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Khuyagbaatar, B. Kindler, I. Kojouharov, J.V. Kratz, J. Krier, N. Kurz,
B. Lommel, A. Mistry, C. Mokry, J.P. Omtvedt, P. Papadakis, J. Runke,
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R.M. Clark, Ch. E. Düllmann, J. Eberth, C. Fahlander, U. Forsberg,
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Many thanks to Andréa Idini who encouraged me to attend and give a speech at
the International Nuclear Physics Conference 2022 in Cape Town, South Africa
and guided me during the trip. This was the highlight of my PhD-studies. The
combination of high level research communication with magnificent nature made
the visit an experience for life.
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Popular Scientific Introduction and Summary

This thesis is dedicated for the construction of a theoretical model for the de-
scription of atomic nuclei.

The Atomic Nucleus

Imagine the smallest thing that you could investigate with your bare senses.
What size does it have? Maybe around 1 mm? With that size you can see its
shape and feel it with your fingers.

Of course, for smaller objects we can use a microscope to see them. But when we
enter the world of atoms, which are roughly of the size 0.000,000,1 mm, no such
direct investigation with our senses is possible. Start with our imaged 1 mm
object and let us pretend that we can expand the atoms for which it is made
of. How large would the object be before we could see and feel the atoms? The
answer is: the size of a mountain. The object would need to be 10 km wide in
order for its atoms to be 1 mm. Needless to say, atoms are small.

It does not stop there. In the center of the atom lives the atomic nucleus.
Here we talk about a size of 0.000,000,000,01 mm. Now it becomes really crazy,
our 1 mm object would need to expand into the size of a giant planet like
Jupiter, about 100,000 km across, in order for the atomic nuclei to be available
for our senses.

The nucleus is hiding deep inside the atom and does not participate in our
everyday life. So, should we care about the nucleus if it does not affect us? Of
course! The stability of an atom is solely determined by the nucleus. Hence, the
properties of the nucleus decide which atoms Nature has to play around with
when building up our world.

The heaviest nucleus which is completely stable is led with 82 protons. However,
uranium with 92 protons has a half-life (the time it takes for half of all atoms in
a given amount to decay) of 4.5 billion years. This is on a geological time scale
and therefore uranium is the heaviest element to be found on Earth. Heavier
elements have been produced in the laboratory. The record holder up to this
date is the element oganesson with 118 protons. Its half-life has not yet been
exactly measured but is near or below 0.001 seconds.

It is not fully understood how heavy elements are formed in the Universe. Light
elements, up to iron with 26 protons, are produced through fusion, the merger
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of lighter elements, in large enough stars. However, it costs energy to produce
even heavier elements. Hence, where in the Universe are there enough available
energy to produce these elements? Two suggestions are: in supernovae and in
neutron star merges. It seems like in those violent events there are enough of
energy to produce elements far beyond uranium. With time, those elements
will decay to the well known elements found here on Earth. However, to really
understand where and how these processes occur, a good theoretical model is
desired. Only then can we really say where all atoms, and by extension ourselves,
come from.

There are no microscopes that would allow us to see the atomic nuclei. So, do we
humans have any hope in investigating and geting knowledge about this micro-
scopic world? Indeed we have! With the interplay between scientific experiments
and theories, step by step is taken towards the discovery and understanding of
the atomic nucleus. This is the mission of Nuclear Physics.

The Content of this Thesis

Unfortunately, it has been notoriouly difficult to create a useful model for a
detailed description of nuclei heavier than uranium.

The atomic nucleus is a quantum mechanical system and as such, its full de-
scription is encoded in its so called wave function. Quantum mechanics describes
how the wave function for a nucleus can be obtained from the basic interaction
between its protons and neutrons. But the exact interaction is not known and
the guessed ones are usually to complicated to find the wave function for a heavy
nucleus. However, as a first step, one can focus on properties that depend on
the nucleus as a whole. Thus, it is a common practice to treat the interaction
between all pairs of particles in an average way and neglect the details of the
individual particles. With this technique one can describe the nucleus when it
is calm and not energetic.

The main theme in this thesis is to propose a model to go beyond the average
treatment and obtain a wave function that can be used to extract high energy
and dynamical properties.

The proposed model starts from the average picture. In extension to that, a
small extra interaction between all particles is added. This is in no way the
exact true interaction; rather it is an interaction that should mimic the true one
as good as possible but at the same time be simple enough in order to be useful
for heavy nuclei.
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The strength of the added interaction is adjusted such that it reproduces the
results obtained from the average picture in a regime where that picture is effi-
cient. But with the added interaction one can go beyond the average description
and calculate high energy and dynamical properties. Furthermore, because the
proposed interaction is simple enough, the model can be used to actually obtain
a wave function for heavy nuclei beyond uranium.

We have come a long way from our 1 mm object that we started with. Indeed,
with physics and mathematics we can free our brains from the limitations of
our senses.
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Part I

Introductory Framework

Context and Methodology
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Chapter 1

Introduction

Historical Context and Motivation

for The Model Presented in this Thesis

It’s best to know what you’re looking for before you start looking for it.
— Winnie-the-Pooh

This thesis is dedicated to the construction of a novel model which is aimed to
describe the structure of heavy and super-heavy atomic nuclei. The model gives
as output the nuclear spectra and the corresponding wave functions expressed
in the laboratory system. The wave functions can be further used to calculate
observables; such as electromagnetic transitions.

The model is based upon a mean-field description of the nucleus obtained from
an energy density functional. With that starting point, an effective Hamiltonian
is constructed. This Hamiltonian mimics the energy density functional as good
as possible but, at the same time, is simple enough to have acceptable calculation
times when applied to super-heavy nuclei. Nuclear spectra and wave functions
are obtained in beyond-mean-field calculations by the techniques of projections
onto good quantum numbers and the generator coordinate method.

In the future, this model could contribute to the search of answers to questions
like: Does the Island of Stability exists and is it possible to reach? How are the
heavy elements produced in the Universe? Is there a CP-violation beyond the
Standard Model of Particle Physics which contributes to the matter anti-matter
asymmetry in the Universe?
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1.1 Nuclear History

1.1.1 The Periodic Table of Elements

In 1869 Dmitri I. Mendeleev introduced the Periodic Table of Elements. It
showed a periodicity in chemical properties when the elements where ordered by
atomic weight. Immediately two questions arose: What causes the periodicity?
What are the boundaries of the table?

At the time, there where no knowledge about the internal structure of the atom
and none of its constituents, electrons, protons and neutrons, had been dis-
covered. Actually, the very existence of atoms, not just as an idea, was not yet
accepted. Hence, the time was not mature enough to answer these questions.

In the original table the lightest element was, as it is today, hydrogen and it was
the only element in the first row. The heaviest ones where thorium and uranium
which where the only known elements in the seventh row as we put up the table
today. At the time, it was perfectly valid to hypothesize about elements both
lighter than hydrogen and heavier than uranium.

However, with the discovery of the electron (J.J. Thomson, 1897), the atomic
nucleus (Rutherford, 1911) and the proton (Rutherford, 1917) it was realized
that an elements position in the table was determined by the number of electrons
around the nucleus. This is, as it is known today, equal to the number of protons
in the nucleus. At that time there was an ambiguity if there where additional
protons and electrons in the nucleus to make up for the atomic mass. This mass
problem was not solved until the discovery of the neutron (Chadwick, 1932). It
became clear that the chemical properties of the atoms where solely determined
by the number of protons in the nucleus and not by the atomic mass.

Finally, in 1913, Niels Bohr came up with a quantum model of the atomic
structure that could answer the first question: Where does the periodicity come
from? He postulated that the electrons where forced to move only in some
specific orbitals around the nucleus. It is the electrons near the surface of
the atom that participate in chemical reactions. Hence, the elements in the
same group, which have similar chemical properties, have the same number of
electrons in their outermost orbital.

Since hydrogen only has one proton in its nucleus even lighter elements could be
ruled out. However, the existence of heavier elements than uranium with its 92
protons, transuranium elements as these would be called, was not yet clear. In
1922 Niels Bohr in his Nobel lecture [1], for the prize he achieved for his atomic
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model, includes the element with 118 protons in the periodic table; even though
he does not mention the element explicitly in the text. Furthermore, he uses his
model to predict its electronic structure; indicating it would be a noble gas.

It was not until the early 1940:s that the question about the existence of
transuranium elements finally was answered definitely. It was done by the man-
made productions of the elements neptunium, with 93 protons, and plutonium,
with 94 protons. Since then, the quest of producing increasingly heavier ele-
ments has continued. The record today is 118 protons which is the very element
that Niels Bohr included in his Nobel Lecture: oganesson [2]. This element
completes the seventh row in the periodic table.

1.1.2 The Nuclear Chart and its Boundaries

The attraction between protons and neutrons, or nucleons with a common word,
is caused by the Strong Nuclear Force. This force is short ranged; basically
acting only between neighboring nucleons. In contrast, the repulsive electric
force between protons are long ranged. Therefore, for a large enough nucleus
the repulsion will win; the nucleus undergoes fission. Adding neutrons will
increase the stability. However, too many neutrons will result in a β−-decay,
which is a neutron that turns into a proton, with subsequent fission. Hence, the
question arises, which is the heaviest possible nucleus?

In Fig. 1.1, taken from Ref. [3], shows the Nuclear Chart. It contains all known
nuclei; both those found in Nature and the man-made ones. The stable nuclei
are indicated by black squares.

Up to this date, around 3300 nuclei are known. Of course, it would be highly
interesting to know how many nuclei, in principle, that could exist.

For a given number of protons there is an optimal number of neutrons; too many
or too few will result in a β-decay. The optimal number for each element defines
the β-stability line; here the stable isotopes are located. Hence, the Nuclear
Chart is bounded to the left and to the right because of the increasingly faster
β-decays of the nuclei farther away from the β-stability line.

In the upper part of the Nuclear Chart, due to the large electrostatic frustration,
the main decay modes are α-decay and spontaneous fission. This because those
modes are governed by the electromagnetic force which is stronger than the
weak force which is responsible for the β-decay.

Uranium is the heaviest element to be found in Nature because it happens to
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Figure 1.1: The Nuclear Chart. All known nuclei positioned at the numbers of neutrons N
and protons Z of which they consist. The colors indicate the main mode of decay which is
displayed in the labels. The elements with open black squares have lifetimes comparable to
the age of the Universe. The bars show the locations of the magic numbers. The picture
is taken from Ref. [3].

be the heaviest element that is stable during cosmological and geological time
scales. However, beyond uranium lies the region of Super-Heavy Nuclei (SHN);
often defined as nuclei with more than 104 protons. Exploration of this region
will most likely lead to a deeper understanding of the nuclear structure of exotic
elements and the boundaries of the Nuclear Chart.

Experimental research of SHN gives anchor points for theoretical models which
otherwise needs to relay on large extrapolations. A theoretical research of SHN
can guide experiments to pin down which isotopes to collide, and at which
energy, in order to create new elements.

1.1.3 The Island of Stability

It has been a long time strive to discover, both theoretically and experimentally,
the so called Island of Stability. The name refers to the possibility to have long-
lived nuclei, perhaps at a human time scale or even longer, well beyond uranium.
This possibility comes from the fact that nuclei have a shell structure. When a
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shell is fully occupied the nucleus is especially stable. The proton numbers, Z,
and neutron numbers, N , for which this happens are called magic. The magic
numbers are shown with bars in Fig. 1.1. The highest magic numbers that are
found in nature are Z = 82 and N = 126. These two numbers are combined in
the element lead. Hence, lead is double magic and the heaviest stable nucleus.
The Island of Stability should concentrate around the next double magic nucleus.
But which one is it?

Since the 1960:s it has been known that mean-field models, for example based
on Woods-Saxon potentials [4] and modified oscillator potentials [5], predict the
magic numbers Z = 114 and N = 184. More modern mean-field models push
the proton magic number as far as to Z = 126 [6].

1.2 Experimental Motivations for The Model

The progress made in the experimental study of SHN forces theory to keep
up. Improved models are needed in the region of SHN in order to guide ex-
periment towards the production of ever heavier isotopes and to interpret the
experimental data.

1.2.1 Recent Experimental Investigations

In recent years, the group of nuclear experimentalists at Lund University has
performed a series of experiments aimed to investigate the nuclear structure
of SHN.

We, the group of nuclear theory at Lund University, want to contribute to the
study of SHN with accurate calculations for the nuclear structure.

The α-decay 219Ra →215Rn – A Stepping Stone

As a built up for the experiments on SHN, an experiment for the α-decay of
219Ra to the daughter 215Rn was performed; see Paper I. The study of this
process has several motivations. For one thing, the nucleus 219Ra is one of the
most short-lived α-decayers. Also, it has been a debate about the ground state
spin of 219Ra; either it is 7/2+ or 11/2+. Both these values are in conflict with
the spherical mean-field value of 9/2+, where the odd neutron is located in the
g9/2-shell, and with the strong coupling limit of 5/2+, in which the total spin is
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equal to the projection onto the symmetry axis. Furthermore, 219Ra lies in or
near the region where static octupole deformations are likely to exist. Finally,
219Ra has potentially an isomeric state which can contribute to the α-decay.

The experimental research suggested the ground state spin for 219Ra to be 7/2+

and proposed a new decay scheme involving the isomeric state.

The theoretical study of 219Ra investigated the octupole deformation, the pro-
posed α-decay from the isomeric state and the spectrum.

In order to confirm the possibility for a static octupole deformation of 219Ra the
code HFBTHO v2.00d [7] was used. This code performs a self-consistent mean-
field calculation with an energy density functional. A mean-field treatment does
indeed give bulk properties such as the deformation.

