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Abstract

We consider a market with indivisible objects, called houses, and monetary transfers. Each
house is initially occupied by one agent and each agent demands exactly one house. The
problem is to identify the complete set of direct allocation mechanisms that can be used
to reallocate the houses among the agents. On the one hand, for price equilibrium mecha-
nisms, we show that the only strategy-proof mechanism is one with a minimum equilibrium
price vector. The result is not true on the classical or the quasi-linear domains, but on re-
duced domains of preference profiles containing “almost all” profiles in the classical or the
quasi-linear domain, respectively. On the other hand, while minimum price equilibrium
mechanisms are not necessarily efficient (as prices are not zero), we show that no strategy-
proof mechanism Pareto dominates a minimum price equilibrium mechanism, making them
constrained efficient in the class of strategy-proof mechanisms.
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1 Introduction

Market design has been a tremendous success. Researchers in the field have repeatedly demon-

strated that analytically tractable models can be used to guide practitioners on how to solve

important real-life problems involving objects like houses, kidneys, positions, school seats, elec-

tromagnetic spectrum, and many other things (see Sönmez, 2023, for a recent overview). The

wide range of models can be classified in different dimensions, for example, whether agents have

initial endowments or not, or whether prices are attached to the objects or not. This paper ana-

lyzes a model where agents have initial endowments and indivisible objects are allocated through

price equilibrium mechanisms. Even though this class of models has received relatively little at-

tention compared to, for example, classical exchange models without prices (Shapley and Scarf,

1974) and price equilibrium models without initial endowments (Vickrey, 1961), it has important

practical applications. For instance, in the so-called U.S. Incentive Auction (officially known as

FCC Auction 1001), previously allocated spectrum was repacked and reallocated via price mech-

anisms to free up electromagnetic spectrum for wireless communications (Milgrom and Segal,

2017). Another example is the U.K. Housing Act 1980, where eligible tenants are given the right

to buy the homes they currently occupy (Andersson, Ehlers, and Svensson, 2016).1

One strand of the matching literature has provided a rationale for using equilibrium prices

when agents have initial endowments and no monetary transfers are allowed. More precisely, as

first demonstrated by Roth and Postlewaite (1977), Gale’s top trading cycles mechanism (TTC

mechanism, henceforth) selects the unique price equilibrium mechanism on the strict preference

domain, and the “no-envy property” implied by price equilibria can justify why specific match-

ings are chosen in practical applications. In the other strand of the literature, agents have no

initial endowments but buy objects at competitive prices. Here, Vickrey’s (1961) minimum price

equilibrium mechanism (MPE mechanism, henceforth) has been foundational when analyzing

1The Housing Act allows existing tenants to buy their homes at discounted, personalized prices below market
value. As shown by Andersson, Ehlers, and Svensson (2016), adopting a price equilibrium mechanism would
offer several advantages: all tenants would be at least as well off as they are under the current system, the public
authority would generate higher revenues, and houses could be reallocated to better match tenants’ needs as their
circumstances evolve. Similar, though not identical, policies exist in other European countries, including Germany,
Ireland, and Sweden. See Housing Europe (2021) for a recent report on the sale of social and public housing.
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the price discovery problem on the classical preference domain. We consider price equilibrium

mechanisms in a hybrid model of these two strands of the literature: agents have initial endow-

ments (as in Roth and Postlewaite, 1977) and the focus is directed towards price equilibrium

mechanisms (as in Vickrey, 1961). We provide a foundation for the MPE mechanism in this

hybrid model.

Even though the TTC mechanism (with initial endowments and without monetary transfers)

and the MPE mechanism (without initial endowments and with monetary transfers) are fun-

damentally different, their main properties turn out to be remarkably similar: they are both

strategy-proof on their respective domains and they both generate outcomes that are individu-

ally rational,2 and Pareto efficient (Ma, 1994; Roth, 1982; Vickrey, 1961). However, this result

is sensitive to specific model assumptions and does not carry over to the model considered in the

present paper. The reason is simply that when allowing for monetary transfers (i.e., prices), indif-

ferences prevail. Once both indifferences and initial endowments are allowed, the findings in the

above discussed strands of the literature diverge. Price equilibrium without monetary transfers

is no longer unique and may be inefficient (Bogomolnaia, Deb, and Ehlers, 2005; Ehlers, 2014;

Jaramillo and Manjunath, 2012), and when agents have initial endowments the MPE mechanism

is no longer strategy-proof (Andersson, Ehlers, and Svensson, 2016). Together, these results

imply that there is no strategy-proof price equilibrium mechanism that selects Pareto efficient

outcomes on the classical domain when agents have initial endowments.

In an effort to restore the appeal of price equilibrium mechanisms in such models, Anders-

son, Ehlers and Svensson (2016) showed that MPE mechanisms are strategy-proof on a reduced

domain of preference profiles that contains “almost all” profiles in the classical domain.3 This

result provides a strong argument in favor of using MPE mechanisms also in markets with initial

endowments, even though they are manipulable on the classical preference domain. However,

before such a recommendation can be made, several open and previously unexplored questions

2When there are no initial endowments, individual rationality means that each agent receives a non-negative
utility.

3More precisely, let the classical and the reduced preference domains be given by R and R̃, respectively, where
R̃ ⊂ R. Andersson and Svensson (2016, Appendix A) provided a measure on subsets of profiles in R, and
demonstrated that the set R− R̃ has measure zero. Consequently, R = R̃ a.e. (almost everywhere). In this sense,
the reduced domain R̃ contains “almost all” profiles in R.
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must be addressed. Specifically, reducing the domain of preference profiles might expand the

set of strategy-proof price equilibrium mechanisms to include those that are not minimal. This

raises a natural question: are there other strategy-proof price equilibrium mechanisms on the

considered reduced domain? As demonstrated in this paper, the answer is no, and the reason is

that MPE mechanisms uniquely characterize the class of strategy-proof price equilibrium mech-

anisms on the considered reduced domain. As we show, our foundation holds on a reduced

domain of profiles of either the classical domain or the quasi-linear domain.

Here, it should be noted that characterizations of the MPE mechanism on the classical do-

main have previously been provided in the literature, for example, by Morimoto and Serizawa

(2015), in models without initial endowments, but the analysis crucially hinges on the classical

domain and it is not known whether a similar result can be obtained for the quasi-linear domain

(see Sections 1.1 and 6 for additional remarks). To the best of our knowledge, MPE mechanisms

have never been characterized in a model with initial endowments, and the literature on non-

manipulable market design have not provided a foundation of any mechanism where the result

does not hold on the full domain but on a reduced domain of preference profiles that contains

“almost all” profiles in the full domain. This is the main distinguishing feature of our contribu-

tion.

Furthermore, no price equilibrium mechanism is both efficient and strategy-proof in the clas-

sical exchange model (recall the above discussions, and see also Hurwicz, 1972). Since our

foundation does not explicitly address efficiency, another natural question arises: are there any

strategy-proof mechanisms that Pareto dominate an MPE mechanism? As we show, the answer

is again no. More precisely, by considering Pareto dominance within the class of strategy-proof

mechanisms, we demonstrate that any mechanism, which Pareto dominates a MPE mechanism,

must be manipulable. Moreover, on the considered reduced domain where MPE mechanisms

remain strategy-proof, no strategy-proof mechanism Pareto dominates a MPE mechanism. Thus,

MPE mechanisms are constrained efficient within the class of strategy-proof mechanisms. Sim-

ilar results have been provided in other types of matching models. In particular, in a standard

school choice setting, Abdulkadiroğlu, Pathak, and Roth (2009) and Kesten (2010) demonstrated

that no other strategy-proof mechanism Pareto dominates the (student proposing) deferred ac-
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ceptance algorithm.4 Furthermore, in a pure exchange model with weak preferences and without

transfers, Ehlers (2014) demonstrated that the TTC mechanism with fixed tie-breaking is not

Pareto dominated by any strategy-proof mechanism. The latter results are parallel to our third

main result where we show that MPE mechanisms cannot be Pareto dominated by a strategy-

proof mechanism, so the result holds independently of if monetary transfers are allowed or not.

Our findings thus provide two new and compelling arguments in favor of using MPE mech-

anisms when agents have initial endowments and when restricting attention to the considered

reduced domain where MPE mechanisms are strategy-proof: if attention is limited to strategy-

proof price equilibrium mechanisms, MPE mechanisms are the only possible choice, and there

is no other strategy-proof mechanism that Pareto dominates them.

1.1 Related Literature

When monetary transfers are allowed, agents become indifferent between consumption bundles

at some prices. This causes significant problems for the model considered in this paper, forcing

us to operate on a reduced domain to restore (constrained) efficiency and strategy-proofness.

These types of problems are not unique to our model. In models without initial endowments

where transfers are restricted by upper bounds, certain “indifference chains” destroy incentive

properties on the classical domain (Andersson and Svensson, 2016). However, when considering

a reduced domain that excludes such “indifference chains,” positive results can be obtained in, for

example, housing markets with rent control (Andersson and Svensson, 2014) and school choice

environments with resource constraints and crowding (Phan, Tierney and Zhou, 2024). Similarly,

in models with initial endowments where monetary transfers are not allowed, there are many

permissive results on the strict preference domain when considering, for example, “hierarchical

exchange rules” (Pápai, 2000) and “exchange rules with brokers” (Pycia and Ünver, 2017). As

demonstrated by Ehlers (2002), once indifferences are allowed, also these rules break down and

efficiency and strategy-proofness are no longer compatible.

Given the interest in (constrained) efficiency and strategy-proofness, this paper thus con-

4Part of the reason is, as shown by Erdil and Ergin (2008), that with equal priorities, no mechanism inherits
non-manipulability, stability, and agent-optimality among stable assignments.
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tributes to the general matching literature by demonstrating the necessity to define also MPE

mechanisms on a reduced domain of preference profiles when agents have initial endowments.

Furthermore, we obtain a foundation of MPE mechanisms for “almost all” preference profiles

in the classical domain, in contrast to, for example, exchange models without monetary trans-

fers where results related to, for example, efficiency and strategy-proofness break down once

indifferences are permitted.

Our analysis of MPE mechanisms with initial endowments naturally relates to the literature

on MPE mechanisms without initial endowments. This strand has expanded considerably since

Vickrey’s (1961) second-price auction with generalizations to more complex market structures

and preference domains (see, e.g., Demange and Gale, 1985; Leonard, 1983; Sun and Yang,

2003).5 Even in these generalized environments without initial endowments, MPE mechanisms

continue to satisfy individual rationality, efficiency, and strategy-proofness on the classical do-

main. They have further been characterized by various axioms, such as those investigated by

Miyake (1998), Morimoto and Serizawa (2015, 2018), and Svensson (2009). For instance, Mo-

rimoto and Serizawa (2015) demonstrate that an MPE mechanism is characterized by individual

rationality, efficiency, strategy-proofness, and no subsidy for losers on the classical domain.6 The

main distinguishing feature in our model is that each agent initially owns one object, which de-

stroys the compatibility of price equilibrium and strategy-proofness on the classical preference

domain. Therefore, we must operate on a reduced domain. Our main results show that MPE

mechanisms are constrained efficient and are characterized by strategy-proofness in the class of

price equilibrium mechanisms, do not follow from the existing literature, simply because these

models do not allow for initial endowments. Therefore, previous results cannot be used to infer

properties of the MPE mechanism for the considered model and domain. Furthermore, different

proof techniques are naturally required when allowing for initial endowments and when oper-

ating on a reduced domain (which we must operate on, in sharp contrast to the aforementioned

5For recent contributions on one-sided strategy-proofness in trading networks with monetary transfers, see Hat-
field, Kojima, and Kominers (2017), Jagadeesan, Kominers, and Rheingans-Yoo (2018), and Schlegel (2018). See
also Fleiner et al. (2019) for trading networks with frictions.

