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SOME CRYPTANALYTIC AND CODING-THEORETIC1

APPLICATIONS OF A SOFT STERN ALGORITHM2

Qian Guo
Selmer Center, Department of Informatics, University of Bergen

Postboks 7803, N-5020 Bergen, Norway

Thomas Johansson, Erik Mårtensson∗ and Paul Stankovski Wagner
Department of Electrical and Information Technology, Lund University

Box 118, SE-22100 Lund, Sweden

Abstract. Using the class of information set decoding algorithms is the best
known way of decoding general codes, i.e. codes that admit no special struc-
ture, in the Hamming metric. The Stern algorithm is the origin of the most
efficient algorithms in this class. We consider the same decoding problem but
for a channel with soft information. We give a version of the Stern algorithm
for a channel with soft information that includes some novel steps of ordering
vectors in lists, based on reliability values. We demonstrate how the algorithm
constitutes an improvement in some cryptographic and coding theoretic ap-
plications. We also indicate how to extend the algorithm to include multiple
iterations and soft output values.

1. Introduction. For a general code with no special structure used for communi-3

cation on the binary symmetric channel (BSC), the maximum-likelihood decoding4

problem (with some assumptions) is NP-hard. Still, decoding random linear codes5

is a central problem for many applications in cryptography, for example code-based6

crypto. Information set decoding (ISD) algorithms are the most promising candi-7

dates for solving instances of this problem.8

The performance of these algorithms determines the security and hence the nec-9

essary parameters for many cryptosystems. The development of ISD algorithms10

include the Prange algorithm [23], the Lee-Brickell algorithm [18], the Stern algo-11

rithm [25], Canteaut-Chabaud [8], Ball-Collision Decoding [6], Finiasz-Sendrier [13],12

BJMM [3] and the recent improvement from May and Ozerov [19]. The Stern al-13

gorithm is the starting point for the most efficient algorithms in this class as it14

introduced a collision step that significantly decreased the complexity.15

In this paper, we consider the decoding problem for a general code with no special16

structure used for communication on the Additive White Gaussian Noise (AWGN)17
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channel using the Euclidean metric. This is motivated by the fact that we have1

seen some recent applications for such decoding algorithms in coding theory and2

cryptography. One such application is the recently proposed version of the McEliece3

Public Key Cryptosystem (PKC) using soft information [2]. Another is the use of4

such algorithms in side-channel cryptanalysis, see, e.g., [22]. A third one is a new5

hybrid decoding of low-density parity-check (LDPC) codes in space telecommand6

links [1].7

The soft decoding problem has been studied extensively in coding and commu-8

nication, see, e.g., [10, 17], but mostly for special codes allowing efficient decoding.9

The study of general codes has been less intense. Early work by Chase [9] was10

followed by some work in the communication direction and a highly cited paper11

is [14]. More recently, fast soft-decision decoding of linear codes was considered12

in [1, 11, 26, 28] and by Wu and Hadjicostis in [30]. The same problem considered13

in the context of side-channel cryptanalysis in cryptology can be found in [4,5,12].14

In this paper, we give a version of the Stern algorithm for the decoding problem15

with soft information, named the soft Stern algorithm. The algorithm reuses some16

ideas from previous work, such as ordered statistics [14]. It uses the idea of sorting17

of error vectors in lists, based on reliability values [27], and presents a novel way18

of combining this idea with the structure of the Stern algorithm. This leads to19

better performance compared to previously suggested algorithms like the one in [22].20

Initially we consider a one-pass algorithm that succeeds with some probability q.21

We can then repeat this one-pass algorithm to achieve a higher success probability,22

where the way it is repeated depends on the application. Later, we briefly consider23

extending the algorithm to also allow for multiple iterations.24

Next, we demonstrate how this new algorithm can be used in cryptographic25

and coding theory applications. First, we present a very efficient attack on an26

idea of using soft information in McEliece-type cryptosystems presented at ISIT27

2016 [2]. Not only do we severely break the proposed schemes, but our algorithm28

shows that the whole idea of using soft information in this way is not fruitful.29

Secondly, we show how our algorithm can be applied to side-channel attacks. The30

problem of soft decoding of general codes appears in side-channel attacks in both [21]31

and [22]. Using our algorithm, both of those attacks can be improved. Thirdly, we32

show how our algorithm can be used to improve the hybrid decoding of low-density33

parity-check (LDPC) codes [1]. Finally, we indicate that by using soft output, our34

algorithm can be applied to the problem of decoding product codes.35

The remaining parts of the paper are organized as follows. In Section 2 we give36

some preliminaries on coding theory and the considered channel. Section 3 gives an37

overview of the new algorithm, and in Section 4 we give a complete example of the38

algorithm. In Section 5 we analyze its time complexity and give simulation results39

demonstrating the improvement compared to previously proposed algorithms. In40

Section 6 we indicate how to generalize our algorithm by allowing for multiple itera-41

tions and soft output. In Section 7 we cover different applications of the algorithm.42

Finally, Section 8 concludes the paper.43

2. Preliminaries. We present some basic concepts in coding theory. Let F2 denote44

the binary finite field, |x| the absolute value of x for x ∈ R, and ln(·) the logarithm45

with base e. Let π be a permutation of {1, . . . , n} and π−1 be its inverse. For a46

matrix G, we let π(G) denote the matrix obtained from G by permuting its column47

indices according to π.48
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2.1. Basics in Coding Theory.1

Definition 1. An [n, k] binary linear code C is a k-dimensional vector subspace of2

