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Skin tumor delineation using 
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hyperspectral imaging

Skin tumors suspected of malignancy are usually treated with surgical excision. 
To increase the probability of removing all the tumor cells while protecting 
healthy tissue, there is a need for an imaging technique that can guide sur-
gery. In this dissertation, two novel techniques (photoacoustic imaging and 
hyperspectral imaging) were explored for non-invasive imaging and delineation 
of skin tumors.
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Abstract 

Skin cancer is one of the most common types of cancer worldwide. Malignant skin 
tumors that are not completely removed by surgical excision or other kinds of 
treatment will grow locally and cause tissue destruction, and some will metastasize 
to lymph nodes or other organs. In some tumors, the superficial borders are ill-
defined, and for all tumors, the extent of the tumor beneath the surface is usually 
invisible to the naked eye or the commonly used dermatoscope. To increase the 
probability of removing all the tumor cells during surgery, while preserving 
healthy tissue, there is a need for an imaging technique that can guide surgery. 
Several non-invasive imaging techniques have been studied for this purpose, but 
most of them suffer from limitations, such as shallow imaging depth or an inability 
to image the molecular content. Spectral techniques, including hyperspectral 
imaging and photoacoustic imaging, can provide molecular contrast and have the 
potential to differentiate between tumor tissue and healthy tissue. While 
hyperspectral imaging collects spectral information from the skin surface, 
photoacoustic imaging uses light-induced ultrasound signals to obtain spectral 
information from deeper layers of the skin than has been possible with other 
optical techniques. Only a few small studies have explored hyperspectral imaging 
and photoacoustic imaging for the purpose of skin tumor delineation, and different 
settings and methods were used for spectral analysis. The aim of the work 
presented in this dissertation was to explore and develop spectral techniques for 
imaging and delineation of skin tumors. The skin tumors were examined ex vivo, 
and differences in the spectral contrast between the tumor and the surrounding 
healthy tissue was used to image and delineate the tumors. Through the 
development of algorithms and machine learning methods, attempts were made to 
make the imaging analysis more objective and independent of the user. The results 
of the studies demonstrated the potential of these new spectral techniques for 2D 
and 3D delineation of skin tumors. The development of non-invasive imaging 
techniques for skin tumor delineation is important to ensure complete and precise 
surgical excision, thus reducing the risk of non-radicality or excessive removal of 
healthy tissue. Further developments and in vivo studies are, however, required to 
make the techniques suitable for future clinical use.  
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Overview of publications 

Below follows a brief introduction to the papers included in this dissertation. The 
papers will be referred to in the text by their Roman numerals and are appended at 
the end of the dissertation.  

Paper I  
Unique spectral signature of human cutaneous squamous cell carcinoma by 
photoacoustic imaging. 

Hult J, Dahlstrand U, Merdasa A, Wickerström K, Chakari R, Persson B, Cinthio 
M, Erlöv T, Albinsson J, Gesslein B, Sheikh R, Malmsjö M.  

J Biophotonics. 2020 May;13(5):e201960212 

 

Cutaneous squamous cell carcinoma (cSCC) is a common skin cancer with 
metastatic potential. Suspected tumors are usually removed surgically with 
internationally recommended macroscopic margins, followed by histopathological 
examination to confirm that the margins are clear of tumor cells. If the margins are 
not clear, the patient must undergo further surgery until the tumor is completely 
removed. Photoacoustic imaging (PAI) can provide unique, spectral signatures of 
different kinds of tissue, depending on their molecular composition, and high 
resolution at a depth of several mm in skin. It has the potential to differentiate 
between healthy and diseased tissue and to image the whole extent of a skin tumor 
in 3D.  

The aim of this study was to investigate whether it was possible to identify a 
unique spectral signature for human cSCCs, and to determine whether the mean 
spectral signature could be used to visualize the tumor architecture and borders.  
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Paper II  
Comparison of photoacoustic imaging and histopathological examination in 
determining the dimensions of 52 human melanomas and nevi ex vivo.  

Hult J, Merdasa A, Pekar-Lukacs A, Tordengren Stridh M, Khodaverdi A, 
Albinsson J, Gesslein B, Dahlstrand U, Engqvist L, Hamid Y, Larsson Albèr D, 
Persson B, Erlöv T, Sheikh R, Cinthio M, Malmsjö M.  

Biomed Opt Express. 2021 Jun 15;12(7):4097-4114.  

 

Malignant melanoma is the most lethal type of skin cancer. Swedish guidelines 
recommend that suspected melanomas should be excised with a 2 mm visible 
margin, and if the diagnosis is confirmed a wide local excision is performed, with 
1 or 2 cm margins depending on the tumor thickness. As with cSCCs, a technique 
capable of determining the melanoma borders and dimensions could guide the first 
diagnostic excision and reduce the need for reoperation or unnecessary removal of 
healthy tissue.  

The aim of the study presented in Paper II, was to image melanomas in 3D with 
PAI. In this study, individual tumor spectra were used for imaging of the tumors 
instead of mean tumor spectra, as in the first study. A threshold algorithm was 
developed for tumor pixel identification and delineation, and the tumor width and 
thickness were compared to histopathological measurements.  

Paper III  
Automatic threshold selection algorithm to distinguish a tissue chromophore from 
the background in photoacoustic imaging.  

Khodaverdi A, Erlöv T, Hult J, Reistad N, Pekar-Lukacs A, Albinsson J, Merdasa 
A, Sheikh R, Malmsjö M, Cinthio M.  

Biomed Opt Express. 2021 Jun 4;12(7):3836-3850.  

 

In the previously papers, a common spectral analysis method, linear spectral 
unmixing, was used to image the tumors. Linear spectral unmixing attempts to 
resolve all the spectral components in an image. In contrast, the adaptive matched 
filter (AMF) method is a statistical method that focuses solely on the detection of a 
distinct spectral target (e.g. a tumor spectrum) and suppresses signals from the 
background (e.g. healthy tissue). An advantage of AMF, compared to linear 
spectral unmixing, is that AMF can reduce the undesirable effects of spectral 
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coloring, which is a wavelength-dependent change in the spectral response of 
different absorbers. When applied to PA data, AMF produces a so-called 
‘detection image’ in which the amplitude corresponds to the target (tumor 
spectrum) probability. Therefore, to obtain a sharp distinction between the target 
and background pixels, a threshold must be applied.  

The aim of the study described in Paper III was to explore the use of AMF in PAI, 
and to develop an automatic threshold selection (ATS) algorithm that could be 
applied to AMF detection images. The ATS algorithm was developed using a 
tissue-mimicking phantom and tested on 7 melanomas ex vivo. The results were 
compared to histopathological measurements.  

Paper IV  
Facilitating clinically relevant skin tumor diagnostics with spectroscopy-driven 
machine learning.  

Andersson E, Hult J, Troein C, Stridh M, Sjögren B, Pekar-Lukacs A, Hernandez-
Palacios J, Edén P, Persson B, Olariu V, Malmsjö M, Merdasa A.  

iScience. 2024 Apr 1;27(5):109653.  

 

Hyperspectral imaging (HSI) is a non-invasive imaging technique that can detect 
how tissue responds to light using a large number of wavelengths both within and 
beyond the visible spectrum. The technique has a very high spectral and spatial 
resolution at the skin surface, where it enables detailed imaging. Since the amount 
of data generated is vast, processing and analysis of the data are difficult with 
conventional methods, but can be facilitated by the use of machine learning.  

A growing number of studies have implemented machine learning to facilitate the 
diagnosis and delineation of skin tumors. Machine learning trains on a dataset to 
improve a computer algorithm. The algorithm can then make predictions about 
new, raw data. A problem with previous studies on machine learning for skin 
tumor delineation is that the models have been trained on manually delineated skin 
tumors, which is subjective and prone to errors unless the borders are precisely 
matched with histopathological borders.  

The aim of the study presented in Paper IV was to delineate skin tumors on the 
skin surface using HSI and machine learning. The machine learning models were 
trained on hyperspectral data obtained from regions with and without tumors 
lesions suspected of being basal skin carcinoma (BCC), cSCC or melanoma, 
without any manual input of the tumor borders. The trained models then made 
predictions of the tumor probability in each pixel. Pixels with high tumor 
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probability were classified as tumor. Algorithms were then used to track the 
outlines of the predicted tumors. Finally, the performance of the models was 
evaluated by correlating the model-predicted tumor widths to widths determined 
histopathologically.  

Dissertation at a glance 
PAPER AIM TUMOR 

TYPES 
NUMBER 

OF 
TUMORS 

TECHNIQUE METHOD OF PIXEL 
CLASSIFICATION 

I 

To identify a unique spectral 
signature for cSCCs ex vivo, and 
to use the signal for tumor imaging  

cSCCs 33 Photoacoustic 
imaging 

Linear spectral 
unmixing 

II 

To image and delineate 
melanomas ex vivo in 3D using 
individual tumor spectra 

Nevi and 
melanomas 

52 Photoacoustic 
imaging 

Linear spectral 
unmixing 

III 

To explore a statistical detection 
method (AMF) and develop an 
automatic threshold selection 
algorithm for 3D delineation of 
melanomas ex vivo 

Melanomas 7 Photoacoustic 
imaging 

Adaptive matched 
filter 

IV 

To image and delineate skin 
tumors at the skin surface in 2D 
ex vivo 

BCCs 
cSCCs 
Nevi  
Melanomas 

18 Hyperspectral 
imaging 

Machine learning 
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Preface 

In my childhood home, we had a small library filled with medical books and 
atlases. I used to spend hours looking through these books, fascinated by the range 
of diseases that could affect the human body. Later, in medical school in 
Copenhagen, I learned that many diseases of the eye could readily be diagnosed 
with the aid of new imaging systems. This caught my attention and led me to write 
my master’s thesis on keratoconus, a corneal disease which, due to the 
transparency of the cornea, can be imaged in detail in 3D, and diagnosed at an 
early stage with optical techniques available at the clinic.  

As a clinician, one wishes that all diseases could be diagnosed as quickly and 
accurately as keratoconus. Malignant tumors of the eyelid and skin are common, 
but their diagnosis cannot be established without a biopsy or excision. 
Furthermore, the excision of a suspected malignant tumor poses a problem as the 
extent of the tumor is often not visible to the naked eye, and clinically available 
imaging techniques have limitations that often make them unsuitable for this 
purpose. The studies presented in this dissertation explore new spectral techniques 
for skin tumor imaging, with the hope of eventually being able to delineate tumors 
accurately in vivo to guide surgical removal. Although the tumors were imaged ex 
vivo, in these studies, the clinical perspective was central; imaging of skin tumors 
should be carried out with non-ionizing radiation and cause as little discomfort to 
the patient as possible. Furthermore, delineation of the tumors should be a quick 
and objective process, independent of the experience of the clinician or surgeon. 

During my PhD studies, I learnt that achieving the objective of precise tumor 
delineation was not trivial, which was initially frustrating. I gradually started to 
regard my research from a broader perspective, and understood that all results, 
even small, are important in the ongoing, international process of understanding, 
developing, and using such techniques. I hope that the work presented in this 
dissertation will provide insights into the potential of the techniques studied, and 
ways in which they can be used, for skin tumor imaging or other medical 
purposes, and contribute to further research.   
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Populärvetenskaplig sammanfattning  

Hudcancer är en av de vanligaste cancerformerna i världen. En misstänkt elakartad 
hudtumör opereras idag oftast bort med en förutbestämd marginal, då man med 
dagens tillgängliga undersökningsmetoder inte kan avgöra tumörens utbredning 
med säkerhet, varken ytligt eller på djupet. Efter operationen skickas tumören till 
patolog för histopatologisk undersökning, där patologen genom infärgningar och 
mikroskopi avgör om tumören är bortopererad i sin helhet. Om patologen 
misstänker att det kan finnas tumörceller kvar i huden måste patienten som regel 
opereras igen. Risken för att en andra operation behöver genomföras måste vägas 
mot risken med att operera med stora marginaler omkring tumören, vilket kan ge 
patienten missprydande ärr och funktionella problem i området. Ett alternativ är 
Mohs kirurgi, där vävnad mikroskoperas i samband med operationen för att säkra 
att det inte finns tumörceller kvar i huden. Mohs kirurgi är dock tidskrävande och 
kräver specialutbildad personal samt tillgång till ett histopatologiskt laboratorium 
med avancerad utrustning.  

