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Abstract

In a recent paper, Fack et al. (2019, American Economic Review) convincingly argue and

theoretically demonstrate that there may be strong incentives for students to play non-truth-

telling strategies when reporting preferences over schools, even when the celebrated deferred

acceptance algorithm is employed. Their statistical test also rejects the (weak) truth-telling

assumption in favour of another assumption, called stability, using a single data set on school

choice in Paris. This paper uses Swedish school choice data and replicates their empirical

finding in 66 of the 75 investigated data sets (P-value threshold 0.05).
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1 Introduction

School districts in Chile, France, India, Sweden, the United States and many other countries

use the deferred acceptance algorithm (Gale and Shapley, 1962) to assign students to schools.1

When this algorithm is employed and student preferences and school priorities are strict (pos-

sibly after applying some exogenous tie-breaking rules), all students are assigned to their most

preferred reported school among the ones that respect all school priorities (Gale and Shapley,

1962) and truthful preference revelation is a dominant strategy for the students (Abdulkadiroğlu

and Sönmez, 2003; Roth, 1982).

But even if the deferred acceptance algorithm is strategy-proof in an ideal world, there are

reasons to believe that students often deviate from the strict truth-telling strategy, i.e., they do

not submit a truthful ranked-ordered list (ROL) containing all schools in the district.2 If the

district contains many schools, students rarely rank all of them, for example, because they find

it cognitively costly or time-consuming (even if a limited number of schools are ranked in ac-

cordance with the true preferences, the strategy is only weakly truth-telling since not all schools

are included in the ranked-ordered list). Another reason is that school districts often only allow

students to rank a limited number of schools and students may therefore decide to strategically

rank “safe schools,” i.e., schools where their probability of admission is close to one, thus deviat-

ing from the strict truth-telling strategy (see Haeringer and Klijn, 2009; Romero-Medina, 1998).

Furthermore, as observed by Fack et al. (2019), truth-telling is only a weakly dominant strategy

when the deferred acceptance algorithm is employed, leaving open the issue of multiple equilib-

ria. In other words, there may be strategies that are not dominated by the truth-telling strategy,

for example, the strategy not to rank “impossible schools” for which the expected probability

of admission, based on available information such as previous admission outcomes, is zero. As

theoretically demonstrated by Fack et al. (2019), if both student preferences and school prior-

ities are private information and if there is a cost associated with the cognitive task to submit

a rank-ordered list, the strategy of “skipping the impossible” schools may even dominate the

1See Abdulkadiroğlu and Andersson (2023) for a recent survey on the theory and practice of school choice.
2Students often have incentives to be strategic, rather than truthful, in school choice environments. Strategic

behaviour has been observed in school choice programs all over the world (see, e.g., Abdulkadiroğlu and Sönmez,
2003; Abdulkadiroğlu et al., 2005b,a; Agarwal and Somaini, 2018; Burgess et al., 2015; de Haan et al., 2023; Dur
et al., 2018; Fack et al., 2019; Hastings et al., 2009; He, 2017) as well as in laboratory experiments (see, e.g., Chen
and Sönmez, 2006; Hakimov and Kübler, 2021). See Rees-Jones and Shorrer (2023) for a recent review.

2



truth-telling strategy.

It is important to investigate which strategies that students use, for example, because when

students rationally play non-truth-telling strategies, other econometric techniques are required

to reveal the underlying preferences, compared to the standard case when the researchers can

trust preference rankings to be weakly truth-telling. Fack et al. (2019) convincingly argue (using

some of the above arguments) and theoretically demonstrate that truth-telling may be a too strong

assumption to impose on student preferences, even if the deferred acceptance algorithm is em-

ployed, and test an empirical model of school choice based on a truth-telling assumption against

one which relies on a weaker assumption referred to as stability. Under the stability assumption,

the schools in the ranked-ordered lists are preferred in the stated order, but students are only

assumed to prefer schools in the list to ex post feasible schools that not are included in the list,

i.e., schools that the student would have been admitted to if she had chosen to include them in

the list. Note that the stability assumption, in contrast to the weak truth-telling assumption, does

not reveal if a school that is included in the ranked-ordered list is preferred to a non-ranked and

non-feasible school. Consequently, stability, but not weak truth-telling, allows students to “skip

the impossible.”