6The latter axiom ensures that agents who are not assigned an object (i.e., the “losers”) are never subsidized.
This property prevents uninterested agents from participating in auctions solely to exploit potential subsidies.
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papers, to restore constrained efficiency and strategy-proofness).

The literature that is most directly aligned with our framework allows for both price mech-

anisms and initial endowments. In a seminal contribution, Miyagawa (2001) studied a housing

market with monetary transfers, where each agent occupies one house but has the option to buy a

more preferred one. He characterized mechanisms that are individually rational, strategy-proof,

non-bossy,7 and onto. The key difference between Miyagawa (2001) and our contribution lies in

the imposition of non-bossiness, which implies that the considered mechanisms are characterized

by a matrix of fixed prices, that is, prices unrelated to agents’ preferences. In this framework,

agent a pays pah when receiving house h, with budget-balance achieved when pah = ph − pa

for some price vector p. The assignment is then derived from the TTC mechanism, exactly as

in Ma (1994), and TTC with fixed prices and tie-breaking satisfies all properties on the clas-

sical domain. Although non-bossiness is an appealing condition, it excludes a variety of useful

mechanisms, including MPE mechanisms. As a result, non-bossiness does not preclude strategy-

proofness and budget-balance, but it does rule out price equilibrium. In our contribution, price

equilibrium and strategy-proofness are fundamental. Consequently, we must forgo non-bossiness

and budget-balance. Thus, under fixed prices, allocation inefficiency prevails, while the absence

of budget-balance leads to inefficiency in the form of “waste” of money.

1.2 Outline

The remaining part of the paper is organized as follows. Section 2 introduces the formal model

together with assumptions and definitions that are used throughout the paper. Minimum equi-

librium price mechanisms are introduced and discussed in Section 3. The main characterization

theorem is provided in Section 3 together with the foundations for the use of minimum price

equilibrium mechanisms on the considered restricted classical and quasi-linear preference do-

mains. Section 5 is devoted to efficiency and considers Pareto dominance among strategy-proof

mechanisms. Section 6 concludes the paper. The proof of several key lemmas, as well as the

proofs of our main theorems, are relegated to Appendix A.

7A mechanism is non-bossy if an agent cannot change the outcome of other agents without altering her own
outcome (Satterthwaite and Sonnenschein, 1981).
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2 The Model

Let A = {1, 2, . . . , n} denote the finite set of agents and H = {1, 2, . . . , n} denote the finite set

of houses. The endowment of agent a ∈ A is house h ∈ H if h = a. We consider a market

where endowments are reallocated through a system of prices, i.e., a market where each agent

can buy a more preferred house. In this market, there are two types of prices, a vector of fixed

selling prices p ∈ R
n
+ and a vector p ∈ R

n
+ of buying (equilibrium) prices. We define Rn

+ to be

the set of feasible price vectors.

The endowments can be interpreted in different ways, but here we use an interpretation that is

consistent with a proposed extension of the U.K. Housing Act 1980 (see Andersson, Ehlers and

Svensson, 2016, for all details). There is an owner of the houses, for example, a governmental

authority, different from the agents in A, while each agent a ∈ A rents house h = a. The owner

would like to sell the houses to the group of renting agents, but not necessarily house h = a to

agent a. Agent a has a particular “right to stay” in the house she is renting: she can continue

to rent her “own” house, but she has also the option to buy her “own” house for the fixed price

p
a
. The fixed price vector p defines the owner’s reservation prices, i.e., the lower bound on the

feasible prices. Since the lower bound is fixed in the analysis, without loss of generality, we let

p
h
= 0 for all h ∈ H .8 The interpretation of the endowments is that continuing to rent or to buy

the “own” house is a fixed alternative, in contrast to buying another house where the price that the

agent has to pay depends on the market valuation. In a reallocation process, individual rationality

means that an agent never is assigned an alternative that is worse than the most preferred of her

two fixed alternatives.9

A reallocation of the endowments is denoted by assignment µ, which is a bijection µ : A →

H . We sometimes write µ = (µ1, . . . , µn) where µa denotes the house obtained by agent a.

8For any positive reservation price p
h
> 0, we simply set p

h
to be the “zero” when transferring house h to an

agent distinct from agent h.
9For notational simplicity, this most preferred fixed alternative will be denoted by (a, p) ≡ (a, 0) for each agent

a ∈ A since the price is zero for the agent independently of if the agent continues to rent or buy the house she
currently occupies (since she chooses her most preferred option among the two). The most preferred option is
then represented by (a, 0) in the preferences. This is discussed in detail in Andersson, Ehlers and Svensson (2016,
Lemma 1) where they show that, on the reduced domain defined in Section 4.1, it suffices to minimize the number
of agents who keep their initial endowments.
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The cardinality of µ indicates the number of agents who are not keeping their endowment, |µ| =

|{a ∈ A : µa ̸= a}|. A state is a pair x = (µ, p) of an assignment and a feasible price vector

p ∈ R
n
+. Here, xa = (µa, p) means that agent a is assigned house µa at price pµa in the price

vector p. Let X denote the set of all states.

Each agent a ∈ A possesses rational preferences Ra on houses and prices, i.e., Ra is complete

and transitive on bundles of type (h, ph) ∈ H × R+. As usual, (h, ph)Ia(h′, ph′) if and only if

[(h, ph)Ra(h
′, ph′) and (h′, ph′)Ra(h, ph)] and (h, ph)Pa(h

′, ph′) if and only if [(h, ph)Ra(h
′, ph′)

and not (h′, ph′)Ra(h, ph)]. This means that preferences represent indirect preference over houses

and prices, which is equivalent to consider preferences (h, βa−ph) over houses and money where

βa denotes agent a’s monetary endowment. To simplify notation, we also let (h, p) ≡ (h, ph).

Preferences are further assumed to be strictly monotonic, i.e., (h, p′h)Pa(h, ph) if p′h < ph, for

all houses h ∈ H\{a}, while constant for the own house, i.e., (a, p′a)Ia(a, pa) for all p, p′ ∈ R
n
+.

The reason for assuming price independence of the own house is simply that an agent a always

pays the reservation price p
a
= 0 for the own house independently of the values of the buying

prices p. Finally, preferences are assumed to be continuous and boundedly desirable. Continuity

means that for all h ∈ H, the sets {ph ∈ R+ : (h, ph)Ra (h, p
′
h)} and {ph ∈ R+ : (h, p′h)Ra (h, p)}

are closed for all p′h ∈ R+. Bounded desirability means that if the price of a house is “sufficiently

high,” the agents will strictly prefer to keep the house they are currently living in rather than buy-

ing some other house, i.e., (a, pa)Pa(h, ph) for each agent a ∈ A and for each house h ̸= a for

ph “sufficiently high.” Note that we do not exclude the case where an agent a does not demand a

particular house h ∈ H\ {a} for any price ph, i.e., (a, pa)Pa (h, ph) for all ph ∈ R+.

For agent a, the set of rational, monotonic, continuous, and boundedly desirable preferences

on H × R+ is denoted Ra, and called classical preferences. A (preference) profile is a list

R = (Ra)a∈A of agents’ preferences. The set of profiles is denoted by R, where R = ×a∈ARa,

and is referred to as the classical preference domain. The notation R−a is used for the set

R−a = ×a′∈A\{a}Ra′ .

As any agent a ∈ A owns house h = a, individual rationality requires that any agent weakly

prefers her bundle to her endowment. Given R ∈ R, state x = (µ, p) is individually rational

if for all a ∈ A, xaRa(a, 0). As preferences are monotonic and p ≥ p = 0, this implies for
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all a ∈ A, (µa, 0)Ra(a, 0). We call an assignment individually rational under R if the latter

condition holds for all agents a ∈ A. Let AR denote the set of individually rational assignments

for profile R, and let XR denote the set of individually rational states for profile R.

We next define mechanisms together with concepts related to manipulability.

Definition 1. A mechanism is a mapping f : R → X of profiles to states such that f(R) ∈ X

for all R ∈ R.

A mechanism f is manipulable at profile R ∈ R by agent a ∈ A if there is a profile (R′
a, R−a) ∈

R such that for f(R) = x and f(R′
a, R−a) = x′, x′

aPaxa. Let R̆ ⊂ R be a subset of profiles. The

mechanism f is strategy-proof on domain R̆ if no agent can manipulate at any profile R ∈ R̆.

Note that if f is strategy-proof on domain R̆ and (Ra, R−a) ∈ R̆, then agent a cannot manipulate

by using any preferences R′
a with (R′

a, R−a) ∈ R.

Finally, a mechanism f is individually rational if for any profile R, f(R) is individually

rational. Note that for f(R) = x = (µ, p), this implies µ ∈ AR.

3 (Minimum) Price Equilibrium Mechanisms

In the previous section, states and mechanisms were allowed to choose prices in an arbitrary

way for individually rational assignments. We next consider markets where houses are allocated

through equilibrium prices, that is, where any agent can buy a most preferred house at the given

(equilibrium) prices.

Definition 2. For R ∈ R, a state x = (µ, p) is a weak price equilibrium if (i) for all a ∈ A,

xaRa(h, p) for all h ∈ H and (ii) µa = a and pa > 0 only if xa′Ia′(a, p) for some a′ ̸= a. If,

in addition, the cardinality of the assignment µ is maximal among all states with price vector p

satisfying (i) and (ii), then x is a price equilibrium.

Part (i) is the usual price equilibrium condition, that is, at prices p each agent has been assigned

a most preferred alternative. This implies that the chosen state is individually rational as then

xaRa(a, p)Ia(a, 0). Part (ii) avoids trivial price vectors. Since an agent’s welfare of her “own”

10



house does not depend on the price of her house, any sufficiently high price would be an equi-

librium price without (ii) when an agent prefers her “own” house to all other houses. That trade

is socially preferred to no trade is reflected by the last part in the definition. This condition does

not directly influence agents’ welfare (as prices remain unchanged) but when there is an external

owner of the houses and the agents are renting, then the profit of the owner weakly increases

when a house is sold to a “non-renting” agent compared to when it is sold to a “renting” agent.