Den svåra balansen mellan att riskera att ta bort för mycket eller för lite hud 
omkring tumören skulle kunna undvikas om tumörens utbredning kunde avgöras 
innan operationen, eller under operationen precis som vid Mohs kirurgi. 
Problematiken är välkänd, och flera studier har gjorts för att hitta en teknik som 
kan identifiera tumörernas exakta utbredning. De flesta tekniker är rent 
ljusbaserade och har fördelen av hög upplösning i hudens yttersta lager. Dessa 
tekniker kan som regel bidra med strukturell information om tumörerna, men 
saknar oftast förmågan att åtskilja signaler från olika molekyler, till exempel 
melanin, hemoglobin och fett. Spektrala avbildningstekniker har fördelen att de 
använder flera olika våglängder av ljus för att analysera vävnad, vilket kan ge 
information om vävnadens molekylära sammansättning samt hitta skillnader 
mellan signaler från frisk och sjuk vävnad.  

Syftet med denna avhandling var att undersöka om nya spektrala 
avbildningstekniker kunde avbilda och avgränsa hudtumörer både ytligt och på 
djupet. De tekniker som användes för undersökning var fotoakustik och 
hyperspektral avbildning. Fotoakustik är en teknik som baseras på en upptäckt av 
Dr. Alexander Graham Bell från år 1880. Dr. Bell visade att tunna skivor av olika 
material avgav ljud när de kortvarigt värmdes upp av ryckvis återkommande 
solljusstrålar, ett fenomen som han kallade för den ”fotoakustiska effekten”. 
Fotoakustik skiljer sig från andra optiska tekniker genom att de ljussignaler som 
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skickas in i vävnad omvandlas till ljud. Eftersom ljud har en mindre spridning i 
vävnad än ljus har fotoakustik potential att avbilda vävnad på flera millimeters 
djup samtidigt som tekniken behåller en god upplösning, vilket inte tidigare har 
varit möjligt med optiska tekniker. Fotoakustik har därmed förmåga att avbilda 
hudtumörer i 3D. Hyperspektral avbildning är en annan spektral avbildningsteknik 
som kan användas för att analysera hudens yta. Vitt ljus används för att belysa 
vävnad, och den reflekterade signalen delas upp i flera hundra våglängder vilket 
gör att tekniken kan hitta små skillnader i den molekylära signalen mellan frisk 
och sjuk vävnad.  

I denna avhandling undersöktes hudtumörer som precis hade opererats bort.  

I den första studien utforskades fotoakustikens potential för avbildning av 
skivepitelcancer, en av de vanligaste, elakartade hudcancerformerna. Resultatet 
visade att skivepitelcancer har en spektral signal som skiljer sig signifikant från 
frisk hud och att signalen kan användas till avbildning.  

I den andra studien undersöktes misstänkta maligna melanom, som är den 
dödligaste hudcancerformen, med hjälp av fotoakustik. I studien användes varje 
tumörs individuella tumörsignal som utgångspunkt för avbildning, och en 
automatisk algoritm användes för att åtskilja tumör från frisk vävnad. Genom att 
jämföra tumörernas fotoakustiska mått med histopatologiska mått kunde ett starkt 
samband påvisas gällande melanomens bredd och tjocklek.  

I den tredje studien analyserades fotoakustisk data från bekräftade maligna 
melanom med hjälp av en statistisk modell som heter AMF (adaptive matched 
filter). Genom att utveckla en automatisk algoritm kunde ett tröskelvärde 
bestämmas för att urskilja misstänkta tumörpixlar. Resultaten tydde på ett bra 
samband mellan fotoakustiska mått och histopatologiska mått av tumörernas 
tjocklek. 

I den fjärde studien togs ytterligare ett steg bortom mänsklig inblandning i 
dataanalys. I denna studie undersöktes flera olika hudtumörer med hjälp av 
hyperspektral avbildning. Därefter användes machine learning, ett område inom 
artificiell intelligens, för att urskilja hudtumörer från omkringliggande frisk hud. I 
tidigare studier som använt machine learning på spektroskopisk data från 
hudtumörer har man oftast ‘tränat’ nätverken genom att rita ut tumörgränser 
manuellt. Detta heter att man skapar ground truth images, men har nackdelen av 
att gränserna ju inte kan definieras med säkerhet med blotta ögat. I denna studien 
tränades nätverken på pixlar i centrum av tumören samt på pixlar i frisk vävnad 
utanför tumören för att avbilda och avgränsa tumören, vilket gjorde att man kunde 
undvika att markera ut tumörgränser manuellt . Resultatet visade att några av 
tumörerna inte kunde avbildas pga. brus, men i resterande tumörer kunde bredden 
mätas och jämföras med histopatologiska mått. Jämförelsen visade ett starkt 
samband.  



xv 

Samlat sett pekar studierna i denna avhandling på att spektral avbildning har 
potential att kunna användas för avgränsning av hudtumörer, vilket skulle kunna 
möjliggöra mer precis kirurgi i framtiden. Mer forskning med ett bredare 
patientunderlag behövs dock innan teknikerna kan användas kliniskt.  
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Introduction 

The idea for this dissertation was conceived at the Department of Ophthalmology 
in Lund, Sweden, where skin tumors in the eye region are a common and difficult 
problem for surgeons. Surgeons all over the world lack important information on 
suspicious-looking skin lesions, including the risk of the lesion being malignant, 
or the extent of the tumor at, and beneath, the surface. By careful visual inspection 
and the use of a dermatoscope to visualize the superficial structure of the lesion, an 
experienced surgeon can make a preliminary diagnosis and excise the lesion, 
usually using internationally recommended safety margins. This approach some-
times leads to non-radical excision, especially in tumors where the borders are 
visually unclear (1). This means that all the tumor cells are not removed, and the 
patient must undergo further surgery. On the other hand, using unnecessarily wide 
surgical margins can result in complicated and repeated surgeries, with the need 
for reconstruction and the risk of functional loss or cosmetic deformities.  

To prevent excessive removal of healthy skin in sensitive areas such as the eyelids 
or face, Mohs micrographic surgery, with staged resection and histopathological 
examination of tumor borders, is commonly used when removing non-melanoma 
skin cancers (NMSCs). For high-risk facial basal cell carcinomas (BCCs) and for  
cutaneous squamous cell carconomas (cSCCs) of the head and neck, the 
recurrence rate is lower with Mohs micrographic surgery compared to standard 
surgical excision (2, 3). However, the procedure is time- and resource-consuming, 
and requires specially trained staff (4, 5). To overcome these problems, several 
imaging techniques for preoperative diagnosis and tumor delineation have been 
explored in recent years. However, no imaging technique has gained widespread 
clinical use due to technical limitations.  

High-resolution optical techniques, such as reflectance confocal microscopy, can 
aid the clinician in diagnosing the tumor type (6), however, the field of view is 
usually very small, and these techniques cannot easily provide volumetric meas-
urements of the tumor. Optical scattering in tissue, which is considered a highly 
turbid medium, limits the penetration depth of photons (light) to ∼1 mm in skin, 
which is the mean distance light can travel in its original direction before 
scattering distorts its traceable path (7). Since skin tumors are often thicker than 1 
mm, purely optical techniques are seldom used to delineate the deep margins of 
the tumors. Single-wavelength optical techniques provide detailed images of 
morphological features in skin, but the interpretation and recognition of tumor 
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features are subjective and depend on the experience of the user. Optical 
coherence tomography (OCT) is one of the most promising new techniques for 
skin tumor diagnostics, but since it is a technique that relies on scattering, its 
imaging depth is limited to approximately 1.5 mm (8). Also, the limited spectral 
information provided by OCT prevents analysis of the molecular composition of 
the tissue. Ultrasound scatters approximately 100-1000 times less than optical 
waves (7), but also lacks molecular contrast (9) and therefore cannot, for example, 
differentiate hypoechogenic skin lesions from surrounding hypoechogenic tissues 
such as fat (8). Therefore, in order to delineate skin tumors to guide surgery, 
imaging techniques capable of generating molecular contrast at a few mm depth 
are desired. The aim of the work presented in this dissertation was to explore and 
develop new spectral techniques for imaging and delineating skin tumors that 
could help guide surgical excision in the future.  

In multispectral and hyperspectral imaging methods, the skin is illuminated with 
several wavelengths, providing molecular contrast. The spectral data obtained with 
these methods offer the opportunity of using algorithms that can automatically 
separate tumor-resembling signals from the signals of healthy skin, providing user-
independent information on tumor borders and dimensions.  

Photoacoustic imaging (PAI), often also referred to as as multispectral 
optoacoustic tomography, is a new imaging technique that penetrates deeper into 
skin than other optical techniques through light-induced generation of ultrasonic 
waves. PAI therefore has the potential to image both the superficial and the deep 
borders of skin tumors, while maintaining high resolution. Hyperspectral imaging 
(HSI) is a spectral technique with a limited penetration depth, but with high 
resolution. HSI has the advantage of measuring continuous spectral bands, 
providing detailed information on tumors and healthy skin that can be used for 
imaging and delineation of superficial tumor borders.  

Skin anatomy 

The human skin is made up of layers originating from both the ectoderm and 
mesoderm (10). The epidermis is the most superficial layer, consisting mostly of 
keratinocytes. Keratinocytes are developed from stem cells in the basal cell layer 
in the epidermis and produce keratin and lipids that protect the skin from water 
and exposure to harmful substances or trauma. The thickness of the epidermis in 
humans varies considerably between different anatomical regions, from 
approximately 0.05 mm in the thin facial skin, to 1 mm on the heel (11). 
Melanocytes are another type of cell found in the epidermis; they are located in the 
basal cell layer and distributed among the keratinocytes. Melanocytes produce 
melanin, a pigment that is distributed to the keratinocytes, which protects the skin 
from the effects of ultraviolet radiation. The production of melanin is also 
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responsible for differences in skin color (11). In dermatology, the Fitzpatrick scale 
is used to classify skin types based on their tolerance to sunlight, which is related 
to the amount of melanin in the skin (12). The Fitzpatrick skin type was recorded 
in this dissertation, since it is expected that the spectral signal of healthy skin will 
vary depending on the skin pigmentation, as well as other factors such as 
anatomical location, age, smoking, temperature, etc.  

Beneath the basal cell layer of the epidermis is the second skin layer, the dermis, 
which is approximately 1 mm thick (13). The dermis consists of two layers of 
connective tissue; the loose, thin, upper papillary layer, and the thicker, dense 
lower reticular layer. The dermis contains hair follicles, sweat glands, muscles, 
sensory neurons, and blood vessels. The major component of the dermis is 
collagen fibers, produced by fibroblasts. The deepest layer of the skin is the 
subcutaneous layer (hypodermis). It is mainly composed of loose connective tissue 
and lipid-containing cells, acting as a layer of insulation for internal organs and 
muscles (11). The thickness of the subcutis ranges from 1 to several mm, 
depending on the body site and body composition (13).  

Skin tumors and their treatment 
Skin tumors are divided into benign, pre-malignant and malignant lesions. Tumors 
can derive from all three layers of the skin, although the most common benign and 
malignant skin tumors derive from the keratinocytes and melanocytes of the 
epidermis (Figure 1). Skin tumors usually have a characteristic appearance that 
can aid the clinician in differentiating between different types of tumors and 
evaluating the risk of malignancy. However, excision followed by histopatholog-
ical examination of the tumor are usually necessary to establish the diagnosis. The 
term ‘nevus’ is broad and is used for a range of both congenital and acquired 
benign skin tumors originating from different skin layers and cells. Melanocytic 
nevi are the most common benign tumors, consisting of a local cluster of 
melanocytes derived from the epidermal basal layer. Malignant skin tumors are 
broadly divided into melanoma and NMSC. NMSC is a group of malignant tumors 
consisting of the two main types BCC and cSCC, as well as rarer types (14). BCC 
and cSCC are the most common malignant tumors of the skin. Malignant 
melanoma is the third most common skin cancer worldwide and is also the most 
lethal (15).  
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Figure 1. Skin layers and cells. 
The epidermis is the most superficial skin layer and contains cells that can undergo carcinogenesis and develop into 
common skin cancer types. Basal cell carcinoma develops from basal cells in the basal cell layer; squamous cell 
carcinoma develops from keratinocytes, and malignant melanoma develops from melanocytes. (Illustration by the 
author.) 