Fack et al. (2019) compare the weak truth-telling and stability assumptions for a single data

set on Paris school choice data, containing 1,590 students, and reject the null hypothesis of

weak truth-telling. More precisely, a Hausman test on the parameters of models based on weak

truth-telling and stability assumptions, respectively, reveals significant differences between the

estimated utilities of admission to a particular school or the change in utility of admission to the

nearest possible school. The method developed by Fack et al. (2019) has been adopted in many

recent paper, including, e.g., Che et al. (2023), Combe et al. (2022a,b), Hahm and Park (2022),

and Otero et al. (2021).

While most empirical studies on school choice, like Fack et al. (2019), have been conducted

on at most a handful of data sets (see, e.g., Hastings and Weinstein, 2008; Abdulkadiroğlu et al.,

2017, 2020; Beuermann et al., 2022; de Haan et al., 2023), this paper uses data from multiple

years and grades from 15 Swedish school districts, resulting in 75 different data sets with an

average of 887 students. The admissions in all of them are based on the deferred acceptance

algorithm, thus making them ideal to investigate if the empirical results in Fack et al. (2019) can

be replicated or not.
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We report adjusted P-values, corrected for multiple hypothesis testing using the sequential

method of Holm (1979). We find that the null hypothesis of weak truth-telling is rejected in 66

of the 75 investigated data sets (P-value threshold 0.05), thus providing strong support for the

finding in Fack et al. (2019).

The remaining part of this paper is organized as follows. Section 2 introduces the school

choice model and some basic definitions, including formal descriptions of student strategies.

The empirical approach is described in Section 3. The data and the results can be found in

Section 4.

2 The School Choice Model

2.1 Preliminaries

Students and schools are collected in the finite sets I = {1, . . . , n} and S = {1, . . . ,m}, respec-

tively. Each student i ∈ I has strict preferences over the schools in S represented by a binary

and complete preference relation ≻i.3 Here, s ≻i s
′ means that student i strictly prefers school

s over school s′. The preferences of student i will, for convenience, often be represented by a

utility score for each school. Formally, a utility vector is a vector of von Neumann-Morgenstern

utilities ui = (ui1, . . . , uim) ∈ R
m such that uis is a real number describing the utility that

student i obtains by being admitted to school s. Let ≻ and u represent the collection of the

preferences and the corresponding utility representation, respectively, i.e., ≻= (≻1, . . . ,≻n) and

u = (u1, . . . , un).

Students are asked by their school districts to report a ranked-ordered list of the schools in the

district, but this does not necessarily mean that the students have to rank all schools in S. Thus,

a ranked-order list for student i is a represented by a list Li = (Li1, . . . , Lik) for some k ≤ m,

where Li1 represents the school that student i has reported as the most preferred, Li2 represents

the school that student i has reported as the second most preferred, and so on. Note that the

rank-ordered lists need not represent the true preferences, they only represent the preferences

that the students report to the school district (see the discussion in Section 2.2). Let L denote the

3For simplicity and without loss of generality, it is assumed that all students prefer any school in S to being unas-
signed. This is also consistent with the Swedish legislation and our empirical strategy since schooling is mandated
by law for all students in our data sets.
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collection of the ranked-ordered lists, i.e., L = (L1, . . . , Ln).

Each school s ∈ S has priorities over the students in I, represented by πs = (π1s, . . . , πns).

More specifically, student i is assigned an individual priority πis ∈ [0, 1] by school s, where

πis < πjs means that student i has a higher priority than student j at school s.4 Let π represent

the collection of school priorities, i.e., π = (π1, . . . , πm). For convenience, the vector πi =

(πi1 . . . , πim) will sometimes be used to describe the priority of student i for each school in S.

The capacities of the schools are gathered in the vector Q = {q1, . . . , qm}.

A matching µ is a function such that each student i ∈ I is assigned a school s ∈ S, i.e.,

µ(i) = s, and each school s ∈ S is matched with a set of students up to its capacity, i.e.,

µ(s) ⊂ I and |µ(s)| ≤ qs, and µ(i) = s if and only if i ∈ µ(s). The inverse function µ−1(s)

describes which students that have been assigned to school s, i.e., µ−1(s) ≡ {i ∈ I : µ(i) = s}.

