proceeding to the next stage. The last stage is always used, even if the GA terminates early.

of 750 individuals in each generation. For both the starting
runs and the main GA, the 2.5% fittest individuals in each
generation survives into the next generation unchanged, whereas
the remaining individuals are created via tournament selection,
two-point crossover, and creepmutation (Wahde, 2008). In order
to avoid premature convergence, both incest prevention in the
form of mating restriction between too similar individuals during
crossover, and a varyingmutation rate depending on the diversity
of the individuals in each generation were implemented (Wahde,
2008). This process of selection, crossover, and mutation is then
continued until termination. The termination of the starting
runs always occurs after six generations. The termination for
the main GA occurs either when ǫ for the fittest individual
in each generation does not change for three generations, or
when 15 generations have been run. The fittest individual for the

k-th generation, ǫ̂k, is deemed to have changed if the difference

between ǫ̂(k) and ǫ̂(k− 2), seen in Equation (5), is lower than 25.

ǫ̂(k) = ǫ̂k + ǫ̂k−1 + ǫ̂k−2

3
(5)

As described in section 2.3, a Poisson process with mean arrival
rate λ̂ was used as input to the model, and due to the stochastic
nature of the Poisson process, ǫ varies between realizations. The
magnitude of this variation was analyzed by finding a parameter
set replicating the extracted RR interval series from patient 3
well, before simulating that parameter set with different lengths
of the resulting RR interval series, LRR, as seen in Figure 4, left
panel. Each LRR was simulated 1,000 times. Moreover, six more
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FIGURE 4 | Estimated distribution of ǫ as a function of LRR (left). Variance of ǫ divided by mean of ǫ as a function of the mean of ǫ (right).

parameter sets with increasing ǫ were also simulated 1,000 times
with the same LRR, as seen in Figure 4, right panel.

The ǫ variation is decreasing with larger LRR, however, the
running time for the model is linearly increasing with LRR, and
thus shorter outputs are preferable. The variation of ǫ is not as
important early in the optimization since the variation relative
ǫ is smaller for larger ǫ, see Figure 4, right panel. However,
after several generations most of the ǫ for individuals found
by the GA are low, and thus the variability in ǫ has a larger
impact on the algorithm. Therefore, LRR is increased throughout
the optimization.

As seen in Figure 3, the LRR for all generations in the
starting runs were 1,000 impulses. For the main GA, the first
five generations used a LRR of 3,000 impulses, the following
five generations a LRR of 5,000 impulses, followed by three
generations with length of 7,500 impulses, before ending with two
10,000 impulses long generations. To obtain a robust estimate

of ǫ̂(k), the individual with the best fit in each generation is
evaluated again with a LRR of 10,000. After termination for the
main GA, the 15 fittest individuals were tested again, with a LRR
of 50,000; this in order to select the fittest individual with a low
variation in ǫ.

3. RESULTS

The RR interval series extracted from the ECG along with the
simulated data, cf. sections 2.2 and 2.3, are used to evaluate the
proposed methodology. In section 3.1, the proposed approach
for optimization is compared to using only the main GA
with fixed LRR. The robustness and precision of the parameter
estimation are evaluated using simulated data in section 3.2.
Further, the robustness of the estimates is set in perspective
by using the model to estimate AV node characteristics for
one of the patients during both baseline and under influence
of the calcium channel blocker drug Diltiazem. In section 3.3,

the proposed model is compared to the model presented in
Wallman and Sandberg (2018).

3.1. Genetic Algorithm
The effect of using an island based start together with varying
LRR was evaluated by comparing it to using only the main GA, as
described in section 2.5, with LRR fixed at 5,000. The initialization
for this fixed GA was the same as for the starting runs, a latin
hypercube sampling in the same ranges, and the population size
was again 750. Performances of the two methods were evaluated
by comparing the error value of the fittest individual for each
generation, ǫ̂k with the cumulative LRR used for the evaluations,
i.e., the accumulated total number of impulses in each generation.
For the different starting runs, all runs were computed in parallel
so that ǫ̂k during this stage is the lowest value out of all the
five starting runs. The average results from comparing the two
versions of the GA on all five patients, each 100 times, are
shown in Figure 5. From this it is possible to see that a lower
ǫ̂k, and thus a better fit to the RR interval series, can be found
in less computational time using the proposed methodology.
For reference, estimating the parameters for one patient using a
single core on a standard desktop computer (Intel R© CoreTM i7-
6600U Processor, @ 2.60GHz) requires on average 20 min, with
variations due to the different terminating requirements for the
GA. It is also possible to see that the termination criteria for a
maximum number of generations stated in section 2.5 is typically
achieved after the GA has converged.

3.2. Parameter Estimation Robustness
Simulated RR interval series were used to evaluate the robustness
of the model parameter estimates. The results from optimizing
the model 200 times for the five simulated RR interval series
can be seen in Table 2, where the mean and standard deviation
for each of the 12 estimated parameters, for each of the five
patients, are listed. Moreover, the mean error, defined as the
difference between the mean value of the estimated parameter
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FIGURE 5 | (solid line) Mean normalized ǫ̂k of 100 optimizations of the five set

of patient data as a function of cumulative LRR for (blue) the island start

optimization with varying LRR and (orange) only the main GA with a fix LRR at

5,000. The shaded background represents one standard deviation. Here, ǫ̂k is

normalized with the best ǫ found for each patient, to account for the fact that

the model can not fit each RR interval series equally well.

and the ground truth, averaged over the five patients, are also
listed. Furthermore, the mean and standard deviation of the error
normalized with respect to the parameter ranges, cf. section 2.5,
are presented. From the SP ratio it is evident that the SP is
used more for transmission, and from the normalized error, it
is evident that the parameters associated with the SP are more
robustly estimated. The histogram and Poincaré plots for the five
simulated patients with the transmission pathway for each RR
interval marked out can be seen in Supplementary Section 3,
together with the simulated histograms showing the effect of
changes to λ.

To set the robustness in perspective, the AV nodal properties
were estimated 200 times for a single patient during baseline
and under the influence of the non-dihydropyridine calcium
channel blocker rate control drug Diltiazem. The results, shown
in Figure 6, indicate that the uncertainty in the parameter
estimation is sufficiently low in order to reveal the drug effect.

3.3. Model Comparison
To evaluate the ability of the model and proposed workflow to
represent AF data and to have a frame of reference, the proposed
model is compared with the model presented in Wallman and
Sandberg (2018); henceforth denoted the reference model. Both
models were fitted to the RR interval series from one example
patient, and the properties of the resulting simulated RR interval
series are shown in the form of histograms, Poincaré plots,
and autocorrelations, as seen in Figure 7. For both models,
the optimizer was run until no change in error value for the
fittest individual during ten generations occurred, to assure
convergence. Both models used the optimizer described in
section 2.5, but the reference model uses a fitness function based

on the histogram (Wallman and Sandberg, 2018). It is clear from
both the Poincaré plots and the autocorrelation plots that the
proposed model can better replicate the dynamics of the RR
interval series. The fit to the Poincaré plot can be quantified
by the resulting ǫ, which for the proposed model was 1,360,
compared to 6,740 for the reference model. Similarly, the value
for the first lag autocorrelation was −0.07 for the proposed
model and 0.52 for the reference, compared to the ground
truth at−0.07.

4. DISCUSSION

In this study, a mathematical model of the AV node, bundle of
His, and Purkinje network has been presented together with a
fitness function accounting for RR interval dynamics and genetic
algorithm tailored to the model. The model and workflow have
been evaluated with respect to robustness, accuracy, and ability
to represent data, using both measured and simulated data.

Ten nodes in each pathway were used as a trade-off between
detail and computation time. A small number of nodes can make
the conduction delay larger than the refractory period, allowing
impulses to bounce back and forth, whereas a large number of
nodes leads to a higher computational demand. The inclusion
of a last node in the model as functionally distinct from the
SP and FP has previously been used in other models of the
AV node (Inada et al., 2009). The incorporation of separate
conduction properties for the connecting node introduced
both new refractory period and conduction delay parameters.
However, literature data suggests that inter-patient variability
in conduction time over the bundle of His and the Purkinje
network is around 10 ms (Deshmukh et al., 2000), indicating
that the parameters representing the conduction delay could
be reasonably approximated by a constant value. Furthermore,
an initial study was conducted in which the refractory period
of the HP node was represented by Equation (1), with three
free parameters. This study showed that the parameter values
representing the refractory period in the HP node found after
optimization matched a constant value of RRmin, independent of
t̃i(n), well; indicating a good approximation (data not shown).
For more details about the parameter values of the HP node
during the optimizations, see Supplementary Section 2.

Reducing the number of free parameters reduces the
parameter space in which the GA operates, and in turn decreases
the running time as well as increases the robustness for the
optimization. The parameters for the HP node were especially
advantageous to fix or estimate directly from data. This was partly
because the clinical data and analysis of the optimization made
it possible, and partly because the most interesting information
regarding the AV node is contained in the parameters governing
SP and FP. Thus, setting the parameters corresponding to the
bundle of His and Purkinje fibers to fixed values enhanced the
ability of our method to estimate AV node properties.

The optimizer in this work utilized the fact that the model
could be used with varying speed and precision by changing
the output length, with higher speed and lower precision at
the start and shifting it during the optimization. This change

Frontiers in Physiology | www.frontiersin.org 7 October 2021 | Volume 12 | Article 728955



Karlsson et al. Non-invasive AV Node Characterization in AF

TABLE 2 | The mean parameter values ± standard deviation of 200 optimizations for the five simulated data sets, together with the mean error ± mean standard

deviation for each parameter.

Parameter Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Error Normalized error (%)

RFPmin (ms) 311 ± 104 394 ± 53 430 ± 49 424 ± 45 419 ± 72 31.7 ± 65 7.9 ± 16

1RFP (ms) 436 ± 74 495 ± 57 479 ± 55 164 ± 131 393 ± 69 -0.3 ± 77 -0.1 ± 12

τ FPR (ms) 184 ± 38 211 ± 35 168 ± 39 183 ± 63 167 ± 53 9.4 ± 45 3.6 ± 17

RSPmin (ms) 225 ± 17 369 ± 71 271 ± 11 247 ± 8 281 ± 5 10.3 ± 22 2.6 ± 6

1RSP (ms) 430 ± 26 358 ± 60 247 ± 14 28 ± 20 101 ± 4 -12.6 ± 26 -1.9 ± 4

τSPR (ms) 201 ± 29 56 ± 10 216 ± 26 204 ± 55 198 ± 41 2.2 ± 32 0.8 ± 12

DFP
min,tot (ms) 65 ± 31 36 ± 22 53 ± 21 69 ± 39 92 ± 38 17 ± 29 5.7 ± 10

1DFP
tot (ms) 188 ± 92 273 ± 9.6 193 ± 95 248 ± 119 336 ± 145 43 ± 109 5.7 ± 15

τ FPD (ms) 132 ± 48 150 ± 43 133 ± 47 135 ± 47 154 ± 47 17 ± 46 7.1 ± 19

DSP
min,tot (ms) 184 ± 36 245 ± 25 246 ± 23 197 ± 47 209 ± 43 7 ± 35 2.5 ± 12

1DSP
tot (ms) 395 ± 73 214 ± 45 88 ± 19 66 ± 31 35 ± 11 4 ± 36 0.5 ± 5

τSPD (ms) 173 ± 33 187 ± 42 167 ± 39 179 ± 55 183 ± 47 29 ± 43 12 ± 18

Average HR (bpm) 75.3 ± 0.7 62.6 ± 0.5 93.6 ± 0.7 110.9 ± 1 139.2 ± 1 0.2 ± 0.8 -

SP ratio (%) 54 60 85 77 92 - -

The normalized error ± standard deviation as well as the ratio of impulses passing through the SP are also presented.

FIGURE 6 | The mean ± one standard deviation, indicated by the shaded background, of the estimate refractory period and conduction delay from Equation (1) and

(2), after 200 runs, are plotted for both baseline (blue) and Diltiazem (orange).

in output length also made it possible to run a broad search
of the parameter space fast at the start of the optimization by
restarting it several times; reducing the risk that a parameter set
producing a good fit to the RR interval series was missed. This
led to finding parameter sets matching the data faster, as shown

in Figure 5. With a computing time of 20 min on a standard
desktop computer in order to estimate the parameters, it possible
to utilize the model without the use of any cloud computing or
supercomputer, making it suitable for routine off-line analysis of
Holter recordings.
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FIGURE 7 | Histogram, Poincaré plot, and autocorrelation representation of the (orange) observed and (blue) modeled RR interval series for (top) the fitted proposed

model and (bottom) the fitted reference model.

The result of taking the RR interval series dynamics into
account during the optimization can clearly be seen in Figure 7,
where the proposed model and fitness function could represent
the Poincaré plot with an ǫ five times as low as the reference
model. This shows that matching the histograms well, as both
models did, does not necessarily mean that the model represents
the RR interval dynamics well. Using the Poincaré plot as basis
for the fitness function, it was possible to account for the RR
interval distribution and the one-step autocorrelation at the same
time. It should be noted that the information from the histogram
is still indirectly included in the Poincaré plot, which is likely
the reason why the proposed fitness function also gave well
matched histograms.

Since no ground truth of the estimated parameters is available
for the clinical data, it is not possible to directly verify their
correctness. However, it is still possible to verify that the
parameter values lay within ranges reported in literature. The
conduction delay for the HP node is fixed based on clinical data,
thus it lies within reasonable ranges by default. The refractory
period for the HP node was estimated using RRmin, and for

the five patients used in this study the range was [292, 655]
ms. Comparing this to the bundle branch refractory period of
[305, 520] ms, and the His-Purkinje system relative refractory
period of [330, 460] ms, reported in Denes et al. (1974), it
seems reasonable.

It is difficult to assess AV conduction delay during AF,
due to problems in determining which atrial impulse activated
the ventricles. However, the total minimum and maximum
prolongation of conduction delay parameters of the AV node,
DFP
min,tot , 1DFP

tot , DSP
min,tot , and 1DSP

tot , have previously been
estimated by mathematical models utilizing the relationship
between diastolic interval and delay in Equation (2). One such
example is the model byMangin et al. (2005), which uses invasive
data, for which the ranges of Dmin,tot , 1Dtot , and τD were
[80,300], [15,125], and [80,340], respectively. These ranges are of
the same order of magnitude as the values obtained for Dmin,tot ,
1Dtot , and τD in the present study, cf Table 2. It should be noted
that the present model, contrary to the Mangin model, has two
pathways where shorter delays are expected for the FP than for
the SP.
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The maximum refractory period, defined as the sum of
Rmin and 1R, can be compared with electrophysiological
measurements of the AV node effective refractory period. The
values obtained in the present study were in the ranges [466,
973] and [257, 735] ms for the FP and SP, respectively. AV
node effective refractory periods from patients with reentrant
tachycardia have been reported in the ranges 361 ± 57 and
283 ± 48 ms for the FP and SP, respectively (Natale et al.,
1994). As expected, the FP has larger values in both model
and measurements.

The use of simulated data was necessary in order to have a
ground truth to compare the estimated parameters with and in
turn evaluate the methodology. From these five simulated data
sets, it is clear that all of them primarily used the SP, cf. Table 2,
although the SP ratio differed. This higher usage of the SP may be
a contributing factor to that the parameters representing the SP
were more accurately estimated than the parameters representing
the FP. Moreover, the parameters τ SPR , τFPR , τ SPD , and τFPD all have
a larger error, which might imply that they have smaller overall
effect on the model output. Further, histograms and Poincaré
plots highlighting the transmission pathway for the RR intervals
(cf. Supplementary Section 3) show that longer RR intervals
tend to be transmitted via the FP, which is to be expected given its
lower total conduction time. More interestingly, it is evident that
different histogram peaks generated by the model are not created
solely from one pathway, but stem from complex interaction
between both the FP and SP. Moreover, it should also be noted
that the difference in heart rate between the observed RR interval
series and the RR series produced by the fitted model was less
than one beat per minute.

It is evident from the example in Figure 6 that the uncertainty
in conduction delay and refractory period introduced by the
parameter estimation is generally lower than the effect of the
drug, thus suggesting that it is possible to assess the effect of
rate control drugs on the AV node from non-invasive data. For
the example patient, the difference in conduction delay for the
SP between baseline and Diltiazem is minimal for t̃i > 200 ms.
However, one patient is not enough to know if this is a feature
specific to this particular patient, a property of the investigated
drug, or an artifact of the model formulation. The effect of rate
control drugs on the AV node refractory period have previously
been investigated (Sandberg et al., 2015), and with the proposed
methodology a similar investigation can be done for AV node
conduction delay.

4.1. Limitations and Future Work
Themain limitation of the present study is the lack of comparison
between the estimated parameter and the ground truth AV node
characteristics, making the results more difficult to evaluate.
Although simulated data was used as a substitute, it is not fully
known how closely it matches reality. Another limitation is the
assumption that both pathways are activated simultaneously, an
assumption that may not be valid, since the electrical activity
in the atria is highly disorganized. The variation in output
originating from the stochastic input sequence can also be seen as
a limitation to the proposed model, since the output for a single
set of parameters can vary depending on the realization of the

input sequence. However, without electrical measurements in the
atria, it is not possible tomodel the exact behavior of the AVnode.

Moreover, due to the computational time of estimating the
parameters for each simulated RR interval series 200 times, only
a subset of RATAF was used. However, the five patients were
selected to ensure a representative subset based on their RR
interval series characteristics. It should be noted that the focus
of the present study is to evaluate the robustness in parameter
estimation rather than analysis of the RATAF data set. Using the
model to analyze the entire RATAF data set, including all patients,
drugs, and time segments for outcome prediction forms a natural
next step in this line of inquiry, and efforts toward this goal are
ongoing at the time of writing.

Example results, cf. Figure 6, suggest that the estimates of
refractory period and conduction delay are sufficiently robust
to detect changes in response to treatment with rate control
drugs. However, this needs to be verified in a larger study
population. By using the model to simulate the treatment effect
of different drugs in a patient-specific setting, it might be possible
to predict the outcome of the drug treatment and thus assist
in treatment selection. Furthermore, it could also be useful in
drug development, by aiding in understanding what AV node
properties are affected by a novel compound, and in what way.

5. CONCLUSION

We have described and motivated a network model of the
AV node, bundle of His, and Purkinje network. The model is
demonstrated to be able to represent RR interval series extracted
from ECG data well, both in the forms of histograms, Poincaré
plots, and autocorrelation. This was made possible using the
presented problem specific fitness function and optimization
algorithm, taking advantage of the model’s ability to increase
running speed at the cost of precision. The robustness in
parameter estimation enabled fitting of delay specific parameters
from the AV node solely based on the ECG. It also made it
possible to detect changes to the model parameters originating
from the use of a rate control drug.