Basal cell carcinoma  
Basal cell carcinoma develops from basal cells in the deepest layer of the 
epidermis. In contrast to cSCC, BCC does not have a precursor lesion (16). Risk 
factors include age, fair skin, and ultraviolet exposure, explaining why BCCs are 
most often located on sun-exposed areas of the skin (17). BCCs grow slowly and 
invade tissue locally, and very rarely metastasize (18). Different classification 
systems are used, according to clinical appearance and histopathological features 
such as the local invasiveness. BCCs can be treated in various ways, including 
surgery, curettage, cryotherapy, and photodynamic therapy. The risk of recurrence 
of a primary (previously non-treated) BCC is up to 10%, whereas the risk of 
recurrence of a previously treated BCC is up to 30% (19). Recurring BCCs have a 
more aggressive growth pattern and can cause extensive tissue defects (20). A 
prospective study of 1214 primary BCCs in Australia revealed that 11.2% were 
incompletely excised, highlighting the need for thorough preoperative margin 
assessment. For primary BCCs, a European guideline from 2023 recommends 
excision with a 3-5 mm safety margin depending on the risk profile of the tumor, 
down to a depth of the mid-subcutaneous adipose tissue, or by Mohs micrographic 
surgery in the case of high-risk BCCs (21).   
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Cutaneous squamous cell carcinoma  
Cutaneous squamous cell carcinoma arises from keratinocytes in the epidermis, 
and is the second most common cancer type in Sweden (BCCs excluded) (18). 
Risk factors that predispose to the development of cSCC include fair skin, age, 
ultraviolet exposure, immunosuppression, human papilloma virus, chronic scarring 
conditions, familial cancer syndromes, and environmental exposures (22, 23). 
These tumors commonly arise in sun-exposed areas of the skin such as the face, 
scalp, and dorsal hand (22). An Australian, prospective study from 2007 reported 
that 6.3% of primary cSCCs were incompletely excised (24). Other studies have 
reported an overall rate of 8-16% incompletely removed NMSCs, with the 
remaining tumor most often found at the lateral margin (25). In contrast to BCCs, 
cSCCs are more prone to metastasize. Early diagnosis and excision are therefore 
important for the patient’s prognosis. New European guidelines (26) recommend 
the treatment of suspected low-risk cSCC (diameter <2 cm) by excision with a 5 
mm margin, whereas suspected cSCCs with high risk factors (including tumor 
diameter >2 cm, histopathological thickness >6 mm, immunosuppression, ill-
defined borders, location in chronic wounds or burns) should be excised with a 6-
10 mm margin or by Mohs micrographic surgery. 

Malignant melanoma 
Malignant melanoma is the most aggressive of the most common skin malig-
nancies and develops from epidermal melanocytes in the basal cell layer. 
Melanomas confined to the epidermis are defined as melanoma in situ or lentigo 
maligna, whereas invasive melanomas are melanomas that have breached the basal 
cell layer. The incidence of malignant melanoma in Sweden has has increased 
more than 5-fold since the 1970s, with more than 5000 new cases diagnosed in 
2022 (27). New therapies such as tyrosine kinase inhibitors and immune 
checkpoint inhibitors have improved the prognosis for metastatic melanoma, 
however, the survival rate remains poor (28). The clinical appearance of a 
melanoma is often a pigmented, macular, or nodular lesion >6 mm in diameter, 
that is sometimes ulcerated (11). Malignant melanoma is divided into 4 types 
depending on the growth pattern; superficially spreading, nodular, lentigo and 
acral (on palms and foot soles). Lentigo maligna melanoma is particularly difficult 
to delineate clinically and therefore has a high rate of recurrence (29). The 
histopathological diagnosis of melanomas is complicated and often requires 
methods that can detect molecular pathology (30). There are several risk factors 
for melanoma, including ultraviolet exposure, previous skin cancer, the number 
and size of existing nevi, fair skin, and genetic factors (30). Suspicious melanoma-
looking lesions should be excised in toto with a margin of 2 mm for 
histopathological examination (diagnostic excision) (30). If the lesion is confirmed 
to be a melanoma, a second, wide local excision is performed around the site, with 
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a margin width depending on the histopathological determined tumor thickness. 
The American Joint Committee on Cancer staging system is the most widely 
accepted classification and staging system for melanomas (31). In this melanoma 
staging system, the melanoma thickness is the most important parameter in 
primary tumor staging (31), guiding clinical management. Swedish and European 
guidelines recommend wide local excision using a safety margin of 5 mm for 
melanomas in situ; 10 mm for melanomas ≤ 2.0 mm thick, and a 20 mm margin 
for melanomas >2.0 mm thick, and that all excisions, both diagnostic and wide 
local excisions, should be made down to the subcutaneous fat (30, 32). A sentinel 
lymph node biopsy is recommended for primary melanomas thicker than 1.0 mm 
(30). Some melanomas, for example melanomas located on the face, are difficult 
to excise with the above recommended wide local excision margins, due to the risk 
of cosmetic or functional damage. Partial biopsies are not recommended due to the 
risk of misdiagnosis and inaccurate staging (30).  

Histopathologic examination  
Histopathologic examination is the gold standard technique for the diagnosis of 
skin tumors. After excision, the tissue is placed in aqueous formaldehyde for 
fixation, which takes approx. 6-24 hours depending on the lesion size (33). At the 
laboratory, the tissue is cut to size in vertical cross-sections and then processed 
based on histology protocols, usually involving ethanol baths and paraffin 
infiltration. The tissue is then cast in a paraffin block and sectioned using a 
microtome, resulting in sections of approx. 4 µm in thickness (34). Finally, the 
sections are stained with hematoxylin and eosin (and sometimes also elastica-van 
Gieson stain and periodic acid-Schiff stain), visualizing different molecular 
structures. Immunohistochemical techniques using fluorescence labelled 
antibodies are used when diagnosis of a lesion cannot be made using other staining 
techniques (35). Using histologic criteria, the pathologist assesses the sections 
using a microscope and reports the findings including the diagnosis, the thickness 
of the tumor (not required for BCC) and measurements of the tumor-free margins. 
For melanocytic tumors, weighing histologic criteria as regards to malignancy is 
however difficult and requires long experience (35).    

Mohs micrographic surgery 
Mohs micrographic surgery is a surgical technique designed to minimize the loss 
of healthy skin. It is commonly used to treat high-risk BCC and cSCC in 
cosmetically or functionally sensitive areas such as the head and neck (36). A 
growing number of studies suggest that Mohs micrographic surgery is also safe for 
the treatment of melanoma without the need for a wide local excision (37). The 
technique is performed by excising the tumor close to its clinically visible border, 
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including deep tissue. The tissue is then frozen, sectioned, and examined under a 
microscope to determine whether all the tumor cells have been removed (37). If 
the examination reveals residual tumor cells at the margin, excision is extended at 
the corresponding site until the excised tissue is clear of tumor cells (38). This not 
only prevents extensive loss of healthy skin, but also removes the need for a 
second surgery. Unfortunately, this procedure is time consuming, costly, and 
requires specially trained staff (39), which limits its widespread use. Due to the 
softness of the tissue, cutting during surgery is difficult and more prone to artifacts 
than sectioning of formalin-fixed tissue (35). Interpretation of the frozen sections 
is also considered more difficult than interpreting permanent, fixed sections (37). 
Our group has previously described a case of a BCC on an eyelid, in which PAI of 
the tumor was performed on the freshly excised and unfixed tumor immediately 
after surgery. The resulting 3D image showed that one of the edges was not clear 
of tumor cells (40), which was later confirmed by histopathology. This finding 
indicates the potential of PAI for use during Mohs surgery, which would avoid the 
need for freezing and sectioning during the surgery, as well as the need for 
specially trained staff.  

Non-invasive techniques for skin tumor imaging 
To minimize harm to the patient, diagnostic techniques should be both non-
ionizing and non-invasive. Apart from differentiation between benign and 
malignant skin lesions, several different non-invasive techniques have been used 
in attempts to image and delineate skin tumors. However, they have not gained 
widespread clinical use for the purpose of preoperative margin delineation due to 
various limitations. Descriptions of some of the most studied techniques and their 
limitations are given below.  

Dermatoscopy 
Dermatoscopes are used widely by dermatologists, plastic surgeons, and primary 
care physicians to examine skin structures and patterns. The commonest hand-held 
dermatoscopes illuminate the skin with polarized light (where the electric field 
oscillates in a defined plane) or non-polarized light (where there is no defined 
plane for the electric field) with a 10x magnification (41). By using polarized light, 
dermatoscopes can block reflected light from the most superficial layer of the 
epidermis (stratum corneum), which enables better visualization of subsurface 
structures in the epidermis and superficial dermis. As it is a subjective modality, it 
requires trained and experienced users to obtain reliable results (42). The primary 
objective of dermatoscopy is to improve diagnostic accuracy, especially of early 
melanomas (41). Dermatoscopy is the most widely used clinical technique for 
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superficial tumor border assessment, but only a few studies have evaluated its 
accuracy for this purpose. One study showed that while dermatoscopy has a high 
accuracy for BCC diagnosis and subtype classification, its accuracy in superficial 
tumor border assessment of several subtypes of BCC was limited (43). Another 
study comparing dermatoscopy to visual inspection of superficial tumor borders of 
infiltrative BCCs showed no difference in the final number of stages used in Mohs 
micrographic surgery (44). For lentigo maligna and lentigo maligna melanoma, a 
study showed that 11 out of 32 lesions still had positive margins following 
primary excision after visual inspection with dermatoscopy (29).  

Optical coherence tomography 
Optical coherence tomography creates cross-sectional images of skin with a larger 
penetration depth than many other purely optical imaging technologies. The 
images derive from interference signals received from the skin and a local 
reference. The technique has a maximal penetration depth of up to 2 mm, and the 
axial resolution is 5-10 µm, making it a promising tool for skin tumor diagnostics, 
although the field of view is somewhat limited (6x6 mm), and the penetration limit 
makes it unsuitable for the assessment of deep tumor borders in infiltrative tumors 
(45, 46). Newer types of OCT (spectral domain and swept source OCT) employ 
spectral light sources, but in a very narrow spectral range, which strongly limits 
the molecular contrast. The results of studies on the potential of optical coherence 
tomography in assessing tumor borders in NMSC are conflicting, with some 
studies reporting good accuracy (47, 48) and others low accuracy (49), possibly 
due to misinterpretation of glands and vessels, as well as the limited penetration 
depth. Studies on optical coherence tomography for lateral margin assessment of 
melanomas are lacking.  

Reflectance confocal microscopy 
In reflectance confocal microscopy, a low-power infrared laser is used to 
illuminate the skin, producing grayscale, horizontal (parallel to the skin), high-
resolution, histopathology-resembling images with an approximate 0.5x0.5 mm 
field of view. Automated software can combine consecutive sections in one plane, 
producing a mosaic image with a field of view of up to 10x10 mm (50, 51). 
Studies have shown that the technique improves the diagnostic accuracy of 
melanomas and NMSCs (52-54). Unfortunately, due to a decrease in resolution 
with depth, diagnostic interpretation is limited below a depth of 100-150 µm, 
which may be insufficient to detect tumor invasion or deep tumor borders (50). 
Nodular tumors or tumors with epithelial thickening, ulceration, or hyperkeratosis 
may also be difficult to image adequately as these factors reduce the image quality 
(50). Reflectance confocal microscopes are difficult to use for superficial tumor 
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border delineation as the images must be acquired in a closed chamber, which 
obscures the tumor. Hence, the images produced with cellular resolution cannot 
easily be precisely located on the skin (55). To circumvent this, one group marked 
the angles of a small skin area with a pen and correlated dermatoscopy images of 
37 lentigo maligna and lentigo maligna melanoma to reflectance confocal 
microscopy images in 4 directions. In 17 of the patients, the images revealed 
suspected tumor features more than 5 mm beyond the dermatoscopy border, which 
led to changes in the management of the patients (56). Other groups have used 
dermatoscopy-guided cuts or biopsies to guide the location of reflectance confocal 
microscopy images in ill-defined BCCs and lentigo maligna melanomas (55, 57, 
58). A major limitation of the technique is that imaging relies on the reflectance of 
a single illumination wavelength, limiting the contrast between light-absorbing 
molecules (59). Hence, the differentiation of benign and malignant tissue relies on 
the recognition of morphological features in the images and is therefore dependent 
on the dermatopathological experience of the user (60, 61). Furthermore, benign 
and malignant tumors share some morphological features, and can therefore be 
difficult to differentiate, even for experienced dermatologists (62). The time 
required to image a whole skin lesion varies from several minutes up to an hour, 
depending on the size and complexity of the lesion (60). Assessment by an expert 
then takes approximately 5 minutes per 8x8 mm mosaic image (56). The total time 
used for imaging and assessment makes the technique difficult to use in the 
clinical setting. 

High-frequency ultrasound 
High-frequency ultrasound is performed at a sound frequency of 20-100 MHz. 
Although it cannot be used to image deep organs it is suitable for skin imaging, 
where it can achieve penetration of up to several mm. It has been reported that 
measurements of Breslow’s depth in melanoma with high-frequency ultrasound 
showed good correlation to values obtained histopathologically (63). With the 
technique, both melanomas and NMSCs appear hypoechogenic, surrounded by the 
more echogenic epidermis and dermis. Given that most skin tumors are 
hypoechogenic, high-frequency ultrasound is mainly used for anatomical 
assessment of skin tumors including tumor thickness and infiltration, and cannot 
distinguish between inflammatory infiltrates, melanocytic proliferation, and 
neovascularization (63).  