A matching µ is stable if there does not exist any student–school pair (i, s) ∈ I ×S such that

student i prefers school s to her assigned school, i.e., s ≻i µ(i), and either there are available

seats at school s, i.e., |µ(s)| < qs or there is a student i′ that is assigned to school s and ranked

lower than student i by school s, i.e., µ(i′) = s and πis < πi′s.

The realised cutoff cs(π, µ) at school s at a given matching µ equals 1 if the school is under-

subscribed, and otherwise the priority of the “last admitted” student, that is:

cs(π, µ) =

1 if |µ−1(s)| < qs

max{πis : i ∈ µ−1(s)} otherwise

School s is (ex post) feasible for student i if the student’s priority πis to school s is below the

school-specific cutoff cs(·). Finally, a matching mechanism determines a matching for any given

problem (I,S,Q,L, π).

2.2 Student Strategies

The rank-ordered list Li is a reported ordinal ranking of schools, while ≻i represents the true

preferences. Because students need not report complete, or even true, rankings, it is important to

distinguish between different strategies. To do that, it is first important to define a student type.

4School priorities may be constructed, e.g., based on walk zones or sibling priorities. Schools may then have to
use a tie-breaker to make the priorities strict.
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The type of student i is a description of her utility profile and school priorities, i.e., a pair θi =

(ui, πi). When students are asked to report their ranked-ordered lists to the school districts, they

will base their strategy on their type. Formally, a strategy is a function ϕi : R
m × [0, 1]m → Li

that maps the type of student i to some rank-ordered list Li = (Li1, . . . , Lik). Note, in particular,

that k ≤ m, meaning that the strategy for the student need not include all schools in S.

Based on the above definitions, it is possible to define several different strategies. As already

explained, there are reasons to believe that students not rank all schools in the school district,

especially if it contains many schools. Furthermore, if a student believes she will be admitted

to one of her, say, three most preferred schools with probability one, the student is indifferent

between stating and leaving out all other schools in her rank-ordered list. Such strategy is referred

to as weak truth-telling (WTT).

Definition 1. The strategy ϕWTT
i (θi) = LWTT

i (θi) = (LWTT
i1 (θi), . . . , L

WTT
ik (θi)) for some k ≤ m

where student i ranks all schools in the list LWTT
i (θi) in accordance with her true preferences

≻i is called a weak truth-telling strategy. If k = m, the strategy ϕSTT
i (θi) = LSTT

i (θi) =

(LSTT
i1 (θi), . . . , L

STT
im (θi)) is called a strict truth-telling strategy.

The difference between strict truth-telling and weak truth-telling is that the latter strategy allows

students to omit irrelevant schools at the bottom of their utility profiles.5 Fack et al. (2019)

introduce an application cost for students when ranking multiple schools and show (in their

Proposition 1) that the STT strategy is the unique Bayesian Nash equilibrium under the deferred

acceptance algorithm if there are no application costs for any student and if the joint distribution

of preferences and priorities has full support. However, for any non-zero application costs, there

always exist student types for which the STT strategy is not an equilibrium strategy.

Fack et al. (2019) also clarify the relationship between weak truth-telling and stability. More

precisely, they show (in their Proposition 3) that if every student plays the WTT strategy under

the deferred acceptance algorithm (which may not be an equilibrium), then given a realized

matching (i) whenever a student is assigned to a school, she is matched to her favorite feasible

school and (ii) if all students that have at least one feasible school are assigned to some school,

the matching is stable. This finding has implications for their empirical approach.

5It has become a commonly used assumption in the empirical school choice literature that students are at least
weak truth-telling when the deferred acceptance algorithm is applied, see, e.g., Abdulkadiroğlu et al. (2017).
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3 Empirical Approach

This section gives a very brief description of the empirical approach adopted by Fack et al. (2019)

to estimate student preferences under different assumptions. They consider a logit-type random

utility model for the formal framework described in Section 2 where students are matched to

schools through the (student-proposing) deferred acceptance algorithm. Besides the submitted

ranked-ordered lists and the final matchings, the researcher observes school priorities and capac-

ities.

