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H-infinity Optimal Control for Infinite-Dimensional
Systems with Strictly Negative Generator

Carolina Lidström, Anders Rantzer and Kirsten Morris

Abstract— A simple form for the optimal H-infinity state
feedback of linear time-invariant infinite-dimensional systems
is derived. It is applicable to systems with bounded input and
output operators and a closed, densely defined, self-adjoint and
strictly negative state operator. However, unlike other state-
space algorithms, the optimal control is calculated in one step.
Furthermore, a closed-form expression for the L2-gain of the
closed-loop system is obtained. The result is an extension of
the finite-dimensional case, derived by the first two authors.
Examples demonstrate the simplicity of synthesis as well as the
performance of the control law.

I. INTRODUCTION

Infinite-dimensional models are often needed when the
physical system of interest is both temporally and spatially
distributed. For instance, heat conduction systems can be
modelled by a parabolic partial differential equation known
as the heat equation, see [1] for details on this equa-
tion. We consider H∞ state feedback control of linear and
time-invariant infinite-dimensional systems. The H∞ control
problem was first formulated for finite-dimensional systems,
see [2] and the references therein. There are both state-space
based and frequency domain based solutions to the H∞
control problem for infinite-dimensional systems, as in the
finite-dimensional case. In the frequency domain approach,
see [3], one needs to determine the transfer function of the
system, which in general can be hard. In the state-space based
approach to this problem, the synthesis involves solving an
infinite-dimensional operator-valued Riccati equation or in-
equality, see [4] and [5]. Closed-form solutions are generally
hard or not possible to obtain. However, we show that for
certain infinite-dimensional systems, it is not only possible to
give an analytic solution to the infinite-dimensional operator-
valued Riccati inequality, but also the resulting controller has
a very simple form.

We consider infinite-dimensional systems with bounded
input and output operators and where the state evolves on
a separable Hilbert space. Moreover, the state operator is
closed, densely defined, self-adjoint and strictly negative.
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Thus, it generates an exponentially stable strongly continuous
semigroup. See [6] for further details. We give a simple form
for an optimal H∞ state feedback law applicable to these
systems, given that the state and control input are penalized
separately. More specifically, the control law is given by
the product of the adjoint of the control input operator and
the inverse of the state operator. Furthermore, we provide
a closed-form expression for the L2-gain of the closed-loop
system’s transfer function. The result is the analog to the
result for finite-dimensional systems derived by the first two
authors in [7]. The heat equation is an example of a system
to which the derived control law is applicable. Examples are
given in Section IV that show the simplicity of synthesis and
the performance of the control law.

As mentioned earlier, closed-form solutions of the
operator-valued Riccati equation are generally hard or im-
possible to obtain. Therefore, one common approach is to
consider the state-space based synthesis problem for a finite-
dimensional approximation of the original system. In this
procedure one has to ensure that the controller synthesized
for the approximated system stabilizes the original system
and also provides performance that approaches optimal as
the approximation order increases; see [8]. This can be
problematic but there exist conditions under which this ap-
proach works, see [9] for H∞ state feedback. However, the
approximation order can be large and the multiple solutions
of the Riccati equation required mean that computation
can be intensive. Furthermore, it is difficult to determine
the performance degradation resulting from the use of an
approximated controller.

The result in this paper is important in several respects.
First, for systems with self-adjoint generator to which the
result directly applies, it provides an explicit characterization
of the optimal controller. No iteration is required. This
controller will be approximated in implementation, however
the difference between the implemented and exact controller
can be calculated. Furthermore, the result may be used
in evaluation and benchmarking of algorithms for general
systems.

The outline of this paper is as follows. Section II gives
some mathematical preliminaries and the notation used. The
main theorem is stated in Section III together with its proof.
In Section IV, we illustrate the simplicity of synthesis and
the performance of the derived control law by means of an
example. Section IV also includes some further discussion.
Concluding remarks are given in Section V.