For the interpretation of the experimental results, the α-decay rates, from the
ground state and the isomeric state of 219Ra into the two lowest lying states
in 215Rn, where calculated with the method in Ref. [8]. However, in order
to understand the ground state spin of 219Ra, a deeper investigation of the
spectrum was needed. For this the many-particle+rotor model [9] was used.
In this model a number of valence nucleons are described within a rotating
mean-field potential. With this method, the ground state spin of 219Ra can be
understood as emerging from configuration mixing.

Flerovium α-decay Chains – Passing through Z =114

By the same experimental group, experiments on SHN have been performed.
These are described in Papers II, 3 and 4. Especially, the experiments studied
α-decay chains that runs through the anticipated shell gap at Z = 114.

By measuring the released energy for each α-particle, Qα, one can get informa-
tion about the nuclear structure. A relative high Qα-value down to Z = 114 and
a low one down to Z = 112 would point towards a shell gap. However, no such
behavior was found. But, indeed, the highest neutron number was N = 176;
eight short from the expected magic number.

In connection to these experiments, we used the newly developed model in order
to calculate the spectra for four isotopes of 112Cn.
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1.2.2 Theoretical Considerations

The main theoretical tools for the investigation of heavy nuclei are mean-field
models. The bare two-nucleon interaction, known from scattering experiments,
can not be directly used; it becomes modified in the nuclear medium. Instead,
effective microscopic interactions are used. These interactions have free para-
meters which are fitted to experimental data of some kind. This data is often
of a static nature such as masses and radii. With this approach one can obtain
bulk properties of nuclei with high precision [10]. However, for more detailed
properties, such as the spectra, transitions and stability of SHN, the mean-field
models are not accurate enough to make precise predictions.

Motivated by the frontiers in the experimental research for the structure of SHN,
this thesis presents a model which is based upon mean-field models with effective
microscopic interactions. It refines those models by converting the mean-field
results into a Hamiltonian which can be used within a many-body framework
in a straightforward way. In the end, the final results, such as spectra and wave
functions, are obtained in the laboratory system.
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Chapter 2

Nuclear Theory

Experiment Reveals Nature
Theory Understands Nature

To the uneducated, an A is just three sticks.
— Winnie-the-Pooh

The quest to gain a detailed theoretical understanding of the atomic nucleus has
been proven to be hard to achieve. One reason for this is due to the fact that the
bare interaction between two nucleons is numerically ill-behaved; mainly because
of the impenetrable hard core of the nucleons at small, but finite, distances.
Also, the interaction is altered inside the nuclear medium in a not fully controlled
manner. A second reason is due to the large amount of particles which build up
the nucleus but not large enough to allow for the use of statistical mechanics. In
addition, the nucleus is held together by itself. There are no dominant central
force for which a residual force can be treated perturbatively as for the electrons
in an atom.
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2.1 Theoretical Frameworks – An Overview

The best medicine against being fooled?
Knowledge!
— Shellman

2.1.1 From a Microscopic Start and Upwards

This is the bottom to top approach. It starts with some microscopic constituents
from which the nuclear properties are derived.

From First Principles – QCD

Maybe the most straightforward and satisfying method to describe nuclei would
be to derive all properties from first principles. That is, from the theory of
Quantum Chromo-Dynamics (QCD). This is the well-established theory for the
interaction between quarks and gluons which are the building blocks of nucleons.

However, in the low energy regime of nuclear physics QCD is non-perturbative
due to a large coupling constant. Instead, one needs to rely on Lattice-QCD
(L-QCD). Here one introduces a finite and discretized space. In that way, cut-
offs both at the ultraviolet and the infrared ends follows in a natural way. With
this technique, it has been possible to determine single-nucleon properties such
as coupling strengths to the week axial current [11] and masses [12].

Despite the success for single nucleons, L-QCD has not yet been useful for sys-
tems of two or more nucleons [13]. In the near future, L-QCD may be successful
for two-nucleon systems. However, it is not realistic for L-QCD to ever be used
to describe emergent nuclear phenomena. Even though, it would be fruitful to
have a bridge between QCD and effective field theories.

Effective Field Theory

In an Effective Field Theory (EFT) one sees nucleons and pions as the basic
degrees of freedom; in contrast to quarks and gluons in QCD. This is motivated
by the confinement; only colorless objects can exists in the low energy regime.
The starting point of EFT is the most general Lagrangian which respects fun-
damental symmetries stemming from QCD. Furthermore, the terms are ordered
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in size based on the energy scale for which the EFT is expected to break down.
In this way, one has control over the approximations.

Up to this day, the interaction strengths are fitted to experiment. Hence, the
connection to QCD is just qualitative through the symmetries. In the future it
may be possible to derive those quantities from L-QCD; making a more direct
link between QCD and nuclear physics. One of the most prominent EFT are
the Chiral -EFT. It is based on the approximate chiral symmetry between up
and down quarks; the quark masses are much lower than the nucleonic mass.

Unfortunately, EFT is currently restricted to light nuclei due to the heavy com-
putational cost that comes with a many-body system.

2.1.2 From a Macroscopic Start and Downwards

This is the top to bottom approach. Instead of dealing with the details, one
takes a macroscopic point of view and tries to extract bulk properties of the
nucleus by considering it as a single object or as some kind of average of the
individual nucleons. This perspective reduces the computational cost greatly;
especially for heavy nuclei.

The Liquid Drop Model

In the far end of the macroscopic view lies the Liquid Drop Model. Already in
the early days of nuclear physics, it was experimentally found that the binding
energy per nucleon was rather constant: around 8 MeV. This indicates that
the nuclear force is short ranged. A nucleon only feels its immediate neighbors
and do not know about the rest of the nucleus apart from the Coulomb force.
Other facts, known from scattering experiments, are that the nuclear density is
independent of the number of nucleons and that the nuclear surface is rather
sharp. Those observations, short range force, constant density and a sharp
surface, point at the similarity between a nucleus and a liquid drop. In both
systems, a particle in the interior does not feel any net force whereas a particle
at the surface is pulled towards the center which gives rise to a surface tension.
It is interesting to notice that the surface tension of nuclei is in the order of 1018

stronger than that of water.

The liquid drop model is mathematically described by the Semi-Empirical Mass
Formula which gives the binding energy for given numbers of neutrons and pro-
tons. The formula was developed by Weizsäcker [14] and Bethe and Bacher [15].
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With this simple and intuitive model one can get accurate predictions for the
average behavior of ground state properties throughout the Nuclear Chart. For
example, binding energies and the beta-stability line are well described. Also fis-
sion barriers can be calculated; putting an upper bound on Z for which heavier
elements would undergo spontaneous fission.

The liquid drop model is a classical theory with no spectrum; only ground state
properties. A spectrum can be obtained by quantizing vibrations and rotations.
With this method it is possible to derive the Bohr Hamiltonian [16] which can
be solved by the Schrödinger Equation.

The Shell Model

It was found in the 1930:s that nuclei with a specific number of protons and/or
neutrons are especially stable. This means that they have higher binding energy
than expected from the semi-empirical mass formula. Those numbers became
known as magical and they are: 2, 8, 20, 28, 50, 82 for both protons and neutrons
and additional 126 for neutrons; see Fig. 1.1. Thus, these nuclei resemble the
behavior of the noble gases in the periodic table of elements. This leads to the
conclusion that there is a shell structure for the nucleons inside a nucleus in
very much the same way as for the electrons inside an atom. The Shell Model
was born.

The atom is held together by the potential stemming from the Coulomb inter-
action which is exactly known. This is not the case for the nucleus. Hence, the
first shell models simply guessed the form of the potential. From the short range
nature of the nuclear force, leading to a liquid drop behavior of the nucleus, the
potential felt by a nucleon is expected to be flat near the nuclear center and
steep at the nuclear surface.

The first shell model that reproduced all known magic numbers where made by
Maria Goeppert Mayer and J. Hans D. Jensen [17, 18, 19]. In order to achieve
this, they used an isotropic potential, either an infinite square well or a harmonic
oscillator, with a strong spin-orbit coupling.

A more realistic, and somewhat intermediate, alternative to the infinite square
well and the harmonic oscillator is the Woods-Saxon Potential [20] which has the
form of a Fermi function. However, this potential has no analytical solutions.

The isotropic shell model works well for nuclei close to magic numbers. However,
it does not succeed that well for nuclei in between magic numbers. The reason
for this is nuclear deformation.
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The Nilsson Model

In the 1950:s evidence for rotational bands started to show up in experiments.
Such a band is a sequence of states with angular momenta I = 0, 2, 4, 6, ... (in
units of ~) with energies proportional to I(I+1). This is the expected behavior of
a rotating body with a static deformation. In addition, large electric quadrupole
moments and associated strong transitions where found. The large values can
not be explained as coming from single particles alone. Instead, the deformation
of the nucleus as a whole comes into play.

With this knowledge, Sven Gösta Nilsson improved upon the existing shell model
by introducing the deformed and modified oscillator potential [21]. This is an
anisotropic potential which is flattened near the center. This is today known
as the Nilsson Model and with this one can calculate both binding energies and
deformations for all nuclei in a satisfactory way.

Shell models typically assume no residual interactions between particles apart
from the common potential. This is the view of independent particles for which
all interactions are captured in the average potential.

Configuration Interaction

A way to incorporate residual interactions between nucleons is to adopt an
effective interaction in a valence space around the Fermi level. The technique is
to assume a frozen core of nucleons filling up closed shells. For the rest of the
nucleons, the valence nucleons, an effective Hamiltonian is applied; preferably
derived from a realistic nucleon-nucleon interaction. This Hamiltonian is then
solved within the space of all possible single-particle configurations of the valence
nucleons in the chosen valence space. See, for example, Ref. [22] for a review.

In the limit where all nucleons are considered as valence nucleons one arrives at
the No-Core Shell Model. The first successful calculations for the no-core shell
model where made in the 1990:s for light nuclei [23].
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2.2 Established Theory used within The Model

I don’t believe anything that I don’t know.
— Shellman

2.2.1 Self Consistent Mean-Field Models

The potentials which are used in shell models and in the Nilsson model are
introduced by hand. They are usually chosen such that they resemble the effects
of the short range nature of the nuclear force and at the same time are simple
enough to be useful in calculations. Remarkably, these potentials can, with the
inclusion of a spin-orbit coupling, reproduce the magic numbers of nuclei.

However, it would be more satisfactory, and perhaps more accurate, to derive
the average potential from a microscopic interaction between the nucleons. This
can be done within Self Consistent Mean-Field Models.

These models are based upon the assumption that all the complex interactions
between all the nucleons in a nucleus can be approximated as if the nucleons
moved independently in a common potential: the Mean-Field. The aim is to
derive the mean-field directly from a nucleon-nucleon interaction; instead of
putting it in by hand.

Hence, the true interaction is assumed to be well approximated with a single-
particle potential. This implies that the total Hamiltonian, H, can be written
as a sum of one-body Hamiltonians, h; one for each nucleon.

The Hartree-Fock Method

In the Hartree-Fock (HF) method the many-body state for A nucleons, that
should approximate the true state as good as possible, is taken to be

|HF〉 =
A∏

i=1

a†ki |0〉 (2.1)

which is known as a Slater Determinant. Here |0〉 is the bare vacuum and {a†k}
are single-particle creation operators which place one particle in state k.

From energy minimization in the space of Slater determinants, the HF-method
gives the single particle spectrum as a result. The energies and states are the
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solutions to the single-particle Schrödinger equation

h |k〉 = ek |k〉 (2.2)

with |k〉 ≡ a†k |0〉 and {ek} being the single-particle energies. The corresponding
creation operators can be written as the linear combination

a†k =
∑

l

Dlkc
†
l (2.3)

where D is a matrix of complex numbers and {c†l } are the creation operat-
ors for a predefined single-particle basis. A convenient choice is 3D harmonic
oscillator states.

One way to find h from H is to express the HF-energy

EHF = 〈HF|H|HF〉 (2.4)

as a functional of the density, EHF[ρ], where

ρij = 〈HF|c†jci|HF〉 =
∑

k

DikD
∗
jk. (2.5)

Minimizing EHF[ρ] in the space of Slater determinants allows for the identifica-
tion of the matrix elements hij = 〈i|h|j〉 as

hij =
∂EHF[ρ]

∂ρji
. (2.6)

See Ref. [24] for details.

The Hartree-Fock-Bogoliubov Method

The nucleons inside the nucleus tend to form pairs coupled to I = 0. This is
the so called pairing. Hence, the nucleons within a shell can not be seen as
totally independent since they tend to pair up in time-reversed states. However,
this effect can be incorporated in a mean-field model with the Hartree-Fock-
Bogoliubov (HFB) method [25].

In the HFB-method so called quasiparticles are introduced. These are linear
combinations of particles and holes. The corresponding creation operators are
written as

β†k =
∑

l

Ulka
†
l + Vlkal (2.7)
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where U and V are matrices of complex numbers.

An HFB-state, |φ〉, is defined to be a vacuum with respect to all quasiparticles.
This implies that

βk |φ〉 = 0 ∀ k. (2.8)

Explicit, |φ〉 can be written as a product of quasiparticle annihilation operators
acting on the bare vacuum. That is

|φ〉 =
∏

k

βk |0〉 (2.9)

where the product runs over all k such that the state does not vanishes.

In an HFB-state pairing correlations are built in. There always exists a single-
particle basis, the so called canonical basis, in which the HFB-state can be
expressed as a linear combination of time-reversed pairs.

