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Abstract

C
ellular-based localization and sensing pave the way for a variety of
applications across various domains, ranging from autonomous driv-
ing to emergency care and intelligent traffic management. Although

traditional methods have been effective, they still face challenges such as the
requirement for highly accurate models and the inherent complexity of the
algorithms. This thesis explores the potential of integrating machine learning
(ML) techniques to augment the performance of sensing and localization
systems. Three main topics are covered by this thesis, namely, ML-aided
channel estimation, sensing, and localization.

The first topic focuses on the calibration of the RF chain and the esti-
mation of the propagation channel, which serves as essential prerequisites
for numerous subsequent applications including arriving angle estimation,
radio localization, digital beamforming, and sensing. We introduce a novel
RF chain calibration algorithm for massive multiple-input multiple-output
(MIMO) systems, using uplink signals. We derive the maximum likelihood
estimator (MLE) and its corresponding Cramér-Rao Lower Bound (CRLB).
Additionally, we propose a novel ML-powered channel estimation pipeline for
orthogonal frequency division multiplex (OFDM) systems, which efficiently
estimates channel coefficients for all OFDM grids based on only using a
limited number of pilot signals.

The second topic addresses ML-based wireless sensing using massive
MIMO systems. We introduce a novel pipeline that first employs tensor-
decomposition algorithms to extract channel characteristics. Subsequently, a
fully connected neural network is deployed to classify human movements.
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Our pipeline is evaluated by a measurement campaign using a massive
MIMO testbed in an indoor environment, providing empirical evidence of
the system’s efficacy in wireless sensing applications. Our work shows the
sensing capacity of massive MIMO in such scenarios.

The third topic focuses on cellular localization, comprising three main
sections. The first section introduces classical radio localization algorithms,
including time of arrival (ToA), angle of arrival (AoA) and time difference
of arrival (TDoA). The second main section addresses ML-based localization
with a massive MIMO system. We introduce a novel pipeline composed of
several parallel processing chains. Each chain is trained on distinct channel
fingerprints, including the channel impulse response (CIR) and covariance
matrices. To improve localization accuracy, we model the position error in
each processing chain as a Gaussian distribution and combine the outputs to
compute localization uncertainty. Furthermore, we investigate the required
training density using the Nyquist theorem. Our pipeline is evaluated
through indoor measurements, showing a centimeter-level localization ac-
curacy. The third section investigates ML-aided cellular localization using
a 5G new radio (NR) system that operates in beam space. We present
an ML-based localization pipeline that integrates attention mechanisms and
advanced uncertainty estimation algorithms. Unlike in the previous section,
this uncertainty estimation approach is not restricted to a Gaussian assump-
tion. Validation of our pipeline is conducted through an extensive outdoor
measurement campaign encompassing both Line-of-Sight (LoS) and Non
Line-of-Sight (NLoS) propagation scenarios. Measurement results indicate
the sub-meter accuracy levels with our pipeline.
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Popular Science Summary

T
he author believes that every reader has heard of the magic of
ChatGPT. It is incredible to witness how machine learning (ML)
has transformed our world, from recognizing speech and classifying

images to translating languages, driving cars autonomously, and creating AI-
based art. These ML-powered applications help us learn, share knowledge,
and interact with people with different backgrounds. They also free us from
repetitive tasks and provide insights for creative activities, like composing
music. Inspired by the success of ML in these areas, this thesis explores how
ML can enhance cellular communication and localization systems.

The fundamentals of communication systems are based on signal pro-
cessing and information theory. Although traditional cellular technology
has become quite advanced, it still has limitations and room for improve-
ment. For example, many traditional communication techniques need precise
mathematical models, which is challenging to develop, especially in complex
environments with limited computational power. However, ML systems
can learn directly from data, making them highly adaptable and capable
of handling complex environments without requiring detailed mathematical
models. This thesis focuses on three key areas: the use of ML for channel
estimation, sensing, and localization. By applying ML, our aim is to improve
the efficiency and accuracy of these processes, making cellular communication
and localization more robust and reliable.

For most cellular systems, it is essential to understand how the channel
between mobile phones and base stations influences wireless signals. To
do this, a special signal is sent, known as a pilot signal. Both the sender
and receiver know this signal, which helps them understand the channel.
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However, using too many pilot signals can waste energy and slow down
data transmission. So, can we use ML to better understand the wireless
environment between our phones and the base station? To find a solution to
this problem, we create a robust system that works well even when the signal
is weak. We test our system by simulating various wireless environments,
including dynamic environments caused by moving objects. Our system
performs better than traditional methods, even in difficult conditions.

We also explore how ML can help detect and recognize activities using
existing 4G cellular signals, similar to how radar works. This capability is
important for future wireless systems, as combined sensing and communi-
cation is a key emerging technology. Radio signals have unique properties
compared to other signals like sound or light, allowing radio devices to
work well in quiet or dark environments. Our research focuses on using
ML to identify different events or activities through these wireless systems.
For example, if the received signal is much weaker, it may indicate that
the signal is blocked by an object. Specifically, the base station uses ML to
analyze the signals patterns sent by mobile phones, helping it understand the
surrounding environment. We tested our methods in an indoor environment
and our system successfully distinguishes between different types of human
movement.

The third topic of this thesis focuses on ML-assisted cellular localization
technologies, which are crucial in our daily lives. Most readers are familiar
with global positioning systems (GPS) and might wonder what role cellular
networks play in localization. In fact, cellular systems complement GPS,
especially when GPS signals are weak or unavailable, such as in the indoor
environment. We mainly investigate uplink localization, where the base station
receives signals transmitted by user equipment, such as mobile phones. In
essence, using ML for localization means learning how the features of the
received signal relate to the positions of the user equipment. To achieve
this, the thesis explores advanced ML techniques such as ensemble learn-
ing, attention mechanisms, and uncertainty estimation. Ensemble learning
involves training multiple models and combining their outputs for better
performance. The attention mechanism, widely used in language processing
systems like ChatGPT, helps the model focus on important parts of the
input data. Uncertainty estimation is crucial for applications where safety
is critical, such as autonomous driving. It allows the model not only to
make predictions but also to indicate its confidence level, reducing the risk
of random, potentially dangerous guesses.

In general, this thesis demonstrates that significant performance improve-
ments in wireless systems can be achieved with the aid of ML approaches.
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Preface

T
his thesis is the culmination of more than five years of work con-
ducted between autumn 2018 and spring 2024. Thanks to the fund-
ing provided by an Ericsson project Massive MIMO technologies and

applications, I was enrolled as a student in the communications engineering
research group at Lund University in Lund, Sweden. The main focus of
this work is to investigate the possibility of leveraging machine learning and
signal processing technologies to enhance the performance of various wireless
communication systems, particularly massive MIMO systems. The work has
been supervised by Professor Fredrik Tufvesson, Professor Ove Edfors, Professor
Bo Bernhardsson and assistant Professor Xuesong Cai.

STRUCTURE OF THE THESIS

This thesis is composed of an introduction section along with six research
papers. The introduction section begins with a high-level overview of the
research topic in the first chapter. The following chapter presents preliminary
knowledge and provides a detailed discussion of three key aspects: machine-
learning-aided channel estimation, sensing, and localization. The concluding
chapter summarizes the thesis and provides a vision of future research within
this domain. The introduction section is self-contained and includes sufficient
material for readers interested in the research topic. The six research papers,
published or submitted to scientific journals or conference proceedings, are
included in this thesis with permission from the publishers. These articles
offer detailed methodologies, analyses, and results related to specific research
aspects.

• INTRODUCTION
This thesis addresses an interdisciplinary research field between machine

xv



learning and wireless communication, with a focus on deep learning and
physical layers. Chapter 1 offers a high-level overview of the relationship
between traditional signal processing and machine learning. It briefly
presents potential aspects within the physical layer of wireless commu-
nication that could benefit from ML techniques. Chapter 2 presents
preliminary knowledge of machine learning and massive multiple-input
multiple-output systems, which are essential for comprehending the sub-
sequent chapters of the thesis. Chapter 3 addresses the research topic of
wireless propagation channel estimation, a prerequisite for sensing and
localization systems. This chapter delves into two crucial fields: RF chain
calibration and channel estimation for OFDM systems. Chapter 4 explores
the potential of applying machine learning to wireless sensing systems,
with a focus on passive sensing of human activity. Chapter 5 applies
signal processing and machine learning techniques to various wireless
localization systems, including indoor localization with MaMIMO, and
outdoor commercial cellular base stations operating in beam spaces.
Chapter 6 concludes the introduction part and provides a vision for future
work.

• PAPERS
This thesis includes six papers [1–6], research and personal contributions
are listed as follows:

INCLUDED PAPERS

Paper I: G. Tian, H. OdetAlla, B. E. Priyanto, S. Hu, and F. Tufvesson,
“Modified Gold Sequence for Positioning Enhancement in NB-IoT”,
2019 IEEE Wireless Communications and Networking Conference (WCNC),
Marrakesh, Morocco, 2019, doi: 10.1109/WCNC.2019.8886076.

▶ Research Contributions: This paper proposes a novel positioning
reference signal for the Narrowband Internet of things NB-IoT system,
which has a limited bandwidth and sampling rate. To address those
limitations, we modified the legacy signal to improve cross-correlation
properties between transmitted signals from different BSs. Compared
to the legacy signal, our proposed method can achieve a 15% − 30%
improvement in terms of positioning accuracy, under various channels
defined by the 3GPP standard.

▶ Personal Contributions: This work results from my Master’s thesis
at Sony Communication AB during the spring of 2018. I am the main
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contributor to this work. I developed the main idea and performed
the mathematical derivation. I developed the simulation framework for
evaluating the performance together with my colleagues, Mr. OdetAlla
and Dr. Priyanto. I was the main author of this paper.

Paper II: G. Tian, H. Tataria, and F. Tufvesson, “Amplitude and Phase
Estimation for Absolute Calibration of Massive MIMO Front-Ends”,
2020 IEEE International Conference on Communications (ICC), Dublin,
Ireland, 2020, doi: 10.1109/ICC40277.2020.9148962.

▶ Research Contributions: This paper addresses the research problem
of array calibration. We proposed a novel method for estimating
the RF chain amplitude and phase using uplink pilot signals, which
can be utilized to calibrate the massive MIMO array. In addition, our
method does not necessarily have to be implemented inside an anechoic
chamber. Two closed-form estimators, namely the MLE and the moment
estimators, are derived to estimate the amplitude scalings and phase
drifts of RF chains, respectively. To evaluate the proposed estimator,
the corresponding closed-form CRLB is also derived. This bound can
indicate the performance of our method under different propagation
scenarios and different signal-to-noise ratios. A simulation framework
is also developed to evaluate our method.

▶ Personal Contributions: This work was written in an early phase of
my Ph.D. study. I was the main contributor to this work. I developed
the main idea with my supervisors, performed the mathematical
derivation, and validated the proposed method through synthetic data.
Finally, I wrote the article with the support of my supervisors.

Paper III: G. Tian, X. Cai, T. Zhou, Weinan. Wang, and F. Tufvesson,
“Deep-Learning Based Channel Estimation for OFDM Wireless
Communications”, 2022 IEEE 23rd International Workshop on Signal
Processing Advances in Wireless Communication (SPAWC), Oulu, Finland,
2022, doi: 10.1109/SPAWC51304.2022.9834008.

▶ Research Contributions: This paper addresses the research problem
of deep-learning-based channel estimation for multi-carrier systems. It
provides a novel deep-learning pipeline to estimate channel transfer
functions for an OFDM system by leveraging pilot signals. A simulation
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framework is developed to evaluate our pipeline. The results show that
our channel estimation pipeline performs significantly better than the
traditional signal processing algorithm based on an LMMSE estimator.
In addition, our algorithm shows its robust behavior under low SNR
scenarios.

▶ Personal Contributions: I was one of the main contributors to this
work. I developed and implemented the channel estimation algorithm
and validated the proposed method using synthetic data together with
coauthors. Finally, I took major responsibility for the writing.

Paper IV: B. R. Manoj, G. Tian, S. Willhammar, F. Tufvesson and

E. G. Larsson, “Sensing and Classification Using Massive MIMO: A
Tensor Decomposition-Based Approach”, IEEE Wireless Communications
Letters, vol. 10, no. 12, pp. 2649-2653, Dec. 2021, doi:
10.1109/LWC.2021.3110463.

▶ Research Contributions: This paper tackles the problem of device-
free wireless sensing using uplink signals. This work presents a novel
activity classification framework, consisting of a tensor-decomposition
block for dimension reduction and an ML block for classifying
activities. We validated our framework by indoor activity sensing
measurements. The results demonstrate the strong sensing ability of
massive MIMO systems in comparison to systems with fewer antennas.
This work is also one of the first papers that investigates wireless
activity sensing using massive MIMO systems.

▶ Personal Contributions: This paper is the result of a cooperation
with the communication group at Linköping University. I was one of
the main contributors to this work. I was responsible for developing the
framework to implement tensor decomposition and feature extraction. I
also participated in the preparation and conducting of the measurement
campaign. Finally, I wrote section II and sections III. A and III. B and
contributed to other sections.

Paper V: G. Tian, I. Yaman, M. Sandra, X. Cai, L. Liu and F. Tufvesson,
“Deep-Learning-Based High-Precision Localization With Massive
MIMO”, IEEE Transactions on Machine Learning in Communications and
Networking, vol. 2, pp. 19-33, 2024, doi: 10.1109/TMLCN.2023.3334712.
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▶ Research contribution: This paper tackles the high-precision user
UE localization problem for massive MIMO systems using deep
learning. We investigated different channel fingerprints for UE
localization, namely the truncated channel impulse response and
covariance matrices. To merge different channel fingerprints, we
present a novel pipeline that combines different channel fingerprints
by applying ensemble learning methods. This pipeline can predict
both the UE position and error variance as a Gaussian distribution,
indicating the prediction uncertainty that is critical for many safety-
critical systems such as autonomous driving. We also investigated the
necessary training density using the Nyquist sampling theorem, which
provides insight to adequately sample and average training data. In
general, this is the first paper on machine learning wireless localization
that addresses fingerprint investigation, ensemble learning, uncertainty
estimation, and training density altogether. Our pipeline is evaluated
by an indoor measurement campaign with a massive MIMO testbed.
The measurement results show that our pipeline can reach very good
localization accuracy (centimeter level).

▶ Personal Contributions: This paper results from a collaboration
project with the Lund University Humanities Lab and the LTH robotic
lab. I was the main contributor to this paper. I developed and
implemented the localization pipeline. I took the main responsibility
for the radio system part of the measurement campaign. In addition, I
wrote most of the manuscript and was responsible for communicating
with the editorial board of the journal.

Paper VI: G. Tian, D. Pjanić, X. Cai, B. Bernhardsson, and F. Tufvesson,
“Attention-aided Outdoor Localization in Commercial 5G NR Sys-
tems”, submitted to IEEE Transactions on Machine Learning in Commu-
nication and Networking, second round, after major revision.

▶ Research contributions: This paper addresses the research topic of
cellular localization with commercial fifth-generation (5G) new radio
(NR) systems operating in the beam domain. For this specific system,
a novel machine-learning-based single-snapshot localization pipeline is
presented, which utilizes attention-aided neural networks as its core. As
a continuation of paper V, a more advanced uncertainty estimation tech-
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nology is applied, which does not necessarily model prediction error as
a Gaussian distribution. Different uncertainty estimation techniques are
compared as well. A Kalman filter is applied to our pipeline to address
multiple snapshot localization. Our pipeline is also evaluated with
an outdoor measurement campaign with real mobile phones and 5G
base stations. The measurement campaign covers a variety of common
outdoor propagation scenarios. In summary, this is one of the first
few wireless localization papers, using attention-aided technologies,
investigating various types of uncertainty estimation techniques, and
verifying the main algorithm with a commercial-grade 5G base station.

▶ Personal Contributions: This paper is a collaboration with Ericsson
Lund. Dino Pjanic and I contributed equally to this paper. My main
duty was the development and implementation of the algorithm. I also
participated in the measurement campaign. We are both responsible for
writing the manuscript with the support of our supervisors.

RELATED WORK

During my Ph.D. study, I have also presented my research results as a tempo-
rary documents (TD) in the European Cooperation in Science and Technology
(COST) action CA20120 and contributed the following publications, which are
not included in my thesis.

• B. R. Manoj, G. Tian, S. Willhammar, F. Tufvesson and E. G. Lars-
son, “Moving Object Classification with a Sub-6 GHz Massive MIMO
Array Using Real Data”, 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 2021,
doi:10.1109/ICASSP39728.2021.9414952.

• M. Sandra, G. Tian, X. Cai, A. J. Johansson, “Antenna Array Config-
uration for Reliable Communications in Maritime Environments”, 2022
IEEE 95th Vehicular Technology Conference (VTC2022-Spring), Helsinki,
Finland, 2022, doi: 10.1109/VTC2022-Spring54318.2022.9860440.

• M. Sandra, G. Tian, A. Fedorov, X. Cai, A. J. Johansson,
“Measurement-Based Wideband Maritime Channel Characterization”,
2023 17th European Conference on Antennas and Propagation (EuCAP),
Florence, Italy, 2023, doi: 10.23919/EuCAP57121.2023.10133372.

• G. Tian, I. Yaman, M. Sandra, X. Cai, L. Liu and F. Tufvesson,
“High-Precision Machine-Learning Based Indoor Localization with
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Massive MIMO System”, 2023 IEEE International Conference on Commu-
nications (ICC), Rome, Italy, 2023, doi: 10.1109/ICC45041.2023.10278664.

• I. Yaman, G. Tian, M. Larsson, P. Persson, M. Sandra, A. Dürr,
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1
Overview

T
he concept of applying machine learning (ML) to improve wireless
communication system performance dates back to the late 1990s [7].
The authors in [7] explored the use of simple and standard ML

algorithms, i.e., support vector machines, for performing channel equalization
tasks. However, hardware limitations at that time prevented the widespread
adoption of ML-based algorithms on a large scale. In recent years, advances
in artificial intelligence (AI) related hardware have significantly improved
computing power, enabling the application of advanced learning algorithms
in many fields, including image recognition [8], speech recognition [9], natural
language processing (NLP) [10, 11], and autonomous driving [12, 13]. Sim-
ilarly, in the field of wireless communication, various tasks such as beam
management [14], sensing [15], localization and navigation [16], and channel
estimation [17] have been addressed using ML, yielding substantial results.

This chapter first explores the relationship between ML and traditional
signal processing algorithms. Then it introduces three categories of ML
algorithms: supervised learning, unsupervised learning, and reinforcement
learning. Finally, it discusses the potential applications of ML in wireless
communication systems.
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DL ML AI

CV NLP

Figure 1.1: Relationships between AI, ML and DL.

1.1 THE ROAD FROM DIGITAL SIGNAL PROCESSING TO DEEP LEARN-
ING

1.1.1 AN OVERVIEW OF DSP AND ML

Looking back at the history of computer development, it is a fascinating
journey for society to witness the evolution of various data processing tech-
niques. The principles of digital signal processing (DSP) were formulated in
the 1960s, consisting of spectral analysis and digital filter design [18]. These
techniques were widely applied for tasks such as denoising, data compres-
sion, feature extractions, parameter estimations, etc. One of the milestones
was the development of the fast Fourier transform (FFT) algorithm in 1965 by
Cooley and Tukey [19], which significantly reduced the computational burden
and increased the efficiency of many algorithms used for spectral analysis
and waveform generation, including widely used techniques like orthogonal
frequency division multiplexing (OFDM). Although the advantages of DSP,
such as flexibility, scalability, and robustness to environmental changes, were
well recognized at that time, its usage was still limited to some specific
applications, mainly military, due to its costs. Later, the advancement of
integrated circuit technology enabled the massive implementation of more
complex algorithms, leading to the development of more advanced DSP
applications [20].

Another transformative area in computing that emerged in the 1950s is
ML. Many readers may be confused by the connections between ML, deep
learning (DL), and AI; therefore, we depict their relationships in Fig. 1.1.
ML is a subset of AI. Various fields in AI, including computer vision (CV),
and NLP, encompass concepts that extend beyond ML, although they can
undoubtedly leverage ML to enhance their capabilities and performances. The
idea of ML was proposed in the 1950s [21], which could identify alphabets.
However, due to the constraint of computational power, the usage of ML was
not pushed forward until the 1990s. At that time, early methods including
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linear regressions, decision trees, support vector machines (SVM), and neural
networks (NN) paved the way for more sophisticated techniques that emerged
in the 21st century [22]. SVM was introduced in the 1990s as a powerful
classification algorithm aiming at finding the optimal hyperplane to separate
data points into different classes. NN methods were inspired by the structure
of human brains and pushed the frontiers of various fields with their ability
to learn hierarchical representations and highly non-linear relationships from
raw data. Today, thanks to the further enhancement of computational power
by more advanced devices such as the graphic processing unit (GPU) and
the tensor processing unit (TPU), NNs are much deeper and more complex,
containing gigantic sets of parameters. This further enables advances such as
image recognition, natural language processing, etc.

1.1.2 COMPARISON BETWEEN DSP AND ML METHODS

Fruitful results have already been harvested by applying traditional signal
processing methods, but there are still some situations that are hard for their
usages. In certain cases, traditional DSP algorithms are used for processing
structured and/or well-defined signals. Well-defined signals have mathemat-
ical descriptions. To be more specific, specific patterns or regularities can be
seen in structured signals, which may even repeat over time, frequency, or
space. However, a vast majority of the signals in real life may not have a very
clear pattern, or it is difficult to extract the pattern due to practical reasons.
As an example, we consider the following two tasks: (a) The detection of
signal 1: y1(t) = a1 sin(ω1 t + ϕ1) and signal 2: y2(t) = a2 sin(ω2 t + ϕ2) in
a noisy environment, where the signal-to-noise-ratio (SNR), amplitudes a1
and a2, frequencies ω1 and ω2 and phases ϕ1 and ϕ2 are known. (b) Image
identification of a cat or a dog. We can see that task (a) contains a well-defined
signal while in task (b) it is challenging to write exact mathematical formulas
to describe cats and dogs. Therefore, task (a) is more suitable for DSP methods
and a possible solution is to apply the Neyman-Person detector [23], while
task (b) can in an easier way be addressed by ML methods.

However, we need to realize that the implementation of the ML algorithm
normally requires a large amount of resources and budget. Therefore,
before applying ML algorithms, it is imperative to undertake some critical
assessments. Can we harvest the potential benefits by applying ML? In
the following, short summaries of the advantages and disadvantages of ML
methods are given. From my perspective, the suitable cases for involving
ML-based algorithms are, but not limited to,

• ML can help reduce the computational complexity of an algorithm.
• ML algorithms can achieve significantly better results than traditional

methods. In extreme cases, there is no clear traditional method.
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• The task itself is strongly related to the handling of large and diverse
data with complex patterns and relationships.

• The task itself involves an optimization procedure, where it is non-
trivial to mathematically find a clear optimal solution.

• When it is challenging to establish an accurate mathematical model.
In contrast, it is challenging for ML methods to offer meaningful contribu-
tions, provided that the tasks fall into the following categories:

• There exist well-grounded traditional methods and it is unnecessary
or not possible to further reduce the complexity. One example is a
parameter estimation problem where a simple closed-form estimation
already exists that can reach the optimal solution.

• Analysis of encrypted traffic. The difficulty mainly arises due to the
inherent limitations imposed by the encryption itself. As a result, it is
challenging to recognize the data pattern, as well as to collect enough
labeled training data for the ML algorithms.

1.1.3 HOW CAN ML BENEFIT FROM DSP METHODS?

Although ML is better suited for processing signals that are not well defined,
one should not forget the benefits of traditional DSP methods that still offer
valuable contributions to ML algorithms. For example, [24] demonstrates that
applying the Discrete Cosine Transform (DCT) to an image can reduce the size
of input data while simultaneously improving classification accuracy. This is
achieved by transforming the image into the frequency domain, where less
important high-frequency components are discarded, enabling more efficient
and accurate image recognition. From my perspective, the advantages of
combining DSP with ML algorithms include:

• Noise and interference reduction and signal-to-noise quality enhance-
ment, examples are anti-aliasing filters, out-of-band noise filters, beam-
formers, etc.

• Extracting specific patterns. For example, both [5] and [25] demonstrate
that extracting and training on distinct channel features, such as the
angle-delay profile or covariance matrices, can significantly enhance
localization accuracy compared to training on raw transfer functions.

1.2 CATEGORIES OF ML AND TYPICAL TASKS

Existing ML algorithms may be mainly categorized into three categories
based on their learning approaches [22], that is, i) supervised learning, ii)
unsupervised learning and iii) reinforcement learning. Each category is
associated with typical tasks and applications.
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1.2.1 SUPERVISED LEARNING

As one of the fundamental ML categories, supervised learning requires a
labeled dataset, where each input is associated with a corresponding output.
Supervised learning is used to learn a mapping from inputs to outputs using
labeled training data. Both the quality and quantity of the training data
significantly affect the performance. To evaluate the performance of learning
algorithms, one should test new data not used during the training phase. If
the training data covers only limited scenarios, the algorithm’s performance
will typically be poor when it encounters use cases that are not adequately
represented in the training phase.

Supervised learning technologies can be used for two main tasks, namely,
classification and regression [22]. The classification task aims to categorize
different input data by assigning a label (or multiple labels). In simple
terms, performing a classification task is similar to solving a multiple choice
question. For example, email spam detection requires a binary response,
where the answer is either affirmative or negative. The image detection task
aims to classify images. Similarly, within the domain of medical diagnosis, the
object is to detect diseases. The other important task under the umbrella of
supervised learning is regression, which aims to predict continuous numerical
values rather than labels based on input data. Examples of regression tasks
include predicting house prices, estimating the propagation channel or the
localization of the user equipment (UE), etc.

1.2.2 UNSUPERVISED LEARNING

Different from supervised learning, unsupervised learning algorithms focus
on identifying patterns and structures of datasets, which are not labeled.
Typical tasks of unsupervised learning include clustering and dimensionality
reduction [22]. Clustering involves grouping similar data points based on
their inherent patterns, ensuring that objects within the same group exhibit
significant similarity compared to those in other groups. Popular clustering
algorithms include K-means, density-based spatial clustering of applications
with noise (DBSCAN), etc [26]. The applications of this category vary from
market segmentation to social network analysis. Clustering is also widely
applied in the design of wireless networks, see [26] for further details. Di-
mensional reduction is also an important technique in unsupervised learning,
which aims to transform high-dimensional data into a lower-dimensional
representation while still preserving essential information [27, 28] without
relying on labeled groundtruth data. A representative algorithm is principal
component analysis (PCA), which reduces the data dimension by extracting
the principal components associated with the largest singular values or
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eigenvalues. One of the main applications of dimension reduction in wireless
communication is the so-called channel charting [29, 30]. In summary, this
technique creates a channel chart that captures and preserves the spatial
geometry information of the UE from the received channel, ensuring that
points close in space are also close in the channel chart. Dimension reduction
algorithms can also extract important channel features for wireless sensing [4].

1.2.3 REINFORCEMENT LEARNING

As another important subset of ML, reinforcement learning trains agents
or algorithms to interact with different environments autonomously [31, 32].
Classic reinforcement learning algorithms include the Markov decision pro-
cess [31], the Monto-Carlo method [31, 32], etc. Unlike supervised learning,
reinforcement learning operates in scenarios where clear labels or predeter-
mined values may not be readily available. Instead, learning performance
is improved by adjusting the algorithm parameters to maximize cumulative
rewards, based on the feedback from each iteration. Feedback can range from
binary success/failure indicators to complex criteria-based scoring.

Diverse applications utilize reinforcement learning techniques, including
strategic gameplay, for example, AlphaGo and Alphastar [33, 34]. Reinforce-
ment learning has shown significant use in real-world challenges, particularly
in robotics, by enabling precise control of complex mechanical movements
[35]. In wireless communication systems, reinforcement learning is a pow-
erful tool for optimizing transmission schemes [36] and efficiently mitigating
spectrum jamming [37]. Specifically, [36] proposes a distributive, model-free
deep reinforcement learning algorithm to optimize the transmit power control
scheme in wireless networks. [37] proposes a deep reinforcement learning
algorithm based on a recursive convolutional neural network that optimizes
anti-jamming strategies without requiring prior knowledge of jamming pat-
terns. As seen from the aforementioned examples, reinforcement learning
plays a crucial role in advancing cutting-edge technological landscapes.

1.3 APPLYING ML TO WIRELESS COMMUNICATION SYSTEMS

Wireless systems have made significant advances in the past 50 years, pro-
gressing beyond their initial purpose of simple message transmission. Driven
by society’s demand, researchers and engineers have actively explored more
advanced functionalities for wireless technology, such as modeling and es-
timating complex communication channels, advanced sensing, and high-
precision localization [38]. In this section, we focus on the physical layer and
briefly explain the benefits of using ML in wireless communication systems.
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We provide examples of ML-aided techniques in channel estimation, sensing,
and localization. More details will be introduced in the following chapters.

1.3.1 ESTIMATING CHANNEL TRANSFER FUNCTION

Acquiring propagation channel knowledge plays a pivotal role in designing
wireless communication, sensing, and localization systems. However, it is
challenging to estimate a precise channel transfer function due to the complex
behavior of the wireless channel. The wireless channel can vary rapidly and
contain excessive information in the frequency and spatial domains, neces-
sitating more effective channel estimation algorithms capable of handling
massive amounts of data and highly dynamic environments. Additionally,
the non-linear effects of radio frequency (RF) chains add to these challenges.
These factors make classic parameter estimation algorithms inherently time-
consuming and less efficient [39]. To address these challenges, data-driven-
based methods offer promising advancements due to their efficiency and
ability to handle nonlinearity effectively [17, 40]. Specifically, [17] explores
a DL-based approach that effectively mitigates channel non-linear distortion,
demonstrating robust performance in simulations compared to conventional
methods, particularly when fewer training pilots are employed. [40] shows
that by integrating expert knowledge to the proposed OFDM channel estima-
tion network, one can achieve more accurate channel estimation and higher
data recovery accuracy compared to conventional methods.

1.3.2 SENSING AND LOCALIZATION

The role of wireless sensing is to remotely acquire and exploit information
and characteristics of interesting objects through received radio signals that
change with the movement of objects. For certain applications such as object
speed estimation, there already exist mature signal processing algorithms: one
can attain the speed estimation by analyzing the Doppler spectrum. However,
it is more suitable to apply ML methods for tasks such as object classification,
since attaining an accurate model for the propagation scenario can be a non-
trivial task, especially when the base station (BS) cannot obtain the size and
moving speeds of objects. In contrast, this relationship can be learned by
exploiting large datasets [41, 42].

Localization services have been identified as a key function in modern
cellular systems, and relevant localization algorithms have been investigated
for a few decades. Several localization algorithms, based on proximity,
angle of arrival (AoA), and time of arrival (ToA), have been integrated into
the current 3rd Generation Partnership Project (3GPP) standards [43]. To
further enhance localization accuracy and reduce algorithmic complexity, an
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ML-based method can be applied, which learns the non-linear relationship
between the received channel state information and the UE location ,see
[44, 45].
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2
Preliminaries

T
his chapter briefly presents fundamental concepts and technologies
in ML algorithms and multiple antenna systems. We begin with
introducing two important tasks, namely regression and classification,

followed by illustrating fundamentals of NNs. Next, we illustrate the basics
of massive multiple-input multiple-output (MIMO) systems, and introduce a
MIMO system model and directional beamforming.

2.1 MACHINE LEARNING BASICS

This section begins with explaining two representative classic ML algorithms
under the umbrella of supervised learning, namely linear regression and
logistic regression. These two algorithms can be applied to solve regression
and classification tasks, respectively, see [22, 46]. We also use them as
examples to illustrate the general process of supervised learning, where a
crucial consideration is to use an appropriate cost function. The cost functions
introduced here will be used in the following chapters to address wireless
channel estimation, sensing, and localization tasks. Next, we introduce
the basic structures of NNs, attention mechanisms, and ensemble learning
concepts.

2.1.1 LINEAR REGRESSION

We begin by introducing the basics of linear regression algorithms, which
model the system output as a linear combination of the inputs. For simplicity,
we consider a system that takes a vector x ∈ RN as input and outputs a scalar
y, although the fundamental principles can be easily extended to systems with

11



Navigating the Future — Machine Learning for Wireless Sensing and Localization

multiple outputs. To this end, y is represented as [22, 46]:

y = b +
N

∑
n=1

ωi xi + ϵ, (2.1)

where b denotes the optional bias term and ωi represents the weight of the
i-th element of the vector x. In addition, ŷ = ∑N

n=1 ωi xi + b denotes the
predicted value of the linear regression algorithm and ϵ = y− ŷ the prediction
error. Observe that if the input and output relationship is strongly non-linear,
it might be inappropriate to directly apply a linear regression to learn this
relationship. Instead, one can apply various non-linear base function(s) ϕj(.)

to x, formulating a vector ϕ(x) ∈ RN′
=
[
ϕ1(x), ..., ϕN′(x)

]T . An example
of a base function is ϕj(x) = xj, which formulates the idea of polynomial

regression [22]. Let ω =
[
ω1, ..., ωN

]T ∈ RN′
denote the new weight vector,

(2.1) can then be modified as

y = b + ωT ϕ(x) + ϵ. (2.2)

During the training phase, the task is to find all ω so that the model output
approaches the ground truth. To do this, it is required to collect enough
training data. We assume that a total of P input vectors x and corresponding
P output scalars are collected. The j-th input vector and the j-th output scalar
are denoted as xj and yj respectively. We then define a matrix Φ ∈ RP×N′

with
its j-th row as ϕT(xj), and a new vector y ∈ RP with the j-th element as yj.
The error ϵ is usually supposed to be Gaussian distributed with variance σ2,
and all elements xj are statistically independent, while all elements of ω are
treated as fixed unknown values rather than random variables. Considering
this, the overall likelihood function can be written as [22]

p(y|ω) =
P

∏
j=1

exp
{
−
(yj − ωT ϕj(xj)− b)2

2σ2

}
. (2.3)

In (2.3), ω can be estimated by maximizing the likelihood function (2.3) or
minimizing the following mean square error (MSE) cost function [22]

E(ω) =
P

∑
j=1

{
yj − ωT ϕj(xj)− b

}2. (2.4)

Equation (2.4) is a measure of the mean square error between the predicted
output and the ground truth, which is a popular cost function in regression
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tasks. The closed-form solution of ω and b can be found by taking the
derivative of E(ω) w.r.t. each ωi and b [22], specifically,

ω = (ΦT Φ)−1ΦT y, b =
1
P

P

∑
i=1

yi −
1

N′
N′

∑
i=1

ωi

P

∑
j=1

Φij. (2.5)

2.1.2 FUNDAMENTALS OF ML-BASED CLASSIFICATION ALGORITHMS

When it comes to classification tasks, we can again apply the concept of
maximum likelihood. However, one needs to use another cost functions
instead of (2.4). In this section, we first present the basics of classification
tasks and provide the derivation of a widely-used cost function, namely the
cross-entropy function. We consider that a classification task that is associated
with K possible output classes labeled as C1, ..., CK and the prior probability
of the k-th event is written as p(Ck). The posterior probability of the k-th class
p(Ck|x) given an input vector x, can be calculated using Bayes’ theorem as
follows [22]:

p(Ck|x) =
p(x|Ck) p(Ck)

∑m p(x|Cm) p(Cm)
=

exp(ak)

∑m exp(am)
, (2.6)

where ak = ln p((x|Ck) p(Ck)) is the log probability. Our aim is to find the
relationship between ak and x. There are various ways to approach this, one
common way is to assume that ak and x have linear relationships and this
refers to the logistic regression algorithm*. Specifically, ak is expressed as ak =
ω̃T

k x, where ω̃k ∈ RN , k = 1, ..., K denotes the weight vector.
Now, consider that we have collected N input vectors xn, n = 1, ..., N and

that a logistic regression algorithm is applied. Further, we denote further

p(Ck|xn) =
exp(an,k)

∑m exp(an,m)
as the posterior probability that the output label is

Ck when xn is the input vector, while an,k = ω̃T
k xn is the corresponding log

probability. We further denote a matrix T ∈ RK×N = [t1, ..., tN ] that records
the ground truth label for all N input vectors. The element Tk,n = 1 if for
the n-th input vector, the event label is Ck. Otherwise, Tk,n = 0. During the
training process, our object is that p(Ck|xn) approaches Tk,n. Therefore, we
define the following likelihood function p(T|ω̃1, ..., ω̃k) as

p(T|ω̃1, ..., ω̃k) =
N

∏
n=1

K

∏
k=1

p(Ck|ϕn)
tnk . (2.7)

*Logistic regression is a classification algorithm that predicts a continuous out-
come representing the probability of a class.
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We aim to find all ω̃k to maximize (2.7), or to minimize the cross-entropy
E(ω̃1, ..., ω̃k) between tnk and ynk, specifically,

E(ω̃1, ..., ω̃k) = − ln p(T|ω̃1, ..., ω̃k) = −
N

∑
n=1

K

∑
k=1

tnk ln p(Ck|ϕn). (2.8)

Equation (2.8) is the widely used cross-entropy cost function to address
classification tasks. All weights ω̃j can be estimated by applying gradient
descent algorithms, see [22, 46].