For a given profile R ∈ R, the set of price equilibria is denoted by ER and the set of cor-

responding equilibrium price vectors by ΠR. Hence, p ∈ ΠR precisely when there is a state

(µ, p) ∈ ER. Moreover, the set of all price equilibriums is denoted E , where E = ∪R∈RER. The

sets ER are nonempty.10 Finally, a state (µ, p) ∈ ER is a maximum trade equilibrium, if |µ| ≥ |µ′|

for all (µ′, p′) ∈ ER. The requirement on a maximum trade equilibrium is that the number of

agents who keep their endowment is minimal among all equilibrium price vectors.

We will demonstrate that a price equilibrium mechanism, which is strategy-proof, must be a

minimum price equilibrium (MPE) mechanism. The result is not true on the classical preference

domain R. Instead, we consider a reduced domain of preference profiles which contains “almost

all” profiles in R, denoted by R̃ where the result holds. Before this result can be formally stated,

MPE mechanisms need to be defined.

Definition 3. A price equilibrium mechanism is a mapping f : R → E of profiles to price

equilibriums such that f(R) ∈ ER for all R ∈ R.

The use of a minimum price equilibrium mechanism will be central in the main characterization

result. Let R ∈ R and denote by pm ∈ ΠR a price vector that is minimal in ΠR, i.e., if p ∈ ΠR

and p ≤ pm then p = pm.

Definition 4. A price equilibrium mechanism f is a minimum price equilibrium (MPE) mecha-

nism on the domain R̆ ⊂ R if for all R ∈ R̆, f(R) = x ∈ ER and x = (µ, pm) with pm minimal

in ΠR.

Andersson, Ehlers and Svensson (2016, Example 2 and Proposition 2) demonstrated that if the

number of agents is at least four, a minimal equilibrium price vector is not necessarily unique on
10See, for example, Proposition 1 in Andersson, Ehlers and Svensson (2016).

11



the domain R. The multiplicity of a minimum equilibrium price vector is a direct consequence

of the possibility for agents to “block” the trade of a house through their outside options to stay in

the houses they are currently living in. As a consequence, any MPE mechanism is manipulable

on the domain R. For later purposes, we include the example below.

Example 1. Let A = H = {1, 2, 3, 4} and p = (0, 0, 0, 0). For each agent a ∈ A, preferences

over bundles (h, p) are represented by a quasi-linear utility function uah(p) = vah−ph for h ̸= a

and uaa(p) = vaa where the values vah are given by real numbers:

V = (vah)a∈A,h∈H =


0 −2 0 −2

−2 0 0 −2

2 −2 0 1

−2 2 −2 1

 .

Let the profile R ∈ R denote the preferences that are represented by the above values.

In this case, both p′ = (1, 0, 0, 0) and p′′ = (0, 1, 0, 0) are minimum equilibrium price vectors.

This follows since both x′ = (µ′, p′) and x′′ = (µ′′, p′′) are equilibrium states for µ′ = (1, 3, 4, 2)

and µ′′ = (3, 2, 1, 4), respectively. At state x′, agent 1 buys her house at its reservation price 0,

and at state x′′, agents 2 and 4 buy their houses at the reservation price 0. Hence, |µ′| > |µ′′|, i.e.,

the minimum price equilibrium x′′ is not a maximum trade equilibrium. It is easy to see that x′

and x′′ are the only minimum price equilibriums for profile R.11

Agent 3’s utility at state x′ is 1 whereas agent 3’s utility at state x′′ is 2. Similarly, agent 4’s

utility at state x′ is 2 whereas agent 4’s utility at state x′′ is 1. In other words, agents 3 and 4 have

opposed preferences over x′ and x′′. Due to this, and as we will demonstrate, if x′ is chosen,

agent 3 can profitably manipulate whereas when x′′ is chosen, agent 4 can profitably manipulate.

11Consider the state x̂ = (µ̂, p̂) ∈ ER and suppose that p̂ is a minimum equilibrium price vector. We first
demonstrate that p̂ = p′ = (1, 0, 0, 0) or p̂ = p′′ = (0, 1, 0, 0). Since p′ and p′′ are minimum equilibrium price
vectors, it is clear that either p̂1 < 1 or p̂2 < 1 because p̂ is a minimum equilibrium price vector. Suppose that
p̂1 < 1. Then µ̂3 = 1 since x̂ is a price equilibrium. Consequently, µ̂1 = 3, p̂3 = 0 by individual rationality for
agent 1, and it then follows that µ̂2 = 2 by individual rationality for agent 2. But then it must be the case that µ̂4 = 4
and p̂2 ≥ 1, because otherwise agent 4 will envy agent 2 at state x̂. Hence, p̂ ≥ p′′. But then p̂ = p′′ and x̂ = x′′,
by definition, since p̂ is a minimum equilibrium price vector by assumption. Analogous arguments can be used to
show that p̂ = p′ if p̂2 < 1.
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Let now f be minimum price mechanism on domain R. Then f(R) chooses either x′ or

x′′. If f(R) = x′, then µ′ = (1, 3, 4, 2) and agent 3’s utility is equal to v34 − p′4 = 1. Let R′

denote the profile of quasi-linear preferences where the entry v32 in the matrix V is replaced by

v′32 = 2. Obviously, x′ /∈ ER′ because (2, p′2)P
′
3x

′
3. On the other hand, it is easy to check that

x′′ ∈ ER′ . Also, p′′ is the unique minimum equilibrium price vector at profile R′. To see this,

suppose that x̂ = (µ̂, p̂) ∈ ER′ and that p̂ ̸= p′′ is a minimum equilibrium price vector at profile

R′. Then p̂2 < 1, which implies that µ̂4 = 2 and µ̂3 = 1. But then individual rationality cannot

be satisfied for both agents 1 and 2 at state x′′. Thus, p′′ must be chosen by f(R′). Then, by

individual rationality for agents 1 and 2, it follows that agent 3 must receive house 1. Because

R′ = (R′
3, R−3) and agent 3’s utility from (1, p′′) under R3 is equal to v31 − p′′1 = 2 > 1, agent 3

can profitably manipulate f at R.

If f(R) = x′′, it can be demonstrated, by using identical arguments as in the above, that agent

4 can manipulate the mechanism by replacing the entry v41 in the matrix V by v′41 = 2. □

4 Foundation

4.1 Classical Preferences

The main reason that MPE mechanisms can be manipulated in Example 1 is that houses 1

and 2 are “connected by indifference” via agents 1 and 2 when the prices are zero, i.e., that

(1, 0)I1(3, 0)I2(2, 0). By considering a reduced domain R̃ where no two houses are “connected

by indifference,”12 Andersson, Ehlers and Svensson (2016, Theorem 1 and Proposition 3) showed

that a minimum equilibrium price vector is unique and achieves maximum trade. This unique-

ness also destroys the possibility for agents to strategically “block trades” and, as a consequence,

MPE mechanisms are strategy-proof on the domain R̃ (Andersson, Ehlers and Svensson, 2016,

Theorem 2).13 Our first main result establishes that MPE mechanisms completely characterize

12This concept was first used by Andersson and Svensson (2014), but they used a slightly different version com-
pared to the one used in this paper. See also Phan, Tierney and Zhou (2024) for additional and more recent discus-
sions of the concept.

13Note that their result even allows for group manipulations which may result in preference profiles which do not
belong to R̃.
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the class of strategy-proof price equilibrium mechanisms on the domain R̃. Before stating this

result formally, the reduced domain R̃ needs to be defined and analyzed in somewhat greater

detail.

Let S be the set of sequences s = (hj, aj)
r
j=1 of distinct houses hj ∈ H and distinct agents

aj ∈ A such that h1 = a1, hj ̸= aj for all j such that 1 < j ≤ r and hj+1 ̸= aj for j < r and

2 ≤ r ≤ n.

Definition 5. For a given profile R ∈ R, two distinct houses, h′, h′′ ∈ H, are connected by

indifference if there is a sequence s ∈ S , and a corresponding price vector p ∈ R
n
+, such that

h′ = a1 and h′′ = ar, and (hj, p)Iaj(hj+1, p) for 1 ≤ j < r and (hr, p)Iar(ar, p). The subset of

R where no two houses are connected by indifference, at any profile, is denoted by R̃ and called

the NCBI (Not-Connected-By-Indifference) domain.

Note that for the type of price vectors considered in Definition 5, the prices phj
(with 1 < j ≤ r)

are uniquely determined by continuity and monotonicity of the preferences.

We next informally argue that the subset of profiles that is removed from the classical domain

R when constructing R̃, that is, the profiles in the set R−R̃, is a “negligible set.”14 In this sense,

the domain R̃ contains “almost all” preference profiles in R. For this purpose, let R ∈ R be a

profile and a ∈ A an agent, and denote by Rcon
aR the set of preference relations R′

a ∈ Ra such that

there are two houses h′, h′′ ∈ H, with h′′ = a, that are “connected by indifference” at the profile

(R′
a, R−a). From Definition 5, it now follows that R̃ = R−R′, where:

R′ = {R ∈ R : Ra ∈ Rcon
aR for some a ∈ A}.

We can think of a profile in R′ as the outcome in two steps of the natural lottery, where, for some

agent a, the first outcome is R−a and the second is Ra ∈ Rcon
aR . Now, if Rcon

aR can be considered

negligible, we can also consider R′ negligible since there is only a finite number of agents and

houses.
14The formal arguments for this claim are very similar to the ones provided by Andersson and Svensson (2016,

Appendix A). There, a measure on subsets of profiles in R is provided, and it is demonstrated that the set of
preference profiles where two houses are “connected by indifference” has measure zero. For the quasi-linear domain,
see Section 4.2.
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We next argue that Rcon
aR can be considered negligible. Note first that if R′

a ∈ Rcon
aR , there

is a sequence s = (hj, aj)
q
j=1 and a corresponding price vector p ∈ R

n
+ such that h′ = a1,

h′′ = aq = a, (hj, p)Iaj(hj+1, p) for 1 ≤ j < q and (hq, p)Ia(a, p). The price phq is uniquely

determined by the profile R, but independent of preferences Ra. Let now preferences R′
a be

represented by utility functions u′
ah, where u′

ah(p) is the agent’s willingness-to-pay for house

h ∈ H. The indifference (hq, p)I
′
a(a, p) prevails if and only if u′

aa(p) = phq . When preferences

are chosen by nature, it is reasonable to assume that u′
aa(p) ̸= phq is the case for most preferences

Ra ∈ Ra, also as agent a’s utility is constant for her “own” house at all prices. Since there is

only a finite number of sequences s ∈ S, the set Rcon
aR is negligible. It then follows, by the above

arguments, that R′ is also considered negligible.

Our first main result shows that MPE mechanisms completely characterize the class of strategy-

proof price equilibrium mechanisms on the domain R̃.

Theorem 1. Let f be a price equilibrium mechanism. Then f is strategy-proof on R̃ if and only

if f is an MPE mechanism on R̃.