Define a general two-body Hamiltonian as

H =
∑

ij

tija
†
iaj +

1

4

∑

ijkl

v̄ijkla
†
ia
†
jalak (2.10)

where t represents the kinetic energy and v̄ijkl = 〈ij|v|kl〉 − 〈ij|v|lk〉 is an
antisymmetrized matrix element of a two-body interaction v. Minimizing the
energy in the space of HFB-states, with a constraint on the average particle
number, ends up in the HFB-Equations. In matrix form, these can be written

(
h ∆
−∆∗ −h∗

)(
U V ∗

V U∗

)
=

(
U V ∗

V U∗

)(
E 0
0 −E

)
(2.11)

where ∆ is the pairing field, defined by

∆ij ≡
1

2

∑

kl

v̄ijklκkl, κkl = 〈φ|alak|φ〉 , (2.12)

and E is a diagonal matrix containing all quasiparticle energies. This means that
the one-quasiparticle state β†k |φ〉 has the excitation energy Ek relative to the
HFB-vacuum |φ〉. The single quasiparticle Hamiltonian becomes h = t+ Γ− λ
where λ is a Lagrange multiplier for the particle number and Γ is the self-
consistent field which is defined as

Γij ≡
∑

kl

v̄iljkρkl, ρkl = 〈φ|a†l ak|φ〉 . (2.13)
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2.2.2 Symmetry Breaking

The mean-field methods usually give rise to a spontaneous symmetry breaking.
That is, the solutions do not have the symmetries of the underlying interaction.
Indeed, having the freedom of breaking symmetries during energy minimization
gives the possibility to find a solution with lower energy as compared to when
all symmetries are imposed.

One of the most striking symmetry violations is when the energy minimization
results in a deformed nucleus; violating the spherical symmetry of the Hamilto-
nian. This implies that the angular momentum has no definite value.

One could argue for this to be a drawback of the method because a deformed
solution can not be an eigenstate to the Hamiltonian. However, it actually
provides physical insight to nuclear phenomena. If the deformation is viewed
as the nuclear shape in the intrinsic frame, one can understand the emergence
of rotational bands which show up in many nuclear spectra. A rotational band
is expected for a deformed and rotating body; even though no real motion is
present in a stationary state. It seems that heavy nuclei are macroscopic enough
for symmetry breaking to be realized and produce macroscopic phenomena.

Also, for the HFB-method, the conservation of particle number is violated due
to the mixing of particles and holes. In the low energy regime of atomic nuclei,
the Hamiltonian conserves the number of particles. However, by breaking this
conservation one can incorporate pairing correlations in a mean-field description.

Both of the broken symmetries of angular momentum and particle numbers can
be restored with the techniques of Projections as described in Sec. 2.2.7.

2.2.3 Cranking

A deformed nucleus, at the mean-field level, breaks rotational invariance and
has therefore no definite angular momentum. However, the mean-field solution
is supposed to be an approximation of the true ground state and, for an even-
even nucleus, this state has I = 0. Thus, one expects the I = 0 component of
the mean-field state to be the dominant one.

In order to describe the states in the yrast band, which are the states with the
lowest energy for each angular momentum, it would be preferable to end up
with other angular momenta as the dominant part. This can be done with the
method of Cranking.
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This method was first introduced by Inglis [26]. The idea is to, for a given
angular momentum, make a transformation from the lab system into a rotating
frame for which the individual nucleon motion is as simple as possible. This
frame coincides with the frame in which the mean-field has a static deformation
and principal axes along the coordinate axes.

The transformation is achieved by adding the term −ωÎx to the Hamiltonian.
Here ω is the angular frequency of the rotating frame and Îx is the operator
for the angular momentum around the x-axis which is taken to be stationary
relative to the laboratory system. The added term represents the centrifugal
and Coriolis forces experienced in the rotating frame. Now one can solve for
Hω = H−ωÎx at the mean-field level and obtain the intrinsic wave function |φω〉
which depends on ω.

The wave functions obtained in this way have no good quantum number for the
total angular momentum as for any deformed solution. However, the projection
of the angular momentum onto the rotational axis, Ix ≡ 〈Îx〉, is a constant
of motion. This projection is identified as the collective angular momentum.
Added to that, there can be single-particle angular momenta parallel to the
symmetry axis. However, neglecting single-particle contributions implies that
Ix ≈ I. Hence, ω is adjusted until the desired value of I is obtained.

The energy in the laboratory system is calculated with the original Hamiltonian
from Eω = 〈φω|H|φω〉.

2.2.4 Nuclear Density Functional Theory

The framework of Density Functional Theory (DFT) reformulates quantum
mechanics in order to handle multi-particle systems. It was originally developed
for electronic systems; suited for solid-state physics and chemistry. Instead of
a many-particle wave function, with 3N degrees of freedom for N particles,
the ground state density, with only 3 degrees of freedom, plays the role as the
fundamental quantity. It is a remarkable fact that the ground state density
contains as much information as the many-body wave function. This fact is
stated as the Hohenberg-Kohn Theorem [27]: There is a one-to-one correspond-
ence between the ground state density and the external potential. Since the
internal interaction between the particles is universal, the density determines
the full Hamiltonian which in turn determines, in principle, all observables of
the system.

However, in DFT, the interaction is not represented by a Hamiltonian. Instead,
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the interaction is contained in the Energy Density Functional (EDF); the total
energy is a functional of the density.

Bringing DFT into nuclear physics is not trivial. This is partly due to technical
issues that comes within the nuclear medium. Such as two particle species,
pairing, spin dependence, a sharp surface and many-body forces. Furthermore,
there is also a formal issue due to the lack of an external potential; indeed,
the nucleus is a self-bound system. Without an external potential the true
ground state density is evenly spread out throughout whole space and contains
no information about the nuclear structure. Therefore, one needs to extract
the translational part of the nuclear state. But this symmetry breaking makes
the connection to DFT no longer straightforward; the Hohenberg-Kohn theorem
does not directly apply [28].

But inspired by DFT for electronic systems, the Nuclear -DFT approach uses an
EDF in favor of a Hamiltonian. Since the exact interaction among the nucleons
is not known, the EDF has no explicit connection to first principles and does not
necessary correspond to an underlying true interaction. Instead, the parameters
are fitted to some experimental data.

2.2.5 Microscopic Effective Interactions

One could imagine to use the bare nucleon-nucleon interaction as the two-body
interaction in the HF- and HFB-methods. Unfortunately, this is not possible
due to the hard core of nucleons. It is an experimental fact that the nucleon-
nucleon potential goes to infinity for distances smaller than 0.4 fm. This leads
to instabilities of the methods [24].

In addition, the exact nature of the nuclear force is not captured by the nucleon-
nucleon interaction alone. The nucleon-nucleon interaction obtained from ex-
periment gets altered inside the nuclear medium.

Therefore, one introduces Microscopic Effective Interactions.

Within an effective interaction, many-body interactions show up in addition
to the two-body interaction. This is because approximations, which excludes
details in the exact interaction, can be influenced by the presence of other nuc-
leons. However, it has turned out that a three-body interaction is both essential
and enough in order to get accurate results.

In principle, the form of an effective interaction can be chosen at will. But usu-
ally one wants to fulfill fundamental symmetries of Nature. The most prominent
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ones are: invariance under translation, rotation, time reversal, parity inversion,
Galilean (or Lorentz) transformation and the exchange of two nucleons of the
same type. The requirement to fulfill these symmetries puts strong restrictions
on the possible forms of the effective interaction.

2.2.6 The Skyrme Interaction

There are several effective interactions that have been used over the years. A
popular one, which is applied in this thesis, is the Skyrme Interaction [29].
Skyrme proposed a short ranged two-body interaction which respects the funda-
mental symmetries. It is expanded up to second order in momentum; assuming
higher orders to vanish due to the short range nature of the nuclear force. In
addition, Skyrme proposed a zero range three-body interaction.

Based on his originally work, most Skyrme interactions use the so called stand-
ard form of the interaction [30]. In coordinate space, this form of the two-body
interaction can be written

V (i, j) = t0 (1 + x0P
σ) δ (r)

+
1

2
t1 (1 + x1P

σ)
[
k†2δ (r) + δ (r) k2

]

+ t2 (1 + x2P
σ) k†δ (r) k

+ iW0 [σ(i) + σ(j)] · k† × δ (r) k

(2.14)

where σ is the spin operator, P σ ≡ 1/2 [1 + σ(i) · σ(j)] is the spin exchange
operator, r ≡ r(i)− r(j) is the relative coordinate, k ≡ − i

2 [∇(i)−∇(j)] is the
relative momentum operator (in units of ~), t0, t1, t2, x0, x1, x2, W0 are free
parameters and δ is the delta function.

The three-body contact term reads

V (i, j, k) = t3δ (r(i)− r(j)) δ (r(j)− r(k)) (2.15)

with the free parameter t3. It can be shown [31] that, within the HF-method
for even-even nuclei, this three-body interaction is equivalent with the density
dependent two-body interaction of the form

V (i, j) =
1

6
t3 (1 + x3P

σ) δ (r) ρα
(

r(i) + r(j)

2

)
(2.16)

for x3 = 1 and α = 1. However, it has been observed that treating x3 and α as
free parameters improves the results compared to experiments; even though the
direct connection to the underlying interaction then is lost.
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With the three-body interaction written as in Eq. (2.16), one has turned the
interaction into an EDF which can be used in the HF- and HFB-methods [32].

The free parameters of the Skyrme interaction are fitted to experiments. Differ-
ent sets of experimental observables lead to different Skyrme parametrizations.
Some commonly used ones may be mentioned.

The SLy4 [33] parametrization is based on a fit for infinite neutron matter which
can be used for neutron stars. It is generalized to include finite nuclear matter
and fitted to binding energies and charge radii of double magic nuclei.

The SIII [34] parametrization puts x3 = 1 and α = 1; corresponding to a true
interaction. Also this parametrization uses the binding energies and charge
radii as the fitting parameters. However, the fit is done directly for a selection
of double magic and semi-magic nuclei.

Of the same spirit is the parametrization UNEDF1 [35]. It does the same
type of fit for binding energies and charge radii but, with the use of com-
putational power, applied to 75 nuclei; both spherical and well deformed.
Furthermore, the selected nuclei are mostly heavy ones; 47 of them range
between Z = 88 and Z = 108. This parametrization is the most modern
one of those mentioned here.

Instead of ground state properties, the SkM* [36] parametrization is based
on characteristics associated with collective vibrations; especially charge
dipole and monopole vibrations. On top of that, it is fitted to fission
barriers in the actinide region: Z = [89, 102].

2.2.7 Beyond-Mean-Field Methods

Using EDF:s in the framework of HFB has been proven to give bulk proper-
ties of nuclei, such as binding energies and charge radii, with high accuracy
and precision [10].

Despite the success of mean-field methods, and the physical insight they
provides, they can not be the complete picture. A true eigenstate should
respect all symmetries of the Hamiltonian and only such a state can be
properly labeled with good quantum numbers. For example, a deformed
state has no definite angular momentum. But in order to get reliable
theoretical spectra and to calculate electromagnetic transitions it is crucial
to have good angular momentum without the need of extra assumptions
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for going from the intrinsic system into the laboratory system. Hence, it
is preferable to reach Beyond-Mean-Field.

Projections onto Good Quantum Numbers

A many-body state obtained within a mean-field method can, in principle,
be written as a linear combination of states which all have good quantum
numbers. Hence, one can project out the one with the desired number.

The projection operators presented here are restricted to be acted upon
a state with good number parity. This means that the state does not
mix even and odd particle number which implies that it also does not
mix integer and half-integer angular momenta. This is indeed true for an
HFB-state [24].

The projection operator for particle number reads [37]

P̂N =
1

π

∫ π

0

e−iθ(N̂−N)dθ (2.17)

where N̂ =
∑

l a
†
lal is the number operator and N is the number to be

projected out. Note that this operator is used for both neutrons and
protons individually.

The projection operator onto total angular momentum I and its projection
M onto the laboratory z-axis can be written [37]

P̂ I
MK =

2I + 1

8π2

∫ 2π

0

dα

∫ π

0

dβsin(β)

∫ 2π

0

dγDI∗
MK(α, β, γ)R̂(α, β, γ) (2.18)

where (α, β, γ) are the three Euler angles, the number

DI
MK(α, β, γ) ≡ 〈IM |R̂(α, β, γ)|IK〉 (2.19)

is an element of the Wigner D-matrix and

R̂(α, β, γ) = e−iαÎxe−iβÎye−iγÎz (2.20)

is the rotation operator with Îi being the angular momentum operator
along the i-axis.
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In the projection operator for the angular momentum, an additional quantum
number K ∈ {−I, I} is showing up. In the end, the final state is written
as the linear combination

|IM〉 =
I∑

K=0

gIKP̂
I
MK |Φ〉 (2.21)

where the coefficients gIK are found from energy minimization. In the case
of an axially symmetric nucleus, K can be interpreted as the projection of
the total angular momentum onto the symmetry axis.

Note that, in general, the summation over K should start at −I. However,
for a state with good signature, the states P̂ I

MK |Φ〉 and P̂ I
M−K |Φ〉 are

identical [24]. Therefore, in this case, the negative K-states do not add
anything new.

In a numerical computation the projection operators need to be discretized.
How this can be done is shown in App. B.

The Generator Coordinate Method

In the mean-field methods the many-body state is expressed as a single
Slater determinant of single-particle or quasiparticle nature. In contrast
to that, a many-body state obtained from a beyond-mean-field method is
a correlated state; a super position of several Slater determinants. A direct
application of this statement gives the ansatz

|Ψ〉 =
∑

a

ha |Φa〉 (2.22)

for the many-body state |Ψ〉. Here {|Φa〉} are Slater determinants, which
define a many-body basis, with weights {ha}. The index a represents all
parameters needed in order to characterize the Slater determinant.