2.1.3 AN INTRODUCTION TO NEURAL NETWORKS

NNs have been widely applied to solve complex tasks such as image classi-
fication [8], speech recognition [47], owing to their ability to learn nonlinear
models, as highlighted by [46]. Typically, NN structures can be represented
by multivariate functions f : RM1 → RM2 , where M1 and M2 denote the
dimensions of learning characteristics and desired outcomes, respectively. In
this chapter, we focus on introducing the fully connected neural network
(FCNN) as an illustrative example. The reader is referred to [22] for more
detailed information on other typical NNs, such as the convolutional neural
network (CNN), recurrent neural network (RNN), long-short-term memory
(LSTM), etc. Fig. 2.1 presents an example of a typical FCNN architecture,
comprising an input layer, several hidden layers, and an output layer. The
number of nodes in the input and output layers is M1 and M2, respectively.

In the process of training a NN, two fundamental steps are necessary,
namely forward propagation and backward propagation. Specifically in the
forward propagation step, input signals are introduced through the NN’s
input layer, traversing multiple hidden layers before ultimately reaching the
output layer. The output of the NNs vary based on individual tasks; for
regression tasks, the NN yields predicted values, while in classification tasks,
it produces the probabilities associated with each label. At each layer, the
output of a node depends on inputs from preceding layers, the corresponding
weights and biases, and a distinctive nonlinear activation function exclusive
to that node. To elaborate the process, we consider an FCNN with γi nodes
in the i-th layer, and the values of these nodes are aggregated into a signal
vector xi = [xi

1, ..., xi
γi
] ∈ Rγi . The value of the k-th node can be calculated

by applying a weight vector ŵ = [ŵi−1
1 , ..., ŵi−1

γi−1] ∈ Rγi−1 to the signal vector
xi−1 from the previous layer. This computation is specifically expressed as

xi
k = gi

(
γi−1

∑
j=1

xi−1
j ŵi−1

j

)
+ bi. (2.9)
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Hidden layerInput layer

Vec(M1)

Output layer

Figure 2.1: A typical structure of an FCNN.

Here, bi denotes an optional bias term, and gi(.) symbolizes the activation
function applied to the nodes in the i-th layer. The same propagation pattern
repeats for each subsequent layer, ultimately generating the predicted values
or probabilities of each label, depending on the task being addressed. For
supervised learning, it is important to select an appropriate training criterion,
often referred to as the loss function, since this function quantifies the
disparity between the predicted value and the ground truths. As previously
stated, the Mean Squared Error (MSE) in (2.4) is a widely used cost function
to perform regression tasks, while the cross entropy in (2.8) to perform
classification tasks. Once the training criterion is chosen, the optimization
process involves fine-tuning all hyperparameters, specifically the weights and
bias terms within each layer, as denoted in (2.9), to minimize the losses. This
optimization procedure is executed through backward propagation, where
the final loss based on the selected criteria is propagated backward through
each layer of the NN to facilitate weight update. More relevant material can
be found in [22, 46].

2.1.4 ATTENTION-AIDED MECHANISM

The attention mechanism was originally proposed by [11] to address tasks
related to language translation. The concept of the attention mechanism is
presented in Fig. 2.2. As shown, a matrix X = [x1, ..., xM] ∈ RN×M is fed
into the attention block as input, resulting in another matrix Z = [z1, ..., zM] ∈
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Figure 2.2: An illustration of basic attention mechanism to generate zj and
same mechanism can be applied to generate Z.

RN′×M as output. We define three matrices: the query matrix Wq ∈ RN×N ,
the key matrix Wk ∈ RN×N and the value matrix Wv ∈ RN′×N . All elements
of these three matrices are parameters that need to be optimized in the
training phase. By multiplying X by those three matrices, we obtain

Wq X = Q ∈ RN×M, Wk X = K ∈ RN×M, Wv X = V ∈ RN′×M. (2.10)

We then conduct the "attention" operation, which is the pairwise correlations
between all columns of matrices Q and K to obtain matrix A ∈ RM×M.
Specifically,

A =
1√
N

QTK. (2.11)

The matrix A is then normalized by softmax operation to attain Â ∈ RM×M.
Each element Âi,j is expressed as

16



2 Preliminaries

Âi,j =
exp Ai,j

∑k exp Ai,k
. (2.12)

This normalization ensures that all elements of Â are positive, and that the
sum of all elements in each column equals 1. Finally, the output matrix Z can
be calculated as

Z = VÂ. (2.13)

Bear in mind that the attention mechanism shown in (2.10)-(2.13) processes
the input vectors in X in a parallel way, which discards the sequence of order
of vectors. Therefore, if important information is presented in the order of
vector arrangement, it is essential to use a positioning encoding technique to
incorporate and preserve this sequential information. One solution is to add a
fixed positioning encoding matrix Xk ∈ RN×M to X [11]. A standard example
of Xk (also used in [11]) is

Xk(x, y) = sin
(

x
10000y/N

)
, for odd y;

Xk(x, y) = cos
(

x
10000(y−1)/N

)
, for even y.

(2.14)

2.1.5 ENSEMBLE LEARNING APPROACHES

As a popular ML approach, ensemble learning aims to enhance performance
by first training multiple base learners and then combining their outputs to
target a better performance than any individual learner [48]. To develop a
successful ensemble learning algorithm, two key factors need to be addressed,
namely training several different models (either different training inputs or
training on different datasets) and effectively combining those learners. As
illustrated in Fig. 2.3, ensemble learning algorithms can be mainly classified
into three categories, namely boosting, bagging, and stacking [48].

1) Bagging. Bagging, or Bootstrap Aggregating, follows a series of obvious
steps aimed at enhancing the accuracy of ML models. We first formulate M
subsets of training data, with each subset randomly selecting N data points
from the overall dataset. This allows certain data points to appear in multiple
subsets. Each subset is then used to independently train a base learner. All
base learners use models that share the same structure, and the training of all
M learners can be performed in parallel. Once trained, each of these models
makes predictions and the prediction results are then fused through methods
such as max voting or averaging. The fusion improves model stability and
accuracy by reducing the variance.

2) Boosting. In the first step, the M subsets are formulated in the same way
as in bagging. However, boosting trains basic learners sequentially, which
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Figure 2.3: Three categories of ensemble learning (a) Bagging, (b) Boosting,
(c) Stacking.

differs from bagging. The first subset is used to train the first basic learner,
which is then tested on other training data. Misclassified or weakly perform-
ing data points are identified and added to the second subset. Following the
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first step, the second basic learner is trained on this updated subset and tested
again. We repeat this process until all the subsets M have been used. In the
final step, the overall prediction can either use the output of the last learner
or be adjusted by giving more weight to the performance of the most recent
learner.

3) Stacking. Unlike bagging and boosting methods, stacking combines sev-
eral heterogeneous models to create a meta-model. Specifically, M different
models are trained using the initial dataset. The outputs of these models
are then used to form a new training set, which is utilized to train a meta-
model that integrates the results of the initial algorithms and produces the
final prediction.

2.2 FOUNDATIONS OF MASSIVE MIMO TECHNOLOGIES

In this section, we provide a short introduction to a key technology used in
modern cellular communication systems, namely massive MIMO. We begin
by presenting a massive MIMO signal model, followed by illustrating the
concept of beamforming. The art of massive MIMO technology enables the
BS to simultaneously serve different users using the same frequency and time
resource; therefore it helps to increase the spectral efficiency. This advantage
becomes more pronounced with a massive number of antennas, as it increases
further the Shannon channel capacity.

2.2.1 MASSIVE MIMO SIGNAL MODEL

To gain a deep comprehension of massive MIMO, it is important to under-
stand the corresponding signal model. Here, we briefly introduce a narrow-
band massive MIMO signal model, readers are referred to [49] for wideband
channel models. We first consider an uplink scenario, where K users occupy
the same frequency resource and communicate simultaneously with the BS
equipped with M antennas. We then denote xk,t as the transmission signal
of the k-th user at time t and collect all K signals in a vector xt ∈ CK. The
propagation channel between users and the BS is denoted as Ht ∈ CM×K. It
is usually assumed that Ht remains static under a symbol time, therefore Ht
can be replaced with H ∈ CM×K. Under this assumption, the received signal
yt ∈ CM can be written as

yt =
√

αup Hxt + nt, (2.15)

where αup denotes the normalization factor, which can be interpreted as
the average power of uplink transmission signals of all K users at time
t if we assume Ek{|xk,t|2} = 1. In addition, H is often normalized so
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that E{|Hi,j|2} = 1. The system noise on the BS side is represented by
nt ∈ CM, which is usually modeled as identical independent distributed
complex Gaussian variables of zero mean and var{nt,m} = σ2 for all indices j
and all t. The BS may further process the signal by applying a beamforming
matrix W =

[
wT

1 , ..., wT
M
]
∈ CM×M to yt, which yields

zt = Wyt, (2.16)

where wi ∈ CM is seen as the i-th beamforming vector. W can be chosen
depending on the specific applications. Two popular examples are the zero
forcing matrix: W = (HH H)−1 HH , and the matched filter matrix: W = HH .

For downlink transmission, reciprocity is usually assumed, which means
that the downlink channel is the transpose of the uplink. Therefore, similarly
to (2.15), the signal model for downlink transmission can be written as

ỹt =
√

αdl HT W̃x̃t + ñt, (2.17)

where αdl represents the normalization factor for the downlink channel,
x̃t ∈ CM denotes the signals transmitted by the BS. The additive noise and
the received signal for each UE are represented as ñt ∈ CK and ỹt ∈ CK,
respectively. W̃ ∈ CM×M represents the precoding matrix. As shown in
[50], two common precoding matrices are zero forcing, and maximum ratio
transmission.

One fundamental metric for the MIMO channel is the sum-rate capacity,
which sets the bound for the maximum transmission rate for the whole
system. Taking uplink transmission as an example, the sum-rate capacity
can be written as [50]

C = log2 det(I +
αup

σ2 HH H) =
K

∑
i=1

log2(1 +
αup

σ2 λi), (2.18)

where λi is the i-th eigenvalue of matrix HHH. Furthermore, a significant
capacity gain can be achieved if M increases excessively. Applying the weak
law of large numbers, when M is sufficiently large and channels of different
users are uncorrelated [50],

1
M

hH
k hl → 0, l ̸= k;

1
M

hH
k hk → 1. (2.19)

Thus, for massive MIMO systems with uncorrelated channels among different
users, the capacity in (2.18) can be further approximated as C ≈ K log2(1 +

M αup
σ2 ).
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2.2.2 DIRECTIONAL BEAMFORMING

Another advantage of using a massive MIMO array is that it can create
narrower beams, compared with MIMO system with few antennas. Thus,
it can better reduce interference. To simplify the explanation of this tech-
nology, we consider the uplink of a single-user system. We assume that
the propagation environment consists of a LoS path and P other reflective
paths. The UE transmits a signal with wavelength λ, and the BS is equipped
with a uniform linear array and the distance between the phase center of two
adjacent antennas is d. Using these assumptions, the received signal yt can be
written as

yt = γLoS a(θLoS) +
√

αup

P

∑
p=1

γpa(θp) + nt, (2.20)

where γLoS is a complex scalar indicating the amplitude and phase shift of
the line of sight (LoS) component, while the complex scalar γp represents
the amplitude and phase of the p-th reflective path component. θp denotes
the angle of arrival and a(θp) ∈ CM represents the steering vector. If the
separation distance between the UE and the BS is much larger than the
Rayleigh distance, the steering vector a(θp) can be approximated as a(θp) =
[
1, exp(j 2π d sin(θp)

λ ) , exp(j 2π 2d sin(θp)
λ ), ..., exp(j 2π (M−1) d sin(θp)

λ )
]
, see [50].

Observe that applying different beamforming vectors in (2.16) can
strengthen or weaken the signal coming from certain directions. Taking
the vector w = aH(θp) as an example, it amplifies the signal with the
incoming angle θp while suppressing the signal from angles diverging from
θp. Consequently, at the BS, various beamforming vectors may be employed
to create distinct beams, each optimized for specific signal directions. Similar
principles apply on the transmitter side as well. Readers can refer to [50] for
further details.
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3
ML-based channel estimation

T
his chapter is dedicated to investigating the application of ML algo-
rithms to channel estimation. Accurate wireless channel estimation
plays a crucial role in the wireless system since it is a fundamental

requirement for communication, sensing, and localization applications. The
chapter is divided into two parts. The first part provides an introduction to
massive MIMO RF chain calibration algorithms. The second part focuses on
ML-based channel estimation.

3.1 RF CHAIN CALIBRATION

In this section, we first briefly introduce the research topic of RF chain
calibration. Then, we present our signal model and the corresponding
Cramér–Rao lower bound (CRLB), which can be used to set up a bound
to evaluate estimators. Finally, we illustrate the closed-form moment-based
estimation and the maximum likelihood estimation (MLE), for the amplitude
and phase estimation of the RF chains, respectively.

3.1.1 BACKGROUND

In the literature, massive MIMO calibration approaches fall into two main
categories: reciprocity calibration [51–55] and absolute calibration [56–58]. Due
to the influences of transceiver RF chains, we may face challenges to leverage
channel reciprocity properties in practice, which sets up a barrier for imple-
menting systems operating in the time-division duplex mode. In particular,
the aggregated responses received on the uplink encompass contributions
from the UE transmitter, the channel, and the BS receiver. In contrast, the
responses received on the downlink involve the UE receiver, the channel, and

23



Navigating the Future — Machine Learning for Wireless Sensing and Localization

Uplink Pilot

Rx RF Chains

DSP Block

RX Antennas

TX Antenna

1

M

BS

DSP Block Tx RF Chain

UE

Figure 3.1: An uplink massive MIMO system with an M-antenna array and a
single user.

the BS transmitter. One of the remedies for this issue is to apply reciprocity
calibration algorithms to ensure that the channel is reciprocal, i.e., the same in
uplink and downlink. A reciprocity calibration algorithm was first introduced
in [51], and [52] presented a network protocol for UE synchronization and
reciprocity-based calibration. Practical approaches for reciprocity calibration
are proposed in [53–55]. Absolute calibration is necessary for AOA estimation
and positioning. The idea is to estimate the receiver RF chain amplitude and
phase coefficients for the entire BS array, as explained in [56–58]. The task
becomes increasingly challenging as the number of antennas increases.

3.1.2 SYSTEM MODEL AND PROBLEM FORMULATION

We investigate a narrow band uplink channel model of a single-user massive
MIMO system equipped with M antennas at the BS side. As illustrated in Fig.
3.1, the user transmits the pilot signal at time t to estimate the amplitudes and
phases of M BS RF chains. We assume that the propagation channel is Ricean
fading, i.e., there exists a LoS path, plus a few diffuse multipath components.
The LoS path can be modeled by a steering vector a(ϕt) ∈ CM×1 with an
arrival angle ϕt, while the sum of all diffuse multipaths can be modeled
by complex Gaussian distributions. Based on the assumptions, the received
signal vector yt ∈ CM can be expressed as
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yt = γt Dt a(ϕt) pt︸ ︷︷ ︸
st

+Dtht pt + nt︸ ︷︷ ︸
ωt

, (3.1)

where the scalars γt refers to the power of LoS component, while pt represents
the uplink pilot at time t, respectively. The power of pt is normalized so
that |pt|2 = 1, t = 1, 2, . . . , T. We define a diagonal matrix Dt ∈ CM×M =
diag(d1ejα1 , d2ejα2 , ..., dMejαM ), which collects all amplitudes (d1, ..., dM) and
phases (α1, ..., αM) for the M RF chains. In addition, the sum of all diffuse
paths at time t is modeled as a random vector ht ∈ CM×1 and ht ∼ CN (0, σ2).
In other words, the mean of the diffuse components is zero and the variance
(power) is σ2 across all t = 1, 2, . . . , T. The added white Gaussian noise
(AWGN) at the receiver side is represented by another random vector nt ∈
CM×1, and nt ∼ CN (0, N0/2). We also assume that nt and ht are statistically
independent. Taking into account the information above, we can calculate the
autocorrelation E{ωt ωH

t } as [2]

E
{

ωtω
H
t

}
= E

{
(Dtht pt + nt)(Dtht pt + nt)

H
}

= N0 IM + Dt |pt|2σ2 DH
t , (3.2)

where IM ∈ CM×M represents the identity matrix. Furthermore, the cross-
correlation of ωt at different time intervals, namely t = t1 and t = t2, is
calculated as

E{ωt=t1 ωH
t=t2

} = σ2 Dt1 DH
t2

. (3.3)

Note that the RF chain coefficients Dt typically remain static under a period
longer than the channel coherence time. The incoming angles ϕt are supposed
to change. However, it is assumed that the position of the UE is known by the
BS during the calibration process so that the BS knows the incoming angles
ϕt and the corresponding steering vectors a(ϕt). For simplicity, from now on
we omit the subscript t of ϕt and Dt. Therefore, the probability distribution
of the received vector yt is expressed as [2]

yt ∼ CN
(

γ Da(ϕ) p, N0 IM + D |p|2σ2 DH
)

. (3.4)

If we observe over a time period T, the overall received signal y can be
achieved by stacking all T vectors yt, t = 1, 2, . . . , T, which yields

y ∼ CN
(

1⊗γ pDa(ϕ)︸ ︷︷ ︸
µ(ξ)

, IT ⊗ IM N0+ ĨT ⊗σ2 DDH
︸ ︷︷ ︸

C (ξ)

)
, (3.5)

where 1 = [1, 1, . . . , 1]T ∈ RT×1 and ĨT = 1.(1T) ∈ RT×T is a matrix with
all elements equal to 1. Furthermore, ⊗ represents the Kronecker product.
We assume that yt, a(ϕ) and p in model (3.5) are known by the BS. We
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collect all the remaining parameters, which are unknown to BS, in a vector
ξ = [d1, d2, . . . , dM, α1, ..., αM, σ2, γ]T . As seen in (3.5), both the mean and
the variance of the received signal y are related to ξ, which are denoted by
µ(ξ) and C(ξ), respectively. It should be noted that the LoS coefficient γ
should technically be a complex scalar. However, it is important to estimate
the relative phase differences among RF chains, instead of the absolute phase,
for calibration tasks. Considering this; the phase of γ can be absorbed by
diagonal elements of D and thus γ can be treated as a real scalar for simplicity.

3.1.3 THE CRLB ANALYSIS

As a lower limit for variances of unbiased estimations, CRLB plays a crucial
role in evaluating the performances of estimators. Suppose that all unknown
parameters are collected in a vector θ ∈ RM′

and all observation data are

collected in a vector x ∈ RN . If the regularity condition E
[

∂ ln p(x,θ)
∂θ

]
= 0 is

satisfied, the variance of the i-th element of the vector θ̂ ∈ RM′
is bounded

by [59]
var(θ̂i) ≥ [I−1(θ)]ii, (3.6)

where I(θ) ∈ RM′×M′
represents the Fisher information matrix (FIM), with

each element I(θ)i,j as [59]

I(θ)i,j = −E

[
∂2 ln p(x, θ)

∂θi ∂θj

]
. (3.7)

In particular, we consider that (3.5) follows the Gaussian distribution and
that both the mean and variance contain information of ξ, in accordance with
[59], the FIM of ξ is expressed as

I(ξ)i,j = Tr
[∂C(ξ)

∂ξi
C−1(ξ)

∂C(ξ)

∂ξ j
C−1(ξ)

]

+ 2 Re
[∂µH(ξ)

∂ ξi
C−1(ξ)

∂µ(ξ)

∂ξ j

]
.

(3.8)

The CRLB also indicates the feasibility of the parameter estimation. As illus-
trated in (3.6) and (3.7), if a diagonal element I(θ)i,i of the Fisher information
matrix is equal to 0, it implies that the variance of the corresponding estimated
parameter becomes infinite. This phenomenon shows the impossibility of
accurately estimating that particular parameter.

The sufficient and necessary condition for an estimator to achieve the CRLB
is that there exists a function g(x), which satisfies the following condition [59]:

ln p(x, θ) = I(θ)
[
g(x)− θ

]
. (3.9)
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If an unbiased estimator θ̂ = g(x) satisfies (3.9) and reaches CRLB, it is
considered as an efficient estimator, and the corresponding parameter esti-
mation variances are bounded by the diagonal elements of I−1(θ). However,
condition (3.9) is only achievable in very few special cases, and the rarity of
such cases necessitates the exploration of other practical estimators in real-
world applications.

3.1.4 TWO CLASSICAL ESTIMATORS

In many real-world scenarios, achieving an estimator that exactly matches
(3.9) can be challenging. Considering this, it is necessary to explore other
estimators that are feasible in practical cases. We therefore introduce the two
most popular classical estimation algorithms that do not rely on posterior
knowledge, namely, the MLE and the moment estimation.

The basic principle of MLE is to transfer an estimation task into an
optimization task that maximizes the likelihood function. Suppose that all
unknown parameters are collected in a vector θ ∈ RM′

, the estimation θ̂ is
denoted as

θ̂ = arg max
θ

p(x, θ). (3.10)

Furthermore, if p(x, θ) is differentiable, the MLE can be calculated by finding
θ to solve the following equation:

∂ ln p(x, θ)

∂θ
= 0. (3.11)

One fundamental characteristic of the MLE estimator is the asymptotic prop-
erty. Suppose that if x satisfies the regularity condition, then θ̂ asymptotically
approaches the Gaussian distribution with mean θ and covariance matrix
I−1(θ). The variance of θ̂ approaches the diagonal elements of I−1(θ), if large
independent observation samples are achievable.

In certain applications, it can be challenging to obtain a closed-form expres-
sion for MLE estimators. One remedy to this problem is to apply numerical
methods to find a solution to (3.10). Alternatively, one may explore other
estimators, such as the commonly used moment estimator. It is relatively
simpler to achieve a closed-form solution for a moment estimator, although
the solution typically does not converge to the optimum. Specifically, given
a vector θ = [θ1, ..., θM′ ] with unknown variables M′, the first step to derive
a moment estimator is to calculate the first M′ order sample moments from
the observation samples x, and collect the calculation result in a vector
η ∈ RM′

= [η1, ..., ηM′ ]. Those sample moments are used to statistically
estimate the first M′ order theoretical moments that are associated with θ.
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Specifically,
η1 = h1(θ1, ..., θM′)

...

ηM′ = hM′(θ1, ..., θM′),

(3.12)

where hi(θ1, ..., θM′) represents the i-th order theoretical moments. By solving
equation (3.12), the moment estimator of θ can be found.

3.2 ML-BASED CHANNEL ESTIMATION

In this section, we first provide a basic introduction to the topic of wireless
channel estimation. In the next step, we start by introducing the relevant
multi-carrier system model, followed by describing a popular channel estima-
tion method, namely the Bayesian method.

3.2.1 BACKGROUND

The channel estimation quality has large influence on the performance of
a wireless system, including the OFDM system. The current solution in a
modern wireless system is to insert pilot signals that are known by both the
transmitters and receivers into OFDM radio frames. To enhance the accuracy
of channnel estimation under this framework, an intuitive method is to use
more pilots or to increase transmission power. However, these methods may
sacrifice the overall spectral efficiency of the system [60]. Therefore, for chan-
nel estimation, leveraging the correlation properties rather than modifying the
pilot signals offers a more favorable solution.

According to the literature, relevant algorithms can be predominantly
classified into two main groups: classical signal processing-based approaches
and ML-based approaches. A representative of the former method is the
linear minimum mean square error estimation (LMMSE), whose effectiveness
depends on the availability of prior knowledge on the first- and second-order
channel statistics [59]. In contrast, data-driven methods, which can effectively
learn the correlation properties among subcarriers, are expected to produce
promising outcomes [17, 40]. However, to our best knowledge, most of the
methods listed above still face challenges in targeting robust performance in
low-SNR scenarios.

3.2.2 SYSTEM MODEL AND PROBLEM FORMULATION

We hereby consider a simple single-input-single-output OFDM system that
uses F subcarriers and T symbols and occupies in total FT resource elements.
We consider a frequency-selective fading channel with transfer function
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Figure 3.2: A typical OFDM time-frequency resource grid.

H( f , t) ∈ C. If a signal X( f , t) ∈ C is transmitted in the t-th time slot and f -th
frequency subcarrier, the received signal Y( f , t) ∈ C is expressed as

Y( f , t) = H( f , t)X( f , t) + N( f , t), (3.13)

where N( f , t) ∈ C denotes the additive noise at the receiver side. As
introduced before, one prerequisite for many applications in communication
systems (e.g. radio-based localization, downlink precoding, etc.) is to acquire
accurate channel knowledge, i.e, H( f , t). To perform this task, P OFDM
resource elements are allocated for pilot signals, indicated by black squares
in Fig. 3.2. These pilot signals are concatenated into a vector ĥx ∈ CP×1.
In particular, ĥx ∈ CP×1 represents a noisy version of the true pilot CSI
hx ∈ CP×1, since the received pilot signals are also polluted by noise. Our task
is to estimate the channel responses of all elements of the resource Hx ∈ CF×T ,
using the information available from ĥx ∈ CP×1.

3.2.3 INTRODUCTION TO THE BAYESIAN METHOD

To solve the channel estimation problem, one standard approach is to leverage
the LMMSE, which belongs to the Bayesian family. We first illustrate the
concepts of Bayesian estimation, followed by presenting the mathematical
form of LMMSE.

Unlike the classical estimation approach, the philosophy of the Bayesian
method assumes that the estimation parameters are random variables instead
of deterministic constants. Thus, one can effectively leverage the statistical
prior knowledge of the estimation parameter to enhance the estimation
performance. To illustrate this concept, we start by introducing the principle
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of single-variable Bayesian estimation, since the basic concept can be readily
extended to multiple-variable estimations.

We define the scalar η as the estimation error associated with the obser-
vation x, where η = θ − θ̂. In addition, a deterministic function C(η) is
introduced as the cost function, which can be chosen based on the specific
requirements of different applications. Two commonly used cost functions
are as follows, namely, (a) MSE: C(η) = η2, (b) "Hit-or-Miss" function: C(η) =
sgn(|η| − δ), where sgn denotes the sign function while δ the threshold [59].
To assess the performance of the estimation, the Bayesian risk R = E{C(η)}
is used as the evaluation criterion. This criterion is associated with both the
observation signal x and θ. Using the Bayes law, R is expressed as

R =

ˆ ˆ
C(θ − θ̂) p(x, θ)dx dθ

=

ˆ [ ˆ
C(θ − θ̂) p(θ|x)dθ

]
p(x)dx.

(3.14)

Our objective is to derive an expression for θ̂ that minimizes the Bayesian risk
R. This involves computing the derivative of R with respect to θ̂. For brevity,
we omit the derivation details, which are available in [59], and present only
the final mathematical forms of the estimators corresponding to the two cost
functions mentioned above, (a) and (b). Specifically, if the MSE criterion is
chosen, the optimal estimator is given by θ̂ = E(θ|x), equivalent to the mean
of the posterior probability density function p(θ|x). On the other hand, when
the "hit-or-miss" criterion is selected with a sufficiently small δ, the resulting
estimator is the maximum a posteriori estimator: θ̂ = maxθ p(θ|x).

However, it is sometimes challenging to achieve a closed-form estimator
to minimize the Bayesian Mean Squared Error (BMSE) illustrated in (3.14).
One solution is to resort to the framework of a linear estimator, where an
estimation θ̂ is expressed as a linear combination of x: θ̂ = ∑k ak x[k] + ak+1.
The closed form of θ can be found by minimizing E{(θ − θ̂)2}. Specifically, θ
and the corresponding BMSE are expressed as

θ̂ = E(θ) + Cθx C−1
xx (x − E(x)),

BMSE = Cθθ − Cθx C−1
xx Cxθ .

(3.15)

Here, Cxx and Cθθ denote the autocorrelation matrix of x and θ, respectively,
while Cθx represents the cross-correlation matrix between θ and x. The
expression in (3.15) can easily be extended to vector estimation cases by
replacing θ with a vector θ. It should be noted that the LMMSE method
requires prior knowledge of the first- and second-order statistics of θ instead
of the full probability density function of θ. In cases where x and θ are
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jointly Gaussian, (3.15) fulfills the criterion of minimizing the Bayesian MSE,
and therefore the LMMSE and BMSE estimators share the same form in this
particular case. However, the assumption of joint Gaussian distribution is less
likely to hold in practice, which may limit the performance of the LMMSE
estimator.
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4
ML-based wireless sensing and

human activity classification

This chapter explores ML-based wireless sensing approaches. We start with
an overview of the fundamentals of wireless sensing, followed by a detailed
presentation of a common system model used for distributed MIMO radar.
Next, we introduce a key algorithm for feature extraction and dimensionality
reduction, known as the tensor decomposition algorithm. The extracted
features are then used as input to the subsequent ML block.

4.1 INTRODUCTION TO WIRELESS SENSING

Wireless sensing involves detecting events in the propagation environment by
analyzing the patterns of the received signals [41]. A well-known example
is radar, which dates back to the early twentieth century when the German
scientist Christian Hülsmeyer successfully used high-frequency radio waves
to detect ships [61]. Since then, radar has played a crucial role in various
aspects of daily life, including navigation and weather forecasting. Due to
the significance of sensing, the integration of sensing capabilities into future
cellular communication systems has been identified as a key feature for next-
generation wireless technologies beyond 5G [62].

Wireless sensing can be classified into two main types: device-based
sensing (active sensing) and device-free sensing (passive sensing) [62]. In
device-based sensing, the object of interest is equipped with radio devices that
transmit or receive radio signals. A key application of this type of sensing
is radio-based localization, which will be discussed in the next chapter. In
contrast, device-free sensing does not require the target object to be equipped
with a radio device. Instead, the object serves as a reflector or scatterer,
influencing the radio signals transmitted by other devices. Although the
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Figure 4.1: Four typical types of device-free sensing: (a) mono-static phased
array radar (b) Bi-static phased array radar (c) Colocated MIMO radar (d)
Distributed MIMO radar.

object lacks a radio device, it still affects the radio channel. In this chapter, we
focus on device-free sensing.

Fig. 4.1 illustrates four typical use cases of device-free sensing [62]. These
use cases are categorized on the basis of the type of beams used at the
transmitter side and whether the transmitting and receiving arrays are located
at the same place. Specifically, in a phased array, all antenna elements are
synchronized and transmit the same base pulse, but the transmission signals
of each antenna element can be phase-shifted or delayed to steer a narrow
beam towards a desired direction. If the transmit array and the receive array
are located at the same place, the device is named a mono-static phased array
radar. In this case, the AoA is equal to the angle of departure. Conversely, if
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the transmit and receive arrays are not at the same place, it is referred to as a
bi-static phased array radar. In contrast, each element in a MIMO array may
transmit different signals in a MIMO radar system, resulting in an overall
beam that can be much wider or even omnidirectional. The transmit and
receive antennas can be colocated or completely distributed, corresponding to
colocated and distributed MIMO radar, respectively.

4.2 SYSTEM MODEL AND PROBLEM FORMULATION

We now introduce a typical system model for distributed MIMO radar
sensing. We consider the uplink of a multi-user massive MIMO system,
where the BS utilizes an OFDM scheme with F subcarriers. To acquire the
propagation channel, multiple UEs simultaneously transmit pilot signals and
these signals are received by the M-antenna BS antenna array, where each
antenna is connected to an individual RF chain. We suppose that the uplink
signal is continually recorded for a certain period, which results in T channel
snapshots. Based on the information above, the received channel matrix
Y f ,t ∈ CM×T for each subcarrier at time index t is expressed as:

Y f ,t = H f ,t ⊙ Γ f ,t + N f ,t. (4.1)

where f ∈ [1, F] and t ∈ [1, T] denote the subcarrier and the time index,
respectively. The operation of the Hadamard product is denoted by ⊙. The
channel response of the f -th subcarrier is represented by H f ,t ∈ CM×T .
Similarly, Γ f ,t ∈ CM×T represents the responses of all the RF chains, while
N f ,t ∈ CM×T characterizes the additive noise. By summarizing channel
responses for all F subcarriers, a third-order tensor G ∈ CT×F×M can be
formulated, and this tensor contains CSI in time, frequency, and antenna
domains. Suppose that in total P types of events occur between the UE and
BS, our task is to classify these events according to the created tensor G. Note
that it is a non-trivial task to correctly establish a model for H f ,t, because
the BS lacks, in most cases, information regarding locations and the moving
speed of UEs and scatters. Hence, employing an ML approach is particularly
well-suited for handling this task.

4.3 ML-DRIVEN EVENT DETECTION

When we apply ML algorithms, it is important to extract adequate features
used for training. Given the considerable size of our tensor G and its inherent
rich information in the time, frequency, and antenna domains, it is essential
to find an efficient approach to process G and to extract interesting features.
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To this end, the tensor decomposition algorithm is a good solution [63]. This
concept is similar to the widely used PCA approaches. Specifically, a third-
order real tensor H ∈ RT×F×M can be expressed as

H ≈ H̃ =
rmax

∑
l=1

λl xl ◦ yl ◦ zl , (4.2)

In (4.2), the symbol ◦ represents the outer product of two vectors. The
factor vectors are denoted as xl ∈ RT , yl ∈ RF, and zl ∈ RM, respectively.
We normalize those vectors to unit length, and therefore the associated
weights are absorbed into λl . All eigenvalues λl can be grouped in a vector
λ ∈ Rrmax that contains representative features. More details of the tensor
decomposition algorithms can be found in [64]. The vector λ can then be fed
into an NN for event detection, as shown in Fig. 2.1. As discussed in Chapter
2, the output layer of the neural network should compute the probability
of each event when it addresses the classification task. The cross-entropy
loss, defined in (2.8), can then be used as the cost function to measure the
discrepancy between the ground truth and the predicted probabilities.