Theorem 1 provides a foundation of the MPE mechanism on a subdomain of classical preference

profiles, a domain that contains “almost all” preference profiles in the classical domain. In other

words, even though MPE mechanisms are manipulable on the classical domain, this impossibil-

ity is not robust as it only holds on a negligible set of preference profiles. The further important

difference to the literature of strategy-proof mechanisms is that once an impossibility is estab-

lished, the analysis usually stops and no robustness checks are normally conducted. In contrast,

our findings demonstrate that on a reduced preference domain that contains “almost all” profiles

in the classical domain, any strategy-proof price equilibrium mechanism must select minimum

equilibrium prices. That is, any such mechanism must be a MPE mechanism and by adopting it

on the reduced domain, the impossibility result “vanishes.”

In addition, the result in Theorem 1 may be used to support a (normative) definition of fair-

ness. In a market model with private ownership, net trades are considered fair primarily because

no agent “envies” any other agent’s net trade. In general, however, no-envy is not sufficient as

a fairness criterion. First, no-envy is not sufficient for obtaining a unique allocation and sec-
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ond, fairness should reasonably be based on agent’s true preferences. According to Theorem 1,

the outcome of the minimum price equilibrium mechanism is envy-free and non-manipulable.

It is also the only price equilibrium mechanism that satisfies those two conditions. Hence, the

outcome of the minimum price equilibrium mechanism is a strong candidate for a definition of

(procedural) fairness.

4.2 Quasi-Linear Preferences

We next show that the result in Theorem 1 carries over to quasi-linear preferences. For each agent

a ∈ A, preferences over bundles (h, p) are quasi-linear if there exist real numbers (vah)h∈H such

that Ra is represented by the utility function uah(p) = vah − ph for h ̸= a and uaa(p) = vaa. Let

Qa ⊂ Ra denote the set of all quasi-linear preferences, and let Q = ×a∈AQa denote the set of

profiles with quasi-linear preferences. Let now Q̃ = Q∩R̃ and Q′ = Q∩R′. Then Q̃ = Q−Q′.

Below, we illustrate that Q′ is a negligible subset of profiles with quasi-linear preferences. In this

sense, Q̃ contains “almost all” profiles in the quasi-linear domain Q.

Note that any Ra ∈ Qa has a representation of values (vah)h∈H and adding the same con-

stant to all these values induces the same quasi-linear preferences. We will use the canonical

representation of Ra where vaa = 0. Using this convention, Qa corresponds to Rn−1 and Q to

R
n(n−1).

Let R ∈ Q be a profile of quasi-linear preferences. Suppose that houses h1 and hq+1 are

“connected by indifference,” i.e., that there exist sequences of distinct agents (a1, . . . , aq) and

distinct houses (h1, . . . , hq+1), and a price vector p such that:

(i) h1 = a1 and hq+1 = aq,

(ii) va1h1 = va1h2 − ph2 and vaqhq − phq = vaqhq+1 ,

(iii) vajhj
− phj

= vajhj+1
− phj+1

for 2 ≤ j ≤ q − 1.

Summing all left-hand sides and all right-hand sides yields:

q∑
j=1

(vajhj
− vajhj+1

) = 0. (1)
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Note that condition (1) is independent of the price vector p and that it represents a hyperplane

in Rn(n−1) with “measure zero” in Q. As the set of houses and the set of sequences is finite, it

follows that Q′ has measure zero in Q. Hence, Q′ is negligible (and Q̃ = Q−Q′). Furthermore,

one may reduce each agent’s preferences such that each profile belongs to Q̃.15

Theorem 1 remains unchanged for the quasi-linear domain, that is, we obtain a foundation for

MPE mechanisms on the subdomain of preference profiles Q̃ that contains “almost all” profiles

in the quasi-linear domain Q.

Theorem 2. Let f be a price equilibrium mechanism defined on Q. Then f is strategy-proof on

Q̃ if and only if f is an MPE mechanism on Q̃.

We emphasize that Theorem 1 does not imply Theorem 2, as it is restricted to quasi-linear prefer-

ences, nor does Theorem 2 imply Theorem 1, as it is restricted to classical preferences. Nonethe-

less, in Appendix A, we present a unified proof of our two main results, explicitly constructing

quasi-linear preferences.

5 Efficiency

In the context of assigning objects to agents with monetary transfers, a longstanding debate has

focused on achieving efficiency alongside non-manipulability (see, e.g., Andersson and Svens-

son, 2014; Demange and Gale, 1985; Holmström, 1979; Sun and Yang, 2006). Our contribution

to this literature demonstrates that, in a model with monetary transfers and initial endowments,

MPE mechanisms are constrained efficient within the class of strategy-proof mechanisms. Al-

though our main result (Theorem 3) holds on the general domain, we primarily consider quasi-

linear preferences, specifically the domain Q.

The strongest efficiency notion maximizes the sum of agents’ utilities subject to individual

rationality.

15Let Q denote the set of all rational numbers. For any agent a ∈ A, let Rq
a consist of all quasi-linear utility

functions where vah ∈ R\Q for all h ∈ H and vah−vah′ ∈ R\Q. Then it is easy to verify that Rq
1×· · ·×Rq

n ⊂ R̃.
This follows because the left-hand side belongs to R \ Q in condition (1).
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Definition 6 (Utilitarian efficiency). Given R ∈ Q (where Ra is represented by ua), a state x ∈

XR is utilitarian efficient if there exists no state x′ ∈ XR such that
∑

a∈A ua(x
′) >

∑
a∈A ua(x).

Utilitarian efficiency implies that the sum of agents’ values is maximized among individually

rational assignments and if µa ̸= a, then pµa = 0. Hence, if x is utilitarian efficient, then x is

welfare-equivalent to (µ, 0) where all prices are equal to zero.

As usual, for three or more agents strategy-proofness and utilitarian efficiency are incompat-

ible on a non-negligible set of preference profiles. We omit the straightforward proof.16

Proposition 1. For |A| ≥ 3, any utilitarian efficient mechanism is manipulable on a non-

negligible subset of the quasi-linear domain.

Given the impossibility result in Proposition 1, we consider constrained efficiency among strategy-

proof mechanisms, and more precisely Pareto dominance among mechanisms. Let f and g be

two mechanisms. Then f (Pareto) dominates g, denoted by f ⋗ g, if for all R ∈ Q we have

fa(R)Raga(R) for all a ∈ A, and for some R ∈ Q we have fa(R)Paga(R) for some a ∈ A.

Now, given a subdomain Q̆ ⊆ Q, we write f ⋗ |Q̆g, if the above holds for the subdomain Q̆

(instead of Q).

Obviously, any MPE mechanism dominates any other price mechanism on the NCBI domain

of quasi-linear preferences Q̃ (as then there exists a unique minimum price). We are interested

in Pareto dominance among strategy-proof mechanisms, and more precisely whether any MPE

mechanism is undominated in the class of strategy-proof mechanisms. When there are at least

four agents, the next results shows that no strategy-proof mechanism Pareto dominates an MPE

mechanism as any such mechanism must be manipulable.

Proposition 2. Let |A| ≥ 4. If mechanism f̂ dominates an MPE mechanism, then f̂ is manipu-

lable on the domain Q.
16Suppose that there are three agents, denoted by 1, 2, and 3. Assume also that agent 2 values house 1 at 100

and house 3 at −2, agent 3 values house 1 at 90 and house 2 at −1, whereas agent 1 values house 2 at 2 and house
3 at 3. Then utilitarian efficiency requires to choose ((2, 1, 3), 0) (where (2, 1, 3) denotes the chosen assignment
and 0 denotes zero prices) but when agent 3 changes her report and values house 1 at 200 and house 2 at −1,
utilitarian efficiency requires to choose ((3, 2, 1), 0), which means that agent 3 can profitably manipulate. Note that
these values can be varied continuously without changing these conclusions, i.e., the mechanism is manipulable on
a non-negligible subset of the quasi-linear domain.
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Proof. Let f be an MPE mechanism. Since f is individually rational and f̂ ⋗ f , it follows that f̂

is individually rational. Consider the profile R from Example 1. Then either f(R) = x′ = (µ′, p′)

where µ′ = (1, 3, 4, 2) and p′ = (1, 0, 0, 0), or f(R) = x′′ = (µ′′, p′′) where µ′′ = (3, 2, 1, 4) and

p′′ = (0, 1, 0, 0). Let f̂(R) = x̂ = (µ̂, p̂).

First, suppose that f(R) = x′. By f̂ ⋗ f , x̂aRax
′
a for all a ∈ A. As agent 4’s utility from

x′ is equal to 2 and (2, 0) is the unique bundle with price zero that maximizes her preference, it

follows that x̂4 = (2, 0). Since agent 3’s utility from x′ is equal to 1, it follows from individual

rationality of x̂ that x̂3 = (4, 0), x̂2 = (3, 0) and µ̂1 = 1, i.e., µ̂ = µ′ and x̂aIax
′
a for all a ∈ A.

Now, consider a similar manipulation as in Example 1 where agent 3 changes the entry v31 in

matrix V to v′31 = 3 and the entry v32 in matrix V to v′32 = 2, and for the obtained profile

R′ = (R′
3, R−3) we have f(R′) = x′′ and f3(R

′) = (1, 0)P3(4, 0). Because f̂3(R
′)R′

3f3(R
′), it

must be f̂3(R′) = (1, 0) since (1, 0) is the unique bundle with price zero that maximizes R′
3, i.e.,

f̂3(R
′)P3f̂3(R) and f̂ is manipulable.

Second, suppose that f(R) = x′′. By f̂ ⋗ f , x̂aRax
′′
a for all a ∈ A. As agent 3’s utility from

x′′ is equal to 2 and (1, 0) is the unique bundle with price zero that maximizes her preference, it

follows that x̂3 = (1, 0). Since agent 4’s utility from x′′ is equal to 1, it follows from individual

rationality of x̂ that x̂1 = (3, 0), µ̂2 = 2 and x̂4 = (4, 0), i.e., µ̂ = µ′′ and x̂aIax
′′
a for all a ∈ A.

Now, consider a similar manipulation as in Example 1 where agent 4 changes the entry v41 in

matrix V to v′41 = 2 and the entry v42 in matrix V to v′42 = 3, and for the obtained profile

R′ = (R′
4, R−4) we have f(R′) = x′ and f4(R

′) = (2, 0)P4(4, 0). Because f̂4(R
′)R′

4f4(R
′), it

must be f̂4(R′) = (2, 0) since (2, 0) is the unique bundle with price zero that maximizes R′
4, i.e.,

f̂4(R
′)P4f̂4(R) and f̂ is manipulable.

We next consider a domain which is slightly smaller than the NCBI domain by excluding also

indifference chains where two houses are “connected by indifference” at the reservation prices

zero.

Definition 7. For a given profile R ∈ Q, two houses h′, h′′ ∈ H with prices zero are connected

by indifference if there is a sequence s ∈ S, and a corresponding price vector p ∈ R
n
+, such

that ph′ = 0 and ph′′ = 0, (hj, p)Iaj(hj+1, p) for 1 ≤ j < r and (hr, p)Iar(h
′′, 0), and either
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[h′ ̸= h′′] or [h′ = h′′ and the sequence s contains at least two agents]. The subset of Q where

no two houses with prices zero are connected by indifference, at any profile, is denoted by Q̊ and

called the NCBI domain.