This is the starting point for the Generator Coordinate Method (GCM).
This method was first introduced by Hill and Wheeler in 1953 to describe
fission [38]. Directly from the Schrödinger equation one arrives at the
Hill-Wheeler Equation

∑

a

haHa′a = E
∑

a

haOa′a (2.23)
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where
Ha′a = 〈Φa′ |H|Φa〉 , Oa′a = 〈Φa′|Φa〉 (2.24)

are the matrix elements for the Hamiltonian and the overlap in the many-
body basis. From the Hill-Wheeler equation one can obtain the coefficients
ha and the energy E for the state |Ψ〉.
In principle, any set of coordinates a can be used. However, the method is
particular well suited to describe correlations of large amplitude collective
motions: vibrations and rotations. In that case, parameters for the nuclear
deformation are the ones to be used.
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Chapter 3

Description of The Model

Beyond-Mean-Field

by Mapping Nuclear-DFT

into an Effective Hamiltonian

The more you think about it,
the more you realize there are no simple answers.

— Winnie-the-Pooh

Nuclear-DFT is the main tool for the theoretical study of the major part of
the Nuclear Chart; from medium mass nuclei all the way up to SHN. The
results obtained from Nuclear-DFT have been demonstrated to reproduce
experimental data on bulk properties, for example masses, quadrupole mo-
ments and radii, with high precision [10]. Those are properties that are
associated with static degrees of freedom for the nucleus. However, for
properties associated with dynamical degrees of freedom, such as rota-
tions, vibrations and transitions, the results from Nuclear-DFT are not
that adequate.

Since Nuclear-DFT necessarily leads to an intrinsic state, not a labor-
atory state, it breaks fundamental symmetries and does not necessarily
have good quantum numbers. So, for example, electromagnetic trans-
itions are forced to be treated in a semiclassical way in this framework.
A full quantum treatment requires good angular momenta. That implies
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symmetry restoration and the introduction of multi-mean-field states; a
beyond-mean-field approach.

The objective of the presentation here is to describe the construction of
a novel beyond-mean-field model applicable to medium mass nuclei all the
way up to SHN. The model is able to produce spectra and proper wave
functions. This means that the wave functions are expressed in the laborat-
ory system with good quantum numbers and are accurate enough in order
to calculate observables; for example electromagnetic transitions. For the
model to be applicable to SHN, it needs to be simple enough to have ac-
ceptable calculation times. At the same time, the model has to capture
enough physics in order to be a good approximation over more or less the
whole Nuclear Chart.

Because of the success of Nuclear-DFT this framework is used as a starting
point and is further extended in order to achieve nuclear spectra and proper
wave functions.

Since wave functions with good quantum numbers are a desired feature,
symmetry restoration is mandatory. In order to capture collective excita-
tions, such as rotational bands, degrees of freedom associated with large
amplitude collective motions are included through the GCM. In addition,
to capture single-particle excitations, quasiparticle excitations on top of
the many-body basis-states within GCM are introduced. That is done in a
way that resembles the excitations caused by temperature. This procedure
is described in Sec. 3.5.

The model can schematically be described as DFT→GCM+Temp.+Proj.

3.1 Issues with an EDF in GCM and Projections

The use of an EDF within GCM and Projections can give rise to formal
and technical issues.

It is a common feature that an EDF, such as the Skyrme interaction, has
the two-body interaction written as an expansion up to second order in re-
lative momentum. This expansion serves well for ground state properties
where the momentum is low. But it becomes non-realistic for high mo-
mentum interactions. Indeed, at the mean-field level the high momentum
part is never probed and can safely be ignored [39]. However, in the GCM,
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when mixing many-body states, this high momentum regime could give
rise to non-physical contributions.

The density dependent part of an EDF, which corresponds to a contact
interaction, can cause divergences. Indeed, an exact and analytical treat-
ment of a δ-potential gives an infinite binding energy [40]. Again, the full
δ-potential is not probed at the mean-field level whereas it can be so in
the mixing process of GCM.

Hence, the use of an EDF in the GCM may require a cut-off in momentum
in order to avoid divergences.

Furthermore, the use of the transitional density in off-diagonal elements of
the Hamiltonian using the generalized Wick’s theorem [41] is inconsistent
and can cause divergences [42]. Moreover, introducing approximations in
the Hamiltonian, especially neglecting the exchange contribution, can give
rise to poles both in the GCM and for projections [43].

In addition to all that, it is not well-defined how to treat the density de-
pendence when mixing two many-body states which, in general, have dif-
ferent densities. Also, turning the density into an operator is not straight-
forward for α 6= 1 in Eq. (2.16). However, several recipes have been pro-
posed for dealing with the density dependence at the beyond-mean-field
level [42, 44, 45, 46].

In order to use the success of EDF:s within HFB and extend the framework
with the GCM and projections, but at the same time avoid the issues
mentioned in this section, our method is as follows: Postulate an effective
two-body Hamiltonian with no density dependence. Map results from
an EDF into the Hamiltonian. This Hamiltonian can then be used in
a straightforward way within GCM and projections. Also, take care to
include all exchange terms.

3.2 The Effective Hamiltonian

At the heart of the model lies The Effective Hamiltonian: Heff . It is
postulated to be a two-body operator with separable interactions which
should capture the most important physical effects in atomic nuclei and at
the same time be efficient enough to be applicable to SHN.
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The Effective Hamiltonian can be divided into three parts as

Heff = H0 +HQ +HP . (3.1)

Here H0 is a spherical single-particle potential obtained from Nuclear-DFT.
This part should capture the bulk properties of the nucleus at the mean-
field level. The term HQ is a modified quadrupole interaction that repres-
ents the quadrupole deformation. The last part, HP , contains the pairing
between nucleons of the same species.

In order to achieve feasible calculation times when applied to SHN, Heff

has been chosen as simple as possible. That is, no explicit three-body force
and separable two-body forces. However, the interactions have been care-
fully selected such that Heff , despite its simplicity, still generates accurate
results. It is based on a physical insight of the most important degrees
of freedom for the atomic nucleus; namely: quadrupole deformation and
pairing. Also, it is known that a quadrupole-quadrupole interaction results
in a deformed Nilsson potential and therefore gives accurate results at the
mean-field level.

The Pairing-plus-Quadrupole Model

The Effective Hamiltonian resembles the Pairing-plus-Quadrupole Model.

It was first found by Elliot in 1958 [47] that eigenstates to a quadrupole
operator can be used to build up rotational bands. That is done by viewing
the eigenstate as an intrinsic state and integrating it over all space angles
weighted with Wigner matrices to obtain the laboratory state for given
angular momentum.

The concept was further developed by Belyaev [48] by considering an inter-
action between a single-particle quadrupole moment and the total quad-
rupole moment of the nucleus: a quadrupole-quadrupole interaction. In
addition to that, he included a pairing interaction and therefore introduced
the pairing-plus-quadrupole model.

For a review of the Pairing-plus-Quadrupole model and motivations for the
same, see, for example, Baranger and Kumar [49, 50], Bes and Sorensen [51]
and references therein.
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The Normal-Ordered Two-Body Approximation

The form of the Effective Hamiltonian, as a one- and two-body operator, is
the same as in the Normal-Ordered Two-Body Approximation (NO2B) [52].
It is known that a three-body force is crucial to incorporate in order to
get an accurate description of atomic nuclei. However, the three-body
part leads to a heavy computational load for beyond-mean-field calcula-
tions. But in NO2B a reference state, preferably taken as an HF-state, is
introduced. Relative to the reference state, a large part of the full three-
body interaction can be incorporated in the one- and two-body parts; the
residual part is neglected.

Indeed, the explicit expression of the Hamiltonian in NO2B can be derived,
in principle, from a microscopic effective interaction. However, in this work
Heff is chosed based on physical knowledge of the most important degrees
of freedom for the atomic nucleus and the interaction strength is adjusted
such that Nuclear-DFT-results obtained from an EDF are reproduced.

3.2.1 The Spherical Single-Particle Potential

The spherical single-particle potential is written as

H0 = E0 +
∑

i

eia
†
iai (3.2)

where E0 is a constant and ei is the single-particle energy for state i with a†i
(ai) being the corresponding creation (annihilation) operator. The single-
particle spectra is found from a Nuclear-DFT-calculation with a spherical
constraint. The constant E0 is chosen such that the HF-energy (2.4) from
Heff , for a spherical shape, becomes equal to the binding energy obtained
by the Nuclear-DFT-calculation.

The state i is characterized by the usual quantum numbers for a spherical
potential. That is,

a†i |0〉 = |τi, ni, ji,mi, li, si〉 (3.3)

where τ is the isospin (τ = p for protons and τ = n for neutrons), n is
the principal quantum number, j is the total angular momentum with the
projection m on the z-axis, l is the orbital angular momentum and s is the
spin of the nucleon. Note that s = 1/2 for all nucleons and can therefore
be omitted. Also, as a consequence of that, j = l ± 1/2.
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The solution obtained from Nuclear-DFT can be viewed as the reference
state within NO2B. When the Hamiltonian is expressed in the single-
particle basis of this reference state the major part of the three-body in-
teraction can be captured within one- and two-body operators [52].

3.2.2 The Modified Quadrupole Interaction

The quadrupole operator that originally appeared in the pairing-plus-
quadrupole model is

Q̂2µ = r2Y 2µ (3.4)

where r is the radial coordinate and Y 2µ is a spherical harmonic. This
operator works well at the mean-field level but the r2-dependence is non-
realistic far away from the ground state. In Ref. [53] Kumar and Sørensen
derive a modified radial dependence of the quadrupole force in a self con-
sistent way. That is, at equilibrium, the density is required to be pro-
portional to the potential. The starting point is a spherical Woods-Saxon
potential with the inclusion of a spin-orbit coupling and a Coulomb interac-
tion. Assuming small deformations, the quadrupole interaction is obtained
from a first order Taylor expansion of the spherical potential. In addition,
the interaction respects the expected symmetries of the nuclear force.

The model in this work uses the radial dependence derived by Kumar and
Sørensen with two minor differences which will be described in this section.

The operator for the modified quadrupole interaction can be divided into
three parts. That is, using a tilde to distinguish it from the ordinary
quadrupole operator,

Q̃2µ
τ = Q̃2µ

τ, C + Q̃2µ
τ,WS + Q̃2µ

τ, SO (3.5)

which corresponds to the Coulomb interaction, the Woods-Saxon potential
and the spin-orbit coupling. Note that there are two separate quadrupole
interactions for the two nucleon species which is indicated by the sub-
script τ .
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The Coulomb Interaction

The first term of Eq. (3.5) represents the Coulomb interaction between
protons. This term is identical to the one in Ref. [53] and reads

Q̃2µ
τ, C = −r∂HC

∂r
Y 2µ δτp (3.6)

where HC is the electric potential energy for a single proton. It is taken
to be, in SI-units,

HC =
Ze2

4πε0

[
1

r
θ(r −Rp) +

1

Rp

(
3

2
− 1

2

(
r

Rp

)2
)
θ(Rp − r)

]
(3.7)

where e is the elementary charge and θ is the Heaviside step function.
This form corresponds to the electric interaction between one proton and
a homogeneously charged sphere of radius Rp and total charge of Ze. The
radius Rp is interpreted as the radius parameter for protons: the radius
where the proton density is half the maximum value at the center. The
radial parameters for both nucleon species are related to the root-mean-
square radii and are, in this work, given by

Rτ = 0.9

√
5

3
〈r2〉τ (3.8)

which is the approximate relation for a Fermi distributed density [54]. The
expectation value 〈r2〉 is calculated from Nuclear-DFT.

The Woods-Saxon Potential

The second term of the modified quadrupole interaction (3.5) is

Q̃2µ
τ,WS = −RτWτ

∂fτ
∂r

Y 2µ. (3.9)

It originates from the Woods-Saxon potential with the radial form factor

fτ =
1

1 + exp

(
r −Rτ

a

) (3.10)
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where a is the diffuseness parameter, taken to be a = 0.9 fm, and Rτ is the
radius parameter (3.8). The constant Wτ is the depth of the Woods-Saxon
potential and it is given by

Wτ = V0

(
1± κN − Z

N + Z

)
(3.11)

where the upper and lower signs are for protons and neutrons, respectively.
For the values of V0 and κ the so called universal parameters are used which
are applicable throughout the whole Nuclear Chart [55]. The values are
V0 = −49.6 MeV and κ = 0.86. Note that the diffuseness parameter is
taken to be larger than in Ref. [55] since the reproduction of the Nuclear-
DFT-results became more accurate with the larger value.

In expression (3.9) for Q̃2µ
τ WS the radial parameter Rτ appears instead of

the radial variable r as it does in Ref. [53]. The reason for this can be
traced back to a different kind of stretching of the nucleus. Kumar and
Sørensen stretch the nucleus in a continuous way whereas in this work the
diffuseness thickness of the nuclear surface is taken to be constant and
independent of deformation. This has been investigated in Ref. [56].

The Spin-Orbit Coupling

The third, and last, term of Eq. (3.5) corresponds to the spin-orbit coup-
ling. It can be written as

Q̃2µ
τ, SO =

Wτvsoλ
2

2

(
∂2fτ
∂r2
− 1

r

∂fτ
∂r

)
1

2

(
l · s Y 2µ + Y 2µ l · s

)
. (3.12)

The strength of the spin orbit coupling vso and the constant λ are kept
from Ref. [53]. Those are vso = 32 and λ = ~

Mc
(1 +A−1) with the nucleon

mass M = 939 MeV/c2.

