

LUND UNIVERSITY

Toward the Discovery of New Elements: Production of Livermorium (Z=116) with ⁵⁰Ti

Gates, J.M.; Orford, R.; Rudolph, D.; Appleton, C.; Barrios, B.M.; Benitez, J.Y.; Bordeau, M.; Botha, W.; Campbell, C.M.; Chadderton, J.; Chemey, A.T.; Clark, R.M.; Crawford, H.L.; Despotopulos, J.D.; Dorvaux, O.; Esker, N.E.; Fallon, P.; Folden, C.M.; Gall, B.J.P.; Garcia, F.H.; Golubev, P.; Gooding, J.A.; Grebo, M.; Gregorich, K.E.; Guerrero, M.; Henderson, R. A.; Herzberg, R. -D.; Hrabar, Y.; King, T.T.; Kireeff Covo, M.; Kirkland, A.S.; Krücken, R.; Leistenschneider, E.; Lykiardopoulou, E.M.; McCarthy, M.; Mildon, J.A.; Müller-Gatermann, C.; Phair, L.; Pore, J.L.; Rice, E.; Rykaczewski, K.P.; Sammis, B.N.; Sarmiento, L.G.; Seweryniak, D; Sharp, D.K.; Sinjari, A.; Steinegger, P.; Stoyer, M.A.; Szornel, J.M.; Thomas, K

Published in: Physical Review Letters

DOI: 10.1103/PhysRevLett.133.172502

2024

Document Version: Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Gates, J. M., Orford, R., Rudolph, D., Appleton, C., Barrios, B. M., Benitez, J. Y., Bordeau, M., Botha, W., Campbell, C. M., Chadderton, J., Chemey, A. T., Clark, R. M., Crawford, H. L., Despotopulos, J. D., Dorvaux, O., Esker, N. E., Fallon, P., Folden, C. M., Gall, B. J. P₅₀... Wooddy, P. T. (2024). Toward the Discovery of New Elements: Production of Livermorium (*Z*=116) with Ti. *Physical Review Letters*, *133*(17), Article 172502. https://doi.org/10.1103/PhysRevLett.133.172502

Total number of authors: 54

Creative Commons License: CC BY

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

· Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain
You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00

Supplemental Material Towards the Discovery of New Elements: Production of Livermorium (Z=116) with ⁵⁰Ti

The Supplemental Material provides (i) detailed results and statistical assessments in the analysis of events stemming from decay chains starting with the isotope 290 Lv, and (ii) details concerning the search parameters for decay chains originating from 291 Lv.

The numbering of references in this Supplemental Material corresponds to references in the main article.

I. DETAILS OF PUBLISHED ²⁹⁰LV DECAY CHAINS

Decay properties such as decay energies and lifetimes, relating to various ensembles of data associated with previous experiments in the direct or indirect production of 290 Lv, 286 Fl, or 282 Cn, and with the result of the present work (cf. main article) included, are compiled: Distributions of decay energies and correlation times along with determined E_{α} and $T_{1/2}$ values are presented for the different ensembles in Fig. 1 for 286 Fl and 282 Cn, respectively. An overview, together with a statistical assessment of the correlation times attributed to the single decay steps relevant to the current study, is presented Table I for the ensembles of decay chains corresponding to 290 Lv (cf. main article) and Fig. 1, respectively. Table II provides a summary of aggregated experimental results concerning the decays of 290 Lv, 286 Fl, and 282 Cn.

II. SEARCH PARAMETERS FOR DECAY CHAINS ORIGINATING FROM ²⁹¹LV

The known decay chain originating from ²⁹¹Lv and its daughters typically terminates in spontaneous fission (SF) at ²⁸³Cn or ²⁷⁹Ds, although it has been observed to decay via emission of α particles to the SF-decaying 267 Rf [63-69,71]. Candidates for decay chains originating from this isotope were searched for by looking for correlations, required to all be detected within the same pixel of the detector, that consisted of an:

- 1. Evaporation residue (EVR) [10 < E (MeV) < 30]followed by at least one α -like particle [9.50 < E (MeV) < 11.25] within 3 s, followed by a spontaneous fission-like event with E > 120 MeV within 25 s.
- 2. EVR [10 < E (MeV) < 30] followed by at least two α -like particles [9.00 < E (MeV) < 11.25] within 30 s, followed by a spontaneous fission-like event with E > 120 MeV within 2 s.
- 3. EVR [10 < E (MeV) < 30] followed by three or more α -like particles [8.00 < E (MeV) < 11.25]within 300 s, followed by a spontaneous fission-like event with E > 120 MeV within 150 min.