Note that whereas NCBI rules out any indifference chains between two endowments, NCBI

rules out indifference chains between two houses with reservation prices zero. As any agent is

indifferent among all prices for her endowment, NCBI implies NCBI and Q̊ ⊆ Q̃. Furthermore,

no agent is indifferent between two houses at prices zero, i.e., if R ∈ Q̊, then for all a ∈ A and

all distinct h, h′ ∈ H , we have either (h, 0)Pa(h
′, 0) or (h′, 0)Pa(h, 0). Using similar arguments

as in Section 4.2, it follows that NCBI excludes a negligible set of preference profiles from the

quasi-linear domain Q.

Strict preferences are typically considered in models where objects are allocated without

prices, with fixed (or discrete) prices, or in matching with contracts (see, e.g., Abdulkadiroğlu,

Pathak and Roth, 2009; Abdulkadiroğlu and Sönmez, 1999; Hatfield and Milgrom, 2005; Ma,

1994; Shapley and Scarf, 1974). The question is if there exist strategy-proof mechanisms which

dominate an MPE mechanism on the NCBI domain (where MPE mechanisms are strategy-

proof). Related problems have been considered in other contexts such as school choice and

random assignment.17 To the best of our knowledge, no such result has been obtained in the

context considered in this paper where agents have initial endowments and objects are assigned

using non-discrete prices.

Theorem 3. On the NCBI domain Q̊, no strategy-proof mechanism dominates an MPE mech-

anism.

We end this section by discussing three weaker efficiency notions: two where efficiency is re-

quired for the chosen assignment and one where efficiency is required for the chosen prices.

17In school choice, the deferred acceptance algorithm is inefficient, but Abdulkadiroğlu, Pathak and Roth (2009)
show that no strategy-proof mechanism dominates it (see also Kesten, 2010). This finding is further generalized by
Alva and Manjunath (2019) for arbitrary strategy-proof mechanism for the assignment of objects without monetary
transfers and without initial endowments. For the assignment of objects without transfers and outside options,
Erdil (2014) has shown that the random serial dictatorship mechanism is dominated in the class of strategy-proof
mechanisms.

20



Definition 8 (Utilitarian assignment efficiency). Given R ∈ Q (where Ra is represented by

(vah)h∈H), a state x = (µ, p) ∈ XR is utilitarian assignment efficient if there exists no assignment

µ′ ∈ AR such that
∑

a∈A vaµ′
a
>

∑
a∈A vaµa .

Definition 9 (Price efficiency). Given R ∈ Q, a state x = (µ, p) is price efficient if there exists

no price p′ ≥ 0 such that (µa, p
′)Ra(µa, p) for all a ∈ A and (µa, p

′)Pa(µa, p) for some a ∈ A.

Definition 10 (Assignment efficiency). Given R ∈ Q, a state x = (µ, p) is assignment efficient

if there exists no assignment µ′ such that (µ′
a, p)Ra(µa, p) for all a ∈ A and (µ′

a, p)Pa(µa, p) for

some a ∈ A.

Obviously, utilitarian efficiency is equivalent to both utilitarian assignment efficiency and price

efficiency, and utilitarian assignment efficiency implies assignment efficiency.

For the quasi-linear domain, any minimum price equilibrium x = (µ, p) satisfies utilitarian

assignment efficiency when all houses with prices zero are (strictly) better than the initial endow-

ment, i.e., when (h, 0)Pa(a, 0) for all h ̸= a,18 but violates price efficiency whenever for some

agent a we have µa ̸= a and pµa > 0.

Requiring price efficiency means that the price of any house is zero. Suppose now that ph = 0

for all h ∈ H , and let H = {(h, 0) : h ∈ H}. For all R ∈ Q̊, any Ra induces a strict (ordinal)

preference on H (as indifferences among houses with prices zero are ruled out), which is the

reduction Ra|H . Let R|H = (Ra|H)a∈A. Gale’s top trading cycles mechanism (TTC mechanism,

henceforth) may then be used to allocate the houses (with prices zero) among the agents. Call

this the zero-price mechanism, i.e., for all R ∈ Q̊, we have f 0(R) = (µ, 0) where µ is the

outcome of the TTC mechanism when applied to R|H .

Informally, the TTC mechanism works as follows. For any profile, each agent “points” to her

most preferred house with price zero. Because the set A is finite, there must be at least one (top)

18Let R ∈ Q̊, x = (µ, p) be a minimum price equilibrium, and µ′ ∈ AR (where, by assumption, now all
assignments are individually rational). Then for all i ̸= h, vih > 0. As (µ, p) is an MPE, there exists a house ĥ ∈ H

such that pĥ = 0. But now for all i ̸= ĥ, it follows that viµi − pµi ≥ viĥ − pĥ = viĥ > 0, which implies µi ̸= i

(as vii = 0 by convention). For j = ĥ, we have vjµj
− pµj

≥ vjh − pjh for all h ∈ H independently of whether
µj = ĥ or µj ̸= ĥ since pĥ = 0. Then for all i ∈ A, we have viµi

− pµi
≥ viµ′

i
− pµ′

i
. Then, by taking sums over

all agents, it follows that
∑

i∈A viµi
≥

∑
i∈A viµ′

i
, which is the desired conclusion.
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cycle and for each top cycle agents trade their initial endowments as specified by the cycle. The

houses of these trading cycles are deleted from the preferences of the remaining agents and the

same procedure is applied to the remaining agents and their reduced preferences, and so on.19

For any R ∈ Q\Q̊, we may break indifferences in R|H and apply again the TTC mechanism

for the obtained strict preferences and set prices equal to zero. Now, zero-price mechanisms

satisfy individual rationality, price efficiency, strategy-proofness (Roth, 1982), and assignment

efficiency on the NCBI domain. Using Ma’s (1994) result, it follows that any mechanism

satisfying individual rationality, strategy-proofness, price efficiency and assignment efficiency

on Q̊ must coincide with the zero-price mechanism on the domain Q̊.

Obviously, the zero price vector almost never coincides with equilibrium prices. If this is

the case for some profile R ∈ Q̊, then any agent must obtain her most preferred house, i.e.,

for f 0(R) = (µ, 0), for any agent a ∈ A we have (µa, 0)Pa(h, 0) for all h ̸= µa, and the TTC

mechanism would terminate after Step 1. Furthermore, if a public agency owns the objects (as in

the U.K. Housing Act interpretation of the model), the agency would make zero profit (as prices

are zero) and zero-price mechanisms have unbounded utilitarian assignment efficiency loss.20

This is also the reason why, in our setting, no mechanism is strategy-proof if resale is allowed.

From Andersson and Svensson (2016, footnote 7), it follows that any such mechanism must then

have prices zero, but then again as shown above, the chosen assignment is typically utilitarian

inefficient and “bribes” can be used to reallocate objects afterwards.21,22 This is likely also the

reason why the U.K. Housing Act prohibits resale for ten years after having acquired the public

19Formally, the TTC mechanism is defined as follows for R|H (where we write h instead of (h, 0) as all prices
are zero). In Step 1, each agent i ∈ A points to her most preferred house top(Ri) in A. Then there exists at least one
cycle i1− i2−· · ·− it (where top(Ril) = il+1 for l ∈ {1, . . . , t− 1} and top(Rit) = i1) and for any such cycle we
set fil(R) = top(Ril) for all l ∈ {1, . . . , t}. Let C1 denote the set of agents assigned in Step 1 and N1 = A\C1. In
Step k + 1, each agent i ∈ Nk points to her most preferred house top(Ri|Nk

) in Nk. Then there exists at least one
cycle i1 − i2 − · · · − it (where top(Ril |Nk

) = il+1 for l ∈ {1, . . . , t− 1} and top(Rit |Nk
) = i1) and for any such

cycle we set fil(R) = top(Ril |Nk
) for all l ∈ {1, . . . , t}. Let Ck+1 denote the set of agents assigned in Step k + 1

and Nk+1 = Nk\Ck+1. Stop when Nk = ∅.
20For instance, for three agents let v1 = (0, 2, 1), v2 = (2, 0, 1) and v3 = (100, 1, 0). Then f0(R) = ((2, 1, 3), 0),

whereas any MPE mechanism chooses ((2, 3, 1), (1, 0, 0)). Now by increasing v31 to infinity, one can see that the
utilitarian assignment efficiency loss is unbounded.

21In the example in footnote 20, agent 3 may bribe agent 1 to report (0,−1,−1) and afterwards to swap their
initial endowments, making both agents better off. To avoid resale, the government would have to tax resale prices
by 100 per cent which would then make agent 1 not to resell her house.

22Similar findings have been reported by Demange and Gale (1985, pp. 875–876) and Schummer (2000, p.307).
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house. Similar policies have been enforced in other European countries, see Housing Europe

(2021).

Remark 1. In a model with initial endowments and without monetary transfers, Roth and Postle-

waite (1977) have shown that the outcome of the TTC mechanism chooses the unique price

equilibrium for strict preferences: for any profile, higher prices are attached to houses in cycles

executed earlier and prices within one cycle are identical. Then in a cycle, for any agent, the

price of her house and the one assigned to her are identical. Nevertheless, prices can always be

lowered infinitesimally without changing the price equilibrium conditions, and unless all agents

have a different most preferred house, a minimum price equilibrium does not exist. For weak

preferences where indifferences with the endowment are excluded, the NCBI condition holds but

by applying the TTC mechanism with fixed tie-breaking, we always obtain a strategy-proof price

equilibrium mechanism. Hence, uniqueness is lost as different tie-breaking results in different

price equilibrium mechanisms (and again no MPE mechanism exists). This is in contrast to our

foundation of the MPE mechanism on the NCBI domain where we obtain both uniqueness and

existence. □

6 Conclusions

In a house allocation model with monetary transfers and initial endowments, we answered the

fundamental question of characterizing the entire class of strategy-proof price equilibrium mech-

anisms. The main result showed that there is a domain that contains “almost all” preference

profiles in the classical domain, such that the investigated class of price equilibrium mechanisms

contains only one mechanism, namely the minimum price equilibrium mechanism. We further

demonstrated that no strategy-proof mechanism Pareto dominates a minimum price equilibrium

mechanism. All our main results hold on the classical domain as well as on the quasi-linear

domain.

The paper has, in similarity with, e.g., Demange and Gale (1985) and Sun and Yang (2003),

considered the classical preference domain. This domain is very natural if agents are risk averse,

budget constrained, or experience wealth effects (see, e.g., Alaei, Kamal and Azarakhsh, 2016;
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Baisa, 2017). However, because it may be difficult for agents to report non-quasi-linear pref-

erences to a direct allocation mechanism, it is likely that an iterative version of the mechanism

proposed in this paper is more transparent and easier to implement in real-life (another advan-

tage of iterative mechanisms is that they do not necessarily require full preference revelation). A

natural direction for future research is therefore to identify an iterative version of the direct price

equilibrium mechanism considered in this paper. A first starting place for searching for such a

mechanism are Andersson and Svensson (2018) and Morimoto and Serizawa (2015).