II. MATHEMATICAL PRELIMINARIES

The notations R and C stand for the set of real and
complex numbers, respectively, while the set of nonnegative
real numbers is denoted R+. The notation Re(x) where
x ∈ C denotes the real part of x. We will only consider linear
operators on separable Hilbert spaces, where we denote the
inner product and norm by 〈·, ·〉 and ‖ · ‖, respectively.

The domain of an operator T is denoted by D(T ), the
adjoint of T is denoted by T ∗ and the inverse of T , if it
exists, is denoted by T−1. An operator T is called self-
adjoint if T ∗ = T and D(T ∗) = D(T ). The set of bounded
linear operators from X to Y is denoted L (X ,Y), and
L (X ) = L (X ,X ). The norm of an operator T ∈ L (X ,Y)
is defined as follows

‖T‖ = sup
x∈D(T )
x6=0

‖Tx‖Y
‖x‖X

.

Definition 1: [6, p. 606, Def. A.3.71] A self-adjoint oper-
ator A on the Hilbert space Z is nonnegative if 〈Az, z〉 ≥ 0
for all z ∈ D(A), A is positive if 〈Az, z〉 > 0 for all nonzero
z ∈ D(A) and A is strictly positive (coercive) if there exists
an m > 0 such that

〈Az, z〉 ≥ m‖z‖2 for all z ∈ D(A).

We will use the notation A � 0 for strict positivity of the
self-adjoint operator A. We will use the terminology strictly
negative denoted A ≺ 0 when −A � 0.

Remark 1: Let Z be a Hilbert space and consider a self-
adjoint strictly negative operator A. It is clear from the
definition of strict negativity that A is injective, thus A−1

exists. Furthermore, it can be shown that it is bounded,
positive and A−1 ∈ L (Z). See [6, Ex. A.4.2] for details
on this.

Definition 2: [6, p. 15, Def. 2.1.2] A strongly continuous
semigroup is an operator-valued function S(t) from R+ to
L (Z) that satisfies the following properties

1) S(0) = I ,
2) S(t+ τ) = S(t)S(τ) for t, τ ≥ 0,
3) limt→0, t>0 S(t)z = z for all z ∈ Z .
Definition 3: [6, p. 215, Def. 5.1.1] A strongly continuous

semigroup, S(t), on a Hilbert space Z is exponentially stable
if there exist constants M,α > 0 such that ‖T (t)‖ ≤Me−αt

for all t ≥ 0.
Definition 4: [6, p. 20, Def. 2.1.8] The generator

A : D(A)→ Z of a strongly continuous semigroup S(t) on
a Hilbert space Z is defined by

D(A) = {z ∈ X | lim
t→0
t>0

S(t)z − z
t

exists}

Az = lim
t→0
t>0

S(t)z − z
t

for all z ∈ D(A).

Remark 2: If A is the generator of a strongly continuous
semigroup as in Definition 4, then the domain of A, i.e.,
D(A), is dense in Z and A is a closed operator, see [6, p.
21, Th. 2.1.10].

Lemma 1: [6, p. 33, Cor. 2.2.3] Sufficient conditions for a
closed, densely defined operator on a Hilbert space to be the
infinitesimal generator of a strongly continuous semigroup
satisfying ‖S(t)‖ ≤ ewt are:

Re(〈Az, z〉) ≤ w‖z‖2 for z ∈ D(A),

Re(〈A∗z, z〉) ≤ w‖z‖2 for z ∈ D(A∗).

Remark 3: If A is self-adjoint, then the sufficient condi-
tion becomes 〈Az, z〉 ≤ w‖z‖2 for z ∈ D(A). Furthermore,
if A is strictly negative by Definition 1, the condition
clearly holds for some w < 0. Thus, by Definition 3, S(t)
is exponentially stable. Hence, A is the generator of an
exponentially stable strongly continuous semigroup.