In this work, as opposed to Ref. [53], the operator is written in a symmetric
way. By this, the ambiguity in the ordering of l · s and Y 2µ is avoided;
indeed, they do not commute. Furthermore, the operator l ·sY 2µ does not
have the same properties under Hermitian conjugation as the spherical
harmonics: Y 2µ† = (−1)µY 2−µ. However, the symmetric version has this
symmetry. Letting all terms in the modified quadrupole interaction respect
that symmetry simplifies the calculations.

34



The Modified Quadrupole Operator inside The Effective Hamiltonian

The modified quadrupole operator, apart from the Coulomb interaction,
acts only at the nuclear surface which can be seen from the derivatives of
the form factor. This is a more realistic type of quadrupole interaction
than the originally one with its r2-dependence.

The modified quadrupole interaction in the Effective Hamiltonian reads,
when antisymmetrized,

HQ = −1

4
χ
∑

ijkl

2∑

µ=−2

(
Q̃2µ
ik Q̃

2µ∗
lj − Q̃2µ

il Q̃
2µ∗
kj

)
a†ia
†
jalak (3.13)

where {Q̃2µ
ik } are the matrix elements of the modified quadrupole operator

in the basis of single-particle states. These can be written

Q̃2µ
ik = 〈i|Q̃2µ

p |k〉 δτi,pδτk,p + 〈i|Q̃2µ
n |k〉 δτi,nδτk,n. (3.14)

The strength of the modified quadrupole interaction is modulated by χ.
This parameter is the only free parameter in Heff and is determined by a
fit to Nuclear-DFT-results which is described in Sec. 3.3.

For convenience, a separable form ofHQ is chosen. However, it is important
to notice that any nuclear interaction can be written as a sum of separable
terms. This sum can formally be found from, for example, a singular value
decomposition [57]. Furthermore, the separable terms can be expressed in
a multipole expansion; in order to explore the physical degrees of freedom
associated with the nuclear shape. Viewed in this way, HQ can potentially
be derived, and extended, from a microscopic effective interaction.

3.2.3 The Pairing Interaction

For the pairing interaction the Seniority Model is used. In this model
one assumes a constant pairing strength between all time-reversed single-
particle states within a window around the Fermi level. These pairs are

|j,m〉 and (−1)j−m |j,−m〉 (3.15)

where all the other quantum numbers are equal. The interaction strength
is allowed to be different for protons and neutrons. Therefore, the pairing
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Hamiltonian can be written

HP = −1

4

∑

q∈{n,p}
GqP q

ijP
q
kla
†
ia
†
jalak. (3.16)

Here Gq is the pairing strength between particles of type q and P q picks
out time-reversed states; explicitly it is written as

P q
kl = (−1)jl−mlδ(τnlj)k,(τnlj)lδmk,−ml

δτl,q. (3.17)

The value of Gq is calculated within the Uniform Model [54] in which all
single-particle levels in the pairing window are considered to be equidistant
in energy. From this one can find a relation between the interaction
strength and the pairing gap, ∆, which reads

∆ = 2S exp

(
− 1

Gqρq

)
(3.18)

where [−S, S] is the pairing window in which the pairing interaction is con-
sidered to be active, in this work is S = 30 MeV, and ρq is the level density
for given nucleon species. Empirically it is known that the average pairing
gap follows the relation 12 MeV/

√
A. However, it has been shown [58]

that within a particle number projection the experimental values are bet-

ter reproduced with the scaled version ∆̃ = 0.7 ×∆. The level density is
calculated by averaging all single-particle levels within the pairing window.
This becomes, in general, different for protons and neutrons.

The pairing strength found from the uniform model reproduces the average
pairing gap when it is used within a uniform single-particle spectra. How-
ever, when it is used together with a more realistic, non-uniform, spectra
the variations in the pairing gaps due to shell structure can be captured.

3.3 Mapping an EDF into The Effective Hamiltonian

A crucial step in the model is to go from an EDF to a two-body Hamilto-
nian with no density dependence. This is done by adjusting the free para-
meter χ in the modified quadrupole interaction (3.13) such that it repro-
duces results obtained from Nuclear-DFT. Since χ represents a quadrupole
interaction, the quantity used for comparison is the binding energy as func-
tion of the axial symmetric quadrupole moment 〈Q̂20〉.
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Hence, axial symmetric HF-calculations for several constraints on the quad-
rupole moment is performed; both with an EDF and with Heff . The aim
is to let the two curves coincide as good as possible by adjusting χ.

Therefore, the HF-energy (2.4) from Heff with constraints on the quad-
rupole moment needs to be calculated. Since axial symmetry is imposed,
only the term with µ = 0 in HQ (3.13) contributes to the energy. Addi-
tionally, at the HF-level, the pairing interaction is neglected. With this,
the HF-energy is given by

EHF = 〈HF|H0 +HQ(µ = 0)− λQ̃20|HF〉 (3.19)

where λ is a Lagrange multiplier. Note that the constraint is on the mod-
ified quadrupole moment instead of the original one; this will simplify the
calculations. With the definition of the density ρij ≡ 〈HF|a†jai|HF〉, the
HF-energy (3.19) can be expressed as an EDF according to, see Ref. [24],

EHF[ρ] = E0 +
∑

i

eiρii

− 1

2
χ
(

Tr
[
ρQ̃20

]
Tr
[
ρQ̃20†

]
− Tr

[
ρQ̃20ρQ̃20†

])

− λTr
[
ρQ̃20

]
.

(3.20)

The single-particle Hamiltonian (2.6) is calculated as

hij =
dEHF[ρ]

dρji
= eiδij − χ

(
Tr
[
ρQ̃20

]
Q̃20
ij −

[
Q̃20ρQ̃20

]
ij

)
− λQ̃20

ij (3.21)

where the fact that Q̃20 is Hermitian has been used. Having constraints on
the modified quadrupole moment makes it possible to combine the second
and fourth term. Hence, one can define a new variable that controls the
constraint. Make it

q ≡ χTr
[
ρQ̃20

]
+ λ. (3.22)

In this way, the unknowns χ and ρ has been absorbed into a new Lagrange
multiplier q. Now h can be solved straightforward if one treats the third
term as a first order perturbation which is justified by the fact that this
term represents the exchange interaction. Hence, diagonalize

eiδij − qQ̃20
ij (3.23)
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to get the zeroth order single-particle spectrum for several values of q.
For each single-particle spectrum, and the associated HF-state, both the
density and the quadrupole moment can be extracted. Hence, with this
procedure, the HF-energy from Heff , Eq. (3.20) with λ = 0, can be calcu-
lated and expressed as a function of the quadrupole moment.

In the end, χ is chosen such that EHF, obtained from Heff , is reproducing
the binding energy obtained from an EDF as good as possible. However,
since HQ is derived from a first order Taylor expansion, the results from
Heff is expected to deviate from the EDF for large enough deformations.
Therefore, only a selected range of the quadrupole moments are considered
when fitting χ.

An example for the fit of χ for the nucleus 48Cr is shown in Fig. 3.1.
Instead of the quadrupole moment 〈Q̂20〉 the dimensionless deformation

parameter β ≡ 4π
5
〈Q̂20〉/〈r2〉 is used as the variable to plot the HF-energy

against. The expectation value 〈r2〉 is obtained from the single-particle
spectrum. The Nuclear-DFT-results are well reproduced in the interval
−0.25 ≤ β ≤ 0.50.

3.4 The Many-Body Basis

With χ fixed, the Effective Hamiltonian is used in the framework of GCM.
The many-body wave functions, which are used as basis states in the GCM,
are obtained within the HFB-method. The collective coordinates which
generate the basis are the deformation parameters β and γ; triaxiality is
allowed. A grid of HFB-vacua over the (β, γ)-plane is obtained by having
a set of constraints on

βx =
4π

5

〈Q̂20〉
〈r2〉 , βy =

4π

5

√
2
〈Q̂22〉+ 〈Q̂2−2〉

〈r2〉 . (3.24)

From these, the deformation parameters are obtained according to

β =
√
β2
x + β2

y , γ = arctan (βy/βx). (3.25)

The (β, γ)-plane is sampled as homogeneous as possible. Therefore, in-
spired by the seeds in a sunflower, the values of the deformation paramet-
ers for the n:th basis state goes as β ∝

√
n− 1 and γ =

√
n− 1 ϕ where

ϕ ≈ 137.51◦ is the golden angle.
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Figure 3.1: Binding energy as a function of the deformation parameter β for the nucleus
48Cr. The energy is obtained at the HF-level; thus no pairing is included. The red curve
is from Nuclear-DFT whereas the blue curve comes from the Effective Hamiltonian. This
is for the best possible value for χ.

In addition to the deformation, for each grid point, different values for
the cranking and for the pairing are used. This is an attempt to include
dynamical fluctuations associated with these two degrees of freedom.

In the method of cranking one adds the term −ωÎx; see Sec. 2.2.3. In this
work, the angular momentum is constrained to Ix ∈ {0, 4, 8} and each point
in the grid is assigned one of these values randomly. The corresponding
angular frequency ω is estimated by

ω =

√
Ix(Ix + 1)

Jx
(3.26)

where Jx is the moment of inertia around the x-axis for the nucleus. It is
estimated in the same way as in Ref. [59].

Dynamics in the pairing within the many-body basis is included by scaling
the pairing gaps for both protons and neutrons. This is done by the use

of ∆̃τ = gτ∆̃ in the calculation of Gτ (3.18). In this work the weight is
gτ ∈ {0.6, 1.0, 1.4, 1.8}. For each state in the grid gn and gp are individually
assigned one of these values randomly.
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Figure 3.2: The HFB-energy for 48Cr in the (β, γ)-plane. The plane is drawn with the
Lund convention: γ = −30◦ along the horizontal axis and γ = 60◦ along the vertical axis.
Each cross represents an accepted HFB-state with an excitation energy shown by the color.

For given constraints on β and γ, and fixed values for Ix, gn and gp, an
HFB-state and its energy is obtained by solving the HFB-equations (2.11)
for Heff . Only HFB-states below a certain cut-off in excitation energy
are allowed as basis states. In Fig. 3.2 an example for the nucleus 48Cr is
shown. Each cross represents an accepted HFB-state with an excitation
energy shown by the color. In this calculation, 48Cr has a prolate minimum
centered around γ = 0◦ and β = 0.25.

3.5 Temperature

The chosen collective coordinates account for the dominant collective de-
grees of freedom in atomic nuclei. Namely: quadrupole deformations, vi-
brations, rotations and pairing.

However, in addition to the collective degrees of freedom, it would be
preferable if the model also could include single particle behavior. This
can for example be achieved by, in the many-body basis, including states
with quasiparticle excitations built upon the HFB-vacuum. Another way,
which is incorporated in this model, is to excite each HFB-vacuum in the
many-body basis in a way that resembles the characteristics of temperature.
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That is, an HFB-vacuum, |φ0〉, is excited into the state

|φ〉 = N exp

(∑

i<j

zijβ
†
i β
†
j

)
|φ0〉 (3.27)

where N is a normalization constant and {zij} are, in general, complex
numbers to be selected. From Thuless theorem [24], this indeed is an HFB-
vacuum to some set of quasiparticle operators as long as the matrix z is
skew symmetric. In this model a Boltzmann distribution of quasiparticles
are required. This is achieved by the choice

zij = ±e−(Ei+Ej)/kBT (3.28)

where {Ei} are quasiparticle energies. The sign is randomly picked for
each state and for each matrix element. The temperature kBT is chosen
such that the part of |φ〉 which contains the quasiparticle pair with the
lowest energy has the weight b compared to |φ0〉. This means that

kBT = −(E1 + E2)/ ln(b). (3.29)

Note that |φ〉 is a mixture of multi-quasiparticle states. Increasing in both
the number of quasiparticle pairs and the energy of those pairs but with
diminishing weights.

The parameter b can be seen as a convergence parameter which is shown
in Fig. 3.3. The figure displays the energy for a selected set of states in the
nucleus 24Mg. The solid lines are states in the yrast band. Those states
are not improved by the introduction of temperature; indeed, those states
are expected to be of a collective nature. In contrast to that, the states
above the yrast band, represented by the dashed lines, are improved by
the temperature. This is in agreement of the interpretation of those states
as quasiparticle excitation on top of the yrast states.

The excited states have an improved convergence in the range b = [0.3, 0.6].
Therefore, in this work, the value b = 0.45 has been picked.

The many-body basis of HFB-states is in general overcomplete. However,
by mixing in multi-quasiparticle components into the basis states, together
with the random sign in Eq. (3.28), the probability for orthogonal com-
ponents of the basis states increases. This implies an enlargement of the
space spanned by the basis.
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Figure 3.3: The energy for some low lying states in the nucleus 24Mg as a function of the
temperature parameter b. The angular momenta and parity for each state are written out
to the right of each curve. The solid lines represent states in the yrast band whereas the
dashed lines are excited states above the yrast band.

Also, the temperature increases the probability for the basis states to have
pairwise non-vanishing overlaps; large enough to be handled by the nu-
meric. This is important in order to have stable calculations in the frame-
work of GCM.

Thus, this temperature inspired mixture of multi-quasiparticle excitations
within each many-body basis state has two advantages. First, it will add
the features of single particle behavior on top of the collective degrees of
freedom introduced by the generated coordinates. Second, it increases the
probability for the basis states to be independent and at the same time
have pairwise overlaps.
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3.6 GCM and Projections

The HFB-method breaks, in general, both the rotational symmetry and the
conservation of particles. This results in non-definite angular momentum
and particle numbers. These two symmetries can be restored with the
technique of projections as described in Sec. 2.2.7.