Other techniques 
The 3D imaging techniques magnetic resonance imaging and diffuse optical 
tomography are limited by low spatial resolution, the smallest details observable 
being about 0.5 mm (64). A recent development of magnetic resonance imaging, 
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called high-resolution magnetic resonance imaging, has a spatial resolution of up 
to 100 µm and could potentially be used for structural imaging of skin, but cannot 
provide molecular contrast without the use of exogenous contrast agents. Two 
small studies have shown that high-resolution magnetic resonance imaging with 
exogenous contrast agents combined with a microscopy surface coil could 
delineate different skin layers down to the muscle fascia and predict NMSC and 
melanoma borders with good correlation to histopathological results (65, 66).  

Spectral imaging  
Most imaging techniques today are based on electromagnetic radiation (light), 
which interacts with tissues differently depending on the wavelength. Gamma rays 
and X-rays in the short wavelength range have high energy and are ionizing, 
which means they can alter molecules and are potentially carcinogenic. So-called 
optical imaging encompasses ultraviolet, visible, and infrared light, and is 
considered non-ionizing. Ultraviolet light is used to target DNA and RNA 
absorption in cell nuclear imaging (67), but can cause chemical reactions and 
damage of DNA, which limits its clinical use.  

Naturally occurring light-absorbing molecules are also known as endogenous 
chromophores. In techniques using single-wavelength excitation, the optimal 
excitation wavelength is chosen based on known chromophore absorption features. 
The resulting images will show differences in light absorption for the same 
wavelength but cannot discriminate between different chromophores. This is 
especially problematic in skin imaging, since both melanin and hemoglobin are 
strong chromophores, making it difficult to target other molecules. In analogy to 
ultrasound or X-rays, single-wavelength imaging will therefore reveal 
morphological rather than physiological or cellular features.  

Spectral imaging uses multiple wavelengths to illuminate tissue. The resulting 
emitted signals are related to the molecular constituents of the illuminated tissue, 
which makes spectral imaging relevant for imaging of skin tumors. Due to the 
high absorption of visible light by blood and the high absorption of infrared light 
by water and lipids, light penetration in biological tissues is deepest in the near-
infrared region. The near-infrared region lies between the visible region and the 
infrared region in the electromagnetic spectrum (Figure 2). Exogenous contrast 
agents, such as nanoparticles, organic dyes, and proteins, can be designed to bind 
to certain molecules and provide strong contrast at specific wavelengths, which 
maximizes their detection (68). However, they must be injected and are therefore 
invasive to the patient. Endogenous chromophores, such as blood, melanin, lipids, 
and water (Figure 3), also provide contrast, but do not affect the biological 
environment.  
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Figure 2. The electromagnetic spectrum. 
The shorter the wavelength, the higher the photon energy. The near-infrared region lies between wavelengths of 
approximately 700 and 2500 nm. (Illustration by the author.) 

 
Figure 3. Light absorption of endogenous chromophores in the ‘optical window’. 
The figure illustrates the relative absorbance of endogenous chromophores in the spectral range 680-970 nm (the 
‘optical window’) in terms of the extinction coefficient (a measure of how strongly the chromophores absorb light at a 
particular wavelength), assuming equal concentrations and light propagation lengths. Reproduced from data in S. L. 
Jacques (69) using MATLAB R2017b (MathWorks Inc., Natick, MA, USA). 



12 

Photoacoustic imaging 
Purely optical imaging methods do not have sufficient penetration depths to vis-
ualize all layers of the skin, or skin tumors thicker than 1.5 mm. PAI is a new 
multispectral (several preselected wavelengths are used) technique that records 
light-induced sound waves from tissue. Because sound waves scatter less than 
light waves, the technique can penetrate skin up to several mm while maintaining 
a high resolution. These features make PAI a potential tool for the imaging of skin 
tumors. Figure 4 shows approximate maximal penetration depths for various 
imaging techniques.  

 
Figure 4. Penetration depths in skin for various imaging techniques. 
The maximum approximate penetration depths for HSI, RCM, Dermatoscopy, OCT and PAI in the three skin layers; 
epidermis, dermis and subcutis. (Illustration by the author.) 

PAI derives from the discovery of the ‘photoacoustic effect’ by Alexander Graham 
Bell in 1881. As the name implies, Bell found that light could be converted into 
sound by exposing substances to intermittent sunlight (70). A century later, the 
introduction of lasers allowed for signal improvement, which made it possible to 
explore the photoacoustic effect in biomedical research (71). Improvements in 
ultrasonic detectors, data acquisition times, and data processing have made PAI an 
increasingly interesting technique for biomedical imaging (72), especially in the 
field of cancer research.  

An in vivo study on 31 patients with breast cancer showed that PAI could image 
the tumors with high contrast, providing reasonably good tumor size estimates 
(73). PAI depths of 4 cm have been reported in vivo in humans without the use of 
contrast agents (74). Although most research on PAI in humans has been carried 
out on breast cancer, one of the most promising areas for PAI is probably skin 
cancer, where light attenuation is less pronounced than in the breast. Here, it has 
the potential to visualize the entire extent of a skin tumor with optical contrast, 
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thereby filling the gap between existing optical techniques for superficial tumor 
characterization and the structural, deeper images provided by ultrasound. 

PAI is based on the emission of nanosecond pulses of laser light that are absorbed 
by chromophores in the tissue. Absorption of the energy from a laser pulse, and 
the subsequent heat release of that energy into the environment of the 
chromophore causes a short local expansion of the tissue, resulting in a small 
pressure wave, i.e. a sound wave is emitted. The pressure wave is recorded by an 
acoustic detector and converted into an electrical signal by piezoelectric sensors in 
the detector. In the photoacoustic detector used in the studies described in Papers 
I-III, the piezoelectric sensors are arranged in a linear array, producing a 
rectangular field of view. Linear array acoustic detectors are inexpensive, 
handheld, and can easily be integrated with light sources and conventional 
ultrasound systems (75). The spatial resolution of a linear transducer array 
represents the resolution along three separate axes; the lateral, the elevational, and 
the axial, as shown in Figure 5.  

 
Figure 5. Imaging axes. 
The three perpendicular imaging axes x, y and z. x is the lateral axis, y is the elevational axis and and z is the axial 
axis. The PA transducer captures 2D images in the cross-sectional xz-plane. By moving the transducer along the 
elevational y-axis, multiple 2D-images can be aligned to form a 3D image. (Illustration by the author.) 
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The lateral resolution (along the x-axis) is defined by the distance between the 
piezoelectric sensors in the array, and the axial resolution (along the z-axis) is 
defined by the center frequency of the transducer. For volumetric PAI, the linear 
array transducer is moved along the y-axis, capturing 2D images that are then 
aligned to form a 3D image. Due to the fixed cylindrical focus of the piezoelectric 
sensors, the elevational resolution is significantly lower than the axial and lateral 
resolutions (76). The spatial resolution in PAI decays with increasing depth from 
around 100 to 400 µm due to acoustic attenuation and distortion (77, 78). The 
higher the center frequency and the bandwidth of the acoustic detector, the higher 
the spatial resolution, but the lower the penetration depth. For example, an 
acoustic detector with a center frequency >20 MHz provides a sub-100 µm lateral 
resolution with an imaging depth of several mm, whereas a detector with a center 
frequency of <10 MHz  has lower resolution, but the penetration depth is >10 mm 
(76). Spherical or cylindrical detectors can also be used in PAI systems (79).  

The ability of PAI to detect and delineate deeper-lying tumors can be enhanced by 
exogenous contrast agents (80, 81). Exogenous contrast agents can provide high 
contrast when the endogenous optical contrast is not sufficient, which is especially 
desirable in the near-infrared window, where deep tissue imaging is achievable at 
the expense of endogenous contrast (81). For example, gold nanoparticles have 
been used in conjunction with hormones and antibodies to target melanomas and 
squamous cell carinomas in mice (82, 83). Some organic dyes, such as methylene 
blue and indocyanine green, are approved for human administration and have 
shown strong PA contrast in both animal and human studies on sentinel lymph 
nodes (84-86). However, there are no long-term studies of biological distribution, 
cytotoxicity, or renal clearance of exogenous contrast agents with targeting ligands 
exposed to PA light (87), and so far, all in vivo human PA studies on skin tumors 
have been carried out without exogenous contrast agents. 

PAI systems can be broadly divided into optical (PA microscopy) and acoustic 
resolution (PA tomography) systems. In PA microscopy, which is mostly used for 
preclinical studies (88), focused laser light is used for high-resolution imaging 
(~5–50 μm) at shallow depths (up to 1 mm). In PAT, diffuse laser light is used for 
deeper imaging (several mm), at the expense of the resolution (~100–500 µm). 

Previous animal studies using PA microscopy and PA tomography have imaged 
the capillary bed (89), tumor angiogenesis (90, 91), and xeno-transplanted 
melanomas (91-95). Previous PAI studies on human skin tumors have been small 
and limited to a few tumors or some tens of tumors at most. Among the benign 
tumors studied are pigmented nevi (96-100), vascular tumors (101-104), 
seborrheic keratosis (97, 105, 106), viral wart (107), and neurofibroma (100). 
Malignant skin tumors studied with PAI include BCCs (40, 104, 106, 108-110), 
cSCCs (106, 108), and malignant melanomas (97, 111-113). There are 
considerable methodological differences between these studies. Many were pilot 
studies of new PA systems, where a few tumors were included to demonstrate the 
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imaging potential of the new system (96-99, 102-104, 109, 111, 113, 114). Other 
studies have used commercially developed PAI/ultrasound systems for the 
characterization of different types of tumors, or to evaluate PAI in a clinical 
setting (40, 101, 105-107, 110, 112). In this dissertation, the term PAI refers to PA 
tomography (Papers I-III).  

Melanin and hemoglobin are the most common molecular targets in previous 
studies. PAI has been shown to be able to visualize vessels and blood volume 
inside, or in the vicinity of, tumors by measuring hemoglobin absorption (98, 100, 
102, 107, 108, 111), as well as hemoglobin concentration and oxygen saturation in 
vascular tumors (101). Malignant tumors typically have a dense and unorganized 
vasculature compared to benign tissue (115), making increased hemoglobin 
content a potential indicator of malignancy. Visualization of the capillary bed is 
possible using PA microscopy to detect hemoglobin absorption (102), whereas 
broader feeding vessels can be visualized with PA tomography (111). Melanin 
absorption has been used for delineation and measurements of tumor dimensions 
in pigmented tumors (98, 105-107, 111, 112), showing good correlation with 
histopathological measurements in studies where these were available. A more 
recent approach to PA skin tumor imaging has been to obtain the spectral 
fingerprint of a tumor using several excitation wavelengths, and then to use the 
tumor spectrum (as opposed to known chromophore spectra) in spectral analysis 
for tumor pixel identification (97). This type of approach was used in all the 
studies presented in this dissertation.  

The Union for International Cancer Control classification system for skin cancer 
describes the primary tumor size and features (T), regional lymph node 
involvement (N) and presence of distant metastatic spread (M). Early and correct 
classification of a cancer according to the TNM system could improve patient 
management and prognosis. Studies on melanoma have shown that PAI has the 
potential to aid in the identification of sentinel lymph nodes (85, 86, 116-119), 
which is the first site of metastasis, and to detect melanocytes in the bloodstream 
(120-124). 

PAI takes advantage of the fact that each endogenous chromophore in the human 
skin has its own, unique light-absorbing spectrum, which can be used for 
functional monitoring and imaging. To understand this, one can consider the well-
known finger pulse oximeter, which is used in health- and emergency clinics 
worldwide (Figure 6). In this device, differences in the absorption spectra of 
oxygenated and deoxygenated hemoglobin are used to monitor oxygen saturation 
in sick patients.  



16 

 
Figure 6. Principle of a pulse oximeter measuring hemoglobin light absorption. 
The commonly used pulse oximeter serves as an example of how the absorption spectrum of tissue chromophores 
such as hemoglobin can be utilized for content quantification. The skin is illuminated with visible red light (660 nm) 
and infrared light (940 nm). The absorption of light at these wavelengths differs between oxygenated (red) and 
deoxygenated (blue) hemoglobin, which results in more visual, red light passing through oxygenated hemoglobin and 
more infrared light passing through deoxygenated hemoglobin. The percentage oxygen saturation can then be 
estimated through measurements of the transmitted light and calculation of ratio. (Illustration by the author.) 