We introduce three popular metrics for evaluating classification perfor-
mance: accuracy, precision, and recall. For simplicity, we use a binary
classification task as an example, though the same concepts can be extended
to multi-class cases. We assume that the testing dataset consists of NTs data
samples, and NTP, NTN , NFP, NFN represent the numbers of true positive,
true negative, false positive, false negative decisions, respectively. Based on
this, the metric accuracy pac is defined as

pAC =
NTP +NTN

NTs
, (4.3)

which indicates the overall proportion of correct predictions made by the
model. While accuracy provides an indication of general performance, it can
be misleading, especially when the testing dataset is imbalanced with respect
to positive and negative samples. In such cases, it is necessary to use another
two metrics pPR and pRE, which are defined as

pPR =
NTP

NTP +NFP
,

pRE =
NTP

NTP +NFN
.

(4.4)

We can read from (4.4) that precision measures the proportion of correct
positive predictions out of all predicted positives, while recall reflects the
model’s ability to identify all positive cases correctly.
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Radio-based localization and ML

This chapter explores radio-based localization systems, including both classi-
cal and ML-based localization approaches. We first introduce three traditional
algorithms: ToA, AoA, and Time Difference of Arrival (TDoA) [65], which
serve as foundational methods in wireless localization. Next, we demonstrate
how ML can be applied to solve localization tasks by using a massive MIMO
system as a representative example. Finally, we discuss various uncertainty
estimation techniques, underscoring their importance in enhancing the preci-
sion and robustness of wireless localization systems.

5.1 CLASSICAL RADIO LOCALIZATION ALGORITHMS

The basic concepts of ToA, AoA, and TDoA are presented in Fig. 5.2. The
first two algorithms belong to the range-based method, while the last belongs
to the angle-based method. To implement those three methods, it is usually
required to have several anchor nodes (e.g. BSs) with known positions. These
anchor nodes can either receive the uplink signals from the UE or transmit
the downlink signals to the UE [65]. We use the uplink as an example, while
similar concepts can be applied to downlink wireless localization.

• ToA method: The mechanism of the ToA method is given in Fig. 5.2 (a).
As shown, three synchronized BSs receive uplink positioning reference
signals (PRS) sent by UE simultaneously and measure their signal
arrival times to calculate the corresponding distances l1, l2, l3. After
this, three circles are established, where the center of the i-th circle is
the axis of the i-th BS and the corresponding radius is li. After this,
the position of the UE can be calculated by computing the intersection
points of those three circles. Such method does not require that the
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Figure 5.2: Three classical radio-based localization algorithms (a) ToA, (b)
TDoA, (c) AoA.

BS is equipped with an antenna array. However, it is required that all
BSs need to be synchronized, and the synchronization error has strong
effect on the position accuracy [65].

• TDoA method: As illustrated in Fig. 5.2 (b), TDoA method measures
the time arrival differences between every two BSs. After achieving
TDoA parameters, the BS can create several hyperbolas and compute
the UE position by calculating the axis of the intersection points of
those hyperbolas. This method is widely applied in many commercial
systems, such as the narrowband internet of things (NB-IoT), since it
eases the requirement of synchronization between UE and the BS [1].
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• AoA method: The AoA localization method determines the UE position
by calculating the angle at which uplink signals arrive at the BS, see
Fig. 5.2 (c). To estimate this arrival angle, the BS is usually required
to be equipped with an antenna array. Common algorithms for AoA
estimation include multiple signal classification (MUSIC) and space-
alternating generalized expectation-maximization (SAGE). By using
these estimated angles to draw lines representing the directions of
the incoming signals, the location of the UE can be identified at the
conjunction point where the lines from multiple BSs meet.

We then emphasize three key properties of the PRS, namely, autocorrela-
tion, cross-correlation, and peak-to-average power ratio (PAPR) [66].

• Autocorrelation: This property measures how a signal correlates with a
delayed version of itself. For a discrete signal x(n), the auto-correlation
function Rxx(τ) is expressed as

Rxx(τ) = E{x(n)x∗(n + τ)}, (5.1)

where τ represents the delay parameter. This property is crucial for
PRS since a good autocorrelation property facilitates effective signal
identification and synchronization, leading to precise arrival time and
position estimations.

• Cross-correlation: This property assesses the similarity between two
different signals x1(n) and x2(n). The correlation function Rx1,x2(τ) is
written as

Rx1,x2(τ) = E{x1(n)x∗2(n + τ)}. (5.2)

It is desirable to have low cross-correlation between different signals to
minimize interference from other UE.

• PAPR: This metric measures the ratio of the peak power of a signal to
its average power. For a signal sequence x3(n), its PAPR is expressed as

PAPR =
max{|x3(n)|2}

E{|x3(n)|2}
. (5.3)

A low PAPR in PRS generally suggests a more uniform power distri-
bution, which enhances the efficiency of the power amplifier. This is
particularly crucial for cost-effective NB-IoT hardware.

5.2 ML-BASED LOCALIZATION IN MASSIVE MIMO SYSTEMS

This section discusses the application of ML algorithms to massive MIMO
systems for localization tasks. We begin by presenting two common system
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models in the antenna and beam space domains, respectively. Next, we
introduce various fingerprints that can be used to train NNs for localization.
Following this, we present an approach to determine training density using
the Nyquist theorem. Finally, we discuss different uncertainty estimation
algorithms that are crucial for reliable localization.

5.2.1 SYSTEM MODEL

Here, we introduce two common systems models in ML-based localizations.
The first model presents the received uplink UE signal in the antenna space
domain, while the second model operates in the beam domain.

1) Antenna space domain
We consider the uplink of a single-user M-antenna massive MIMO system
using OFDM schemes with F subcarriers. Each antenna on the BS side is
linked to an RF front-end and subsequent digital processing chain, which
enables simultaneous processing of signals received from all antennas. When
the UE moves to position pi ∈ R2, the received channel transfer function
matrix Ypi ∈ CM×F = [ypi ,1, ..., ypi ,F] is expressed as

Ypi = Hpi ⊙ Γ + N, (5.4)

where the uplink channel is denoted by Hpi ∈ CM×F, while the complex
coefficients of all M RF chains are represented by Γ ∈ CM×F. The additive
noise matrix for all M RF chains is denoted by N ∈ CM×F. In addition, the
symbol ⊙ denotes the Hadamard product. As the UE moves, we record T
snapshots and collect T matrices Ypi . Our objective is to calculate pi based on
the received Ypi .

2) Beam space domain
We consider the uplink of a commercial single-user 5G new radio (NR)
massive MIMO system, where the UE transmits time series of sounding
reference signals (SRS). These SRSs are received by the BS, which has MBS
antennas. Half of the antennas are vertically polarized, formulating NV
beams, and the other half is horizontally polarized, formulating NH beams.
The system employs the OFDM scheme with F subcarriers. Suppose there
exist P multipath components in the channel, where τp,t represents the time
delay of the p-th path at the time index t and αp,m,t denotes the complex
coefficient of the multipath component. The azimuth and elevation angles to
the arriving p-th path are given by ϕp and θp, respectively. For the m-th UE,
the propagation channel model for the i-th beam at time index t and the f -th
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subcarrier can be formulated as

hV,i,m,t( f ) =
P
∑
p=1

βV,i(ϕp, θp, f )αp,m,t exp{−j2π f τp,t}

hH,i,m,t( f ) =
P
∑
p=1

βH,i(ϕp, θp, f )αp,m,t exp{−j2π f τp,t},

(5.5)

where βV,i(ϕp, θp, f ) and βH,i(ϕp, θp, f ) denote the beam responses formulated
by vertical and horizontal polarized antennas, respectively.

5.2.2 FINGERPRINT GENERATION

It is important to select appropriate channel fingerprints for ML-based local-
ization tasks. These fingerprints can be extracted from the channel transfer
function. Examples of fingerprints are received signal strength, ToA, spatial
covariance matrix, and the impulse-response beam matrices, etc. Here, we
briefly introduce the spatial covariance matrix and the impulse-response beam
matrices, since both of them can be used for MIMO localization tasks [6, 29].

1) The spatial covariance matrix
The covariance matrix characterizes the second-order statistical properties
of the propagation channel, including both the cross-correlation between
signals received by different antennas and the autocorrelation of signals of
individual antennas in an antenna array. Specifically, the main diagonal
entries of this matrix reflect the signal power received by each antenna, while
the off-diagonal entries represent the cross-correlation between antennas [5].
Unlike other fingerprints, such as AoA, it is not necessary to have a fully-
calibrated array to generate this fingerprint. The covariance matrix is defined
as Ci = E{ypi y

H
pi
} ∈ CM×M, where the expectation is over uncorrelated

interference, noise and small-scale fadings. However, since it is impossible
to collect an unlimited number of channel samples, we can only estimate the
covariance matrix Ci ∈ CM×M rather than achieve its exact form. We assume
that a total of Npi channel samples are collected in the neighborhood region
of pi. Based on this assumption, Ci can be estimated by the sample covariance
matrix C̃i,Npi

∈ CM×M, which is expressed as

C̃i,Npi
=

1
Npi

Npi

∑
j=1

Ypj Y
H
pj

. (5.6)

2) Impulse-response beam matrix
This fingerprint visualizes the channel state information in the angular-delay
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domain, which is shown to be beneficial to ML-based localization tasks [25].
At first, we apply a specific window (e.g. the Hann window) to the captured
channel transfer functions in (5.5), to obtain h̃V,i,m,t( f ) and h̃H,i,m,t( f ). Such
an operation can reduce the side-lobe effect. Suppose that the number of
subcarriers is F, the F-length Hann window is expressed as [67]

w[ f ] = sin2
(

π f
F

)
, f = 0, . . . , F − 1. (5.7)

After the windowing operation, the inverse-Fourier transform is applied to
the windowed-channel transfer function h̃V,i,m,t( f ) and h̃H,i,m,t( f ) to achieve
impulse responses h̃V,i,m,t(τ) and h̃H,i,m,t(τ). We can then define the impulse-
response beam matrices Hm,t ∈ C(NV+NH)×F by collecting impulse responses
for all beams.

5.2.3 NYQUIST ANALYSIS

Determining the necessary training density is important when designing an
ML-based localization pipeline. This problem can be solved by finding the
maximum separation distances between two adjacent training samples. To
this end, one can apply the Nyquist sampling theorem in the spatial domain,
which states that spatial aliasing occurs if the sampling rate is insufficient. We
consider uniform sampling along one dimension for simplicity (see Fig. 5.3)
and all available samples are evenly distributed with a separation distance
δd, while similar methods can be extended to 2-D cases. We denote a vector

δd

Figure 5.3: Uniform sampling along one dimension.

v ∈ RM̃ as the fingerprint used for localization and v varies when the UE
moves to Q different positions. We denote the channel fingerprint at the j
-th position as vj and define a matrix V = [v1, ..., vQ] ∈ RM̃×Q to collect
all fingerprint vectors. In the next step, the discrete one-dimensional Fourier
transform is applied to each row of V, to achieve the spatial spectrum of the
fingerprint vector. The fftshift operation is then applied along the horizontal
axis of V, so that the achieved matrix Ṽ ∈ RM̃×Q has a direct current
component in the middle column. Then a spectrum window L is defined
that selects L consecutive columns of Ṽ representing the lower frequency
components. These L columns are used to form a new matrix ṼL ∈ RM̃×L.
After selecting L, we compute the corresponding separation distance between
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two adjacent training samples ∆d as: ∆d = L
Q δd. We define an aliasing

indicator η as the ratio between the Euclidean norm of ṼL and Ṽ, that is,

η = ||ṼL ||2
||Ṽ||2 . If η approaches 1, it indicates that the system suffers less from

spatial aliasing.

5.3 UNCERTAINTY ESTIMATION

Despite the impressive results achieved by deep NNs in various areas, their
disadvantages, such as the lack of interpretability, can hinder their deploy-
ment in real-world applications. Especially when DL methods are used for
life-critical localization tasks such as autonomous driving, it is crucial not
only to estimate the vehicle’s position, but also to know the reliability of this
estimated position. Significant research has been conducted to evaluate and
improve the quality of uncertainty estimation for deep neural networks [68].

5.3.1 TWO TYPES OF UNCERTAINTY

We introduce here two types of uncertainty that we often encounter when de-
signing an ML algorithm: Aleatoric and epistemic uncertainty [68]. Aleatoric
uncertainty, also known as statistical uncertainty, is derived from inherent
randomness that cannot be reduced by designing a better ML algorithm or
collecting more data. An example of this is the outcome when throwing a
dice. In contrast, epistemic uncertainty, also known as model uncertainty,
arises from a lack of knowledge about the accurate model parameters of the
system being modeled and the underlying data distribution of the input data.
For example, an autonomous driving model may be less confident when en-
countering new scenarios that did not present in the training dataset. Unlike
aleatoric uncertainty, epistemic uncertainty can be reduced by improving the
algorithm or by collecting more high-quality training data.

5.3.2 UNCERTAINTY ESTIMATION IN REGRESSION MODELS

Many regression models based on NNs include uncertainty estimates in their
frameworks [68–70]. In this section, we introduce two representatives: the
Gaussian negative log-likelihood (NLL) [69], and regression-by-classification
(RbC) methods [69]. NLL assumes that the output of the NN follows a
Gaussian distribution, while RbC can model outputs that are not necessarily
Gaussian. To implement these methods, one only needs to modify the output
layer and the cost functions of the NN in Fig. 2.1, rather than changing
the entire NN structure. This makes it straightforward to integrate these
approaches into existing NNs. In the following text, we denote Ω1 as the
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entire training data set with Ntr training samples. For simplicity, we assume
that the output is a scalar, with yi as the groundtruth of the i-th training
sample. The concept can be easily extended to multidimensional cases.

Gaussian NLL method
For simplicity, we assume that the output is a scalar, with yi representing the
ground truth of the i-th sample. The NLL method assumes that the output of
the NN follows a Gaussian distribution [69], determined by both the estimated
value ŷi and the error variance σ̂2

i of the network. By considering all Ntr
training samples, we can use the following negative log-likelihood ΨNLL as
the cost function, which is expressed as

ΨNLL =
1
Ntr

∑
i∈Ωtr

( ln σ̂2
i

2
+

(yi − ŷi)
2

2σ̂2
i

)
. (5.8)

Note that in (5.8), both the accuracy of the estimate (indicated by (yi − ŷi)
2)

and the confidence level (indicated by σ̂2
i ) influence ΨNLL. A smaller ΨNLL

indicates better uncertainty estimation. A much larger σ̂2 (underconfident)
increases the first term, while a smaller σ̂i

2 (overconfident) increases the
second term.

Regression-by-classification
The Gaussian NLL method may face challenges if the probability density
function of the error deviates largely from a Gaussian distribution. To address
this issue, a family of RbC algorithms can be employed [70]. The objective
of the RbC algorithm is to predict the probability density function of the
parameter(s) of interest. For simplicity, we assume the NN outputs a one-
dimensional discretized probability distribution.

The first step in applying RbC is to define the range of the parameter of
interest, with lower and upper bounds as ylb and yub, respectively. This range
is divided into L discrete bins. We further denote l̄y,k as its midpoint of the k-th
discrete bin. Suppose that we have Ntr training samples, for the i-th training
sample, our network needs to compute the probability of each bin qk,i using
a softmax activation function, see (2.12), at the final layer of the network. This
ensures that the output of the network forms a valid probability distribution.
To account for potential quantization errors, an optional bias term bk,i can be
added for each bin. We define bi ∈ RL to collect all the bias terms. To train
the network, the following η-norm cost function can be considered:

ΨRbc =
1

Ntr
∑

i∈Ω′
tr

(
||

L

∑
k=1

qk,i l̄y,k − yi + bk,i||η + γ1||bi||
)

,
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where two common choices of η are η = 1 (Taxicab norm) or η = 2 (Euclidean
norm) [22]. In contrast to the NLL method, RbC does not assume a Gaussian
distribution for the output probability, which extends the applicability of this
algorithm.

5.3.3 CRITERIA TO EVALUATE ESTIMATED UNCERTAINTY

Evaluating the quality of uncertainty estimation is crucial, though it is not
as straightforward as assessing regression or classification results. We hereby
introduce two metrics to evaluate uncertainty estimation algorithms, namely
NLL and area under the sparsification error curve (AUSE) [68]. The NLL is
a widely used metric because it quantifies how well the predicted probability
distribution aligns with the true distribution of the data (not necessarily
Gaussian). On the other hand, AUSE evaluates whether the predicted error
aligns with the level of uncertainty. The ideal case is when the predicted error
is small, the uncertainty is also small, and vice versa.

NLL
We denote Sts = {(xi, yi)|i = 1, ..., Nts} as the testing dataset, and p̃(y|x, θ)
the probability density function learned by the NN with the hyperparameter
θ. This metric examines whether the data distribution of the testing dataset
matches the learned density function by calculating the following negative
log-likelihood:

NLL(Sts) = −
Nts

∑
i=1

ln p̃(yi|xi, θ). (5.9)

A smaller NLL means that the learned model better predicts the data distri-
bution.

AUSE
To calculate AUSE, the predicted values and their uncertainty measures for
all testing samples are first obtained from the model. One representative
uncertainty measure is the entropy of the predicted probability density func-
tion. Next, we calculate the predicted MSE and sort the prediction errors
and uncertainty measures in ascending order. We then sequentially remove
the least confident predictions, starting with a percentage φ that increases
from 0% to 100%. After each removal, the prediction MSE is recalculated
and plotted against the removal percentage φ, creating the sparsification error
curve s(φ). Next, a similar process is applied to the uncertainty measures
to obtain the oracle curve g(φ). We then normalize g(φ) by multiplying by
a scalar to get g′(φ), so that the maximum values of s(φ) and g′(φ) are the
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same. The AUSE is the area between s(φ) and g′(φ), which is

AUSE =

ˆ 1

0
|s(φ)− g′(φ)|dφ. (5.10)

A lower AUSE value indicates better uncertainty estimates, which indicates
that the predicted error and uncertainty coincide well with each other. An
example can be seen in the attached paper VI.
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Conclusions and Future work

This chapter concludes the thesis and suggests two potential directions for
future research.

6.1 KEY CONCLUSIONS AND TAKEAWAYS

This thesis presents various applications of machine learning (ML) in wireless
communication systems, such as channel estimation, radio-based sensing, and
localization tasks. The results show that ML is a powerful tool to enhance
the performance of wireless systems, such as improving the accuracy of
the localization, which can be a good complement to existing traditional
methods. Furthermore, it is also important to point out that applying some
necessary pre-processing steps to generate representative learning features
(such as fingerprints) for learning algorithms is still important. Thus, end-to-
end machine learning is not the best solution to everything when it comes to a
wireless system. Instead, one should integrate domain knowledge and feature
engineering to better tailor the learning algorithms to the specific needs of
wireless communication systems. We list our main conclusions as follows.

We demonstrate the strengths of ML-based algorithms in terms of perform-
ing channel estimation tasks in OFDM systems. We investigated a channel
estimation pipeline based on a pure FCNN and evaluated its performance
using simulations. The results show that by adequately using a simple FCNN
and only a few pilots, the quality of channel estimation can be significantly
improved and more robust in low signal-to-noise-ratio regions, compared
to traditional methods, such as the LMMSE estimator. This indicates that
ML algorithms can be integrated into the current OFDM channel estimation
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framework to further increase the performance of the system and save trans-
mission energy.

ML technology is a suitable tool for performing device-free wireless sensing
tasks, and the sensing performance can be largely improved if the system is
equipped with an excessive number of antennas. In this thesis, we explore
a pipeline for human activity recognition using a massive MIMO array. To
accomplish this goal, it is necessary to apply relevant algorithms to extract
key features in delay, Doppler, and antenna domains. An example of the
algorithm is the tensor decomposition algorithm. Training on the extracted
features with a simple FCNN network can help our pipeline to achieve very
good classification accuracy. This demonstrates the potential of ML in sensing
tasks.

When applying ML-based algorithms to perform localization tasks, the
choice of training algorithm and fingerprint generation are both important.
Examples of the fingerprints are the impulse-response beam matrix, co-
variance matrix, truncated channel impulse responses, etc. After selecting
different fingerprints, the necessary training density can be determined with
the aid of the Nyquist sampling theorem, which may vary based on the
fingerprint selected. Advanced algorithms can be applied to increase localiza-
tion performance, such as the attention mechanism or the ensemble learning
approaches. The attention mechanism allows the framework to focus on the
most relevant features in the input data, improving its ability to prioritize
critical information, while ensemble learning algorithms combine different
channel fingerprints to make more robust predictions.

Accurate uncertainty estimation in localization algorithms is crucial, par-
ticularly in life-critical applications such as autonomous drive. This the-
sis explores two algorithms for estimating uncertainty: the Gaussian NLL
and RbC methods. While Gaussian NLL assumes that localization errors
follow a normal distribution, RbC does not impose this requirement. We
evaluate these uncertainty estimation algorithms using real BS data from a
5G commercial measurement campaign. Results show that RbC and NLL
perform similarly under low uncertainty conditions, which typically occurs
in high SNR conditions or with large training datasets. However, under high
uncertainty conditions, where localization errors deviate significantly from a
normal distribution, RbC achieves better localization accuracy than NLL.

6.2 FUTURE PERSPECTIVES

We discuss two key directions for future research in AI-based vehicular
navigation technology: enhancing robustness and increasing explainability.
These goals align with the requirements outlined in the latest European Union
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Artificial Intelligence Regulations [71] *. Our discussion is focused specifically
on the technical aspects.

• Robustness. AI-based navigation systems must improve their robust-
ness to ensure consistent performance across diverse scenarios. In other
words, it is unacceptable for these systems to perform well in one
situation while performing poorly in another, especially in life-critical
contexts. An intuitive solution is to enlarge the training dataset, en-
abling the system to encounter a broader range of scenarios. However,
since creating a training dataset that covers all possible scenarios is
challenging, applying transfer learning algorithms becomes essential.
From my perspective, the goal of transfer learning is not only to identify
the statistical differences between datasets but also to learn and adapt
the underlying knowledge. This approach allows the AI model to
leverage insights from one domain and apply them effectively to new,
unseen scenarios, which is especially valuable in wireless navigation
fields. While some preliminary research has been conducted [72], there
remain significant potential for further advancements.

• Exaplainable AI. It is crucial to increase the explainability of AI-
powered navigation systems, particularly in safety-critical fields. In my
opinion, while neural network-based methods often achieve excellent
classification or regression accuracy, the lack of transparency may limit
their application in such areas. Therefore, relying solely on neural
networks may not be ideal due to their inherent complexity in inter-
preting its decision. One promising approach is the use of knowledge
distillation [73], where a strong neural network-based model can be
used to supervise the training of other models with better explainability,
such as decision trees. However, additional research is essential to
ensure that alternative models achieve high performance comparable
to neural networks while also being robust and reliable for high-risk
applications.

*The European Union Artificial Intelligence Act came into effect on August 1, 2024.
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Abstract

Positioning is an essential feature in Narrow-Band Internet-of-Things (NB-IoT) systems. Observed
Time Difference of Arrival is one of the supported positioning techniques for NB-IoT. It utilizes the
downlink NB positioning reference signal (NPRS) generated based on a length-31 Gold sequence.
Although a Gold sequence has good auto-correlation and cross-correlation properties, the correlation
properties of NPRS in NB-IoT are still sub-optimal. The reason is mainly due to two facts: the number
of NPRS symbols in each subframe is limited, and the featured sampling-rate is low. In this paper, we
propose to modify the NPRS generation by exploiting the cross-correlation function of the NPRS. That
is, for each orthogonal frequency division multiplexing (OFDM) symbol we generate the first NPRS
symbol as specified in the current standard, i.e., a Gold sequence; while the second OFDM symbol is
set to the additive inverse of the first one. Our simulation results show that the proposed NPRS sequence
results in improving the correlation properties, particularly with respect to the cross-correlation property.
Furthermore, 15%-30% positioning-accuracy improvements can be attained with the proposed method,
compared to the legacy one under both Additive White Gaussian Noise and Extended-Pedestrian-A
channels. The proposed NPRS sequence can also be applied to other similar systems, such as long-
term-evolution (LTE).

I. INTRODUCTION

NB-IoT (Narrow-Band Internet of Things) has been developed by 3rd Generation Partnership
Project (3GPP) to accommodate the expected massive connections of low-power IoT devices
to the cellular network [1]. The advantages of this NB-IoT are its low complexity, coverage
enhancement, and compatibility with existing cellular technologies. To reduce the complexity,
NB-IoT applies simple baseband processing and operates at a reduced sampling rate [2], which
significantly simplifies hardware requirements compared to other existing cellular communication
techniques such as Long-Term Evolution (LTE). In addition, NB-IoT devices occupy one channel
with narrower bandwidth (180 kHz) and the network can deploy anchor and non-anchor channels
to accommodate a large number of devices connecting to the network using a limited bandwidth.
Furthermore, NB-IoT has been designed to fit in various deployment modes (i.e. in-band, guard-
band, and stand alone) so that it can smoothly co-exist with LTE/LTE-A systems.
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Similar to many other technologies such as LTE, NB-IoT also provides positioning services
of the user equipment (UE). 3GPP release 14 has a positioning target of 50 m (for 67 % of
total measurements) and assumes a Positioning Reference Signal (PRS) to be transmitted in
multiple subframes. The demand for positioning services has increased drastically with the rapid
deployment of wireless networks. Therefore, positioning technologies have become a vital field
for the research community. To name a few, Lin et al. gave an overview on IoT positioning
technologies and compared the positioning performance between NB-IoT and LTE systems [3].
The work in [10] investigated the enhancements of positioning results by designing an adequate
frequency-hopping pattern at the transmitter side, while [4] provided an overview of all NB-IoT
features, including positioning, developed by 3GPP from release 13-15.

In this paper, our discussion and proposed method are based on a well-known downlink (DL)
based positioning technique. A general overview of this approach and related receiver algorithms
can be found in e.g., [5]–[7]. The work in [6] applied successive interference cancellation, and
residual frequency-offset estimation algorithms at the receiver for the purpose of positioning
accuracy enhancement. [7] provided an indoor positioning solution based on a channel state
information fingerprinting approach. In addition, a new frequency hopping pattern was proposed
in [8], which significantly increased the accuracy of the positioning results there.

To summarize, most of the research activities focus on improving the receiver algorithms
and the frequency hopping patterns. However, the positioning accuracy can also be improved by
carefully designing a sequence with good correlation properties. In this paper, we propose a novel
approach by slightly modifying the original Gold sequence specified in the 3GPP standard before
mapping it onto the time frequency resource grid, aiming at minimizing the cross-correlation.
To be specific, we generate the first Narrow-Band Positioning Reference Signal (NPRS) symbol
on each time frequency resource block according to the 3GPP specification [2], and constrain
the second NPRS symbol to be the additive inverse of the first one. With such a modified NPRS
sequence, the cross-correlation function (CCF) can be significantly suppressed and therefore the
positioning performance can be improved. The proposed modification of the NPRS sequence
does not involve a complete change of NPRS sequence generation. However, it can still achieve
promising enhancements in terms of positioning accuracy. As shown by the simulation results,
the NPRS sequences designed perform better than the existing NPRS sequence as specified in
the standard in [2]. Bear in mind that our target is to further improve the positioning performance
by modifying the PRS sequence, therefore the optimization of the receiver design is beyond the
scope of this paper.

Our contributions of this paper are summarized as follows:
• We propose a novel approach to enhance the CCF of the NPRS sequence and its mathe-

matical derivation under the framework of NB-IoT. The proposed method leads to a better
CCF between different PRSs that belong to different cell-IDs.

• The suggested approach requires a straight-forward modification of the current standard.
Thus the implementation impacts to the transmitter (i.e. base-station) and receiver (i.e.
terminal) are very small.

• The approach has been validated through simulations applied on both Additive White
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Gaussian Noise (AWGN) and Extended-Pedestrian-A (EPA) channel models in an NB-
IoT system. In addition, the proposed method can also be applied to other systems (e.g.
LTE).

The remainder of the paper is organized as follows. An overview of positioning in the 3GPP
NB-IoT standards is given in Section II. Section III presents our approach of modifying PRSs,
followed by a mathematical derivation. Section IV covers the receiver design, focusing on the
correlator that operates in the frequency domain. Numerical results are presented in section V,
and section VI concludes the paper.

II. OTDOA POSITIONING IN NB-IOT

The fundamental operation of the OTDOA positioning is illustrated in Fig. 1. In principle,
an estimate of the UE position is obtained under the aid of PRS transmissions from several
base-stations, also known as evolved Node-Bs (eNBs). Typically, one eNB acts as the serving
eNB and others as the neighbour eNBs. Each PRS can be received by the UE at different times
due to the different propagation distances between the UE and each eNB. As shown in Fig
1, three eNBs simultaneously transmit PRSs while these signals arrive at the UE at different
times, namely, τ1 , τ2 , and τ3. When these signals are received by the UE, measurements of
the time of arrival (TOA) of all PRSs take place, known as the Reference Signal Time Different
(RSTD) measurement. Then, RSTD measurements are reported to a location server, typically via
a serving eNB. Afterwards, the location server analyzes the RSTD measurements and creates
the corresponding hyperbolas used for positioning estimation. Ideally, the coordinate of a unique
intersection point of these hyperbolas can be calculated as the estimated UE position, since the
geographical coordinates of the eNBs are known. In practice, however, the estimated position
may deviate from the real position. It is essential for UE to receive PRSs from at least three
eNBs in order to attain a unique intersection point.

In accordance with the current 3GPP specification [1], NPRSs are uniquely created based on
the Physical Cell ID (PCI), slot number, orthogonal frequency division multiplexing (OFDM)
symbol number and the type of cyclic prefix (CP). Furthermore, each NPRS sequence consists
of two elements, each being a complex number. The mathematical expression of the NPRS
sequence zns,l(q) is given by

zns,l(q) =
1√
2
((1− 2c(2q)) + j(1− 2c(2q + 1))) (1)

where ns and l represent the slot and symbol number, respectively; q indicates indices of elements
of each NPRS sequence; As illustrated by [2], c(q) is a length-31 Gold sequence initialized by
the seed

cinit = 228

[
NID

512

]
+ 210(7(ns + 1) + l + 1)×

(2(NID mod 512) + 1) + 2(NID mod 512) +NCP ,

(2)
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Fig. 1. NB-IoT Deployment Scenarios

where NID denotes PCI number of the corresponding eNB; Ncp depends on the type of cyclic
prefix applied by the system ( i.e normal or extended CP). If normal CP is applied by the system,
one radio frame consists of 2 slots and 14 OFDM symbols.

After generating the NPRS signal, the next step is to map the symbols onto the time-frequency
resource grid according to the deployment modes of the system. NB-IoT can be deployed in three
different modes: in-band, guard-band and standalone modes. Generally, the positioning sequence
zns,ℓ(q) is mapped to complex Quadrature Phase Shift Keying (QPSK) symbols αp

k,ℓ = zns,ℓ(q),
where p is defined as the index of antenna port and k = 6ns + (6 − ℓ + vshift) indicates the
subcarrier number inside one time frequency resource block. Typically, each eNB uses only one
resource block and two subcarriers at each OFDM symbol in NB-IoT. Provided that the system
operates on the in-band mode, ℓ and vshift are configured as

ℓ =

{
3, 5, 6 ns mod 2 = 0

1, 2, 3, 5, 6 ns mod 2 = 1

vshift = NID mod 6. (3)

In accordance with (3), 8 out of 14 symbols are reserved for NB-IoT positioning within one
time-frequency resource block, while the other 6 symbols (shaded blue in Fig. 2) are allocated
to be occupied for the other signaling purposes (e.g. NB Physical DL Control Channel).

Finally, an Inverse Fast Fourier transform (IFFT) is applied, followed by CP insertion and
upconversion to radio frequency.
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Fig. 2. The allocation of the OFDM symbol within one radio frame

III. THE PROPOSED NPRS GENERATION

The Gold sequence has been chosen for the NPRS generation as described in [2] due to its
good correlation properties. However, there is still room for improvements with respect to the
cross-correlation properties by making adequate modifications to the existing NPRS generation
method in [2]. We start by considering the NB-IoT system, which only uses 12 subcarriers as
shown in Fig. 2.

As described in the previous section, the NPRS sequence zns,l(q) contains two elements only
if one resource block is used, namely zns,l(0) and zns,l(1), both of which are generated by a
length-31 Gold sequence in [2]. Here, we suggest that by generating the first element according to
[2] and the second element as the additive inverse of the first one, the cross-correlation property
of the modified sequence is improved. The derivations and explanations are follows.

Suppose that x1(n) and x2(n) represent the signals transmitted by two eNBs (eNB1 and
eNB2), respectively, in the time domain and X1(k) and X2(k) are the corresponding signals in
the frequency domain. Under the framework of NB-IoT, both X1(k) and X2(k) contain only two
non-zero elements, as determined by the positioning sequence zns,l(q), at each OFDM symbol.
Assuming that the system operates in in-band mode, 8 out of 14 OFDM symbols are utilized for
positioning, as illustrated in Fig. 2. For simplicity, only the cross-correlation between x1(n) and
x2(n) at OFDM symbol number 3 is derived as an example below; however, the result can be
easily extended to other OFDM symbols. For OFDM symbol number 3, the frequency domain
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components X1(k) and X2(k) vectors can be represented as:

x1(k) =





a1, k = m,

a2, k = m+ 6,

0, otherwise.
x2(k) =





b1, k = m+ 1,

b2, k = m+ 7,

0, otherwise.
(4)

where m denotes the index of the first subcarrier number occupied by eNB 1.
After conducting the IFFT (of size N ), the time domain expressions of x1(n) and x2(n) are

given by:

x1(n) = F−1{X1(k)} = a1e
j 2πnm

N + a2e
j
2πn(m+6)

N ,

x2(n) = F−1{X2(k)} = b1e
j
2πn(m+1)

N + b2e
j
2πn(m+7)

N ,
(5)

where n is in the range from 0 to N − 1. The CCF A(τ) between x1(n) and x2(n) is given by:

A(τ) =
∞∑

n=−∞
x1(n)x

∗
2(n+ τ)

=
∞∑

n=−∞
(a1e

j 2πnm
N + a2e

j
2πn(m+6)

N )

× (b∗1e
−j

2π(n+τ)(m+1)
N + b∗2e

−j
2π(n+τ)(m+7)

N ),

(6)

where τ represents the correlation lag. Expanding (6) and keeping in mind that the IFFT/FFT
size is N, it holds that,

A(τ) = e−j
2π(m+1)τ

N




N−(τ+1)∑

n=0

a1b
∗
1e

−j 2πn
N + a2b

∗
1e

j 10πn
N




+ e−j
2π∗(m+7)τ

N




N−(τ+1)∑

n=0

a1b
∗
2e

−j 14πn
N + a2b

∗
2e

−j 2πn
N


 .

(7)

Since
N−1∑

n=0

ej
2πpn
N = 0 (8)

for p ̸= 0, we can simplify the correlation function A(τ) as

A(τ) = e
−j2π(m+1)τ

N

[ −1∑

n=−τ

(
a1b

∗
1e

−j2πn
N + a2b

∗
1e

j10πn
N

)

+ e
−j12πτ

N

( −1∑

n=−τ

(
a1b

∗
2e

−j14πn
N + a2b

∗
2e

−j2πn
N

))]
.