In summary, the combination of model and parameter
estimation workflow presented here constitutes a significant
improvement on previous AV node modeling efforts, suggesting
the possibility to use ECG measurements to analyze drug effect
on the AV node on a patient specific level.
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The heart rate during atrial fibrillation (AF) is highly dependent on the conduction

properties of the atrioventricular (AV) node. These properties can be affected using

β-blockers or calcium channel blockers, mainly chosen empirically.

Characterization of individual AV-nodal conduction could assist in personalized

treatment selection during AF. Individual AV nodal refractory periods and

conduction delays were characterized based on 24-hour ambulatory ECGs

from 60 patients with permanent AF. This was done by estimating model

parameters from a previously created mathematical network model of the AV

node using a problem-specific genetic algorithm. Based on the estimated model

parameters, the circadian variation and its drug-dependent difference between

treatment with two β-blockers and two calcium channel blockers were quantified

on a population level by means of cosinor analysis using a linear mixed-effect

approach. The mixed-effects analysis indicated increased refractoriness relative to

baseline for all drugs. An additional decrease in circadian variation for parameters

representing conduction delay was observed for the β-blockers. This indicates that

the two drug types have quantifiable differences in their effects on AV-nodal

conduction properties. These differences could be important in treatment

outcome, and thus quantifying them could assist in treatment selection.

KEYWORDS

atrial fibrillation, atrioventricular node, circadian variation, mathematical modeling,
genetic algorithm, mixed effect modeling, ECG, rate control drugs

1 Introduction

Atrial fibrillation (AF) is the most common arrhythmia in the world, with a

prevalence of 2–4% in the adult population Benjamin et al. (2019), reaching 7% for

those aged 65 and above Di Carlo et al. (2019). It is characterized by rapid and irregular

contraction of the atria, originating from highly disorganized electrical activity, and

associated with an increased risk of mortality, mainly due to stroke or heart failure

Hindricks et al. (2021).
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The electrical impulses in the atria are conducted via the

atrioventricular (AV) node to reach and activate the ventricles.

The AV node can block and delay incoming impulses based on its

refractory period and conduction delay properties. During AF -

when the AV node is bombarded with impulses from the atria -

blocking of impulses prevents the heart from racing, but may not

be sufficient to maintain a normal heart rate and will still result in

significant beat-to-beat variability in the ventricular activation

Corino et al. (2015b); Mase et al. (2017).

To remedy this, rate control drugs can be used in order to

modify the conduction properties of the AV node. There are two

main types of rate control drugs used for AF treatment; β-

blockers and calcium channel blockers Hindricks et al. (2021).

As the name suggests, β-blockers block the β-receptors in AV

node cells, decreasing the effect of the sympathetic nervous

system, whereas calcium channel blockers prevent the L-type

calcium channels from opening, thereby reducing the conduction

in the AV node cells. Both types of drugs have been shown

effective in reducing the heart rate during AF Ulimoen et al.

(2013). However, the optimal treatment for a given patient is

often chosen empirically. Since the two drug types have different

physiological effects on the AV node conduction properties,

assessing the drug-induced changes in these AV node

properties could provide an important step toward

personalized treatment. One of the main differences between

the two drug types is the effect on the sympathetic nervous

system, which can be quantified by the circadian variation in the

AV node conduction properties. Furthermore, previous studies

have shown a significant difference in the predominant RR

interval between day and night, without a difference in

dominant atrial cycle length, suggesting circadian variation in

the AV node conduction properties Climent et al. (2010).

Conduction properties of the AV node have previously been

characterized using mathematical models based on measurements of

the electrical activity in the heart Shrier et al. (1987); Billette andNattel

(1994); Sun et al. (1995). Several models of the AV node during AF

have been proposed; both based on invasive data from rabbits Inada

et al. (2009); Climent et al. (2011) and humans Jørgensen et al. (2002);

Mangin et al. (2005); Masè et al. (2012, 2015), and on non-invasive

data fromhumansCorino et al. (2011, 2013);Henriksson et al. (2015).

We have previously presented a network model of the AV node

capable of assessing the refractory period and the conduction delay of

the AV node from 20-min ECG segments Karlsson et al. (2021).

However, continuous assessment of AV conduction delay and

refractoriness from 24-hour ECG recordings has not previously

been performed; such assessment enables analysis of long-term

variations in AV conduction properties.

The aim of the present study is to develop a framework for

long-term ECG-based assessment of conduction properties in the

AV node, and to utilize this framework for analysis of circadian

variation and its drug-induced changes in a cohort of 60 patients

with persistent AF Ulimoen et al. (2013). To accomplish this, we

propose a problem-specific optimization algorithm able to

continuously estimate the model parameters from the

previously presented network model Karlsson et al. (2021).

Furthermore, the uncertainty of the parameter estimates is

assessed using a variant of Sobol’s method Sobol (2001), and

the drug-induced differences in circadian variation between β-

blockers and calcium channel blockers on a population level are

quantified using a linear mixed-effect model.

2 Materials and methods

A schematic overview of the methodology is given in Figure 1.

The ECG data (Section 2.2) is first processed in order to extract a RR

interval series and an atrial fibrillatory rate (AFR) trend, as described

in Section 2.3. The RR interval series is then divided into segments of

length N, and the AFR trend is used to estimate the atrial arrival rate

in the corresponding time interval. TheAVnodemodel (Section 2.1)

is fitted to the ECG-derived data using a tailored optimization

algorithm, as described in Section 2.4, in order to obtain model

parameter estimates. Furthermore, the Poincaré plot difference,

which quantifies the rate of change of RR series characteristics, is

used to tune hyper-parameters in the optimization algorithm during

parameter estimation. The uncertainty of the estimated model

FIGURE 1
A flowchart of the overall framework for estimating AV node conduction properties on an individual and a population level.
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parameters is investigated using a variant of Sobol’s method, as

described in Section 2.5. Finally, cosinor analysis is used to quantify

circadian variation in the model parameter trends, and a linear

mixed effects modeling approach is used to investigate drug-

dependent differences on a population level, as described in

Section 2.6.

2.1 AV node model

A network model of the human AV node, shown in Figure 2,

is used to characterize the conduction delay and refractory

period. A brief description of the model is given here, for

more details, see Karlsson et al. (2021). The model describes

the AV node as an interconnected network of nodes, each capable

of transmitting incoming impulses. The model consists of

21 nodes; divided into a fast pathway (FP) with ten nodes, a

slow pathway (SP) with ten nodes, and a coupling node. The

nodes can react to an incoming impulse either by blocking - if the

node is in its refractory state - or by conducting it to all adjacent

nodes after adding a conduction delay, after which the node

returns to its refractory state. The refractory period (Rj(n)) and

the conduction delay (Dj(n)) of node j following an impulse n are

given by,

Rj n( ) � Rmin + ΔR 1 − e
−~tj(n)
τR( ) (1)

Dj n( ) � Dmin + ΔDe
−~tj(n)
τD , (2)

where ~tj(n) is the diastolic interval preceding impulse n,

~tj n( ) � tj n( ) − tj n − 1( ) − Rj n − 1( ), (3)

and tj(n) is the arrival time of impulse n at node j. When ~tj(n) is
negative, the impulse will be blocked since the node is in

its refractory state. The parameters Rmin, ΔR, τR, Dmin, ΔD,
and τD are fixed for all nodes in the SP and

the FP, respectively. This results in the 12 model parameters

θ � [RFP
min, ΔRFP, τFPR , RSP

min, ΔRSP, τSPR , DFP
min, ΔDFP, τFPD , DSP

min,

ΔDSP, τSPD ]. For convenience, the interpretation of the model

parameters are given in Table 1. For the coupling node, the

delay is fixed to 60 ms, and the refractory period is fixed to the

mean of the ten shortest RR intervals in the data used for model

parameter estimation, RRmin.

The input to the model - representing impulses arriving from

the atria - is created using a Poisson process with mean arrival

rate λ. The output of the model represents the time points for

ventricular activation, and thus the differences between adjacent

elements in the output vector represent the RR intervals.

2.2 ECG data

The RATe control in Atrial Fibrillation (RATAF) study Ulimoen

et al. (2013) acquired 24-hour ambulatory ECGs during baseline and

under the influence of four rate control drugs; the two calcium

channel blockers verapamil and diltiazem, and the two β-blockers

metoprolol and carvedilol. The study population consists of

60 patients with permanent AF, no heart failure, or symptomatic

ischemic heart disease. The study was approved by the regional ethics

FIGURE 2
A schematic representation of the network model where the yellow node represents the coupling node, the red nodes the SP, the green nodes
the FP, and arrows the direction for impulse conduction. For readability, only a subset of the 21 nodes is shown.

TABLE 1 The interpretation of the model parameters. Superscripts
indicating the pathway (SP, FP) are omitted to avoid redundancy.

Parameter Parameter description

Rmin Minimum refractory period, attained for short diastolic intervals

ΔR Maximum prolongation of the refractory period, attained for long
diastolic intervals.

τR Time constant for the refractory period, determining the impact of
the diastolic interval

Dmin Minimum conduction delay, attained for short diastolic intervals

ΔD Maximum prolongation of the conduction delay, attained for long
diastolic intervals.

τD Time constant for the conduction delay, determining the impact
of the diastolic interval
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committee and the Norwegian Medicines Agency and conducted in

accordance with the Helsinki Declaration. The trend in the AV

node refractory period and conduction delay from these five 24-hour

ECG recordings per patient is assessed by estimations of the trends

in θ.

2.3 ECG processing

The RR interval series is extracted from the ECG, where

RR intervals following and preceding QRS-complexes with

deviating morphology are excluded from the series

Lagerholm et al. (2000). Due to excessive noise in the

ECGs, some RR intervals are missed, leading to an

unrealistically low heart rate. Thus, the data are divided

into minute-long non-overlapping segments, and all

segments with a heart rate lower than 20 bpm are

removed, occasionally resulting in gaps in the signals. The

signals with a total duration shorter than 12 h or with less

than 20 h between start and end are excluded from further

analysis. After excluding data according to these criteria, data

from 59 patients remained for inclusion in this study. The

number of patients with data considered to be of sufficient

duration for analysis and the average duration of these

recordings for the different treatments are shown in Table 2.

The f-waves in the ECG are extracted using spatiotemporal

QRST cancellation Stridh and Sornmo (2001). The AFR trends

are then estimated by tracking the fundamental frequency of the

extracted f-wave signal using a hidden Markov model-based

approach Sandberg et al. (2008); resulting in a resolution for

the AFR trends of one minute.

2.4 Parameter estimation

The atrial arrival rate, λ, is estimated by correcting the AFR

trend, taking the atrial depolarization time into account Corino

et al. (2013). Outliers in the estimated λ trends are excluded based

on visual inspection guided by cluster analysis. The resulting

trends are low-pass filtered using a sliding triangular window

filter with a width equal to 70.

The model parameters θ are assumed to vary over time,

making this a dynamic optimization problem. Thus, the data

are first divided into overlapping data segments of N = 1000

RR intervals; where N is chosen to give a good balance

between resolution and robustness of the estimates. Each

data segment contains one segment-specific mean arrival rate

λN(i) calculated as the mean of the λ trend in the segment

starting at RR interval i, as well as one RR interval series,

RRN(i). The estimated parameters of a data segment starting

at RR interval i is denoted by θ̂(i).
A fitness function based on the Poincaré plot - a scatter

plot of successive pairs of RR intervals - is used to quantify the

difference between observed and simulated RR series. The

Poincaré plots are binned into two-dimensional bins with a

width of 50 m, centered between 250 and 1800 m, forming a

two-dimensional histogram. The error function (ϵ), i.e., the
inverse fitness function, is then calculated from the number of

samples in the bins according to Eq. 4,

ϵ � 1
K

∑K
k�1

xN
k − N

Nsim
~xNsim
k( )2�������

N
Nsim

~xNsim
k

√ , (4)

where K is the number of bins,Nsim is the number of RR intervals

simulated with the model, and xN
k and ~xNsim

k are the numbers of

RR intervals in the k-th bin of the observed data and model

output, respectively.

A genetic algorithm (GA) is used to search for the values of

θ yielding the minimum ϵ. A GA consists of a population of

individuals that evolves based on their fitness value towards a

solution using selection, crossover, and mutation Wahde

(2008).

By assuming that a large change in the Poincaré plot relates to

a large change in parameter values, it is possible before starting

the optimization to decide when the optimization algorithm

should focus on exploration or exploitation. As a heuristic for

this, we introduce the difference in the Poincaré plots (ΔP(i)),
according to Eq. 5,

TABLE 2 The number of recordings and recording length (mean ± std) analyzed in this study following exclusion of recordings with insufficient signal
quality, as described in Section 2.3.

Drug Number of recordings Recordings length (h)

Baseline 51 20.88 ± 2.85

Verapamil 53 21.92 ± 2.39

Diltiazem 56 21.71 ± 2.44

Metoprolol 53 21.87 ± 1.98

Carvedilol 57 21.23 ± 2.65

Total 270 21.52 ± 2.59
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ΔP i( ) � 1
K

∑K
k�1

xNΔP
k i( ) − xNΔP

k i + 1000( )( )2, (5)

where xNΔP
k (i) and xNΔP

k (i + 1000) are the number of RR intervals

in the k-th bin of the Poincaré plot for the RR interval series

starting at interval i and i + 1000, respectively. Moreover, the

segment length NΔP is set to 2000. The Poincaré plot difference,

ΔP(i), is used to tune hyper-parameters in the optimization

algorithm.

The GA used for estimating θ̂(i) has a population size of

400 individuals - where each individual is a vector of values for θ -

and uses tournament selection, a two-point crossover, and creep

mutationWahde (2008). The number of generations the GA runs

before switching to the next data segment varies from 1 when

ΔP(i) < 800; to 2 when 800 ≤ ΔP(i) < 2000; to 3 when ΔP(i) ≥
2000. The step size for the sliding windows is determined by the

trade-off between the resolution and the computing cost, and is

set to 108 s; resulting in 800 steps for full 24-hour measurements.

Thus, there will be 800 estimated θ̂(i) for a 24-hour

measurement. As noted previously, there are also gaps in the

data. Thus, the step size will partly vary to match the start and

end of the RR segments, to ensure that all data are used. For

reference, estimating the θ̂(i) trend from a 24-hour RR and λ

series using a single core on a standard desktop computer (Intel®
CoreTM i7-6600U Processor, @ 2.60 GHz) requires on average

4 hours.

Since the Poisson process used to create the model input is

stochastic, ϵ varies between realizations. This variation is

dependent on the number of RR intervals generated from the

model, where more RR intervals reduce the variation but require

more computing power. To have a good balance between

computing power and stability, Nsim is set to 1500. However,

the ten fittest individuals in each generation are re-evaluated,

with Nsim = 5000, before the individual with the best fit for each

data segment, θ̂(i), is saved.
The individuals for the first generation are randomly

initialized using a latin hypercube sampling in the ranges:

{RSP
min, R

FP
min} ∈ [150, 650] ms; {ΔRSP, ΔRFP} ∈ [0, 700] ms;

{τSPR , τFPR } ∈ [40, 300] ms; {DSP
min, D

FP
min} ∈ [0, 30] ms; {ΔDSP,

ΔDFP} ∈ [0, 75] ms; {τSPD , τFPD } ∈ [40, 300] ms. These values are

also used as boundaries for the model parameters. Hence, the

difference between the upper bound and the lower bound for the

parameters is the range that the parameters can vary within, here

denoted r(p) and in vector form r, where p is the parameter index

ordered as in θ.

To reduce the risk of premature convergence and to maintain

a good diversity in the population, immigrants - individuals not

created from the current population - are used. These immigrants

are created using three different methods; 1) by saving and then

re-using the ten most fit individuals and their model output per

generation; 2) by running eight computationally faster GA, using

only 16 individuals and Nsim = 750, simultaneously; and 3), by

random sampling. The number of immigrants is dependent on

ΔP(i) and is created in equal proportion using the three different

creation methods. These new individuals are then introduced

into the population at the start of every new data segment by

replacing the individuals with the lowest fitness. More specific

details about the GA are found in Supplementary Material,

Section 1.

2.5 Parameter uncertainty estimation

A variant of Sobol’s method Sobol (2001) is used to derive

the uncertainty for each estimated parameter set θ̂(i). The
contribution to the output variance (v(p)) for a parameter p,

including the variation caused by its interaction with all the

other parameters, is estimated by the following procedure.

Firstly, two 30 x 12 matrices (A and B), where 30 is the

number of sampled parameter vectors, are generated by

samples from a quasi Monte Carlo procedure based on the

Latin hypercube design. Unlike Sobol’s method - which

samples in the whole parameter range - these samples are

generated within θ̂(i) ± 0.075r, hence within a hyper-

rectangle covering 15% of the total range of each

parameter. Secondly, 12 new matrices, ABp are created by

replacing the p-th column in A with the p-th from B. Thirdly,
ϵ is calculated for each parameter set in the matrices by

running the model, before the expected value of the

contribution to the output variance is estimated according

to Eq. 6 Sobol (2001).

v̂ p( ) � 1
2 · 30 ∑30

q�1
ϵAq − ϵABp,q( )2. (6)

Here ϵAq and ϵABp,q quantifies the difference between the observed

RR series and the model output as given in Eq. 4, for the

parameter sets in A and ABp, respectively.