If A is the generator of a strongly continuous semigroup
S(t) on the Hilbert space Z , then for all z0 ∈ D(A), the
differential equation on Z

dz(t)

dt
= Az(t), z(0) = z0,

has the unique solution z(t) = S(t)z0. Consider an input
u ∈ L2(0, t;U), where U is a Hilbert space and Lp(Ω;X ) is
the class of Lebesque measurable X -valued functions f with∫

Ω

|f(t)|pdt <∞, p ∈ [0, ∞].

Given u and an operator B ∈ L (U ,Z), the differential
equation

dz(t)

dt
= Az(t) +Bu(t), z(0) = z0,

has the following solution at any time t

z(t) = S(t)z0 +

∫ t

0

S(t− s)Bu(s)ds.

If we consider an output signal

y(t) = Cz(t) +Du(t)

where C ∈ L (Z,Y) and D ∈ L (U ,Y), the output at any
time t given an input u is

y(t) = CS(t)z0 + C

∫ t

0

S(t− τ)Bu(τ)dτ +Du(t).

The Laplace transform of y(t) given z0 = 0 yields the
transfer function of the system, denoted G, as follows

ŷ(s) = G(s)û(s).

In what follows, the considered systems are assumed to be
causal.

Definition 5: [8, p. 10, Def. 2.5] A system is externally
stable or L2-stable if for every input u ∈ L2(0,∞;U), the
output y ∈ L2(0,∞;Y). If a system is externally stable, the
maximum ratio between the norm of the input and the norm
of the output is called the L2-gain.
Define

H∞ = {G : C+
0 → C |G analytic and sup

Re s>0
|G(s)| <∞},



where C+
0 are all complex numbers with real part larger than

zero, with norm

‖G‖∞ = sup
Re s>0

‖G(s)‖.

The lemma below is stated for systems with finite-
dimensional input and output spaces, e.g., U and Y are R,
but it generalises to infinite-dimensional ones. The notation
M(H∞) stands for matrices with entries in H∞.

Lemma 2: [8, p. 10, Def. 2.6] A linear system is ex-
ternally stable if and only if its transfer function matrix
G ∈ M(H∞). In this case, ‖G‖∞ is the L2-gain of the
system and we say that G is a stable transfer function.

Definition 6: [8, p. 10, Def. 2.9] The pair (A,B) is
exponentially stabilizable if there exists a K ∈ L (Z,U)
such that A+BK generates an exponentially stable strongly
continuous semigroup.

III. MAIN THEOREM

Consider a linear time-invariant infinite-dimensional sys-
tem

dz(t)

dt
= Az(t) +Bu(t) +Hd(t) (1)

where the state z(t) ∈ Z and Z is a separable Hilbert space.
The operator A is closed, densely defined, self-adjoint and
strictly negative. Then by Lemma 1, a version of the Lumer-
Philips Theorem, A is the generator of an exponentially
stable strongly continuous semigroup on Z . See Remark 3
for further comments on this statement. The state z(t) is
assumed to be measurable with initial condition z(0) = 0.
Furthermore, the control signal u(t) ∈ U and the disturbance
d(t) ∈ L2(0,∞;V), where U and V are Hilbert spaces, and
B ∈ L (U ,Z) and H ∈ L (V,Z).

Consider H∞ state feedback of (1) given unit cost on the
state z(t) and control input u(t), separately, i.e., the cost
function is given by

ζ(t) =

[
z(t)

u(t)

]
.

Given a stabilizing static state feedback controller
K ∈ L (Z,U), i.e., u(t) = Kz(t), the closed-loop
system from the disturbance d(t) to the controlled output
ζ(t) is given by

dz(t)

dt
= (A+BK)z(t) +Hd(t)

ζ(t) =

[
I
K

]
z(t)

(2)

where A + BK generates an exponentially stable strongly
continuous semigroup. We denote the Laplace transform of
the closed-loop system given a controller K by GK , i.e.,

ζ̂(s) = GK(s)d̂(s).