Fn2 . Its co-dimension is r = n− k, characterizing the redundancy of the code.3

A generator matrix G of the linear code C is defined as a k × n matrix in Fk×n24

whose rows form a basis of the code. Equivalently, the code can be defined by a5

matrix H in Fr×n2 whose kernel is the code C, called a parity-check matrix of C.6

For a length n vector v, the support supp(v) is defined as {i : vi 6= 0, 1 ≤ i ≤ n}.7

The Hamming weight of v is wH(v) = |{i : vi 6= 0, 1 ≤ i ≤ n}| and the Hamming8

distance is dH(v,v′) = wH(v + v′).9

Suppose an [n, k] binary linear code C with generator matrix G is used for trans-10

mission on the AWGN channel. Let c = (c1, c2, · · · , cn) be a codeword to be11

transmitted. In Binary Phase-Shift Keying (BPSK) transmission, the codeword12

c is mapped to a bipolar sequence ĉ = (ĉ1, ĉ2, · · · , ĉn), where ĉi ∈ R through13

ĉi = (−1)ci , for 1 ≤ i ≤ n. For any binary vector x, we use the notation x̂ to14

denote the result after applying the above mapping.15

After transmission, where AWGN noise is added, the received vector is denoted16

r = (r1, r2, · · · , rn), ri ∈ R for 1 ≤ i ≤ n, where ri = ĉi+wi and wi are iid Gaussian17

random variables with zero mean and standard deviation σ. Since the values are18

floating-point, we say that we have soft information. If the noise would be binary,19

we would have worked with hard information. If we would translate each value of20

the r vector to its most probably binary value in c, we we would make a so called21

hard decision.22

In the continuation, when discussing the reliability value of a position we refer23

to ri. When discussing how reliable a position is we refer to the absolute value of24

ri.25

Our soft-decision decoding problem is now the following: Find the most likely26

codeword being transmitted when receiving r. We consider maximum-likelihood27

decoding (MLD). It is well known that the MLD metric becomes the squared Eu-28

clidean distance and that the codeword c closest to a received vector r is the one29

that minimizes the distance D(ĉ, r) =
∑n
i=1(ri − ĉi)2 (see, e.g., [29]).30

For binary codes, it is common to use the log likelihood ratio (LLR), which is31

defined as32

Li = ln

[
p(ri|ci = 0)

p(ri|ci = 1)

]
,

where p(ri|ci) is the pdf of ri conditioned on ci. After some calculations one can33

rewrite this for the AWGN channel as34

Li =
2ri
σ2
.

We point out that we actually only need soft information in LLR form and the35

algorithm to be proposed works for any noise distribution, not just AWGN.36

Finally, we introduce a class of codes for later use.37

Definition 2. A low density parity-check (LDPC) code is a linear code admitting38

a sparse parity-check matrix, while a moderate density parity-check (MDPC) code39

is a linear code with a denser but still sparse parity-check matrix.40

In previous work, the Hamming weight of the row vector is usually employed41

to characterize its sparsity; LDPC codes have small constant row weights, MDPC42

codes have row weights O(
√
n log n). These classes of codes are of interest since they43
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Algorithm 1 The Stern algorithm

Input: Generator matrix G, parameters p, l

1. Choose a column permutation π and form π(G), meaning that the
columns in G are permuted according to π.

2. Bring the generator matrix π(G) to systematic form:

G∗ = (I Q J) .

3. Let z run through all weight p vectors of length k/2. Store all vectors
x = (z,0)G∗ in a sorted list L1, sorted according to φ(x). Then
construct a list L2 sorted according to φ(x), containing all vectors
x = (0, z)G∗ where z runs through all weight p vectors. Add all pairs
of vectors x ∈ L1 and x′ ∈ L2 for which φ(x) = φ(x′) and put in a
list L3.

4. For each x ∈ L3, check if the weight of x is w−2p. If no such codeword
is found, return to 1.

are efficiently decodable using iterative decoding techniques exploiting the sparsity1

of the codes.2

The class of quasi-cyclic MDPC (QC-MDPC) codes are of special interest as they3

are used in the QC-MDPC code-based McEliece cryptosystem [20]. The codes used4

in the cryptosystem are linear codes with sparse parity-check matrices of the form,5

H = (H0 H1 . . . Hn0−1) , (1)

where n0 is a small integer and each block Hi, 0 ≤ i ≤ n0− 1, is a circulant matrix6

with size r × r, and Hn0−1 is invertible. For simplicity, we assume that n0 = 27

throughout the paper, unless otherwise specified. Thus, we consider codes with8

rate R = 1/2, length n = 2r, and dimension k = r.9

2.2. Soft McEliece. Soft McEliece [2] is a recent code-based McEliece PKC pro-10

posal using soft information. Instead of generating intentional errors from a Ham-11

ming ball, the authors generate noise according to a Gaussian distribution. In the12

key generation, as in the QC-MDPC scheme, they generate a sparse parity-check13

matrix H with the form of (1) and use it as the secret key. The public key can be14

derived as the (dense) generator matrix G in systematic form corresponding to H.15

Given a message u ∈ Fk2 , let c = uG be the encoded codeword and ĉ the
codeword in Rn. The ciphertext is

r = ĉ+w,

where w = (w1, w2, . . . , wn) and wi (1 ≤ i ≤ n) is AWGN. The generation of w16

is repeated until the number of bit errors in r reaches a certain threshold. The17

decryption – decoding the received vector – can be performed using an iterative18

soft LDPC/MDPC decoder that uses the secret H, see [2, 20].19

2.2.1. Parameter settings. In [2], the authors suggested parameters20

(n, σ) = (7202, 0.44091) for 80-bit security, and (15770, 0.41897) for 128-bit security.21