The estimated v̂(p) are then, together with the mean (�ϵ) and
standard deviation (σϵ) of the 30 realizations of θ̂(i), used to

calculate a parameter uncertainty estimate according to Eq. 7.

u p( ) � 0.15r p( )����
v̂ p( )√

− σϵ
0.1�ϵ. (7)

Here 0.15r(p) originates from the distance between θ̂(i) and
the border of the sampled hyper-space, and

����
v̂(p)√ − σϵ from

the difference between the error variation inside the hyper-

space and at θ̂(i). Hence, the fraction relates to the slope-

intercept between the parameter distance and the

uncertainty. The remaining product relates this slope to

10% of the mean error for θ̂(i). Thus, the interpretation of

u(p) is: ‘Assuming interaction between all model parameters,

how large a step can be taken for parameter p before the

contribution to ϵ for θ̂(i) is increased by 10%‘. This was then

repeated for all θ̂(i) for all patients and drugs.
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2.6 Circadian variation

The drug-dependent circadian variation for the estimated

AV node parameters is quantified using linear mixed-effect

modeling, i.e., using a statistical model comprising both fixed

effects and random effects. The model used consists of a 24-hour

periodic cosine with mean m, amplitude a, and phase ϕ, as seen

in Eqs. 8, 9, and 10.

ypat,m t( ) � mpat,m + apat,m cos
2π
24

t + ϕ( ) (8)
mpat,m � α + αm + ηpat + ηpat,m (9)
apat,m � β + βm + ξpat + ξpat,m (10)

Here ypat,m(t) represents the estimated parameter trends of patient

pat during treatment m ∈ {Baseline, Verapamil, Diltiazem,

Metoprolol, Carvedilol}. Moreover, t corresponds to the time of

the day, in hours, of the RR interval i that the estimated θ̂(i) relates
to. Furthermore, α, αm, β, and βm represent the fixed-effects; with α

and β corresponding to the mean value for the mean and amplitude

during baseline, and αm and βm to the average deviation from the

baseline values, caused by the drugs. The random effects ηpat, ηpat,m,

ξpat, and ξpat,m correspond to the individual deviation from the fixed-

effects, and are assumed to be sampled from a zero-mean gaussian

distribution. During baseline,αm, βm and ηpat,m, ξpat,m are assumed to

be zero. For a given individual, ϕ is assumed to be equal for all

12 model parameters and is estimated by means of principal

component analysis of the θ̂(i) trends. The 12 vectors created by

projecting the data onto the 12 principal components are fitted to a

cosine with mean mc, amplitude ac, and phase ϕc, where c indicates

the c-th principal component, using the simplex search method

Lagarias et al. (1998). The phase, ϕ, is set equal to the ϕc associated

with the highest ac. Moreover, for cases where apat,m is negative, a

phase-shift ofπ is added to ensure that all the amplitudes are positive.

With ϕ estimated, α, αm, β, βm, ηpat, ηpat,m, ξpat, and ξpat,m are

fitted using the linear mixed-effects model function ‘fitlme ()’ in

MATLAB (The MathWorks Inc. Version R2019b); using the full

covariance matrix with the Cholesky parameterization and the

maximum likelihood for estimating parameters of the linear

mixed-effects model with trust region based quasi-Newton

optimizer as settings.

An assessment of the goodness of fit for the linear mixed-

effect model is calculated as the RMSE between the modeled

cosine and the estimated parameters. For easier comparison

between parameters, the RMSE for each parameter is

weighted by their respective range, r(p).

2.7 Statistic analysis

The estimated parameters θ̂(i), as well as AFR and HR, were

averaged for each recording, and significant difference between the

averages at baseline and under the four drugs were assessed one-by-

one using the paired two-sided Wilcoxon signed rank test Woolson

(2007) with the Benjamini–Hochberg correction Benjamini and

Hochberg (1995). Patients with missing recordings (cf. Table 2)

at baseline or the drug in questionwere excluded from the analysis. A

p-value below 0.05 after correction was considered significant.

3 Results

Figure 3 illustrates the advantages of using the GA proposed in

Section 2.4 for parameter estimation by comparing it to a standard

version of theGA. For the standardGA, all hyper-parameters, as well

as the number of generations per data segment, are fixed and thus do

not take advantage ofΔP(i). To highlight the differences between the
algorithms, we zoom in on a three hour long segment where the RR

series characteristics change rapidly. It is clear that ϵ increases along
with ΔP(i) for the standard GA, in contrast to the proposed GA.

From the GA we acquire one estimate per data segment, for all

59 patients and all drugs, resulting in a total of 175,640 θ̂(i). To give
the reader a sense of the match between the model output and RR

interval series obtained from the ECG, we present two examples of

Poincaré plots and histograms together with the associated RR

interval series. One corresponds to the median ϵ, and one where ϵ
is higher than 95% of all ϵ, as shown in Figure 4. It is evident that the
histograms and Poincaré plots from the model output and data are

similar for both cases, indicating a good match to data in most data

segments. However, there is a considerable difference on a beat-to-

beat level, as indicated by the RR interval series. Moreover, θ̂(i) for
one patient at baseline is shown in Figure 5, where clear changes over

time can be seen.

FIGURE 3
Mean (colored lines) and standard deviation (colored areas) of
the error ϵ for 100 segments for the proposed genetic algorithm
(blue) and a standard genetic algorithm (red) together with the
Poincare difference ΔP(i) (black line), defined in Eq. 5, for data
from one patient at baseline during 3 hours. The standard
deviation and mean are based on ten runs of the algorithms. Note
that ΔP(i) is scaled with 1

5 for readability.
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Recording averages of estimated model parameters, AFR, and

HR at baseline and during treatment with the four different drugs are

shown in Table 3. Significant differences, as described in Section 2.7,

are indicated in the table by ‘*’. This shows a significant increase in

the refractory period in the FP for all drugs, as well as a significant

decrease in heart rate and AFR for all drugs.

3.1 Uncertainty estimation

The average u(p), as explained in Eq. 7, normalized with r(p), are

shown in Figure 6. From this, it is evident that the model parameters

relating to the SP are more robustly estimated than their FP

counterpart, and that the model parameters relating to the

FIGURE 4
The Poincaré plot with associated histogram and RR interval series of data (blue) and model output (orange) for the θ̂(i) corresponding to the
median ϵ (left) and to the θ̂(i) which ϵ is higher than 95% of all ϵ (right).

TABLE 3 Recording averages of estimated model parameters, AFR, and HR at baseline and during treatment with the four different drugs (mean ±
standard deviation). Differences from baseline are evaluated using the Wilcoxon signed rank test with the Benjamini–Hochberg correction;
significant difference from baseline for the drugs, with false discovery rate at 0.05, is indicated with *.

Parameter Baseline Verapamil Diltiazem Metoprolol Carvedilol

RFP
min (ms) 435 ± 139 488 ± 134* 518 ± 118* 489 ± 126* 476 ± 123*

ΔRFP (ms) 403 ± 195 478 ± 190* 488 ± 202* 495 ± 180* 483 ± 172*

τFPR (ms) 175 ± 59 165 ± 63 163 ± 64 162 ± 58 167 ± 57

RSP
min (ms) 241 ± 102 280 ± 125* 287 ± 124* 260 ± 114 269 ± 123

ΔRSP (ms) 231 ± 176 274 ± 201 301 ± 215* 312 ± 187* 274 ± 186*

τSPR (ms) 180 ± 60 183 ± 62 171 ± 63 176 ± 62 176 ± 63

DFP
min (ms) 5.3 ± 4.5 5.4 ± 4.8 5.4 ± 4.7 5.9 ± 4.5 5.3 ± 4.5

ΔDFP (ms) 18.9 ± 16.9 21.7 ± 17.2 22.1 ± 17.3 21.8 ± 16.7 21.4 ± 16.9

τFPD (ms) 141 ± 54 144 ± 50 145 ± 53 149 ± 50 142 ± 53

DSP
min (ms) 21.0 ± 5.3 21.6 ± 5.1 22.5 ± 5.2* 21.7 ± 4.8 21 ± 5.2

ΔDSP (ms) 26.3 ± 21.4 23.8 ± 20.9 19.6 ± 20.7* 22.6 ± 21.2 21.5 ± 20.8

τSPD (ms) 185 ± 68 184 ± 57 183 ± 65 186 ± 58 180 ± 65

HR (bpm) 95 ± 13 80 ± 12* 74 ± 10* 81 ± 10* 84 ± 11*

AFR (Hz) 4.96 ± 0.34 4.56 ± 0.45* 4.71 ± 0.44* 4.86 ± 0.40* 4.81 ± 0.51*
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refractory period are more robustly estimated than their conduction

delay counterpart.Most noteworthy is the lower uncertainty forRSP
min

and ΔRSP, suggesting a higher impact on the output of the model.

The uncertainty estimates, u(p), for one patient are shown

as red background for each θ̂(i) in Figure 5, where again u(p)

for the refractory parameters in the SP is lower. There is also a

clear difference in u(p) between nighttime and daytime, where

the uncertainty is much lower at night.

3.2 Circadian variation

In Figure 5 we also show an example of the circadian

variation (blue lines) for the aforementioned patient, as

explained in Eqs. 8, 9, and 10, where a clear distinction

between night and day can be seen for most parameters. The

average RMSE for the 12 model parameters seen in Figure 5 is

0.22, which can be compared with the average RMSE for all

patients and treatment of 0.16 ± 0.03 (mean ± std).

The mean and standard deviation of the circadian variation

phase ϕwas 1.03 ± 0.74 rad; corresponding to an extreme value at

approximately 04:00 am ± 2.8 h.

The fixed-effects αm and βm and their respective 95% confidence

interval, normalizedwith r(p), are shown in Figure 7, where the fixed-

effects represent the average difference in effect with respect to

baseline that the drugs have on the population. It is evident from

αm in Figure 7 (top panel) that all rate control drugs on average

increase the refractory period in both pathways; with a significant

increase (p < 0.05) in RFP
min and ΔFP for all drugs, in RSP

min for all but

metoprolol, and in ΔRSP for all but verapamil. Moreover, differences

between the β-blockers and the calcium channel blockers can be

observed. Most noticeably for the amplitude (βm) of ΔDFP and ΔDSP,

where the two β-blockers have a distinctly negative effect in

comparison with the two calcium channel blockers.

Detailed results for the estimated fixed and random effects

can be found in the Supplementary Material, Section 2.

4 Discussion

In this study, we have presented a mathematical

framework able to continuously estimate model parameters

representing the conduction delay and refractory period of

the AV node during 24 h for patients with permanent AF

from ECG data. Trends in the estimated model parameters

were analyzed using a mixed-effects model to study the

circadian variation, where drug-dependent differences

could be seen.

FIGURE 5
Estimated model parameters θ̂(i) (black dots), with corresponding uncertainty estimates PU (red areas), along with the fitted cosine (blue lines)
used for the circadian variation, for one patient during baseline. In each panel, the RMSE is reported as a measure of goodness of fit between θ̂(i) and
the fitted cosine. Left column shows the parameters relating to the minimum conduction delay or refractory period, the middle column the
parameters relating to the maximum prolongation, and the right column to the time constants. For further explanation of the model
parameters, see Table 1.
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The model has previously been shown to be able to represent

measured data in the form of histograms and Poincaré plots for

20-min long segments Karlsson et al. (2021). However,

continuously estimating model parameters representing the

refractory period and conduction delay in the AV node has

previously not been possible. A previous study of the RR interval

series has indicated that one interval delay in the autocorrelation

gives sufficient information to replicate the dynamics of the RR

interval series Karlsson et al. (2021). Hence, the Poincaré plot was

chosen as a basis for the fitness function in order to take the one

interval delay of the RR interval series into account, something

that is not possible with an one-dimensional distribution

representation such as the histogram. Moreover, since the

model describes the impulses from the atria as a stochastic

process, it is not possible to have a beat-to-beat level of detail

in the fitness function, as evident by the RR interval series in

Figure 4.

The choice of segment length N is a trade-off between

robustness and time-resolution. The segment length N was set

to 1000 RR intervals, corresponding to a time duration of 11 :

53 ± 03 : 28 (mm:ss), to capture changes in RR series

characteristics on this time-scale while allowing sufficient

estimation accuracy. As a consequence of the choice of N =

1000, the bin size of 50 m was used for the Poincaré plot-based

error function. A smaller bin size would allow a more detailed

match between model output and data, but would require more

RR intervals.

From Figure 4, it is evident that the model and workflow can

replicate the histogram and Poincaré plot of obtained RR interval

series even for the case with the 95% highest ϵ. This was made

possible by using the problem-specific GA presented in Section

2.4. Evolutionary algorithms - such as GA - and particle swarm

optimization are the most common optimization algorithms

used for solving dynamic optimization problems Yazdani

et al. (2021); Mavrovouniotis et al. (2017).

One of the main challenges with dynamic optimization

problems is the balance between exploration and exploitation,

i.e., between searching for different promising regions of the

search space, or searching for the optimal solutions within an

already promising region. To keep a good level of exploration, the

diversity in the population - usually defined as the average

Euclidean distance between the individuals in the population -

is often monitored. Thus, diversity loss is one of the most critical

challenges Yazdani et al. (2021). A great number of methods have

been developed to address this diversity loss, often based on

randomizing individuals in the population that are too similar to

others. For example, crowding - letting new individuals replace

FIGURE 6
Mean (circles) ± one standard deviation (bars) of the
parameter uncertainty estimates u(p) over all recordings and all
patients, normalized with the parameter ranges r(p). Note that the
model parameters RSP

min and ΔRSP have a lower uncertainty,
indicating a higher impact on the resulting model outcome.

FIGURE 7
The fixed effects with corresponding 95% confidence intervals for the cosinor meanm (top) and cosinor amplitude a (bottom) for each model
parameter (cf. Table 1) and drug. Confidence intervals not overlapping zero indicate significant difference from baseline (p <0.05).
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the most similar individual in the population Kordestani et al.

(2014) - or based on the age of the individuals Das et al. (2013).

For GA, it is also possible to combat diversity loss by regulating

the mutation rate. However, maintaining a good level of

exploration using diversity does not take any information

about the data into account. In contrast, changing the

mutation rate, the number of immigrants, and the number of

generations per segment using ΔP(i) - as was done in this study -

takes information about the data directly into account.

Additionally, the number of immigrants in the proposed GA

ranges from 10–70%, which limits the initialization’s effect on the

overall results. Moreover, the results in Figure 3 indicate that the

proposed problem-specific optimization method yields a better

fit compared to the standard approach when the characteristics of

the data change rapidly. On the other hand, when the

characteristics of the data change slowly, the performance is

similar even though the proposed algorithm is using fewer

generations per segment. The number of RR intervals

simulated with the model for each parameter set, Nsim, was set

to 1500 in the GA based on a trade-off between computational

complexity and variation based on the stochastic input sequence

to the model. A simulation study relating the variation in ϵ and
Nsim which was used to guide the decision is shown in the

Supplementary Material, Section 1. Moreover, the thresholds

for ΔP to determine howmany generations are to be run per data

segment were set so that approximately 55% are run for

1 generation, 30% are run for 2 generations, and the

remaining 15% are run for 3.

A variation of Sobol’s method was used to estimate the

contribution to output variance for each model parameter, which

was related to an increase in error by 10%. This more complex

methodologywas preferred over a one-at-a-time approach due to the

large effect that interaction between model parameters has on the

model output. Note that, unlike more traditional uncertainty

estimates, this is not directly connected to a probability, since the

error function used does not have a proper probabilistic

interpretation. Thus, the uncertainty shall only be interpreted as a

relative measure between the model parameters, between patients,

and between the time of day. For example, it is evident in Figure 5

that the uncertainty for this patient is much lower during nighttime

than daytime.

A linear mixed-effect model based on a cosinor analysis was

used to derive the circadian variations. This method was used to

quantify the circadian variation for the different drugs over the

whole population, as well as the individual response to the drugs.

The focus of this study is on the population effects of the different

drug types in order to understand the drug-dependent

differences in the conduction properties, something that needs

to be understood before the method could be applicable on an

individual level. Even though the focus of this study is on the

population level, the individual responses are still of interest,

especially for future work. For example, to predict individual

responses to different drugs. As shown in Figure 5, the individual

match is not optimal, thus a better tool for capturing the

circadian variation is believed to be needed before robust

analysis on an individual level is feasible. However, the

cosinor analysis is an established model for characterizing

circadian variation and has previously been used on the

RATAF data-set to study heart rate variation Corino et al.

(2015a).

From Table 3, in the parameters RFP
min and ΔRFP, we see a

significantly increased refractory period relative to baseline in the

FP for all four drugs. In addition, a significant increase in the SP

for either RSP
min, or ΔRSP could also be seen for all drugs. This

increase is also visible in the fixed effect parameters αm in

Figure 7, top panel. Electrophysiological studies of the two

calcium channel blockers verapamil and diltiazem as well as

the β-blocker metoprolol have shown that the drugs increase the

refractoriness in the AV node Leboeuf et al. (1989); Talajic et al.

(1992); Rizzon et al. (1978). Moreover, carvedilol has been shown

to increase the effective refractory period in the atria during AF

Kanoupakis et al. (2004). However, to the best of our knowledge,

no studies have been conducted to determine the effect of

carvedilol specifically for the refractory period in the AV

node. Furthermore, conduction properties in the atria

influence the model through the mean arrival rate λ, and thus

affect the estimated parameters.

In addition, from Figure 7 bottom panel, it is shown that

the two β-blockers reduce the circadian variation of the

conduction delay more than the calcium channel blockers,

as evident by ΔDFP and ΔDSP. Stimulation of the β1-receptors

- regulated by the autonomic nervous system - have been

shown to increase the conduction velocity in the AV node

Gordan et al. (2015). Hence, blocking this receptor using β-

blocking drugs might decrease the autonomic nervous system

effect, and thus reduce the circadian variation, yielding the

presented results.

Also seen in Figure 7, the model parameters for the two β-

blockers often behave similarly. However, the model parameters

for the calcium channel blockers verapamil and diltiazem do not

always align. In fact, the values for αm and βm for verapamil are in

several cases - most noticeably for RFP
min for αm and ΔRFP, ΔRSP,

and DFP
min for βm - similar to those of the two β-blockers.

Interestingly, it has previously been proposed that the

pharmacological effects of verapamil may partly be due to

some degree of β-blockade Drici et al. (1993).

Moreover, the large confidence intervals in Figure 7,

where the majority includes zero, are most likely due to

the high inter-patient variability in parameter values. A

confidence interval that includes zero would indicate that

there is no significant difference from baseline. The high

inertia and simplicity of the cosine are other factors in this.

For example, some patients have more than one section with

parameter values close to those during the night - possibly

due to periods of sleep during the day - which a cosine with a

period of 24 h could not capture.
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4.1 Study limitations and future
perspectives

The present model of the AV node accounts for dual pathway

physiology and rate dependent changes in conduction delay and

refractoriness and can simulate retrograde conduction. However,

it is not able to simulate some physiological interesting

phenomena such as AV node re-entry.

A limited range for the model parameters was used to make

the optimization more efficient. The choice of the boundaries was

guided by electrophysiological measurements from previous

clinical studies while keeping a conservative range to not

exclude realistic values. The maximal refractory period for the

model - given as the sum of Rmin and ΔR - lies in the range [150,

1350] ms and was set to include the effective refractory period of

the AV node, which has been reported as 361 ± 57 and 283 ±

48 m for the FP and SP, respectively Natale et al. (1994).

Furthermore, the conduction delay of the whole model is

given by the sum of Dmin and ΔD multiplied by the number

of nodes, which lies in the range [0, 1050] ms. Thus, it includes all

realistic PR intervals, which rarely exceed 200 m Schumacher

et al. (2017). Even though the boundaries were conservatively

chosen, we cannot exclude the possibility that a different choice

would have affected the resulting parameter values. Moreover,

since the parameters might be hard to interpret, combining the

model parameters associated with the same conduction property,

i.e., the two refractory periods and the two conduction delays, to

create more interpretable representations, is interesting.