These α -particle energy ranges were chosen to fully encompass the known energy ranges for chains terminating in SF at ²⁸³Cn, ²⁷⁹Ds, and ²⁶⁷Rf, respectively. The lifetimes were chosen to accept events within five half-lives of known decays. The efficiency for detecting a decay chain originating from ²⁹¹Lv under these conditions is $\approx 85\%$. The probability for any one of the SF-like events to combine with random background-like events to form a chain meeting the requirements listed above is 1.4×10^{-3} , 2.1×10^{-6} , and 1.7×10^{-3} , for conditions (1)-(3), respectively. If a chain is observed within these broad parameters, then lifetimes and decay energies must also fall within accepted windows for the known isotopes, thus reducing random rates further.

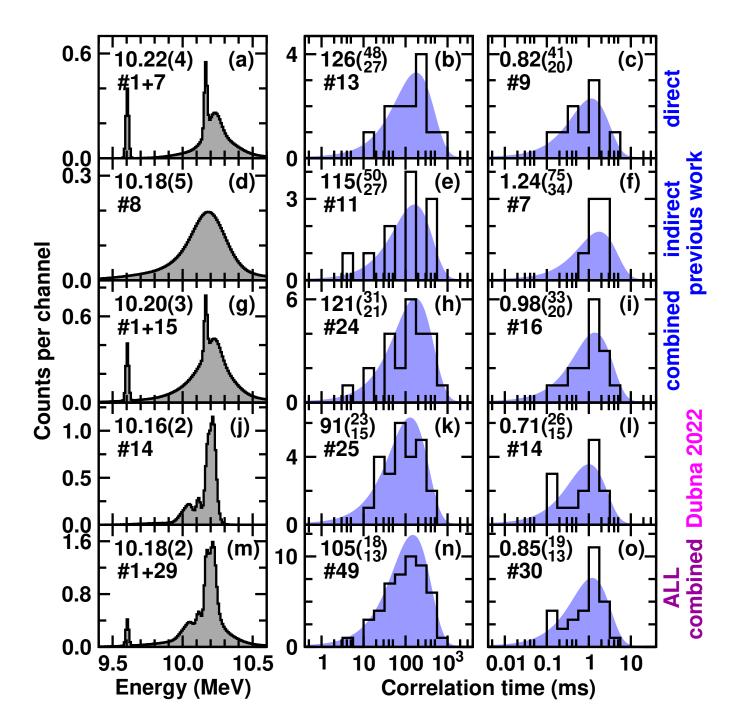


FIG. 1: (Color online) The left column provides experimental decay-energy spectra from events associated with the decay step 286 Fl \rightarrow 282 Cn. For a single entry, a Gaussian with integral one and a width compliant with its measured uncertainty was added into the respective spectrum. The numbers at the top left of each panel in the left column are the (α -decay) energies extracted by computing the histogram mean in the interval [9.9,10.5] MeV. The middle and right columns provide the correlation times for the decays of 286 Fl and 282 Cn, respectively. Experimental data points are comprised in the histograms (black lines). The shaded areas (blue) provide correlation-time distributions expected for the corresponding half life, $T_{1/2}$, which are given in the top left corner of each panel. For all panels, the number behind the hashtag, #, indicates the number of available data points. The first row, panels (a)-(c), refers to previous direct production of 286 Fl [14,66-68]. The second row, panels (d)-(f), refers to previous indirect production of 286 Fl [64,65,71]. The spectra in the third row, panels (g)-(i), are the sums of the spectra in the first and second row. The fourth row, panels (j)-(l), refer to the recent data obtained at JINR Dubna [69]. The spectra in the fifth row, panels (m)-(o), are the sums of the spectra in the third and fourth row, i.e. comprise current best values for the main decay characteristics of 286 Fl and 282 Cn prior to the present study. For the update *including* the data points from the present study, see Fig. 2 of the main article and Table I of this Supplemental Material. For the interpretation of the peak at 9.60(1) MeV in panels (a), (g), and (m), see Refs. [14,72].

TABLE I: Overview of correlation time analyses of single decay steps according to Ref. [74] of various ensembles of decay chains associated with previous direct ('Cn&Fl') and indirect ('Lv&Og') production of ²⁸⁶Fl, recent production of ²⁸⁶Fl [69], and the present events interpreted to start from ²⁹⁰Lv, respectively. These correspond to ensembles as displayed in the respective rows of Fig. 3 in the main article and Fig. 1.