The complexity of decoding a received vector r knowing only the public generator22

matrix G must be larger than 280 and 2128, respectively.23



APPLICATIONS OF A SOFT STERN ALGORITHM v

2.3. The Stern Algorithm. The Stern algorithm finds a low weight codeword of1

Hamming weight w in the code described by G. Transform the generator matrix2

G to systematic form with generator matrix3

G∗ = (I Q J) ,

where I is the k × k identity matrix, Q is a k × l matrix and J is a k × (n− k − l)4

matrix. Let φ(x) be the value of a vector x in positions k + 1 to k + l, i.e. φ(x) =5

(xk+1, xk+2, · · · , xk+l). The algorithm description is given in Algorithm 1.6

3. A Soft Version of the Stern Algorithm. We now present as the main con-7

tribution a version of the Stern algorithm that uses soft information.8

3.1. A One-Pass Soft Stern Algorithm. Receiving the vector r, one can obtain9

a binary vector by making bitwise hard decisions. We define10

sgn(ri) =

{
1, if ri ≤ 0,

0, otherwise.

Assuming that ci is uniformly distributed over F2, according to Bayes’ law, the11

conditional probability Pr [ci = sgn(ri)|ri], denoted pi, can be written as12

pi =
1

1 + e−|Li|
. (2)

Also, define the bias as τi = |pi−1/2|. The problem of recovering the message from13

a ciphertext is solved by finding a minimum-weight codeword from a linear code14

with a generator matrix15 (
G

sgn(r1), sgn(r2), . . . , sgn(rn)

)
.

This would, however, give a poor performance compared to what can be achieved16

when we use the soft information. Instead, we suggest to use the Stern algorithm as17

a basis and to modify the different steps to make use of the soft information in the18

best possible way. Initially, we consider only a single round in this algorithm, which19

will give a (small) probability q of success. In many (cryptographic) applications20

this is sufficient as one might repeat the decoding attempt many times and thus21

achieve an expected complexity which is a factor 1/q larger than the complexity of22

a single round. Later on, in Section 6.2, we indicate how to extend the algorithm23

to allow for multiple iterations.24

The new algorithm can be divided into three steps in the following way:25

3.1.1. Transformation. This step performs a column permutation and some trans-26

formations. Instead of selecting a random column permutation as in the original27

Stern algorithm, we consider only a single round and we use a permutation that28

puts the most reliable positions as the k + l first columns. These columns will29

correspond to the information set and l additional positions.30

Firstly, all the n coordinates ri are sorted according to the absolute value of31

their LLR and then we choose a set S containing the k + l most significant coordi-32

nates. Denote the set containing the other positions by O. We use π to denote a33

permutation such that π(S) = {1, . . . , k + l}.34
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The second condition on π is that the first k columns of π(G) are independent,1

forming a basis. We then derive a systematic generator matrix G∗ from G by2

permuting the columns using π and performing Gaussian elimination, giving3

G∗ = (I Q J) ,

where Q is a k × l matrix. The received vector r is permuted accordingly, giving4

vector π(r). The k first positions are now an information set, denoted I.5

We next perform a transformation to ensure that the reliability value for each6

variable in the information set is positive. We first determine the most likely value7

for the variables in the information set, denoted by m, where mi = sgn(rπ−1(i)), for8

1 ≤ i ≤ k. This m corresponds to the codeword c′ = mG∗. Then the vector π(r)9

is transformed to the vector r′ = (r′1, . . . , r
′
n), where10

r′i = rπ−1(i) · (−1)c
′
i , 1 ≤ i ≤ n. (3)

We have the following proposition.11

Proposition 1. If D(ĉ, r) = δ, then D(ĉ′′, r′) = δ, where c′′ = c+ c′.12

Therefore, the transformation has not changed the problem, but the first k po-13

sitions now all have positive reliability, which may ease the description in the con-14

tinuation.15

For the next step, we will consider the shortened code from (I Q) and try to find16

a list of codeword candidates close to r′ in the first k+ l positions. For columns with17

indices in {k + 1, . . . , k + l} corresponding to the matrix Q in G∗, we determine a18

syndrome s by si = sgn(r′k+i), for 1 ≤ i ≤ l.19

Codewords for the shortened code are vectors c(s) such that c(s)H′ = 0, where20

H′ =

(
Q
Il

)
. As we change the signs of position k + 1, . . . , k + l to be all positive21

when we introduced the syndrome, our problem is finding the most probable low22

weight vectors z such that zH′ = s, assuming that the reliability values in position23

1, . . . , k + l are all positive, i.e., assuming r′i ≥ 0, for 1 ≤ i ≤ k + l.24

We next partition the set π(S) = {1, . . . , k + l} into two disjoint equal-sized
parts, S1 and S2, such that ∏

i∈S1

pi ≈
∏
j∈S2

pj ,

where pi = Pr
[
c
(s)
i = 0|r′i

]
as in (2). For simplicity, we assume that25

S1 = {1, . . . , (k + l)/2} and S2 = {(k + l)/2 + 1, . . . , (k + l)}. In the algorithm,26

this is yet another condition to consider when selecting π. In the original Stern27

algorithm the choice of indices for the two sets does not influence the performance,28

but for the soft case it does, and this is the reason for the above condition.29

3.1.2. Creating Bit Patterns and Partial Syndromes. We now create the most prob-30

able (low weight error words) z(1) having nonzero values only in S1. We store the cor-31

responding partial syndrome for the code with transposed parity check matrix H′,32

created as (z(1),0)H′. As all reliability values are positive, the zero word is the most33

likely one, then different vectors of weight one, etc. Let z(1) run through T length-34