As mentioned before, high inertia and simplicity of the cosine

are limiting factors for the assessment of circadian variation.

However, the cosinor analysis is an established model for

characterizing circadian variation and is thus important for

clear and interpretable results. Using the estimated uncertainty

to weight the estimated parameters is one possible approach to

make the cosine fit the estimates better. Other methods to capture

the differences in the AV node parameters over time, such as

time-frequency analysis of the estimated parameter trends,

should also be investigated.

It should be noted that the estimated model parameters are not

clinically validated for assessment of AV node refractoriness and

conduction delay.Hence, the clinical significance of the results should

be interpreted with caution. However, the overall findings for the

different drugs on the whole population are, as discussed above, in

accordance with electrophysiological studies. Another limitation is

the sample size of 60 patients in combination with the high inter-

patient variability in parameter values, as seen in the large standard

deviation in Table 3. This makes the population estimates more

uncertain, partly causing the large confidence intervals seen in

Figure 7.

A natural continuation of this work is to analyze the

estimated model parameters during baseline, possible in

combinations with other factors such as age or gender, to

predict the mean heart rate under the influence of the

different drugs. This in turn could be used to assist in

personalized treatment selection during AF.

5 Conclusion

We have presented a framework - including a mathematical

model and a genetic algorithm - which for the first time enables

characterization of the refractory period and the conduction

delay of the AV node during 24 h for patients with

permanent AF, solely based on non-invasive data.

With ECG from AF patients during baseline and under the

influence of different rate control drugs, a mixed-model

framework was used on the estimated model parameters to

compare the impact on circadian variation between drugs.

From this, differences in conduction delay could be identified

between β-blockers and calcium channel blockers, which was

previously unknown.
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Introduction: Atrial fibrillation (AF) is the most common arrhythmia,
associated with significant burdens to patients and the healthcare system. The
atrioventricular (AV) node plays a vital role in regulating heart rate during AF
by filtering electrical impulses from the atria. However, it is often insufficient
in regards to maintaining a healthy heart rate, thus the AV node properties
are modified using rate-control drugs. Moreover, treatment selection during
permanent AF is currently done empirically. Quantifying individual differences in
diurnal and short-term variability of AV-nodal function could aid in personalized
treatment selection.

Methods: This study presents a novel methodology for estimating the refractory
period (RP) and conduction delay (CD) trends, and their uncertainty in the
two pathways of the AV node during 24 h using non-invasive data. This
was achieved by utilizing a network model together with a problem-specific
genetic algorithm and an approximate Bayesian computation algorithm. Diurnal
variability in the estimated RP and CD was quantified by the difference between
the daytime and nighttime estimates, and short-term variability was quantified
by the Kolmogorov-Smirnov distance between adjacent 10-min segments in
the 24-h trends. Additionally, the predictive value of the derived parameter
trends regarding drug outcome was investigated using several machine
learning tools.

Results: Holter electrocardiograms from 51 patients with permanent AF during
baseline were analyzed, and the predictive power of variations in RP and CD
on the resulting heart rate reduction after treatment with four rate control
drugs was investigated. Diurnal variability yielded no correlation to treatment
outcome, and no prediction of drug outcome was possible using the machine
learning tools. However, a correlation between the short-term variability for
the RP and CD in the fast pathway and resulting heart rate reduction during
treatment with metoprolol (ρ = 0.48,p < 0.005 in RP, ρ = 0.35,p < 0.05 in CD)
were found.

Discussion: The proposed methodology enables non-invasive estimation of the
AV node properties during 24 h, which—indicated by the correlation between the
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short-term variability and heart rate reduction—may have the potential to assist
in treatment selection.

KEYWORDS

AV nodemodel, atrial fibrillation, atrioventricular node, mathematical modeling, genetic
algorithm, approximate Bayesian computation, ECG, rate control drugs

1 Introduction

Atrial fibrillation (AF) is the most common sustained cardiac
arrhythmia and a significant burden for patients and the healthcare
system Hindricks et al. (2020). The prevalence of AF is currently
estimated to be between 2% and 4% worldwide Benjamin et al.
(2019). In addition, the number ofAF cases in the EuropeanUnion is
estimated to increase by 89% between 2016 and 2060 Di Carlo et al.
(2019). Atrial fibrillation is characterized by disorganized electrical
activity in the atria, leading to rapid and irregular contraction, and
is associated with an increased risk of mortality, predominantly due
to heart failure or stroke Andrew et al. (2013).

The atrioventricular (AV) node acts as the only electrical
connection between the atria and ventricles and partly protects the
ventricles from the rapid and irregular electrical activity in the atria
during AF. It can be functionally divided into two pathways, the
fast pathway (FP) and the slow pathway (SP), interconnected at the
Bundle of His Kurian et al. (2010). The AV node either blocks an
incoming impulse, based on its refractory period (RP), or sends
it through with a delay, based on its conduction delay (CD). The
AV node is thus the most essential part in regulating the heart rate
duringAF, and theRP andCDare the twomost important properties
of the AV node, deciding its filtering capability.

The AV node during permanent AF is in many cases insufficient
in regards to maintaining a healthy heart rate. Therefore, the AV
node properties are often modified by treatment with rate control
drugs, with β-blockers and calcium channel blockers recommended
as first-line treatment Hindricks et al. (2020). Common β-blockers
for AF treatment are metoprolol and carvedilol, which block the β1
receptors in the heart in order to reduce the effect of the sympathetic
nervous system on the heart Dorian (2005). Common calcium
channel blockers are verapamil and diltiazem, which prevent the
L-type calcium channels in the cardiac myocytes from opening in
order to reduce conduction in the AV node Eisenberg et al. (2004).
However, due to the significant and poorly understood individual
variability, the choice of drug is currently made empirically for each
patient Hindricks et al. (2020). This could lead to a prolonged time
until successful treatment, and possibly result in a suboptimal final
choice of drug. Since the two recommended first-line treatments
have different physiological effects on the AV node, assessing the
patient-specific properties of the AV node has the potential to assist
in treatment selection. Specifically, we hypothesize that β-blockers
would exhibit an increased effect (more reduced heart rate) when
variations in the AV node properties are prominent since β-blockers
reduce the effect of the sympathetic nervous system.

The AV node has previously been studied using several
mathematical models based on invasive data from humans
and animals Billette and Nattel (1994); Jørgensen et al. (2002);
Mangin et al. (2005); Inada et al. (2009); Climent et al. (2011a);
Masè et al. (2012), Masè et al. (2015); Ryzhii and Ryzhii (2023).

However, in order for a model to be clinically applicable on an
individual level, the model parameters should ideally be identifiable
from non-invasive data, such as the electrocardiogram (ECG). A
statistical model of the AV node with dual pathway physiology
using the RR interval series and the atrial fibrillatory rate (AFR) for
model fitting has been proposed Corino et al. (2011), Corino et al.
(2013); Henriksson et al. (2015). However, the model lumps RP and
CD together, limiting its interpretability.

We have previously proposed a network model of the AV
node capable of distinguishing the RP and CD in each pathway
Karlsson et al. (2021), together with a framework for continuously
estimating its twelve model parameters from 24-h Holter ECG
Karlsson et al. (2022). Although promising, the characterization of
the AV node was still limited by the number of model parameters
and their intrinsic complex dependencies, where a large change
in the model parameters could result in a very small change in
the RP or CD, thus, making their interpretation a non-trivial
task. For a modeling approach to gain acceptance in a clinical
context, the outcome should be readily interpretable by medical
professionals; a fact that has become especially relevant with
the increasing use of advanced modeling and machine learning
techniques Teng et al. (2022); Trayanova et al. (2021). Additionally,
in Karlsson et al. (2022), a version of Sobol’s method was applied
to quantify uncertainty in the parameter estimates. However, these
uncertainty estimates were not directly interpretable as probabilities
and could thus only be used as a relativemeasure between themodel
parameters, between patients, or between different times of the day.
When the extent of the uncertainty is unknown, uncertain estimates
have the potential to mislead decision-making processes or further
analysis of the trends. A proper quantification of the uncertainty is
thus advantageous in order to fully understand the estimates.

In the present study, we propose a novel methodology for
estimating the RP and CD of both pathways of the AV node and
the associated uncertainty continuously over 24 h.Themethodology
comprises a genetic algorithm (GA) for initial model parameter
estimation and an approximate Bayesian computation (ABC)
algorithm to refine the estimates, together with a simulation
approach to map model parameters to RP and CD in order to
increase interpretability. In addition to refining the estimates, the
ABC algorithm provides samples from the Bayesian posterior
distribution of the AV node properties, hereafter denoted the
posterior, enabling proper quantification of the uncertainty of the
estimated properties. We use these novel tools in an exploratory
manner to analyze Holter ECGs from 51 patients during baseline
in combination with their respective drug responses to identify
potential markers for differences in drug response. Specifically, we
analyze the correlation between diurnal and short-term variability
and drug outcomes, as well as train several machine learningmodels
to predict drug outcomes.
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FIGURE 1
A schematic overview of the methodology, from ECG to estimations of the RP and CD. θ̂GAm (pat,s) referees to the estimates found by the GA, as
described in Section 2.4.1; θ̂ABCv,j (pat,s) referees to the estimates found by the ABC algorithm, as described in Section 2.4.2; and Φ̂(pat,s) referees to the
full estimates of RFP, RSP, DFP, DSP, as described in Section 2.4.3. Previous study refers to Karlsson et al. (2022).

2 Materials and methods

The overall method for assessing the RP and CD of the two
pathways in the AV node for each patient (pat) can be divided
into four stages, as shown in Figure 1. Firstly, 24-h Holter ECGs
are processed to extract RR interval series and AFR trends, divided
into 10-min segments (s) with a 50% overlap, as described in
Sections 2.1, 2.2. Secondly, the parameters for the network model of
the AV node, described in Section 2.3, are fitted to the RR interval
series and AFR in each segment using a problem-specific dynamic
GA as described in Section 2.4.1. The GA-derived estimates are
subsequently used as inputs to an ABC algorithm to refine the
estimates and estimate the posterior of the model parameters, as
described in Section 2.4.2. Additionally, a simulation study was
performed to evaluate parameter estimates produced by the ABC
algorithm in relation to those produced by the GA, described in
Supplementary Material S1. These model parameter estimates are
finally used to simulate data with the model while tracking the RP
and CD used for the two pathways, as described in Section 2.4.3.
This results in a distribution of the RP and CD in the FP and the SP
for each 10-min segment. Finally, the possibility to predict treatment
outcomes using the estimated distributions is evaluated, as described
in Section 2.5.

2.1 ECG data

Data from the Rate Control in Atrial Fibrillation (RATAF)
study, a randomized, investigator-blind, crossover study, approved
by the regional ethics committee and the Norwegian Medicines
Agency and conducted in accordance with the Helsinki Declaration,
is analyzed in this study Ulimoen et al. (2013). Specifically, 24-
h ambulatory ECGs from 60 patients (mean age 71 ± 9 years,
18 women) with permanent AF, no heart failure, or symptomatic
ischemic heart disease, recorded during baseline, are used for the
estimation of patient-specific AV node properties. In addition to
the baseline ECG, the relative change in the 24-h average heart
rate (ΔHR) for treatment with the two calcium channel blockers
verapamil and diltiazem and the two β-blockers metoprolol and
carvedilol are used to evaluate the therapeutic implications of the
estimated AV node properties. The calculation of ΔHR is based
on the RR interval series extracted from the ECG, as explained in
Section 2.2.

2.2 ECG processing

The RR interval series is extracted from the ECG for each
patient and divided into 10-min segments with a 50% overlap
(RR(pat, s)), where RR intervals following and preceding QRS-
complexes with deviating morphology are excluded from the series
Lagerholm et al. (2000). Segments with excessive noise can lead to
a large number of undetected beats and thus an unrealistically low
heart rate. Hence, each 10-min segment is divided into minute-
long non-overlapping intervals, and the whole 10-min segment is
excluded from further analysis if any 1-min interval has fewer than
20 detected beats. Patients with RR interval series with a total
duration shorter than 12 h are excluded from further analysis. The
RR interval series corresponding to the four rate control drugs are
calculated equivalently.

Spatiotemporal QRST cancellation is employed to extract the
f-waves from the ECG Stridh et al. (2001). Subsequently, the
fundamental frequency of the extracted f-waves is tracked using a
hidden Markov model-based method to extract an AFR trend for
each patient with a resolution of 1 minute Sandberg et al. (2008). For
time segments where theAFR could not be obtained due to excessive
noise, but the RR interval series could, the AFR is set to the closest
observed AFR value.

2.3 Network model of the AV node

Our network model of the AV node, introduced in
Karlsson et al. (2021), describes the AV node as two pathways
(the SP and the FP) comprising 10 nodes each. The last nodes
of each pathway are connected with each other and with a
coupling node, as illustrated in Figure 2. Each pathway node
corresponds physiologically to a localized section of the respective
pathway, and the interconnection of the modeled pathways
represents the interconnection between the two pathways seen
in the AV node Kurian et al. (2010). Furthermore, the coupling
node corresponds physiologically to the Purkinje fibers and
Bundle of His.

Atrial impulses are modeled by a Poisson process with mean
arrival rate λ. The impulses are assumed to reach the first nodes of
SP and FP simultaneously. Each network node can be either in a
refractory state or in a non-refractory state. A node in its refractory
state will block incoming impulses, and a node in its non-refractory
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FIGURE 2
A schematic representation of the network model where the yellow node represents the coupling node, the red nodes the SP, the green nodes the FP,
and arrows the direction for impulse conduction. For readability, only a subset of the 21 nodes is shown. Reproduced from Karlsson et al. (2021),
licensed under CC BY 4.0.

state will transmit an incoming impulse to all adjacent nodes with
an added conduction delay before entering its refractory state. The
RP (Ri(n)) and CD (Di(n)) for node i are updated for each incoming
impulse n according to Eqs 1–3,

Ri (n) = Rmin +ΔR(1− e−
̃ti(n)/τR) (1)

Di (n) = Dmin +ΔDe−
̃ti(n)/τD , (2)

̃ti (n) = ti (n) − (ti (n− 1) +Ri (n− 1)) , (3)

where, ̃ti(n) is the diastolic interval preceding impulse n and ti(n)
is the arrival time of impulse n at node i. When ̃ti(n) < 0, the
node is in its refractory state and will block incoming impulses.
All parameters are fixed for each pathway, resulting in three model
parameters for the RP in the FP (RFP

min, ΔR
FP, τFPR ); three model

parameters for the CD in the FP (DFP
min, ΔD

FP, τFPD ); three model
parameters for the RP in the SP (RSP

min, ΔR
SP, τSPR ); three model

parameters for the CD in the SP (DSP
min, ΔD

SP, τSPD ). These twelve
model parameters constitute the mode parameter vector θ. In
addition, the RP in the coupling node is fixed to the mean of the
ten shortest RR intervals in the data, and its CD is fixed at 60 ms
Karlsson et al. (2021).

2.4 Parameter estimation

For each 10-min segment, the mean arrival rate for the Poisson
process λ is estimated as the mean of the AFR trend (λ̂(pat, s)), and
the model parameters θ̂(pat, s) are estimated using a GA together
with an ABC algorithm.

An error function (ϵ) based on the Poincaré plot, i.e., a scatter
plot of successive pairs of RR intervals, is used to quantify the
difference between RR(pat, s) and a simulated RR interval series
( ̃RR). The successive pairs of RR intervals for RR(pat, s) and ̃RR
are placed in two-dimensional bins covering the interval between
250 and 1,800 ms in steps of 50 ms, resulting in K = 961 bins,
which we refer to as the Poincaré histogram. The error function,
based on the work presented in Karlsson et al. (2021), is computed

according to Eq. 4,

ϵ = 1
K

K

∑
k=1

(xk −
1

tnorm
̃xk)

2

√xk
, (4)

where xk and ̃xk are the numbers of RR intervals in the kth
bin of RR(pat, s) and ̃RR, respectively. Additionally, tnorm acts as a
normalizing constant and is calculated as the duration of ̃RR divided
by the duration of RR(pat, s).

2.4.1 Genetic algorithm
A problem-specific dynamic GA based on the work presented

in Karlsson et al. (2022) is used to get an initial estimate of
θ(pat, s) in every segment. A GA is a metaheuristic, made up of
a population of candidate solutions, called individuals in the GA
terminology. However, to avoid confusion with individuals in the
context of people, here we will call them parameter vectors. Thus,
using the problem-specific dynamic GA results in a population of
parameter vectors denoted θ̂GAm (pat, s), where m denotes the mth
fittest parameter vector in the population after completion of the
GA, i.e., the parameter vector with the mth lowest ϵ. The hyper-
parameters in the algorithm are tuned during the optimization
using the difference between the Poincaré histograms in pairs of
consecutive segments (ΔP) Karlsson et al. (2022). This difference is
calculated using Eq. 4with xk and ̃xk as the number of RR intervals in
each bin of the current segment and the following one, respectively.

TheGA uses a population of 300 parameter vectors, tournament
selection, a two-point crossover, and creep mutation. To avoid
premature convergence and to increase performance, immigration
through replacement of the least-fit parameter vectors in the
population is performed, following the work in Karlsson et al.
(2022). Furthermore, ΔP is used to determine the number of
generations that the GA runs before moving to the next data
segment, between two and seven. The initialization of the parameter
vectors is done using latin hypercube sampling within the ranges
given in Table 1. These values also act as boundaries for the
model parameters in the GA and are set with guidance from
electrophysiological measurements from previous clinical studies
while keeping a conservative range to not exclude realistic values.
For further details about the algorithm, see Karlsson et al. (2022).
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TABLE 1 Parameter ranges for the GA and the ABC PMC algorithm.