In the following theorem, we give a closed-form expression
for a state feedback controller K that minimizes the L2-
gain of GK . The optimal control law can be considered to
be constant without restriction, see [8] for further details to

this statement. The notation B∗ indicates the adjoint of the
operator B.

Theorem 1: Consider the system (1) where A is
closed, densely defined, self-adjoint and strictly negative,
B ∈ L (U ,Z) and H ∈ L (V,Z), where Z , U and V are
Hilbert spaces. Then, ‖GK‖∞ is minimized by the state
feedback controller Kopt = B∗A−1 and the minimal value
of the norm is given by ‖H∗(A2 +BB∗)−1H‖

1
2 .

Proof: The proof is divided into two parts. In the first
part we show that

‖GKopt‖ ≤ ‖H∗(A2 +BB∗)−1H‖
1
2 .

In the second part of the proof, we show that no controller
can achieve strict inequality. Hence, equality holds. In both
parts of the proof, we use the following equivalence given by
the strict bounded real lemma in infinite dimensions, see [10,
Theorem 1.1], applied to (2): Given γ > 0 and a controller
K ∈ L (Z,U), the following two statements are equivalent

(i) A + BK generates an exponentially stable strongly
continuous semigroup T (t) on the Hilbert space Z and

‖GK‖∞ < γ.

(ii) There exists a self-adjoint, nonnegative operator
P̃ ∈ L (Z) such that

(A+BK)∗P̃ + P̃ (A+BK)

+ I +K∗K + γ−2P̃HH∗P̃ ≺ 0. (3)

First, as A is closed, densely defined, self-adjoint and strictly
negative then by Lemma 1, A is the generator of an exponen-
tially stable strongly continuous semigroup on Z , denoted
S(t). Furthermore, we know that (A,B) is exponentially
stabilizable as S(t) is exponentially stable. The domain of
A+BK, i.e., D(A+BK), is equal to the domain of A as
BK ∈ L (Z).

For the first part of the proof consider (ii) and set
P̃ = −A−1, K = Kopt = B∗A−1 and take any γ with

‖H∗(A2 +BB∗)−1H‖
1
2 < γ.

It is possible to set P̃ = −A−1 as A is self-adjoint and
strictly negative, thus −A−1 is self-adjoint, nonnegative
and A−1 ∈ L (Z), see Remark 1. Now, we will prove that
‖GKopt‖∞ < γ by the equivalence between (ii) and (i). First,
notice that

P̃ (A+BK) = −A−1(A+BB∗A−1) = −I −K∗K.

Thus, (3) can be equivalently written as

−I −K∗K + γ−2A−1HH∗A−1 ≺ 0. (4)

Inequality (4) holds if and only if[
I +K∗K −A−1H

−H∗A−1 γ2I

]
� 0 (5)



by the Schur Complement Lemma for bounded linear oper-
ators, see [11, Def. 3.1 and Lem. A.1]. Again, by the same
Lemma, inequality (5) is equivalent to

γ2I −H∗(A2 +BB∗)H � 0. (6)

where we have used that

γ2I −H∗A−1(I +K∗K)−1A−1H

= γ2I −H∗(A2 +BB∗)H.

Inequality (6) is true by the definition of γ. Hence,
‖GKopt‖ < γ by the equivalence between (ii) and (i).

For the second part of the proof, consider again (3). Given
a self-adjoint, nonnegative operator P̃ that solves (3), we can
construct a self-adjoint, strictly positive operator Pε � 0 by
Pε = P̃ + εI , where ε > 0 is some small real number. Then,
we can define

Mε = (A+BK)∗Pε + Pε(A+BK)

+ I +K∗K + γ−2PεHH
∗Pε

and we know that M0 ≺ 0. Furthermore,

Mε = M0 + ε2A+ ε(K∗B∗ +BK)

+ I +K∗K + γ−2(PεHH
∗Pε − P0HH

∗P0).