(k + l)/2 binary vectors with the largest probability
∏
i∈S1 Pr

[
c
(s)
i = z

(1)
i |r′i

]
. We35

build a table L1 to store all selected z(1) together with the vector (z(1),0)H′. The36

table L1 is sorted according to this partial syndrome.37
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Algorithm 2 The Soft Stern algorithm

Input: Generator matrix G, received vector r, parameters T = 2l, δ

Step 1:

(1a) Choose a column permutation π such that 1) the first k + l
positions in π(G) have the k + l largest |ri|’s and 2) the
first k columns are independent and 3)

∏
i=1,2,...(k+l)/2 pi ≈∏

i=(k+l)/2+1,...(k+l) pi.

(1b) Make the permuted generator matrix π(G) systematic:

G∗ = (I Q J) .

Permute and transform the received sequence r to make the re-
liability value for each coordinate in positions 1, 2, . . . k positive,
following (3), giving r′.

(1c) Calculate the corresponding partial syndrome s and change the
sign of any negative values of r′k+1, . . . r

′
k+l.

Step 2: Construct a list L1 storing the most probable vectors z(1) and
the corresponding partial syndromes (z(1),0)H′. Then construct an-
other list L2 storing the most probable vectors z(2) and the corre-
sponding partial syndromes s+ (0, z(2))H′.

Step 3: Sort the two lists according to their partial syndromes and
search for collisions. For each colliding syndrome (z(1),0)H′ and s+
(0, z(2))H′, create a new vector u by choosing the first k entries of
(z(1), z(2)) and compute the corresponding ĉ = (ĉ1, . . . , ĉn), s.t. ĉi =
(−1)ci , where c = uG∗.

IfD(ĉ, r′) ≤ δ, invert the transformations to get the codeword close
to the original r and return it. If no c with D(ĉ, r′) ≤ δ is found,
return failure.

We now repeat the same thing but for the subset S2, creating another table L21

in a similar manner. In this case we run through the most probable vectors z(2)2

with nonzero positions only in S2. Each entry in the table consists of z(2) together3

with the partial syndrome s+ (0, z(2))H′ sorted according to the latter. Note that4

we add s in this case.5

3.1.3. Colliding Partial Syndromes. Next, we search for partial syndrome collisions6

between the tables L1 and L2. On average we obtain T 2/2l colliding vectors. Later7

we assume that we choose T ≈ 2l to minimize time-complexity.8

For each collision, we add the corresponding vectors (z(1),0) and (0, z(2)), and9

create a new vector u by choosing its first k entries. Then we get a candidate10

codeword uG∗. As a final step, we check the Euclidean distance between each11

candidate codeword and the received vector r′. If it is sufficiently small we return12

it as the desired closest codeword.13

3.2. How to Create the Most Probable Vectors. In this part, we explain how14

to create the T most probable vectors required in Step 2 of the previous description.15
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Since the reliability values are all transformed to be positive, for the partitions1

Sm, m = 1, 2, the most probable pattern is the all-zero vector 0, with probability2

Pm =
∏
i∈Sm pi. The probability for a pattern with ones in positions in J and the3

remaining positions all zero is exp(−
∑
j∈J Lj) · Pm.4

For S1, our problem can then be described as follows. Given (k + l)/2 positive5

real numbers (L1, . . . , L(k+l)/2) which are sorted in increasing order, i.e., L1 ≤6

L2 ≤ . . . ≤ L(k+l)/2, define a function f(I) =
∑
j∈I Lj , where I ⊂ {1, . . . ,

(k+l)
2 }.7

Our goal is to find the T different index sets Ii, 1 ≤ i ≤ (k + l)/2 with smallest8

corresponding values f(Ii). The method for solving this problem is based on [27].9

Let Ii1,i2,...,ik , where i1 < i2 < · · · ik, denote the bit pattern with the value 110

in positions i1, i2, . . . , ik, and the value zero in the other positions. For such a bit11

pattern, its function value is again f(I) =
∑
j∈I Lj , where I = {i1, i2, . . . , ik}.12

Now, let Ri denote the set of bit patterns with a 1 in position i and zeros in all13

positions after i. Sort the elements in Ri by its function values in increasing order14

to form the list Ri. Given a pattern I ∈ Ri, by the successor of I we mean the next15

pattern in Ri.16

To solve our original problem we use a binary tree, where each node represents17

one of the lists R2, R3, . . . , R(k+l)/2. Initially, let the nodes store the top element18

in each list Ri, being the patterns I2, I3, . . . , I(k+l)/2, respectively. Also, let each19

node store an index value 0. The root of the tree will have the pattern with the20

smallest function value, which initially is I2. Each parent node in the tree has a21

smaller function value than its child nodes.22

Let A denote a list of the bit patterns we have found sofar, and their correspond-23

ing function values. Initialize this list with the all zeros pattern at index 0 and the24

pattern with a 1 in the first position at the index 1.25

In each step of our algorithm we add the pattern of the root node to A. Assume26

the root node has the pattern Ii1,i2,...,im,i. Then we replace the node label by the27

next pattern in the list Ri. This is found by starting in A at the index of the28

pattern Ii1,i2,...,im and finding the next pattern Ij1,j2,...,jn,i in A such that jn < i. If29

no such pattern exists, we have used all patterns in Ri and we can delete the node30

from the tree. Otherwise, we replace the node label by the pattern Ij1,j2,...,jn,i and31

we also store the index in A of the pattern Ij1,j2,...,jn . In either case, we end by32

rearranging the tree such that each parent node has a smaller function value than33

its child nodes.34

The most expensive part of the algorithm is rearranging the tree. This requires35

at most dlog2(k + l)/2e function comparisons. If we store the function value for36

each pattern in A, calculating the function value for a new pattern in the tree only37

requires a single addition.38

3.2.1. Example of How to Find the Most Probable Vectors. An example of how to39

find the most probable bit patterns is illustrated in Figure 1. In this case we work40

with vectors of length 8 and the corresponding 8 real values are41

[0.1622, 0.1656, 0.2630, 0.3112, 0.5285, 0.6020, 0.6541, 0.7943].