Parameters RFPmin,R
SP
min ΔRFP, ΔRSP DFP

min,D
SP
min ΔDFP, ΔDSP τFPR ,τ

SP
R ,τ

FP
D ,τ

SP
D

GA (ms) [100, 1,000] [0, 1,000] [2, 50] [0, 100] [25, 500]

ABC (ms) [30, 1,300] [0, 1,300] [0.1, 80] [0, 130] [10, 700]

2.4.2 Approximate Bayesian computation
To estimate the posterior p(θ|RR(pat, s), λ̂(pat, s)), an

approximate Bayesian computation population Monte Carlo
sampling (ABC PMC) algorithm is used Turner and Van Zandt
(2012). The pseudo-code for the problem-specific ABC PMC is
shown inAlgorithm 1.TheABCPMCuses a set ofNp = 100 particles
to estimate the posterior in each RR segment independently,
which are updated iteratively for eight iterations (j). Each
particle corresponds to a model parameter vector, denoted θ̂ABCv,j ,
where v corresponds to the vth particle for the jth iteration.
Hence, the particles after the eighth iteration are used as the
estimate for the posterior. The algorithm is sped up by utilizing
the results from the GA to create the initial population. To
construct the initial population, twenty particles are drawn
from five different normal distributions, having the five most fit
parameter vectors in the GA as means, and identical covariance
matrices calculated as the covariance of the 25 most fit parameter
vectors in the GA. Hence, the five normal distributions are
defined as: N (θ̂GA1 (pat, s),Σinit(pat, s)), N (θ̂

GA
2 (pat, s),Σinit(pat, s)),

N (θ̂GA3 (pat, s),Σinit(pat, s)), N (θ̂GA4 (pat, s),Σinit(pat, s)), and
N (θ̂GA5 (pat, s),Σinit(pat, s)), where the covariance matrix
Σinit(pat, s) = Cov(θ̂GA1:25(pat, s)) where 1:25 denotes [1,2,… ,25] for
convenience. During each iteration, each particle has a probability
of being chosen based on an assigned weight, computed according
to Eq. 5 Beaumont et al. (2009)

wv,j = (
Np

∑
k=1

wk,j−1N (θ̂
ABC
k,j−1|θ̂

ABC
v,j ,Σj−1))

−1

, (5)

where wv,j is the weight for the vth particle in the jth
iteration and N (θ̂ABCk,j−1|θ̂

ABC
v,j ,Σj−1) is the probability of θ̂ABCk,j−1 given

the normal distribution with mean θ̂ABCv,j and covariance Σj−1,
where Σj = 2Cov(θ̂ABC1:Np,j). Furthermore, the chosen particle (θ*) is
perturbed to create a proposal particle (θ**) using a transition
kernel set as N (0,Σj) Beaumont et al. (2009). The model is used to
simulate data using θ** to calculate an associated proposal error (ϵ**)
according to Eq. 4. If ϵ** is lower than a set threshold (Tj), θ** is
accepted and used in the next iteration of the algorithm; if not, a
new particle is chosen and perpetuated to create a new proposal
particle. Note that the boundaries for the ABC PMC algorithm
are more inclusive compared to the GA to accommodate the full
width of the estimated posteriors, as shown in Table 1. A proposal
particle outside the boundaries is always rejected. The next iteration
starts when Np new proposal particles have been accepted, and wv,j,
Tj, and Σj are then updated. The threshold changes based on the
results from the GA; where T1 = θ̂

GA
10 (pat, s), T2 = θ̂

GA
8 (pat, s), T3 =

θ̂GA5 (pat, s), T4 = θ̂
GA
3 (pat, s), and T5:8 = θ̂

GA
1 (pat, s). Hence, after the

eighth iteration, the ϵ for all particles is lower than the ϵ for the fittest
parameter vectors found by the GA. Thus, the final population is
assumed to be Np samples from p(θ|RR(pat, s), λ̂(pat, s)).

Thehyper-parameters for theABCPMCalgorithmwere decided
based on empirical tests on simulated data in combination with
theoretical indications. The ABC PMC algorithm should ideally
be initialized with a particle cloud that is not too compact and
not too wide, since both of those alternatives tend to increase the
number of iterations until a steady state can be found for the particle
cloud. Initial tests on simulated data (not shown) indicated that a
good balance was achieved when the initialization was set to drawn
samples from five normal distributions with mean values equal to
the five fittest parameter vectors found by the GA. Moreover, the
stepwise threshold was based on initial tests on simulated data,
however, guided by the theoretical indication that the last iteration
should yield parameter vectorswith an ϵ lower than the ϵ for the fittest
parameter vector found by the GA. The number of iterations was set
to eight after simulations indicating that a steady state was reached
after eight iterations, as shown in the Supplementary Material S2.
Finally, the number of parameter vectors Np was st to 100 based on
available computational resources

2.4.3 Parameter reduction
The posterior estimate of the parameter vector θ(pat, s) is

obtained using the resulting Np samples (θ̂ABC1:Np,8(pat, s)) from the
ABC PMC algorithm. Each θ̂ABC1:Np,8(pat, s) is utilized within the
model together with the associated λ̂(pat, s) to simulate a 10-min RR
interval series. For each simulation, Ri(n) and Di(n) are stored
for each activation n in each pathway node i and used as the
sample distribution of the RP and CD for the SP and the FP,
respectively. The samples from these four distributions, denoted as
Φ̂(pat, s) = [RFP(pat, s),RSP(pat, s),DFP(pat, s),DSP(pat, s)], serves as
a translation from the twelve model parameters θ̂ to four more
interpretable AV node properties Φ̂, taking into account not only
the model parameters but also the mean AFR associated with the
current RR-segment.

To quantify these distributions, their corresponding
empirical probability density functions are computed using
the MATLAB function ksdensity (MATLAB R2022b) with
default bandwidth. From the empirical probability density
functions, the maxima are obtained, denoted ϕ̂max(pat, s) =
[RFP

max(pat, s),RSP
max(pat, s),DFP

max(pat, s),DSP
max(pat, s)]. In addition, the

5th percentile and the 95th percentile are obtained from Φ̂(pat, s),
denoted ϕ̂5(pat, s) = [R

FP
5 (pat, s),R

SP
5 (pat, s),D

FP
5 (pat, s),D

SP
5 (pat, s)],

and ϕ̂95(pat, s) = [R
FP
95 (pat, s),R

SP
95(pat, s),D

FP
95 (pat, s),D

SP
95(pat, s)],

respectively. Furthermore, the number of impulses traveling through
the FP and SP (NFP and NSP, respectively) is stored, and the ratio is
denoted as SPratio(pat, s) =

NSP(pat,s)
NFP(pat,s)+NSP(pat,s)

.
The patient-specific diurnal variability (ΔDV) in the AV node

properties is quantified by the average value of ϕ̂max during daytime
(9:00 a.m. to 9:00 p.m.) divided by the average value of ϕ̂max during
nighttime (2:00 a.m. to 6:00 a.m.). The definitions of day and night
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At iteration j = 1, set the initial population

Set a counter c = 1

for 1 ≤ u ≤ 5 do

 for 1 ≤ q ≤ Np

5
 do

   Set θ̂
ABC
c,1 ←N (θ̂GAu ,Σinit)

   Set initial weights wc,1←
1

Np

   Update counter c = c+1

 end for

end for

Set the initial covariance for the transition

kernel Σ1← 2Cov(θ̂ABC1:Np,1)

At iteration j > 1

for 2 ≤ j ≤ 8 do

 for 1 ≤ v ≤ Np do

  Set ϵ** = inf

  while ϵ** > Tj do

   Sample one proposal particle from previous

iteration θ* ∼ θ̂ABC1:Np,j−1 with probability w1:Np,j−1

   Perturb θ* by sampling θ** ∼N (θ*,Σj−1)
   Simulate data ̃RR from θ**: ̃RR ∼ Model(θ**, λ̂)

   Calculate ϵ** from Eq. 4 using ̃RR and RR

  end while

  Set θ̂
ABC
v,j ← θ**

  Update the weight

wv,j← (∑
Np

k=1wk,j−1P(θ̂
ABC
k,j−1|N (θ̂

ABC
v,j ,Σj−1)))

−1
(Eq. 5)

 end for

  Update the covariance for the transition kernel

Σj← 2Cov(θ̂ABC1:Np,j)

end for

Algorithm 1. Calculate p(θ|RR, λ̂), given RR, λ̂, the model ̃RR ∼ Model(θ, λ̂), the
threshold Tj, and the initial estimates θ̂GA. The indication (pat,s) is omitted to
avoid redundancy.

are designed to ensure that the patients are awake during the daytime
and asleep during the nighttime. In addition, the patient-specific
short-term variability in the AV node properties is quantified by the
average Kolmogorov-Smirnov distance (ΔKS) between consecutive
segments of Φ̂ during the full 24-h (8:00 a.m. to 8:00 a.m.). The
Kolmogorov-Smirnov distance represents the maximal separation
between the empirical cumulative distribution functions between
consecutive segments Massey Jr (1951).

A significant difference between daytime and nighttime for the
average ϕ̂max; the 90% credibility region, quantified by ϕ̂5(pat, s) −
ϕ̂95(pat, s); and the average Kolmogorov-Smirnov distance ΔKS
is evaluated using the Wilcoxon signed rank test, since all
data did not follow a normal distribution according to the
Shapiro-Wilk test (p < 0.05).

2.5 Prediction of treatment outcome

Thepredictive power of the estimates Φ̂, ϕ̂5, ϕ̂95, ϕ̂max, and SPratio
in relation to ΔHR for the different rate control drugs is evaluated
in three ways; by analyzing the correlation between the diurnal

and short-time variability and ΔHR; by training a feature-based
regression model on statistical properties of the trends to predict
ΔHR; and by training a convolutional neural network on the trends
to predict ΔHR.

To quantify the correlation between diurnal and short-term
variability in the AV node properties and ΔHR after treatment with
the four rate control drugs, Spearman’s rank correlation is used,
since the data do not follow a normal distribution according to the
Shapiro-Wilk test (p < 0.05). Due to the exploratory nature of the
study, no hypothesis test is performed and hence no correction of
p-values is applied Perneger (1998); Althouse (2016).

Three different feature-based regression models (linear
regression, random forest Breiman (2001), and k-nearest neighbor
Cover and Hart (1967)) are trained on 66 statistical properties of
the trends. These statistical properties are: the mean ± std of the
four AV node properties ϕ̂max during daytime (8 properties), during
nighttime (8 properties), and the full 24-h (8 properties); the mean
± std of the 90% credibility region—calculated as the difference
between ϕ̂5 and ϕ̂95—during daytime (8 properties), nighttime (8
properties), and the full 24-h (8 properties); the mean ± std of the
SPratio during daytime (2 properties), nighttime (2 properties), and
the full 24-h (2 properties); ΔDV in the four AV node properties (4
properties); the short-termvariability in the fourAVnode properties
(4 properties); as well as the age, gender, weight, and height
of the patient.

Deep learning approaches have achieved the current state-of-
the-art performance for time-series classification and regression
Ismail Fawaz et al. (2019). Hence, the prediction of ΔHR for the
different rate control drug is evaluated using the time series for
ϕ̂5, ϕ̂95, ϕ̂max, SPratio, AFR, and the RR interval series as an input
to three convolutional neural networks with different architectures,
based on only fully connected layers Wang et al. (2017), the ResNet
architecture Wang et al. (2017), and the Inception architecture
Ismail Fawaz et al. (2020), respectively. To incorporate the age,
gender, weight, and height of the patients, the last fully connected
layer of the networks is modified to also include these properties
as input neurons. The networks were trained using the tsai library
Oguiza (2022), with the Adam solver Kingma and Ba (2014) and the
Huber loss Huber (1992). Leave-one-out cross-validation is used, so
that the network is trained on data fromall but one patient and tested
on the left-out patient. The average mean square error (MSE) of the
predicted and true ΔHR for the whole population is calculated and
compared between approaches.

3 Results

As described in Section 2.1, this study is based on a population
of 60 patients. However, due to excessive noise, some patients
are excluded from analysis, as described in Section 2.2, resulting
in a total of 51 patients. The paired significant tests described
in Section 2.4.3 are performed on all patients with data for both
daytime and nighttime, resulting in a total of 47 patients. In addition,
excessive noise in the ECG during treatment with the four rate
control drugs leads to missing values for ΔHR for some patients.
Thus, of the remaining 51 patients at baseline, two lack data for
verapamil, three lack data for diltiazem, two lack data formetoprolol,
none lack data for carvedilol, and one lacks data for both verapamil
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and metoprolol. The mean ± standard deviation of ΔHR in the
population are 19%± 23% for verapamil; 24%± 18% for diltiazem,
17%± 18% for metoprolol; and 11%± 6% for carvedilol.

The computation of the Φ̂(pat, s) is divided into three parts; the
GA, the ABC PMC algorithm, and the parameter reduction. All
computations were performed on a desktop computer with an AMD
Ryzen 9 5900X CPU (using the twelve cores in parallel). Using this
setup, the median computation time per patient was 1 h 20 min for
the GA, 12 h 30 min for the ABC PMC algorithm, and 6 min for the
parameter reduction.

In addition to providing a measure of uncertainty, using the
ABC PMC algorithm also reduces ϵ compared to only using the
GA. This refinement is quantified by the percentual reduction in
ϵ, calculated as the average ϵGA1 (pat,s)−ϵ

ABC
1 (pat,s)

ϵGA1 (pat,s)
100 for each patient

and segment, where ϵGA1 (pat, s) and ϵABC1 (pat, s) represent the
lowest error value found for the GA and ABC PMC algorithm,
respectively. The average refinement ± standard deviation when
using the ABC PMC algorithm was 9.14% ± 3.01%. Moreover, a
simulation study was performed to validate the proposedmodel and
framework using ground truth data. These results are found in the
Supplementary Material S1.

3.1 Parameter trends

Figures 3, 4 show 24-h trends in estimated RP, CD, and SPratio for
two patients, denoted patient A (Figure 3) and patient B (Figure 4).
Looking at the two top panels of the figures, FP is blue and SP is
red.Thedots represent themost probable parameter set per segment,
ϕ̂max(pat, s), and colored fields represent the 90% credibility region
around the dots, quantified by ϕ̂5(pat, s), and ϕ̂95(pat, s). Comparing
the figures, patient A (Figure 3) displays a lower short-term
variability, taking values of ΔKS = [0.27,0.19,0.24,0.33] for RFP, RSP,
DFP, andDSP, respectively. Conversely, patient B (Figure 4) displays a
larger variability, with ΔKS = [0.41,0.55,0.40,0.40] forRFP,RSP,DFP,
and DSP, respectively. Moving on to the bottom panels of Figures 3,
4, it is evident that conduction mainly occurs through the SP in
both patients, as indicated by an SPratio over 0.5, resulting in a wider
credibility region in the RFP compared to the RSP. However, for
patient B, there are segments where the FP is more prevalent, e.g.,
between 5 p.m. and 6 p.m.. In these segments, the RP and CD have a
very low variability indicating a stationary behavior of the AV node.
A notable shift in RP occurs at 8 a.m. for patient A, probably as
a response to waking up from sleep, resulting in a clear change in
autonomic regulation. No notable diurnal variability for RFP, RSP,
and DFP could be seen for patient A, with a slight difference in
DSP (ΔDV = [0.80,0.81,0.99,1.39]). For patient B, only DFP showed
a notable diurnal variability (ΔDV = [0.81,0.92,2.60,1.19]).

Similar observations can be made for the whole population,
as displayed in Table 2, which includes the mean and standard
deviation of ϕ̂max(pat, s), the 95% credibility region, andΔKS, during
daytime, nighttime, and during 24 h, as well as ΔDV, for the RP
and CD in the FP and the SP for all patients. For convenience,
the total CD, calculated by multiplying the CD for one node by
ten, is listed. Significant difference between daytime and nighttime
for ϕ̂max, the 90% credibility region, and ΔKS is marked with *,
†, and ‡ in Table 2, respectively. From Table 2, it is evident that
the RP on average is higher and the CD is lower during nighttime

compared to daytime, probably linked to the lower heart rate during
sleep and/or circadian autonomic variations. This difference was
significant (p < 0.001) for RFP, RSP, and DSP, as marked with *
in Table 2. Figure 5 illustrates the population average trends of
ϕ̂max(pat, s), ϕ̂5(pat, s), and ϕ̂95(pat, s). To reduce the influence of
outliers, only segments containing data from over 20% of the
population are shown, resulting in a varying number of patients per
plotted segment with a minimum of ten patients per segment and a
median of 43 patients per segment. A distinct separation betweenRP
andCDof the two pathways exists, indicating different functionality.
Additionally, the credibility region for the RFP is larger compared
to the RSP. Moreover, the credibility region for DFP, in proportion
to its mean value, is larger than that of DSP. The differences in
credibility regions between FP and SP reflect the SPratio, which is
0.78 ± 0.11 (mean ± std) during the day, 0.79 ± 0.12 during the
night, and 0.78 ± 0.10 during the full 24-h, indicating that the SP is
dominant on average.

3.2 Prediction of treatment outcome

Spearman’s rank correlation between the patient-specific ΔDV,
as described in Section 2.5, and ΔHR showed no clear correlation
(p < 0.05) for any combination of drug and AV node property.
Hence, no relationship between diurnal variability and drug
outcome was found.

The Spearman correlation between the patient-specific short-
time variability, quantified by ΔKS, and ΔHR showed no clear
correlation (p < 0.05) for the RP and CD in the SP. A moderate
correlation was however found between ΔKS and ΔHR for RFP

in the β-blocker metoprolol (ρ = 0.47,p = 0.0011) and for DFP in
metoprolol (ρ = 0.35,p = 0.017). Figure 6 shows the individual ΔKS
plotted against ΔHR and their linear relation for all four drugs,
with the left panel showing RFP and the right panel showing DFP.
Interestingly, a similar relation betweenΔKS, andΔHR is not present
in the other β-blocker carvedilol.

The ability to predict ΔHR using machine learning approaches
is evaluated by the average MSE between the predicted and true
ΔHR for the four drugs using the leave-one-out validation method.
The average MSE is benchmarked against the population variance
of ΔHR for the four drugs. Hence, if the average MSE is larger than
the population variance at 0.0071%, the population mean yields a
more accurate predictor. Using the feature-based regression models,
as described in Section 2.5, resulted in an average MSE of 0.0073%
for the linear regression, an average MSE of 0.0074% for the random
forest, and an average MSE of 0.074% for the k-nearest neighbor.
In addition, using the convolutional neural network resulted in
an average MSE of 0.0073% for the fully connected architecture,
an average MSE of 0.0079% for the ResNet architecture, and an
average MSE of 0.0074% for the Inception architecture. Overall, all
themachine-learning approaches resulted in an averageMSE higher
than 0.0071% and thus in a poor fit to new-seen data.

4 Discussion

A mathematical model with an associated framework for
patient-specific estimation and proper uncertainty quantification
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FIGURE 3
The estimated RP (top) and CD (middle) for ϕ̂max(pat,s) (dotted) as well as ϕ̂5(pat,s) and ϕ̂95(pat,s) (filled) for the FP (blue) and SP (red), as well as the SP
ratio (bottom) are shown for patient A, marked with a black circle in Figure 6.

FIGURE 4
The estimated RP (top) and CD (middle) for ϕ̂max(pat,s) (dotted) as well as ϕ̂5(pat,s) and ϕ̂95(pat,s) (filled) for the FP (blue) and SP (red), together with the
SP ratio (bottom) are shown for patient B, marked with a red circle in Figure 6.

of the RP and CD in the FP and SP of the AV node using only
non-invasive data has been proposed.