The projections are performed within the framework of GCM. In GCM,
when solving the Hill-Wheeler equation (2.23), the matrix elements of the
Effective Hamiltonian and the overlap in the many-body basis are needed.
With the inclusion of projections, these elements are [60]

Ha′K′,aK = 〈φa′ |Heff P̂
I
K′KP̂

N P̂Z |φa〉 ,
Oa′K′,aK = 〈φa′ |P̂ I

K′KP̂
N P̂Z |φa〉 .

(3.30)

See App. C.1 for the explicit expression for the matrix elements of Heff

in the many-body basis. The overlap between two HFB-states has been
notorious difficult to carry out. The modulus of the overlap is given by the
Onishi formula [24] but the sign remains undetermined. In the context of
GCM the relative signs in the overlap matrix is crucial. In order to get the
sign correct, we use the expression in Ref. [61]. That expression gives the
sign and is, at the same time, numerically stable.

With the matrix elements (3.30), the Hill-Wheeler equation to be solved
can be written

∑

aK

Ha′K′,aKh
n
aK = En

∑

aK

Oa′K′,aKhnaK (3.31)

where En is the energy for the n:th state and {hnaK} are the corresponding
expansion coefficients in the basis of projected HFB-states. Hence, the
final state can be written

|NZ, IM, n〉 =
∑

aK

hnaK |NZ, IMK, a〉 ≡
∑

aK

hnaKP̂
I
MKP̂

N P̂Z |φa〉 (3.32)

where M is the projection of the angular momentum onto the laboratory
z-axis and the projected HFB-states have been defined.
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3.7 Solving the Hill-Wheeler Equation

In matrix form, the Hill-Wheeler equation (3.31) can be written

Hhn = EnOhn. (3.33)

A straightforward way to solve this equation would be to diagonalize
O−1H. However, in order to invert the overlap matrix all of its eigenvalues
have to be non-zero. Or, equivalent, all basis states have to be linearly
independent. This is more often than not the case; the space spanned by
the basis is oversampled.

Instead, it is common to create an orthonormal basis by diagonalize the
overlap matrix and find the solution to

Oum = λmu
m (3.34)

where um is the m:th eigenvector of O and λm its eigenvalue. From this,
one can construct an orthonormal basis of so called natural states

|NZ, IM,m〉 =
∑

aK

umaK√
λm
|NZ, IMK, a〉 (3.35)

for all m for which λm 6= 0. From this procedure, an orthonormal basis
in which all projected basis states are contained has been obtained. See
Ref. [24] for details.

Of course, in a numerical computation, states for which λm is smaller than
a certain value needs to be excluded. However, it is not obvious from
the start how to choose this cut-off. Instead, in this work, the technique
of repeated diagonlization is used. At first, the Effective Hamiltonian is
diagonalized within the space spanned by the three natural states with
largest λm. Then, with decreasing λm, one natural state at a time is added
and each time Heff is diagonalized. This process continuous until the
results become unstable. An indication of convergence is obtained when
plateaus for the eigenvalues are formed; when adding more natural states
no longer changes the energy.

An example of the procedure is seen in Fig. 3.4. The figure shows the total
energy of the yrast states for 62Zn up to I = 10 for different sizes of the
natural basis. All states above I = 0 shows a clear plateau and a sharp
break down. The solutions are taken just before the breakdowns; indicated
by the crosses.
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Figure 3.4: Total energy as a function of the number of natural states. The curves cor-
respond to the yrast states in 62Zn. The states are referred to by their angular momentum
and parity. The crosses show the location where the final solution has been taken.

In the basis of natural states, Heff can be diagonalized by solving

∑

m

〈NZ, IM,m′|Heff |NZ, IM,m〉 gnm = Eng
n
m′ (3.36)

where gn is the n:th wave function, expressed in the natural basis, with
energy En. The matrix element of Heff in the natural basis is given by

〈NZ, IM,m′|Heff |NZ, IM,m〉 =
1√

λm′λm

∑

a′K′

∑

aK

um
′∗

a′K′Ha′K′,aKu
m
aK .

(3.37)

In order to have the final wave function of a given state expressed in the
basis of the projected HFB-states (3.32), the Hill-Wheeler coefficients can
be extracted according to

hnaK =
∑

m

umaK√
λm

gnm. (3.38)
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Chapter 4

Electromagnetic Transitions

Putting the Wave Functions to Work

Think, think, think.
— Winnie-the-Pooh

The model presented in this thesis has the ambition to not only produce
proper spectra but also to get reliable wave functions. From these one
could, in principle, calculate any observable. It has been stated [24] that
a proper test for the accuracy of the wave functions are electromagnetic
properties such as multipole moments and transition rates. In addition, by
studying the interplay between the nucleus and the electromagnetic field
one can gain knowledge about the nuclear structure; for example if the
angular momentum is of a collective nature or if it has a single-particle
behavior.

Therefore, in this chapter, the calculations for transition rates between
nuclear eigenstates through the emission of photons will be described. In
specific, the focus will lie on transitions in the electric quadrupole channel
which are called E2-transitions. This channel is common and therefore
there exist a large amount of experimental data for which the calculations
can be compared to.

Also, with the same procedure, the electric quadrupole moment in the
laboratory system is obtained.
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4.1 Electric Multipole Moments

The interaction between a nucleus and an external electromagnetic field
can be described within a multipole expansion of the nuclear charge. The
electric multipoles can be defined as

Qλµ ≡
∫
ρrλY λµd3r (4.1)

where ρ is the charge density and Y λµ is a spherical harmonic. Written like
this, the multipole Qλµ is the µ:th component of a spherical tensor of rank
λ; the components transform into each other under rotations in the same
way as the components of the spherical harmonics do. Hence, the value of
Qλµ depends both on the orientation of the coordinate system and on the
position of the origin. However, the convention is to place the origin at
the center of mass and align the coordinate axes with the principal axes
of the nucleus.

The monopole moment (λ = 0) corresponds to the total charge of the
nucleus. The dipole moment (λ = 1) vanishes identically due to parity
conservation; the charge density is forced to be an even function in all
coordinates. Hence, the quadrupole moment (λ = 2) is the lowest non-
trivial moment and is the one to be considered in this work.

The expression (4.1) is a classical definition. In the quantum regime the
charge density becomes replaced with the probability density and the mul-
tipoles are promoted to operators. The electric quadrupole operator can
be expressed as

Q̂2µ =
∑

ij

Q2µ
ij a
†
iaj (4.2)

where {a†i} ({aj}) are single-particle creation (annihilation) operators and

Q2µ
ij = 〈i|Q̂2µ|j〉 = eδτipδτjp

∫
ϕ∗i r

2Y 2µϕjd
3r (4.3)

is a matrix element of Q̂2µ in the single-particle basis with wave functions
ϕj = 〈r|j〉. Here e is the elementary charge and the Kronecker deltas
ensure that only protons contribute to the electric quadrupole moment.

Let |IM〉 be a nuclear state with good quantum numbers I and M for
the total angular momentum and its projection onto the laboratory z-axis,
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respectively. Since Q̂2µ is a spherical tensor operator, the Wigner-Eckart
theorem can be used to write its expectation value as

〈IM |Q̂2µ|IM〉 = 〈I,M ; 2, µ|I,M〉 〈I||Q̂2||I〉 (4.4)

where the first factor on the right hand side is a Clebsch-Gordan coeffi-
cient and the second one is the so called reduced matrix element which
is independent on both M and µ. From the Clebsch-Gordan coefficient
and the angular momentum selection rules, it is seen that the expectation
value is identically zero for µ 6= 0 and for I < 1. For this reason, and for
the fact that the M -dependence is trivially obtained through a Clebsch-
Gordan coefficient, The Quadrupole Moment, Q, for a nucleus is uniquely
defined via a state for which M = I as

Q =

√
16π

5
〈IM = I|Q̂20|IM = I〉 . (4.5)

The prefactor is there to make Q equal to the zz-component of the quad-
rupole moment tensor.

The quadrupole moment Q is referred to as the spectroscopic quadrupole
moment which is an observable in the laboratory system. It is to be dis-
tinguished from the quadrupole moment in the internal system which is,
however, not an observable.

4.2 The Reduced Transition Rate

Classically, a non-spherical and charged rotating body will emit electro-
magnetic radiation in a continuous way. This process will gradually reduce
the rotation because of the energy loss into radiation.

In the quantum regime this picture is replaced by a discontinuous process.
The energy emitted is in form of photons which allow for the system to
transfer between eigenstates of the nuclear Hamiltonian; states with spe-
cific energy and angular momentum. Also, the continuous flow of radiation
becomes a probability process; either a photon is emitted or it is not. This
probability is associated with a lifetime of the state.

The transitions can be classified into electromagnetic multipoles mediated
by the multipole operators Q̂λµ. For a given multipole the emitted photon
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carries a total angular momentum λ (in units of ~) with the projection µ
onto the laboratory z-axis.

The transition rate Γ, which corresponds to the lifetime τ = ~/Γ, from an
initial nuclear eigenstate, |IiMi〉, to a final one, |IfMf〉, for an electrical
multipole of order λ is given by [24], in SI-units,

Γλµfi =
2

~ε0

λ+ 1

λ[(2λ+ 1)!!]2

(
Eγ
~c

)2λ+1

| 〈IfMf |Q̂λµ|IiMi〉 |2 (4.6)

where Eγ is the energy of the emitted photon. This expression is derived
from the interaction between the electromagnetic field and the nuclear
charge distribution with ”Fermi’s golden rule” up to first order in perturb-
ation theory.

Due to the fact that quadrupole deformations are the dominant degrees of
freedom for the nuclear shape, the quadrupole mode is the strongest one
for the radiation. These are the E2-transitions and are the ones which are
considered in this work.

Often one does not want to distinguish between different M -values; neither
for final nor initial states. Therefore one averages over initial Mi (assuming
an ensemble of initial states evenly distributed over all possible M -values)
and sum over final Mf (the final M -value is not important). This type of
rate is therefore given by, for λ = 2,

Γλ=2
fi =

1

2Ii + 1

Ii∑

Mi=−Ii

If∑

Mf=−If

2∑

µ=−2

Γ2µ
fi

=
1

75~ε0

(
Eγ
~c

)5
1

2Ii + 1

Ii∑

Mi=−Ii

If∑

Mf=−If

2∑

µ=−2

|〈IfMf |Q̂2µ|IiMi〉|2

≡ 1

75~ε0

(
Eγ
~c

)5

B(E2; Ii → If )

(4.7)

where the Reduced Transition Rate, B, has been defined. All the inform-
ation of the wave functions goes into the B(E2)-value. Therefore, when
investigating the nuclear structure, this quantity is a better choice to study
than the transition rate. Furthermore, the reduced transition rate does not
contain the high Eγ-dependence of the transition rate and is therefore not
sensitive to the level spacing of the states.
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4.3 Formalism within The Model

In order to calculate the reduced transitions in a formally exact way, as
described in Sec. 4.2, one needs angular momentum eigenstates. At the
mean-field level, which breaks rotational symmetry, calculating the trans-
itions inevitably contains assumptions and approximations.

In contrast, when angular momentum projection is performed, as in the
model presented in this thesis, the transitions can be extracted in a natural
and straightforward way. In addition, since the model allows for a large
many-body basis, no effective charges are needed to be introduced which
is a common feature in shell model calculations.

The model produces wave functions of the form (3.32). With these states,
the matrix element in the expression of the reduced transition rate (4.7)
can be expressed as

〈NZ, I ′M ′, n′|Q̂2µ|NZ, IM, n〉

=
∑

a′K′

∑

aK

hn
′∗
a′K′h

n
aK 〈φa′|P̂ I′†

M ′K′Q̂
2µP̂ I

MKP̂
N P̂Z |φa〉 .

(4.8)

Here it has been used that Q̂2µ commutes with the particle number projec-
tion operators; however, it does not commute with the angular momentum
operator. In Ref. [60] it is stated that

P̂ I′†
M ′K′Q̂

2µP̂ I
MK = 〈IM ; 2µ|I ′M ′〉
×
∑

ν

〈I,K ′ − ν; 2ν|I ′K ′〉 Q̂2νP̂ I
K′−ν,K

(4.9)

where the scalar products are Clebsch-Gordan coefficients and the sum
goes over all ν for which the Clebsch-Gordan coefficient within the sum is
non-zero. With this, the matrix element (4.8) becomes

〈NZ, I ′M ′, n′|Q̂2µ|NZ, IM, n〉

= 〈IM ; 2µ|I ′M ′〉
∑

a′K′

∑

aK

hn
′∗
a′K′h

n
aK

×
∑

ν

〈I,K ′ − ν; 2ν|I ′K ′〉 〈φa′|Q̂2νP̂ I
K′−ν,KP̂

N P̂Z |φa〉 .

(4.10)
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Note that the spectroscopic quadrupole moment Q (4.5) can be found from
the matrix element (4.10). This is done by putting I ′ = I, M ′ = M = I,
n′ = n and µ = 0.