The use of multiple excitation wavelengths in PAI produces images of tissue in 
which each single pixel contains a unique spectrum representative of the molecular 
composition at that location (Figure 7). The spectrum in one pixel can be assumed 
to represent a combination of spectra from several chromophores. To estimate the 
contribution of a specific chromophore or component to the pixel spectrum, 
spectral analysis is needed. 
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Figure 7. Example of a PA absorption spectrum in a single pixel. 
Live screenshot during a 2D PA scan showing light absorption in red overlaid on an ultrasound image of the same 
cross section (a). Each 2D cross-section is illuminated with 59 different wavelengths of light, and hence, each pixel in 
the PA image will contain an absorption spectrum, as shown in the graph (b).  

In this work, a combined PAI/high-frequency ultrasound system was used to 
obtain skin tumor spectra for imaging and delineation of the tumors in 3D. The 
ultrasound images provide an anatomical and structural reference for the PA 
images. PAI has also been combined with other imaging modalities, such as OCT 
(104).  

Hyperspectral imaging 
Hyperspectral imaging (HSI) is an optical, non-invasive imaging technique, in 
which reflected light is analyzed over a broad wavelength spectrum in every pixel. 
HSI has existed for a few decades but has only recently been developed for the 
purpose of biomedical imaging. HSI has the advantage of generating very detailed 
spectral information from the superficial skin layers (depth up to 0.2 mm) at high 
speed and with a large field of view. While conventional cameras capture light in 
three spectral bands (red, green, and blue), HSI employs hundreds of contiguous 
spectral bands (125) (Figure 8). As in PAI, tissue chromophores such as melanin, 
hemoglobin, proteins, and water, affect the absorption and reflection of emitted 
light, creating a unique spectral signature for different tissues. A hyperspectral 
image can be generated in different ways. A detailed description of the different 
HSI techniques has been presented by Lu & Fei (126). In medicine, HSI has been 
used to study a wide range of diseases, including cardiac disease (127), diabetes 
(128), burn wounds (129), and different types of cancer (130, 131). In skin cancer, 
HSI has shown promising results as a diagnostic tool for discriminating between 
benign and malignant pigmented lesions (132-136), tumor invasiveness (137), and 
tumor delineation (138-140). HSI has the advantage of a large field of view, and 
images can be interpreted quickly without histopathological experience. However, 
only a few small studies have used HSI for skin tumor delineation.   

x 

 z 



18 

In the present work, HSI was used in combination with machine learning for the 
delineation of different skin tumors on the skin surface. In HSI, scanning a single 
tumor generates several gigabytes of spectral data. Although this may pose a 
problem for data storage, it provides good opportunities for machine learning, 
where large training datasets are needed.  

 
Figure 8. Spectral bands. 
A simplified figure illustrating the difference between the number of spectral bands employed by conventional 
cameras and HSI. Conventional cameras capture light in the three overlapping spectral bands R (red), G (green) and 
B (blue), whereas HSI captures light in hundreds of contiguous spectral bands. (Illustration by the author.) 

Spectral analysis  
When imaging tissue in which the exact location of different chromophores is 
unknown, spectral analysis of the pixels is needed to isolate the chromophores and 
estimate their relative contributions to the pixel spectrum. This can be done in 
different ways, for example, using methods based on linear regression- or 
statistical detection, or by machine learning (artificial intelligence). An 
introduction to the spectral analysis methods used in this work is given below.  

Linear spectral unmixing  
One of the most common methods of spectral analysis is linear spectral unmixing. 
In linear spectral unmixing, it is assumed that the spectrum measured in each pixel 
is a linear combination of spectral signatures belonging to set of different 
chromophores, weighted by their relative abundances. Usually, the spectra from 
known chromophores are used in the algorithm, such as those for blood, water, 
and melanin (69). However, unknown target spectra can also be incorporated into 
the algorithm, such as a presumed tumor spectrum, or the spectrum of presumed 
healthy skin, to calculate the fractional abundance of the tumor spectrum or 
healthy tissue spectrum in a pixel. A drawback with the method is that it only 
accounts for target spectra that have been included in the algorithm, and hence, 
there is a risk that contributions from other chromophores can be missed.  In this 
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work, linear spectral unmixing was applied to PA data to identify pixels with 
tumor-resembling spectra (Papers I-II).  

Adaptive matched filter 
The adaptive matched filter (AMF) is a method of spectral unmixing that estimates 
the probability of each pixel being in the target area based on the statistical charac-
teristics of the background. By applying a multivariate Gaussian distribution to 
model the background, the method accounts for spectral fluctuations due to 
spectral coloring (wavelength-dependent light attenuation) and additional noise 
sources (141) . It has been shown that AMF outperforms common linear spectral 
unmixing algorithms provided the target is sparsely distributed in the tissue (142). 
Applying AMF to PA images at different wavelengths results in detection images 
in which the amplitude corresponds to target probability.  

Machine learning 
Machine learning is a branch of artificial intelligence (Figure 9) in which 
computer models learn from ‘training data’ and make predictions of data that they 
have not seen before by identifying patterns in the data (143). An important use of 
machine learning is in so-called classification problems, where objects belonging 
to different categories are separated by the machine learning model. The training 
data for the model are therefore labelled data points belonging to the different 
categories. So-called Artificial neural networks (ANNs) were used as the machine 
learning models in Paper IV. ANNs are models that are inspired by the signal 
propagation between neurons in the human brain. In an ANN, nodes receive input 
signals that are weighted according to how important they are for the output. The 
information is then combined and processed through an activation function to 
produce a signal, which is then forwarded to the next layer of nodes in the ANN. 
In a multi-layer perceptron (MLP) ANN, several layers of nodes allow for more 
complex learning. The process by which an MLP learns is called the 
backpropagation algorithm. Simply explained, backpropagation means that a 
supervisor corrects the ANN when it makes mistakes, and the error is propagated 
back to the previous layer, leading to an adjustment of how inputs are weighted. 
Hence, the ANN will learn from both the labelled data and from its mistakes.  

One problem associated with MLPs is that the more layers are added, the more 
difficult it becomes to update the weights because the signal becomes weaker. 
Deep learning models such as convolutional neural networks (CNNs) seek to 
overcome this ‘vanishing gradient’ by detecting features that are considered good 
input for the MLP. CNNs are commonly used for detecting and classifying objects 
in images. Here, CNN works like a filter that moves over the image and extracts 
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features from one neighboring part of the image at a time, and then connects all 
the information.  

 
Figure 9. Branches of artificial intelligence.  
ANNs and deep learning models such as CNN are branches of artificial intelligence and machine learning. ANNs and 
CNNs are often used to find patterns and to classify objects in medical images. (Illustration by the author.) 

The past decade has seen an explosive increase in the number of studies and 
publications in the field of artificial intelligence and machine learning. Neural 
networks are often trained and evaluated using large, public datasets of 
dermatoscopy images (144, 145). CNN algorithms have been shown to have 
comparable or superior performance in the classification of both non-pigmented 
and pigmented skin tumors from dermatoscopy images, compared to clinicians 
(146, 147).  

Segmentation 
The purpose of segmentation is to define an object in an image, in this case a 
tumor. Segmentation divides original images into classes (148) such as tumor or 
healthy tissue, enabling delineation of the tumor borders. Only a few studies have 
used ANNs for segmentation of skin tumors using HSI (149, 150). Studies on PAI 
have shown that neural networks can be used for segmentation of normal skin 
structures (151, 152), but studies on skin tumors are lacking. Most segmentation 
studies (usually on dermatoscopy images) have relied on manually drawn ground 
truth masks for segmentation training, strongly limiting their clinical value. 
Ground truth masks define the position and size of objects in images. They are 
usually drawn manually in tumor delineation studies, to serve as reference 
standards in the training of ANNs. Attempts have been made to improve ground 
truth images by drawing masks related to histopathological cross sections, but the 
results were only approximate, affecting both training and evaluation of the 
network (149). The majority of segmentation techniques for spectral data involve a 
standard deep learning model called U-net (153). However, training this type of 
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network requires annotation for each individual pixel, and is therefore difficult to 
use for preoperative delineation purposes unless the true (histopathological) tumor 
borders are precisely matched with locations in the training images.  
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Aims 

The general aim of this work was to explore and develop new spectral techniques 
for imaging and delineation of skin tumors, to guide surgery.  

Specific aims 
• To explore PAI for 3D delineation of tumor borders, and HSI for 2D 

tumor delineation on the skin surface 

• To explore methods of spectral analysis that can differentiate between 
signals from tumors and from healthy skin, including linear spectral 
unmixing, the adaptive matched filter and machine learning 

• To develop automatic algorithms for pixel classification and tumor border 
delineation 
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Materials and methods 

Ethics 
The patients were given oral and written information about the study and were 
informed of the voluntary nature of participation. Emphasis was put on the fact 
that neither the study nor participation in it would affect their individual treatment 
or prognosis. Patients younger than 18 years, and patients who were incapable of 
providing consent were not included in the studies. All the included patients gave 
their fully informed written consent. The protocols for the studies were approved 
by the Ethics Committee at Lund University, Sweden, and the Swedish Ethical 
Review Authority. The research was conducted in accordance with the Declaration 
of Helsinki 2013 (154). Access to personal data relevant to the studies was 
approved by the KVB-group, Region Skåne.  

The safe handling of the patients and skin lesions was of fundamental importance, 
since the procedure involved potential risks. The patient safety risks included the 
risk of laser-induced eye injury, incorrect patient id-labelling or mix-up of lesions, 
loss or damage to lesions, incorrect handling of histopathology referral documents, 
and delays in transportation of the lesion to the Department of Pathology. To 
minimize these risks, laser safety regulations were followed, and step-by-step 
protocols were developed and then approved by the head of the Department of 
Dermatology.  

One of the ethical difficulties associated with this work is that it involves patients 
who are dependent on treatment for their skin lesions. Before surgery, the patients 
were informed about the study, and given the choice to participate. The limited 
time before surgery could have led to the risk of therapeutic misconception, where 
the patient might believe that the researcher is involved in the treatment, and 
therefore agrees to participate, or that the results of imaging will be used for 
diagnosis directly following surgery. It can also be anticipated that patients who 
have a suspected malignant skin tumor are more vulnerable and thus prone to 
participate in research involving the diagnosis of skin tumors.  

Another ethical problem associated with this research is that we recorded 
information about skin type (Fitzpatrick scale), which is sensitive personal data, 
but nonetheless important since the degree of skin pigmentation affects spectral 
signals.  
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Subjects and tumors 
All the patients were recruited from the Department of Dermatology at Skåne 
University Hospital in Lund. Inclusion criteria for all the studies were age ≥18 
years and that the tumors were suspected of malignancy and primary excision was 
planned (i.e. not re-excision). The skin types of the patients varied, but most of the 
patients had skin type II on the Fitzpatrick scale (fair skin). 

In the first study (Paper I), 61 patients with 76 suspected cSCCs were recruited. 
Three of the tumors were scanned with PAI both in vivo before surgery, and ex 
vivo immediately after surgery. The remaining tumors were scanned ex vivo only. 
Almost half of the tumors (37/76) were confirmed by histopathological 
examination to be cSCCs. The data from the three in vivo scans were not included 
in the analysis due to a large variation in the spectral signal, probably caused by 
movement artifacts. Four of the ex vivo cSCCs were also excluded due to a large 
variation in the spectral signal (cause unknown). Data from the remaining 33 ex 
vivo cSCCs were thus analyzed.  

In the second study (Paper II), 52 suspected melanomas (from 50 patients) were 
scanned with PAI ex vivo. Histopathological examination showed that 25 of the 
tumors were malignant melanomas and the remaining 27 tumors were nevi. Four 
of the tumors were also imaged with HSI, and the data is included in Paper IV.  

In the third study, (Paper III), data from seven of the ex vivo malignant melanomas 
from the previous study (Paper II) were analyzed with AMF-ATS.  

In the final study (Paper IV), 22 skin lesions suspected of being BCCs, cSCCs, or 
malignant melanoma, in 21 patients, were imaged ex vivo with HSI. Four of these 
tumors had also been scanned with PAI and were included in Paper II. The 
histopathological diagnosis revealed that three of the lesions were not tumors (sun 
damaged or bluish colored skin) and these lesions were therefore excluded from 
analysis. One papilloma was also excluded from the analysis due to its small size, 
making it difficult to handle during image acquisition. Data from the remaining 18 
tumors were analyzed with machine learning. Spectral component maps (images 
visualizing spectral contrast) of the tumors revealed that four of the tumors (1 
cSCC, 2 BCCs, and 1 fibrous histiocytoma) had insufficient signal-to-noise ratio 
to allow the delineation algorithm to be run reliably and were therefore excluded 
from the comparison with histopathological measurements.  

Safety aspects 
The PA system used (Papers I-III) does not have CE or FDA approval for clinical 
use. It was therefore critical to ensure the safety of all persons in the vicinity of the 
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system. Aspects of laser, ultrasound, and electrical safety were carefully 
controlled.  