Individual estimation of trends and variability in AV node
properties using non-invasive data has the potential to increase the
patient-specific understanding of the AV node during AF, which
in turn can be used to enhance informatics approaches for the
next-generation of personalized medicine. The two most dominant
properties of the AV node, the RP and CD, together with the ratio
of impulses conducted through the different pathways, have the
potential to increase the understanding of the AV node and its
function during AF.

Due to the physiological differences between the effect of β-
blockers and calcium channel blockers, where β-blockers reduce
the effect of the sympathetic nervous system, we hypothesized that
β-blockers could exhibit an increased effect when variations in
the AV node properties are prominent since this would indicate a

larger influence of the autonomic nervous system. The population-
averaged trends (Figure 5; Table 2) show a significant increase in
RP for both pathways and a significant decrease in CD for the SP
and a non-significant decrease in CD for the FP during nighttime
compared to daytime, suggesting that the decreased sympathetic
activity during nighttime affects the RP and CD. The PR interval
during sinus rhythm can be used as ameasure of the CD in the FP for
healthy subjects and is known to have a significant increase during
nighttime compared to daytime Dilaveris et al. (2001). Interestingly,
no corresponding changes in CD for the FP could be observed in
our presented analysis, possibly due to the differences in AV node
function betweenAF and sinus rhythm.However, no correlationwas
found between diurnal variations in AV properties and reduction in
heart rate during treatment with β-blockers.

Interestingly, a potential association between the short-time
variability and the treatment outcome with metoprolol was
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TABLE 2 Themean ± std of the average ϕ̂max, the 95% credibility region, and ΔKS for all patients during daytime, nighttime, and 24-h average together with ΔDV.
For convenience, the total CD, calculated bymultiplying the CD for one node by ten, is listed. A significant difference (p <0.001) between the daytime and
nighttime estimate is marked by * for ϕ̂max, by † for the 90% credibility region ϕ̂95 − ϕ̂5, and by ‡ for ΔKS. The indication (pat, s) is omitted to avoid redundancy.

RFP* ‡ RSP*†‡ 10DFP‡ 10DSP*†

24-h ϕ̂max (ms) 934 ± 203 399 ± 95 76.9 ± 47.6 546 ± 126

Daytime ϕ̂max (ms) 839 ± 205 356 ± 94 85 ± 64.6 572 ± 139

Nighttime ϕ̂max (ms) 1,119 ± 294 481 ± 152 62.1 ± 52.8 484 ± 160

24-h ϕ̂95 − ϕ̂5 (ms) 687 ± 232 217 ± 114 304.1 ± 110.7 447 ± 103

Daytime ϕ̂95 − ϕ̂5 (ms) 671 ± 261 179 ± 103 299.4 ± 123.9 427 ± 94

Nighttime ϕ̂95 − ϕ̂5 (ms) 738 ± 290 291 ± 185 315.5 ± 153.3 477 ± 169

24-h ΔKS 0.347 ± 0.057 0.319 ± 0.136 0.376 ± 0.055 0.36 ± 0.07

Daytime ΔKS 0.368 ± 0.069 0.352 ± 0.169 0.393 ± 0.061 0.351 ± 0.089

Nighttime ΔKS 0.309 ± 0.083 0.253 ± 0.133 0.342 ± 0.075 0.38 ± 0.082

ΔDV 0.77 ± 0.18 0.78 ± 0.27 2.58 ± 3.72 1.29 ± 0.47

FIGURE 5
The average RP (top) and CD (middle) for ϕ̂max(pat,s) (dotted) as well as ϕ̂5(pat,s) and ϕ̂95(pat,s) (filled) for the FP (blue) and SP (red), together with the
mean (black, dotted) and standard deviation (black, filled) of the SP ratio (bottom).

found. The findings depicted in Figure 6 demonstrate a moderate
correlation between ΔKS and the change in heart rate (ΔHR) in the
RP and CD for the FP for metoprolol, but not for any other drugs
or for the SP. The lack of correlation between ΔHR after treatment
with carvedilol (also a β-blocker) and ΔKS could potentially be
attributed to its modest overall effect observed in the RATAF
study, likely stemming from its rapid elimination as acknowledged
in Shapiro (2013). Moreover, the FP and SP are known to have
distinct electrophysiological behaviors, hence a different response
to drugs between the pathways is to be expected Greener et al.
(2011); Nikolaidou et al. (2012); George et al. (2017). For example,
the β-blocker esmolol has been shown to have a lower effect on the
anterograde RP of the SP compared to the FP Philippon et al. (1994).
This lower effect on the RP for beta-blockers could possibly explain

the lack of correlation seen between the SP estimate and treatment
outcome. In general, themechanisms underlying AV nodal function
are debated, and the physiological differences between the pathways
that are relevant for the effects of different drug types are not
fully known Billette and Tadros (2019). To confirm the association
between short-time variability in the RP and CD in the FP and
treatment outcome in response to metoprolol, additional studies
are needed.

It is possible that predictivity could be improved beyond this
association between the short-term variability and the treatment
outcome by including additional information from the AV node
model. As a tool for this, machine learning techniques are of interest
Adam et al. (2020). Hence, three featured-based regression models
were used to test if features from the AV node parameter trends

Frontiers in Physiology 09 frontiersin.org



Karlsson et al. 10.3389/fphys.2023.1287365

FIGURE 6
Scatter plot of the 24-h ΔHR and ΔKS for the RFP (left) and DFP (right) for the four drugs with ρ indicating the Spearman correlation coefficient, with
patient A (as shown in Figure 3) marked with black and patient B (as shown in Figure 4) marked with red.

could predict ΔHR for the different rate control drugs. Moreover,
three different architectures of a convolutional neural network
were also tested, with the AV node parameter time series as an
input, since convolutional neural network have the current state-
of-the-art performance for time-series classification and regression
Ismail Fawaz et al. (2019). In addition to the estimated AV node
parameters, information including the age, gender, weight, and
height of the patients was included in an attempt to improve the
prediction, since these are immediately available when applying
the model in a clinical setting. With a resulting average MSE
higher than the variance of ΔHR for the population, it appears
impossible to predict ΔHR with any certainty in the present data
set. Either there is not enough information relevant for predicting
the heart rate reduction after drug treatment in the AV node
property trends—possibly due to the 10-min resolution, limiting the
information about autonomic regulation—or the data set size of 51
patients is too low given the inter-individual variability present in
the measurements.

Prior iterations of the model and framework focused on
estimating the model parameter trends rather than the patient-
specific property trends of the AV node Karlsson et al. (2022).
This approach imposed limitations on the interpretability of the
results, since the interpretation of the model parameters in terms
of common cardiology terminology such as RP and CD is not
straightforward. In contrast, the current work introduces a novel
methodology that enables the estimation of the RP and CD for
each ECG segment individually, facilitating a more comprehensible
and interpretable analysis. The ability to derive such estimates is
vital as it allows for effective communication of the analysis results.
Furthermore, this advancement in methodology opens up new
avenues for gaining a deeper understanding of the AV node and its
diurnal and short-term variations.

The estimation of the posterior by obtaining a range of plausible
values, as opposed to relying on a point estimate of the AV node
properties, offers notable advantages. For example, the credibility
region for RFP in Figure 4 is very broad during most segments
at nighttime, reflecting a high uncertainty. In scenarios where the
extent of the uncertainty is unknown, these uncertain estimates

have the potential to influence decision-making processes or further
analysis of the trends. As a result, the usefulness and reliability
of these estimates may be decreased, emphasizing the need for an
estimation of the uncertainty. In our previous work, a GA was
used to estimate time variations in the network model parameters
during 24 h, with a version of Sobol’s method to quantify the
uncertainty in the parameter estimates Karlsson et al. (2022). The
uncertainty could be quantified using different methods, such as
performing multiple runs of the GA and analyzing the distribution
of the resulting estimates or by using bootstrapping to resample the
RR interval and run the GA on each resampled dataset. However,
the uncertainty estimation resulting from these types of methods,
including the version of Sobol’s method previously used, will not be
interpretable as probabilities, limiting the reliability of the resulting
uncertainty estimates. To produce uncertainty estimates that are
interpretable as probabilities, apart from using an ABC approach,
themain alternativewould be using a Bayesian surrogatemodel such
as the Gaussian process Sudret et al. (2017). However, initial tests
found it to be a slower alternative. The ABC approach is well suited
for this work since the previously designed error function in Eq. 4
can be used directly as a distance metric, which is often one of the
more cumbersome steps in the ABC approach. In addition, the ABC
approach has in recent years been used for the personalization of
the electrophysiological properties in cardiac models Camps et al.
(2021). Although ABC approaches are generally computationally
expensive Turner and Van Zandt (2012), starting in a promising
area of the model parameter space, derived from the GA results,
reduced the computation time by a factor of around 50 (data not
shown). The GA was also used to decide on a reasonable threshold
level for theABCPMCalgorithm,which is not straightforward since
imperfections in themodelmake certain RR seriesmore challenging
to replicate than others, resulting in a higher average ϵ. Hence, an ϵ
value corresponding to a good fit for one RR interval series could
correspond to a poor fit for another, making thresholds very data-
dependent. Using the GA to find the threshold levels ensures a
reasonable threshold level specified for each data segment.

The main advantage of the ABC PMC algorithm is that it
provides an estimate of the posterior. Nevertheless, it also has the
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ability to reduce the ϵ value, yielding a closer fit to observed data.
The improvement in parameter estimates when combining the GA
with the ABC PMC algorithm compared to solely using the GA has
been evaluated on simulated data with known model parameters,
as shown in the Supplementary Material S1. From this, no statistical
difference could be found between the GA and the ABC PMC
algorithm for ten out of twelve model parameters when measuring
the distance to the known model parameters. However, the best
particle found by the ABC PMC algorithm had a significantly lower
average ϵ value compared to the best parameter vector found by the
GA, indicating a better fit to the simulated data. Additionally, in the
data analyzed in this study, the best particle for each segment found
by the ABC PMC algorithm had on average an ϵ value 9.14% lower
compared to the best parameter vector found by the GA, confirming
an overall improvement.

4.1 Study limitations and future
perspectives

The AV node model accounts for most properties of importance
during AF, such as single and dual pathway physiology, rate-
dependent changes in AV conduction properties, and is able
to simulate retrograde conduction Billette and Tadros (2019).
However, it does not include ventricular escape rhythm, and
is unable to replicate the behavior of some rare AV node
structures, such as multiple slow pathways. Nevertheless, these
simplifications are essential to develop a model with a manageable
number of parameters, reducing the computational requirements
and thus enabling parameter estimation from non-invasive data
using tools such as the GA and the ABC PMC algorithm.
Moreover, the model does not explicitly account for AV nodal
fatigue. However, any effects of fatigue in the analyzed data
sets should be indirectly accounted for in the estimated model
parameters.

In this work, we generated the AA interval series used as an
input to the model using a Poisson process. We are aware that more
detailed representations, notably the Pearson type 4 distribution, can
be used to describe atrial impulses during AF Climent et al. (2011b);
Plappert et al. (2022). However, for the purposes of the present
study, the more simplistic Poisson process was preferred due to
its single-parameter description, facilitating parameter estimation,
and since it has previously been shown to generate realistic
RR-interval series together with the employed AV-node model
Karlsson et al. (2021).

The estimated RP and CD have not been validated against
intracardiac measurements, since obtaining such measurements
during AF—if at all possible—would be very difficult and time-
consuming. The average RP and CD for the two pathways
can however be compared with invasive electrophysiological
measurements of the AV node from two patients with paroxysmal
supraventricular tachycardia and evidence of dual AV nodal
conduction found in the literature Denes et al. (1973). The two
patients had an RP in the FP of 820 ms and 495 ms; an RP in the
SP of 540 ms and 414 ms; a CD in the FP of 125 ms and 150 ms; and
a CD in the SP of 500 ms and 300 ms. Comparing these values to the
daytime estimates seen in Table 2, it is evident that the measured
values for the RP and CD in both pathways are within the range

of our estimated values. It should be noted that the comparison
between AV node properties during paroxysmal and permanent
AF is non-trivial, since permanent AF may involve remodeling of
the AV node, as shown in animal models Zhang and Mazgalev
(2012). Adding to this non-triviality is the fact that the measured
functional RP values come from an S1-S2 protocol during sinus
rhythm. The functional RP is the smallest AA interval preceding
a conducted impulse. It is however still dependent on the previous
pacing frequency, which is notwell-defined duringAF.Nevertheless,
sinceAF leads to high frequencies, the RP should be reasonably close
to the functional RP.

In this study, short-time variability was estimated as the
difference between adjacent 10-min intervals. Given a constant
budget of CPU time, there exists a trade-off between temporal
resolution and uncertainty in the estimates, since shorter segments
result in an increased number of segments, and more segments
result in increased computational demands. Thus, the number of
particles would need to decrease, resulting in a poorer estimate
of the posterior. Because of this, 10-min segments were chosen to
balance the temporal resolution and the quality of the estimates,
while keeping the computation time at reasonable levels for practical
use. However, the results from the analysis suggest a correlation
between short-term variability in the AV node properties and
treatment outcome, hinting that increasing the time resolution has
the potential to increase the information extracted by the model
and framework, which could improve the results. Limiting the
short-time variability to 10 minutes also limits the information
about the autonomic nervous system—which is known to operate
on a higher resolution—to a 10-min resolution. Furthermore, to
extract even more information about the impact of the autonomic
nervous system on the AV node, an extension of the model has
been proposed in Plappert et al. (2022). A similar framework to
the one presented in this work could be employed for that model
to estimate model parameters and simulate the RP and CD. This
could further refine the estimates and thus the information about
the AV node.

Moreover, analyzing the RP and CD trends for all the patients,
a high inter-individual variability with a wide range of diurnal
and short-time variability could be seen, likely due to the inherent
individual differences. This, in combination with the relatively low
number of patients (51), indicates that the results in this paper
should be verified in a larger study.

5 Conclusion

We have proposed a novel framework for estimating patient-
specific 24-h trends of the RP and CD in the FP and SP of the
AV node by mapping estimated model parameters. These estimates
include the full posterior of the RP and CD and could be estimated
using only non-invasive data. Additionally, a correlation between
short-term variability in both the RP and CD for the FP and
drug-induced changes to the heart rate was found. The individual
estimates of AV node properties offer patient-specific trends in
RP and CD, which may have the potential to assist in treatment
selection.
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Abstract—The refractory period and conduction delay of
the atrioventricular (AV) node play a crucial role in regulating
the heart rate during atrial fibrillation (AF). Beat-to-beat
variations in these properties are known to be induced by
the autonomic nervous system but have previously not been
assessable during AF. Assessing these could provide novel
information for improved diagnosis, prognosis, and treatment
on an individual basis.

To estimate AV nodal conduction properties with beat-
to-beat variations, we propose a methodology comprising a
network model of the AV node, a particle filter, and a smoothing
algorithm. The methodology was evaluated using simulated
data together with electrogram (EGM) and ECG recordings
from five patients in the Intracardiac Atrial Fibrillation
Database. The method was then applied to ECG recordings
from a tilt test study with participants in AF, to analyze
autonomic influence on AV node conduction properties.

The estimated refractory period and conduction delay
matched the simulated ground truth with a mean absolute
error (± std) of 169±14 ms for the refractory period in the
fast pathway; 131±13 ms for the conduction delay in the
fast pathway; 67±10 ms for the refractory period in the slow
pathway; and 178±28 ms for the conduction delay in the
slow pathway. Furthermore, a significant decrease in average
refractory period in the fast (p < 0.05) and slow (p < 0.001)
pathway, and conduction delay in the fast pathway (p < 0.01)
between supine position and head-up-tilt was observed in the
tilt test study, as expected in response to sympathetic activity.

These results suggest that beat-to-beat estimation of AV
nodal conduction properties during AF from ECG is feasible
and that the estimated properties agree with expected AV
nodal modulation.

Index Terms—Atrial fibrillation, Atrioventricular node
model, Mathematical modeling, Particle filter, Smoothing
algorithm, Autonomic nervous system

1. INTRODUCTION

Atrial fibrillation (AF), characterized by disorganized elec-
trical activity in the atria, is the most common sustained
cardiac arrhythmia with an estimated prevalence between 2%
and 4% globally [1]. The disorganized electrical activity in
the atria leads to rapid and irregular contraction of the atria
and ventricles, resulting in an increased risk of mortality,
predominantly due to heart failure or stroke [2]. Despite
extensive research on AF, very little robust evidence exists

to inform the best type and intensity of rate control treatment
on an individual level [3, 4].

The atrioventricular (AV) node normally functions as the
sole electrical connection between the atria and ventricles.
During AF, the AV node plays a crucial role in protecting the
ventricles from the rapid and irregular impulses originating
in the atria. This function is accomplished through two
distinct pathways; the fast pathway (FP) and the slow
pathway (SP), which converge at the Bundle of His [5].
Depending on the refractoriness of its pathways, the AV
node can either block an incoming impulse or send it
through with a conduction delay. Therefore, the refractory
period and conduction delay of the two pathways – here
denoted ϕ = [RFP , RSP , DFP , and DSP ] – are critical
determinants of its filtering capability. The AV node thus
serves an essential role in regulating the heart rate during
AF, and can functionally be characterized by its properties
ϕ.

The autonomic nervous system (ANS) has been shown
to contribute to the initiation and maintenance of AF [6],
suggesting that inter-patient variability in ANS activity
might influence individual responses to AF treatment.
During normal sinus rhythm, the ANS affects the heart rate
primarily through changes to the sinus node automaticity,
which can be quantified using heart rate variability [7].
However, during AF, the disorganized electrical activity
in the atria overrides the organized electrical signals from
the sinus node, preventing it from regulating the heart rate.
Instead, the ANS affects the heart rate primarily through
changes to the atrial fibrillatory rate and AV node conduction
properties. Therefore, heart rate variability is not applicable
as a tool for quantifying ANS modulation during AF. As
an alternative, changes in AV nodal function could be used
to quantify the ANS function during AF. Since the AV
node function mainly depends on the refractory period and
conduction delay of the two pathways, estimating beat-to-
beat changes to these properties might give insights into
the ANS function.