For the sake of clarity we work with the whole bit patterns, but storing only the42

indices of the positions with the value 1 is of course more efficient. At the beginning43

the list A = [(00000000, 0), (10000000, 0.1622)]. In each step we add the root node44

and its corresponding function value to A. We use the index of the root node to45

determine where in A we start looking for a new bit pattern. When we have found46
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01000000|0

00100000|0 00010000|0

00001000|0 00000100|0 00000010|0 00000001|0

00100000|0

11000000|1 00010000|0

00001000|0 00000100|0 00000010|0 00000001|0

00010000|0

11000000|1 10100000|1

00001000|0 00000100|0 00000010|0 00000001|0

11000000|1

10010000|1 10100000|1

00001000|0 00000100|0 00000010|0 00000001|0

10100000|1

10010000|1 00000010|0

00001000|0 00000100|0 00000001|0

01100000|2

10010000|1 00000010|0

00001000|0 00000100|0 00000001|0

Figure 1. An ilustration of what the binary tree in the algorithm
for finding the most probable bit patterns looks like in the first six
steps.

the next pattern we modify the root node and rearrange the tree. Notice that the1

bit pattern 11000000 does not have a successor node. Therefore, after adding the2

pattern to A the corresponding node in the tree is removed. By the time we have3

reached the sixth binary tree in Figure 1 we have4

A = [(00000000, 0.0000), (10000000, 0.1622), (01000000, 0.1656), (00100000, 0.2630),

(00010000, 0.3112), (11000000, 0.3278), (10100000, 0.4252)].

The bit patterns in A gives us the 7 most probable bit patterns. By looking at the5

root node we see that pattern number 8 is 01100000.6

4. A Decoding Example. This section contains a complete example of how a7

message is encoded, how Gaussian noise is added, how the errors are corrected using8

the proposed Soft Stern algorithm, and finally how the original message is recovered.9

The extended, binary Golay code is a linear, systematic, error-correcting code with10

parameters (n, k, dmin) = (24, 12, 8) and generator matrix G equal to11



x Q. GUO, T. JOHANSSON, E. MÅRTENSSON, P. STANKOVSKI WAGNER



1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1



.

Assume sending the message u = [0 0 0 1 0 1 0 1 1 0 0 0], transforming each 11

to -1 and each 0 to 1, and adding Gaussian noise with σ = 1. In this example the2

received vector r is3

[0.8437 −0.8059 1.5800 −0.1491 0.5741 0.6922 1.0734 −1.9306
−1.5678 1.1405 0.8998 2.6440 1.2390 −0.6847 0.0724 −0.2315
0.1800 −0.8032 −1.3533 −2.8248 0.1319 0.0888 −1.2301 −0.3469].

Let us use l = 4 and T = 2l = 24 = 16. After performing a permutation of4

the positions such that the first k + l are the most reliable, such that the first k5

columns in the generator matrix are linearly independent, and such that the first6

k + l positions are split into two parts with approximately equal products of pi7

values, we obtain an r∗ vector equal to8

[−1.2301 0.6922 0.8437 −1.3533 1.1405 1.0734 2.6440 −0.6847
−1.5678 1.5800 0.8998 −0.8059 −2.8248 −1.9306 1.2390 −0.8032
0.5741 −0.3469 −0.2315 0.1800 −0.1491 0.1319 0.0888 0.0724].

The corresponding systematic generator matrix G∗ is

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 1



.

Encoding the message m, where each of the k positions of m are 1 if the cor-9

responding position in r∗ is positive and 0 otherwise, then changing the sign for10

each position in r∗ where the corresponding position in the encoded vector mG∗ is11

positive, results in an r′ vector equal to12
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[1.2301 0.6922 0.8437 1.3533 1.1405 1.0734 2.6440 0.6847
1.5678 1.5800 0.8998 0.8059 2.8248 1.9306 −1.2390 −0.8032
0.5741 0.3469 0.2315 0.1800 −0.1491 −0.1319 0.0888 −0.0724].

We notice that the partial syndrome is s = [0 0 1 1] (by looking at the signs of1

positions k+1 to k+ l). Picking the first k+ l values of r′, switching signs to make2

all the values positive, calculating the corresponding LLR values, and sorting the3

LLR values such that each half of the values are in increasing order, gives a vector4

of LLR values equal to5

[1.3694 1.3844 1.6875 2.1468 2.2811 2.4602 2.7066 5.2879
1.6063 1.6119 1.7996 2.4779 3.1356 3.1600 3.8611 5.6495].

Picking the parity-check matrix corresponding to the first k + l columns of G∗,6

then permuting the columns according to the permutation done to sort the LLR7

values, results in the permuted parity-check matrix H equal to8

H =


1 0 1 0 1 0 1 0 0 0 1 0 1 1 0 1
0 1 1 0 0 0 1 1 0 1 1 0 1 0 1 0
0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0
0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0

 .