Lasers can potentially damage the eyes and skin and pose a risk when in contact 
with combustible materials. Eye injuries are the major risk when working with 
lasers, and therefore the classification of lasers is mainly based on the amount of 
exposure the eye can be subjected to with only low risk of damage. The PA system 
used contains a Class IV laser, meaning it belongs to the class of lasers with the 
highest energy output. Due to the wavelength range used (visible to near-infrared 
light), it is dangerous, especially to the retina of the eye, where it can cause 
irreversible burns and lead to vision impairment or blindness. The laboratory and 
equipment used followed regulations and standards set by Lund University, the 
Swedish Work Environment Agency, and the Swedish Radiation Safety Authority. 
Laser safety glasses (LSBGKG-33-BK, Phillips Safety Products, Middlesex, NJ, 
USA) providing protection in the wavelength range used were worn by all staff, in 
accordance with the European norm for laser safety eyewear. The three patients 
whose tumors were scanned in vivo (Paper I) wore stainless steel eye shields as 
long as the PA system was turned on. A comprehensive description of exposure 
levels with the PA/ultrasound system used, the safety equipment, and electrical 
safety analysis  has been published previously (155). 

The other type of laser used in this research, in the HSI system, was a Class I He-
Ne laser. Two of these were used for height alignment to obtain the correct 
distance from the measured surface to the objective lens. This class of laser has a 
low energy output and is often used in toys, laser pointers, etc., without the need 
for eye protection. In the HSI system, the light source used to illuminate the tissue 
surface during measurements was a tungsten-halogen lamp with an output power 
of 100 W. Since the light was guided through a fiber and the illuminated surface 
was placed at least 10 cm away from the fiber, an estimated 1 W reached the 
tumor. Accounting for the illuminated area, the effective photon flux was 
estimated to 0.1 W/cm2, which is similar to the solar flux. The lesion surface is 
therefore heated slightly, but no damage is induced to the tumor or the surrounding 
healthy tissue.  

Experimental setup and equipment 
Experimental setup 
Following excision by surgeons at the Dept. of Dermatology, the tumors were 
placed in saline and transported directly by researchers to the research laboratory 
at the Department of Ophthalmology, Skåne University Hospital, Lund, where the 
imaging of tumors was carried out. Hair was removed from the tumor and skin 
before imaging.  
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For PAI, holding sutures (Prolene 6-0, Ethicon, Cincinnati, OH, USA) were 
carefully attached, either to existing sutures, or around the excision margins of the 
tumor-free edges of the lesion, under a microscope, and the tumor was then placed 
centrally in a 100x70x50 mm Perspex container with balanced salt solution. A 
layer of black ultrasound-attenuating material was placed in the bottom of the 
Perspex container. To simulate an in vivo setup, in which there must be a distance 
between the laser fibers and the skin surface, a 10-mm thick transparent gel pad 
(Aquaflex, Parker Laboratories Inc., Fairfield, NJ, USA) with protective plastic 
was used (Figure 10). The tumors were centered under the transducer, and a fast 
ultrasound scan was made along the tumor to control its position and to check that 
the transducer could move freely without touching the tumor. After PAI, the 
holding sutures were removed, and the tumors placed in formalin. 

No sutures were required for HSI imaging. The tumors were illuminated with 
white light, and the camera aligned so that the detection line of the sensor was 
centered under the illumination spot. The tumors were then scanned and, after 
examination, placed in formalin.  

After imaging, the tumors were transported to the Department of Pathology for 
histopathological examination.  

 
Figure 10. PAI experimental setup. 
The stepper motor moves the PA transducer along the ex vivo lesion. A gel pad is used to simulate an in vivo setup, 
in which there must be a distance between the laser and the skin surface. (Illustration by the author.) 
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Photoacoustic imaging equipment 
A Vevo LAZR-X (FUJIFILM VisualSonics Inc., Toronto, ON, Canada) hybrid 
imaging system was used in the first three studies. This system combines PAI with 
linear array high-frequency ultrasound. The use of a linear array transducer 
generates both PA and high-frequency ultrasound images, which can then be 
fused. In this system, fiber optic bundles coupled to a 20-Hz tunable laser with a 
nanosecond pulse duration are inserted on each side of the ultrasonic transducer, 
illuminating the skin surface with two planar light beams. The laser can be used in 
two wavelength ranges; 680-970 nm and 1200-2000 nm. However, due to intense 
water absorption in the longer wavelength range, only the shorter wavelength 
range was used in this work. To obtain detailed spectral information from the 
tumors, 59 excitation wavelengths were used in 5 nm steps (680, 685, 690 nm, 
etc.). Prior to the measurements, the pulse fluence (optical power per unit area) 
was calibrated for each wavelength so that the signal could be corrected for 
wavelength-dependent fluence variations. In the first study, a 40 MHz ultrasound 
transducer (MX400, VisualSonics Inc.) with a center frequency of 30 MHz and a 
bandwidth of 22-40 MHz was used to detect the acoustic waves generated by 
illuminating the tissue. This transducer has a measuring depth of 20 mm and 
provides an axial resolution of 50 µm and a lateral resolution of 110 µm. Its 
imaging width is 13 mm. In the second and third studies, a second transducer 
(MX250, VisualSonics Inc.) was also used to examine tumors ≥13 mm wide. This 
transducer has a center frequency of 20 MHz and a bandwidth of 13-24 MHz. Its 
axial resolution is 75 µm and its lateral resolution is 165 µm. To enable 3D 
imaging, limit motion artefacts, and control the illumination angle, the laser-
coupled transducer was mounted on an adjustable arm with a stepper motor 
(Mounting Accessory, GCX Corporation, Petaluma, CA, USA), which moved the 
transducer in 0.5 mm steps along the tumor (Figure 10). The resulting 2D images 
could then be aligned and compiled to form one 3D image. With the above 
settings, the acquisition time was ~6½ minutes per cm along the y-axis of the 
lesion.  

Hyperspectral imaging equipment 
A custom-built hyperspectral camera from the HySpex model series (Norsk 
Elektro Optikk, Oslo, Norway) was used in the fourth study (Paper IV). A 
tungsten-halogen lamp with a peak temperature of 2900 K was used to illuminate 
the tumors with broad-spectrum white light. The camera has a spectral sensitivity 
from 600-1700 nm, i.e. from the visual and far into the infrared range. This 
spectral bandwidth is split into 322 spectral bands, which gives a spectral 
resolution of approximately 3.5 nm. Spectra were recorded from continuous points 
along a 32 mm thin line on the surface of the lesion. Each line has a spatial 
resolution of 50 µm (640 pixels). Hence, every scanned line produces 182,000 



28 

(640x322) spectral data points in a single aquisition. The tumors were scanned line 
by line, covering the whole surface of the lesions, thereby generating a vast 
amount of data. These lines were then stitched together to form a complete 
hyperspectral image. To normalize the spectrum, a white reference (Spectralon®, 
WS1, Ocean Optics) reflecting 50% of incoming light at all wavelengths was 
placed next to the lesion and imaged together with the lesion (Figure 11). A dark 
reference was also obtained by turning the light source off and repeating the 
measurements. The dark reference was used to account for background or 
electronic noise. The HSI acquisition time was up to 18 seconds per cm.  

 
Figure 11. HSI experimental setup.  
A white light is used to illuminate the lesion surface. A line is thereafter imaged onto an area detector. Prior to 
reaching the detector, the light is dispersed by a prism at each point along the line such that one dimension of the 
detector area captures the spectral information, while the other dimension captures the spatial information. A 
hyperspectral image is obtained by scanning the lesion line by line across the surface. A white reference is also 
scanned for each lesion. (Illustration by the author.) 
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Imaging of skin tumors  
The variable and unpredictable molecular compositions of human tissue makes 
imaging from spectral data a complex process, and hence, there is no standard 
technique for spectral analysis of the skin. Throughout this research, different 
techniques for spectral unmixing were tested and developed, from linear spectral 
unmixing (Papers I-II) to a statistical detection method (AMF) (Paper III), and 
machine learning (Paper IV).  

Photoacoustic imaging of cSCCs using linear spectral unmixing 
Measurements were carried out ex vivo on 33 cSCCs to determine whether the 
mean tumor spectra (as a function of wavelength) could be used for imaging 
(Paper I). All the PA scans were processed using VisualSonics Vevo LAB 3.1.0 
software. Regions of interest were defined in the ultrasound images by hand. To 
obtain reference spectra from the cSCCs and healthy tissue, freehand regions of 
interest were drawn in the (apparent) center of the cSCC and in seemingly healthy 
tissue at the wedge-shaped edges of the excised lesions, respectively. After 
establishing that there was a significant difference between the mean signal from 
all cSCCs and the mean signal from all healthy tissue, these mean spectra (as a 
function of wavelength) were used in a linear spectral unmixing algorithm to map 
the distribution of cSCC-resembling spectra. Linear spectral unmixing was also 
used to map hemoglobin content, using known spectra for deoxygenated and 
oxygenated hemoglobin. The anatomical location of cSCC-resembling spectra and 
hemoglobin was visualized by overlaying the unmixed PA images on a 3D 
ultrasound image.  

Photoacoustic imaging of melanomas and nevi using linear spectral 
unmixing 
In the next study, individual spectra were recorded ex vivo of 52 suspected 
malignant melanomas using PAI (Paper II). The reference spectra from regions of 
tumor and healthy tissue were obtained using an absorption profile from the whole 
excised lesion, taking advantage of the high absorption of melanin in the tumors. 
An algorithm was then developed for use in linear spectral unmixing, which 
classified pixels as belonging to tumor or healthy tissue. In short, the method was 
as follows. Raw data from the VisualSonics Vevo LAB 3.1.0 software were 
imported into MATLAB R2017b (MathWorks Inc., Natick, MA, USA) where 
ultrasound images were used to automatically remove unwanted signals from the 
ultrasound gel, protective plastic, and the saline solution, using an intensity 
histogram. A heat map showing the change in the wavelength-dependent 
absorption across the entire lesion was then generated. With the presumption that 



30 

an increase in melanin is indicative of melanoma, the overall PA intensity 
(averaged across all wavelengths), was used to identify the location along the 
sample most likely representing tumor (highest intensity) and healthy tissue 
(lowest intensity). The cross-sectional PA images from these two locations were 
then used to extract reference spectra representing tumor and healthy tissue. Using 
the ultrasound image as a guide, a spatial average of the intensity at each 
wavelength was obtained over an area of the tumor or healthy tissue, spanning 
across the epidermis and dermis. The two resulting spectra were then used as so-
called endmember spectra (Si) in the linear spectral unmixing equation below to 
classify each pixel: 

𝑴𝑴 =  �𝑎𝑎𝑖𝑖𝑺𝑺𝑖𝑖 +𝒘𝒘
𝑁𝑁

𝑖𝑖=1

 

  (1) 

where M is a vector representing the measured PA spectrum in a single pixel, ai 
are the linear coefficients (fractional abundances) of each endmember (known 
chromophore or defined) spectrum Si, and w accounts for spectral noise.  

After adding a criterion stating that the sum of the linear coefficients (ai) must be 
1, which essentially creates a scale ranging from ai = 0 (100% healthy tissue) to ai 
= 1 (100% tumor), an automatic threshold function was applied where any pixel 
yielding ai >0.5 was classified as tumorous, and ai ≤0.5 was classified as healthy. 
A pixel-by-pixel analysis using this criterion could then not only classify the 
pixels as tumorous or healthy, but also to what degree their spectra resembled the 
tumor spectrum. Finally, the pixels classified as tumor were color-coded and 
overlaid on the corresponding ultrasound image to show their location within the 
excised lesion.  

Photoacoustic imaging of melanomas using AMF 
In the third study, the AMF method was investigated for spectral unmixing. AMF 
is based on statistical detection, as opposed to linear regression in linear spectral 
unmixing. The method was first tested on a phantom and then on seven malignant 
melanomas ex vivo (included in the study in Paper II). The data were processed in 
MATLAB. To reduce noise, pixels with an intensity of below 2% of the maximum 
intensity were removed, and a moving average filter was applied to the pixel 
spectra to reduce sudden fluctuations. By calculating a detection value for each 
pixel, AMF determined the similarity of the pixel spectrum to the target spectrum 
(i.e. a defined tumor spectrum) using the equation below:  
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(2) 

where D is the AMF detection value for each pixel at position r in the image, μt is 
the target reference spectrum, μb is the mean background spectrum, Σ is the 
background covariance matrix, T is the matrix transpose operator, and xr 

corresponds to the multispectral data at position r. D is a measure of the 
probability that a spectrum in a pixel belongs to the target. By applying a threshold 
to D, pixels can be divided into either target or background. The μt target spectrum 
and the μb background specta were defined as the mean of the target spectra from 
the multiwavelength PA images, selected from regions of interest in the top layer 
of the tumors and healthy tissue. To separate target (tumor) pixels from the 
background, an algorithm that selected the threshold automatically was computed 
(for further details please see Section 2.3 in Paper III).  