Assessing the AV-nodal function under AF is a complex
task, since its behavior is influenced by multiple factors
such as atrial impulses, autonomic modulation, as well as
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its intrinsic dynamics and structure. Thus, standard signal
processing tools are insufficient, and a model-based analysis
is required. Several mathematical models of the AV node
have previously been proposed, including [8, 9, 10, 11]. For
clinical application on an individual level, a model should
ideally have parameters identifiable from non-invasive data.
To the best of our knowledge, the only model incorporating
the refractory period and conduction delay of both pathways
while simultaneously allowing for identification of model
parameters based on non-invasive data is our previously
proposed model [12]. Using this model, the individual 24-
hour trends of the AV node properties ϕ have previously
been estimated with a temporal resolution of 10 minutes
using an error function based on the Poincaré plot of the
RR interval series [13, 14]. However, the ANS is known to
modulate AV node conduction with beat-to-beat resolution
[15]. Thus, beat-to-beat resolution of the AV node properties
would be preferable for studying the ANS.

Because the Poincaré plot error function relies on
statistical information gathered over a sequence of several
heartbeats, it is of limited use for beat-to-beat analysis.
To increase temporal resolution, we propose a particle
filter to estimate ϕ with beat-to-beat resolution using our
previously proposed model of the AV node [12]. Particle
filters approximate the solution of the filtering problem –
estimating the current state of a system (ϕ in our case) based
on past and current observations. Due to their ability to
leverage information from previous time points effectively,
particle filters are suitable for beat-to-beat estimation.
Particle filters have proven especially powerful for nonlinear
and non-Gaussian problems, and have previously been used,
e.g. for atrial flutter detection [16], to robustly track heart
rate [17], and to automatically annotate ultrasound videos of
the fetal heart [18]. Moreover, by combining the resulting
estimates from a particle filter with a smoothing algorithm,
estimates of the current state of a system based on past,
current, and future observations can be obtained [19].

This study aims to present and evaluate two particle filter
based frameworks for beat-to-beat assessment of AV node
conduction properties, based on intracardiac electrogram
(EGM) and ECG data, respectively. The evaluation is done
in three steps. Step one is to evaluate the estimation accuracy
for the EGM and ECG-based methods on simulated data.
Step two is to compare the estimates obtained from using
synchronized ECG and EGM measurements to estimates
derived from ECG measurements only. Finally, step three is
to analyze the dynamics of the AV node properties during a
tilt test protocol using ECG recordings from 21 patients in
order to evaluate the method’s ability to quantify expected
changes in AV node characteristics.

2. MATERIALS AND METHODS

The data used in this study are described in Section 2.1,
and are followed by a description of the signal processing
used to derive an atrial activation time series (AA series)
and a ventricular activation time series (RR series) from
the EGM and ECG recordings, in Section 2.2. Furthermore,
the network model of the AV node is described in Section
2.3, and the computation of the posterior distribution of
ϕ using a particle filter is described in Section 2.4.1 and

2.4.2. Finally, the posterior estimates are refined using a
smoothing algorithm, as described in Section 2.4.3.

2.1. Datasets

Two previously obtained datasets are used in this study.
The publicly available intracardiac atrial fibrillation
database (iafdb) provides synchronized EGM and
ECG measurements during AF and is used to assess
coherence between EGM and ECG-based estimates [20].
Additionally, ECG recordings from a previously conducted
tilt test study are used to study modulation of the AV
node properties in response to changes in ANS activity [21].

2.1.1. Intracardiac atrial fibrillation database: The
iafdb data consists of EGM recordings from four separate
regions of the right atrium with synchronized three-lead
ECG from eight patients with atrial fibrillation or flutter,
sampled at 1000 Hz [20]. The recordings at the tip of
the tricuspid valve annulus are used in this study, due to
its proximity to the AV-node entrance. Five recordings
contain solely AF and were selected for analysis, with an
average patient age of 73 ± 10 years, 60% male, and an
average signal duration of 58 ± 7 seconds. In addition,
recordings where the catheter resting against the atrial free
wall are used to create realistic simulated data, described
in Supplementary Material S1.

2.1.2. Tilt test study: The tilt test study includes ECG
recordings from 40 patients with persistent AF [21]. For the
current study, data with sufficient quality from 21 patients
were used, with an average age of 67 ± 7 years, and
67% male, previously used in [22]. The tilt test protocol
involved standard 12-lead ECG recordings taken between
1 and 3 PM in a quiet room. Participants transitioned
from supine position after approximately five minutes to
head-down tilt (HDT) position (-30°) for approximately
five minutes before finally a head-up tilt (HUT) position
(+60°) for approximately five minutes. None of the patients
had abnormal levels of thyroid hormones, severe renal
failure requiring dialysis, heart valve disease, undergone AF
ablation, or received Class I or III antiarrhythmic drugs.

2.2. Signal processing

The frameworks presented in this study for assessing the
AV node conduction properties with beat-to-beat resolution
rely on simultaneous analysis of the RR and AA series.
These are obtained using different signal processing
methods depending on whether synchronized EGM and
ECG recordings are available, or only ECG recordings, as
described below.

2.2.1. RR and AA series from synchronized EGM and
ECG: The iafdb data includes EGM recordings with
synchronized ECG recordings. The RR series is extracted
using R-peak detection performed by the CardioLund ECG
parser (www.cardiolund.com). The AA series is extracted
from the EGM recordings using an iterative method
[23] following average beat subtraction-based ventricular
far-field cancellation and standard pre-processing [24, 25].
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2.2.2. RR and AA series from ECG: Using solely ECG,
the RR series is again extracted from the R-peak detection
performed by the CardioLund ECG parser. However, the AA
series cannot be extracted from the ECG. Instead, multiple
AA series are generated for each RR interval based on the
f-wave characteristics of the corresponding ECG segment.
Each AA series, denoted α, is generated by a Gaussian
random walk described by a mean (µα) and standard
deviation (σα). Both µα and σα are estimated based on the
f-wave signal extracted from the ECG by applying QRST-
cancellation using the CardioLund ECG parser, before a
harmonic model [26] is fitted to the f-waves to estimate the
f-wave frequency and a signal quality index (SQI), sampled
at 50 Hz, as described in [27]. For each RR interval, the
mean (µf ) and standard deviation (σf ) of the inverse f-wave
frequency are calculated, as well as the SQI . Subsequently,
µα is drawn from N (µf ,max(0, 0.3 − SQI)4), where a
SQI greater than 0.3 is deemed sufficient based on previous
studies [26], and the factor 4 is chosen to get a quadratic
decrease on the variance for SQI below 0.3. Further, σα

is set to 4σf , where the factor 4 is chosen empirically.

2.3. Network model of the AV node

Our previously introduced network model of the AV node
[12] describes it as two pathways (FP and SP), each
comprising 10 nodes, interconnected with a coupling node
in the end connected to the ventricles (see Figure 1). Each
node corresponds anatomically to a localized section of its
respective pathway, while the coupling node represents the
Purkinje fibers and Bundle of His [5].

The AA series extracted from data (see Section 2.2)
arrives at the first nodes of the FP and the SP simultaneously.
Each node can be refractory (blocking impulses) or non-
refractory (transmitting impulses). Transmitted impulses
arrive at adjacent nodes with an added conduction delay,
and transmitting nodes immediately become refractory. The
refractory period (Ri(n)) and conduction delay (Di(n)) for
node i are updated for each incoming impulse n according
to Equations 1, 2, and 3,

Ri(n) = Rmin +∆R(1− e−t̃i(n)/τR) (1)

Di(n) = Dmin +∆De−t̃i(n)/τD , (2)

t̃i(n) = ti(n)− (ti(n− 1) +Ri(n− 1)), (3)

where t̃i(n) is the diastolic interval preceding impulse
n and ti(n) is the arrival time of impulse n at node
i. When t̃i(n) < 0, the node is in its refractory state
and will block incoming impulses. Each pathway has
three parameters for the refractory period and three for
the conduction delay, totaling 12 model parameters θ =
[RFP

min, ∆RFP , τFP
R , RSP

min, ∆RSP , τSP
R , DFP

min, ∆DFP ,
τFP
D , DSP

min, ∆DSP , τSP
D ]. The coupling node’s refractory

period is fixed to the shortest RR interval in the data minus
50 ms, and its conduction delay is fixed at 60 ms [12].

The model is evaluated using a modified version
of Dijkstra’s algorithm [28]. Impulses are propagated
through the network in an event-based fashion where
the impulse with the lowest ti(n) in a queue (q) of
impulses is propagated next (or blocked depending on
t̃i(n)). Three types of data are needed to run the model.
First, the parameter vector θ is necessary, corresponding
to the properties of the AV node. Second, the queue q is
required, where each impulse is represented by a tuple
containing arrival time ti(n) and node index i. These
impulses can arrive from the atria or from a transmitting
node within the model. The atrial activation times from
an AA series are placed in q with corresponding node
index for the first nodes in the slow and fast pathway.
Finally, the repolarization time (RT ) for each of the
21 nodes in the model is needed, corresponding to
the end of the diastolic interval (t̃i(n)). The model
code and a basic user example can be found at https:
//github.com/FraunhoferChalmersCentre/AV-node-model.

Each simulated heartbeat is associated with the vector
θ (and thus with ϕ) in the following way: for a given
pathway, e.g. FP, RFP and DFP are calculated as the
medians of all of Ri(n) and Di(n) (Equation 1 and 2)
during the time interval between the current heartbeat and
previous one, with DFP multiplied by 10 to account for
the cumulative delay of the whole pathway. Values for SP
are computed analogously.

2.4. Parameter estimation

To estimate ϕ with beat-to-beat resolution, a particle filter
is first used to solve the filtering problem – estimating
the current state of the system based on current and past
observations – before a smoothing algorithm is applied
to the estimated states to solve the smoothing problem –
estimating the current state of the system based on current,

Fig. 1: A schematic representation of the network model where the yellow node represents the coupling node, the red
nodes the SP, the green nodes the FP, and arrows the direction for impulse conduction. For readability, only a subset of
the 21 nodes is shown [12].
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past, and future observations. Moreover, two versions of
the particle filter were developed, one designed for RR
and AA series extracted from ECG and EGM recordings
(EGM-PF), and one designed for AA series generated
based on the f-wave frequencies extracted from the ECG
(ECG-PF). The pseudo-code for the EGM-PF, the ECG-PF,
and the smoothing algorithm are shown in Algorithm 1, 2,
and 3, respectively.

2.4.1. EGM-particle filter: A basic particle filter can be
described by its four phases: initialization, weighting, resam-
pling, and propagation. These phases all affect the particles
in the particle filter. In this work, each particle corresponds
to a model parameter vector θ̂k,j , where k denotes the RR
interval index (also referred to as time step or heartbeat)
and j is the particle index. The EGM-PF is initialized by
drawing N = 1, 000, 000 particles independently from a
twelve-dimensional uniform distribution (ranges found in
Supplementary Material S2), where particles with an SP
refractory period greater than the FP refractory period or an
SP conduction delay lesser than the FP conduction delay
are excluded. Initialization is followed by a weighting phase.
This starts by evaluating all θ̂1,j with the model, using the
current repolarization times (RT j) and the current queue
(qj) filled by the AA series extracted from the EGM, until
each particle has generated a ventricular activation (V̂k,j),
i.e. a heartbeat. For this first time step, RT j is set to zero
for all j particles. The resulting qj and RT j at the time
of each new heartbeat V̂k,j is saved. After all N particles
in the filter have been used to simulate heartbeats, each
V̂k,j is used together with the time of the true heartbeat
(Vk) to calculate the weight wk,j of particle j. The weight
is calculated as the probability that V̂k,j − Vk was drawn
from a normal distribution with zero mean and standard
deviation σw, according to Equation 4,

wk,j = N ( (V̂k,j − Vk) |0, σ2
w), (4)

where σw was set to 30 ms to account for uncertainties in
R wave detection. After all j weights have been calculated,
they are further normalized by the sum of all weights. The
weighting phase is followed by a resampling phase, where
new particles (θ̂k+1,j) with corresponding qj and RT j

are drawn with replacement from θ̂k,j with probability
proportional to their weights, thereby approximating the
posterior distribution at time step k. In the subsequent
propagation phase, each particle is propagated one time
step forward by adding a normally distributed noise drawn
from N (0,Σ), where the covariance matrix Σ is calculated
from all estimated parameter sets in [13] and multiplied
with an estimated gain G (see Supplementary Material S2
for details). During the propagation phase, particles with an
SP refractory period greater than the FP refractory period
or an SP conduction delay lesser than the FP conduction
delay are excluded. The propagation phase is followed by
a new weighting phase. The resampling, propagation, and
weighting are repeated sequentially for each RR interval,
from k = 2 to k = K, where K denotes the last time step.
The pseudo-code for the EGM-PF is shown in Algorithm 1.

2.4.2. ECG-particle filter: The ECG-PF is also described
by its four phases: initialization, weighting, resampling, and
propagation. During initialization, N = 40, 000 particles
are first independently drawn from a twelve-dimensional
uniform distribution, same as for the EGM-PF, after which
NECG = 25 copies of each particle are created (θ̂k,j),
where j ∈ [1, N ·NECG] is the particle index. Additionally,
normally distributed noise drawn from N (0,Σ) is added to
each particle, with previously defined Σ (Section 2.4.1).
This creates N · NECG unique particles, identical to the
number of particles in the EGM-PF.

Each unique particle is evaluated with a different AA
series (αk,j), with each αk,j generated by a Gaussian
random walk, as described in Section 2.2.2. For the first
time step, each particle is evaluated by running the model

Fig. 2: An AA series αk,j and corresponding time series of simulated ventricular activations (V̂ Re−run
k,j and V̂k,j), where

ak−1,j leads to V̂ Re−run
k,j . Note that it is not necessarily the first AA impulse after a ventricular activation that leads to

the next ventricular activation since impulses may be blocked.
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Algorithm 1 EGM-particle filter
Initialization (k = 1):
Sample θ̂1,j ∼ U with exclusion criteria described in Sec 2.4.1.
Weighting:
Compute V̂1,j by running the model with θ̂1,j , qj , and RT j = 0.
Save qj and RT j at ventricular activation time V̂1,j .
Compute w1,j = N ( (V̂1,j − V1) |0, σw) (Eq. 4).
Normalize w1,j ← w1,j/

∑
j w1,j .

for k = 2 to K do
Resampling:
Generate θ̂k,j by resampling θ̂k−1,j using wk−1,j .
Propagation:
Sample θ̂k,j ∼ N (θ̂k−1,j ,Σ).
Weighting:
Compute V̂k,j by running the model with θ̂k,j , qj , and RT j .
Save qj and RT j at ventricular activation time V̂k,j .
Compute wk,j = N ( (V̂k,j − Vk) |0, σw) (Eq. 4).
Normalize wk,j ← wk,j/

∑
j wk,j .

end

with θ̂1,j until the next ventricular activation has been
simulated (V̂1,j).

For the following time steps k > 1, the AA series
(αk,j) is again generated by a Gaussian random walk
(see Section 2.2.2). However the arrival time of the first
impulse in αk,j is set to the arrival time of the atrial
impulse leading to V̂k−1,j , denoted ak−1,j . Moreover,
each particle is evaluated by running the model until two
ventricular activations have been simulated (V̂ Re−run

k−1,j and
V̂k,j). Before the time V̂ Re−run

k−1,j , the parameter vector
θ̂k−1,j is used to evaluate the model, whereas θ̂k,j is used
after V̂ Re−run

k−1,j , as illustrated in Figure 2. Around 98% of
the time, V̂ Re−run

k−1,j is equal to V̂k−1,j . However, particles
where V̂ Re−run

k−1,j differ from V̂k−1,j are excluded. Hence,
when running the particle filter, V̂ Re−run

k−1,j is equivalent
to V̂k−1,j . This leads to impulses generated at time step
k − 1 which arrive after ak−1,j do not affect V̂k−1,j in
the particle filter and thus do not affect the probability of
being selected for the previous resampling. Therefore, these
impulses should not affect V̂k,j . To ensure this, re-running
the previous time step in this manner was performed.

After V̂k,j has been generated by the model, values for
V̂k,j , qj , and RT j are saved for each particle. As for the
EGM-PF, each V̂k,j is used together with a corresponding
measured value Vk in Equation 4 to calculate the weight
wk,j .

In the resampling phase, N new particles with
corresponding qj and RT j are drawn with replacement
from θ̂k,j based on their weights, before NECG = 25
copies of each particle are created. Normally distributed
noise drawn from N (0,Σ) is added to each of the copied
particles, which functions as the propagation phase, thereby
creating θ̂k+1,j .

The propagation phase is followed by a new weighting
phase before the resampling, propagation, and weighting
are repeated sequentially for each RR interval, from
k = 2 to k = K. The pseudo-code for the ECG-
PF is shown in Algorithm 2. In addition, Matlab
code with a usage example can be found at https:
//github.com/FraunhoferChalmersCentre/AV-node-model.

2.4.3. Smoothing algorithm: The combined particle filter
and smoothing algorithm utilized in this work is commonly
denoted as the forward filtering backward sampling algo-
rithm [19]. The smoothing algorithm is applied after either
the EGM-PF or the ECG-PF, and functions as the backward
sampling step.

Starting at the index of the last time step k = K, one of
the j particles is selected with probability proportional to
wK,j and denoted x(K), where x is a vector of indices. The
algorithm continues iteratively from time step k = K − 1
to k = 1. The weights are updated based on the likelihood
that θ̂k,j originate from the selected particle at the time
step of the previous iteration θ̂k+1,x(k+1), with previously
defined Σ (see Section 2.4.1), according to Equation 5.

ŵk,j = wk,jN (θ̂k+1,x(k+1)|θ̂k,j ,Σ). (5)

A new particle j is selected with probability proportional
to ŵk,j and assigned to x(k). After completion, the vector
x contains one trajectory of indices corresponding to
parameters θ̂k,x(k) sampled from the smoothing probability
density function. Running the smoothing algorithm
M = 20, 000 times generates M trajectories (xm) of
θ̂, all sampled from the smoothing probability density
function. The pseudo-code for the smoothing algorithm is
shown in Algorithm 3. Since each θ̂ is associated with
a ϕ̂ (see Section 2.3), the M trajectories xm(k) also
yield M trajectories of ϕ̂ sampled from the smoothing
probability density function. These are used as estimates of
the posterior distribution of the AV node conduction delays
and refractory periods and denoted ϕ̃m(k).

2.5. Evaluation of particle filters

To evaluate the accuracy of the particle filters and
smoothing algorithm, ϕ̃m(k) estimated using the EGM-PF
(ϕ̃

EGM

m (k)) and ECG-PF (ϕ̃
ECG

m (k)), respectively, are
compared with simulated ground truth data. Recordings
from the iafdb (see Section 2.1.1) are used to create
realistic simulated data, as described in Supplementary
Section S1. This results in 50 model parameter sets θ∗(k)
with associated AA series and f-waves (needed for the
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Algorithm 2 ECG-particle filter. Differences from the EGM-PF are marked with ’*’.
Initialization (k = 1):
Sample N θ̂ ∼ U with exclusion criteria described in Sec 2.4.1.