Label	previous (Cn&Fl)	previous (Lv&Og)	previous	286 Fl (2022)	all	including this work
References	[14, 66-68]	[64, 65, 71]		[69]		
²⁹⁰ Lv						
No. of chains		16	16		16	18
data points		11	11		11	13
$T_{1/2}(^{290}\text{Lv}) \text{ (ms)}$		$8.3(^{36}_{19})$	$8.3(^{36}_{19})$		$8.3(^{36}_{19})$	$8.2\binom{32}{18}$
$\sigma_{\Theta_{ ext{exp}}}$		2.13^{b}	2.13^{b}		2.13^{b}	2.02^{b}
$[\sigma_{\Theta, \text{low}}, \sigma_{\Theta, \text{high}}]$ [74]		[0.67, 1.81]	[0.67, 1.81]		[0.67, 1.81]	[0.72, 1.77]
data points		11	11		11	12
$E_{\rm decay}$ (MeV)		10.84(8)	10.84(8)		10.84(8)	$10.84(7)^{a}$
²⁸⁶ Fl						
No. of chains	13	16	29	25	54	56
data points	13	11	24	25	49	51
$T_{1/2}(^{286}\text{Fl}) \text{ (ms)}$	$126\binom{48}{27}$	$115(^{57}_{31})$	$121\binom{31}{21}$	$91(^{23}_{15})$	$105(^{18}_{13})$	$106(^{17}_{13})$
$\sigma_{\Theta_{\mathrm{exp}}}$	0.96	1.44	1.22	0.97	1.10	1.11
$[\sigma_{\Theta, \text{low}}, \sigma_{\Theta, \text{high}}]$ [74]	[0.72, 1.77]	[0.67, 1.81]	[0.84, 1.72]	[0.85, 1.71]	[0.97, 1.57]	[0.98, 1.58]
data points	7	8	15	14	29	31
$E_{\rm decay}$ (MeV)	10.22(4)	10.18(5)	10.20(3)	10.16(2)	10.18(2)	$10.18(2)^{c}$
²⁸² Cn						
data points	9	7	16	14	30	32
$T_{1/2}(^{282}\text{Cn}) \text{ (ms)}$	$0.82\binom{41}{20}$	$1.24(^{75}_{34})$	$0.98(^{33}_{20})$	$0.71\binom{26}{15}$	$0.85(^{19}_{13})$	$0.88(^{19}_{13})$
$\sigma_{\Theta_{ ext{exp}}}$	0.99	0.43^{d}	0.87	1.04	0.98	0.97
$[\sigma_{\Theta, \text{low}}, \sigma_{\Theta, \text{high}}]$ [74]	[0.62, 1.84]	[0.52, 1.87]	[0.77, 1.75]	[0.73, 1.77]	[0.89, 1.67]	[0.90, 1.66]

^aResult from the integration of the energy spectrum in Fig. 3(a) of the main article in the interval [10.0,11.7] MeV. ^bThe experimental value for $\sigma_{\Theta_{exp}}$ falls outside the upper 1- σ confidence limit [74].

^cResult from the integration of the energy spectra in the left column of Fig. 1 in the interval [9.9,10.5] MeV. ^dThe comparimental value for σ_0 falls outside the lower 1 σ confidence limit [74]

^dThe experimental value for $\sigma_{\Theta_{\exp}}$ falls outside the lower 1- σ confidence limit [74].

TABLE II: Summary of aggregated experimental results concerning the decays of ²⁹⁰Lv, ²⁸⁶Fl, and ²⁸²Cn.

	7 00 0 I				0 7	,	,	
	E_{lpha}	Q_{lpha}	$T_{1/2}$	$b_{lpha}{}^a$	$T_{1/2}(\alpha)^b$	HF^{b}	$T_{1/2}(\mathrm{SF})^b$	
	(MeV) (MeV)		(ms)		(ms)		(ms)	
$^{290}\mathrm{Lv}$	10.84(7)	10.99(7)	$8.2\binom{32}{18}$	1	$8.2\binom{32}{18}$	$1.4(^{15}_{7})$	not applicable	
286 Fl	10.18(2)	10.32(2)	$106(^{17}_{13})$	31/56	$191\binom{31}{23}$	$2.2(^{7}_{5})$	$247(^{40}_{30})$	
	$9.57(3)^{c}$	9.71(3)		1/56	$5.9(^{10}_{7}) \times 10^{3}$	$1.3(^{5}_{4})$		
^{282}Cn	not ap	plicable	$0.88^{(19)}_{(13)}$	0	not applic	able	$0.88(^{19}_{13})$	

^aDue to incomplete knowledge from some previous studies, the branching ratio can only be estimated. ^bThe uncertainties cannot account for uncertainties in branching ratios. See preceding note. Hindrance factors were calculated based on C. Qi *et al.*, Phys. Rev. C 80, 044326 (2009). See also Refs. [14,72]. ^cSee corresponding note in Table II in Ref. [14].