The utility functions of the students are allowed to take any value on the real line, and student

i’s utility from being matched to school s is parameterised as:

uis =
m∑
ℓ=2

1{s=ℓ} (s, ℓ) βℓ−1 + nearestisβm + distanceisβm+1 + ϵis

= Z ′
isβ + ϵis

Here, 1{s=ℓ} (s, ℓ) , ℓ = 2, 3, . . . ,m are indicator variables for all but the first school in the

dataset6. nearestis indicates whether school s is the closest school to the student’s residential

address and distanceis captures the geographical walking distance between student i and school

s. These covariates are collected in the (m+ 1)×1 vector Zis and the product of this vector with

the unknown model coefficients will henceforth be referred to as Vis := Z ′
isβ. Unobservable

student heterogeneity ϵis is assumed to be drawn from a type 1 extreme value distribution. Note

that attention is restricted to student preferences being independent of the placement of other

students (i.e., no peer-effects) and that matching-specific statistics (e.g., cutoffs) do not enter the

utility function.

The estimation relies on revealed student preferences in the data. What information that is

revealed depends on the underlying assumption about if the weak truth-telling or the stability

strategy is used. Suppose, for example, that there are four schools, called s1, s2, s3 and s4 with

cutoffs 0.8, 0.9, 0.4 and 0.2, respectively. If student i with priority 0.5 at each school reports the

ranked-ordered list Li = (s1, s3), it can be concluded that s1 ≻i s3 ≻i sj for j ∈ {2, 4} under the

weak truth-telling assumption, but (ii) only that s3 ≻i s4 under the stability assumption (since

6This implements the identifying restriction β1 = 0 for the conditional logit models used to estimate student
preferences.
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school s2 is non-feasible for student i).

3.1 Estimators

The type of information revealed under either weak truth-telling or stability assumptions moti-

vates the corresponding maximum likelihood estimator of Fack et al. (2019) for the parameters in

student-school utilities uis. Under a weak truth-telling assumption, a student submitting a rank-

order list of Li = (Li1, . . . , Liki) reveals uLi1
> · · · > uLiki

. Furthermore, non-ranked schools

are at the bottom of a student’s utility profile, implying uLiki
> uis′ . The likelihood of observing

the entire rank-order list is modelled as the product of ki marginal probabilities of observing

school Lij as j = 1, 2, . . . , ki-th ranked choice on the list. Each marginal probability is then

further modelled as a conditional logistic regression whose choice alternatives are the observed

choice for the current position on the rank-order list as well as all lower and non-ranked schools.

The resulting log likelihood of such a chain of conditional logistic regressions is given by:

lnLWTT(β, Z, |ϕWTT|) =
∑
i∈I

∑
s∈ϕWTT

i

Vis −
∑
i∈I

∑
s∈ϕWTT

i

ln

 ∑
s′⊁

ϕWTT
i

s

exp (Vis′)

 .

The vector that maximizes this function will in the following be referred to as β̂WTT.

Under a stability assumption, information about student preferences emerges from the ob-

served assignment of students to schools rather than the submitted rank-order lists. In particular,

admission of student i to school s implies that uis > uis′ for all other schools s′ ̸= s that would

admit student i given the realized student-school matching. Hence, the observed matching of

students to schools can be seen as resulting from a conditional logistic regression with student-

specific choice alternatives. The estimator resulting from maximum likelihood estimation of this

model is henceforth denoted β̂ST.

3.2 The Hausman Test

As demonstrated by Fack et al. (2019, p. 1506), the assumption of weak truth-telling nests the

stability assumption for students that are matched with a school. Accordingly, testing weak
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truth-telling against stability boils down to testing whether the restrictions of weak truth-telling

in excess of those imposed by stability hold. Fack et al. (2019) investigate this question indirectly

via a Hausman test on the estimates of the coefficients β in student-school utilities uis. Formally,

the test statistic is given by:

TH =
(
β̂ST − β̂WTT

)′ (
V̂ST − V̂WTT

)−1 (
β̂ST − β̂WTT

)
,

where V̂ST and V̂WTT are the estimated covariance matrices of β̂ST and β̂WTT, respectively. As-

suming that at least the stability assumption is satisfied and that the parametric assumptions of

conditional logistic regressions are met, TH has power against violations of weak truth-telling

that render β̂WTT inconsistent.