In the expression for the B(E2)-value, Eq. (4.7), the summations over
M ′,M and µ only act on the first Clebsch-Gordan coefficient in the mat-
rix element (4.10). Using orthogonality relations for the Clebsch-Gordan
coefficients, the sum reduces to

I∑

M=−I

I′∑

M ′=−I′

2∑

µ=−2

| 〈IM ; 2µ|I ′M ′〉 |2 =
I′∑

M ′=−I′
1 = 2I ′ + 1. (4.11)

The final expression for the reduced transition rate in the model then is

B(E2;I → I ′)

=
2I ′ + 1

2I + 1

∣∣∣∣∣
∑

a′K′

∑

aK

hn
′∗
a′K′h

n
aK

×
∑

ν

〈I,K ′ − ν; 2ν|I ′K ′〉 〈φa′ |Q̂2νP̂ I
K′−ν,KP̂

N P̂Z |φa〉
∣∣∣∣∣

2

.

(4.12)

An explicit expression for the matrix element of the quadrupole operator
within the basis of projected HFB-states, which appears in the expres-
sion (4.12), is given in App. C.2.
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Chapter 5

Computations and Results

Using The Model to Investigate

Nuclear Spectra, Rotational Bands, Backbending,

Transitions and Quadrupole Moments

The best place to dig a very deep pit in which to catch a Heffalump,
is somewhere where a Heffalump already is,

only about a foot farther on or so.
— Winnie-the-Pooh

In this chapter a test case will be presented. The purpose is to demonstrate
how a full sized calculation within the model is performed.

The different steps of the computer code behind the model will be outlined.
A schematic picture for the structure of the code is shown in App. A.
Input values and the following calculation times for the different parts are
presented. The calculations make use of a partition of a High Performance
Computing Cluster consisting of 18 nodes each with 20 cores. This implies
that 360 computations can be made in parallel when possible and necessary.

Techniques for reducing the computational load will be described. The
bottleneck for the model is the angular momentum projection within the
GCM. Therefore, efforts of speeding up the process are focused on that part.

The results for the spectra and the electromagnetic transitions will be
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presented together with comparisons to experiment. Physical interpreta-
tions of the results are discussed.

5.1 Computations for the Nucleus 48Cr

The nucleus 48Cr has been chosen as an example of the computations that
are performed within the model. More results for other nuclei can be found
in Papers III and IV.

As schematically shown in App. A, the code consists of two main blocks
which are further subdivided into smaller boxes. The first block is at
the mean-field level. Here all the single-particle quantities are generated
within Nuclear-DFT. Results obtained from an EDF are mapped into the
Effective Hamiltonian by adjusting the free parameter χ.

The second block reaches the beyond-mean-field level. It builds upon the
Nuclear-DFT with the inclusions of the GCM, temperature and projec-
tions. The spectra and wave functions are obtained by solving the Hill-
Wheeler equation. The results are further used to calculate electromag-
netic transition rates.

5.2 Mean-Field – Single-Particle Quantities

The Nuclear-DFT calculations contain two parts. First, the spherical
single-particle quantities. These are the single-particle spectra, {ei} and

{a†i}, which generates the single-particle basis and, within that basis, the

matrix elements of the quadrupole operators: the modified, Q̃2µ
ij , and the

ordinary, Q2µ
ij . Second, χ is adjusted in such a way that the binding energy

as a function of quadrupole deformation at the HF-level, EHF(β), obtained
with the Effective Hamiltonian reproduces the same quantity from an EDF
as good as possible.

In this particular calculation, the EDF used is the Skyrme based paramet-
rization SLy4 [33]. The single-particle quantities are calculated within an
updated version of the code HOSPHE [62]. The basis consists of 12 spher-
ical harmonic oscillator shells; a collection of 910 basis states. This size
is chosen as large as possible while providing an acceptable calculation
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time for the beyond-mean-field block of the code. The results from the
calculation indicates that this basis is enough to produce reliable results.

In order to fix the free parameter χ, the energy EHF(β) obtained from the
Effective Hamiltonian, in the way described in Sec. 3.3, is compared with
an EDF. The Nuclear-DFT calculation of EHF(β) from an EDF is done
for axial symmetry with the code HFBTHO [7]. Also in this code, in order to
have a consistent comparison, the parametrization SLy4 and 12 harmonic
oscillator shells are used.

The total calculation time at the mean-field level is basically free; in the
order of 10 minutes.

5.3 Beyond-Mean-Field – Many-Body Quantities

With the Effective Hamiltonian fixed from Nuclear-DFT, it can be used in
a straightforward way in the GCM together with projections.

5.3.1 The Many-Body Basis

The many-body basis to be used in the GCM consists of HFB-states with
different constraints on β, γ, Ix, gn and gp as described in Sec. 3.4. The
basis states are represented by the U - and V -matrices which define the
quasiparticles in Eq. (2.7). These matrices are calculated from the HFB-
equations (2.11).

For this calculation, the (β, γ)-plane is sampled with 300 states within
β ≤ 0.5 and −30◦ ≤ γ ≤ 150◦. Only states below 12 MeV in excitation
energy is kept; resulting in a basis size of 198 HFB-states.

The calculation of the 300 HFB-states is completed within five hours.

5.3.2 GCM and Projections

The most time-consuming part within the code is the calculations of the
matrix elements in the many-body basis of projected HFB-states. There-
fore, efforts have been made in order to reduce the computational cost of
this part.
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Reduction of the Space for the Angular Momentum Projection

The projection onto good angular momentum is especially time-consuming
due to the simultaneous summation over the three Euler angles. Fortu-
nately, restricting the HFB-states to have good parity and signature, the
intervals of integration can be reduced; see Ref. [37]. Because of the sym-
metries of such a state, the full intervals of α, β and γ, see Eq. (2.18), can
be mapped onto a smaller region. Here we have implemented the reduc-
tion of the region to be α ∈ [0, π/2], β ∈ [0, π/2] and γ ∈ [0, 2π]; that is
1/8 of the full region. There is an additional possibility to cut the interval
of γ into half; with the cost of introducing time reversed versions of the
HFB-states. However, this has not been used in this work.

Truncation of Pairing Tails

The matrices which are appearing in the explicit expressions of the mat-
rix elements, see for example Eq. (C.8), are all square matrices with a
dimension equal to the number of states in the single-particle basis. In
order to speed up the matrix multiplications, a truncation of the matrices
are preferable. This can be achieved within the so called canonical basis
which is reached through the Bloch-Messiah transformation [24]. In this
basis the density matrix becomes diagonal; ρij = ρiδij. First, the states are
sorting such that the ρi’s become in descending order. Then, a truncation
is performed by setting ρi = 0 for i > n where n is chosen such that

∑

i

ρi −
n∑

i

ρi < 0.01. (5.1)

Hence, a truncation in the canonical basis corresponds to eliminating long
pairing tales and numerical noise.

After the truncation, and with both states expressed in their own canonical
basis, the transition densities, Eq.(C.4,C.5,C.6), get the structure

ρab =

(
ρab11 0
0 0

)
, κab =

(
κab11 κab12

0 0

)
, κba∗ =

(
κba∗11 0
κba∗21 0

)
(5.2)

where the (1,1)-block is of the size n × n. By expressing all matrices in
the same 2×2-structure, the matrix multiplications can be evaluated with
smaller matrices. See Paper III for more details.

56



Hermitian Matrices

As a last symmetry to use, both the Hamiltonian matrix and the overlap
matrix are Hermitian. Therefore only the upper triangle, including the
diagonal, of the matrices needs to be explicitly calculated.

However, the quadrupole operator, which are used for the calculations of
transitions, does couple states with different angular momenta. In that
case there is no obvious relation between the upper and lower triangles. In
App. D such a relation is derived.

Input Values

This particular calculation uses 10 points in the particle number projec-
tions for both nucleon species and (9, 18, 36) points for the Euler angles
which is equivalent with (36, 36, 36) points in the full region. Since the
number projections for the two nucleon species are performed independ-
ent of each other, the total number of points for the projections becomes
(10 + 10)× 9× 18× 36 = 116, 640.

The matrix elements in the many-body basis are distributed among the
18 nodes and for each element the angular momentum projection is dis-
tributed over 20 cores. With 198 states in the many-body basis, the total
calculation time for all the 198(198 + 1)/2 = 19, 701 matrix elements is
about 100 hours.

5.3.3 The Hill-Wheeler Equation

The Hill-Wheeler equation is solved once for every projected angular mo-
mentum. Since 0 ≤ K ≤ I, the basis size is Nφ × (I + 1) where Nφ is the
number of HFB-states in the many-body basis.

For 48Cr the maximum spin to be projected out is I = 16; in order to follow
the yrast band up to termination. Hence, the largest matrices appearing
in the Hill-Wheeler equation is of the size 198× (16 + 1) = 3, 366.

The calculation time to solve for Heff with I = 16 is about 24 hours.
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Figure 5.1: Spectra and E2-transitions for 48Cr. Results from the model are to the left
and from experiment to the right. Also, the experimental values for the yrast band are
shown together with theory for easier comparison. The B(E2)-values are indicated by the
thickness of the lines and are explicitly given in units of e2fm4 for the yrast band.

5.4 Results

The spectra for 48Cr, both from the model and from experiment, together
with the strongest E2-transitions are shown in Fig. 5.1. The experimental
values are taken from Ref. [3]. The B(E2)-values are calculated between
all pairs of states that differ with either two or zero units of angular mo-
mentum. However, only transitions over 10 Weisskopf units in strength
are plotted in the spectra. A Weisskopf unit is the expected B(E2)-value
if the transition is of a single-particle nature; about 10 e2fm4 for 48Cr.

The results from the model show the characteristics of a rigid rotor. That
is, for the yrast band, the energy grows approximately quadratic with
angular momentum. At I = 10 a backbending occur. The backbending
from the model is compared with experiment in figure 5.2; in which the
released γ-energies within the yrast band are displayed. It can bee seen
that, both in the model and in experiment, the backbending occurs at
the same angular momentum and has the same magnitude. However, the
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Figure 5.2: Released γ-energies for the transitions I + 2→ I within the yrast band. The
backbending at I = 10 indicates a change in the internal structure.

γ-energies are consistently lower for the other angular momenta.

Also, in the spectrum from Heff in Fig. 5.1, one can notice the transitions
at high excitation energies. In specific, between 10 MeV and 16 MeV at
I = [2, 6] the cluster of transitions show the characteristics of the so called
Rotational Damping [63]. A rotational band can be viewed as originating
from a rotating mean-field state. Close to the yrast band this picture works
well. However, high above the yrast band, where the level density is large,
the mean-field states are expected to be highly mixed. As a consequence
of that, the transitions do not form pure bands. Instead, an initial state
with angular momentum Ii can have strong transitions into several states
with I = Ii − 2; all corresponding to slightly different γ-energies. The
same is true for the subsequent transitions. Thus, an ensemble of nuclei,
all populating the same initial state, will form a cascade; a damped band.
Those damped bands are a challenge to observe experimentally. The γ-
energies from a given initial state become broaden and hard to distinguish
from the background. In a theoretical spectrum the damped bands show
up as a cluster of bands close to each other as in Fig. 5.1.

The evolution of the internal structure of 48Cr with increasing angular mo-
mentum, up to its terminating state, has been investigated in Ref. [64]
within the Cranked Nilsson-Strutinsky (CNS) model. One conclusion in
this reference is that the intrinsic deformation starts from an axially sym-
metric prolate shape at I = 0, evolves over triaxial shapes and ends up in
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Figure 5.3: The reduced transitions B(E2; I → I − 2) and spectroscopic quadrupole
moments Q for the yrast band in 48Cr. The abbreviations for the SM-calculations represent
different types of interactions. No experimental data has been found for Q.

a slightly oblate shape for the terminating state at I = 16.

Comparisons for the reduced transition rates and for the spectroscopic
quadrupole moments between the model and CNS are shown in Fig. 5.3. In
addition, three shell model (SM) calculations for three different interactions
within the full fp-space from Ref. [65, 66, 67] are included.

The results from the model are in agreement with previous calculations;
both for CNS and SM. The behaviors for B(E2) and for Q are similar to
that of a rigid rotor up to I = 6. For higher angular momenta, the B(E2)-
value is approaching zero; showing that these states are of a single-particle
nature rather than of a mixed collective nature. Also, Q indicates a drastic
change in the nuclear shape around the backbending and that the nucleus
approaching a spherical shape at the terminating state.

The intrinsic nuclear deformation can be visualized directly from the col-
lective wave function which the model gives as output. This is described
in Paper 5.
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Chapter 6

Outlook

Improve upon The Model

and Tackling Scientific Questions

Rivers know this: There is no hurry.
We shall get there some day.

— Winnie-the-Pooh

The simplicity of the Effective Hamiltonian presented in this thesis allows
for reasonable calculation times; even for Super-Heavy Nuclei. At the
same time, it seems like the Effective Hamiltonian captures enough physics
in order to give accurate results for the spectrum; features as rotational
bands, backbending and transition rates are well described. Also, due to
the projections onto good quantum numbers, all observables are given in
the laboratory system.

Theoretical Uncertainties

To quantify the confidence in predictions made by the model one can in-
corporate theoretical uncertainties. It would be interesting to know how
the uncertainties in the parameters of the underlying EDF propagate to
the outputs from the model. For example, uncertainties in the paramet-
ers of UNEDF1 are available [35]; both the standard deviations and the
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correlation between them all. An estimate of the uncertainty in the final
spectrum could be to first investigate how the fitting parameter χ in the
Effective Hamiltonian varies within the uncertainties of the parameters.
Then see, within the same many-body basis, how the energies are affected
by the change in χ. This approach would avoid the process of recalculating
the many-body matrix element for every set of values for the parameters
which is the most time-consuming part in the model.