Zero-price mechanisms can be put into the framework of Morimoto and Serizawa (2015)

without initial endowments: there are more agents than houses, i.e., n = |A| > |H| = m,

A = {1, . . . , n} and H = {h1, . . . , hm}. But then choose the first m agents from A, and

let agent i “own” house hi and apply the zero-price mechanism for those agents together with

their initial endowments, and the other agents always receive (0, 0), i.e., the “null object” (or

outside option) at price zero. This mechanism satisfies in their main result (Theorem 2) strategy-

proofness, individual rationality and no subsidy for losers (which means that payments shall be

non-negative), and efficiency if transfers are required to be non-negative for allocations (which

shows that their Theorem 2 does not hold if transfers are required to be non-negative for feasible

allocations). It does not satisfy their efficiency notion in their context as transfers are allowed to

be negative, one may make certain agents better off by giving them the null object together with

a negative transfer (i.e., to “bribe” them to accept the null object).

Furthermore, for the quasi-linear domain without initial endowments, Vickrey-Clarke-Groves

mechanisms (VCG mechanisms, henceforth) play an important role in the literature. Those

mechanisms choose an allocation which maximizes the sum of the agents’ utilities and deter-

mines individual payments such that truthful reporting is a weakly dominant strategy. On the

one hand, VCG mechanisms are strategy-proof on the classical domain of quasi-linear prefer-

ences whereas MPE mechanisms are only strategy-proof on the domain of profiles where no two

houses are “connected by indifference.” On the other hand, VCG mechanisms ignore individual

rationality (and an agent might be worse off compared to keeping her “own” house) whereas

MPE mechanisms are individually rational, and VCG-prices might have to be negative.

A final remark is that our analysis is based on the assumption that there are equally many
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agents and houses. If there are more agents than houses, our analysis remains true by introducing

a number of “dummy houses” (one for each agent not owning a house and with zero value to the

agents) are introduced to the model to compensate for the difference. The case when there are

strictly more houses than agents is more difficult to analyze, but we conjecture that the main

results continue holds. The latter situation is unlikely to occur in real-life applications as there is

usually a shortage of public housing and there are more agents than houses.

A Appendix: Proofs

This appendix contains the proofs of Theorems 1–3. Additional definitions, results, and lemmas

will be introduced to facilitate the proofs.

A.1 Minimum Price Condition

Lemma 1 is an important consequence of a condition called the “minimum price condition” while

Lemma 2 is a characterization of minimum price vectors.

Definition 11. Let R ∈ R̃ be a profile and x = (µ, p) a weak price equilibrium at the profile

R. Then the state x satisfies the minimum price (MP) condition if for each nonempty set S ⊂

{h ∈ H : ph > 0}, there is a house h ∈ S and an agent a ∈ A, a ̸= h, such that µa ̸∈ S and

xaIa(h, p).

Note that the MP condition is not satisfied at x if ph > 0 for all h ∈ H.

Definition 12. Let R ∈ R be a profile and x = (µ, p) and x′ = (µ′, p) two weak price equilibria

where p ∈ ΠR. A sequence (aj)
t+1
j=1 of agents aj ∈ A, such that aj ̸= aj+1 for j ≤ t but at+1 = a1,

is called a trading cycle at x if hj = µaj and µ′
aj

= hj+1 for all j. If, in addition, also hj+1 ̸= aj

for all j and hj = aj for some j, the trading cycle is strong.

Clearly, if (aj)
t+1
j=1 is a strong trading cycle at x, then x cannot be a price equilibrium since, in

that case, trade cannot be maximal at all weak price equilibriums at prices p.
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Lemma 1. Let R ∈ R̃ be a profile and x and x′ two weak price equilibria, where the corre-

sponding price vectors satisfy: p, p′ ∈ ΠR and p′ ≤ p, p′ ̸= p. Assume that x satisfies the MP

condition. Then there exists a strong trading cycle (aj)
t+1
j=1 at state x.

Proof. Let H ′ = {h ∈ H : p′h < ph} and H ′′ = H − H ′. Then, H ′ ̸= ∅ since p′ ̸= p.

Furthermore, H ′′ ̸= ∅ since H ′′ = ∅ means that ph > p′h for all h, and hence, ph > 0 for all h,

which is not consistent with the MP condition (for S = H).

Let now hj = µaj and define a first part (aj)kj=1 of the sequence (aj)
t+1
j=1, where hj ∈ H ′ for

all 1 ≤ j < k ≤ t while hk ∈ H ′′, in the following way:

• Let h be an arbitrary house in H ′ and consider a sequence (h′
i)
k′
i=1, where h′

1 = h and h′
i,

i < k′, are different houses in H ′, while h′
k ∈ H ′′. Also let (a′i)

k′
i=1 be the corresponding

sequence of agents, where µa′i
= h′

i. Further, the sequence has to satisfy: for each q < k′

and set {h′
i}

q
i=1, xa′q+1

Ia′q+1
xa′j

for some j ≤ q and h′
j ̸= a′q+1. The sequence (h′

i)
k′
i=1 is

obtained recursively in the following way:

• Let h′
1 = h. If we have obtained the sequence for q houses, i.e., the sequence {h′

i}
q
i=1,

then, according to the MP condition, there is a house h′
r ∈ {h′

i}
q
i=1 and an agent, say a′q+1,

with a′q+1 ̸= h′
r, such that µa′q+1

̸∈ {h′
i}

q
i=1 and xa′q+1

Ia′q+1
(h′

r, p). Then let h′
q+1 = µa′q+1

. If

h′
q+1 ∈ H ′′ stop, and let k′ = q + 1, otherwise continue. The sequence stops at some time

k′ since H is finite. Note that h′
q+1 cannot stop in H ′ since the MP condition implies that

H ′′ ̸= ∅.

• The sequence (h′
i)
k′
i=1 clearly contains a subsequence (h′

ij
)kj=1 such that (a′ij)

k−1
j=1 are differ-

ent agents and xa′j+1
Ia′j+1

xa′j
for 1 ≤ j < k. Then, define the sequence (hj)

k
j=1 as hj = h′

ij

and aj = a′ij .

We next define the second part (aj)lj=k of the sequence (aj)
t+1
j=1. To do this, denote the houses

associated with (aj)
l
j=k by (hj)

l
j=k, and note that hk ∈ H ′′ by the above construction. Let now

ak+1 ∈ A be given by µ′
ak+1

= µak = hk ∈ H ′′. Continue to define aj, j ≥ k + 1 in a similar

way, i.e., µ′
aj+1

= µaj = hj ∈ H ′′. The sequence ends at hl if hl ∈ H ′.
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Before continuing to define the sequence (aj)t+1
j=1, we note that al ̸= ai for all i, k ≤ i < l. To

see this, assume that al = ai for some i, k ≤ i < l. Then i = k because of the rule µ′
aj+1

= µaj .

Furthermore, xalIalxal−1
since p′hl−1

= phl−1
. But then x′

al
Ialxal . Further, xakIakxak−1

, p′hk−1
<

phk−1
and ak ̸= hk−1 so, by monotonicity, (hk−1, p

′)Pakxak . But then x′
ak
Pakxak , contradicting

x′
al
Ialxal when al = ak. Hence, this case cannot prevail.

Note next that since the sequence (hj)
l
j=k ends at hl ∈ H ′, by construction, we can expand

the sequence (hj)
l
j=1 to a sequence (hj)

k′
j=1, k′ > l, in the same way as (hj)

k
j=1 was constructed,

where hj ∈ H ′ for l ≤ j < k′ and hk′ ∈ H ′′. Moreover, all hj are different for 1 ≤ j ≤ k and

l ≤ j ≤ k′ by the construction.

Further expansion to (hj)
l′
j=1, is obtained by the rule µ′

aj+1
= µaj = hj ∈ H ′′, for k′ ≤ j ≤ l′.

In this way, we further continue the expansion to a sequence (hj)
r
j=1. The expansion of the

sequence is stopped at the first agent ar such that ar = ai for some i < r. Then we have a cycle

(aj)
r
j=i where all agents are different for i ≤ j < r and ar = ai. In addition, xajIajxaj−1

, for

i < j ≤ r, and xa1Ia1xar . Moreover, the sequence satisfies:

1. If hj ∈ H ′ and hj−1 ∈ H ′′, then, by monotonicity, hj = µaj = aj .

2. hj ̸= aj−1 for all j, since if hj−1 = aj′ for some j′ then hj′ and hj′′ are connected by

indifference where j′′ satisfies hj′′ ∈ H ′ and hj−1 ∈ H ′′. This is not consistent with the

“not connected by indifference condition.”

Finally, given points 1 and 2 above, and after a renumbering, the cycle (aj)rj=i constitutes a strong

trading cycle.

Lemma 2. Let R ∈ R̃ be a profile. A price vector p is minimal in ΠR, if and only if, for each

equilibrium (µ, p) ∈ ER, the MP condition holds.

Proof. We first prove that the MP condition is a necessary condition. For this purpose, let x =

(µ, p) ∈ ER be a price equilibrium and suppose that the MP condition is not satisfied at x. Then

there is a nonempty set S ⊂ {h ∈ H : ph > 0} such that there is no h ∈ S and a ∈ A, with

h ̸= a and µa ̸∈ S, such that xaIa(h, p). This means that all agents a ∈ A, with µa ̸∈ S and

a ̸= h, strictly prefer xa to (h, p) for all h ∈ S. On the other hand, for a = h the utility of h
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is independent of ph. Then there is a price vector p′ ∈ ΠR such that p′ ≤ p, p′ ̸= p (Alkan,

Demange and Gale, 1991). Hence, p cannot be a minimum price vector in ΠR.

We next prove that the MP condition is a sufficient condition. Suppose that the MP condition

is satisfied at a price equilibrium x = (µ, p) ∈ ER but that p ∈ ΠR is not minimal in ΠR. Then

there is a price equilibrium x′ = (µ′, p′) ∈ ER such that p′ ≤ p, p′ ̸= p. Then, according to

Lemma 1, there is a strong trading cycle (aj)
t+1
j=1. But then trade cannot be maximal at x. To

see this, let a state x′′ be defined as: for all a ̸∈ {aj}tj=1 let x′′
a = xa, and for a ∈ {aj}tj=1

let x′′
aj+1

= x′
aj

for 1 ≤ j ≤ t. It then follows directly from Definition 12 that x′′ is a weak

price equilibrium and that trade is larger at x′′ than at x. This is a contradiction to x being a

price equilibrium. Hence, the MP condition is sufficient for p being a minimum price vector in

ΠR.

A.2 Proof of Theorems 1 and 2

First, by Andersson, Ehlers and Svensson (2016, Theorem 2), MPE mechanisms are strategy-

proof on the domain R̃.