(9)

Assuming that τ is relatively small compared to N , the exponential terms e
−j2πn

N , e
j10πn

N , e
−j14πn

N
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and e
−j12πτ

N are close to 1. Therefore, (10) can be simplified as
∣∣∣A(τ)

∣∣∣ ≈
∣∣∣e

−j2π(m+1)τ
N

∣∣∣
∣∣∣τ(a1b∗1 + a2b

∗
1 + a1b

∗
2 + a2b

∗
2)
∣∣∣

= τ
∣∣∣(a1 + a2)b

∗
1 + (a1 + a2)b

∗
2

∣∣∣.
(10)

In order to minimize the amplitude of A(τ), we could set a1 = −a2. With that, the correlation
is close to zero regardless of the values of b1 and b2, which leads to the following theorem.

Theorem 1. To minimize cross-correlations between NPRSs transmitted by different eNBs under
the framework of NB-IoT with respect to the small lags τ and large FFT sizes N, the NPRS
sequence zns,l(q) should be generated according to:

zns,l(0) =
1√
2
(1− 2c(0)) + j

1√
2
(1− 2c(1)),

zns,l(1) = −zns,l(0).

(11)

where we set the first element of the sequence exactly the same as defined in the standard, while
flipping the second element to be the opposite of the first.

Proof. Suppose that τ is small and N → ∞, from (10) it holds that |A(τ)| → 0 if zn,ℓ(q) is
chosen according to (11).

Therefore, in accordance with Theorem 1, to minimize the cross correlation for a small lag
τ , for each pairs of frequency components of the same OFDM symbol and Cell ID, the first
component needs to be set as the inverse of the second. Although Theorem 1 only shows the
correlation property between two cells (cell-ID 1 and cell-ID 2), the cases with more cells can
be accommodated by positioning systems utilizing the same principle. By selecting the NPRS
according to Theorem 1, any arbitrary two cells can achieve favorable correlation properties.

A final remark is that it is reasonable to assume a small lag τ . Supposed that the largest
radius of a typical NB-IoT cellular is R and the speed of light is c, the maximum possible
propagation time in Line-of-Sight (LOS) is τmax = R

c
. Since NB-IoT devices usually operate

at a low sampling rate Rp, it is sufficient to consider samples up to Rpτmax. For example,
considering an NB-IoT cellular network with radius 2 km and the sampling rate Rp = 1.92

MHz, the maximum possible delay in number of samples is around 13, which is much smaller
than the IFFT size N = 128.

IV. RECEIVER STRUCTURE

In this section, we briefly present the receiver structure for NB-IoT positioning. As shown in
Fig. 3, the receiver framework consists of signal combiner, correlator and peak detector, which
shares much similarities with other OTDOA positioning systems. The correlator correlates the
received reference signal (demodulated signal) and the locally generated reference signal. Keep
in mind that the receiver must know of reference signal generated by the transmitter.
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Fig. 3. NB-IoT Receiver Structure

Considering a scenario with M eNBs as transmitters and a single UE collecting the positioning
signals from N slots, the propagation channel is described by

H =



h1,1 . . . hM,1

... . . . ...
h1,N . . . hM,N




and the received signal y is given by:

y =Hx+ n, (12)

where x denotes as the transmit signal vector and n the noise vector.

A. Signal Combiner

Multiple repetitions of a subframe are usually transmitted by the transmitter for the sake of
obtaining time-domain diversity and enhancing the positioning quality under in low signal-to-
noise-ratio (SNR) conditions. The SNR is defined as the ratio between power of the received
serving eNB signal and the noise. In order to effectively exploit the information provided by
multiple signals, it is necessary to implement a signal combiner at the receiver side.

Normally, non-coherent combining can improve the SNR of the received signal while coherent
combining can effectively exploit channel knowledge in addition to the noise reduction. For
coherent combiners, we let G denote as the combining matrix while z represents the output of
the combiner, apparently:

z = Gy. (13)

Generally there are three main groups of coherent combining methods, namely, Zero Forcing
(ZF), Minimum Mean Square Error (MMSE) or Matched Filter (MF) in equation (14).

GZF = (HHH)−1HH

GMMSE =HH(HRxxH
H +No)

−1

GMF =HH

(14)

In equation (14), Rxx represents the correlation matrix of the transmitted signal and No the
noise power density.

B. Correlator Design

The correlator is one of the key blocks in the positioning receiver chain for TOA estimation
since it calculates the correlation between the received sequence and the reference pilots, as
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shown in Fig. 4. The output signal of the correlator is supposed to feed the peak detector which
in turn detects the delay samples of the initial path as the estimated TOA. In this paper, we
focus on the frequency-domain correlator structure.

For the sake of accelerating the processing speed, a good solution to calculate the TOA
is to process the signal in frequency domain by the aid of an FFT operation, as seen in
Fig. 5 [11]. Leveraging FFT, time domain convolution can therefore be replaced by one-tap
multiplication instead of convolution operation. Note that the circular cross-correlation rather
than linear correlation is computed in accordance with the FFT properties. Regarding to receiver
parameter setting, it is of necessity to enlarge the FFT window size to 256 (the typical window
size for NB-IoT is 128), since the unknown delay of propagation and the length of cyclic prefix
should be taken into consideration.

C. Peak Detector

A Peak detector works for detecting the initial peak of the correlation function as the estimated
delay of the signal propagation. For conducting the maximum likelihood estimation, we can
calculate the delay sample as, as illustrated by [9]

n̂p = argmax
n

|R(n)| (15)

Where R(n) represents the cross-correlation function presented in Fig. 4, and n̂p denotes the
estimated delay sample.

V. SIMULATION RESULTS

In this section, we present simulation results to illustrate the performance of the proposed
NPRS sequence compared to the existing configuration specified in [2]. UEs are dropped uni-
formly within one hexagonal cell and the channel model is selected according to [12]. To assess
the performance of the proposed NPRS sequence, the cumulative distribution function (CDF) of
the positioning errors is selected as a criterion for evaluation. The parameter settings applied in
the simulations are listed in Table I.

Various numbers of cell IDs combinations (both consecutive and random Cell-IDs) have been
selected and tested. The simulation results show that the proposed method outperforms the legacy

Fig. 4. Frequency Domain Correlator
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solution for approximately 85% of the combinations while the remaining 15% performs equal
or slightly worse than the standard, in terms of the position error corresponding to a probability
of 0.5 on the CDF curve.

Fig. 5 presents a comparison of correlation properties of the proposed design against the
standard. Two QPSK vectors x1 = [x11, x12]

T , x2 = [x21, x22]
T are selected from the legacy and

the modified sequence. Specifically, vectors x̂1 = [1−j, 1−j] and x̂2 = [1+j, −1−j] represent
two symbols generated according to the standard while the vectors x̃1 = [1 − j, −1 + j] and
x̃2 = [−1 − j, 1 + j] generated from the modified algorithm presented in this paper. In Fig. 5,
the x axis represents samples of correlation lags while y axis the normalized correlation values.
The blue line in Fig. 5 shows the main side lobe of ACF of the signal before modification while
the red line and black line show the CCFs corresponding to the legacy and the presented work,
respectively. It is clear that the proposed scheme has very good CCF, especially at small lags,
which aids the peak detector to correctly detect the delay owing to less interference caused by
the CCF onto the ACF peak.

Fig. 6 shows a comparison between the CDFs of the position error of the legacy sequence
(shown as the reference in Fig.6, the same in Fig. 7 and Fig. 8) and the proposed sequence under
two SNR conditions (10 dB and -10 dB). Due to the good AWGN channel properties (frequency
flatness), only NPRS with one subframe is transmitted to evaluate the positioning performance.
As illustrated, around 27% and 13% improvements (the positioning error corresponding to
probability 0.5) can be achieved in both high and low SNR conditions, respectively.

Fig. 7 illustrates the simulation results of the EPA propagation channel. Because of the more
complex propagation scenario compared to AWGN, NPRS with 10 subframes are transmitted
and matched filter combining is applied in order to improve the positioning performance. The
simulation results show that the enhancement reduces to 15%, due to multipath propagation and
Doppler frequency shift.

Fig. 8 shows a simulation result with wider bandwidth (2 PRBs) and 1 subframe under the

TABLE I
SIMULATION PARAMETERS SETTINGS

Parameters Values

Number of eNBs 6
Number of UEs 1000
Intersite-distance 1732 m
Operation Mode In-band

SNR -10 and 10 dB
Consecutive NPRS Subframes 1 and 10

NPRS muting NA
Doppler spread 25 Hz for EPA, 0 Hz for AWGN

UE sampling frequency 1.92 MHz
Standard Deviation for Shadowing 8 dB

Inter-cell shadowing correlation 0.5
Pass Loss model (rp in km) (αp)dB = 120.9 + 37.6log10rp
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Fig. 5. Correlation properties of the proposed sequence vesus legacy sequence in NB-IoT.
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Fig. 6. CDF of the positioning error under the AWGN channel with 1 PRB in the frequency domain and 1 subframe.

AWGN channel. It is obviously a non-NB-IoT system since it occupies more than 1 PRB. Our
intention is to investigate the impact of wider bandwidth on the performances of the proposed
method. In general, positioning results achieve steadily enhancements owing to the sharper ACF
main-lobe resulted from wider system bandwidth. Here, we can still obtain the benefits of the
proposed method.

VI. CONCLUSION

In this paper, we have proposed a novel approach by modifying the Gold sequence of NPRS
generation for achieving better CCF properties. The advantages of the proposed NPRS sequence
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Fig. 8. CDF of the positiong error for AWGN channel with 2 PRBs in the frequency domain and 1 subframe.

have been verified by simulation results, which showed 15%-30% positioning-accuracy improve-
ments both under AWGN and EPA channels. Moreover, the influence on both standardization and
UE implementation impacts is very small, since it only requires a straight-forward modification of
the sequence generation of the NPRS signal. At the receiver side, a coherent combining algorithm
has been utilized to compensate for the effect of the propagation channel. The proposed frequency
domain correlator significantly reduces the calculation complexity compared to the time-domain
approach. Finally, the proposed NPRS can also be aplied to other systems such as LTE in order
to enhance the positioning accuracy performance there.
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Abstract

Massive multiple-input multiple-output (MIMO) promises significantly higher performance relative
to conventional multiuser systems. However, the promised gains of massive MIMO systems rely heavily
on the accuracy of the absolute front-end calibration, as well as quality of channel estimates at the
base station (BS). In this paper, we analyze user equipment-aided calibration mechanism to estimate the
amplitude scaling and phase drift at each radio-frequency chain connected to the BS array. Assuming
a uniform linear array at the BS and Ricean fading, we obtain the estimation parameters with moment-
based (amplitude, phase) and maximum-likelihood (phase-only) estimation techniques. In stark contrast
to previous works, we mathematically articulate the equivalence of the two approaches for phase
estimation. Furthermore, we rigorously derive a Cramér-Rao lower bound to characterize the accuracy
of the two estimators. Via numerical simulations, we evaluate the estimator performance with varying
dominant line-of-sight powers, dominant angles-of-arrival, and signal-to-noise ratios.

I. INTRODUCTION

Fifth-generation (5G) systems are being deployed into commercial networks [1]. The stan-
dardization efforts have resulted in a new radio access framework, known as Third Generation
Partnership Project Release 15 (and beyond) [2]. A fundamental technology contributing to the
spectral and energy efficiency targets of 5G systems is massive multiple-input multiple-output
(MIMO). By scaling up the number of antennas at cellular base stations (BSs), massive MIMO
sharply increases the beamforming gain of the system, and enhances the ability to provide
uniformly good service to each user equipment (UE) [3]–[5]. This has resulted in an order-of-
magnitude increase in the average spectral efficiency of 5G systems relative to their fourth-
generation counterpart [4].

Since its inception in 2010, a vast amount of literature has developed around characterizing
different performance aspects of massive MIMO systems (see e.g., [7], [8], [18] for a summary).
Nevertheless, the promised gains of massive MIMO greatly hinge on two key factors: (1)
the knowledge of the channel state information at the BS and UE, (2) calibration quality
(precise definition presented later in the text). According to the related literature, massive MIMO
calibration approaches are generally classified into two categories: namely, reciprocity calibration
[10]–[14] and absolute calibration [15]–[17], [21]–[24]. Reciprocity calibration is required in
massive MIMO to ensure that the downlink channel is reciprocal to the uplink. The concept
of the relative reciprocity calibration was first introduced in [10]. Extending this, a high-level
network protocol of UE synchronization and reciprocity-based calibration was presented in [11].

Paper II © 2020 IEEE 79



Moreover, the authors of [12], [13] derived several practical approaches for reciprocity calibration
and validated the results in real-time via the Lund University massive MIMO testbed. A taxonomy
of the existing reciprocity calibration methods with an antenna grouping strategy is proposed in
[14] to shorten the calibration time. In contrast to reciprocity calibration, absolute calibration, is
required for angle-of-arrival (AOA) estimation and positioning. Absolute calibration exploits
the amplitude and phase spectra across the BS array, as shown in [15], [16]. Approaches
such as intra-array and UE-aided calibration are discussed in [17], [21], [22]. The authors of
[23] combine array calibration with AOA estimation, while the authors of [24] propose mutual
coupling-based methods for estimating the phase and amplitude relationships between each radio-
frequency (RF) chain at the BS.

The intra-array based calibration can be implemented either with or without transmission
lines between antenna elements. The later case outperforms the former in terms of interconnect
flexibility at the cost of calibration accuracy, since its performance degrades with increasing
electrical distance between successive antennas [17]. For UE-aided calibration, a better trade-off
between the flexibility and accuracy is expected, and is therefore worth further investigation. To
our best knowledge, prior works on UE-aided calibration only consider simple additive white
Gaussian noise (AWGN) channels, which naturally do not reflect the physics of wave propagation.
To this end, we analyze UE-aided absolute calibration over a Ricean fading channel, often used
to model dominant line-of-sight (LOS) components in addition to diffuse multipath components
[18], [19]. We provide a methodology to analyze two types of practical estimators (described
later in the text) and derive the corresponding Cramér-Rao lower bound (CRLB) for evaluating
the quality of amplitude and phase estimates.

Our main contributions are as follows: For an uplink single-user massive MIMO system,
assuming a uniform linear array (ULA) at the BS and Ricean fading propagation, we establish
two general, yet practical, analytical approaches to estimate the amplitude scaling and phase
drift associated with each RF chain. The first approach is based on moment-based estimation
of the aforementioned parameters, while the second is based on maximum-likelihood estimation
(MLE), for obtaining phase estimates. We mathematically show that both estimators have an
equivalent form when estimating the phase of the RF chains, and back up the mathematical
findings with the required physical intuition. For evaluating the accuracy of both estimators,
we derive the CRLB to characterize the fundamental lower limits on error of the estimated
phase and amplitude scaling coefficients across the array. To the best of our knowledge, this
has been missing from the literature. We evaluate the derived estimator performance on a ULA-
based numerical framework. We show that under the presence of dominant LOS conditions,
the variance of the phase estimates rapidly converges to the predicted CRLB for both estimator
types. In addition, the amplitude and phase estimation accuracies of both approaches significantly
improve with growing LOS powers and signal-to-noise ratios (SNRs).

II. SYSTEM MODEL

We consider the uplink of a single-user massive MIMO system, which has M antenna elements
configured in a ULA at the BS. We assume reciprocity-based operation in the time-division
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Fig. 1: A single-user uplink massive MIMO system with pilot transmission from the UE to the
M BS antennas, which are interfaced with M RF chains.

duplex mode where the UE sends uplink pilot signals, which are used to estimate the calibration
parameters at the M RF chains interfacing with the receive antennas. The overall system model
is depicted in Fig. 1. We assume narrowband propagation between the UE and the BS, with
uniform power allocation. More specifically, we employ the use of a general Ricean fading
model, where the small-scale fading impulse response is an amalgamation of a dominant LOS
component, in addition to the diffuse multipath components. The LOS component is governed by
the far-field array steering vector in a given direction, and the diffuse components are modeled as
complex Gaussian random variables (exact definition later in the text). The use of such model is
rather popular in massive MIMO performance evaluation, particularly in urban scenarios where
many diffuse paths are expected with some dominant LOS components [25]–[27]. Considering
this, the received signal observation vector, yt ∈ CM×1 during time t can be written as

yt = γtDta(ϕt)pt︸ ︷︷ ︸
st

+Dthtpt + nt︸ ︷︷ ︸
ωt

, (1)

where γt and pt are scalar quantities which denote the large-scale LOS power and the pilot
transmitted by the UE at time t. The power contained in pt is normalized to unity, such that
|pt|2 = 1, over all values of t = 1, 2, . . . , T . Since we consider a ULA, the array steering vector
is a known function of the azimuth AOA, which is denoted as a(ϕt) ∈ CM×1 with an incoming
angle ϕt. In addition, the vectors ht ∈ CM×1 and nt ∈ CM×1 denote the diffuse multipath
components and the AWGN at time t, such that ht ∼ CN (0, σ2) and nt ∼ CN (0, N0/2). To
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this end, the mean of the diffuse components is zero and the variance (power) is σ2 across all
t = 1, 2, . . . , T . Likewise, the mean of the AWGN at the BS is zero and variance is N0/2.
Following this, the SNR at time t is given by |pt|2/(N0/2). The diagonal matrix, Dt ∈ CM×M ,
contains the M amplitude scaling and the phase drift entries for each RF chain. This matrix
models the random phase and amplitude changes introduced by phase jitter at the local oscillators,
and RF signal conditioning units such as low-noise amplifiers and active bandpass filters. We note
that Dt = diag(d1ejα1 , d2e

jα2 , ..., dMe
jαM ). We further assume that ht and nt are statistically

independent and nt is uncorrelated over t = 1, 2, . . . , T . With the above in mind, the auto-
correlation at time t, E{ωtω

H
t }, can be evaluated as

E
{
ωtω

H
t

}
= E

{
(Dthtpt + nt)(Dthtpt + nt)

H
}

= N0IM +Dt |pt|2σ2DH
t , (2)

where IM denotes the M ×M identity matrix. Moreover, by definition, the cross-correlation
between two time intervals, namely t = 1 and t = 2, can be expressed as

E{ωt=1ω
H
t=2} = σ2DtD

H
t . (3)

Between multiple time instances, the channel, ht, is assumed to be changing in accordance with
its definition. This can be caused by small changes in the UE position, or mobility of objects
in the propagation environment. For simplicity, from here onward, we drop the subscript t used
in the right-hand side of (1), and assume that all further computations are performed at a given
time instance t. Therefore, the received vector yt follows a complex Gaussian distribution given
by

yt ∼ CN
(
γDa(ϕ)p,N0IM +D|p|2σ2DH

)
. (4)

Given the model in (1)-(4), yt, p and a(ϕ) are assumed to be known by the BS. Other parameters
such as γ, σ2, D, h, n are assumed to be unknown, which is the case in practice. Observing
over T intervals, the composite received signal is given by stacking all yt across t = 1, 2, . . . , T

obtaining
y ∼ CN

(
1⊗γpDa(ϕ)︸ ︷︷ ︸

µ(ξ)

, IT ⊗ IMN0+ ĨT ⊗σ2DDH

︸ ︷︷ ︸
C (ξ)

)
, (5)

where 1 ∈ RT×1 is a column vector of unit entries, [1, 1, . . . , 1]T , while ĨT = 1.(1T ) ∈ RT×T

is a matrix containing unit entries. In addition, ⊗ is the Kronecker product operation, µ(ξ)
denotes the mean vector and C(ξ) denotes the variance over all T time intervals. Note that
the vector argument ξ contains the unknown quantities in d, α, σ2 and γ, respectively. That is,
ξ = [d1, d2, . . . , dM , α1, ..., αM , σ

2, γ]T . With this setup, the subsequent section of the paper
discusses the phase and amplitude estimation techniques with the aim to calibrate M RF chains
at M antennas of the BS.

III. ESTIMATOR DESIGN

In order to perform absolute calibration, one needs to estimate the subspace spanned by
the vector v = {d1ejα1 , d2e

jα2 , ..., dMe
jαM}. According to this requirement, we analyze two
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estimators, namely the moment-based estimator and the MLE estimator for estimating the phase
drift vector α = [α1, α2, ..., αM ]T and a moment-based estimator for estimating the vector space
RM×1 spanned by the magnitude vector d = [d1, d2, ..., dM ]T of the RF chains. Later on, we
prove that the analytical expression of the moment-based phase drifting estimator coincides with
the MLE-based estimator.

A. Phase Estimation

1) Moment-Based Estimator: From (5), we can see that the information regarding the RF
phase drifts is only embedded in the first-order statistics of the composite received signal. En-
lightened by this, we analyze the moment-based estimator which computes the expectation of the
composite vector y before estimating the phase drifts. The phase vector α =

[
α1, α2, . . . , αM ]T

is estimated by

α̂ = arg

{
T∑

t=1

yt

}
− arg {a(ϕ)} − arg {1p} . (6)

Sketch of Proof: Via some straightforward algebra, one can show that E{yt} = γDa(ϕ)p. With
a large total observation time in T , one can expect that the empirical probability distribution
of yt converges almost surely to its true probability distribution. Using this fact allows us to
accurately approximate the moments (first-order only, since second-order contains no utilizable
information) of the empirical distribution with the true distribution, such that 1

T

∑T
t=1 yt ≈E{yt}.

Taking arg{ 1
T

∑T
t=1 yt} = arg{a(ϕ)}+arg{1p}+α, and solving for α yields the desired phase

estimate.
2) MLE: If y has the probability distribution function p̄(ξ,y), then the MLE formulates an

optimization problem on the maximization of the log-likelihood function. That is

α̂ = argmax {p̄(ξ,y)}
(a)
= min

α

{
ln det (Λ) + βHC−1 (ξ)β

}
, (7)

where β = y − (1⊗ γDa(ϕ)), C (ξ) = Q̃HΛQ̃, with Q̃ = Q⊗ IM and Q ∈ CT×T is defined
as the normalized discrete Fourier transform (DFT) matrix. Moreover, Λ is defined as

Λ =



σ2TDDH

. . .
0


+N0IMT ,

and is a MT ×MT matrix. In (7), (a) is a result of equivalently minimizing the argument of

the exponential function in p̄(ξ,y). Substituting 1 ⊗ Da(ϕ) =
√
T Q̃H

[
I . . .0

]T
Da(ϕ) in (7)

and simplifying yields
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α̂ = min
α

{ln detΛ+ yHC−1(ξ)y

− 2γ
√
Tℜ
[
aH(ϕ)DH

[
(σ2TDDH+N0IM)−1 . . .0

]
Q̃y
]

+ γ2TaH(ϕ)DH(σ2TDDH +N0IM)−1Da(ϕ)}. (8)

Note that ℜ[·] denotes the real component of a complex quantity. From (8), it is clear that the
phase information is only contained in the term ℜ [aH(ϕ)DH [(σ2TDDH+N0IM)−1 . . .0 ]Q̃y].
Thus, can derive the MLE of α as

α̂=max
α

{
ℜ
[
aH(ϕ)DH

[
(σ2TDDH+N0IM)−1. . .0

]
Q̃y
]}

= arg

{
T∑

t=1

yt

}
− arg {a(ϕ)} − arg {1p} . (9)

The above result is mathematically equivalent to the one derived from the moment-based estima-
tor in (6). The intuition behind this equivalence can be explained as follows: The received vector
y follows complex Gaussian distribution, and hence the first and second-order statistics of y

contain the vast majority of its underlaying information. To this end, the optimal solution can be
found by exploiting the first and second-order statistics [28]. For the moment-based estimator,
since the second-order statistics do not contribute to the phase estimates, the first-order statistics
can be used to derive an optimal estimator, which is identical to the MLE.

B. Amplitude Estimation
We now analyze the moment-based estimator for deriving the amplitude scaling coefficients of

the M RF chains. We refrain from utilizing the MLE for amplitude estimation as the presence of
higher-order terms makes maximization of the log-likelihood function a mathematically complex
task. We estimate the vector space spanned by d. Unlike for phase estimation, since both the
first and second-order statistics of y contains useful information, it is necessary to estimate
the covariance matrix C(ξ), which we denote as Ĉ(ξ). We observe that the upper and lower
triangular block diagonal sub matrices of Ĉ(ξ) contain the relevant terms for σ2d⊙d, which can
be extracted for estimation. Note that ⊙ denotes the Hadamard product. We therefore provide a
closed-from solution for the moment-based amplitude estimator as

d̂ =

√√√√√
T∑

t=1

yt ⊙ y∗
t + vecdiag

[ T∑

t=1

T∑

t′=1
t′ ̸=t

C̃ (ξ) |(t,t′)
]
, (10)

where ∗ represents the complex conjugate operation and “vecdiag” is an operation which extracts
and stacks the diagonal elements of a matrix into a vector. Also, C̃(ξ)|(t,t′) ∈ CM×M represents
the (t, t′)−th sub-matrix of Ĉ(ξ).

IV. CRLB ANALYSIS

We derive the Fisher Information Matrix (FIM), followed by the analytical squared estimation
error bound for evaluating the accuracy of the estimators in the previous section.
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A. FIM
The derivation of FIM starts from equation (5), according to [29], the FIM of the unknown

vector ξ is given by

I(ξ)i,j = Tr
[∂C(ξ)

∂ξi
C−1(ξ)

∂C(ξ)

∂ξj
C−1(ξ)

]

+ 2ℜ
[∂µH(ξ)

∂ξi
C−1(ξ)

∂µ(ξ)

∂ξj

]
.

(11)

We exercise a slight abuse of notation here when we denote the FIM as I(ξ), since a M ×M

identity matrix is denoted by IM . We note that I(ξ) ∈ C(2M+2)×(2M+2). Furthermore, Tr[·]
denotes the matrix trace operator. According to (11), the FIM I(ξ) is an addition of two
matrices, namely, I(ξ)C and I(ξ)µ, where [I(ξ)C]i,j is defined as the (i, j)− th element of
Tr[(∂C(ξ))/(∂ξi)C

−1(ξ)(∂C(ξ))/(∂ξj) C
−1(ξ)] . Likewise, [I(ξ)µ]i,j is defined as the (i, j)−th

element of 2ℜ[(∂µH(ξ)/∂ξi)C
−1(ξ)(∂µ(ξ)/∂ξj)]. We first evaluate I(ξ)C, which begins with

calculating the derivative of the C(ξ) with respect to elements in ξ. That is,

∂C(ξ)

∂γ
= 0 and

∂C(ξ)

∂σ2
= ĨT ⊗DDH . (12)

For every RF chain, m = 1, 2, . . . ,M,

∂C(ξ)

∂αm

= 0 and
∂C(ξ)

∂dm
= ĨT ⊗ σ2D̃m. (13)

Here D̃m = diag{0, . . . , 2dm, . . . , 0} denotes a diagonal matrix. Closely observing (12) and
(13), one can see that I(ξ)C contains all zero elements except for the sub-matrix blocks of
I(ξ)C|(σ2,σ2), I(ξ)C|(d,d), and I(ξ)C|(σ2,d), respectively. To derive these three quantities, it is
necessary to perform eigenvalue decompositions of ∂C(ξ)/∂σ2 and ∂C(ξ)/∂dm via Q̃, which
leads to the following representation:

∂C(ξ)

∂σ2
= Q̃H



TDDH

0
. . .

0


 Q̃, (14)

and
∂C(ξ)

∂dm
= Q̃H



σ2D̃mT

0
. . .

0


 Q̃. (15)

Leveraging the unitary property of Q̃ and the cyclic property of the Tr[·] operation,

[I(ξ)C]σ2,σ2 = Tr
[
∂C(ξ)

∂σ2
C−1(ξ)

∂C(ξ)

∂σ2
C−1(ξ)

]

=
M∑

m=1

T 2d4
m

(σ2Td2
m +N0)2

. (16)

Following a similar methodology, one can compute
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[I(ξ)C]dm,dk
=

4σ4T 2d2
m

(σ2Td2k +N0)2
δmk, (17)

and
[I(ξ)C]σ2,dm

=
2σ2T 2d3m

(σ2Td2m +N0)2
, (18)

where δmk = 1 only if m = k. Due to space constraints, we avoid presenting the full calculation
of (17) and (18), respectively. Following this, we derive I(ξ)µ. We begin by taking the derivative
of µ(ξ) with respect to elements in ξ. Doing this yields the following results

∂µ(ξ)

∂γ
= 1⊗Da(ϕ),

∂µ(ξ)

∂dm
= 1⊗ ejαmEmmγ a(ϕ),

∂µ(ξ)

∂σ2
=0, and

∂µ(ξ)

∂αm

= 1⊗ jdme
jαmEmmγa(ϕ). (19)

Note that Emm is the elementary matrix which has unit value only at the intersection of the
m−th row and m−th column, and zeros elsewhere. In accordance with (19), it is trivial that
I(ξ)µ|(σ2,d), I(ξ)µ|(σ2,α), [I(ξ)µ]σ2,σ2 , and [I(ξ)µ]σ2,γ are all 0, since the first two quantities
are zero vectors, while the second two quantities are zero scalars. To derive the remaining
sub-matrices of I(ξ)µ, we express a unit vector as 1 =

√
TQHη, where η denoted as a T × 1

column vector [1, 0, . . . , 0]T . Based on the properties of the unitary matrix and the mixed-product
property of the kronecker operation, we can express [I(ξ)µ]dm,dk as

[I(ξ)µ]dm,dk = 2ℜ
[
∂µH(ξ)

∂dm
C−1(ξ)

∂µ(ξ)

∂dk

]

(a)
= 2ℜ

[
κH(Q⊗ IM)−1Λ−1(Q⊗ IM)κ

]

=
2T

N0 + σ2T d2m
γ2δmk, (20)

where (a) contains κ = QHη⊗γej αmEmma(ϕ). Following the same method, we can derive the
rest of sub-matrices I(ξ)µ. Due to space limitation, we avoid presenting the exact calculations,
however we quote the final results below:

[I(ξ)µ]γ,γ =
M∑

m=1

2d2
mT

σ2T d2
m +N0

, (21)

[I(ξ)µ]dm,γ =
2T dmγ

σ2Td2m +N0

, (22)

[I(ξ)µ]αm,αk
=

2T d2mγ
2

N0 + σ2T d2m
δmk, (23)

[I(ξ)µ]γ,αk
= 0 and [I(ξ)µ]dm,αk

= 0. (24)
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I(ξ) =




I(ξ)µ|(d,d) + I(ξ)C|(d,d) I(ξ)C|(σ2,d) 0 I(ξ)µ|(d,γ)
I(ξ)HC |(σ2,d) I(ξ)C|(σ2,σ2) 0 0

0 0 I(ξ)µ|(α,α) I(ξ)µ|(α,γ)
I(ξ)Hµ |(d,γ) 0 I(ξ)Hµ |(α,γ) I(ξ)µ|(γ,γ)


 . (25)

Adding I(ξ)µ with I(ξ)C, the closed-form FIM I(ξ) is given by (25), presented on top of the
following page.

B. Inverse of FIM
To compute the CRLB, one is generally required to invert the FIM. We check the invertability

of I(ξ) by computing its determinant numerically, and ensuring that the result is non-zero. In
order to perform parameter estimation for absolute calibration, we are only interested in the
following two terms of the FIM: I(ξ)−1

d,d and I(ξ)−1
α,α. This is since only these terms contain the

necessary information for the amplitude scaling and phase shifts associated with each RF chain.
The other terms do not need to be inverted, since they contain information relating to γ and
σ2 which denote the LOS power and power of the diffuse multipath components which do not
need to be estimated. Enlightened by this, we provide the following analysis which begins by
splitting I(ξ) into four parts for mathematical convenience. Specifically,

I(ξ) =

[
X ψ

ψH w

]
, (26)

where the scalar w = I(ξ)µ|(γ,γ), the vector ψ is given by (I(ξ)Tµ|(d,γ) 01×M I(ξ)Tµ|(α,γ))T and
X for the rest of I(ξ). Leveraging the relationship between the adjugate matrix and the inversion
matrix, I−1(ξ) can be expressed as

I−1(ξ) =
I†(ξ)

det(I(ξ))
, (27)

where I†(ξ) is the adjugate matrix, which can be obtained by extracting the resulting sub-matrix
after striking out the i−th row and column of I(ξ). Since only the diagonal elements of X

contain the phase shift and amplitude scaling estimation parameters of interest, the range of
i = 1, 2, . . . ,M,M + 2,M + 3, ..., 2M + 1. Then, by applying the definition of adjugate matrix
and Schur complement, one can calculate the i−th diagonal element of I−1(ξ) as [30]

I−1(ξ)ii =
det(X̃ii)

det(X)

(
w − ηH

i X̃
−1
ii ηi

w − ηHX−1η

)
, (28)

where X̃ii can be obtained X by striking the i−th row and column, while ηi can be extracted
from the column vector η by striking the i-th row. We now present the full analytical form of
I−1(ξ)ii: For convenience, we let vectors ϕ ∈ RM , ζ ∈ RM denote the diagonal elements of the
matrices I(ξ)µ|(d,d) + I(ξ)C|(d,d) and I(ξ)µ|(α,α) respectively. Furthermore, we let φ ∈ RM and
ϑ ∈ RM represent vectors I(ξ)C|(σ2,d) and I(ξ)µ|(d,γ) respectively. In addition, we define scalars
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ρ = I(ξ)C|(σ2,σ2), χi = det(X̃ii)/ det(X) and χ′
i = (w − ηH

i X̃
−1
ii ηi)/(w − ηHX−1η). With the

aid of Gaussian elimination, we can calculate χi as [30]

χi =





ρ−∑M
j ̸=i

φ2
j

ϕj

ϕi(ρ−
∑M

j=1

φ2
j

ϕj
)
; i = 1, 2, ...,M

1

ζi
; i =M + 2,M + 3, ..., 2M + 1.

(29)

Using block matrix inversion theorem [30],

χ′
i =





w −
(∑M

j ̸=i

ϑ2
j

ϕj

)
− f−1

2

(∑M
j ̸=i

ϑj φj

ϕj

)2

w −
(∑M

j=1

ϑ2
j

ϕj

)
− f−1

1

(∑M
j=1

ϑj φj

ϕj

)2

; i = 1, 2, ...,M

1 ; i =M + 2,M + 3, ..., 2M + 1,

(30)

where scalrs f1 and f2 are defined as f1 = ρ−∑M
j=1(φ

2
j/ϕj), f2 = ρ−∑M

j ̸=i(φ
2
j/ϕj), respectively.

Note that this is a very general solution to a complex problem which holds for any SNR
value and any number of receive antennas at the BS. An interesting special case of (30) can be
analyzed, which is as follows: Supposing that the system is operated in the high SNR regime,
implying that N0 is much smaller than σ2T d2i , when 1 ≤ i ≤M , χ′

i can be approximated as:

χ′
i ≈ ε

[
σ2M (2ε− γ2) + 2σ4 + γ2ε+ 2γ2σ2

]

σ2 (2ε− γ2)(Mε+ σ2)
, (31)

where ε is defined as ε = 2T γ2+(4T 2− 1)σ2. If M is much larger than σ2, which is typically
the case for massive MIMO systems, then χ′

i can be approximated as 1 since the numerator and
denominator of (31) both scale linearly with M resulting in a cancellation. Relative to M , the
other variables do not significantly influence the result of (31) and hence are less dominant. Based
on (28)-(30), in high SNR conditions, for a massive MIMO system, the diagonal elements of
I−1(ξ) can be revealed in a rather elegant form. which demonstrate the CRLBs of the amplitude
and phase estimations. These are

I−1(ξ)ii ≈





σ2d2i
2(γ2 + 2σ2)

; i = 1, 2, ...,M

σ2

2γ2
; i =M + 2,M + 3, ..., 2M + 1.