Hyperspectral imaging of various skin tumors using machine learning 
In the final study (Paper IV), HSI was used to provide highly detailed spectral 
information from the surface of suspected BCCs, cSCCs, and malignant 
melanomas. The spectral output was converted to absorbance by calculating the 
negative logarithm of the normalized signal, using the following equation:  

𝐴𝐴(𝜆𝜆) = −𝑙𝑙𝑙𝑙𝑙𝑙10 �𝐼𝐼 (𝜆𝜆) 𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅⁄ (𝜆𝜆)� 

(3) 

where A(λ) is the absorbance (as a function of wavelength), I(λ) is the diffusely 
reflected spectrum (as a function of wavelength) and IRef(λ) is the white reference.  

Three different machine learning networks (ANNs) were used to automatically 
image and delineate different tumors, irrespective of the final diagnosis of the 
tumors. To train the ANNs, pixels were selected and classified as tumor or 
healthy. This selection was guided by HSI overview photos that could be related to 
histopathological cut-out templates and fixed tissue sections. The pixels classified 
as tumor were usually chosen from the center of the tumors, and those classified as 
healthy were chosen from the wedge-shaped edges of the lesions. The 3 different 
ANNs were: 1) a multi-layer perceptron (MLP), 2) an additional multi-layer 
perceptron trained on multivariate curve-resolution-alternating least-squares (MLP 
with MCR-ALS), and 3) a 1D convolutional neural network (1D CNN).  



32 

MCR-ALS analysis was used to extract the most common spectral features from 
all tumors combined, with the spectral components representing particular compo-
sitions of the tissue. As the signal-to-noise ratio was very low in the spectral range 
1400-1600 nm, this spectral range was excluded from the analysis with MCR-
ALS. The MLP and 1D CNN were trained on raw spectral features, and the MLP 
with MCR-ALS was trained on the 8 MCR-ALS extracted components. MLP and 
1D CNN both consider 1 pixel at a time as input, but the CNN also weighs in 
neighboring spectral features.  

After training, the ANNs were used to make predictions about the probability that 
each pixel represented tumor, generating prediction maps. A segmentation 
algorithm was then used to delineate the tumors. In this algorithm, a function 
acting as a “sandpile” was used to add spatial context to the pixels and thereby 
reduce areas of misclassified pixels. This resulted in larger sandpiles in the center 
of the tumors and smaller sandpiles piles in areas where pixels had been 
misclassified due, for example, to hair, marker pen ink, or noise. An active contour 
algorithm (156) was then used to define the tumor edges. The active contour 
algorithm behaves like a rope, tightening around the sandpiles where it passes 
small noise hills until it reaches an equilibrium.  

Finally, the saliency was calculated to assess the impact of different spectral ranges 
on pixel classification. Saliency is a measure of how the output changes when input 
features are disturbed. Greater changes in output indicate higher importance of the 
input and show a higher saliency. Based on observations of saliency peaks, the 
ANNs were again trained on selected spectral ranges (600-750 nm, 1000-1200 nm, 
and 1300-1400 nm), generating new tumor images that were delineated to illustrate 
how tumor dimensions changed depending on the spectral range.  

Statistical analysis 
All calculations and statistical analysis were performed in MATLAB. Significance 
was defined as p <0.05. A Pearson correlation coefficient (r) >0.7 was considered 
to indicate a strong correlation.  

Comparison of tumor and healthy spectra 
The mean paired difference in PA absorption spectra between cSCCs and sur-
rounding healthy skin was analyzed using the two-way paired t-test for repeated 
measures (Paper I). The absorption spectra from melanomas, nevi, and healthy 
tissue were analyzed using the two-way ANOVA test, and Grubb’s test was used 
to identify outliers (Paper II).  
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Comparison of imaging measurements with histopathological 
measurements 
The correlation between tumor width and thickness measured with PAI and 
histopathological examination was determined using the Pearson correlation 
coefficient (Papers II and IV) and the relative mean squared error (Paper IV). 
Bland–Altman plots were used to demonstrate differences between the 
measurements in the third study (Paper III).  
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Results and discussion 

Our group has previously reported the potential of PAI to image human BCCs 
(110). The feasibility of using PAI for imaging and delineation of human cSCCs, 
melanoma, and nevi was explored in the present research. A requirement for 
successful imaging of a skin tumor using spectral techniques is that the spectral 
signal of the tumor differs sufficiently from the spectral signal of the surrounding 
healthy skin. This was investigated in the first two studies, where the mean 
spectral signals from cSCCs, malignant melanomas, and nevi were compared to 
the mean spectral signals from healthy skin. Spectral unmixing algorithms were 
then applied to locate and image the tumors, and the correlation between the 
results of imaging methods and histopathological examination was determined in 
the second and third study. In the fourth study, machine learning was used on HSI 
data of different tumor types. The ANNs were trained on individual tumor spectra, 
assuming a spectral difference between tumor and healthy tissue. The ANNs were 
then used to predict and delineate the tumors, and correlations to histopathological 
measurements were determined to evaluate the performance of the method.  

Photoacoustic imaging of cSCCs 
The results from the first study showed that there was a significant difference 
between the mean PA spectral signals from cSCCs and healthy skin in the 
wavelength range 765-960 nm (Figure 12).  

It was then demonstrated that the mean PA tumor spectrum could be used in a 
linear unmixing algorithm for cSCC imaging in 3D (Figure 13).  

The molecular composition of the tumors was not investigated. Keratin, which is 
probably the most abundant chromophore in cSCC, absorbs light mainly in the 
ultravioulet region (157), and its contribution to the tumor signal can thus be 
assumed to be negligible. Only a few studies have been performed previously on 
human cSCCs using PAI in which the melanin and hemoglobin signals were used 
to provide contrast, but none investigated using the cSCC signal for imaging. In 
the first PA study including human NMSCs, Zeitouni et al. (108) demonstrated in 
one BCC and one cSCC that PA could be used as a supplement to high-frequency 
ultrasound to improve tumor demarcation in vivo using one wavelength (580 nm) 
to image hemoglobin absorption. Later, Attia et al. (107) performed multispectral 
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PA scanning of 21 suspected NMSCs (number of cSCCs unknown) in vivo, using 
melanin and hemoglobin for imaging. Their study showed good correlation with 
histopathological measurements when using a 3D ultrasonic transducer. In another 
study, the same research group used multispectral PAI to study 19 BCCs and 6 
cSCCs in vivo (106), again using the hemoglobin and melanin signals for imaging. 
The measured tumor dimensions correlated well with the results of histopathology. 
However, it was reported that the PA measurements were less accurate at shallow 
tumor depths. This was attributed to anisotropic resolution in the peripheral 
regions of the field of view.  

 
Figure 12. The mean PA spectral response of cSCCs and surrounding healthy skin.  
The figure shows ex vivo measurements from 33 tumors, A significant difference (*) was seen between the spectral 
signatures for wavelengths in the range 765-960 nm (p < .05).  

 
Figure 13. PAI of a cSCC.  
Representative example of a PA image of a cSCC (a), and two slices of the lesion along the y-axis to reveal the depth 
of the tumor (b and c). The mean spectrum from all cSCCs was used to map the cSCC (turquoise). Previously known 
spectra for deoxygenated and oxygenated hemoglobin were used to map the distribution of hemoglobin (red). 
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A major limitation of the study is that the cSCCs were imaged ex vivo. However, 
the multispectral 3D measurements made in vivo were severely impaired by 
motion artifacts. Even if the patients were perfectly still, motion artifacts could 
still be caused by breathing or heartbeats. The motion artifacts could probably 
have been reduced by tuning the PA settings, for example, by reducing the number 
of excitation wavelengths, or increasing the distance between the 2D acquisitions. 
However, this would reduce the quality of the spectral signal and make tumor 
delineation less precise. In vivo imaging may be possible in the future by 
developing and applying a motion tracking algorithm to the PA images (158, 159).  

Although it was demonstrated that the mean tumor signal could be used for 
imaging, skin tumors of the same type exhibit considerable morphological and 
molecular variation. It was therefore deemed that using individual spectra in the 
spectral analysis would probably be a better approach for tumor imaging, and this 
approach was used in the subsequent studies.  

Photoacoustic imaging of melanomas and nevi 
In the second study, it was first shown that there was a significant difference 
between the PA tumor spectrum for melanomas and nevi, compared to healthy 
tissue (Figure 14). 

 
Figure 14. Mean PA absorption spectra from melanomas and nevi.  
PA absorption spectra obtained from (a) 25 melanomas (left) and (b) 26 nevi (right), compared to the surrounding 
healthy tissue (black line). Data are shown as mean ±1 SD. Statistical analysis was performed using two-way ANOVA 
and Grubb’s test was performed to identify outliers. One outlier was identified and removed from the nevi group. A 
clear difference can be seen between the spectral signatures from healthy tissue and melanomas (p<0.001), and 
between healthy tissue and nevi (p<0.0001). 
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An algorithm was developed to automatically identify regions from which ref-
erence tumor spectra and healthy spectra could be extracted. An automatic 
threshold algorithm was also developed for the identification of tumor pixels in 
linear spectral unmixing. The results showed that individual tumor spectra could 
be used to image melanomas and nevi in 3D, using these automatic algorithms 
(Figure 15).  

 
Figure 15. PAI of a melanoma in situ in 3D. 
(a) and (d) show longitudinal sections from above, while (b) and (e) and (c) and (f) show cross sections. The left 
column, (a) and (b) shows photographs, and the histopathological image (c). The right column (d-f) shows PA images 
after linear spectral unmixing with an automatic threshold for tumor pixel identification. The information obtained from 
PAI is indicated by the colored pixels superimposed on the grayscale ultrasound images. Scale bars represent 2 mm. 

After imaging the melanomas and nevi, the PA-measured tumor widths and 
thickness were compared to histopathological measurements. The results showed a 
strong correlation for melanoma width; a moderate correlation for nevi width and 
a strong correlation for both melanomas and nevi for the thickness (Figure 16).  
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Figure 16. Comparison of PAI with linear spectral unmixing and histopathological examination in determining 
tumor width and thickness 
Scatter plots showing the correlation between PAI and histopathological measurements of tumor widths (a-b) and 
thicknesses (c-d). The Pearson correlation coefficients (r) indicate a strong correlation for melanoma width and 
thickness, as well as nevi thickness, and a moderate correlation for nevi width.  

The results showed that for width measurements, the number of overestimations 
and underestimations with PAI were almost equal. In thin melanomas and nevi (≤ 
1.0 mm), PAI tended to overestimate the thickness slightly. In thick melanomas 
and nevi (> 1.0 mm), PAI underestimated the thickness slightly.  

A different method for spectral analysis, AMF, was then investigated, and an 
automatic threshold selection algorithm (ATS) developed for the differentiation 
between tumor and healthy tissue pixels. The AMF-ATS algorithm was first tested 
on a phantom and then on 7 of the melanomas imaged with PAI. The results 
showed that while AMF alone could not delineate the melanomas clearly, applying 
the automatic threshold algorithm made delineation possible (Figure 17).  

  
Figure 17. Comparison of AMF detection results in seven malignant melanomas, examined ex vivo, with and 
without ATS.  
(a) The results using AMF only, and (b) the results after applying ATS, overlaid on the ultrasound images. Pixels 
classified as tumor are shown in red. (c) Histopathological sections.  
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The width and thickness of the melanomas obtained with PAI (AMF-ATS) were 
then compared to those obtained by histopathology (Figure 18).  

 
Figure 18. Comparison of PAI with AMF-ATS and histopathological examination in determining tumor width 
and thickness. 
Scatter plots showing the PAI width (a) and thickness (b) of seven melanomas using the AMF-ATS algorithm versus 
the width and thickness determined by histological examination.  