Second, in showing the converse, by Andersson, Ehlers and Svensson (2016, Theorem 1) for

any profile in R̃ there exists a unique minimum equilibrium price vector.

We will use the following. Let R ∈ R̃ be a profile and xm = (µm, pm) be a minimum price

equilibrium under R. Let Ra be represented by ua where uah(p) for h is agent a’s willingness to

pay for house h under p. Let ua = uaµm
a
(pm) denote agent a’s utility from xm and ua = uaa(p

m).

Now for v ∈ (ua, ua] let Rv
a be the preferences represented by utility function uv

a such that (i)

uv
aa(p) = v and (ii) uv

ah(p) = uah(p) for all h ̸= a. Note that for all a ∈ A such that ua < ua we

have:

µm
a ̸= a. (2)

given Ra and h ∈ H\{a}, let ra(h) ∈ R be such that (h, ra(h))Ia(a, 0) (if (h, 0)Ra(a, 0)) and

ra(h) = −a (if (a, 0)Pa(h, 0)). Note that ra(h) is uniquely defined. Now if R ∈ R̃, then for all
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h ∈ H and all distinct a, a′ ∈ A\{h} we have:

ra(h) ̸= ra′(h). (3)

Now Rv
a changes the value of agent a’s house to v while keeping all other values unchanged. It

follows that (Rv
a, R−a) ∈ R̃ for almost all v ∈ (ua, ua].

Lemma 3. Let R ∈ R̃ and let pm be a minimal vector in ΠR. Then, for all a ∈ A (where Ra

is represented by ua) such that ua < ua, R′ = (Rv
a, R−a) ∈ R̃ for all v ∈ (ua, ua], except for a

finite set of values.

Proof. Let R ∈ R̃ and a ∈ A be ua < ua. Let v ∈ (ua, ua] and R′ = (Rv
a, R−a). Let h′, h′′ ∈ H

be two distinct houses and s ∈ S a sequence of distinct houses and agents. Let p ∈ R
n
+ be a

corresponding price vector such that h′ = a1 and h′′ = ar, and (hj, p)Iaj(hj+1, p) for 1 ≤ j < r.

Thus, the houses h′ and h′′ are connected by indifference if and only if (hr, p)Iar(ar, p). For

R ∈ R̃ this indifference cannot prevail (and for any sequence s which does not contain a).

Consider now the profile R′. Note that all prices in the sequence s are uniquely determined

by R−a (independently of whether a belongs to s or not). Now if a belongs to the sequence s,

then by the above construction of the preference relation Rv
a we have:

(i) a = aj with j ̸= 1, r, uajhj
(p) = uv

ajhj
(p) = uv

ajhj+1
(p) = uajhj+1

(p), or

(ii) a = a1, v = uv
a1h2

(p) = ua1h2(p), or

(iii) a = ar, v = uv
arhr

(p) = uarhr(p).

Note that (i) cannot prevail as otherwise houses a1 and ar are not connected by indifference under

R, a contradiction to R ∈ R̃.

As all prices in the sequence s are uniquely determined by R−a (independently of whether a

belongs to s or not), (ii) and (iii) only hold for finite set of values of v. As the set of sequences is

finite, R′ = (Rv
a, R−a) ∈ R̃ except for a finite numbers of values of v.

The following shows that as we change Ra to Rv
a such that the resulting profile belongs to R̃, the

minimum price vector remains unchanged.
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Lemma 4. Let R ∈ R̃ and let pm be a minimal vector in ΠR. Then, for all a ∈ A and all

v ∈ (ua, ua] (where Ra is represented by ua) such that (Rv
a, R−a) ∈ R̃, pm is a minimum price

vector also in Π(Rv
a,R−a).

Proof. Let xm = (µm, pm) ∈ ER. Let v ∈ (ua, ua] be such that R′ = (Rv
a, R−a) ∈ R̃. Since

xm ∈ ER, it follows directly from the definition of Rv
a that xm is a weak price equilibrium given

R′ and, hence, x̂ = (µ̂, pm) ∈ ER′ for some assignment µ̂. If pmh = 0 for all h ∈ H , then we are

done. If pmh > 0 for some h ∈ H, then let S ⊆ {h ∈ H : pmh > 0} be such that S ̸= ∅. Such

a set S exists since pmh > 0 for some h ∈ H. Then, by the necessary part of Lemma 2, the MP

condition holds at x, i.e., there is a house h ∈ S and an agent a′ ∈ A, a′ ̸= h, such that µm
a′ ̸∈ S

and xa′Ia′(h, p
m). If a′ = a, then also x̂aI

′
a(h, p

m) by the construction of Rv
a and the fact that

v < ua implies µm
a ̸= a ̸= µ̂a. Hence, the MP condition is satisfied at x̂ ∈ ER′ . Then, by the

sufficiency part of Lemma 2, pm is a minimal vector in ΠR′ .

Proof of Theorem 1. Suppose that the mechanism f is strategy-proof, but not a minimum price

equilibrium mechanism. Then there is a profile R ∈ R̃ such that f(R) = x ≡ (µ, p) and p ≥ pm,

p ̸= pm, where pm is minimal in ΠR. We consider two cases: either [xm
a Pa(a, 0) for all a ∈ A]

or [xm
a Ia(a, 0) for some a ∈ A].

Case 1: xm
a Pa(a, 0) for all a ∈ A.

Then for all a ∈ A, ua < ua and µm
a ̸= a. Hence, by p ≥ pm and p ̸= pm, there is a house h ∈ H

such that ph > pmh ≥ 0. Without loss of generality, let p1 > pm1 ≥ 0. Then there is an agent

a′ ∈ A, a′ ̸= h = 1, such that xa′Ia′(1, p) (where this follows from Definition 1(ii) if µ1 = 1

and otherwise we may choose a′ such that µa′ = 1). Further, by monotonicity, it follows that

xm
a′Pa′xa′ and µm

a′ ̸= a′, since:

xm
a′Ra′(1, p

m)Pa′(1, p)Ia′xa′Ra′(µ
m
a′ , p).

Thus, pµm
a′
> pmµm

a′
≥ 0.

For ease of notation, let R0 = R, f(R0) = x0 = (µ0, p0), a(1) = a′ and xm = xm0 =

(µm0 , pm0). Now choose R1
a(1) such that we have (i) R1 = (R1

a(1), R
0
−a(1)) ∈ R̃, (ii) (a(1), 0)P 1

a(1)(h, 0)
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for all h ∈ H\{a(1), µm0

a(1)} and (iii) p0
µ
m0
a(1)

> r1a(1)(µ
m0

a(1)) > pm0

µ
m0
a(1)

such that (µm0

a(1), r
1
a(1)(µ

m0

a(1)))P
0
a(1)x

0
a(1).

Suppose now that agent a(1) manipulates by using preferences R1
a(1) as defined above. Then

for f(R1) = x1 = (µ1, p1), we have by construction, µ1
a(1) ∈ {µm0

a(1), a(1)}. If µ1
a(1) = µm0

a(1),

then p0
µ
m0
a(1)

> r1a(1)(µ
m0

a(1)) ≥ p1
µ
m0
a(1)

implying x1
a(1)P

0
a(1)x

0
a(1), a contradiction to strategy-proofness.

Thus, µ1
a(1) = a(1) and p1

µ
m0
a(1)

≥ r1a(1)(µ
m0

a(1)) > pm0

µ
m0
a(1)

.

Note that xm0 is a weak price equilibrium under R1. Thus, for any MPE xm1 = (µm1 , pm1)

for R1, we have (i) pm0 ≥ pm1 (by R1 ∈ R̃), (ii) for all a ∈ A, µm1
a ̸= a (from (i) and

µm0
a ̸= a), and (iii) µm1

a(1) = µm0

a(1) (from (ii) and the construction of R1
a(1)). Hence, for all a ∈ A,

xm1
a R1

ax
m0
a P 1

a (a, 0).

Thus, for h = µm0

a(1), we have p1h > pm0
h ≥ pm1

h . Let a′ ∈ A be such that µ1
a′ = h. Then a′ ̸=

a(1), and either [a′ = h, xm1

a′ Pa′x
1
a′ and p1

µ
m1
a′

> pm1

µ
m1
a′

] or [a′ ̸= h, xm1

a′ Pa′x
1
a′ and p1

µ
m1
a′

> pm1

µ
m1
a′

].

In both cases we set a′ = a(2) and choose R2
a(2) such that we have (i) R2 = (R2

a(2), R
1
−a(2)) ∈

R̃, (ii) (a(2), 0)P 2
a(2)(h

′, 0) for all h′ ∈ H\{a(2), µm1

a(2)} and (iii) p1
µ
m1
a(2)

> r2a(2)(µ
m1

a(2)) > pm1

µ
m1
a(2)

such that (µm1

a(2), r
2
a(2)(µ

m1

a(2)))P
1
a(2)x

1
a(2).

Now by induction, suppose that for l > 1 we have (i) Rl = (Rl
a(l), R

l−1
−a(l)) ∈ R̃, (ii)

(a(l), 0)P l
a(l)(h

′, 0) for all h′ ∈ H\{a(l), µml−1

a(l) } and (iii) p
µ
ml−1
a(l)

> rla(l)(µ
ml−1

a(l) ) > p
ml−1

µ
ml−1
a(l)

such

that (µml−1

a(l) , rla(l)(µ
ml−1

a(l) ))P l−1
a(l)x

l−1
a(l−1).

Note that xml−1 is a weak price equilibrium under Rl. Thus, for any MPE xml = (µml , pml)

for Rl, we have (i) pml−1 ≥ pml (by Rl ∈ R̃), (ii) for all a ∈ A, µml
a ̸= a (from (i) and µ

ml−1
a ̸= a),

and (iii) for all k ∈ {1, . . . , l}, µml

a(k) = µ
mk−1

a(k) (from (ii) and the construction of Rk
a(k)). Hence,

for all a ∈ A, xml
a Rl

ax
ml−1
a P l

a(a, 0).

As above, if agent a(l) manipulates by using preferences Rl
a(l) as defined above (from Rl−1),

then for f(Rl) = xl, we have by construction, µl
a(l) = a(l) and pl

µ
ml−1
a(l)

≥ rla(l)(µ
ml−1

a(l) ) > p
ml−1

µ
ml−1
a(l)

≥

pml

µ
ml−1
a(l)

≥ 0.

Let T = {a(1), . . . , a(l)}. Let i1 ∈ A be such that µl
i1

= µ
ml−1

a(l) . Now if i1 /∈ T , then we

set a(l + 1) = i1 and we continue as above; and otherwise i1 ∈ T\{a(l)} and by construction,

µml
i1

̸= µ
ml−1

a(l) and i1 = µl
i1

. But then by xml
i1
P l
i1
(i1, 0), we have pl

µ
ml
i1

> pml

µ
ml
i1

≥ 0. Let i2 ∈ A

be such that µl
i2

= µml
i1

. Now if i2 /∈ T , then we set a(l + 1) = i1 and we continue as above;

and otherwise i2 ∈ T\{i1} and by construction, µml
i2

̸= µml
i1

and i2 = µl
i2

. But then we find i3,
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and either [we find a(l + 1) /∈ T ] or [we find T̂ ⊆ T such that (i) for all a ∈ T̂ , µl
a = a and

pla > pml
a ≥ 0 and (ii) T̂ = ∪a∈T̂{µml

a }].