(32)

From (32), the CRLB of the phase estimation is directly proportional to σ2 and inversely
proportional to γ2. As a special case, if the system is operating with pure non LOS propagation
environment (i.e., γ = 0), the CRLB relating to phase drifts goes to infinity, and it is impossible
to estimate the phase drifts in this situation. However, for UE-aided absolute calibration, it is
common that the UE will be in close proximity to the BS and hence will almost surely have a
dominant LOS component, along with other multipath components. In contrast, for the amplitude
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Fig. 2: MLE (and moment-based) estimator performance as a function of LOS powers for phase
calibration with varying SNRs. The phase estimation CRLBs are shown for comparison purposes.

estimations, both γ and σ2 can contribute to the inverse of the FIM. Therefore, it is possible to
find a soluable estimator, even when there is no LOS component.

V. NUMERICAL RESULTS

The ultimate aim of our work is to implement the aforementioned calibration parameter
estimation techniques into a real-time massive MIMO testbed. To this end, as a first step in this
direction, we evaluate the estimation performance via Monte-Carlo simulations. Our simulation
framework caters to a 100 element ULA connected to 100 individual RF chains. We assume
that the physical distance between the electrical phase centers of successive antenna elements
is d = λf/2, where λf is the wavelength corresponding to the operating carrier frequency.
Considering this, the overall steering vector can be written as

a (ϕ) =
[
1, e−j2πd cos(ϕ) . . . , e−j2πd(M−1) cos(ϕ)

]
. (33)

Consistent with [14], the ground truth of the magnitudes of the RF chain coefficients are assumed
to be unity, while the phases are assumed to be distributed uniformly between [−π, π]. This
serves as a basis for comparison for the estimated amplitudes and phases. Furthermore, the SNR
is given by

SNR =
E{(γDa(ϕ)p+ pDh)(γDa(ϕ)p+Dhp)H}

E {nnH}

=

∑M
m=1 d

2
m(σ

2 + γ2)

MN0

, (34)

where the respective quantities in (34) are defined in Sec. II. To manage the computational
run-time of the numerical simulations, while observing data for a long enough time period, we
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Fig. 3: Cosine similarity measure as a function of the LOS powers for amplitude estimation
using the moment-based estimator. Variability in SNR is also presented.

set the total observation duration of the received vector as T = 3, for each 10 independent
and identically distributed Monte-Carlo realizations are simulated. To evaluate the accuracy of
phase and amplitude estimations, we hereby assume that the groundtruths of the phase drifts
and amplitude scalings of each RF chain are generated by the simulation framework, and
stored for the sake of comparison. In Fig. 2, we first present the performance of both types
of phase estimators (mathematically proven to have same form), with the derived CRLB for
phase estimation. We do this by reporting the variance of the phase MLE estimators over the
100 parallel RF chains against the derived CRLB under different SNRs and LOS powers (γ)
factors. The CRLB of the phase estimation is inversely proportional to γ2 (see (23)), thus the
CRLB and the MLE estimator decay exponentially as γ increases. As shown, the variances of the
MLE estimator approaches the CRLB as γ or the SNR increases. The results coincide with the
MLE behaviour since the increase of either the SNR or LOS power reduces the phase variance,
leading to a small estimation error and the MLE is therefore able to achieve its asymptotic
probability distribution function [29]. Naturally, we would expect the moment-based estimator
to have the same performance via (6) and (9).

Figure 3 presents the estimation result of the linear space spanned by the amplitude vector
d = [d1, d2, ..., dM ]T using the moment-based estimator. Using the cosine similarity measure
[31], we define the criteria for measuring the angular difference between the estimated vector,
d̂, and the groundtruth, d, as

cos. sim. = arccos

(
|d̂Hd |
∥d̂∥ ∥d∥

)
, (35)

where ∥ · ∥ denotes the vector norm. Based on (35), a perfectly estimated vector is aligned with
the groundtruth vector, i.e., cos.sim. = 0, while the worst estimate is a vector in perpendicular
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Fig. 4: MLE (and moment-based) estimator performance for different LOS powers and dominant
LOS AOAs (in degrees) with SNR=3 dB.

direction to the groundtruth vector resulting in cos.sim. = 1. The moment-based estimator in
(10) exploits the first and second-order statistics by calculating the expectation of the received
signal and reconstructing the covariance matrix. The increase of LOS power yields more superior
reconstruction quality and therefore improves the estimation result. Also, as shown in Fig. 3,
an increase in the SNR results in higher estimator accuracy as the estimated amplitude starts
to converge towards the groundtruth. In addition, it is challenging to evaluate the CRLB of
(35), since the inversion of the whole FIM is required, which is an extremely difficult task [29].
Therefore, we defer this to the upcoming journal version of the paper.

Figure 4 depicts the phase estimation results of the two estimators as a function of LOS
powers, for different dominant LOS AOAs at SNR=3 dB. It can readily be observed that the
resulting phase estimates for different AOAs are essentially the same. This is since each element
of the steering vector has a constant amplitude of one for all of the incoming angles between
[−π/2, π/2]. To this end, the change of dominant AOAs will have no influence on the estimator
performance for a given LOS power and a given SNR. Although not shown here, the same trends
hold for the moment-based amplitude estimator following the same phenomena.

VI. CONCLUSION

In this paper, we consider UE-aided amplitude and phase estimation for absolute calibration of
massive MIMO front-ends. Assuming a Ricean fading channel model, for a single-user massive
MIMO system, we analyze the performance of moment-based and MLE estimators for estimating
the relative amplitude scalings and phase shifts associated with each RF chain. Our analysis
assumes no knowledge of the LOS power, diffuse multipath component power, amplitudes and
phase shifts. The derived estimators only need knowledge of the received array’s steering vectors
and transmitted pilots by the UE. We mathematically prove that for phase estimation, both
MLE and moment-based estimators have the same form, and hence perform equally well. To
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evaluate the performance of respective estimators, we investigate the CRLB via the analysis of
the FIM, where we draw several important insights. We show that the presence of a dominant
LOS component is mandatory for phase drift estimation, while not necessary for the amplitude
estimation. Our numerical results indicate that the variance of the phase estimates converge
to the corresponding CRLBs with increasing LOS powers and SNRs. Likewise, the amplitude
estimation accuracy improves substantially with increasing SNR. Different dominant LOS AOA
tends to make almost no difference to the phase and amplitude estimator performance, since the
amplitude of each entry in the steering vector remains constant over all considered angles. In the
future, our aim is to implement the estimators for absolute calibration on the Lund University
massive MIMO testbed.
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Abstract

Multi-carrier technique is a backbone for modern commercial networks. However, the performances
of multi-carrier systems in general depend greatly on the qualities of acquired channel state information
(CSI). In this paper, we propose a novel deep-learning based processing pipeline to estimate CSI for
payload time-frequency resource elements. The proposed pipeline contains two cascaded subblocks,
namely, an initial denoise network (IDN), and a resolution enhancement network (REN). In brief,
IDN applies a novel two-step denoising structure while REN consists of pure fully-connected layers.
Compared to existing works, our proposed processing architecture is more robust under lower signal-
to-noise ratio scenarios and delivers generally a significant gain.

Index Terms

Deep learning, channel estimation, OFDM, channel state information.

I. INTRODUCTION

Multi-carrier systems have been a fundamental radio access technology, e.g., as standardized
in Third Generation Partnership Project (3GPP), for more than a decade [1]. One representative
technology is the orthogonal frequency division multiplexing (OFDM), which was firstly invented
by the Bell Labs back in the 1960s. Owing to its excellent properties on mitigating multi-path
fading and increasing network spectral efficiency, OFDM has been supporting the modern fourth
generation (4G) and 5G commercial networks for serveral decades and still has a strong potential
for future 6G wireless communications [2], [3].

The performance of a multi-carrier system hinges greatly on the knowledge of channel state
information (CSI) at each time-frequency resource grid. Usually, known signals, so-called pilot
signals, are transmitted to estimate the CSI at certain time-frequency locations as an initial step,
and afterwards CSI at other resource locations for payload communications can be obtained
according to the acquired pilot CSI. To improve the accuracy of estimated payload CSI, one
can intuitively boost transmission powers of pilot signals or insert more pilots onto the time-
frequency resource grids. However, the power efficiency or spectrum efficiency of the system
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would be sacrificed correspondingly. Moreover, adjacent cells may run a risk of being strongly
interfered, resulting in pilot contamination [4]–[6]. Therefore, a favorable method is to exploit
the correlation properties embedded in both frequency and time domains to improve the accuracy
of estimated CSI without modifying the configuration of pilot signals.

Available algorithms in the literature mainly fall into two categories, namely, traditional signal
processing based and machine learning based approaches. The principle of linear minimum mean-
square error (LMMSE), as a classical signal processing based method, relies on prior knowledge
of the first-order and second-order statistics of the channels [7], [8]. However, the performance
of LMMSE based methods may have a bottleneck due to the underlying linear assumption. In
contrast, data-driven methods that can explore non-linear properties are expected to achieve more
promising results [9]–[13]. Specifically, [9] presented an initial attempt to apply deep learning
tools to jointly enhance CSI estimation and symbol detection for OFDM systems. The authors
in [10] proposed a novel neural network for decoding OFDM signals, which combined deep
learning methods and knowledge of wireless communication systems. The works presented in
[11], [12] borrowed techniques from image processing fields and applied the so-called “image
super resolution” algorithms to enhance channel estimation results. In particular, the channel
estimation framework “Channelnet“ proposed by [11] achieves a significant gain compared with
traditional LMMSE method. In addition, the authors in [13] leveraged convolutional neural
networks (CNN) to strengthen the conventional LMMSE receiver for multiple user MIMO
systems. However, despite the promising results achieved by previous work, it is still, to our best
knowledge, challenging for existing channel estimation algorithms to deliver a solid performance
under low SNR scenarios. In addition, current deep-learning based channel estimation approaches
are mainly based on CNN family, which generally take much longer time to train and therefore
to apply them in practical systems.

To address these issues, we propose a novel deep learning based pipeline, which contains two
processing blocks with pure fully-connected layers, i.e., an initial denoise network (IDN) and a
resolution enhancement network (REN). The IDN aims at improving the SNR of noisy pilots via
a novel denoising structure. After this noise reduction operation, we feed the output of IDN into
a fully-connected REN, which aims to recover all payload CSI based on the knowledge of pilot
CSI. Results show that compared with both traditional method LMMSE as well as ChannelNet,
the proposed pipeline can achieve a significant gain of around 10-15 dB both under low and high
SNR scenarios.

The rest of the paper is structured as follows. We formulate the channel estimation problem
in section II, and the proposed method is illustrated in section III. Section IV demonstrates the
performance gain of the proposed method compared to existing works by using synthetic channel
data. Finally, conclusions are given in section V.

II. PROBLEM FORMULATION

As illustrated in Fig. 1, we hereby consider a single-input-single-output (SISO) OFDM system
with F subcarriers and T symbols, i.e., FT resource elements (REs). The received signal
Y (f, t) ∈ C at the f -th subcarrier and t-th symbol can be written as
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F subcarriers

T timeslots

Pilots

Payload
data

Fig. 1: Examples of pilot configurations in a typical OFDM system

Y (f, t) = H(f, t)X(f, t) +N(f, t), (1)

where H(f, t) ∈ C and X(f, t) ∈ C represent the complex CSI and transmitted signal at this RE,
respectively, and N(f, t) ∈ C denotes additive white gaussian noise (AWGN) with zero mean
and variance No

2
. Accurate knowledge of CSI at individual REs is essential for demodulating

transmitted symbols. For this purpose, P known pilot signals, as indicated by the black squares
in Fig. 1, are transmitted to sound the CSI of the P pilot REs. We concatenate them as a vector
h̃x ∈ CP×1. Note that h̃x ∈ CP×1 is a noisy version of the true pilot CSI hx ∈ CP×1 due to the
existence of noise in the received pilot signals. The problem we focus in this paper is then how
to estimate CSI of all (the other) REs, i.e., Hy ∈ CF×T , according to h̃x. Before elaborating our
proposed method, we briefly review two representative methods already existing in the literature,
namely LMMSE estimator [14] and ChannelNet [11].

A. LMMSE
The conventional LMMSE estimator belongs to Bayesian family and is constructed by a

linear combination of the observed data. The combination matrix, which exploits the first and
second-order statistics, is chosen to minimize the mean square error of the estimation result [14].
Specifically, the estimator of the CSI hy ∈ CTF×1 can be obtained as

h̃y = E(hy) +CyxC
−1
xx

[
h̃x − E(h̃x)

]
, (2)

where hy is the vectorization of Hy, i.e., hy ≜ vec(Hy), E(·) represents the expectation operation,
Cyx is the cross-correlation matrix of hy and h̃x, and Cxx is the auto-correlation matrix of h̃x.

B. Channelnet approach

Channelnet was proposed in [11]. The whole network consists of two cascaded processing
blocks, namely, the super resolution network (SRN) and the image restoration network (IRN).
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Fig. 2: Our proposed channel estimation pipeline.

Fig. 3: The architecture of the initial denoise network.

Specifically, SRN takes the low resolution and noisy pilot CSI as input, resulting in a coarse
estimation result. Then the coarse results are forwarded to the IRN to further enhance their
SNRs. According to [11], CNN is selected as the core technique for both two blocks.

III. STRUCTURES OF PROPOSED NETWORKS

The pipeline of our proposed channel estimation algorithm is presented in Fig. 2. As illustrated,
the proposed structure consists of two cascaded subblocks, i.e., the IDN and REN. Briefly, IDN
takes corrupted pilot signal vector as input and aims at reconstructing the signal vector itself
with much less noise. REN has a fully-connected neural network as the core, estimating CSI
for all payload datas. In addition, the SNR label is not used during the training phase since we
aim at training a generalized model for all possible SNR points.

A. Initial Denoise Network
We first deploy an IDN to improve the SNR of h̃x using supervised learning, resulting in an

improved pilot CSI h̆x ∈ CP×1. Note that since the network aims to approach the noisy-free
pilot CSI as much as possible, groundtruth hx’s are exploited to supervise the training process.
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The architecture of our designed IDN is illustrated in Fig. 3. As shown, the network reshapes
the vector h̃x as a new vector h̃′

x ∈ R2P×1 ≜ [Re(h̃x)
T , Im(h̃x)

T ]T as input, while generates
h̆′
x ∈ R2P×1 = [Re(h̆x)

T , Im(h̆x)
T ]T as a denoising result. The overall network structure is made

up of two subnets. The first subnet consists of a number of M parallel branches of processing
chains, each as a fully-connected neural network. By subtracting the input signal h̃′

x itself with
the summation of all those processing, we collect the output signal of the first subnet. As a next
step, we feed this output signal into the second subnet which consists of fully connected NN,
generating vector h̆′

x with enhanced SNR. We define fIDN(.) as the overall function for the entire
proposed denoise network, θIDN as a vector collecting all hyper parameters and Ω as all training
datasets. Based on this definition, the overall loss function C1 can be written as

C1 =
∑

h̃′
x∈Ω

||fIDR (h̃
′
x,θIDN)− h′

x ||2F , (3)

where ||.||F represents the Frobenius norm. During the training phase, the hyperparameter vector
θIDN is optimized in order to minimize cost function C1.

B. Resolution Enhancement Network
The REN acts as an important block of our proposed processing pipeline, which provides

channel coefficients estimation for the whole time-frequency resource grid via a supervised
learning approach. The structure of the REN is illustrated in Fig. 4. Note that during the training
process of the REN, h′

x acts as input, and h′
y ∈ R2FT×1 = [Re(hy)

T , Im(hy)
T ]T as supervising

data. In this way, we aim to capture the inherent non-linear correlation between hx and hy.
However, after the network is well-trained, one can only use the noisy pilot CSI h̆′

x to estimate
hy, i.e., h̆′

y,REN. Therefore, it is necessary and important to first improve the SNR of pilots CSI,
which was exactly conducted in the first block IDN. We denote fREN(.) as the overall function for
the proposed resolution enhancement network, θREN as the hyperparameter vector, and Ω2 as all
training sets. Similar as equation (3), the overall loss function C2 for this network is presented
by

C2 =
∑

h′
x∈Ω2

||fREN (h
′
x, θREN)− h′

y ||2F . (4)

During the training phase, the hyperparameter vector θREN is optimized in order to minimize
cost function C2.

IV. RESULTS AND DISCUSSION

In this section, we evaluate our proposed networks using the open-source WAIC2nd Dataset
[15]. An overview of the Dataset and detailed settings of the networks is included in the sequel.

A. An Overview of the Dataset
In the Dataset, downlink channels of a 5G base station were simulated. According to the

simulation setup, the base station was equipped with 32 antennas, operating in a beam-locking
mode. That is, a beam was formed by the 32 antennas to serve a user equipment that equipped
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Fig. 4: The architecture of the resolution enhancement network.

with a single antenna. Thus, the downlink channels were essentially SISO. The considered time-
frequency resources consist of 96 subcarriers and 14 OFDM symbols, which occupy 1.6 MHz
bandwidth and each OFDM symbol lasts for 1 ms. Demodulation reference signals (DMRSs)
were sparsely inserted as pilots into the time-frequency grids, occupying 48 subcarriers and 2

OFDM symbols. According to this, h̃x ∈ C96×1 and Hy ∈ C96×14. In total 210, 000 h̃x samples
together with their corresponding groundtruths Hy are prepared. In addition, each h̃x has an
SNR label, ranging from 0 dB to 20 dB. Fig. 5 illustrates the CSI across the time-frequency
grids of an example channel snapshot. The corresponding time-variant power delay profiles and
delay-Doppler power spectrum are shown in Fig. 6. It can be observed from Fig. 6 that there are
small numbers of multipath components (MPCs) existed in the channel. This is reasonable since
beamforming can prune out-of-beam MPCs [16]. Nevertheless, as shown in Fig. 5, the channel
still exhibited frequency and time selectivity. Readers are referred to [15] for more details.

B. Network Settings
1) IDN: As described in the previous section, the IDN takes the vector h̃

′
x ∈ R2P×1 as input,

while the true vector h′
x is applied to supervise the training process. Specifically in this task,

the input vector length is calculated as 2P = 2 × 48 × 2 = 192. To reduce the network size
and shorten the training time, we set M = 5 and the structure of each chain is selected to be
identical. Specifically, each chain contains 4 cascaded fully-connected NN. The first NN has
size 192 × 256, followed by 2 square NNs with identical structures as size 256 × 256, while
the 4-th NN has size 256 × 192. In addition, decoders consist three cascaded fully-connected
NN blocks, with sizes 192× 256, 256× 256 and 256× 192 respectively. For all aforementioned
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Fig. 5: CSI of an example channel snapshot.
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Fig. 6: Time-variant power delay profiles and delay-Doppler spectrum of an example channel
snapshot.

NNs, we apply the same parameter settings to simplify the network fine-tuning process during
the training phase, which are listed in Table I.

TABLE I: IDN Parameter settings

Bias Inactive
Loss Function Mean Square Error
Activation Function Leaky Relu (negative slope as -0.3)
Optimizer Adam
Total Epoches 1000
Learning Rate Initially 0.0004, reduce 50% every 200 epochs

2) REN: We input noise-free h′
x ∈ R2P=2×48×2 to our proposed resolution enhancement

network, and h′
y is used to supervise the training process. REN has 5 cascaded fully-connected

layers. The size of first layer is 192 × 256, followed by 3 layers with the same network sizes
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as 256× 256. The last layer has size 256× 2688. During the training phase, the learning rate is
set to be 0.0004 at first, and reduced by half after 500 Epochs (1000 Epochs in total). Except
for this particular parameter, we set other parameters exactly the same as that applied in IDN.

A popular open-source machine-learning framework is applied by us, namely Pytorch, to train
our proposed NNs. After the training process, IDN, REN as two separate files are saved, with
sizes 5160, 3667 KB, respectively. We manage to limit the overall sizes of our proposed network
within 10 MB, which enables opportunity to apply our proposed method to some embedded
devices.

C. Final Results
To evaluate our proposed schemes, we randomly divide all 210, 000 samples (h̃x and Hy) into

training and testing datasets. Specifically, 90% are used for training while the rest 10% (21, 000
samples in total, 1000 samples per SNR point) for testing purposes. We select MSE score as a
criteria to assess the performance of all NNs, which is defined as

Score = −10 log10 (
1

N

N∑

i=1

||hi − ĥi||2F
||hi||2F

), (5)

where N is the total number of testing samples, ĥi and hi represent the estimated vector and
ground-truth, respectively. Based on this criteria, we first illustrate the evaluation results of
proposed denoise network with regard to different training epochs in Fig. 7. It can be observed
that, the curve indicates a rising trend, although with some extend of fluctuations, with the
increase of either input signal SNR or training Epochs. Nevertheless, even under the region of
low SNR, the proposed denoise network still manages to reduce noise so that the outputs still
approach closely to groundtruths. In addition, after 800 Epoches, only marginal improvement
can be attained, since proposed network performance reaches a saturation point. At the next step,
the REN network itself is evaluated by inputting all 21, 000 test samples at one shot, since the all
input samples are noise-free. During the training phase, REN performance reaches a saturation
point (score around 43) after 700 Epochs.

Finally, we evaluate our proposed scheme by combining both two sub-networks together and
compare the result with existing two benchmarks, namely LMMSE and Channelnet. For the sake
of a fair comparison, the same training and testing datasets are applied to all those three schemes.
As illustrated in Fig. 8, a dramatic performance improvement can be achieved compared by our
approach with LMMSE and Channelnet under all SNR scenarios. Specific to this testing data,
Channelnet performs almost equally good as LMMSE (marginally better under low SNR region).
Compared with them, our proposed approach shows much stronger robustness against low SNRs,
we postulate that it is because our IDN plays an important role in enhancing signal quality. Our
proposed approach outperforms LMMSE by 15 dB in the low SNR regime (SNR around 0 dB),
and by 10 dB in the high SNR regime (SNR around 20 dB).

V. CONCLUSION

We proposed a novel supervised-learning based channel estimation approach, in order to
acquire channel state information (CSI) for all payload symbols based on a few pilot symbols.
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Fig. 7: Evaluation scores of IDN for scenarios with SNRs that range from 0 dB to 20 dB.
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Fig. 8: Evaluation scores of the proposed approach, LMMSE and Channelnet for scenarios with
SNRs that range from 0 dB to 20 dB.

The proposed pipeline consists of two cascaded blocks, namely, initial denoise network (IDN),
and resolution enhancement network (REN). By applying a novel denoising structure in the IDN,
pilot CSI estimation can achieve a significant improvement. With the aid of denoised pilot CSI,
a decent estimation result can be achieved from the REN. In comparison to previous techniques
such as linear minimum mean-square error method as well as ChannelNet, our proposed pipeline
delivers, especially in high noise scenarios, better performance in terms of mean square error of
the channel estimates. We leave further investigations on the potentials to apply our methods to
multiple antenna systems as well as more complex propagation channels as future targets.
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Abstract

Wireless-based activity sensing has gained significant attention due to its wide range of applica-
tions. We investigate radio-based multi-class classification of human activities using massive multiple-
input multiple-output (MIMO) channel measurements in line-of-sight and non line-of-sight scenarios. We
propose a tensor decomposition-based algorithm to extract features by exploiting the complex correlation
characteristics across time, frequency, and space from channel tensors formed from the measurements,
followed by a neural network that learns the relationship between the input features and output target
labels. Through evaluations of real measurement data, it is demonstrated that the classification accuracy
using a massive MIMO array achieves significantly better results compared to the state-of-the-art even for
a smaller experimental data set.

Index Terms

Activity classification, large-scale sensing, massive MIMO, neural network, tensor decomposition.

I. INTRODUCTION

The rapid development of communication technologies over the past decade has paved the way
and created a surge of interest in activity sensing applications using radio signals [1]. Exploiting
characteristics of measured real-time radio channels for activity sensing is of importance for a
variety of applications such as activity monitoring, security surveillance, crowd counting, elderly
and children care [2], [3]. To realize these applications, the current state-of-the-art is to exploit
channel state information (CSI) from existing WiFi devices that are ubiquitously available indoors
[4].

Early work on radio-based activity sensing was based on extraction of features from radio
signals and the use of traditional supervised machine learning (ML) algorithms to classify activities
[2], [3], [5]. Recently, the trend has been going towards utilizing more powerful neural network
(NN)-based classifiers to further improve the classification accuracy when having multiple possible
events. These classifiers in general require a huge training data set [6]–[8]. A few examples of
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recent studies on activity sensing are classification of different human activities [3], human identity
identification [7], human tracking [8], gesture recognition [9], and line-of-sight (LOS)/non line-of-
sight (NLOS) identification in vehicle-to-vehicle (V2V) networks using multiple-input multiple-
output (MIMO)-based systems [10].

These applications are either using WiFi-based devices operating at a carrier frequency of
2.4 GHz (or 5 GHz), or a MIMO-based channel sounder for the V2V propagation scenario,
operating at 5.9 GHz [10], [11]. Current WiFi-based sensing applications use CSI measured by
conventional (small-scale) MIMO systems, limiting the performance due to a smaller number of
antennas, which imposes difficulties in exploiting the spatial resolution abilities. To overcome this
and take activity sensing and classification one step further, we started in [12] to consider massive
MIMO for these applications. A massive MIMO array offers very high spatial resolution along
with being robust to interference. By increasing the number of antennas at the base station (BS),
we can also exploit the spatial domain when extracting features from the data and hence, improve
the performance. For this purpose, we conducted experiments with different activities in an indoor
environment using a massive MIMO testbed operating at 3.7 GHz. While our work in [12] focused
on binary classification between static and dynamic events, we here further advance this study by
instead considering the multi-class classification problem for these activities in both LOS and
NLOS propagation scenarios.

More specifically, in [12], we proposed a feature extraction method using principal component
analysis (PCA) for the amplitude information and linear regression analysis for the phase informa-
tion. Herein we further improve our approach by better exploiting the phase information and the
spatial domain by developing an algorithm that uses the complex correlation properties across all
three domains: time, frequency, and space. Since the measured data is a tensor spanning all three
domains, the dimension is large and to reduce the size, we apply a tensor decomposition-based
approach to obtain low-rank approximations. To learn the relationship between these features and
their corresponding label, we propose a NN architecture with feedforward fully connected multiple
layers, which is generalized for both LOS and NLOS scenarios.

II. SYSTEM MODEL

We consider an uplink massive MIMO system with M antenna elements at the BS using orthog-
onal frequency division multiplexing (OFDM) with F subcarriers. The multiple user equipments
(UEs) utilize different but neighboring frequency subcarriers to simultaneously sound pilot signals,
which are captured by an antenna array connected to M radio-frequency (RF) chains. We capture
the signal over a certain observation time, recording in total T snapshots of the channel. The
received matrix Yf ∈ CM×T , for each subcarrier index f and each UE, can be written as

Yf = Hf � Γf + Nf , (1)

where snapshot t ∈ [1, T ], subcarrier f ∈ [1, F ], RF chain m ∈ [1,M ], � denotes the Hadamard
product, the complex matrix Hf ∈ CM×T represents the channel, Γf ∈ CM×T represents the
frequency responses of the RF chains connected to the antenna array, and Nf ∈ CM×T the noise
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matrix for subcarrier f , where each element of the matrix represents the additive noise to the
received signal.

It is a highly challenging task to formulate a precise model of the propagation channel Hf

since the information about geographical locations of the transmitting UEs, as well as scatters,
is unknown. In addition, knowledge about the speed and directions of moving objects is not
available, which imposes limitations on estimating the corresponding Doppler shifts. Furthermore,
each element in the RF chain matrix Γf , modeled as Γf (m, t) = dme

j(ϕm−t ηm,f ), introduces
uncertainties in the measured channel responses, where dm, ϕm, and ηm,f represent the amplitude,
initial phase drift, and carrier-frequency-offset (CFO), respectively, for the f -th subcarrier and the
m-th RF chain at time index t. For the collected measurement data, we define a third-order tensor
as G ∈ CT×F×M , which captures the channel in the time, frequency and spatial domains.

III. ALGORITHM FOR ACTIVITY CLASSIFICATION

In this section, we propose a novel algorithm to extract potential features from the measured
channel transfer function, which is a third-order complex tensor G. From G, we extract the raw
amplitude and the complex correlation across two domains by fixing the third one; thus, obtaining
complex correlated tensors across all domains. Further, we utilize the real, imaginary, amplitude,
and phase information of these tensors to extract features. The raw channel estimates from the
measurement data itself could be provided to the NN model by designing a robust and complex
NN to learn the statistical features of the data set. However, this approach is not feasible in our
case due to the large dimensions of the measurement data. Hence, instead of utilizing the raw
tensors, we further employ a tensor decomposition-based approach in order to obtain the best low-
rank approximations [13]. The aim of extracting features is to later utilize these in the learning
algorithm to classify activities. Our proposed feedforward NN-based architectures will be presented
in Subsection III-C.

A. Tensor decomposition

Before describing our proposed feature extraction algorithm, we provide a brief overview of
the employed tensor decomposition-based approach using canonical decomposition and parallel
factors, called the CP decomposition [14]. For any third-order real tensor H ∈ RT×F×M , the CP
decomposition can be written as a sum of rmax rank-one tensors [13] as

H ≈ H̃ =
rmax∑

l=1

λlxl ◦ yl ◦ zl , (2)

where ◦ is the vector outer product, the factor vectors xl ∈ RT , yl ∈ RF , and zl ∈ RM are
normalized to unit length with weights being absorbed into λl, which in turn consists of the
dominant eigenvalue that could be used as features. The factor matrices are expressed as X =

[x1,x2, · · · ,xrmax ] ∈ RT×rmax , Y ∈ RF×rmax , and Z ∈ RM×rmax , respectively.
For calculating the CP decomposition in (2), we use the alternating least squares (ALS) method

[13]. The ALS method is used to solve linear least-squares problems by minimizing the mode-n
of ||H(n) − H̃(n)|| in an iterative manner for a fixed term, where n = {1, 2, 3}, || · || is the matrix
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Fig. 1. Block diagram of the proposed activity sensing algorithm.

Frobenius norm, H(n) and H̃(n) denote the mode-n unfolding of H and H̃, respectively. There is
no simple method to determine the rank of a tensor and for any third-order tensor H ∈ RT×F×M ,
only a weak bound on the maximum rank of H is known [13] as rank(H) ≤ min{TF, TM,FM}.

B. Feature extraction

The proposed flowchart for feature extraction and classification is illustrated in Fig. 1. During
the measurements, frame losses occur occasionally due to synchronization failures. To account
for such frame losses, we apply linear interpolation in the time domain as a first step when pre-
processing the measured data, to obtain equally spaced time domain samples. Since the losses are
intermittent, it is reasonable to expect that linear interpolation is sufficient for this purpose. Then,
for each measurement, we perform segmentation of the received tensor G in the time domain, that
is, a time window is used to segment the received data. The objective of the segmentation is to
acquire a larger data set of shorter measurements to be used in the learning algorithm and for
the performance evaluation. We choose a time window of length Tw over the entire duration of
the observation time T . The value of Tw is chosen such that it is much larger than the channel
coherence time so that small changes of the time-varying correlation properties of the channels
due to movement of activities are well captured. The time-segmented tensor data is denoted by
G̃k ∈ CTw×F×M , where k ∈ [1, T/Tw].

1) Amplitude: Obtaining features from the raw phase information of G̃k is challenging and may
not be accurate since both the initial phase offsets (ϕm) and CFOs (ηm,f ) of each RF chain m

contribute to the raw phases of the measured tensors. Furthermore, deriving an estimator to obtain
those parameters is a non-trivial task. Therefore, we here only extract the feature from the raw
amplitude information |G̃k| ∈ RTw×F×M , where |G̃k| is the amplitude of the k-th time window of
G.

2) Complex correlations: To exploit the complex correlation properties of G̃k, we determine
the correlations as a function of two domains by fixing the third one. Thus, we evaluate the
correlation functions of the channel in all three domains: time, frequency and space. For the k-th
time window, we denote the third-order tensors CMF,k ∈ CTw×Tw×M and CMTw,k ∈ CF×F×M as the
complex correlation matrices for each antenna m ∈ [1,M ] across frequency and time, respectively.
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More precisely, for the m-th antenna, the correlation matrices across frequency and time are given
by

CMF,k(:, :,m) = G̃k(:, :,m) (G̃k(:, :,m))H, and

CMTw,k(:, :,m) = (G̃k(:, :,m))H G̃k(:, :,m).
(3)

where (·)H is the Hermitian transpose. Similarly to (3), we define CFM,k ∈ CTw×Tw×F and CFTw,k ∈
CM×M×F for each subcarrier f ∈ [1, F ] as tensors describing the spatial and time correlations,
respectively. The tensors for each time sample tw ∈ [1, Tw] describing the spatial and frequency cor-
relation matrices are denoted by CTwM,k ∈ CF×F×Tw and CTwF,k ∈ CM×M×Tw , respectively. Following
these definitions, for each subcarrier f , we can write

CFM,k(:, :, f) = G̃k(:, f, :) (G̃k(:, f, :))
H, and

CFTw,k(:, :, f) = (G̃k(:, f, :))
H G̃k(:, f, :).

(4)

For each time sample tw, we have

CTwM,k(:, :, tw) = G̃k(tw, :, :) (G̃k(tw, :, :))
H, and

CTwF,k(:, :, tw) = (G̃k(tw, :, :))
H G̃k(tw, :, :).

(5)

Each element of the tensors in (3)–(5) is complex-valued. Thus, when utilizing the tensor decomposition-
based approach discussed in Subsection III-A that operates in the real domain, we first need to
obtain real tensors by extracting the amplitude and unwrapped phase information from each of the
tensors in (3)–(5). Then we normalize the amplitudes and phases separately. By considering CMF,k
in (3) as an example, we denote C

M,A
F,k and C

M,P
F,k as the amplitude and unwrapped phase tensors,

which are defined as

C
M,A
F,k (:, :,m) = |CMF,k(:, :,m)|/||CMF,k(:, :,m)||

C
M,P
F,k (:, :,m) = arg(CMF,k(:, :,m))/|| arg(CMF,k(:, :,m))||,

(6)

where | · | and arg(·) denote magnitude and unwrapped phase, respectively. Following the same
procedure as in (6), we obtain the rest of the real tensors from (3)–(5) with the dimension of
each real tensor is same as the corresponding complex tensor. The complete list of real tensors is
provided in Table I.