The results presented in Papers II and III show the ability of PAI to map melanomas 
and nevi in 3D using individual tumor spectra. Only a few studies have previously 
studied PAI of human melanomas, and the spectral information used in those studies 
was more limited than that presented in this dissertation. Zhou et al. (112) used PAI 
with one excitation wavelength (680 nm) for 2D in vivo imaging of melanin in 10 
melanomas. In their study, melanomas with thicknesses up to 6.0 mm were 
successfully imaged, and the thickness correlated well with the histopathological 
thickness. Three-dimensional imaging of melanomas and nevi using several 
wavelengths, and correlation to histopathology, have been reported by Park et al. 
(111) and Breathnach et al. (97). Park et al. scanned 6 melanomas in vivo using PAI 
with five excitation wavelengths (700, 756, 796, 866, and 900 nm). The melanin 
absorption spectrum was used to visualize the tumors, and measurements of the 
tumors correlated well with histopathology (111). In their study, a nodular 
melanoma with a PA depth of 9.1 mm and a histopathological depth of 8.0 mm was 
visualized, which is the thickest melanoma measured with PAI to date. One problem 
associated with using only the melanin spectrum for melanoma imaging is that not 
only mutated melanocytes, but also normal melanocytes, keratinocytes, and melano-
phages (a type of macrophage) contain melanin, which could lead to overestimation 
of the tumor dimensions. Amelanotic melanomas with little or no melanin would be 
difficult to image, and imaging melanomas thicker than 2.0 mm could be 
problematic as thicker melanomas may have a significantly lower melanin content 
than thinner melanomas (160). Breathnach et al. (97) used PAI to scan 32 pigmented 
tumors (including 6 melanomas) in vivo using 30 excitation wavelengths from 680 
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to 970 nm in the most pigmented part of the lesion. Five excitation wavelengths 
were then used for multiwavelength 3D scans of the entire lesion, and unmixing was 
performed to image regions of absorption that matched the spectrum of the most 
pigmented part. The PA tumor thickness was strongly correlated to histopathological 
findings (r ≥0.98).  

The results presented in Papers II and III showed that thickness measurements of 
melanomas and nevi made with PAI were well correlated with histopathological 
findings, which is in line with the results of the previous studies described above. 
However, the PA-measured tumor widths were not as well correlated with histo-
pathological measurements as the thickness. The larger inconsistency in width could 
have several causes, for example relating to the histopathological sectioning, 
variations in shrinkage of the lesions when placed in formalin etc. Another reason 
could be the higher concentration of melanin in the epidermis of healthy skin, which 
could cause the healthy skin spectrum to look more like tumor in the epidermis, 
compared to the dermis. The results regarding the correlation for tumor thickness in 
these papers should be interpreted with caution as most of the tumors in these 
studies were thin (<1.0 mm). Small differences in thickness between the two 
methods can be expected as the histopathological sections may not correspond 
exactly with the cross-sectional PA image. The relative difference resulting from 
this misalignment will naturally be greater in thin tumors than in thick tumors. The 
thickest melanoma had a histopathological thickness of 4.04 mm and a PAI-
measured thickness of 3.5 mm, meaning that PAI slightly underestimated the 
thickness. This underestimation is probably the result of light fluence attenuation. 
The light fluence is attenuated with tissue depth, leading to darker areas with poorer 
contrast deeper in the skin. Mouse models have been used in many preclinical 
studies to investigate the spatial resolution achievable with PAI (91, 161, 162). The 
PA devices used in those studies provide almost uniform illumination throughout the 
whole body of the mouse, with signal detection in almost all directions, enabling 
high spatial resolution (163). However, it is not possible to illuminate most 
anatomical areas in humans from all directions, which increases the effect of fluence 
attenuation and reduces the resolution. Other factors that affect the PAI resolution 
are readout noise, laser power fluctuations and imaging artifacts such as motion.   

The PA pulse fluence was calibrated at every excitation wavelength before 
imaging. However, as every excitation wavelength will be absorbed differently 
through all layers of the skin (due to the composition of endogenous 
chromophores), the residual fluence at every wavelength will be different. This 
phenomenon increases with depth and is known as spectral coloring. The effects of 
spectral coloring were not known or compensated for in the work presented in this 
dissertation, and PA spectra and measurements of deeper tumors should therefore 
be interpreted with caution. A good correlation was found between the PAI-
measured thickness of the melanomas and nevi, and the histopathological 
measurements, which may be due to the fact that most tumors were ≤1.0 mm 
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thick. The amount of light delivered to a specific region of the skin can be 
estimated using Monte Carlo simulations (164). However, such simulations are 
difficult because they require models that simulate different skin tumors and 
variations in healthy skin both intra- and inter-individually.  

Automatic algorithms were developed for tumor pixel identification and tumor 
border delineation, and it was shown that the algorithms could improve the imaging 
of melanomas and nevi. Breathnach et al. (97) suggested that single-wavelength 
images could provide similar contrast between tumor and healthy tissue to spectral 
unmixing of multispectral images. However, the results of unmixing single-
wavelength PA images would depend on the intensity threshold set by the user, 
while automatic algorithms for thresholding offer a more objective approach to PAI.  

Hyperspectral imaging and machine learning for 
delineation of superficial tumor borders 
The results of the studies described above showed that for a few tumors, the PA-
measured tumor width was not well correlated with histopathological findings, 
indicating that it may be difficult to identify the lateral extent of some tumors 
within the epidermis. Three ANNs were therefore applied to HSI data to delineate 
the superficial tumor borders of 18 different skin tumors suspected of malignancy 
(Paper IV). Figure 19 shows an example of HSI spectra extracted from 4 different 
regions of a melanoma, visualizing the difference in absorbance between the 
tumor spectrum and the spectrum in seemingly healthy skin.  

 
Figure 19. HSI spectra from different regions of a melanoma. 
Color photo of a melanoma (a) with colored dots from which absorbance spectra in (b) were obtained with HSI. The 
figure serves as example of how absorbance can differ between the center of a tumor (region 4, purple) and the 
seemingly healthy skin outside the tumor (region 1, blue).  
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Figure 20. Results of MCR-ALS analysis. 
(a) The eight components extracted from all tumor spectra using MCR-ALS. (b and c) Examples of 2 of the 8 spectral 
component maps (component number 1 and 4 from (a)), showing their contributions in tumor mapping of all 18 
tumors. Note that the tumors will be imaged differently depending on the contributions of the components.  

MCR-ALS analysis was used to extract the 8 most common spectral features 
(referred to below as components) from all the tumors combined. The resulting 
spectral components and examples of their relative contributions to the tumor 
images are shown in Figure 20.  

To classify pixels into tumorous or healthy, the first ANN (MLP with MCR-ALS) 
was trained on the 8 spectral components. The other two ANNs (MLP and 1-D 
CNN) were trained on raw spectral features from the tumors and healthy tissue. 
After training, the ANNs could make predictions about the probability of tumor in 
each pixel of the excised lesions. A prediction map for all tumors generated by one 
of the ANNs (MLP with MCR-ALS) is shown in Figure 21, as well as the results 
for one BCC, generated by all the ANNs.    
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Figure 21. Prediction maps generated by the ANNs. 
(a) Prediction maps for the 18 tumors generated by one of the ANNs (MLP with MCR-ALS). The prediction maps 
show tumor probability, where red represents 100% probability and blue represents 0% probability. The scale bars 
represent 10 mm (b) Prediction maps for one BCC generated by the three different ANNs. (c) The MLP network was 
also trained on three spectral ranges based on so-called saliency peaks. Note that the prediction map for the same 
BCC in (b) and (c) changes depending on the network and spectral range used. 

As can be seen in Figure 21 (a), the prediction maps could not clearly identify the 
tumor borders due to noise. To reduce the influence of noise and delineate the 
tumors, a segmentation algorithm was used, in which a sandpile function added 
spatial information to the pixels. The resulting sandpile landscape was then used in 
an active contour algorithm for all ANNs and tumors, resulting in a delineation of 
the superficial tumor borders (Figure 22).  
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Figure 22. Representative example of delineation of a tumor. 
(a) Prediction map of a cSCC generated with one of the ANNs (the MLP with MCR-ALS). (b) A sandpile landscape 
added to the prediction map, reducing areas with misclassified pixels. (c) Result of applying an active contour 
algorithm to the sandpile landscape, showing a delineation of the cSCC (white line). The scale bar represents 10 mm.  

 
Figure 23. Comparison between tumor widths obtained with the three ANNs and those determined 
histopathologically 
(a) Tumor width correlation with histopathology using the three ANNs (MLP with MCR-ALS, MLP and 1-D CNN), with 
all networks showing strong correlations. (b) The correlation changed when the MLP network was trained on different 
spectral ranges. The Pearson correlation coefficient (r) is represented by the solid lines.  

After delineation, the tumor widths could be measured and correlated to histo-
pathological measurements. As can be seen in Figure 23, the width was strongly 
correlated to the histopathological measurements, but the strength of the 
correlation differed slightly depending on which ANN was used. The MLP with 
MCR-ALS gave the strongest correlation. Figure 23 also shows that the predicted 
tumor width changed when the ANNs were trained on different spectral ranges.  
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The results presented in Paper IV show how machine learning in the form of 
ANNs can be applied to HSI data to automatically predict tumor probability at the 
skin surface, and how segmentation algorithms then can delineate the tumors. 
Previous studies on machine learning for tumor delineation have generally relied 
on spatial information in the form of manually defined tumor borders to train the 
models. In this work, by training the models on spectra, the models did not need 
spatial information for training. There are few previous studies on skin tumor 
delineation using HSI, but these include HSI delineation of lentigo maligna (138), 
ill-defined BCCs (139), and field-cancerized skin (140). In one of these studies, 
Salmivuori et al. (139) used HSI and linear unmixing to delineate 16 ill-defined 
BCCs. In 12 of the 16 cases, HSI delineated the BCCs more accurately than the 
naked eye and dermatoscopy. Although the results of the present study showed a 
strong correlation with histopathologically measured widths, a limitation of this 
study is that the tumor widths were not compared to those obtained with the naked 
eye or dermatoscopy.  

All the prediction maps generated by the ANNs contained noise, and in four of the 
tumors, the noise was so large that the tumors could not be delineated. The reason 
for the noise is unclear, but some may originate from the interaction of light with 
tissue below the surface, or artefacts such as hair, blood, ink, or exposed 
subcutaneous fat under the incision. None of these artifacts, apart from hair, would 
be present in future in vivo studies with HSI.  

The correlation plots in Paper IV demonstrate how the predicted tumor widths 
differed depending on the type of ANN and the spectral range used for training the 
model. This is probably due to several factors. For example, the molecular 
composition changes across the tumors in an unpredictable way, which 
complicates training, especially if the training pixels are chosen from small 
regions of the tumor and healthy tissue, which was the case in this study. Other 
factors affecting training could be signal-disturbing artifacts, or the fact that 
individual tumor spectra were used for training. The predictions might have been 
more robust if the ANNs had been trained on larger datasets with specific tumor 
types.    

The advantage of using individual tumor spectra for training is that no ground 
truth segmentation masks are needed to identify tumor borders. In addition to the 
disadvantage of using a subjective method of training the ANNs, large datasets 
with ground truth segmentation of skin tumors by experts are lacking (145). The 
method described in Paper IV circumvents the need for ground truth images but 
would benefit from training on histopathological sections if the locations of these 
were matched accurately to corresponding sections of the HSI images.  
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Skin types 
Most of the tumors studied were in patients with Fitzpatrick skin type II (e.g. fair 
skin). The contrast between light skin, with little melanin, and pigmented tumors 
makes the differentiation of spectral signals easier than in individuals with darker 
skin. It is therefore not clear whether the results of these studies could be applied 
to an international population with a greater range of skin types.  

Differential diagnosis 
No attempts were made to use these imaging techniques as a diagnostic tool to 
discriminate between benign and malignant tumors, or to differentiate between 
malignant tumors of different types. This would require larger studies, due to the 
large variation in phenotypes of different tumors. 
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Conclusions and future perspectives 

The results presented in this dissertation demonstrate the feasibility of using spec-
tral techniques such as PAI and hyperspectral imaging for skin tumor delineation 
ex vivo. Other non-invasive techniques for skin tumor imaging are limited by 
factors such as resolution, molecular contrast and penetration depth. Both PAI and 
HSI provide high resolution with molecular contrast, and in addition, PAI can 
image tissue deeper than previously possible with other optical techniques. Due to 
the novelty of these techniques for tissue imaging, few previous studies have been 
performed on skin tumors, and those that have varied with regard to equipment, 
settings, and method of spectral analysis. It has been demonstrated in this work 
that PAI and HSI at multiple wavelengths can detect differences between tumor 
and healthy tissue, which can be used to image and delineate tumors in 2D (HSI) 
and 3D (PAI).  

It has also been demonstrated that algorithms and machine learning can be devel-
oped and applied to the spectral image data, which could potentially circumvent 
the need for subjective assessments by medical experts. If spectral techniques 
could be used preoperatively to guide surgery, this could reduce the risk of non-
radical excision or excessive removal of healthy skin in sensitive areas such as the 
eyelids or face. These imaging techniques could also replace histological 
examination during Mohs micrographic surgery, allowing unfixed tissue to be 
examined intraoperatively. However, further development and in vivo studies 
including patients with a wide range of skin types, as well as standardization of the 
methods, are required to make the techniques suitable for clinical use.  
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