Using the first half of the LLR values to create the T most probable vectors on9

the form (z1 0) and their corresponding syndromes (z1 0)HT we get the following10

list of vectors and syndromes11

L1 =



0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 1 0
0 0 1 0 0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0 1 1
0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 1 0 1 1 0 0
1 1 0 0 0 0 0 0 1 1 1 0
1 0 1 0 0 0 0 0 0 1 1 1
0 1 1 0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0 1 0 0 1
0 1 0 1 0 0 0 0 0 1 1 1
1 0 0 0 1 0 0 0 0 0 1 1
0 1 0 0 1 0 0 0 1 1 0 1
1 0 0 0 0 1 0 0 1 0 1 0



.

Using the last half of the LLR values to create the T most probable vectors on the12

form (0 z2) and their corresponding syndromes (0 z2)H
T + s we get the following13

list of vectors and syndromes14
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L2 =



0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1 1 0
0 0 1 0 0 0 0 0 1 1 0 1
0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0 1 0 0 0
1 1 0 0 0 0 0 0 0 1 1 1
1 0 1 0 0 0 0 0 1 1 0 0
0 1 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 1 1 1
1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 1 1 1
0 1 0 0 1 0 0 0 1 0 1 1



.

Colliding these vectors we get the following list of possible candidates for a solu-1

tion (where the first half of each row corresponds to z1 and the second half corre-2

sponds to z2)3



0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0



.

For each candidate we invert the permutation corresponding to the sorting of4

the LLR values. Then we pick the k first bits and create the message u0. We5

then encode the message using G∗ to c0 = u0G
∗ and transform each 1 to -1 and6

each 0 to 1, creating ĉ0. Then we calculate the Euclidean distance between ĉ0 and7

r′. The vector c0 that will lead us to the original message is probably the one8

with the smallest Euclidean distance. In this example the smallest Euclidean norm9

corresponds to candidate number 4.10

Inverting the sorting step and picking the k first bits gives us

u0 = [0 1 0 0 0 0 0 0 0 0 0 1].



APPLICATIONS OF A SOFT STERN ALGORITHM xiii

We then get

c0 = [0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1].

To get back to the solution to the original problem we flip the bits in c0 where the
corresponding positions in r′ and r∗ differ in sign and get the vector

[1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 0 1 1 1 0].

Then we invert the first transformation and get the vector

[0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1].

Now we notice that the first k positions in this vector are identical to the original1

message u and we have thus found the original message.2

5. Complexity Analysis and Simulations. A suitable complexity measure is3

given by Cone-pass/Pr [A], where Cone-pass is the complexity of one pass of the4

algorithm and A represents the event that after the permutation and the transfor-5

mation, the actual error pattern in the first (k+ l) positions is a summation of two6

vectors in the two lists, respectively (i.e., that the Soft Stern algorithm will find the7

correct message).8

When estimating complexity for matrix operations, we note that we can induc-9

tively implement the vector/matrix multiplication of vM by adding a new vec-10

tor to an already computed and stored vector ṽM, where supp(ṽ) ⊂ supp(v)11

and dH(ṽ,v) = 1. Thus, Cone-pass measured in simple bit-oriented operations12

is roughly given by CGauss + 4T · (n − k) + Ccreate, where CGauss is the com-13

plexity of Gaussian elimination that usually equals 0.5nk2 and Ccreate is the com-14

plexity for creating these most probable vectors. From Section 3.2 we have that15

Ccreate = 2T dlog2((k + l)/2)e. Notice that the cost of creating the lists is low16

compared to calculating the partial syndromes and colliding these.17

The probability Pr [A] is given by18

Pr [A] = Ql · P (1) · P (2),

where

P (i) = Pi
∑
J∈P(i)

exp

−∑
j∈J

Lj

 ,

for i = 1, 2. Here Ql is the probability that k + l columns in a uniformly random,19

binary k× (k+ l) matrix have full rank. Also, P(i) is the set containing the T index20

sets corresponding to the T different vectors in Li, for i = 1, 2. For the sizes of k21

used in this paper, with very good precision we have22

Ql =

∞∏
i=1+l

(1− 2−i).

Here we have Q0 ≈ 0.2888, and for each new column that is added the probability23

of not getting a matrix with full rank is roughly halved. Thus the probability of24

getting a full rank matrix increases fast with l. The next subsection will try to25

estimate (the remaining factors of) the probability Pr [A].26
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5.1. Estimating and Simulating Pr [A]. As Pr [A] depends on the received vec-1

tor r, it appears to be quite complicated to provide a useful explicit expression or2

approximation for E(Pr [A]), where the expectation is over r. We choose instead3

to provide thorough simulation results to illustrate how Pr [A] compares to other4

previous algorithms. In our comparison, Pr [A] directly translates to the success5

probability for the algorithm in question. We have simulated the following algo-6

rithms:7

• The Soft Stern algorithm as proposed in the paper.8

• Ordered Statistics Decoding (OSD). As explained in for example [15, 27, 30],9

we select the k most reliable and independent positions to form the most10

reliable basis (MRB). The error patterns in the list are chosen according to11

their reliability.12

• Box-and-Match approach [28]. The essence of this algorithm is Stern-type,13

choosing the operated information set from the most reliable positions (i.e.,14

an extension of MRB). However, they ignore the bit reliability when building15

the two colliding lists. For ease of comparison, we estimate the performance16

of its variant similar to the newly proposed algorithm but without choosing17

the error patterns in the colliding lists according to their reliability.18

• A hard-decision Stern algorithm. This is a simple approach where we first19

make a hard decision in each position and then apply the original Stern al-20

gorithm. Each position of the received vector is Xi ∼ N(1, σ) if zero is sent21

and hard decision gives a bit error if Xi < 0. The bit error probability is22

p = φ(1/σ). The probability of t errors is
∑(

n
t

)
pt(1 − p)n−t. The simu-23

lation results show that for the simulated parameter setting, this algorithm24

performs much worse than its three counterparts. We thereby removed it from25

our comparisons in the plots for readability.26

For simplicity of analysis we compare single iteration versions of the algorithms.27