Furthermore, we also normalize the inner and outer products of (3)–(5) with the Frobenius norm,
and then extract the real, imaginary, and amplitude information from the so-obtained normalized
complex tensors. We explain this with an example: let us denote C̃MF,k as the normalized complex
tensor of CMF,k, defined for each m as

C̃MF,k(:, :,m) = CMF,k(:, :,m)/||CMF,k(:, :,m)||,∀m. (7)

Then the real, imaginary, and amplitude information is obtained as C̃
M,Re
F,k = Re{C̃MF,k}, C̃M,Im

F,k =

Im{C̃MF,k}, and C̃
M,A
F,k = |C̃MF,k|, respectively. We have noticed that the phase information provided

in (6) is already sufficient for our classification task. By following the same procedure for the
remaining tensors in (3)–(5), we obtain all the real tensors as shown in Table I, which describes
the correlation properties as a function of time, frequency and space. After obtaining all the real
tensors, we finally apply the CP decomposition using the ALS algorithm to achieve the best
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TABLE I
LIST OF BOTH COMPLEX AND REAL TENSORS AND FEATURES

Complex

tensors

Real

tensors
Features

Complex

tensors

Real

tensors
Features

G̃k |G̃k| λ1

CMF,k

C
M,A
F,k λ2

CMTw,k

C
M,A
Tw,k

λ7

C
M,P
F,k λ3 C

M,P
Tw,k

λ8

C̃
M,Re
F,k λ4 C̃

M,Re
Tw,k

λ9

C̃
M,Im
F,k λ5 C̃

M,Im
Tw,k

λ10

C̃
M,A
F,k λ6 C̃

M,A
Tw,k

λ11

CFM,k

C
F,A
M,k λ12

CFTw,k

C
F,A
Tw,k

λ17

C
F,P
M,k λ13 C

F,P
Tw,k

λ18

C̃
F,Re
M,k λ14 C̃

F,Re
Tw,k

λ19

C̃
F,Im
M,k λ15 C̃

F,Im
Tw,k

λ20

C̃
F,A
M,k λ16 C̃

F,A
Tw,k

λ21

CTwM,k

C
Tw,A
M,k λ22

CTwF,k

C
Tw,A
F,k λ27

C
Tw,P
M,k λ23 C

Tw,P
F,k λ28

C̃
Tw,Re
M,k λ24 C̃

Tw,Re
F,k λ29

C̃
Tw,Im
M,k λ25 C̃

Tw,Im
F,k λ30

C̃
Tw,A
M,k λ26 C̃

Tw,A
F,k λ31

low-rank approximation for the individual real tensors and then to obtain the eigenvalues vectors
λi ∈ Rrmax with i ∈ {1, · · · , 31}, where each vector λi is sorted in the descending order. These
vectors are then used as potential features in the NN learning algorithm.

C. Feedforward neural network

We propose a feedforward NN architecture with fully connected layers comprising an input
layer of dimension Ru, K hidden layers, and an output layer of dimension Rv. The reason behind
choosing NN instead of classical supervised ML is that, in this work, the classification problem
includes different types of activities and the channel and signal models are unknown due to random
Doppler shifts, hence the statistical characteristics are non-linear. We therefore consider the NN-
based approach, which has the ability to transform the input domain through a linear mapping and
utilize a non-linear activation function to learn a non-linear pattern between a known input and
the target output labels.

A simple feedforward NN classifier model is considered, denoted as f(.;θ) : x ∈ X → c ∈ C,
where θ is the model hyperparameters, X ⊂ Ru is the input to the NN with u as the dimension of
the input, and C ⊂ Rv is the label (one-hot) with v being the number of classes. The optimization
loss function is denoted as L(θ,x, c); for the classification task, the categorical cross-entropy
between f(x) and c is applied to this function. More specifically, the measurements data set is
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Fig. 2. Map showing the measured scenarios. The UEs were placed either in LOS 1 and 2 or in NLOS 1. When measuring a
dynamic environment, the “Event” rectangle was the place where the activity was performed.

defined as {Gj, yj}, j = 1, · · · , N , where N is the size of the data set, Gj ∈ CT×F×M is the
j-th measurement data tensor of an activity, and yj is the corresponding label. The extracted
feature set with the raw amplitude and correlation properties of the received tensors is given by
λ̃ = [λ1, · · · ,λ31], where λi ∈ Rrmax with i = {1, · · · , 31}. Therefore, the input to the NN
becomes the feature set, which is defined as x = vec(λ̃) and the corresponding output of the NN
is the one-hot encoded label c. We propose a generalized NN architecture model for both the LOS
and NLOS propagation scenarios, specifically a feedforward fully connected multi-layer NN with
parameters 64− 32− 32− 32− 5 and corresponding activation functions after the linear mapping
elu − elu − elu − elu − softmax. The hyperparameter set is designed as: optimizer = Adam, loss
function = categorical cross-entropy, and learning rate = 0.001. In the feature set λ̃, for both the
LOS and NLOS scenario, we discard the largest eigenvalue from each vector λi, i ∈ [1, 31], since
its value is high and does not distinguish across the activities, making it difficult for accurate
classification.

IV. MEASUREMENT SCENARIOS AND SETUP

A measurement campaign has been carried out to collect real-time channels. Measurements were
done in both LOS and NLOS as well as under static and dynamic conditions. The measurements
were done in an indoor laboratory sketched in Fig. 2, with the Lund University massive MIMO
testbed (LuMaMi) [15] acting as BS. The measurement campaign was conducted in the presence
of a large number of static, scattering objects such as furniture equipment and cabinets located in
the surrounding. All UEs were distributed randomly, also with placement at different heights in
the LOS or the NLOS area, depending on the scenario. In case of a dynamic scenario, the activity
took place in the corresponding “Event” rectangle in the figure.

LuMaMi is based on software-defined radios (SDRs) and operates at a carrier frequency of
3.7 GHz with 20 MHz bandwidth in real-time. It has 100 RF chains, each one connected to a
patch antenna, building up to a rectangular array of dimensions 4 × 25 where the antennas are
spaced half a wavelength apart. The antenna in the upper left corner, as seen from the front,
is vertically polarized and the polarization is alternating such that two consecutive elements
always have different polarizations. The BS is collecting channel estimates for 30 seconds per
measurement, based on the received pilot signals from the UEs, which are also SDR-based. The
sampling rate is 100 Hz, resulting in a 10 ms time duration between adjacent samples. Each
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Fig. 3. LOS: Classification accuracy of activities as a function of M .

UE consists of an universal software radio peripheral (NI X310) with two RF chains, equipped
with either one or two dipole antennas. During a measurement, the channel from each UE is
stored and the resulting channel transfer function will be a tensor containing T = 3000 snapshots,
F = 100 frequency points and M = 100 BS antennas; this is referred to as one experiment.

For the activity classification, four different dynamic events were considered besides the static
case. The measured events are named as follows: (i) A1− completely static and in the presence of a
static person, static bike wheel, or static aluminium foil balloon, (ii) A2− waving of an aluminium
foil balloon by a volunteer lying on the floor, (iii) A3− random dancing activities by a volunteer,
(iv) A4− spinning and moving bike wheel by a volunteer lying on the floor, and (v) A5− spinning
bike wheel by a volunteer without other movements. These activities were selected to be specific
movements involved in our daily life, and include the properties of stationarity (A1), periodicity
(A2), randomness (A3), as well as rotation and shifting (A4 and A5). For each dynamic event and
per scenario (LOS or NLOS), three measurements were done with six UEs, resulting in a total of
18 experiments, while for the event A1, we conducted 36 experiments. The measurements of all
events were conducted in turn by a few volunteers of different age groups. The experiments under
LOS and NLOS scenarios were carried out at different times.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we evaluate the performance of our algorithm to classify different events un-
der LOS and NLOS scenarios with the proposed NN model. In addition to the classification
performance, the potential gain due to the extension in the spatial domain that comes with the
massive MIMO array is also investigated by showing performance results for different subsets of
the antenna array. In the performance evaluation, we choose rmax = 100 such that the low-rank
approximation gives a good fit and fulfills the aim of dimension reduction while still preserving
most of the information contained in the original tensor. Thus, the dimension of inputs to the NN
becomes R3069. Further, we choose Tw = 200 so that the data set of each experiment is increased
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Fig. 4. NLOS: Classification accuracy of activities as a function of M .

by a factor of T/Tw = 15. For each dynamic event, the data set size becomes 18 × 15 = 270

samples, while for the static case it is 36×15 = 540 samples, where 18 and 36 denote the number
of experiments in dynamic and static environments, respectively. Considering all the activities, in
total, there are 1620 samples. We stack the features of the events A1 to A5; thereby the input
structure of the NN has the dimension R1620×3069. We then randomly split those 1620 samples into
two parts, 85% and 15% as training and test samples, respectively. During the training phase, the
NN architecture is trained with the features obtained for the events from the proposed algorithm
and the corresponding target output labels.

The classification accuracy of the activities A1 − A5 with antenna array sizes ranging from
M = 3 to M = 100 in the LOS and NLOS scenarios is shown in Figs. 3 and 4, respectively.
As a special case when M = 100, the confusion matrices are depicted in Fig. 5. In the planar
antenna array, the antennas are numbered row-wise starting from the upper left corner to the lower
right corner. For obtaining different antenna subsets, we subsample the array in the sequence of
M = 3, 10, 50, etc., that is, the first 3 adjacent antennas, the first 10 adjacent antennas, and so
forth.

In both the LOS and NLOS scenarios, the classification of different activities is challenging for
conventional MIMO systems (here seen for M ≤ 10), since the potential of extracting statistical
characteristics embedded in the spatial domain is insufficient. However, when increasing the number
of antennas, a significant performance improvement, in terms of classification accuracy, can be
observed. From M = 10 to M = 50, we have a substantial gain in performance due to the aperture
increase both in the horizontal and vertical directions. With M = 100 in the LOS scenario,
the classification accuracy is 98%, whereas in the NLOS scenario it is 87%. For performance
comparison, we implemented the PCA-based method in [12] for the multi-class classification
problem, and obtained the accuracy 83% and 73% for the LOS and NLOS scenarios, respectively.
Thus the method proposed here outperforms that in [12] significantly. In terms of complexity, we
notice that it is not necessary to spend extra computational resources to achieve this accuracy
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Fig. 5. Confusion matrices for LOS and NLOS scenarios when M = 100.

gain. Specifically, [12] has an overall complexity of O(TFMTw) while the proposed algorithm
herein has O(MFTwmax(Tw, F,M)), since it manages to avoid PCA computation for each time-
segmented data. The classification in LOS is most likely an easier task as changes in the LOS
component caused by the different activities will influence the channel more, hence making it
easier to distinguish between the different activities. Also, the large-scale fading effects over the
antenna array due to blockage will likely be more prominent and therefore have a larger impact
on the correlation in the spatial domain; this effect is probably not that prominent in the NLOS
scenario. Moreover, the UE locations could also affect the performance, since the placement of
both the UE and the local scatterers around the UE influences the received signal. However, it is
challenging to predict the actual UE positions in an application scenario, since the UE distribution
has a strong randomness.

To cross-validate and guarantee that our proposed algorithm learns the propagation channel char-
acteristics rather than, e.g., gradual variations in the RF characteristics, we divide the measurement
data of each experiment into two parts. Specifically, we label the first half of the entire snapshots
as “early”, and the second half as “late”. For each activity, we then randomly divide 80% of the
measurement as a training set while 20% as the test set, followed by training a NN with the
same structure but with the size of the last layer as 2 (i.e., binary classification). The classification
accuracy of this for each activity on the test data set shows around 50%, which indicates that the
NN does not pick up irrelevant slow trends of the measurement data. Furthermore, the NN might
(as a byproduct) learn a fingerprint associated with a specific location. However, that information is
not exploited when discriminating between different activities. The NN only uses the information
it learned about what the different activities look like.

VI. CONCLUSIONS

We have investigated NN-based multi-class activity classification by utilizing baseband data
from a massive MIMO array. Our proposed method is tested on data obtained from an indoor
measurement campaign involving both LOS and NLOS scenarios, using the LuMaMi testbed
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equipped with 100 antennas. To efficiently exploit the information embedded in the time, frequency,
and spatial domains, we employed a tensor decomposition-based approach to obtain the eigenvalues
as features from the three-dimensional measurement data. Furthermore, by using the proposed NN
architecture, we obtained a multi-class classification accuracy that reached 98% and 87% in the
LOS and NLOS scenarios, respectively; these numbers are significantly higher than for a system
with few antennas. This showcases the potential benefits of using massive MIMO for wireless
sensing applications. The results look very promising for the relatively small experimental data
set we used, and further investigation is required by conducting diverse measurements in order to
explore the full potential of massive MIMO for sensing applications.
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Abstract

High-precision localization and machine learning (ML) are envisioned to be
key technologies in future wireless systems. This paper presents an ML pipeline
to solve localization tasks. It consists of multiple parallel processing chains, each
trained using a different fingerprint to estimate the position of the user equipment.
In this way, ensemble learning can be utilized to fuse all chains to improve lo-
calization performance. Nevertheless, a common problem of ML-based techniques
is that network training and fine-tuning can be challenging due to the increase in
network sizes when applied to (massive) multiple-input multiple-output (MIMO)
systems. To address this issue, we utilize a subarray-based approach. We divide the
large antenna array into several subarrays, feeding the fingerprints of the subarrays
into the pipeline. In our case, such an approach eases the training process while
maintaining or even enhancing the performance. We also use the Nyquist sampling
theorem to gain insight on how to appropriately sample and average training data.
Finally, an indoor measurement campaign is conducted at 3.7 GHz using the Lund
University massive MIMO testbed to evaluate the approaches. Localization accuracy
at a centimeter level has been reached in this particular measurement campaign.
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I. INTRODUCTION

CELLULAR-based localization is expected to pave the way for various location-aware
applications such as robotic navigation, emergency healthcare, and smart transporta-

tion [1]–[7]. The technology has undergone a significant improvement over the years, and
high-precision wireless localization has currently been included as a key feature in the
current fifth generation new radio (NR) standard, with strict requirements on localization
accuracy [8].

Traditional localization approaches include proximity, triangulation (trilateration), fin-
gerprint matching, and simultaneous localization and mapping [7]. Proximity approaches
examine whether user equipment (UE) is close to pre-known locations by analyzing re-
ceived wireless signal characteristics such as the received signal strength indicator (RSSI).
Triangulation or trilateration technology is used to estimate UE locations from delays or
angles according to geometry. The general concept of fingerprint-based localization is to
establish a radio map for the area of interest by storing channel features or fingerprints. The
UE coordinates are estimated by comparing the received fingerprints with the previously
stored fingerprints. Furthermore, with the aid of ultra-wideband (UWB) [9] and/or mas-
sive multiple-input multiple-output (MIMO) systems, it is possible to improve positioning
accuracy due to the high delay resolution in UWB and the high angular resolution in
massive MIMO [10]–[16]. For example, the work in [10], [15], [16] proposed novel
estimators to jointly estimate angles and positions with large-scale arrays. The authors
in [11]–[13] provided solutions for localization by designing tracking filters to exploit and
track important propagation channel characteristics, i.e. the autocorrelation function of the
received signal and the phase of multipaths, respectively. Especially, [12] validated their
methods via a real massive MIMO testbed and showed that localization accuracy can be
significantly enhanced with the 40 MHz bandwidth. [14] presented a direct localization
method considering localization as a joint optimization problem, which bypasses the chan-
nel estimation step and still achieves good positioning accuracy.

All of the aforementioned localization methods belong to the traditional signal processing
family. The main challenges are high algorithm complexity and requirements of the base
station (BS) array calibration [7]. On the other hand, machine learning (ML) based local-
ization algorithms have gained significant interest [17]–[32]. It is essential to appropriately
select both fingerprints and algorithms. One can choose either the raw transfer function
[17]–[19] or various channel fingerprints such as RSS, power delay profile (PDP), angular
spectrum, correlation function, etc, [20]–[28] as learning features. Moreover, a variety of
ML algorithms have been investigated, which can be mainly classified into two categories,
namely the traditional ML family such as the K-nearest neighbors (KNN), support vector
machines, kernel methods, random forest, Gaussian process regression, [21]–[23], [32], and
the deep learning family [17], [18], [20], [24]–[31]. Considering the features of massive
MIMO systems, there is also great potential to apply ML techniques with massive MIMO
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systems to solve localization tasks. Early research [17], [18], [24] used convolutional neural
networks (CNN) for localization. The work in [30] proposed an algorithm that trains an
autoencoder to first calibrate the antenna array. Then, the angle spectrum is computed as
a training feature. The work in [22] applied Gaussian regression to perform localization
with distributed massive MIMO systems.

However, there are still some research gaps that need to be further addressed: i) Most of
the existing ML-based localization algorithms directly output the position of the UE without
considering the uncertainty of the estimation, thus lacking effective information fusion from
different channel fingerprints. ii) The size of the neural networks increases significantly
with the increasing number of antennas. This may hinder the training and fine-tuning of
the network. Therefore, it is essential to develop efficient localization algorithms that are
suitable for the massive MIMO system. iii) A theoretical analysis of the necessary training
density is missing in the literature. It is important to investigate the density of the training
sample under different channel conditions, as training data collection is a time-consuming
task. To address those limitations, our main contributions are as follows.1

• We apply a localization framework that blends channel fingerprints that contain in-
formation from the delay and angular domains, respectively. It is not necessary to
calibrate the whole BS array to obtain those channel fingerprints.

• By dividing the whole array into subarrays, the network size can be reduced, which
facilitates the training process while improving the localization performance.

• We apply the Nyquist sampling theorem to analyze how to appropriately collect and
average training data.

• Finally, an indoor measurement campaign with a massive MIMO testbed was con-
ducted to evaluate our approach. The results show that our pipeline can reach centimeter-
level positioning accuracy with only 20 MHz bandwidth for this measurement cam-
paign.

The remainder of this paper is organized as follows. In Section II, we introduce the
signal model and briefly discuss the selected fingerprints. In Section III, we present the
localization algorithms. Section IV illustrates the measurement campaign, and Section V
presents the results. Finally, conclusive remarks are included in Section VI.

II. SYSTEM MODEL AND FINGERPRINT GENERATION

We consider the uplink of a single user massive MIMO system, which uses orthogonal
frequency division multiplexing (OFDM) with F subcarriers. The UE has one antenna,
while the BS is equipped with M antennas. Each antenna element is connected to an
RF and a digital processing chain, which allows the BS to simultaneously process the
received signals from all antennas. We assume that the UE moves at walking speed, and

1A preliminary version of this work [33] has been presented at the 2023 IEEE International Conference on Communication.
Unlike [33], this paper presents new material on the subarray method and a detailed analysis of the necessary training density. In
addition, the pipeline in this paper is used to estimate both the UE position and error variances.
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the 2-D position of this UE is given by pi(x0, y0) ∈ R2, shortened to pi in the following
sections. Taking into account the propagation channel, the transfer function matrix Ypi =

[ypi,1, ...,ypi,F ] ∈ CM×F for all subcarriers, corresponding to the position of the UE pi, can
be written as

Ypi = Hpi ⊙ Γ+N, (1)

where Hpi ∈ CM×F represents the uplink wireless propagation channel, Γ ∈ CM×F the
complex coefficients (amplitude scaling and phase drift) of all the M RF chains and F

sub-carriers. Additionally, ⊙ is the Hadamard product, and N ∈ CM×F denotes receiver
noise at all M RF chains. When UE moves, a total of T snapshots are recorded and T
different receive matrices Ypi are collected. Our aim is to find a functional relationship
between Ypi and pi, which falls into the category of a regression (estimation) task.

ML-based localization algorithms have the potential to achieve good performance if
adequate channel fingerprints are selected as the input to the algorithms. Such fingerprints
can be extracted from the raw received transfer function Ypi . In this paper, we analyze
two fingerprints, namely the spatial covariance matrix and the truncated channel impulse
response (CIR), since they can be achieved with even an uncalibrated array.

A. Spatial Covariance matrix

It is sometimes challenging to extract calibrated fingerprints such as AoA due to the
presence of the RF chain matrix Γ, see (1). Therefore, we consider using the covariance
matrix Ci = E{ypiyH

pi} ∈ CM×M as a fingerprint. The main diagonal elements of Ci

(auto-correlation) indicate the received signal power for each antenna, whereas the off-
diagonal elements of Ci represent the cross-correlation between different antennas. Note
that typically one can only estimate the covariance matrix in practice with a limited number
of samples to conduct the expectation operation. Suppose that for each position pi, there
exist in total Npi positions in the neighborhood region of pi, whose channel responses are
accessible. Those Npi samples are inside a circular area, with pi as the center and d as the
diameter, i.e., ||pj −pi||2 ≤ d

2 , j = 1, 2, ...,Npi . We then define the sample covariance matrix
C̃i,Npi

∈ CM×M to estimate Ci. Specifically,

C̃i,Npi
=

1

Npi

Npi∑

j=1

YpjY
H
pj . (2)

As shown in (2), C̃i,Npi
depends on Npi and thus d. A special case is that if d = 0

and Npi = 1, Ci is estimated by only correlating across all subcarriers of Ypi at a fixed
position pi. We name this specific matrix the one-sample covariance matrix. Note that
it is challenging to estimate Ci with this matrix for a narrowband system, since channel
responses with respect to different subcarriers are strongly correlated. In contrast, when
d is larger than half a wavelength, a major difference in the propagation channel can be
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observed and C̃i,Npi
can therefore better approach Ci. If d is large enough, the fingerprint

C̃i,Npi
changes much more slowly than the one-sample covariance matrix with the movement

of the UE, since the influence of small-scale fading is reduced due to the average operation.
Due to this, fewer training samples are needed.

Since the sample covariance matrix C̃i,Npi
is a Hermitian matrix, i.e., C̃i,Npi

= C̃H
i,Npi

,
the upper minor diagonal elements contain the same information as the lower. To decrease
the computation complexity, we introduce another matrix C̆i,Npi

∈ RM×M and a vector
c̃i,Npi

∈ RM2

as

C̆i,Npi
= ltril

{
ℜ
[
C̃i,Npi

]}
+sltril

{
ℑ
[
C̃i,Npi

]}

c̃i,Npi
= vec

{
C̆i,Npi

}
,

(3)

where ℜ{.} and ℑ{.} denote the operation to take the real and imaginary parts of a given
matrix, respectively. ltril{.} represents a matrix operation that replaces all values above
the diagonal as zero while maintaining the other matrix elements. The operation sltril{.}
keeps all elements below the diagonal and substitutes all the remaining matrix elements
(including the diagonal elements) for zero. The vec{.} operator denotes the operation of
converting a matrix to a vector.

B. Truncated channel impulse response

The fingerprint Ci does not contain channel information from the delay domain; however,
it is still important to utilize the delay information to further improve the accuracy of
localization. To this end, the truncated CIR matrix Ξ ∈ CM×L is generated by calculating
the inverse discrete Fourier transform (IDFT) along each row of Ypi , followed by choosing
the first L delay elements. We introduce a vector ξ ∈ R2ML, which includes all elements
of Ξ. Specifically, ξ = [vec{ℜ(Ξ)}T , vec{ℑ(Ξ)}T ]T .

III. ML-BASED LOCALIZATION APPROACH

A. Neural Network Basics

Neural networks have been widely used to solve various tasks such as channel estimation,
wireless sensing, etc., owing to their excellent abilities to learn non-linear complex models
[34]. These models can generally be represented as a multivariate function f : RV1 → RV2 ,
where V1 and V2 represent the dimensions of the learning characteristics and the goals,
respectively. An example of a typical fully connected neural network (FCNN) is illustrated
in Fig. 1, consisting of an input layer, several hidden layers, and an output layer. Regarding
the input and output layers, the number of their nodes is identical to V1 and V2, respectively.
Specific to this 2-D localization task, we view the output of the neural network as a
Gaussian distribution function, which can be determined by the estimated position of the
UE (p̂ = [p̂x, p̂y]

T ∈ R2) and the variance (σ̂2 = [σ̂2x, σ̂
2
y ]
T ∈ R2).
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Fig. 1: A typical structure of an FCNN.

Two processes are usually involved when training a neural network, namely the forward
and backward propagation processes. In the forward propagation process, the input signals
enter the neural network through the input layer. Then it propagates through multiple
hidden layers and ultimately reaches the output layer. At each layer, the output of a node
is determined by the inputs from the previous layers, the respective weights and biases, and
a non-linear activation function that is specific to that node. For example, we suppose that
an FCNN has γi nodes in the i-th layer, the values of which are collected by a signal vector
xi = [xi1, ..., x

i
γi ] ∈ Rγi . The value of the k-th node is calculated by applying a weight vector

w = [wi−1
1 , ..., wi−1

γi−1] ∈ Rγi−1 to the signal vector xi−1 in the previous layer. Specifically, xik
is computed as

xik = gi

(
γi−1∑

j=1

xi−1
j wi−1

j

)
+ bi, (4)

where bi represents an optional bias term and gi(.) the activation function. The same
propagation pattern is followed for each layer, generating an output vector ν = [p̂, σ̂2].

To train the network, it is important to select an appropriate training criterion, or the so-
called loss function. A popular criterion is the mean-square error (MSE), which measures
the differences between estimated localization coordinates and the ground truth labels.
However, the uncertainty of the predictions is not evaluated by MSE and therefore we
consider the negative log-likelihood (NLL) loss function instead [35]. Suppose that the
entire training dataset contains in total Ntr training samples. For the i-th sample, the network
outputs estimate the UE coordinate p̂i = [p̂xi , p̂yi ]

T ∈ R2 and the variance vector σ̂2
i =

[σ̂2xi
, σ̂2yi ]

T ∈ R2, while the ground truth is pi = [pxi , pyi ]
T ∈ R2. Taking into account all Ntr

training samples, the loss function ψ is

ψ =
1

2Ntr

∑

i

( log σ̂2xi
σ̂2yi

2
+

(pxi − p̂xi)
2

2σ̂2xi

+
(pyi − p̂yi)

2

2σ̂2yi

)
. (5)
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Observe that ψ can be negative owing to the log term. After selecting the training criterion,
all hyperparameters, namely all weights and bias terms in (4) in each layer, need to be
fine-tuned to minimize ψ. This optimization procedure can be carried out by backward
propagation, which propagates the error signal back to each neural network layer to update
the weights. Due to page limitations, we avoid presenting the mathematical derivations;
however, the relevant material can be found in [34].

As an evaluation procedure, we collect the test datasets and select the NLL loss as the
evaluation criterion [35]. As indicated in (5), an under-confident variance estimate results
in the increase of the first term, while an over-confident variance results in the increase of
the second and third terms.

B. ML-based Localization Pipeline

We apply the idea of ensemble learning to the localization task. As a popular ML
approach, ensemble learning targets performance improvements by training multiple base
learners and then fusing their outputs [36]. Each learner itself should individually deliver
decent results, and it is also important to embed enough diversity when selecting those
base learners. Based on this insight, we apply the processing pipeline illustrated in Fig. 2.
We select χ fingerprints and feed each fingerprint to an individual processing chain. Those
fingerprints can be either the entire covariance matrix or sub-matrices (see the subarray
method in the following section) or the truncated CIR. Each processing chain estimates 2-D
UE coordinates as well as the variances. Suppose that the j-th processing chain estimates the
position of the UE and the variance as p̂i,j = [p̂xi,j , p̂yi,j ] ∈ R2 and σ̂2

i,j = [σ̂2xi,j
, σ̂2yi,j ] ∈ R2.

By fusing all χ processing chains according to the maximum ratio combining (MRC)
approach [37], p̂i and σ̂2

i are calculated as:

σ̂2xi
=

1∑
j 1/σ̂

2
xi,j

, σ̂2yi =
1∑

j 1/σ̂
2
yi,j

(6)

p̂xi = σ̂2xi
(
∑

j

1

σ̂2xi,j

p̂xi,j), p̂yi = σ̂2yi(
∑

j

1

σ̂2yi,j
p̂yi,j). (7)

However, the estimated variance by (6) may be overconfident, especially when the network
is overfitted. According to (6), σ̂2xi

and σ̂2yi are less than each individual σ̂2xi,j
and σ̂2yi,j ,

respectively. This may increase the NLL, since σ̂2xi
and σ̂2yi act as the denominators of the

second and third terms, respectively. To address this issue, we multiply a factor χ with σ̂2
i

to get the modified vector σ̂2
i,mod ∈ R2, which is the harmonic averages of all estimated

variances. Specifically,
σ̂2
i,mod = χσ̂2

i . (8)
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Fig. 2: The positioning neural network structure

C. Training on the subarrays

The size of the neural network increases significantly with the number of antennas,
which leads to a risk of over-fitting problems. To address this problem, subarray methods
can be considered. In this paper, we use the covariance matrix as an example, however, this
method can be generalized to other fingerprints. We assume that an M1 ×M2 rectangular
antenna array is equipped at the BS side. The spatial correlation between channel responses
of two antennas is reduced to a large extent if they are separated larger than the coherence
distance. Enlightened by this fact, we divide the whole antenna into I subarrays and train I
neural networks instead of feeding the whole covariance matrix into the processing chain.
The subarrays are selected as follows.

We define a rectangular sliding kernel with a size of N1 rows and N2 columns, which
captures in total N1N2 antennas. We first place the kernel in the upper left corner of the
whole array, to select antennas that belong to the first N1 rows and N2 columns. The
sliding kernel then moves S2 columns to the right and assigns its antennas to a new group.
When the sliding kernel reaches the last column, it moves S1 rows downward, followed
by moving S2 columns to the left until the kernel hits the first column. This procedure is
repeated until the entire array is scanned by the kernel and I = (⌊M1−N1

S1 ⌋+1)(⌊M2−N2
S2 ⌋+1)

training groups are formulated, where ⌊.⌋ denotes the floor function. We then formulate I
sample covariance matrices that correspond to the UE position pi, which are denoted as
Ĉ1

i,Npi
, ..., ĈI

i,Npi
∈ CN1N2×N1N2 . These covariance matrices are fed into the pipeline shown

in Fig. 3, to obtain the estimated UE positions and variances.

D. Training density

A fundamental question of ML-based localization is to determine the number of neces-
sary training samples. According to the Nyquist sampling theorem, insufficient numbers of
training samples result in aliasing, which has a detrimental effect on system performance. To
figure out the necessary training density, we apply this theorem to investigate maximum
separation distances between two adjacent training samples during the training process.
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Fig. 3: The subarray method.

Some degree of aliasing is allowed since our task is to estimate the UE localization, rather
than perfectly reconstructing the propagation channels. For convenience, we confine the
scope of our approach to uniform sampling.

We consider the vector c̃i,Npi
generated by (3), which varies when UE moves to Q

different positions. To simplify this analysis, the UE position labels are assumed to be
evenly distributed along a straight line, and the geographical distances between these Q

positions are δd. We define a matrix Č = [c̃1,Npi
, ..., c̃Q,Npi

] ∈ RM2×Q to collect all those
Q channel response vectors. By performing the 1-D discrete Fourier transform of Č along
the horizontal axis, we can formulate a matrix Ψ ∈ CM2×Q that characterizes the channel
variations along those Q positions. Specifically,

Ψ = ČΛ, (9)

where Λ ∈ CQ×Q is the DFT matrix. We then define a spectrum window L, which covers
consecutive L columns w.r.t. the lower frequency components of Ψ. Once L is selected,
the corresponding sampling distance ∆d between two adjacent samples can be calculated
as

∆d = Qδd/L. (10)
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(a) BS LuMaMi (b) Measurement Scenario (c) UE on the robot

Fig. 4: The indoor measurement campaign

We then form those L columns into a new matrix ΨL ∈ CM2×L and define η as the ratio
between the Frobenius norm of ΨL and Ψ, that is η =

||ΨL||2F
||Ψ||2F

. Here, η shows the extent
of aliasing of different sampling intervals. In the following sections, we will analyze the
influence of η on localization accuracy and discuss the choice of ∆d.

IV. MASSIVE MIMO MEASUREMENT CAMPAIGN

To validate our approach, an indoor measurement campaign was carried out in the Lund
University Humanities Lab motion capture studio. Photos of the mocap studio are shown
in Fig. 4. We give a brief introduction to the measurement campaign, while more details
can be found in [38].

Fig. 5: Measurement arrangement in the mocap studio, the red dotted arrow shows the trajectory
of the antenna.
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A. Introduction to the measurement campaign

In this measurement, we use a robot to carry the UE with a single dipole antenna that is
placed at a height of 1.73 m. The parameter settings of our measurement system are similar
to those of the LTE system. Specifically, our system occupies 20 MHz bandwidth which
consists of 100 physical resource blocks (PRBs), and each PRB has 12 subcarriers. The
subcarrier resource is allocated to multiple users in such a way that each UE occupies every
12 subcarrier and in total 100 subcarriers. Specific to this measurement, the UE transmits
uplink pilots on the 1st, 13th, 25th, ..., 1188th subcarriers to estimate the uplink channel and
the estimated channel responses are recorded every 10 ms. Those pilots are received by the
Lund University massive MIMO testbed (LuMaMi) [39], with 100 active patch antennas
operating at a center frequency of 3.7 GHz (wavelength λ ≈ 0.081 m). The antennas are
separated by a distance of around 4 cm (half wavelength at 3.7 GHz) in both the vertical and
horizontal directions. Since our objective is to exploit more information from the azimuth
compared to the elevation domain, a wide 4× 25 antenna configuration is selected.

We analyzed 75 pre-defined robot trajectories, where the robot was the only moving
object and all other objects were static. Ti channel snapshots have been recorded on the
i-th trajectory, and each snapshot was represented by a matrix with dimension M × F

(M = F = 100). A complex tensor Ai ∈ CTi×M×F was then formulated to collect all
snapshots. While the robot was moving, the position of the antenna was continuously
recorded every 10 ms by the Mocap system. The measurements began with locating the
robot at the edge of the predefined 4.2 × 2.5m2 measurement area. The robot moved at a
speed 0.1 m/s straight along the x direction; see Fig. 5. Between different measurements,
the robot was moved approximately 5 cm along the y direction while maintaining its
orientation. This procedure was repeated 75 times to densely scan the entire measurement
area with approximately a resolution of 5 cm in the y direction and 1 mm in the x direction.
When scanning the whole measurement area, we collect T =

∑
i Ti = 302500 channel

snapshots. We define a tensor A′ ∈ CT ×M×N that combines all Ai. A′ is then normalized
by multiplying itself with a scalar so that the Euclidean norm of A′ is equal to TMN .
All T collected samples are divided into two datasets, namely the training dataset with X
samples and the testing dataset with T −X samples. Training samples are evenly distributed
with a distance along the x-axis as ∆d. If channel samples are not selected for training
purposes, they are used as testing data unless otherwise noted.

B. Measured propagation channel characteristics

One UE position is selected (position A, see Fig. 5) to illustrate the measured indoor
channel properties. We present the power delay profile and the power of the transfer
functions for all 100 antennas in Fig. 6. The power delay profile shows a typical indoor
short-range channel characteristic: the first few delay bins contain the majority of the power
in the delay domain. Such characteristics are also revealed in the transfer functions in Fig.
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Fig. 6: Power delay profile and power of the transfer function at position A.

6, showing significant variations in channel responses among different antennas, and the
frequency correlation is rather high. In contrast, the channel responses vary much smoother
between different sub-carriers for every single antenna.

We evaluate the spatial correlation of the channel at different UE positions by computing
the correlation coefficient ρ(∆d) as

ρ(∆d) =
1

P ′
∑

px

{
ỹH
px
ỹpx+∆d√

||ỹpx||2||ỹpx+∆d
||2

}
, (11)

where ỹpx ∈ CMN is achieved by reorganizing the received channel matrix Ypi as a vector.
P ′ denotes the total number of UE positions, while ∆d denotes the distances between two
adjacent UE positions. To visualize the spatial correlation, the absolute value of ρ(∆d)

with respect to the first UE trajectory is plotted according to (11) in Fig. 7. The separation
distance ∆d ranges from 0 to 2λ. As shown, a strong spatial correlation can be expected
when ∆d ≤ 1

8λ, however, it decreases significantly for larger separations.
For all measurement data, the signal frequency point SNR ranges from 1dB-11dB, which

depends on the distance between UE and BS and the constructive or destructive influence
of small-scale fading.
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Fig. 7: Empirical spatial correlation function w.r.t one UE moving trajectory.