4 Data and Results

Schooling becomes compulsory in Sweden for children from the autumn term of the year they

reach the age of six (grade 0), and compulsory school attendance ceases at the end of the spring

term of their 10th school year, i.e., by the time they are 16 years old. A new legislation from 1992

(Friskolereformen) made it easier to start and operate voucher schools and, currently, around 16

percent of the children in grades 0 to 9 are enrolled in such schools. The municipality and

voucher schools can, but need not, coordinate their admissions.7

This replication study is based on 75 school admissions in 15 different Swedish school dis-

tricts, for grades 0, 4 and 7, between years 2019–2023 (different years for different districts). In

all 75 data sets, we have data on all municipality schools (capacities, cutoffs, etc.) and how the

students in the district rank them. In 37 of the data sets, we also have access to all such data

for the voucher schools. In this case, the students submit one rank-ordered list containing both

municipality and voucher schools. In 33 of the data sets, we don’t have access to any information

related to the voucher schools, and in 5 data set we have partial information about the voucher

schools. See column three of Table 3 for details. In 71 of the 75 data sets, there are no restrictions

on how many schools the students are allowed to rank. See column five of Table 3 for details,

7For more on the matching practices of the Swedish school system, see Andersson (2017).
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where “x out of y” means that students are allowed to rank at most x of the y schools in the

district. All schools that are included in a given data set are part of the same admission system

and the admissions are always based on the (student proposing) deferred acceptance algorithm.

Table 1: Aggregated summary statistics for the 75 data sets.

Total Max Mean Min
Total number of students 78,445 4,007 1,046 131
Students with rank-ordered lists (ROL) 66,547 3,426 887 116
Number of schools 1,688 65 23 4
Number of seats (adjusted) 75,088 3,749 1,001 123
Number of placements 61,168 3,135 816 90
Number of first-choice placements 50,633 2,449 675 88

Table 1 contains some summary statistics of the data. Here, the “number of placements” refers

to the number of students that have been assigned a school that is part of their ranked-ordered

list (in reality, students are always placed at some school, possibly a non-ranked school). For

each data set, the analysis is based only on the number of students that ranked at least one

school in the school district (“Students with ranked-ordered lists”) and not the “Total number

of students.” Students that did not submit ranked-ordered lists have been removed from the

data set and initial capacities at each school have been reduced by the corresponding share.

After that, a new placement has been made using the deferred acceptance algorithm, resulting

in new (and modified) cutoffs. The analysis is then based on the reduced data sets and the

assignment generated in them in order to emulate a centralized school choice system with only

active students.

Note also that not all school districts use the same rules to determine their priorities. The

rules can be based on a variety of variables, e.g., sibling priority, distance to alternative schools,

right for some students to be placed in a school that is administratively connected to their current

school, and so on. The Appendix contains all these details for all school districts. For our

purposes, however, it suffices that the priorities are strict, possibly after a random tie-breaker has

been applied (see Table ??), independently of how they are created. Both priority scores and

distance to schools have been normalized to belong to the closed interval [0, 1].
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4.1 Results

Estimation of student preferences under both weak truth-telling and stability assumptions as well

as model testing have been conducted using the Matlab code in the replication package of Fack

et al. (2019).8 The P-values of a Hausman test for weak truth-telling versus stability assumptions

in all 75 data sets are reported in Table 3, together with some additional characteristics of the

data sets. We correct for multiple hypothesis testing using the sequential method of Holm (1979)

and therefore only report adjusted P-values.

Test results with a targeted family-wise error rate of 5 percent (i.e., adjusted P-value threshold

of 0.05) provide strong support for the empirical findings in Fack et al. (2019). More specifically,

the null hypothesis of weak-truth telling is rejected in 66 of the investigated 75 data sets (88.0

percent). Table 4 summarises these findings and separates them in two dimensions (access to

data from voucher schools and the size of the school districts) to investigate if they influence our

findings, i.e., the rejections of the Hausman tests. As can be seen in the table, both access to data

from voucher schools and larger student populations naturally increase the likelihood to reject

the null-hypothesis.