Octupole Interaction and CP-violation

It is under development to include an octupole interaction in the Effective
Hamiltonian. In the same way as for the quadrupole interaction, it comes
with an adjustable strength. This strength is fitted to Nuclear-DFT-results
in the octupole degree of freedom. The cost for introducing an octupole
interaction is, with everything else the same, an increase of the calculation
time with roughly a factor of two.

In addition to the improvement that comes when adding more degrees of
freedom for the nucleus to explore, the octupole extension makes it possible
for the model to be a tool for the investigation of the baryon asymmetry
in the Universe: Why is there more matter than anti-matter?

One of the Sakharov conditions [68] for generating baryons is the CP-
violation. That is, Nature does not respect the combined symmetries
of charge conjugation and parity. Indeed, CP-violation is built into the
Standard Model of Particle Physics. However, it seems that the violation
is too small in order to explain the observed asymmetry between matter
and anti-matter. Thus, this indicates physics beyond the Standard Model
which can contribute to the CP-violation.

A measurable quantity that is a direct proof of CP-violation is the static
electric dipole moment for a system in its ground state [69]. No such
moment has not yet been found. But Several ongoing experimental efforts
are conducted on different systems at different scales. Such as nucleons,
light nuclei, atoms and molecules [70].

Specifically, the electric dipole moment of an atom is induced by the Schiff
moment of the nucleus [69]. Therefore, having accurate predictions of the
Schiff moment for a large range of nuclei would hint to the nuclear isotope
with the largest probability for a positive measurement.
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It is known that the Schiff moment is enlarged in heavy nuclei which are
both quadrupole and octupole deformed in the intrinsic system. However,
in the intrinsic system the Schiff moment can be trivially non-zero without
CP-violation because of symmetry breaking. Hence, it is important to
perform the calculations in the laboratory system.

Since the Schiff moment is a ground state property of heavy and deformed
nuclei, and inevitably needs to be calculated in the laboratory system, it
is well suited for the model presented in this thesis. Therefore, with the
inclusion of octupole deformation, the model could indeed be a tool for the
theoretical search for nuclei with large Schiff moments.

Reactions

An area in which the model will be applied is nuclear reactions. See the
Papers 1 and 2 for the first steps in that direction. Indeed, nuclear reac-
tions are the main tool to experimentally explore features of the nuclear
structure and to investigate the nuclear interaction. Furthermore, in or-
der to interpret the experimental results from new facilities studying short
lived nuclei through radio active ion beams a reliable scattering theory
is needed.

An example of a fundamental question to be answered within nuclear re-
actions is the nucleosynthesis of elements heavier than iron in the Uni-
verse. The most probable mechanism of the production of heavy elements
is through neutron capture. Preferably through the rapid neutron capture;
the so called r-process. In order for a nucleus to accumulate neutrons, an
enormous high flux of neutrons is needed. The most likely sites where
this can happen are in supernovae and at neutron star mergers. Such
extreme conditions are far beyond what current experiments can reach.
However, there are astronomical observations which indicate that elements
with A > 260 are produced through the r-process; then they undergo fis-
sion and β-decays into elements between iron and uranium in the periodic
table [71]. But the reaction paths to the production of heavy elements are
not well understood and therefore a reliable theoretical model for nuclear
reactions is preferable.

A main tool for the theoretical study of reactions for heavy nuclei is the
Optical Potential. This potential is for reactions what the mean-field is for
nuclear structure; simplifying the complicated many-body system into an
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approximate one-body potential. The optical potential is often constructed
in a phenomenological way. However, it is preferable to derive the potential
from microscopic interactions. See, for example, Ref. [72, 73] and further
references therein for an overview of the importance of having a microscopic
and united description of nuclear reactions and nuclear structure.

It is under development to use the nuclear spectrum from this model to
construct the Green’s function from which the optical potential can be
derived. The model has the advantage to include deformation in an explicit
way through the quadrupole interaction and at the same time be simple
enough in order to be applied on Super-Heavy Nuclei.
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Phys. Commun. 181, 1641 (2010).

[63] B. Lauritzen, T. Døssing and R. A. Broglia, Nucl. Phys. A 457, 61
(1986).

[64] A. Juodagalvis, I. Ragnarsson and S. Åberg, Phys. Lett. B 477, 66
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Appendix A

Structure of Computer Code

Mean-Field – Single-Particle Quantities

Code: HOSPHE

Spherical
Single-Particle Basis

Code: HFBTHO

Axially Symmetric
Nuclear-DFT

HF-calculation of EHF(β)
from EDF and Heff

Determination of χ

Beyond-Mean-Field – Many-Body Quantities
HFB-calculation for Heff

Many-Body Basis
in (β, γ)-plane

GCM+Temp.+Proj.
Matrix Elements

Hill-Wheeler Equation
Spectra

Wave Functions

Electromagnetic
Transitions
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Appendix B

Discretization of
Projection Operators

Particle Number Projection Operator

The integral of the particle number projection operator (2.17) can be
discretized into M intervals as

P̂N ≈ 1

π

M∑

m=1

ei(N̂−N)m∆θ∆θ (B.1)

where ∆θ = π/M . With θ = θ(m) ≡ m∆θ, which has an implicit depend-
ence on m, the projection operator can be expressed as

P̂N ≈ 1

M

∑

θ

e−iNθeiN̂θ ≡
∑

θ

wN(θ)eiN̂θ (B.2)

where the weight wN(θ) has been defined.
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Angular Momentum Projection Operator

For the angular momentum projection operator (2.18), the integrals over
the Euler angles (α, β, γ) can be discretized into (A,B,C) intervals. Hence,

P̂ I
MK ≈

2I + 1

8π2

A∑

a=1

∆α
B∑

b=1

∆βsin(β)
C∑

c=1

∆γDI∗
MK(Ω)R̂(Ω) (B.3)

where ∆α = 2π/A, ∆β = π/B, ∆γ = 2π/C and Ω ≡ (α, β, γ) ≡
(a∆α, b∆β, c∆γ) which has an implicit dependence on a, b and c. With
that, the angular momentum projection operator can be written

P̂ I
MK ≈

2I + 1

8π2

4π3

ABC

∑

Ω

sin(β)DI∗
MK(Ω)R̂(Ω)

≡
∑

Ω

wIMK(Ω)R̂(Ω)
(B.4)

where the weight wIMK(Ω) has been defined.
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Appendix C

Matrix Elements
in the Many-Body Basis

C.1 The Effective Hamiltonian

With the discretization of the projection operators, described in App. B,
the matrix elements of the Effective Hamiltonian (3.30) are given by

Ha′K′,aK =
∑

Ω

∑

θnθp

wIK′K(Ω)wN(θn)wZ(θp)

×〈φa′ |Heff R̂(Ω)eiN̂θneiẐθp |φa〉 .
(C.1)

Define a rotated HFB-state as R̂(Ω)eiN̂θneiẐθp |φa〉 ≡ |φb〉 which depends
implicit on θn, θp and Ω. The U - and V -matrices which define the quasi-
particles, see Eq. (2.7), associated with the rotated state, (Ub, Vb), can be
obtained from the matrices associated with the unrotated state, (Ua, Va).
According to Ref. [74], and from the fact that the total rotation is a unitary
transformation, the relations are

Ub = RUa, Vb = R∗Va (C.2)

where R is the matrix for the total rotation. Its elements are given by

Rkl = 〈k|R̂(Ω)eiN̂θneiẐθp |l〉 = Djl
mkml

δjkjl
(
eiθnδτln + eiθpδτlp

)
δτkτl (C.3)

where Dj is the Wigner D-matrix for angular momentum j.
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For each point of the discretized projections, a matrix element of the form
〈φa|Heff |φb〉, where |φb〉 is the rotated state, has to be calculated. The
notation becomes simplified by introducing the transition densities [24]

ρabij ≡
〈φa|a†jai|φb〉
〈φa|φb〉

= V ∗b U−1V T
a , (C.4)

κabij ≡
〈φa|ajai|φb〉
〈φa|φb〉

= V ∗b U−1UT
a , (C.5)

κba∗ij ≡
〈φa|a†ia†j|φb〉
〈φa|φb〉

= −U∗bU−1V T
a (C.6)

with
U ≡

(
UT
a U

∗
b + V T

a V
∗
b

)
. (C.7)

In Ref. [24] a formula for the matrix elements of a general two-body
Hamiltonian in a basis of HFB-states is given. Using this formula for the
Effective Hamiltonian (3.1), which contains the spherical single-particle
potential (3.2), the modified quadrupole interaction (3.13) and the pairing
interaction (3.16), one can derive that

〈φa|Heff |φb〉
〈φa|φb〉

=
∑

i

eiρii

− 1

2
χ

2∑

µ=−2

[
Tr
(
ρQ̃2µ†

)
Tr
(
ρQ̃2µ

)
− Tr

(
ρQ̃2µ†ρQ̃2µ

)]

+
1

2

∑

q∈{n,p}
GqTr

(
ρP qρTP q

)

+
1

2
χ

2∑

µ=−2

Tr
(
κ∗Q̃2µκQ̃2µ∗

)

− 1

4

∑

q∈{n,p}
GqTr (κ∗P q) Tr (κP q)

(C.8)

where the super scripts ab and ba on the transition densities have been
omitted in order to lighten the notation. When deriving this expression,
the symmetries P qT = −P q and κT = −κ have been used.
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C.2 The Quadrupole Operator

From Eq. (4.12) for the reduced transition rate, define the matrix elements
of the quadrupole operator in the basis of projected HFB-states as

QI′I
a′K′,aK =

∑

ν

〈I,K ′ − ν; 2ν|I ′K ′〉 〈φa′ |Q̂2νP̂ I
K′−ν,KP̂

N P̂Z |φa〉 . (C.9)

With the discretized projection operators from App. B this becomes

QI′I
a′K′,aK =

∑

ν

〈I,K ′ − ν; 2ν|I ′K ′〉

×
∑

Ω

∑

θnθp

wIK′−ν,K(Ω)wN(θn)wZ(θp)

× 〈φa′|Q̂2νR̂(Ω)eiN̂θneiẐθp |φa〉 .

(C.10)

In the same way as for the Effective Hamiltonian in App. C.1, define the ro-

tated state as R̂(Ω)eiN̂θneiẐθp |φa〉 ≡ |φb〉. For each point of the discretized

projections a matrix element of the form 〈φa|Q̂2ν |φb〉 has to be calculated.
From expression (4.2) of the quadrupole operator, one can put up that

〈φa|Q̂2ν |φb〉 =
∑

ij

Q2ν
ij 〈φa|a†iaj|φb〉

= 〈φa|φb〉
∑

ij

Q2ν
ij ρ

ab
ji = 〈φa|φb〉Tr(Q2νρab)

(C.11)

where the definition of the transition density (C.4) has been used.
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Appendix D

The Transpose of the
Quadrupole Matrix

Here a relation for the transpose of the quadrupole matrix, as defined in
Eq. (C.9), is derived. That is, knowing QI′I

a′K′,aK , what is QI′I
aK,a′K′?

Comparing Eq. (4.10) and Eq. (4.8) together with the definition (C.9) of
the quadrupole matrix, one can conclude that

QI′I
a′K′,aK =

〈φa′|P̂ I′†
M ′K′Q̂

2µP̂ I
MK |φa〉

〈IM ; 2µ|I ′M ′〉 (D.1)

where the particle number projections are implicit in order to lighten the
notation. However, from the definition (C.9), QI′I

aK,a′K′ does not depend on
any of M,M ′ and µ. Hence, those can be put into any explicit values that
do not make the Clebsch-Gordan coefficient to vanish identically. There-
fore, put µ = 0. Note that putting M ′ = M = 0 would exclude transitions
for which |I ′ − I| = 1. Furthermore, from the conjugate symmetry of a
scalar product of two states, one can obtain that

QI′I
a′K′,aK =

〈φa|P̂ I†
MKQ̂

20P̂ I′
M ′K′|φa′〉∗

〈IM ; 20|I ′M ′〉 =
〈I ′M ′; 20|IM〉
〈IM ; 20|I ′M ′〉Q

II′∗
aK,a′K′ (D.2)

where it has been used that Q̂20 is hermitian and the Clebsch-Gordan
coefficients are real. Explicit, this can be written

QI′I
a′K′,aK = (−1)I

′−I
√

2I + 1

2I ′ + 1
QII′∗
aK,a′K′ (D.3)

which is the desired relation.
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Paper I: Low-lying states in 219Ra and 215Rn: Sampling micro-
second α-decaying nuclei

I performed the calculations that investigated the octupole deformation
and α-decay rates of the nucleus 219Ra. The results are presented in Fig. 7,
Table IV and Table V. I wrote Sec. VI A and Sec. VI D. I participated in
the interpretation of the spectrum for 219Ra.

Paper II: Spectroscopy along Flerovium Decay Chains: Discovery
of 280Ds and an Excited State in 282Cn

I contributed in the writing of the computer code that performs the cal-
culations within the model presented in this thesis. This code was used to
calculate the spectra for 282,284,286,288Cn in Fig. 2(b).

Paper III: Nuclear spectra from low-energy interactions

I constructed the formalism for the electromagnetic moments and trans-
ition rates within the model and I wrote the corresponding computer code.
I performed the calculations for 48,50,52Cr and 24Mg and produced the cor-
responding figures. I investigated how the spectrum of 24Mg is affected by
the inclusion of temperature. I wrote Sec. II G, App. B and the major
part of Sec. III. Results. I made additional contributions to the contents
and to the overall structure of the paper.

83



Paper IV: Beyond-Mean-Field with an Effective Hamiltonian Mapped
from an Energy Density Functional

I extended the computer code to include odd numbered angular momentum
states. I wrote the whole paper, performed all the calculations and pro-
duced all figures.
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