V. RESULTS AND DISCUSSION

In this section, we evaluate our localization pipeline using the measurement data set. We
first investigate various channel fingerprints and then demonstrate the localization accuracy
gain achieved by the subarray method. Spatial spectra of estimated covariance matrices are
generated, in order to further evaluate the impact of training density on the localization
accuracy leveraging the Nyquist sampling theorem. Finally, we compare our approach with
a classic K-nearest neighbors (KNN) based and a CNN-based algorithm [40].

A. Investigation on channel fingerprints

We first investigate two commonly used channel fingerprints, namely, the truncated CIR
and the one-sample covariance matrix, which respectively capture the delay and spatial
domain CSI. It is a straightforward process to generate these fingerprints. Their localization
performances are compared to the case when only using the channel transfer function. To
this end, we train 3 neural networks: network 1 trains on the raw received transfer function
Ypi itself; network 2 the one-sample covariance matrix of the whole array with M = 100

antennas; network 3 trains on the truncated CIR in the first Lw = 10 delay bins, which
considers the limited system bandwidth (20 MHz) and the typical indoor measurement
scenario with a strong line of sight (LoS) component; The frameworks of the three FCNNs
are programmed based on Fig.1, which are illustrated in Table I. Since it is important to
avoid the problem of vanishing gradient [41], we apply a leaky rectified linear unit (LReLU)
as the nonlinear activation function at the input layer and all hidden layers as well. At the
output layer, softmax is applied as the activation function to estimate the variances of the
position, while LReLU is applied to estimate UE positions. We initially set the learning
rates for the first FCNN as 10−5 while the second and third as 10−4 and all the learning
rates are reduced 20% every 10 epochs. Compared to our previous work [33], we reduced
the time complexity of Network 2 from O(M4) to O(M3).
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TABLE I: Parameter settings of the neural network

Network 1 Network 2 Network 3
Input Features Transfer function Cov-matrix Trunc. CIR
Input layer 2MN ×MN M2 × 20M 2ML×ML
Hidden layer 1 MN ×MN/2 20M × 20M ML×ML
Hidden layer 2 MN/2×MN/4 20M × 20M ML×ML
Hidden layer 3 MN/4×MN/4 20M × 20M ML× 512
Hidden layer 4 MN/4× 1024 20M × 1024 512× 512
Hidden layer 5 1024× 512 1024× 512 512× 256
Hidden layer 6 512× 128 512× 128 256× 128
Hidden layer 7 128× 32 128× 32 128× 32
Hidden layer 8 32× 4 32× 4 32× 4
Output Layer 4× 4 4× 4 4× 4
Batch Size 64 64 64
Epoch 200 200 200
Complexity O(M2N2) O(M3) O(M2L2)

TABLE II: The NLL loss evaluated on the testing dataset

NLL (18λ) NLL (34λ)
Network 1 -1.95 -0.13
Network 2 -2.13 -0.43
Network 3 3.09 12.26

Fuse networks 2 and 3, using (6) 3.23 12.66
Fuse networks 2 and 3, using (8) -0.07 4.95

Fig. 8 shows the localization accuracy of applying three networks individually, as well
as the accuracy when fusing networks 2 and 3 according to (7). In Fig. 8 (a), ∆d equals
to 1

8λ along all 75 robot trajectories, compared to Fig. 8 (b) where ∆d = 3
4λ. As presented

in Fig. 8, training in truncated CIR outperforms the raw transfer function, although they
embed the same CSI. We postulate that when training on truncated CIR, the reduction
in network size facilitates the training process. The signal-to-noise ratio (SNR) is also
enhanced if the tail part of the CIRs is truncated since this part includes only noise instead
of useful CSI. Localization accuracy when training on the one-sample covariance matrix
significantly outperforms the raw transfer function and the CIR, although the delay domain
information is not embedded in this fingerprint. There are two potential explanations:
i) It is challenging to resolve multipath components due to limited bandwidth and the
propagation channel has a strong LoS property. ii) Owing to the pre-processing, the angular
information can be better exploited by the neural network. The fusion algorithm results
in a slight improvement in localization accuracy in comparison to using the pure one-
sampled covariance matrix, since the system bandwidth is limited to 20 MHz and it is
challenging to provide a good delay resolution. However, the CSI in the delay domain is
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Fig. 8: Positioning error cumulative density function with respect to different training densities:
(a) ∆d = 1

8λ, (b) ∆d = 3
4λ.

still beneficial for localization tasks even with limited bandwidth. Thus, we believe that
the delay domain information can contribute more, under scenarios with rich multipath or
for a system occupying wider bandwidth. Compared to Fig. 8 (a), the localization accuracy
shown in Fig. 8 (b) significantly decreases. We postulate that when ∆d = 3

4λ, the training
density is not sufficient to represent the instantaneous channel properties.

We then calculate the NLL loss of all the aforementioned localization algorithms in the
training and test dataset, and the results of the test data set are illustrated in Table II. As
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TABLE III: Antenna indexes in 5 groups

subarray group number Antenna index
I 1-8, 26-33, 51-58, 76-83
II 5-12, 30-37, 55-62, 80-87
III 11-18, 36-43,61-68, 86-93
IV 15-22, 40-47,65-72, 90-97
V 18-25, 43-50, 68-75, 93-100

TABLE IV: Network Structure for each subarray

Layer Number FCNN size Layer Number FCNN size
Input Layer 1 1024× 1024 Hidden Layer 5 1024× 512

Hidden Layer 2 1024× 1024, Hidden Layer 6 512× 128
Hidden Layer 3 1024× 1024, Hidden Layer 7 128× 32
Hidden Layer 4 1024× 1024, Output Layer 8 32× 4

mentioned in Section III, this loss function considers the localization accuracy and the
estimated variance jointly. The NLL loss of Network 3 is higher than that of the other two
networks, even though it delivers better localization accuracy. We observe that the standard
deviation predicted by network 3 is much smaller than the position error, which results
in a significant increase of the second and third terms of (5). Based on this observation,
network 3 is overconfident. This problem is even more severe if we fuse the outputs of
Network 2 and Network 3 according to (6), because (6) produces a fused variance that is
smaller than that of all individuals. In contrast, this problem can be alleviated by calculating
the harmonic averages of the estimated variances of Network 2 and Network 3 according
to (8). In the following section, we apply the subarray method to further address this
overconfidence problem and focus merely on spatial channel fingerprints, considering the
limited system bandwidth.

B. Enhancement by subarray method

We apply the subarray method in order to address the overconfidence problem and further
enhance localization performance. Specific to this measurement setup, we consider the
trade-off between complexity and localization accuracy and formulate in total 5 subarrays,
and each subarray has 32 antennas (N1 = 4 and N2 = 8). We present the antenna indexes for
each subarray in Table III. The antenna indexes are grouped in such a way that the physical
distances between each antenna are close to each other; therefore, the signals captured by
those antennas are strongly correlated. Note that a few antennas belong to multiple groups,
and thus the spatial correlation information among antennas from different subarray groups
is included as well. These subarrays are fed into 5 subnetworks that have identical network
structures, which are presented in Table IV. Compared to Network 2, the size of each
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Fig. 9: Positioning errors of using subarrays and the whole-array w.r.t. different training
densities: (a) ∆d = 1

8λ, (b) ∆d = 3
4λ.

subnetwork is significantly reduced, which facilitates the training process since it is easier
to avoid overfitting. For all those 5 networks, the activation functions and total training
epochs are the same as in Network 2. The initial learning rates for all 5 networks are set
at 2× 10−4 and reduced 20 % every 10 epoch.

Fig. 9 compares the localization performances of the subarray method with the whole
array method. The localization accuracy and the NLL loss, when ∆d is 1

8λ and 3
4λ, are

shown in Fig. 9 (a) and (b), respectively. Fig. 9 shows that the localization errors of all 5
groups are close to each other, which is comparable to using the one-sample covariance
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matrix of the entire array. The NLL loss w.r.t. the subarray is much lower than the whole
array. This indicates that the subarray method better estimates the uncertainty. Localization
performance, in terms of both accuracy and NLL loss, can be further improved by applying
the MRC method to fuse the outputs of all 5 subarrays. This result illustrates the importance
of selecting a proper training input, since the performance gain can be clearly seen, even
if the covariance matrices of the entire array contain the same necessary information as
all subarrays altogether. However, we still observe that if the training density is decreased,
the localization accuracy will be degraded. Therefore, we address this problem in the
following sections by first investigating the influence of training density on localization
performance. At the next step, more accurate estimated covariance matrices are calculated
by averaging more samples at different positions, and those matrices are applied as the
training fingerprints.

C. Training density analysis using Nyquist Theorem

We apply the Nyquist Theorem to the measurement dataset to analyze the influence of
training densities. This paper focuses on the covariance matrix as an example, but our
method can be generally applied to other channel fingerprints. The spatial spectra of the
covariance matrices with respect to different average distances (d = 0, λ2 , 2λ) for all 75

measurements are computed, according to (2)-(3) and (9). The spatial spectra of the i-
th measurement w.r.t. three distances are denoted as Ψi,d=0,Ψi,d=λ

2
,Ψi,d=2λ ∈ CM2×Ti . To

visualize the spectra, we then select i = 75 and plot those three spatial spectra in Fig. 10. As
shown, when d increases, most of the spectral energy is concentrated in the low-frequency
region, indicating that the channel changes more slowly when the UE moves to different
positions. This phenomenon can be explained from a channel propagation perspective:
small-scale fading is smoothed out by the averaging operation so that the swift change
of channel responses cannot be observed. This allows us to further reduce the necessary
training samples.

We further investigate the relationship between the ∆d along the x-axis (see Fig. 5)
and the level of aliasing noise introduced to the system. Once ∆d increases, the captured
spectrum window Li =

Ti

∆d
δd in the i-th measurement decreases, see (10), and more aliasing

noise will be introduced. To simplify the evaluation of the effect of aliasing noise, ∆d is
selected to be the same for all 75 measurement trajectories during the training phase.
Based on this, we define a parameter η′ =

∑
i ||Ψ

Li
i,d||∑

i ||Ψi,d|| , to characterize the extent of frequency
aliasing. If η′ is closer to 1, the aliasing noise is weak. We plot η′ with regard to three
covariance matrices in Fig. 11. If d = 0 and ∆d exceeds the Nyquist distance ∆nqt =

1
4λ, η′

drops apparently, and the influence of aliasing noise is not trivial. Compared to d = 1
2λ, η′

drops more smoothly after ∆nqt = 0.5λ. If d = 2λ, ∆nqt increases to λ. Even if ∆d exceeds
the Nyquist distance, η′ drops very slowly, compared to d = 1

2λ. This indicates that the
influence of small-scale fading is rather weak.
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Fig. 10: Spatial spectra of covariance matrices w.r.t. different average distances: (a) d = 0
(one-sample covariance matrix), (b) d = λ/2 (c) d = 2λ.

D. Comparison between different covariance matrices

Fig. 12 illustrates the localization performances of three aforementioned covariance
matrices with different training densities. To fairly compare performance, subarray methods
are applied and antennas are grouped in the same way as in Table III. All three networks
are programmed according to Table. IV. It can be observed from Fig. 12 that when ∆d

further exceeds ∆nqt, positioning accuracy decreases more because the negative effect of the
aliasing noise cannot be ignored. The Nyquist distance ∆nqt can be extended by increasing
the average distance d to cover more samples when formulating the covariance matrix. By
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Fig. 11: η′ with respect to sampling distance ∆d.

comparing Fig. 12 (a), (b), and (c), we see that when d increases, both the localization
accuracy and the NLL improve, especially under low training density. We postulate that
three important factors contribute to this improvement: (1) by averaging more samples, the
noise energy is reduced and the SNR is increased; (2) the system bandwidth is limited to
20 MHz, while the coherence bandwidth for the channel is around 10 MHz. Under this
condition, Ci = E{ypiyH

pi} cannot be represented by the one-sample covariance matrix since
many subcarriers are still strongly correlated. However, if we consider different positions
far enough from each other but within the wide-sense stationary region, their corresponding
channel responses are weakly correlated. The estimated covariance matrix C̃i,Npi

approaches
better Ci. (3) When d is large, C̃i,Npi

changes much more smoothly with different positions
due to the absence of small-scale fading and η′ drops much more slowly. This guarantees
that with the same training density, less aliasing noise is introduced to the system.

E. Comparison with other approaches

We now compare our pipeline with other two representative approaches, namely, the
traditional KNN localization (naive fingerprinting) approach and the deep-learning-based
approach using CNNs [40].

1) KNN approach: This approach first establishes a database that stores all training
fingerprints. When receiving a new localization requirement, the BS finds the first K closest
fingerprints from the database. In this paper, the estimated covariance matrix is selected
as the fingerprint. We denote ĈTr,i as the i-th training fingerprint stored in the database
and ĈTe as the fingerprint with respect to a testing sample. We then define a scalar li =
||ĈTr,i − ĈTe||2F . After calculating all Ntr distances li, we select the first k = 4 lowest li
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Fig. 12: Comparison between positioning error of the pipeline and kNN method when using
covariance matrices w.r.t. different average distances as training fingerprints. (a) d = 0, one-
sample covariance matrix, (b) d = λ/2 (c) d = 2λ.
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and denote their coordinates as p̃i. Applying the weighted KNN algorithm [42], the final
estimated position p̆ ∈ R2 is calculated as

p̆ =

4∑

i=1

wi p̃i, (12)

where the weight wi is defined as wi =
1/li∑
j 1/lj

.
Fig. 12 displays the localization accuracy of the KNN method with respect to different

∆d. For a fair comparison, the same training data are used here as our pipeline. As a
concern of the complexity issue, we randomly select 20000 testing channel samples rather
than using all available ones. We observe that the KNN methods perform better than the
pipeline if the channel is densely sampled. However, when the training density is reduced,
the neural network method approaches and outperforms the KNN. This can be explained
as follows: when the channel is heavily oversampled, it is possible to find a few pre-stored
channel fingerprints in the database, which are very similar to the test channel fingerprint.
The localization accuracy is already good by directly reading the coordinates of the closest
fingerprints in the database, let alone the further improvement by the interpolation operation
shown in (12). In comparison, the neural network mechanism estimates the UE position
based on interpolating on the whole training datasets rather than the few closest fingerprints,
which results in suboptimal localization accuracy. However, when the training density is
reduced, it cannot be guaranteed that the the channel fingerprints in the database are close
to the test channel fingerprint. Therefore, it only performs well if there exists such a
fingerprint. In contrast, the neural network is likely more suitable for the localization task
thanks to its nonlinear interpolation ability. Bear in mind that KNN methods generally
require computing the Euclidean distance between the testing fingerprint and Nr prestored
training fingerprints in total. This leads to a high complexity in time, which is o(M2Nr)

according to (12). In comparison, our pipeline has a better time complexity, that is o(M3),
since the antenna number M is much smaller than Nr for most commercial devices. Even
when M becomes larger, one can use the subarray method to reduce the number of antennas
in each group and to reduce running time in practice. On the other hand, if one wants to
achieve a better localization result using the KNN method, it is necessary to pre-store
sheer numbers of measurement samples in the database. However, it is a resource-intensive
endeavor to construct such very densely sampled indoor measurement datasets both in
terms of finance and time manners, if the distance between adjacent samples is smaller
than the Nyquist distance (only a few centimeters at sub-6 GHz frequency). For most of
the applications, one would spend less resources to collect data, and thus lower densities
are expected. Therefore, the usage of the KNN method for a real-time operation scenario is
rather limited. From this perspective, the processing pipeline still has its advantages even
under the condition of a high training density.
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Fig. 13: Positioning errors of our pipeline and localization approach in [40] under LoS scenario.

2) CNN based approach: We then compare our localization approach with [40] that
trained a deep residual CNN to perform the indoor localization tasks, where the open-
source code is available. The author in [40] first formulated a tensor Ypi ∈ RM×F×2 by
collecting the real and imaginary part of the raw received complex transfer function Ypi .
Then Ypi was converted to the polar domain by calculating the amplitudes and phases of
each entry of the received transfer function matrix. This formulated a tensor Ỹpi ∈ RM×F×2.
The inverse Fourier transform was also performed to obtain the CIR matrix Ξ̃ ∈ CM×F

and the corresponding tensor Ŷpi ∈ RM×F×2. In the next step, the author formulated a
tensor I ∈ RM×F×6 by concatenating Ypi , Ỹpi , and Ŷpi and sent this tensor to a residual
CNN. The network structure is programmed according to [40], as well as the open source
code. We modify the size of the input layer, since the antenna number in our case is
100 instead of 64. We plot the localization accuracy of this approach in Fig.13, where
∆d = 1

4λ and the training percentage is around 5%. As illustrated, our pipeline has better
localization accuracy compared to [40] even with the use of a one-sample covariance
matrix for training. Localization accuracy can be slightly improved if we increase the
average distance d to 1

2λ under this training density. We postulate that our pipeline benefits
from the pre-processing step as well as the subarray method. We have also performed a
time complexity analysis of the convolutional neural network, which is o(MF l1 l2CinCout),
where l1 and l2 represent the 2-D size of the convolutional kernel and Cin and Cout the
numbers of input and output channels at each layer. In comparison, the time complexity of
our pipeline is o(M3). Consider that M2 ≤ F l1 l2CinCout for most commercial systems, we
also have advantages in terms of time complexity. Furthermore, our system has the ability
to predict uncertainty, which is an additional advantage.
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Fig. 14: Positioning errors of our pipeline under different SNR.

F. Investigating different cases

1) The influence of SNR on positioning accuracy: As stated in Section IV, the SNRs
at the subcarriers range between 1 and 11 dB in our measurement scenario. To further test
the performance of our localization pipeline, especially under low SNR, synthetic white
Gaussian noise is added to our measurement data to emulate measurement environments
with mean SNR −5 dB, −10 dB, and −15 dB. Fig. 14 illustrates the localization accuracy
of our algorithm that trains on the covariance matrix (d = 1

2λ) in different SNR scenarios.
The percentage of training is around 2.5% and ∆d = 1

2λ. As illustrated, our algorithm still
delivers good localization performance under the −10 dB SNR scenario. Even when the
SNR drops to −15 dB, the localization accuracy is still acceptable for applications such
as indoor navigation. This is because our processing pipeline can harvest the SNR gain
from correlating over other frequencies and averaging over other one-sample covariance
matrices in the neighborhood region according to (2).

2) Investigating NLoS measurement scenarios: We investigate the localization perfor-
mance of our proposed pipeline in none-line-of-sight (NLoS) measurement scenarios. To
this end, our localization is applied to an open source indoor measurement dataset [43]. We
provide a brief introduction to the NLoS measurement campaign and parameter settings,
while more details can be found in [40]. Fig. 16 illustrates the arrangement of indoor
measurement, where 4 UEs, which occupy different subcarriers, move within the four gray
squares, each with a size 1.2 × 1.2 m. Each UE is equipped with a dipole antenna that is
placed at the height of 0.4 m. The UE trajectories are densely sampled, resulting in up
to 252004 channel samples with geographical distance between each sample 5 mm. The
ground truth positions of UE are recorded by a mechanical device with an error of less
than 1 mm. The base station consists of 64 patch antennas operating at the center frequency
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Fig. 15: Positioning errors of our pipeline and localization approach in [40] under NLoS
scenario.

TABLE V: Antenna indexes in 4 groups

Subarray group number Antenna index
I 1-6, 9-14, 17-22, 25-30, 33-38,41-46
II 2-8, 11-16, 19-24, 27-32, 35-40, 43-48
III 17-22, 25-30, 33-38, 41-46, 49-54, 57-62
IV 19-24, 27-32, 35-40, 43-48, 51-56, 59-64

2.6 GHz, and all antennas formulate a uniform rectangular array with size 0.56 × 0.56 m.
The index of the antenna on the i -th row and the j -th column is 8(i − 1) + j. A metal
blocker with size 1.6× 1.3 m is placed between the base station and the UE, blocking the
LoS component. Each UE sounds the OFDM signal from the uplink as a pilot for channel
estimation, which has 100 subcarriers, occupying in total 20 MHz.

The subarray method is also applied and 4 groups are formulated, each group contains
36 antennas, and the antenna indices are shown in Table. V. The covariance matrices of
each subarray are formulated and sent to four individual FCNNs for training. Each FCNN
has the same structure as Table.IV, except the input layer size is 1296 × 1024. Figure.15
illustrates the localization performances of our pipeline when using the estimated covariance
matrix, compared with the approach illustrated in [40]. Specifically, when we estimate the
covariance matrix, three average distances are investigated, namely, d = 0 (one-sample
covariance matrix), d = 0.5λ, and d = λ. The distances of the training samples are 1

4λ in
both horizontal and vertical directions. As illustrated, the algorithm in [40] achieves better
performance than training on the one-sample covariance matrix in the NLoS scenario.
However, if the average distance d increases over 1

2λ, the localization error decreases, and
they outperform [40]. We postulate that the one-sample covariance matrix is more unstable
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Fig. 16: A demonstration of the indoor NLoS environment.

under the NLoS scenario because the absence of a prominent LoS component amplifies the
effect of small-scale fading. Therefore, in this scenario, it is challenging to collect only one
channel sample to estimate the covariance matrix Ci at the position pi. Compared to other
studies, when the average distance d increases, the effect of small-scale fading becomes
weak and C̃i,Npi

can better approach Ci. This shows that if the covariance matrices are
selected as a training fingerprint in the NLoS scenario, it is more important to cover more
samples in the neighborhood region of pi than in the LoS scenario. On the basis of the
observation above, our pipeline is also suitable for the NLoS scenario and can still achieve
better performances than the literature.

3) Random selection of the training samples: We now investigate the localization per-
formance of our pipeline, when the training data set is constructed by randomly selecting
training samples from the robot trajectory. To enable a fair comparison, the network
structures and all other parameters, such as the training percentages of the two datasets
(evenly and randomly sampled), are the same. Specific to our data set, the percentage of
training is 5% when the distance between two adjacent samples is ∆d = 1

4λ. If ∆d = 1
2λ,

the training percentage drops to 2.5%. Fig. 17 illustrates the localization accuracy of our
pipeline when we train on the one-sample covariance matrix. As shown, the localization
accuracy deteriorates when the training samples are randomly selected. Therefore, the
channel property may not be well captured, which deteriorates the localization performance.
This example illustrates the importance of appropriately selecting training samples when
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Fig. 17: Comparison between different ways of constructing the dataset.

we construct the training datasets.

VI. CONCLUSION AND FUTURE WORK

This paper investigated the potential to apply ML to a massive MIMO system for solving
localization tasks. We analyzed a novel ML-based localization pipeline, which estimated
UE positions and variances by using different channel fingerprints, including covariance
matrices and truncated CIR. For a system with a massive number of antennas, a subarray
method was applied to facilitate the training process. Furthermore, we applied the Nyquist
sampling theorem to investigate the effect of training density. An indoor massive MIMO
measurement campaign was conducted at 3.7 GHz using 20 MHz bandwidth to evaluate our
approaches, where centimeter-level localization accuracy has been achieved. Measurement
results show that: 1) The information from both the delay and angle domains contributes
to the localization performance, although in our case the delay domain CSI contributes less
than the angle domain CSI due to the limited available bandwidth. 2) Compared to training
on the whole antenna array, the subarray method can achieve significant enhancements
in both positioning accuracy and better uncertainty prediction quality. 3) As expected,
the localization accuracy decreases when the sampling interval is larger than the Nyquist
sampling distances. It is worth mentioning that during the measurement campaign, the
channel remained stationary and no individuals were present. In upcoming research, we
will examine how the presence of people and other moving objects, as well as the difference
in the properties of the UE antenna at the training and testing phase, affect the accuracy
of the localization and apply transfer learning to address possible problems. We will also
investigate localization pipelines that jointly process information from multiple snapshots.
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Abstract

The integration of high-precision cellular localization and machine learning (ML)
is considered a cornerstone technique in future cellular navigation systems, offering
unparalleled accuracy and functionality. This study focuses on localization based on
uplink channel measurements in a fifth-generation (5G) new radio (NR) system. An
attention-aided ML-based single-snapshot localization pipeline is presented, which
consists of several cascaded blocks, namely a signal processing block, an attention-
aided block, and an uncertainty estimation block. Specifically, the signal processing
block generates an impulse response beam matrix for all beams. The attention-aided
block trains on the channel impulse responses using an attention-aided network,
which captures the correlation between impulse responses for different beams. The
uncertainty estimation block predicts the probability density function of the user
equipment (UE) position, thereby also indicating the confidence level of the lo-
calization result. Two representative uncertainty estimation techniques, the negative
log-likelihood and the regression-by-classification techniques, are applied and com-
pared. Furthermore, for dynamic measurements with multiple snapshots available, we
combine the proposed pipeline with a Kalman filter to enhance localization accuracy.
To evaluate our approach, we extract channel impulse responses for different beams
from a commercial base station. The outdoor measurement campaign covers Line-
of-Sight (LoS), Non Line-of-Sight (NLoS), and a mix of LoS and NLoS scenarios.
The results show that sub-meter localization accuracy can be achieved.

This work has been funded by Ericsson AB, the Swedish Foundation for Strategic Research, and partly by the
Horizon Europe Framework Programme under the Marie Skłodowska-Curie grant agreement No. 101059091.
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Index Terms

5G New Radio, Sounding Reference Signal, self-attention, uncertainty estima-
tion, radio-based positioning

I. INTRODUCTION

RADIO-based positioning is envisioned to pave the way for numerous sophisticated yet
practical applications, including vehicle navigation, intelligent traffic management,

and autonomous driving [1]–[7]. In contemporary 5th generation mobile network (5G)
systems, there is a pronounced demand for precise localization capabilities. Currently,
most localization-aware applications are facilitated by Global Navigation Satellite Sys-
tems (GNSS). However, the effectiveness of these systems is limited by many factors,
such as shadowing, multipath propagation, and clock drifts between the GNSS transmitter
and receiver [8]. Consequently, there is an increasing need to investigate cellular-based
technologies and seamlessly integrate those techniques into existing localization systems.

Existing cellular-based localization methods can be broadly classified into two categories,
namely conventional signal processing methods [7], [9]–[15], and machine learning (ML)
based methods [16]–[24]. Conventional signal processing methods, such as Time of Arrival
(ToA), Angle of Arrival (AoA), and Time Difference of Arrival (TDoA), require the
estimation of essential channel parameters, such as signal propagation time between user
equipment (UE) and base stations (BS). In the next step, the location of the UE can be esti-
mated using these parameters. Although some of these methods have reached maturity, they
can be constrained by calibration needs and algorithmic complexities [7]. On the other hand,
ML methods present a promising solution but require access to data for training and a radio
environment with enough unique features that can be learned. To implement an ML-based
localization approach, the initial step involves obtaining various channel fingerprints, such
as the raw transfer function [21], [22], received signal strength [16], angle-delay spectrum
[17], [20], [23] and/or covariance matrix [18], [19]. These fingerprints then serve as input
for the ML algorithms. It should be noted that an effective method of combining several
different fingerprints has the potential to significantly increase the localization accuracy,
see [18], [19]. ML-based localization algorithms can also be divided into two categories,
namely classical ML approaches such as K-nearest neighbors (KNN) [19], Gaussian process
regression [16], adaptive boosting [18], and deep learning based approaches, such as fully
connected neural networks (FCNN) [22], [23], convolutional neural network [16], [18],
[24], [25], and attention-aided networks [21]. In particular, the attention-aided approach
holds significant promise, as its embedded attention mechanism enables ML algorithms to
recognize relationships between different input feature vectors, irrespective of their actual
spatial or temporal separation among those vectors. This mechanism is also the core of
widely used transformer techniques, producing fruitful results in various domains such
as language translations, image recognition, and speech recognition [26]. Another crucial
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aspect for localization is uncertainty prediction, which is particularly important in life-
critical tasks such as autonomous driving. This research problem has been initially tackled
by previous works [19], [27], which provide not only the estimated location coordinates
but also the corresponding variances using the negative log-likelihood (NLL) loss function.

However, to the best of our knowledge, there are still notable research gaps. Primarily,
the application of attention-aided localization algorithms in 5G new radio (NR) systems
represents a novel, yet unexplored, area. Secondly, the NLL uncertainty estimation tech-
nique assumes a Gaussian distribution for the estimation error of the UE position. However,
such an assumption often diverges from reality. Consequently, it becomes crucial to ex-
plore further uncertainty estimation methods capable of estimating distributions other than
Gaussian. To address the issues stated above, we propose a novel localization pipeline and
evaluate it using data from a commercial 5G NR BS. Very few studies in the literature
have been conducted on commercial grade 5G NR systems. Our research contributions are
listed as follows:

• We apply attention-aided neural networks as the backbone to perform localization, we
also demonstrate the advantages of this network in terms of localization accuracy.

• We apply a novel regression-by-classification method that can predict the uncertainty
of localization estimates. Compared with the NLL approach, this approach provides
better uncertainty estimation since it is not bounded by the assumption of Gaussianity.

• We further enhance localization accuracy by applying a Kalman filter to exploit tem-
poral correlation between multiple channel snapshots, which smoothes the estimated
trajectory.

• Finally, we verify the novel ML-powered pipeline with real measurement data obtained
using a commercial 5G NR test setup, covering both Line-of-Sight (LoS) and non-Line-
of-Sight (NLoS) scenarios. The results show that our approach achieves submeter-level
localization accuracy.

Our initial outdoor UE localization results have been presented in the conference paper
[28]. Differ from [28], we utilize a higher subchannel resolution of the UL SRS channel
estimates and a high-accuracy GNSS receiver. Furthermore, we apply more advanced ML
approaches such as attention mechanisms and uncertainty estimation algorithms. Compared
with [28], the localization accuracies have significantly improved.

The remainder of this paper is organized as follows. Section II introduces the signal
model and discusses the selected fingerprints. In Section III, we elaborate on the localization
algorithms. Section IV illustrates the measurement campaign and Section V presents the
results. Finally, conclusive remarks are included in Section VI.

II. SYSTEM MODEL AND DATASET GENERATION

We consider a commercial 5G NR system in a single-user massive Multiple-Input Multiple-
Output (MIMO) scenario, where the BS processes uplink (UL) Sounding Reference Signal
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(SRS) data. The system utilizes orthogonal frequency division multiplexing (OFDM) with
F subcarriers, and the SRS data is a time series of UL measurements in the beam domain.
With this approach, we essentially capture the angular delay spectrum of the radio channel,
an approach that has been shown to be advantageous for accurate localization based on ML
[20], [29]. The BS is equipped with MBS antenna ports, half of which is vertically polarized
and the other half horizontally polarized, while the UE is equipped with MUE antenna ports.
We suppose that the number of multipath components is P , and denote τp,t as the time
delay between UE and BS w.r.t. the p-th path at time t, and αp,m,t indicates the complex
coefficient of each multipath component. The BS utilizes all vertical-polarized antennas to
formulate NV beams, the response of the i-th beam w.r.t. the p-th path is βV,i(ϕp, θp, f),
where f denotes frequency, and ϕp and θp represent the azimuth and elevation arrival angles
for the p-th multipath, respectively. Similarly, another NH set of beams uses all horizontal
polarized antennas, and the response of the i-th beam is βH,i(ϕp, θp, f). For the m-th UE
port, the propagation channel model for each beam at time index t can be formulated as

hV,i,m,t(f) =

P∑

p=1

βV,i(ϕp, θp, f)αp,m,t exp{−j2πf τp,t}

hH,i,m,t(f) =

P∑

p=1

βH,i(ϕp, θp, f)αp,m,t exp{−j2πf τp,t}.
(1)

By collecting all hV,i,m,t(f) and hH,i,m,t(f) for the F subcarriers, we can formulate two
beam space matrices of the channel transfer function (CTF), HV,m,t ∈ CNV ×F and HH,m,t ∈
CNH×F at time t, which correspond to the vertical and horizontal polarized antenna groups,
respectively. We further define matrix Ht ∈ CN×F =

[
HT

H,1,t,H
T
V,1,t, ...,H

T
H,MUE,t

,HT
V,MUE,t

]T
that combines channel matrices of all UE antenna ports. Specifically, N =MUE (NH +NV).
This matrix depends strongly on the UE position, therefore they can be selected as raw
channel fingerprints to perform ML-based localization.

III. THE ML-BASED LOCALIZATION APPROACH

In this paper, our study focuses on car navigation applications, where two-dimensional
(2-D) localization is adequate for most scenarios. However, a similar approach can be
extended to three-dimensional (3-D) coordinate-based localization by altering the dimension
of the output layer in our neural network. The ML-based localization pipeline, as described
in Fig. 1, consists of five sequential blocks. First, the raw CTF Ht is fed into a data
cleaning block to evaluate the validity of the input data. After this, valid CTFs are forwarded
to a digital signal processing block to generate an impulse response beam matrix Gt ∈
CN×F . The amplitudes in this matrix then serve as input to a deep neural network, which
incorporates a self-attention mechanism at its core. The network’s final layer outputs an
estimated probability density function (PDF) representing the location, thereby facilitating
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Fig. 1: The ML-based localization pipeline for the 5G NR system.

uncertainty estimation. To further enhance localization accuracy, a filter may be applied
after the final layer of the pipeline, provided that information from multiple snapshots is
available.

A. The attention mechanism

1) Fundamental basics of the attention operation: An example of the attention block is
illustrated in Fig. 2, which takes a matrix X ∈ RA1×A2 as the input, generating the output
matrix Z ∈ RA1×A3 . Initially, X are multiplied by three matrices, namely, the query matrix
Wq ∈ RA2×A3 , the key matrix Wk ∈ RA2×A3 and the value matrix Wv ∈ RA2×A3 . The
multiplication operations yield three matrices Q,K,V ∈ RA1×A3 , specifically,

Q = XWq, K = XWk, V = XWv. (2)
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Fig. 2: An illustration of basic attention mechanism to generate zj and same mechanism can
be applied to generate Z.