To further investigate if students “skip the impossible,” we go beyond a pure replication of

the results in Fack et al. (2019) and estimate a logistic regression for ranking a school highest in

the submitted ranked-ordered list. Formally, we specify:

log

(
P (Yis = 1)

1− P (Yis = 1)

)
= β0 + β1infeasibleis + β2distanceis +

m∑
ℓ=1

1{s=ℓ} (s, ℓ) βℓ+2.

Here, Yis ∈ {0, 1} is a dummy indicating if school s is ranked as the top-choice by student i,

infeasibleis ∈ {0, 1} is a dummy indicating if school s is ex-post infeasible and distanceis is the

normalized walking distance between student i and school s. Lastly, β3, β4, . . . , βm+2 are school

fixed effects. The specified logit model is estimated after merging the observations in all 75 data

sets into a large stacked data set. Accordingly, school fixed effects apply to a school in a par-

ticular dataset so that schools in the same municipality are allowed to have different unobserved

characteristics across admission years and for admissions to grade 0 and 7, respectively.9

8The replication package is available at www.aeaweb.org/articles?id=10.1257/aer.20151422.
9Analogous to previous model specifications, identification requires setting the fixed effect on the first school in

the stacked dataset equal to zero.
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Our formal test for “skipping the impossible” is a significance test on β1, the coefficient on

ex-post non-feasibility. If students did not take feasibility into account when submitting their

ranked-ordered list, this test should fail to reject its null hypothesis since Yis and infeasibleis

would be independent. As reported in Table 2, the null hypothesis of this test is rejected at

a significance level of 0.5 percent (threshold chosen in accordance to Benjamin et al., 2018).

Furthermore, the estimate of β1 implies a difference in log odds ratios of −1.16 between feasible

and non-feasible schools. Accordingly, the odds of ranking an infeasible school highest in the

submitted ranked-ordered list are merely 21.1 percent of the odds of doing this for a feasible

school.

Table 2: Estimation results for “skipping the impossible.”

Coefficient Estimate Std. Error P-value
Infeasible -1.155 0.113 0.000∗∗∗

Distance -17.402 0.605 0.000∗∗∗

Fixed effects 1,417 (school × dataset)
N 2,061,193

Note: Estimation conducted after stacking data in all 75
datasets. See Table 3 for a complete list. 7 fixed-effects
(6,344 observations) were removed because of no first-
choice rankings. Distance is normalised to 1.

Table 3: Data characteristics and the Hausman Test

Municipality (year) Grade Vouchers included? Students with ROL ROL restriction? P-value

Huddinge (2023) 0 No 1,213 No 0.000*

Huddinge (2023) 7 No 574 No 0.000*

Järfälla (2020) 0 No 833 No 0.000*

Järfälla (2021) 0 Yes (all) 897 No 0.000*

Järfälla (2021) 7 Yes (all) 542 No 0.013*

Järfälla (2022) 0 No 894 No 0.000*

Järfälla (2022) 7 No 583 No 0.000*

Järfälla (2023) 7 No 661 No 0.100

Continued on next page
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Table 3 – continued from previous page

Municipality (year) Grade Vouchers included? Students with ROL ROL restriction? P-value