Techniques for taking advantage the soft information in multiple iterations is dis-28

cussed briefly in Section 6.2, and can be applied to any of the algorithms. For29

a fair comparison, we assume that the complexity in one-round is approximately30

CGauss+C · (n−k)T , where C is a small constant. Thus, we assume that for every31

algorithm, the size of one list is limited to T = 2l (to 2T for OSD, since only one32

list is built in this algorithm). The comparison of E(Pr [A]) for various k, σ, T is33

shown in figures below. In all figures we let n = 2k. Thus, we have a code rate of34

1/2. In all figures we ignore the Ql factor.1 We look at two different scenarios, one35

with parameters applicable to a cryptographic scenario and one with parameters36

applicable to a coding theoretic scenario.37

We have implemented the algorithm in Sage [24] 2. The implementation covers38

the algorithm as described in Section 3. It was used to create the example from39

Section 4 and for simulating the success probability in this section. The source code40

for the implementation can be obtained upon request.41

5.1.1. Cryptographic Scenario. In cryptographic applications of general soft decod-42

ing algorithms it is not uncommon to see a very small, but still non-negligible43

success probability Pr [A]. A large value of T is typically used. To compare the44

1In a practical application of the algorithm one would have to swap in a few slightly less reliable
positions if the first k positions are not linearly independent. Unless k is small this should not
change the probabilities significantly.

2The implementation is available at https://github.com/ErikMaartensson/SoftStern

https://github.com/ErikMaartensson/SoftStern
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Figure 2. The logarithm of the success probability for the differ-
ent algorithms as a function of σ.

performance of the algorithms in a crypto scenario we use large σ values. We let1

σ vary between 0.65 and 1 (in the latter case the capacity of the channel and the2

code rate are equal). We let T = 2l = 220. In Figure 2, we plot the logarithm of the3

success probability as a function of σ in the cases where k = 256 and k = 1024. In4
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both cases our soft Stern algorithm performs much better than the other algorithms.1

Notice that the scale on the y-axis is not the same in the two plots.2

5.1.2. Coding Scenario. In a coding scenario it is crucial that the word error prob-3

ability 1−Pr [A] is small. The acceptable value of T is smaller than in the crypto-4

graphic setting. To compare the algorithms we look at their probability of failing5

for small σ values. We vary σ between 0.4 and 0.65. We let T = 2l = 210. In Fig-6

ure 3, we plot the failure probability as a function of σ in the cases where k = 1287

and k = 512. again, in both cases our soft Stern algorithm outperforms the other8

algorithms. Again, notice that the scale on the y-axis is not the same in the two9

plots.10

6. Generalizations.11

6.1. Soft Output. The algorithm can easily be modified to allow for soft output.12

The algorithm above outputs either the codeword ĉ closest to the received vector r,13

or the first vector that is within some distance δ of r. Instead, we can keep a number14

of the vectors ci closest to r. Based on the probabilities of each of the corresponding15

bit patterns we can then calculate the weighted average for each position. Now the16

algorithm can output soft information.17

6.2. Multiple Iterations. If we are unsuccessful in our one-pass algorithm, we18

might want to allow for a new iteration, or many, to increase the success probability.19

We then suggest to swap one column from S with one column from O. We want to20

take advantage of the reliability values, while still having a degree of randomness21

in the swapping. The technique we suggest is the approach experimentally tested22

as the optimal in [22]. Here the probability of swapping out i ∈ S is proportional23

to the probability that the corresponding position is wrongfully classified, that is,24

(1− pi)/
∑
pj∈S(1− pj), where pi is the conditional probability of having a correct25

bitwise hard decision, as being defined in (2). The probability of swapping in j ∈ O26

is proportional to the squared bias of j, that is, τ2j /
∑
τk∈O τ

2
k , where τj is the27

respective bias, i.e., τj = |pj − 1
2 |. The complexity can be analysed by employing a28

Markov-chain model, as was done in [7, 8].29

7. Applications.30

7.1. Breaking Soft McEliece. In [2], using soft information to enhance the per-31

formance of an attacking algorithm has been discussed, but no attacks below the32

security level have been presented. We show that soft McEliece can be broken by a33

trivial variant of Algorithm 2. The adversary will employ a simplistic version, i.e.,34

keeping one element in each list. Therefore, she chooses l to be 0 and the considered35

error pattern is 0 in the k most reliable positions.36

The attack can also be described as follows. The adversary chooses the k most37

reliable indices to form an information set I, makes a bit-wise hard decision sgn(·),38

and calculates the message u via a Gaussian elimination. She then tests whether39

this is a valid message. Otherwise, the adversary selects another ciphertext and tries40

again (if a single ciphertext can be broken the scheme is considered insecure). For41

one pass, the attack succeeds in case (i) that the sub-matrix corresponding to this42

information set is invertible and (ii) that there exist no errors among these positions.43

In implementation this latter probability is 0.98 if 80-bit security is targeted, and the44

expected complexity for recovering one message is about 3.5 Gaussian eliminations.45
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Figure 3. The failure probability for the different algorithms as
a function of σ.