In the self-attention mechanism, the query (Q) and key K matrices play a crucial role in
determining the relevance of each row vector in the matrix X to the other row vectors.
The elements of these three matrices act as hyperparameters that can be fine-tuned during
the training process. The second step is to calculate the pairwise correlations between all
columns of matrices Q and K, resulting in a new matrix A ∈ RA3×A3 , specifically,

A =
1√
A2

QTK. (3)

These correlations reflect the similarities between each pair of row vectors in X. We then
apply the softmax operation to normalize A and obtain another matrix Ã ∈ RA3×A3 . Each
element Ãi,j is positive and the sum of all the elements in each column is equal to 1.
Specifically, Ãi,j is calculated as

Ãi,j =
expAi,j∑
k expAi,k

. (4)
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Finally, the output matrix Z is calculated as

Z = VÃ, (5)

where each column of Z represents a weighted sum, and the weights are determined by the
corresponding column in Ã. In addition to the fundamental attention operation, we further
introduce the multi-head attention mechanism that can improve model capabilities. This
mechanism employs a total of P attention heads, each associated with sets of query matrices
(W1

q , ...,W
P
q ), key matrices (W1

k, ...,W
P
k ), and value matrices (W1

v, ...,W
P
v ). The multi-head

attention mechanism operates in P steps. In the initial step, the matrices W1
q ,W

1
k,W

1
v are

applied to the input matrix X following equations (2)-(5), resulting in the output Z1 ∈
RA1×A3 . This process is then repeated P − 1 times, generating additional output matrices
Z2, ...,ZP ∈ RA1×A3 . Finally, we concatenate all output matrices obtained from each step,
formulating a matrix Ztl ∈ RA1×PA3 . The final output matrix Z′ ∈ RA1×A2 can then be
expressed as

Z′ = ZtlWO, (6)

where WO ∈ RPA3×A2 is another hyperparameter matrix.
2) Positioning encoding: It is important to note that the attention mechanism neglects

the inherent sequence order of the input vectors in X. Consequently, when employing
such a mechanism, particularly for tasks dependent on the order of vector arrangement, it
is imperative to apply a positioning encoding technique to incorporate and preserve this
sequential information. The idea of positioning encoding is to add another fixed matrix
Xk ∈ RA1×A2 to X [26], a standardized positioning encoding matrix Xk is

Xk(x, y) = sin
(

x

10000y/A2

)
, for odd y;

Xk(x, y) = cos
(

x

10000(y−1)/A2

)
, for even y.

(7)

The matrix Xk is fixed and will not be fine-tuned during the training process. The advan-
tages of using cosine and sine structures are as follows:

• The values of the sine and cosine functions are bounded between −1 and 1, providing
stable input magnitudes for the model.

• The smooth variation of sine and cosine functions allows the model to capture gradual
changes in positions.

• The use of sine and cosine functions, as given by Eq. (7), ensures that each position
is uniquely encoded.

3) Residual mechanism, Layer normalization and position-wise FCNN : After collecting
the matrix Z′, we add the input matrix X to Z′ to obtain the matrix Z̃ ∈ RA1×A2 . We apply
the residual mechanism since it preserves the original information of the input matrix. The
matrix Z̃ is then fed to a layer normalization block, which first vectorizes Z̃ into a vector
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z̃ ∈ RA1A2 . Subsequently, each element z̃i in z̃ is scaled to derive a new vector ẑ ∈ RA1A2

as in [26], specifically,
ẑi = γ

z̃i − µ

σ
+ β, (8)

where µ and σ2 represent the mean and variance of vector z̃. The parameters γ and β denote
the amplitude scaling and the bias, respectively. By default, γ = 1 and β = 0, although
these parameters can be adjusted as learning hyperparameters. We then reformulate ẑ into
a matrix Ẑ ∈ RA1×A2 . To enhance the capacity to capture nonlinear relationships, we feed
the output matrix Ẑ into a pointwise FCNN to get Ẑ′ ∈ RA1×A2 [26], specifically,

Ẑ′ = W2fRelu(W1 Ẑ+B1) +B2, (9)

where fRelu(.) represents the rectifier activation function, and W1,W2,B1,B2 are hyperpa-
rameter matrices, and the bias matrices B1,B2 are optional. After collecting Ẑ′, we apply
the same residual mechanism and layer normalization to derive Z̆ ∈ RA1×A2 . Finally, Z̆

is vectorized and fed into another FCNN. Such an operation can also help to match the
vector sizes for possible subsequent blocks.

B. Data cleaning and signal processing

The collection of UL SRS channel measurements in a commercial 5G NR BS builds lim-
itations when retrieving data-intense structures such as SRS channel measurement samples.
The vast amounts of SRS data generated at milliseconds level are normally enclosed within
the baseband entity of a BS and primarily intended for internal processing, whereas external
access to these data sets may be compromised by hardware and software restrictions. To
mitigate these challenges, it is essential to equip our pipeline with the ability to discern
the validity of the input data. As retrieving all the necessary data in a complete format has
been challenging, we implemented a threshold that defines a cut-off point for discarding
datasets when insufficient information has been retrieved from the BS and introduced
a data-cleaning block to pre-process the measurement data. Its primary objective is to
determine whether the raw transfer function is valid or invalid. A raw transfer function is
labeled invalid under the following conditions:

• Insufficient CSI in the beam or frequency domain: the number of non-zero elements
in Ht is lower than a given threshold.

• Update failure: the values of all subcarriers or all beams remain the same.
After filtering out all invalid data, the next step is to process the raw CTF to generate
impulse response beam matrices. To suppress the side lobes, we apply Hann windowing
across all rows of the matrix Ht to obtain matrix Ĥt ∈ CN×F . The F -length Hann window
in the frequency domain is given by

w[f ] = sin2
(
πf

F

)
, f = 0, . . . , F − 1. (10)
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After the windowing operation, the impulse response beam matrix Gt is produced by
performing the inverse discrete Fourier transform along each row of Ĥt. Given the potential
difficulty in achieving a stable phase for Gt, here we opt to use its amplitude |Gt| as the
training fingerprint, although this means throwing away potentially useful information.

C. Single-snapshot localization

We hereby introduce our single-snapshot localization approach, which focuses on per-
forming the localization task using only a single channel sample of the received transfer
function, generated at an SRS reporting periodicity of 20 ms containing 64 symbols,
transformed from antenna to beam space. The proposed positioning model analyzes the
time series of these samples. As illustrated in Fig. 1, the architecture comprises multiple
attention-aided blocks, followed by an output layer that has three alternatives corresponding
to three loss functions, namely the Mean Square Error (MSE), NLL, and Regression-by-
classification loss functions. We use pi = [px,i, py,i]

T to represent the 2-D ground truth of
the moving UE at the i-th position. Notably our approach can be readily adapted for 3-D
localization.

1) Alternative 1: MSE loss function: This approach directly estimates the UE locations
by setting a 2-D regression head at the output layer of the last attention block. Let fMSE(.)

denote the overall function and vector θ2 all hyperparameters, p̂i = [p̂x,i, p̂y,i]
T the estimated

i-th UE locations generated by fMSE(θ2, |Gt|), the loss Ψ1 can be expressed as

Ψ1 =
1

Ntr

∑

i∈Ω′
tr

||p− p̂||2F , (11)

where Ω′
tr and Ntr denote the training set and the number of training samples, respectively,

and ||.||F denotes the Frobenius matrix norm.
2) Alternative 2: NLL loss function: Unlike the first approach, this method employs

the NLL criterion, which models the estimated UE position as a multivariate Gaussian
distribution defined by its mean p̆ = [p̆xi , p̆yi ]

T and variance σ̆2
i = [σ̆2xi

, σ̆2yi ]
T . Consequently,

a 4-dimensional regression head is required at the output layer. Similar to [19], the NLL
loss Ψ2 is expressed as

Ψ2 =
1

2Ntr

∑

i∈Ω′
tr

( log σ̆2xi
σ̆2yi

2
+

(pxi − p̆xi)
2

2σ̆2xi

+
(pyi − p̆yi)

2

2σ̆2yi

)
. (12)

3) Alternative 3: Regression-by-Classification (RbC): The core of this approach [30],
[32] lies in converting a regression task to a classification task. This is achieved by first
defining a feasible range for the target parameter and then dividing this range into discrete
bins. For the localization task, the lower and upper bounds of the UE x-coordinates are
denoted as Blw,x and Bup,x, respectively. Similarly, Blw,y and Bup,y represent the bounds for
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the y-coordinates. To accomplish this discretization, we divide the x-coordinate range into
Lx equally sized bins. The y-coordinate range is divided into Ly bins in a similar fashion.
For each bin, we denote l̄x,k and l̄y,k as the lower endpoint values of the k-th interval for
the x- and y-coordinates, respectively.

Unlike the NLL method, RbC does not inherently model the output probability as a
Gaussian distribution. Instead, it estimates the probability and bias values of each bin
for both the x- and y-coordinates. The bias value can be used to reduce the quantization
error. To this end, in total 4 vectors are generated: the probability vectors ωx ∈ RLx and
ωy ∈ RLy , as well as the deviation vectors dx ∈ RLx and dy ∈ RLy . Note that ωx refers
to the probability vector corresponding to a specific position, and there are Ntr instances
of ωx when considering the entire training dataset; the same applies to ωy. It is crucial to
apply a softmax operation as shown in (4) when generating ωx and ωy to ensure that the
elements within each vector sum to 1. One special case for deviation vectors is when all Lx

elements in dx have the same value, and the same for dy. In other words, a uniform shift
is applied to the probability density function, which also aids in the reduction of the output
vector dimensions. We denote ωx,k and dx,k as the k-th elements of ωx and dx, similarly
for ωy,k and dy,k. Inspired by [30], the η-norm loss Ψη

3 is formulated as

Ψη
3 =

1

2Ntr

∑

i∈Ω′
tr

(
||

Lx∑

j=1

ωx,j,il̄x,j,i − px,j,i + dx,j,i||η

+ ||
Ly∑

j=1

ωy,j,i l̄y,j,i − py,j,i + dy,j,i||η + γ1||dx||+ γ2||dy||
)
. (13)

Here, η is usually chosen as η = 1 or η = 2, which corresponds to the Taxicab and Euclidean
norms, respectively. Two penalty terms, γ1||dx|| and γ2||dy||, are added to the cost function.
The estimated coordinate p̂RbC

i = [p̂RbC
x,i , p̂

RbC
y,i ] ∈ R2 is then given by

p̂RbC
x,i =

∑

j

ωx,j,il̄x,j,i + dx,j,i,

p̂RbC
y,i =

∑

j

ωy,j,il̄y,j,i + dy,j,i. (14)

4) Comparison between different uncertainty estimates: Our previous work [19] used the
NLL score in the test data set to assess the effectiveness of uncertainty estimation. However,
applying the same criterion to evaluate the RbC method presents challenges because of the
non-Gaussian nature of its output. To address this challenge, another criterion named Area
Under the Sparsification Error (AUSE) [31], [33] is used. Sparsification is a way to assess
the quality of uncertainty estimates. It works by progressively discarding fractions of the
predictions that the model is most uncertain about and verifying whether this corresponds
to a proportional decrease in the remaining average endpoint error. To calculate AUSE, the
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first step is to compute the discrete entropy uH based on the predicted probability. In the
following discussion, we illustrate this process using the predicted ωx,i vector for the x-
coordinate as an example, noting that the result can be readily extended to the y-coordinate.
The entropy uH,x,i for ωx,i is given by [32]

uH,x,i(ωx,i) = −
Lx∑

k=1

ωx,k,i logωx,k,i. (15)

To enable a fair comparison between the NLL and RbC methods, we need to discretize
the predicted Gaussian distributions determined by p̆ and σ̆2i . To this end, the x-axis is
segmented into Lx bins. As detailed in [34], the value for the k-th bin of the discretized
function, denoted p̆x,k, is calculated as

p̆dsx,k =

1
σ̆k

exp(− (p̆x,k−l̄k)
2

2σ̆2
k

)

∑
j

1
σ̆j

exp(− (p̆x,j−l̄j)2

2σ̆2
j

)
. (16)

We now organize the discrete entropies for the Nts testing samples calculated from (15) in
descending order to form the vector uH,x ∈ RLx . Similarly, we calculate the absolute errors
between the estimated values p̂Ws

x,i and the ground truth px for all testing samples, arranging
these errors in descending order to create the vector ξx ∈ RLx . Let ξmax be the maximum
absolute error. We scale all elements in uH,x by a factor such that the first element of the
resulting vector ûH,x equals ξmax.

Next, we define a sparsification function s(φ), which is calculated by removing the initial
φ-fraction of samples from ûH,x and averaging the remaining data, with φ ranging from
0 to 1. A similar process is applied to ξx, which yields the oracle function g(φ). Finally,
AUSE is calculated as

AUSE =

∫ 1

0

|s(φ)− g(φ)|dφ, (17)

which represents the area between the sparsification and the oracle curves. A smaller area
indicating a better uncertainty estimator.

D. Kalman-Filter-based trajectory smoothing

To further improve the localization accuracy, we exploit the temporal correlation between
successive positions by applying a Kalman filter as a straightforward method for trajectory
smoothing. The BS can select the appropriate motion model based on several factors,
including the sampling rate of channel snapshots, the vehicle’s velocity, and the availability
of velocity or acceleration parameters. In this paper, we introduce the constant velocity
model as the simplest option. This model is effective for scenarios with low vehicle speed
and a high sampling rate. However, the same concepts can be extended to more advanced
models that account for changes in velocity or even acceleration. While these advanced
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models may deliver better performance, especially in high-speed scenarios, they also require
more complex hardware. More detailed information see be refered to [35].

We define a vector ξt ∈ R4 = [px,t, vx,t, py,t, vy,t]
T to represent the UE position and

velocity at time t, where vx,t and vy,t denote the speed in the x and y-directions, respectively.
The state-space model for the UE is given by

ξt = Fξt−1 + λt, (18)

where F ∈ R4×4 denotes the state-transition matrix, while λt ∈ R4 the additive noise.
Specifically,

F =




1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


 , (19)

where ∆t denotes the time differences between snapshots. We then define Ξt ∈ R4×4 as
the covariance matrix of ξt. The relationship between Ξt and Ξt−1 can be written as

Ξt = FΞt−1F
T +Λ, (20)

where Λ ∈ R4×4 is the covariance matrix of the noise vector λt. We further denote p̆t ∈
R2 = [p̆t,x, p̆t,y] as the predicted UE position and express the observation model as

p̆t = Φtξt + ζ, (21)

where ζ ∈ R2 represents observation noise and Φt =

[
1 0 0 0

0 1 0 0

]
. Given the error signal

et = p̂t − p̆t, the state vector ξ+t is updated as

ξ+t = ξt + Γtet. (22)

In (22), Γt represents the Kalman gain matrix, which balances the predictions from the
state-space model and the ML-based pipeline, specifically,

Γt = ΞtΦ
T
t

[
ΦtΞtΦ

T
t +R

]−1
, (23)

where R is the covariance matrix of ζ. After computing Γt, the covariance matrix Ξt is
updated using

Ξ+
t = (I− ΓtΦt)Ξt, (24)

where I denotes the identity matrix. By applying the process outlined by (18)-(24), we
can significantly mitigate the impact of prediction outliers, as will be further illustrated in
Section V.
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Fig. 3: The 5G NR BS was equipped with an antenna integrated radio with 64 transmitters
and receivers, placed on top of a 20 m high building. In this measurement campaign, a
vehicle moves along three pre-defined routes: I A route on a 10 meter-high garage for LOS
measurements. II: A ground-level route for NLoS measurements below the building of the BS.
III: A ground-level route for combined LoS and NLoS measurements. (a) GPS and UE, (b)
Measurement Scenario, (c) Measurement van.

IV. OUTDOOR 5G NR MEASUREMENT CAMPAIGN

To evaluate our localization pipeline, an outdoor vehicular measurement campaign was
conducted at a parking lot outside of the Ericsson office in Lund, Sweden. Photos of the
test vehicle, the BS antenna, the UE as well as the measurement areas are presented in
Fig. 3.

A. Introduction to the measurement campaign

During the measurement campaign, the test vehicle carried a GNSS receiver, and a
commercial UE, see Fig. 3(a). Centimeter-level ground truth positioning accuracy was
achieved using a Swift Duro high-performance GNSS receiver with real time kinematics
technology, GNSS multi-band and multi-constellation support. To ensure that the UE
remained in connected state, it simultaneously downloaded data at a 750 Mbit/s rate
enabling continuous SRS UL transmission. The UL SRS pilot signals were received and
processed by a commercial Ericsson 5G BS operating in mid-band at 3.85 GHz center
frequency. The BS was compliant to the 5G NR 3rd Generation Partnership Project (3GPP)
standard 38.104 Rel15 [36] and equipped with a time division duplexing (TDD) antenna
integrated radio with 64 transmitters/receivers (TX/RX) consisting of 32 dual-polarized
antennas covering a 120 degree sector. As for digital beam forming, 64 TX/RX formulate
64 beams in downlink (DL) and UL respectively. As illustrated in Fig. 4, the SRS channel
estimates are reported for 273 physical resource blocks (PRBs) over a 100 MHz bandwidth.
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Fig. 4: SRS data collection and CTF generation. I/Q means in-phase/quadrature.

Each channel snapshot contains the 273 PRBs for all 64 beams. The PRBs are grouped and
averaged in pairs, resulting in 137 Physical Resource Blocks Sub Groups (PRSG). Down
sampling was done so that every third PRSG was further used generating 46 PRSGs in total.
The UE was equipped with 4 antenna ports, i.e. 4 UE layers, sounding SRS pilots. Due
to the capacity of our data-streaming system, the BS recorded the channel responses of 2

UE antenna ports which formulate two channel transfer function matrices H1,H2 ∈ CN×F .
We define a matrix H′ ∈ C2N×F to collect those two matrices, specifically, H′ = [H1,H2]

(N = 64, F = 46).
As illustrated in Fig. 3, our measurement campaign comprises three distinct scenarios:

LoS, NLoS, and a mixed scenario. In all scenarios, the velocity of the vehicle is approxi-
mately 15 km/h. The trajectory for each of the three measurement scenarios consists of 5

laps. In the LoS scenario, the test vehicle drove at an open parking lot, while in the NLoS
scenario, the vehicle was driving next to a tall building that obstructed the LoS path. As
for the mixed scenario, NLoS conditions occurred when the LoS was blocked by the water
tower. For all three measurements, the BS station recorded channel snapshots with 20 ms
periodicity, resulting in T1 = 22000, T2 = 24603 and T3 = 27087 channel snapshots. We
formulate three tensors ALoS ∈ CT1×2N×F , ANLoS ∈ CT2×2N×F , Amix ∈ CT3×2N×F to collect
all snapshots. Those three tensors are normalized by multiplying each with a scalar so that
their Euclidean norms equals TiMN , where i = 1, 2, 3.
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Fig. 5: Single-frequency-point SNR for three scenarios.

B. Measured propagation channel characteristics

In Fig. 5, we illustrate the range of single-frequency point SNR across three typical
scenarios. As shown in the figure, most SNR samples in the LoS (Line-of-Sight) scenario
are concentrated between 14.2 and 21.6 dB, with a median value of 17.6 dB. Similarly,
in the mixed scenario, most of the SNR values fall within the range of 14.3 dB to 19.6

dB, with a median of 17.2 dB. In contrast, the NLoS (Non-Line-of-Sight) scenario exhibits
significantly lower SNR values, ranging from 9.4 dB to 16.9 dB, with a median of 12.3 dB.
It is important to note that our processing pipeline can achieve approximately 15 dB gain
through antenna beamforming. To futher display the measured channel property, we choose
four UE positions (positions A-D, see Fig. 3 (b)) from the three measurement scenarios and
show representative channel impulse responses (CIR) in Fig. 6 (a)-(d). To be specific, Fig. 6
(a) illustrates a typical LoS scenario where a dominant LoS path can be seen from both the
CIR and the beam patterns. Few beams exhibit dominant power levels, while others remain
comparatively weaker. Although few NLoS-paths can still be observed, their strengths are
much weaker compared to the direct path. This is because the UE is located in an open
parking lot, where the reflected signals from other buildings are relatively weak. From the
beam power pattern, one can observe the signal strength variations of different BS antenna
polarizations and UE transmission layers as well. In contrast, Fig. 6 (b) displays NLoS
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Fig. 6: CIR and relative power of all 128 beams of four locations (a) LoS at point A, (b)
NLoS at point B, (c) LoS at point C, (d) NLoS at point D. Beam diagrams are arranged as
follows: row 0− 3 and row 4− 7 represent the 32 vertical and 32 horizontal-polarized beams
respectively for UE layer 1; row 8− 11 and row 12− 15 represent the co-polarized beams for
UE layer 2. Beam index is 8 ∗ (i − 1) + j, where i and j denote the row and column index
respectively. We select the first 4 strongest beam and plot the relative amplitude of CIR. The
strongest beam among all figures (a)-(d) is normalized to 0-dB. The relative amplitude refers
to the power difference of a specific beam to the strongest beam among all 4 figures.

channel characteristics where the BS captures several reflected paths and there is no path
with a dominant power. Thus, the signal strength in Fig. 6 (b) is lower compared to the case
in Fig. 6 (a). Fig. 6 (c) and Fig. 6 (d) present the measured channels in a mixed scenario,
where more local scatters surround the UE. The distance between UE position C and the
BS is greater than that of UE position A, resulting in a decrease in the strength of the
received LoS signal. Nevertheless, the BS is capable of detecting stronger reflective paths
in addition to the LoS path, attributed to reflections from surrounding buildings. Similarly,
in Fig. 6 (d), a rich number of multipath components can be observed in both the CIR and
the beam pattern, despite the LoS path being obstructed.
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TABLE I: Overview of our ML-based single snapshot localization pipeline

Item Network Structures or Parameters
Input Features Amplitude of CIRs for all beams

Network Output Estimated position labels or probabilities
Intermediate block 1 Residual 2-Heads Self-attention Network
Intermediate block 2 Residual Position-wise FCNNs
Intermediate block 3 3 cascaded ordinary FCNNs

Time Complexity NF 2

We focus on simple deployments and mobility scenarios to showcase the novel approach,
specifically targeting typical urban and rural environments, including LoS, NLoS, and mixed
scenarios common in commercial networks. The dense, controlled test scenarios provide
a robust evaluation of the proposed positioning algorithm. In contrast, larger network
deployments would increase complexity and pose significant challenges in data generation,
collection, and processing, which fall beyond the scope of this study.

V. RESULTS AND DISCUSSION

In this section, we evaluate our ML-based localization pipeline using the measurements.
We initially compare the single-snapshot localization performance for different ML algo-
rithms under different scenarios. Then, we demonstrate the performance gain achieved by
smoothing multiple position estimates with a Kalman filter.

A. Single snapshot localization

Our approach starts with assessing the validity of the input channel snapshot, as outlined
in Section. III. B. The first criterion, related to the CTF matrix Ξ, employs a cut threshold
set at 3500 out of 5888 (128×46) available physical resource elements, approximately 60%,
so that the channel information is sufficient. With such threshold setting, signal paths can
be clearly visualized from the channel impulse responses. After discarding snapshots with
insufficient data, we generate the amplitude of impulse response beam matrix |Gt| and
feed it to the attention-aided localization block. This block, with detailed parameters in
Table. I, comprises three cascaded sub-blocks. Initially, positioning encoding is applied to
|Gt| using (7). Subsequently, a layer normalization procedure follows according to (8). The
normalized matrix is then input into a simple 2-head self-attention block with a single self-
attention layer, generating matrix Z′ via (2-6). The pairwise correlation values in matrix
A reflect the similarities between each pair of row vectors in Ht in the beam domain,
which provides valuable information for UE localization. Considering the simplicity of
future hardware implementation work, the exact parameter settings are displayed as follows:
A1 = 128, A2 = 46, A3 = 64. After the Add & Norm operation, the output is transferred to
the second sub-block, consisting of two FCNNs with sizes W1 ∈ 46×128 and W2 ∈ 128×46.
Following this, the output matrix of the second sub-block is vectorized to yield a vector of
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TABLE II: Structures and parameter settings of the third FCNN sub-block using three different
loss functions. Lr: Learning rate.

Items
Loss F. MSE NLL RbC

Input layer size 5888× 1 5888× 1 5888× 1
Hidden layer 1 5888× 32 5888× 32 5888× 128

Hidden layer 2 32× 2 32× 2 128× L̃
Batch size 64 64 64

Lr: LoS (4 laps) 0.0006 0.0006 0.0006
Lr: NLoS (4 laps) 0.0006 0.0006 0.0006
Lr: Mixed (4 laps) 0.0006 0.0006 0.0006
Lr: LoS (2 laps) 0.0002 0.0002 0.0002

Lr: NLoS (2 laps) 0.0001 0.0001 0.0001
Lr: Mixed (2 laps) 0.0002 0.0002 0.0002

Learning Epoch 500 500 500
Dropout Rate 0.05 0.05 0.05
Cost function (11) (12) (13)
Network Size 1.137 MB 1.138 MB 7.44 MB

length 5888. This vector is fed into the last FCNN sub-block, with sizes as given in Table II.
Network sizes are shown in Table II, and they vary based on the selected cost functions. As
seen in Table II, the neural network requires more resources when RbC is used as the cost
function. This is because RbC needs to calculate the probability of each bin in the final
layer, rather than simply estimating the 2-D position of the UE. Despite this, the size of
all three networks remains under 10 MB, classifying them as lightweight neural networks.
We compare the localization performance when using three different loss functions and in
three typical scenarios. As illustrated, the output matrix of the second intermediate block
is first vectorized and fed to the input layer of the third sub-block, which consists of 2-3
FCNNs depending on the choice of loss functions. When the loss function RbC is used,
its corresponding network delivers the probability of all Lx and Ly bins. In scenario I,
Lx = Ly = 200 while in the other two scenarios Lx = Ly = 100. The deviation vectors dx

and dy are set as: dx = δx1,dy = δy1, where 1 denotes the all-ones vector, δx and δy denote
the deviation value of the x- and y-axis, respectively. Accordingly, the output dimension
L̃ equals Lx + Ly + 2. The penalty term γ1 and γ2 are set as: γ1 = γ2 = 1. In addition, the
Euclidean norm loss function is utilized, i.e. η = 2.

1) Comparisons of different uncertainty estimations: Fig. 7 compares the positioning
accuracy of our single-snapshot localization pipeline using three loss functions in three
scenarios under different training densities. As shown, the RbC method outperforms the
other two methods in all three scenarios and under both high and low training densities.
Compared to the other two methods, RbC learns better the non-Gaussian probability dis-
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Fig. 7: Positioning errors of different training densities in the three scenarios: (a) LoS, (b)
NLoS, (c) Mixed.
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Fig. 8: Sparsification curves of NLL and RbC methods under high training density (4 laps as
training data) and across three scenarios: (a) LoS, (b) NLoS, (c) Mixed. EPE: Endpoint error.
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TABLE III: AUSE values of two uncertainty estimation algorithms under different training
densities across three channel scenarios.

NLL-x RbC-x NLL-y RbC-y
LoS (4 laps) 0.480 0.179 0.351 0.163

NLoS (4 laps) 0.579 0.427 0.704 0.548
Mixed (4 laps) 1.428 0.616 1.543 0.325
LoS (2 laps) 1.951 0.968 2.023 1.181

NLoS (2 laps) 3.816 1.868 3.407 2.475
Mixed (2 laps) 4.682 0.809 3.540 1.138

tribution of the UE position, while the performance of the NLL method is constrained by
its underlying Gaussian assumption, and the MSE method does not estimate uncertainty.
The performance of these three methods differ less in the LoS scenario and high training
density, because the estimated UE position has less uncertainty in this situation. However,
in other scenarios or lower training density, the uncertainty of the estimated UE position
increases due to reduced SNR or training samples. Consequently, an accurate uncertainty
estimation is more essential, and thus the RbC method performs much better. At both
high and low training densities, our pipeline performs best in LoS scenarios, the mixed
scenario ranks 2nd, while the localization performance in the NLoS scenario is the worst.
We postulate that in the LoS scenario, the much higher SNR contributes to very good
positioning accuracy.

To further compare the uncertainty estimation quality of the NLL and RbC methods,
we demonstrate the sparsification and oracle curves of the probability density functions of
the estimated UE-x and y coordinates under high training density in Fig. 10. Specifically
for the NLL method, we discretize the predicted Gaussian functions to achieve the same
number of discrete bins as the RbC method, according to (16). The AUSE values for all
training densities are calculated according to (17) and are displayed in Table III. To reduce
the effect of outliers, the starting point of the sparsification and oracle curves equals 99%

of the positioning error. As depicted in Fig. 10, the discrepancies between the sparsification
(entropy) and oracle curves are significantly reduced in all three scenarios when the RbC
method is used. This improvement is reflected in the improved AUSE values presented in
Table III. These findings underscore the quality of the uncertainty estimation achieved with
our approach.

We finally compare the NLL method to another popular approach, the Monte Carlo
(MC) dropout method [37]. This technique estimates uncertainty by applying dropout to
a trained neural network. During testing, the network is evaluated multiple times, with
a percentage of neurons randomly deactivated on each run. This randomness results in
slightly different predictions on each evaluation. The mean of these predictions provides
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TABLE IV: Negative-log-likelihood values of MC Dropout methods compared with NLL.

LoS (4 laps) NLoS (4 laps) Mixed (4 laps)
NLL -0.144 0.069 0.066

MC dropout 2.142 0.014 0.138

|Gt|

46× 128

128× 128

128× 46

46× 128

128× 128

128× 46 Flatten

Dropout (pdr = 0.01)

5888× 128

128× 32

32× 2

Leaky ReLU

Leaky ReLU

Leaky ReLU

Leaky ReLU

Leaky ReLU

Leaky ReLU

Leaky ReLU

Leaky ReLU

Leaky ReLU Estimated position

Fig. 9: Structure of the residue network.

the final estimate, while the variance among them represents the uncertainty. Using this
approach, we evaluate our pipeline with MSE as the cost function. During testing, the
dropout rate is set to 0.05, and for each input Gt, the network is evaluated 50 times, after
which we compute the mean predictions p̃ = [p̃xi , p̃yi ]

T and variances σ̆i2 = [σ̆2xi
, σ̆2yi ]

T . Four
laps are used for training, with the remainder allocated for testing. To assess performance,
we calculate the negative log-likelihood (NLL) score of the MC dropout and NLL methods
on the testing dataset, according to (12). The results are presented in Table IV. As shown,
the MC dropout method performs similarly to the NLL method in both NLoS and Mixed
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scenarios. However, under the LoS scenario, the MC dropout method shows overconfidence,
with a significantly lower estimated variance compared to the NLL method. We attribute
this to the fact that MC dropout primarily captures uncertainty related to the network’s
weights, but it does not fully account for other sources of uncertainty, such as model
misspecification or uncertainty in the underlying data distribution.

2) Compare with the start-of-the-art: We compare performances of our approach with
a residue neural network (ResNet), which is widely used in solving regression and classi-
fication tasks. The structure and parameter settings of the neural network are illustrated in
Fig. 9. As seen in Fig. 9, the residue network consists of two residue blocks, followed by
three fully connected layers. The time complexity of this model is O(N max(F 2, FN,N2)).
Dropout is also applied to avoid overfitting and Leaky ReLU (with negative slope −0.3)
is selected as the activation function. The learning rate is set as follows: LoS 0.00001,
NLoS 0.00005 and Mixed 0.00005. Fig. 9 illustrates the localization errors of attention-
aided and ResNet based pipeline under all three scenarios. Channel data of two laps are
selected as training and the rest three laps are used for testing purposes. Compared with the
residue network, our transformer-based approach performs better under both LoS and NLoS
scenarios, if MSE is selected as the loss function. Localization accuracy can be further
significantly improved, if we use RbC approach to estimate uncertainty. We postulate that
compared with the state-of-the-art, our processing pipeline benefits both from the attention
mechanism and the advanced uncertainty estimation algorithms.

B. Smoothing the trajectory by Kalman filtering

Next, we investigate the performance when using a Kalman filter for smoothing within
our pipeline. To clearly visualize the effect of the Kalman filter, we apply a low training
density, using two laps for training and one lap for testing. First, the validity of each
channel CSI is assessed by the data cleaning block. All test channel samples classified as
valid are then utilized for evaluation. Similarly to Section V.B, we apply an attention-aided
block as the backbone and the output layer utilizes the RbC uncertainty estimation. For
simplicity, the matrix Λ in (20) and the matrix R in (23) are set as

Λ = ϵ21I, R = ϵ22I, (25)

where ϵ1 and ϵ2 denote the standard deviation, which indicates the state and observation
noise levels, respectively. Their exact values for the three scenarios are listed in Table V.
Fig. 10 shows the predicted UE trajectories both with (right) and without (left) the Kalman
filter for the three scenarios. The MSE between the predicted trajectories and their ground
truths is shown in Table. V. As expected, the results demonstrate a significant improvement
with the inclusion of the Kalman filter: the trajectories become considerably smoother, and
outliers are mitigated to a large extent. Consequently, there is a substantial enhancement in
localization accuracy, particularly evident in NLoS and mixed propagation scenarios. This
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Fig. 10: Comparison between positioning error of our pipeline and a residue neural network
under three different scenarios. (a) LoS, (b) NLoS, (c) Mixed. For all three scenarios, two laps
are used for training and the rest for testing.
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Fig. 11: Comparison between the raw (the left) and Kalman-filtered trajectory (a) LoS, (b)
NLoS, (c) Mixed.
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TABLE V: Parameter settings and rooted mean square errors (RMSE) when applying the
Kalman Filtering

ϵ1 ϵ2 RMSE (m), before filter RMSE (m)
LoS 0.05 1.2 0.99 0.93

NLoS 0.05 1.2 2.00 1.76
Mixed 0.05 1.2 1.01 0.82

improvement can be attributed to the ability of the Kalman filter to utilize relationships
between different snapshots, which effectively balances the newly predicted UE position
with previous positional states, leading to more accurate localization.

VI. CONCLUSIONS

In this paper, machine learning is applied to a 5G NR cellular system for UE localization.
A novel ML-based localization pipeline is presented, which utilizes attention-aided tech-
niques to estimate UE positions by employing impulse response beam matrices as channel
fingerprints. In addition, we implement two uncertainty estimation techniques, namely the
NLL and RbC methods, to estimate the probability density function of the UE position error
and compare their performances. Finally, a Kalman filter is applied to smooth consecutive
position estimates. To evaluate our pipeline, an outdoor cellular 5G measurement campaign
was conducted at 3.85 GHz with a 100 MHz bandwidth, covering both LoS and NLoS
scenarios, achieving submeter-level localization accuracy. The measurement results indicate
several key findings: 1) The attention-aided block shows promising potential to deliver high-
precision localization accuracy. 2) The RbC uncertainty method outperforms the traditional
NLL method, particularly with low training density or in more complex channel propagation
scenarios. This advantage likely stems from the fact that the RbC method is not constrained
by a Gaussian assumption on position errors. 3) Applying a Kalman filter to smooth
consecutive position estimates significantly reduces position outliers, thereby enhancing
localization accuracy. In future work, we plan to increase the diversity of our training data
and expand the evaluation scenarios by testing our approach in various urban environments.
Additionally, we will explore combining model-based and data-driven methods to further
enhance the generalizability and robustness of our approach.
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APPENDIX: LIST OF ABBREVATIONS

Abbreviation Definition
2-D Two-Dimensional
3-D Three-Dimensional

3GPP 3rd Generation Partnership Project
5G Fifth Generation

AoA Angle of Arrival
AUSE Area Under the Sparsification Error

BS Base Station
CIR Channel Impulse Response
CSI Channel State Information
CTF Channel Transfer Function
DL Downlink
EPE Endpoint Error

FCNN Fully Connected Neural Network
GNSS Global Navigation Satellite Systems
KNN K-Nearest Neighbors

Lr Learning Rate
LoS Line-of-Sight
MC Monte Carlo
ML Machine Learning

MSE Mean Square Error
NLL Negative Log Likelihood
NLoS None Line-of-Sight
NR New Radio

OFDM Orthogonal Frequency Division Multiplexing
PRB Physical Resource Block

PRSG Physical Resource Blocks Sub Groups
RbC Regression-by-Classification
Rel Release

RMSE Rooted Mean Square Error
RX Receivers

SNR Signal-to-noise Ratio
SRS Sounding Reference Signal
ToA Time of Arrival
TDD Time-division Duplexing

TDoA Time Difference of Arrival
Tx Transmitters
UE User Equipment
UL Uplink
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