* Copy θ̂ NECG times to generate θ̂1,j

* Sample θ̂1,j ∼ N (θ̂1,j ,Σ)
Weighting:

* Compute V̂1,j by running the model with θ̂1,j , qj = α1,j , and RT j = 0.
Save qj and RT j at ventricular activation time V̂1,j .
Compute w1,j = N ( (V̂1,j − V1) |0, σw) (Eq. 4).
Normalize w1,j ← w1,j/

∑
j w1,j .

for k = 2 to K do
Resampling:
Generate N θ̂ by resampling θ̂k−1,j using wk−1,j .

* Copy θ̂ NECG times to generate θ̂k,j

Propagation:
Sample θ̂k,j ∼ N (θ̂k,j ,Σ).
Weighting:

* Compute V̂k,j by running the model as described in 2.4.2 with θ̂k−1,j , θ̂k,j , qj , RT j , and αk,j generated as described in 2.2.2.
Compute wk,j = N ( (V̂k,j − Vk) |0, σw) (Eq. 4).
Normalize wk,j ← wk,j/

∑
j wk,j .

end

Algorithm 3 Smoothing algorithm
Initialization (k = K):
Sample x(K) ∼ wK,j

for k = K − 1 to 1 do
for j = 1 to N do

Update weights: ŵk,j ← wk,jN (θ̂k+1,x(k+1)|θ̂k,j ,Σ) (Eq. 5)
end
Sample: x(k) ∼ ŵk,j

end

EGM-PF and ECG-PF, respectively). The parameters θ∗(k)
with corresponding AA series were used in the model to
generate 50 simulated RR series with associated ground
truth AV node property trends (ϕ∗(k)).

The estimated trends ϕ̃
EGM

m (k) and ϕ̃
ECG

m (k) are
compared to the ground truth ϕ∗(k) using the mode of
each AV node property. The mode is calculated individually
for each time step k by sorting the M values into histogram
bins with 5 ms width before identifying the center of the
histogram bin with the highest count, resulting in ϕ̃

EGM

Mode(k)

and ϕ̃
ECG

Mode(k). The l1-norm (or absolute distance) between
ϕ̃

EGM

Mode(k) and ϕ̃
ECG

Mode(k) and ϕ∗(k), respectively, for each
AV node property is used to evaluate how well the most
probable estimate aligns with the ground truth. The average
l1-norm of all time steps (equivalent to the mean absolute
error) is further calculated for each of the 50 simulated
datasets, denoted l1. To be able to compare the results
between the AV node properties, l1 is also normalized
to a percentage based on the range between the highest
and lowest values for each property in the simulations
ϕ∗(k) multiplied by 100. This is achieved by dividing with
r = [1450.9, 1050.5, 949.4, 1109.4] · 100 ms.

Furthermore, the percentage of heartbeats for which
the 95% credibility region covered ϕ∗(k) (CR95(k)) is
calculated by finding the values at the 2.5th and 97.5th
percentiles of ϕ̃

EGM

m (k) and ϕ̃
ECG

m (k) and evaluating how
often ϕ∗(k) lies in between. In theory, this should converge
towards 95% as the number of samples grows.

2.6. Analysis of iafdb data

EGM recordings from the tip of the tricuspid valve annulus
with synchronized ECG recordings, as described in Section
2.1.1, are used to compare the concordance between the
results from the EGM-PF and the ECG-PF. The ϕ̃

EGM

m (k)

and ϕ̃
ECG

m (k) are estimated using the two particle filters
and smoothing algorithm before ϕ̃

EGM

Mode(k) and ϕ̃
ECG

Mode(k)
are calculated in the same manner as in Section 2.5. The
concordance between ϕ̃

EGM

Mode(k) and ϕ̃
ECG

Mode(k) is analyzed
using the Bland–Altman plot.

2.7. Analysis of tilt test data

First, ϕ̃
ECG

m (k) is estimated using the ECG-PF and
smoothing algorithm, before ϕ̃

ECG

Mode(k) is calculated in the
same manner as in Section 2.5. Further, for each patient,
ϕ̃

ECG

Mode(k) is averaged over each tilt phase to generate one
value of ϕ

Supine
, ϕ

HDT
, and ϕ

HUT
per patient. These

are used to analyze the tilt recordings, where the paired
difference between ϕ

Supine
and ϕ

HDT
as well as between

ϕ
Supine

and ϕ
HUT

are calculated.

2.8. Statistical analysis

The paired one-sided Wilcoxon signed rank test is used
to quantify significant increase or decrease in this study,
since the data do not generally follow a normal distribution
according to the Shapiro-Wilk test (p < 0.05). This includes
the paired significant test between l1 calculated using
ϕ̃

EGM

Mode(k) and ϕ̃
ECG

Mode(k), as well as the paired difference
between ϕ

Supine
and ϕ

HDT
and between ϕ

Supine
and

ϕ
HUT

.
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3. RESULTS

To recapitulate, three datasets were used in this study. The
simulated data (see Section 2.5) are used to evaluate the
estimation accuracy for the EGM and ECG-based methods.
The iafdb recordings (see Section 2.1.1) are used to compare
the estimates obtained from synchronized EGM and ECG
recordings. The tilt recordings (see Section 2.1.2) are used
to evaluate the method’s ability to quantify expected changes
in AV node characteristics.

The computation time (performed on a desktop computer
with a Ryzen 9 5900X CPU, using the twelve cores in
parallel) for ϕ̃

EGM

m (k) and ϕ̃
ECG

m (k) was on average 3.7
and 17.5 minutes per minute of data, respectively.

3.1. Evaluation of particle filters

An example of ϕ̃
EGM

m (k) and ϕ̃
ECG

m (k) and corresponding
ground truth ϕ∗(k) is displayed in Figure 3. The shown
example displays typical patterns, such as an estimated RSP

with a narrow credibility region (see Figure 3 b)), and where
the DSP can track fast changes in ϕ∗(k) more accurately
using EGM recordings compared to ECG recordings (Figure
3 d)). Moreover, fast changes in ϕ∗(k) for RFP and DFP

do not seem to be captured in either ϕ̃
EGM

m (k) nor ϕ̃
ECG

m (k)
(Figure 3 a) and c)).

The results from the analysis of all simulated data are
presented in Table I, where the estimation error quantified
by l1 using EGM is significantly lower for RSP , DFP ,
and DSP compared to using ECG. The estimate of RSP

has the closest match to the ground truth independently
on the type of recording used, with an EGM l1/r of
4.48% and ECG l1/r of 6.33%. Further, the estimation
error of DSP increases the most between EGM and ECG
recordings, as seen in an almost doubling of l1/r, from
8.97% to 16%. Additionally, CR95 is close to 95% for
all AV node properties, generally slightly over, indicating
that the uncertainty bounds produced are conservative if

not exact. The narrow credibility region seen in Figure 3
(and in Table I) combined with the low l1/r suggest that
tracking beat-to-beat changes in RSP accurately during AF
is feasible using either ECG or EGM.

TABLE I: The mean ± standard deviation of l1 between
simulated patients, using the EGM-PF and ECG-PF. † and
‡ indicate a significant decrease and increase (p < 0.05),
respectively, for ECG compared to EGM.

RFP RSP DFP DSP

EGM l1 (ms) 174 ± 16.5 51.4 ± 11.5 105 ± 8.7 99.5 ± 23.6
ECG l1 (ms) 169 ± 13.7† 66.5 ± 9.78‡ 131 ± 13.3‡ 178 ± 28.1‡

EGM l1/r (%) 12 ± 1.14 4.89 ± 1.1 11 ± 0.916 8.97 ± 2.13
ECG l1/r (%) 11.7 ± 0.943† 6.33 ± 0.931‡ 13.8 ± 1.4‡ 16 ± 2.53‡

EGM CR95 (%) 99.5 ± 1.1 99.4 ± 1.39 98.9 ± 1.67 98.8 ± 2.38
ECG CR95 (%) 99.8 ± 0.543 96.4 ± 3.72 98.5 ± 1.97 93 ± 6.48

3.2. Concordance between ECG-PF and EGM-PF estimates

An example of ϕ̃
EGM

m (k) and ϕ̃
ECG

m (k) estimated using
EGM and ECG recordings from one patient is visualized
in Figure 5. Similar to the analysis of simulated data,
the largest difference between using EGM and ECG
recordings is seen in DSP (see Figure 5 d)). Interestingly,
the difference between ϕ̃

EGM

m (k) and ϕ̃
ECG

m (k) is more
prominent for the first heartbeats, as seen clearly in the
RFP (Figure 5 a)).

The results of ϕ̃
EGM

Mode(k) and ϕ̃
ECG

Mode(k) for all patient
is presented in Table II. Moreover, the Bland–Altman plots
of ϕ̃

EGM

Mode(k) and ϕ̃
ECG

Mode(k) are presented in Figure 4.
From this, it is possible to see a low consistent bias for all
AV node properties, with no average difference larger than
5%. On average, RSP , DFP , and DSP estimated using the
EGM-PF are slightly higher compared to using ECG-PM,
whereas the opposite is true for RFP . Differences between
ϕ̃

EGM

Mode(k) and ϕ̃
ECG

Mode(k) do not seem to be patient-specific.

Fig. 3: AV node estimates ϕ̃
EGM

m (k) and ϕ̃
ECG

m (k) obtained based on simulated data and corresponding ground truth
ϕ∗(k). For comparison with Table I, EGM and ECG l1 are 183 ms and 160 ms in RFP , 46 ms and 58 ms in RFP ,
114 ms and 127 ms in RFP , and 76 ms and 138 ms in RFP . The modes ϕ̃

EGM

Mode(k) and ϕ̃
ECG

Mode(k) are shown with
lines and the 80% credibility region as shaded background. The 80% credibility region is used over the 95% for ease of
visualization.
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TABLE II: The mean ± standard deviation of ϕ̃
EGM

Mode(k)

and ϕ̃
ECG

Mode(k) for each time step k for all patients in the
iafdb.

Patient Data RFP (ms) RSP (ms) DFP (ms) DSP (ms)

1 EGM 917 ± 141 535 ± 104 257 ± 67.8 593 ± 135
1 ECG 993 ± 76.3 492 ± 81.6 231 ± 42.5 627 ± 78.9
2 EGM 818 ± 149 392 ± 69.9 240 ± 77.5 600 ± 132
2 ECG 926 ± 74.8 355 ± 61.3 221 ± 34.4 574 ± 68.2
3 EGM 1015 ± 108 663 ± 59.7 283 ± 120 761 ± 164
3 ECG 1037 ± 101 656 ± 79 219 ± 68.8 655 ± 104
4 EGM 1240 ± 102 1058 ± 113 355 ± 92.3 507 ± 81.4
4 ECG 1217 ± 72.2 1004 ± 37.7 259 ± 93.7 478 ± 67.7
6 EGM 952 ± 251 576 ± 183 253 ± 82 538 ± 159
6 ECG 1035 ± 89.6 559 ± 161 221 ± 50.8 485 ± 72.9

3.3. Analysis of tilt test ECG

An example of ϕ̃
ECG

m (k) for one patient is visualized in
Figure 6. Interestingly, transient changes in RSP and DSP

can be seen in response to HDT and HUT.

The results of ϕ
Supine

, ϕ
HDT

, and ϕ
HUT

are shown in
Table III. Notably, there was a significant decrease between
ϕ

Supine
and ϕ

HUT
for RFP (p < 0.05, 16 of 21 patients),

RSP (p < 0.001, 18 of 21 patients), and DFP (p < 0.01,
16 of 21 patients), with no significant difference in DSP .
Moreover, no significant difference between ϕ

Supine
and

ϕ
HDT

was seen.

TABLE III: The population mean ± standard deviation of the
average ϕ̃

ECG

Mode(k) for each tilt position for the patient in the
tilt test, where † indicate a significant decrease (p < 0.05)
compared with supine position.

RFP RSP DFP DSP

ϕ
Supine

(ms) 926.2 ± 26.2 349.4 ± 68.8 203.5 ± 13.7 523.8 ± 11.3

ϕ
HDT

(ms) 925.5 ± 24.1 338.7 ± 64.8 202.0 ± 12.4 528.8 ± 12.8

ϕ
HUT

(ms) 921.5 ± 25.3† 327.8 ± 63.4† 199.4 ± 14.2† 525.8 ± 11.7

Fig. 4: Bland-Altman plot comparing the concordance between ECG-PF and EGM-PF estimates for the five patients. For
comparison with Table II, Patient 1 is represented by blue ’o’, Patient 2 by red ’+’, Patient 3 by yellow ’*’, Patient 4 by
black ’x’, and Patient 6 by green ’□’.

Fig. 5: The AV node estimates ϕ̃
EGM

m (k) and ϕ̃
ECG

m (k) for Patient 6 in the iafdb database. The modes ϕ̃
EGM

Mode(k) and
ϕ̃

ECG

Mode(k) are shown with lines and the 80% credibility region as shaded background.
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4. DISCUSSION

This study proposes a method for estimating AV node
conduction properties with beat-to-beat resolution during
AF utilizing a network model of the AV node and a particle
filter together with a smoothing algorithm. The method was
evaluated using simulated data to analyze how well the
particle filters estimated the AV node conduction properties
for each heartbeat. Additionally, synchronized EGM and
ECG recordings were used to analyze the concordance
between estimates using the two data types. Finally, AV node
properties during a tilt test protocol using ECG recordings
were estimated to evaluate the method’s ability to quantify
expected changes in AV node characteristics.

Simulated data were used to evaluate how well the
particle filter could estimate the AV node conduction
properties. These simulation results can be compared with a
previous study where the same AV node model was used to
estimate ϕ with a 10-minute resolution [14]. In the previous
study, ϕ could be estimated based on simulated data with a
mean absolute error of 111 ms for RFP , 12 ms for RSP ,
90 ms for DFP , and 110 ms for DSP . The mean absolute
error measurement is equivalent to the ECG l1 measure
seen in Table I, which was 169 ms for RFP , 67 ms for
RSP , 131 ms for DFP , and 178 ms for DSP . Comparing
these, the proposed framework has somewhat higher error
for RFP , DFP , and DSP , and drastically higher error for
RSP , but with a beat-to-beat resolution, illustrating a trade-
off between temporal resolution and estimation accuracy.
Moreover, the computation time for the previous framework
(proposed in [14]) was on average 40 seconds per minute of
data whereas it is 17.5 minutes per minute using ECG in this
study. Nevertheless, based on the low EGM l1 of 51 ms and
ECG l1 of 67 ms, the proposed framework seems able to
capture beat-to-beat changes in RSP . Hence, an increase in
temporal resolution from 10 minutes to beat-to-beat enables
a more detailed analysis of the AV node dynamics, whereas
using 10-minute segments is more robust and faster and
therefore applicable to track slower AV node changes over
an extended period (such as 24-hour which was done in
[14]).

The iafdb was used to compare the concordance between
the EGM-PF and the ECG-PF results. As seen in Figure
5, there are some differences when using EGM recordings
compared to ECG recordings. This is clearest in DSP , where
estimates obtained using the EGM-PF have higher beat-to-
beat variability compared to the estimates obtained using
the ECG-PF. A difference in convergence time also exists,
clearest seen for RFP in Figure 5. These phenomena could
be seen for all patients in the iafdb database. Nevertheless,
RSP is similar and shows a low consistent bias with no
notable correlation in Figure 4 b), indicating that beat-to-
beat resolution could be achieved when using either EGM
or ECG recordings.

The framework presented in this paper enables analysis of
beat-to-beat changes in the AV node properties, which can be
used to analyze ANS activity. The ANS activity is known to
change between tilt segments during a tilt test protocol, and
changing the position from supine to HUT is associated with
increased sympathetic activity [29]. Increased sympathetic
activity is in turn associated with a decrease in AV nodal
conduction delay [30, 31, 32, 33] and refractory period
[32, 33]. Consequently, a change from supine to HUT
can also be assumed to lead to these effects [22]. It is
however unclear how HDT affects the sympathetic and
parasympathetic activity, and in turn the AV node properties.
Previously published results on the same dataset have shown
a significant decrease in the average heart rate, the heart
rate variability, and the heart rate irregularity between the
supine and HUT position [22].

The results on the AV node properties in this study, seen
in Table III, show a significant decrease in average ϕ̃

ECG

Mode(k)
from supine to HUT position for RFP (p < 0.05), RSP

(p < 0.001), and DFP (p < 0.01). Hence, these results
are in line with what can be expected for HUT. Thus, for
five-minute segments, evidence suggests that the model and
framework can accurately estimate changes in AV node
properties originating from sympathetic activity.

The framework presented in this study can be applied
to study e.g. the transient response to tilting in the AV
node properties, as seen in Figure 6. This transient response

Fig. 6: The modes ϕ̃
ECG

Mode(k) (lines) and the 80% credibility region (shaded background) for one patient in the tilt test
study. Dashed vertical lines indicate the time of tilting, staring in supine position, following five minues in HDT, before
HUT.
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could be seen for some of patients in the tilt dataset, with
different levels of magnitude change. A similar response
have previously been shown in the f-waves and heart rate
[22]. However, a notable transient response to tilt in the AV
node properties could not be seen for most of the patients.

4.1. Study limitations and future perspectives

The network model accounts for several important properties
of the AV node conduction during AF, however, it is not a
perfect replica. For example, it does not include ventricular
escape rhythm and the network topology used in this work
excludes some uncommon AV node structures such as
multiple slow pathways. Nevertheless, these simplifications
are essential to developing a model with a manageable
number of parameters. Moreover, seeing as these are
uncommon structures these limitations are not likely to
affect the results.

The estimated AV node properties have only been
validated using ground truth data generated from the same
AV node model. However, obtaining the exact refractory
period and conduction delay in both pathways from patients
suffering from AF – if at all possible – would be very
difficult and time-consuming.

Moreover, since inter-patient variability in ANS activity
might influence individual responses to AF treatment, it
would be of interest to quantify the ANS activity with the
proposed framework during common AF treatments such
as different rate control drugs.

5. CONCLUSION

We have proposed a novel framework for estimating patient-
specific AV node properties with beat-to-beat resolution and
conservative uncertainty estimates utilizing a mathematical
model combined with a particle filter and smoothing
algorithm. By using EGM and ECG recordings for the
parameter estimation, the loss using non-invasive recordings
could be studied, suggesting a high enough accuracy for
capturing beat-to-beat changes in the refractory period in
the SP.

We illustrate the potential of the proposed methodology
by analyzing a tilt-test dataset. Results suggest that ANS-
induced changes in AV node conduction properties can be
assessed from ECG using the proposed method.
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