We give some intuition why this basic strategy can solve the decoding problem1

in soft McEliece for the proposed security parameters. In [2], one key security2

argument is that the total number of bit errors in one ciphertext follows a modified3

binomial distribution, which gives at least n
2 erfc

(
1√
2σ

)
bit errors. However, for4

the most reliable coordinates, the number of bit errors are very few. We see that5
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the expected number of bit errors among the n
2 most reliable bits is only 0.022 (or1

0.015) using the parameters for 80 (or 128)-bit security. Most of the error positions2

are among the least reliable ones.3

7.1.1. Moving to a higher noise level. Though this simplistic attack works well for4

soft McEliece, Algorithm 2 performs much better when the size of the targeted5

instance increases. Therefore, one should employ the full algorithm when aiming6

for cryptosystems with a reasonable security level.7

A higher noise level increases the decryption (decoding) error probability. If8

(n, σ) = (7202, 0.66), for instance, the 3601 most reliable bits are error-free with9

probability 2−13.0. Hence, on average about 29, 000 Gaussian eliminations are re-10

quired using this simplistic attack. By using soft Stern, setting l = 23 and choosing11

a suitable δ in Algorithm 2, we can reduce the expected complexity to around 2312

Gaussian eliminations3.13

7.2. Applications in Side-channel Attacks. Transforming some problems in14

side-channel analysis to that of decoding random linear codes originates in [5].15

In this context, although the noise distribution is not exactly a Gaussian, soft16

information can still be exploited, making Algorithm 2 more efficient than other17

ISD variants. For side-channel attacks in [21, 22], the following modified version of18

the LPN problem occurs. Here, Ber(p) denotes a random variable that takes the19

value 1 with probability p and 0 with probability 1−p, and 〈·, ·〉 denotes the binary20

inner product of two vectors.21

Definition 3 (Learning Parity with Variable Noise (LPVN) [22]). Let s ∈ Fk2 and22

ψ be a probability distribution over [0, 0.5]. Given n uniformly sampled vectors23

ai ∈ Fk2 , n error probabilities εi sampled from ψ, and noisy observations bi =24

〈ai, s〉+ ei = ci + ei, where ei is sampled from Ber(εi), find s.25

They solve the problem by translating it into decoding a random linear code26

with soft information. They apply Stern’s algorithm, but they do not sort the27

error patterns based on their probability of occurring. In this case the error is not28

Gaussian, but with some minor modifications our algorithm can still be applied.29

We sort the positions based on the εi values. The smaller εi is, the more reliable30

the position is. Next, we have31

pi = Pr [bi = ci|εi] = 1− εi.

After having done the transformations, such that the all-zero vector is the most
probable vector in an index set S, the probability of a bit pattern with ones in
positions in J ⊂ S and zeros in the other positions is∏

i∈J
εi ·

∏
i/∈J ,i∈S

(1− εi) =
∏
i∈J εi∏
i∈J (1− εi)

·
∏
i∈S

(1− εi) =
∏
i∈J

εi
(1− εi)

·
∏
i∈S

pi.

With some minor adjustments, the method for finding the most probable bit pat-32

terns, described in Section 3.2, can now be used.33

3In the conference version [16], we presented an upper bound on the time complexity of solving
this instance, i.e., 31 Gaussian eliminations. After careful simulation, we can now show a more
accurate complexity estimation.
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7.3. Hybrid Decoding. Another problem suited for our algorithm can be found1

in [1], where the problem of decoding linear codes with soft information appears.2

They analyze two codes proposed for space telecommanding. Both are LDPC codes,3

with (n, k) = (128, 64) and (n, k) = (512, 256) respectively. A hybrid approach for4

decoding is used. First one applies an efficient iterative decoder. In the few cases5

when the iterative decoder fails, one uses a decoder based on ordered statistics,6

thereby reducing the risk of decoding failure drastically.7

However, the proposed ordered statistics algorithm does not make use of a Stern-8

type speed-up. It orders the positions after decreasing reliability. Then they try9

different error patterns in the k most reliable positions. Using our soft Stern algo-10

rithm, we instead divide the most reliable k + l positions into two sets, and then11

look for collisions between the partial syndromes of the bit error patterns in the two12

sets. Adding such a Stern-type modification would greatly improve their ordered13

statistics decoder.14

7.4. Product Codes. An application of the soft Stern algorithm with soft output15

is the decoding of product codes. Consider the serial concatenation of two codes,16

that do not have an efficient decoder with soft output. A small example would be17

the Golay code. An iterative decoder for this product code can be constructed by18

using the soft Stern algorithm with soft output together with a message-passing19

network (Tanner graph) between code symbols in the product code. Investigating20

this idea in more detail is an interesting research direction.21

8. Conclusions. We have presented a new information set decoding algorithm us-22

ing bit reliability, called the soft Stern algorithm. The algorithm outperforms what23

has been previously suggested for decoding general codes on the AWGN channel24

and similar tasks.25

It can be utilized for a very efficient message-recovery attack on a recently pro-26

posed McEliece-type PKC named Soft McEliece [2], for an improved hybrid ap-27

proach of decoding LDPC codes as in [1], and for side-channel attacks as in [21,22].28

We have also mentioned its use for decoding product codes.29

Some modifications, such as multiple iterations of the algorithm, and producing30

soft output values, were discussed but not explicitly analyzed. Some ideas of future31

work may include further analyzing its use in iterative decoding and extending and32

deriving the exact algorithmic steps when considering multiple iterations.33
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