Karlstad (2021) 7 Yes (2 out of 4) 497 No 0.000*

Karlstad (2023) 7 Yes (all) 820 No 0.000*

Kävlinge (2021) 0 No 372 No 0.700

Kävlinge (2022) 0 No 441 No 0.000*

Kävlinge (2023) 0 No 391 Yes (3 out of 9) 0.001*

Linköping (2021) 0 Yes (all) 1,772 No 0.000*

Linköping (2021) 7 Yes (all) 1,590 No 0.000*

Linköping (2022) 0 Yes (all) 1,772 No 0.000*

Linköping (2022) 7 Yes (all) 1,767 No 0.000*

Linköping (2023) 7 Yes (all) 1,718 No 0.000*

Linköping (2023) 0 Yes (all) 1,589 No 0.000*

Malmö (2021) 0 No 3,275 Yes (7 out of 60) 0.000*

Malmö (2021) 7 No 1,239 Yes (7 out of 32) 0.000*

Malmö (2022) 0 Yes (3 out of 18) 3,426 No 0.000*

Malmö (2022) 7 Yes (2 out of 16) 1,398 No 0.000*

Nacka (2019) 0 Yes (all) 128 No 0.249

Nacka (2020) 0 Yes (all) 1,435 No 0.000*

Nacka (2020) 7 Yes (all) 734 No 0.000*

Nacka (2021) 0 Yes (all) 1,434 No 0.000*

Nacka (2021) 7 Yes (all) 698 No 0.000*

Nacka (2022) 0 Yes (all) 1,264 No 0.000*

Nacka (2022) 7 Yes (all) 412 No 0.000*

Nacka (2023) 0 Yes (all) 1,402 No 0.000*

Nacka (2023) 7 Yes (all) 602 No 0.000*

Norrköping (2020) 0 No 1,352 No 0.000*

Norrköping (2020) 7 No 947 No 0.000*

Norrköping (2021) 0 Yes (all) 1,513 No 0.000*

Continued on next page
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Table 3 – continued from previous page

Municipality (year) Grade Vouchers included? Students with ROL ROL restriction? P-value

Norrköping (2021) 7 No 959 No 0.000*

Norrköping (2022) 7 Yes (all) 907 No 0.000*

Norrköping (2023) 0 Yes (all) 1,490 No 0.000*

Norrköping (2023) 7 Yes (all) 1,126 No 0.000*

Sigtuna (2020) 7 No 336 No 0.565

Sigtuna (2021) 0 No 433 No 0.030*

Sigtuna (2021) 7 No 324 No 0.000*

Sigtuna (2022) 7 No 325 No 0.534

Sigtuna (2023) 0 No 546 No 0.005*

Sigtuna (2023) 7 No 424 No 0.000*

Trelleborg (2021) 0 No 417 No 0.076

Trelleborg (2021) 7 No 186 No 0.077

Trelleborg (2022) 0 No 513 No 0.000*

Trelleborg (2022) 7 No 116 No 0.045*

Trelleborg (2023) 7 No 138 No 0.229

Tyresö (2020) 0 Yes (all) 614 No 0.006*

Tyresö (2020) 7 Yes (all) 292 No 0.001*

Tyresö (2022) 0 Yes (all) 603 No 0.005*

Tyresö (2023) 0 Yes (all) 547 No 0.000*

Upplands-Bro (2020) 0 Yes (1 out of 3) 349 No 0.013*

Upplands-Bro (2021) 0 Yes (all) 330 Yes (at least 3) 0.007*

Upplands-Bro (2022) 0 Yes (all) 322 No 0.178

Upplands-Bro (2023) 0 Yes (all) 317 No 0.018*

Uppsala (2021) 0 Yes (all) 2,594 No 0.000*

Uppsala (2021) 7 Yes (all) 486 No 0.000*

Uppsala (2022) 0 Yes (all) 2,515 No 0.000*

Uppsala (2022) 7 Yes (all) 672 No 0.000*

Continued on next page
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Table 3 – continued from previous page

Municipality (year) Grade Vouchers included? Students with ROL ROL restriction? P-value

Uppsala (2023) 0 Yes (all) 2,482 No 0.000*

Uppsala (2023) 7 Yes (all) 721 No 0.000*

Växjö (2020) 7 No 734 No 0.000*

Växjö (2021) 7 Yes (2 out of 5) 797 No 0.000*

Växjö (2022) 7 Yes (all) 896 No 0.000*

Växjö (2023) 7 Yes (all) 939 No 0.000*

Ystad (2020) 7 No 271 No 0.000*

Ystad (2021) 0 No 276 No 0.016*

Ystad (2021) 7 No 279 No 0.000*

Ystad (2022) 0 No 283 No 0.001*

Ystad (2022) 7 No 279 No 0.000*

Ystad (2023) 0 No 251 No 0.013*

Ystad (2023) 7 No 273 No 0.000*

Table 4: Summary of results for the 75 data sets.

Number of data sets Data sets with * Share with *
All data sets 75 66 88.0%
Data sets with no voucher data 33 26 78.8%
Data sets with voucher data 42 40 95.2%
Data sets with ≥ 500 students 47 46 97.9 %
Data sets with < 500 students 28 20 71.4%
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