The right-hand side of this equality is negative for small ε
as 2A ≺ 0 and K, B, P and H are bounded. Thus, Mε ≺ 0,
i.e., the following holds

(A+BK)∗P +P (A+BK)+I+K∗K+γ−2PHH∗P ≺ 0

for some P � 0. This P is invertible and we can rewrite the
inequality further as

P−1(A+BK)∗ + (A+BK)P−1

+ P−2 + P−1K∗KP−1 + γ−2HH∗ ≺ 0.

We perform the change of variables

(P−1,KP−1)→ (X,Y ),

thus X ∈ L (Z) and Y ∈ L (U ,Z), and sum of squares to
write the inequality as follows

(X+A)2+(Y ∗+B)(Y ∗+B)∗−A2−BB∗+γ−2HH∗ ≺ 0.

The first two terms of the operator expression are always
non-negative and thus no controller can satisfy a bound γ

smaller than ‖H∗(A2 +BB∗)−1H‖
1
2 . Hence the controller

constructed in the first part is optimal and the proof is
complete.

IV. CONTROL OF THE HEAT EQUATION

In this section, we illustrate the simplicity in synthesis of
the control law given by Theorem 1. The example concerns
control of the heat equation, see (7) below, which describes
the distribution of heat, or variation in temperature, in a
region over time. The equation also describes other types
of diffusion, such as chemical diffusion.

x = 0 x = l

x

Fig. 1. Rod of length l with one-dimensional spatial coordinate x.

Consider the following partial differential equation that
models heat propagation in a rod of length l

∂z

∂t
(x, t) =

∂2z

∂x2
(x, t) 0 < x < l, t ≥ 0. (7)

The temperature at time t at position x is
z(x, t) ∈ Z = L2(0, l). See Figure 1 for a depiction
of the rod.

To fully determine the temperature of the rod, the initial
temperature profile as well as the boundary conditions have
to be specified. As we consider H∞ control, the initial tem-
perature is set to zero. We will consider Dirichlet boundary
conditions, i.e.,

z(0, t) = 0, z(l, t) = 0.

Define the operator A as

A =
d2z

dx2

with domain

D(A) = {z ∈ L2(0, l) |z, dz
dt

locally absolutely continuous,

d2z

dx2
∈ L2(0, l) with z(0) = 0, z(l) = 0}.

This operator fulfils the requirements for Theorem 1, i.e., it
is closed, densely defined, self-adjoint and strictly negative.
For a proof of this see [12, pp. 92-94]. Thus, by Lemma 1,
A generates an exponentially stable strongly continuous
semigroup S(t) on L2(0, l), the state z evolves on the space
L2(0, l) and we can write (7) as

ż(t) = Az(t), z(x, 0) = 0.

Now, suppose the temperature is controlled by an input u(t)
and affected by a disturbance d(t) as follows

ż(t) = Az(t) +Bu(t) +Hd(t), z(x, 0) = 0,

where B,H ∈ L (R, L2(0, l)), u ∈ L2(0,∞;R) and the
disturbance d ∈ L2(0,∞;R). Given the properties stated for
the system, Theorem 1 is applicable. We will now, given
some explicit examples of operators B and H , write down
the closed-form expression for the control law given by
Theorem 1.

The structure of the optimal control law, i.e.,
Kopt = B∗A−1 is not dependent upon the operator H ,
as can be seen in Theorem 1. We will only consider

(Hd)(x) = d(t) for all 0 < x < l.



In other words, the disturbance is uniformly distributed along
the entire rod. We will treat operators B defined by

Bu = χ[0,α](x)u(t) (8)

where 0 < α ≤ l and

χ[0,α](x) =

{
1 if 0 < x < α

0 otherwise.

Thus, for α = l the control input is uniformly distributed
along the entire rod while for instance for α = l/2 it is only
distributed in 0 < x < l/2 while it is zero for the remaining
part of the rod. The adjoint of operator B defined in (8) is

B∗y(x, t) =

∫ α

0

y(x, t)dx for y ∈ L2(0, l).

Consider the following equality, as a step towards explic-
itly stating the optimal control law u(t) = Koptz(x, t) =
B∗A−1z(x, t),

z(x, t) = Ay(x, t), y ∈ D(A).

The function y(x, t) can be written as

y(x, t) =

∫ l

0

G(x, s)z(s, t)ds

where

G(x, s) =

{ (s−l)
l x if 0 < x < s

s
l (x− l) if s < x < l

is the Green’s function of A. Note that G(x, s) is piece-wise
linear in x with G(0, s) = G(l, s) = 0. Now, if α = 1 in
(8), then

u(t) = B∗A−1z(x, t) =

∫ l

0

∫ l

0

G(x, s)z(s, t) ds dx

=

∫ l

0

[∫ l

0

G(x, s) dx

]
︸ ︷︷ ︸

:=f(s)

z(s, t) ds (9)

where
f(s) =

s(s− l)
2

.

The control input is thus a weighted integral of the deviation
in temperature along the spatial coordinate. The quadratic
weight f(s) determines the scalar signal for controlling the
temperature profile, as a compromise between the deviation
in temperature from zero and the cost for changing the
temperature. The general form of the control signal, i.e.,
without any specific value on α, is similarly given by

u(t) =

∫ l

0

(∫ α

0

G(x, s) dx

)
z(s, t) ds

=

∫ α

0

f1(s)z(s, t) ds+

∫ l

α

f2(s)z(s, t) ds

where

f1(s) =
s(s− l)

2
+
s(l − α)2

2l
and f2(s) =

α2

2l
(s− l).

0 200
0

0.5

1

t

a) Temperature at midpoint

0 3
0

0.5

1

x

b) Temperature along rod

Fig. 2. Response from unit disturbance for system with B = 0 is given
by the dashed lines, with B defined in (8) with α = l is given by the solid
lines and with α = l/2 is given by the dashed dotted lines. a) Temperature
at x = l/2 over time, b) temperature along the rod at t = 200.

The weighting function is altered dependent on if the spatial
coordinate is less than or larger than α, to account for the
asymmetry in B. Notice that f1(s) = f(s) and the second
integral is zero when α = l as expected from the firstly
derived expression for u(t) in (9).

Given a constant disturbance d(t) = 1 for t ≥ 0,
the state z(x, t) is determined numerically in MATLAB,
see [13], by the finite element method for 200 time steps
with interval length 0.01 and spatial segments of length 0.1,
with l = 3. The integrals in the expression of the control law
are approximated numerically by the trapezoidal rule.

In Figure 2a, the time trajectory of the temperature at
the midpoint, i.e., x = l/2, is shown for the control input
operators B defined by (8) given α = l and α = l/2 as
well as B := 0. Clearly, when α = l we get the best
disturbance attenuation as shown by the solid line. When
α = l/2, the controller is not able to attenuate the disturbance
as effectively and of course with B = 0 the system evolves
only according to the heat equation with a disturbance. In
Figure 2b we show the temperature distribution of the rod at
the final time t = 200. Here one can see that the temperature
distribution given with α = l/2 is not symmetric along
x. This is due to that the control input operator B in this
case is asymmetric in x. The temperature distributions are
normalized such that z(200, l/2) given α = 0 is equal to 1.



V. CONCLUSIONS
We give a closed-form expression for an optimal H∞

state feedback controller applicable to systems with bounded
input and output operators and closed, densely defined, self-
adjoint and strictly negative state operator. We demonstrate,
by means of an example, the simplicity of synthesis of the
control law as well as its performance. The control law
may be used in evaluation and benchmarking of general
purpose algorithms for H∞ controller synthesis. Future work
includes comparison of a finite-dimensional approximation
of the optimal controller to a controller derived by a general
purpose algorithm. Further, to investigate possible benefits
of having a closed-form expression for an optimal controller
in the synthesis of controllers for large scale systems.
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