But then for all a′ /∈ T , we have xl
a′P

l
a′x

l
a for all a ∈ T̂ (as otherwise we have found a(l+1))

and by construction and T̂ = ∪a∈T̂{µml
a }, we have for all a′ ∈ T\T̂ , xl

a′R
l
a′(a

′, 0)P l
a′x

l
a for all

a ∈ T̂ . But then by Definition 1 (ii), for any a ∈ T̂ there exists a′ ∈ T̂\{a} such that xl
a′I

l
a′x

l
a;

and there exists in T̂ an indifference cycle i(1), . . . , i(k) such that xl
i(1)I

l
i(1)x

l
i(2) · · ·xl

i(k)I
l
i(k)x

l
i(1)

and {i(1), . . . , i(k)} ⊆ T̂ which implies that trade is not maximal at xl, a contradiction. This

finishes the proof of Case 1.

Case 2: xm
a Ia(a, 0) for some a ∈ A.

Now let T be maximal with respect to set inclusion such that for (ease of notation) R′ =

(R′
T , R−T ) we have f(R′) = x = (µ, p) with p ≥ pm and p ̸= pm (where for all a ∈ T ,

xm
a Pa(a, 0) and we changed Ra to R′

a as above in Case 1). Then for all a ∈ T , xm
a P

′
a(a, 0),

µm
a ̸= a and µa ∈ {a, µm

a }. Note also for the last agent a in T who changed her preferences from

Ra to R′
a we have µa = a and pµm

a
> pmµm

a
, i.e., p ≥ pm and p ̸= pm is satisfied.

Note that as p ̸= pm, (µ, p) violates the MP price condition under R′, i.e., there exists S ⊆

{h ∈ H : ph > 0} such that for all a ∈ A with µa /∈ S, we have xaP
′
a(h, p) for all h ∈ S.

Without loss of generality, let S be minimal with respect to set inclusion. If |S| > 1, then for all

a ∈ A such that µa ∈ S, there exists h ∈ S\{µa} such that xaI
′
a(h, p). But then by our choice

of S, S must consist of indifference cycles i(1), . . . , i(k) such that xi(1)I
′
i(1)xi(2) · · ·xi(k)I

′
i(k)xi(1)

and {µi(1), . . . , µi(k)} ⊆ S, and any a ∈ A such that µa ∈ S must belong to at least one such

cycle (and no cycle can be disjoint from all other cycles). Now we must have for all a ∈ A such

that µa ∈ S, µa ̸= a as otherwise µa = a and by choosing a cycle in S to which a belongs to

either trade is not maximal at x or two houses are connected by indifference (which contradicts

R′ ∈ R̃). Note that |S| = 1 and a = µa ∈ S are impossible by Definition 1 (ii) as pµa > 0

and our choice of S. Thus, if ph′ = pmh′ for some h′ ∈ S, then ph = pmh for all h ∈ S (again by

our choice of S and all houses in S can be connected via indifference cycles). As xm satisfies

the MP condition, there exists a′ ∈ A such that µm
a′ /∈ S and for some h ∈ S, xm

a′I
′
a′(h, p

m).

Let Â = {a′} ∪ {a ∈ A : µm
a ∈ S}. Obviously, |Â| > |S| and there exists a ∈ Â such that
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µa /∈ S. But then µm
a ∈ S implies (µm

a , p
m)R′

a(µa, p
m)R′

axa and as (µm
a , p)I

′
a(µ

m
a , p

m), this is a

contradiction to our choice of S; and µa = µm
a implies pa = pma which is again a contradiction

to our choice of S. Thus, for all h ∈ S, ph > pmh ≥ 0 and µh ̸= h. But then for all a ∈ A such

that µa ∈ S, we have a ∈ T (as otherwise we have found a /∈ T and the deviation in Case 1 is

possible).

Now let a′ ∈ A be such that µa′ ∈ S. Then a′ ∈ T , µa′ = µm
a′ ̸= a′ and pµa′

> pmµa′
.

Furthermore, for all a ∈ A with ua = ua we have a /∈ T (and thus, µa /∈ S) and (a, 0)P ′
axa′

implying µa′ ̸= a. Now let a′ manipulate with R′′
a′ such that (i) R′′ = (R′′

a′ , R
′
−a′) ∈ R̃, (ii)

(a′, 0)P ′′
a′(h

′, 0) for all h′ ∈ H\{a′, µm
a′} and (iii) pµa′

> r′′a′(µa′) > pmµa′
.

Note that xm then satisfies the MP price condition under R′′, and xm is an MPE under R′′. Let

f(R′′) = x′ = (µ′, p′). Furthermore, as in Case 1 it follows µ′
a′ = a′ and p′µa′

≥ r′′a′(µa′) > pmµa′
.

If p′µa′
> r′′a′(µa′), then µa′ = µ′

a ̸= µa implies a /∈ T (as otherwise a ∈ T and a ̸= µm
a ̸= µm

a′ =

µa′ , a contradiction) and by the maximality of T , µ′
a = a. But then from Definition 1 (ii) there

exists a′′ with x′
a′′I

′
a′′(a, p

′) which is impossible for a′′ ∈ T and a′′ /∈ T would again contradict

the maximality of T . Thus, p′µa′
= r′′a′(µa′) > pmµa′

.

Note that a′ belongs to a trading cycle i1 − i2 − · · · − ik from µ to µ′ such that µ′
il
= µil−1

for

l = 2, . . . , k and µ′
i1
= µik . Let a′ = i2. Then µi2 = µm

i2
and µi1 = µ′

i2
= i2.

We show (I) µil ̸= il for all l ∈ {1, . . . , k} and (II) x′′
i2
I ′′i2(µi2 , p

′) and x′
il
I ′il(µil , p

′) for all

l ∈ {1, . . . , k}\{2}. Note that (II) yields the desired contradiction as µ′
i2
= i2 and trade is not

maximal under x′.

Note that (I) µi2 ̸= i2 and by p′µi2
= r′′i2(µi2) > pmµi2

, (II) x′
i2
I ′′i2(µi2 , p

′). Then µi2 = µ′
i3
̸= i3

is not possible as i3 /∈ T would imply xm
i3
P ′
i3
x′
i3

(and we found i3 /∈ T , a contradiction to

the maximality of T ) or i3 ∈ T would imply (i3, 0)P
′
i3
(µ′

i3
, p′) (as µm

i3
̸= µm

i2
= µi2). Thus,

µi2 = µ′
i3
= i3 and (I) µi3 ̸= i3. If i3 ∈ T , then as above µi3 = µm

i3
and p′µi3

= r′i3(µi3) > pmµi3
and

thus, (II) x′
i3
I ′i3(µi3 , p

′). If i3 /∈ T and xm
i3
P ′
i3
(i3, 0), then we have found i3 /∈ T , a contradiction

to the maximality of T .

If i3 /∈ T and xm
i3
I ′i3(i3, 0), then pµi3

= pmµi3
. We then also show p′µi3

= pmµi3
and (II)

x′
i3
I ′i3(µi3 , p

′). If p′µi3
> pmµi3

, then [µ′
i4
= µi3 ̸= i4 would imply i4 ∈ T , µi3 = µm

i4
, µi4 = i4, and

xi3P
′
i4
xi4 , a contradiction] and [µ′

i4
= µi3 = i4 would imply there exists a ∈ A with x′

aI
′
a(i4, p

′),
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then again a ∈ T , i4 = µm
a , µa = a, and xi3P

′
axa, a contradiction].

Now we continue by induction: let l ∈ {2, . . . , k} and suppose we have (I) µit ̸= it for all

t ∈ {2, . . . , l} and (II) x′′
i2
I ′′i2(µi2 , p

′) and x′
itI

′
it(µit , p

′) for all t ∈ {3, . . . , l}.

In showing (I) µil+1
̸= il+1 and (II) x′

il+1
I ′il+1

(µil+1
, p′), we consider three subcases for il: [1]

il ∈ T , [2] il /∈ T and xm
il
I ′il(il, 0), and [3] il /∈ T and xm

il
P ′
il
(il, 0).

For [1], if il ∈ T , then µil = µm
il

, µ′
il
= il and p′µil

= r′il(µil) > pmµil
. Then µil = µ′

il+1
̸= il+1

is impossible as otherwise il+1 ∈ T and µil ̸= µm
il+1

. Thus, µil = µ′
il+1

= il+1 ̸= µil+1
(which

yields (I) for il+1) and either [il+1 ∈ T yielding µil+1
= µm

il+1
and p′µil+1

= r′il+1
(µil+1

)] or

[il+1 /∈ T yielding (il+1, 0)I
′
il+1

(µil+1
, p) and as above, pµil+1

= pmµil+1
= p′µil+1

]. In both cases,

(II) x′
il+1

I ′il+1
(µil+1

, p′).

For [2], if il /∈ T and xm
il
I ′il(il, 0), then pµil

= pmµil
by µil ̸= il. Then it follows as above

p′µil
= pmµil

. But then il+1 ∈ T and µil ̸= il+1 is not possible as otherwise µil = µm
il

and

xilP
′
il+1

xil+1
(where µil+1

= il+1 by construction of R′
il+1

); thus, il+1 ∈ T implies µil = il+1

and µil+1
= µm

il+1
̸= il+1 (which yields (I) for il+1) and then again p′µil+1

= r′il+1
(µil+1

) (which

yields (II) x′
il+1

I ′il+1
(µil+1

, p′)). If il+1 /∈ T and µil+1
= il+1, then we have contradiction to that

no two houses are connected by indifference at p′ from (II) (as we can take the maximal t ≥ 2

such that µ′
it = it (which exists by µ′

i2
= i2). This yields (I) µil+1

̸= il+1 and pµil+1
= pmµil+1

. But

then µil = il+1 implies as above also pµil+1
= pmµil+1

= p′µil+1
and (II) x′

il+1
Iil+1

(µil+1
, p′); and

µil ̸= il+1 implies p′µil
= pmµil

and xm
il+1

P ′
il+1

(il+1, 0) (as otherwise we have again a contradiction

that no two houses are connected by indifference). We show again p′µil+1
= pmµil+1

. If p′µil+1
>

pmµil+1
, then µil+1

̸= il+2 is not possible as above for il+2 /∈ T or il+2 ∈ T . Thus, µil+1
= il+2 and

by Definition 1 (ii) for some a ̸= il+2 we have x′
aI

′
a(il+2, p

′
il+2

) which is not possible for either

a ∈ T or a /∈ T . Thus, p′µil+1
= pmµil+1

and (II) x′
il+1

I ′il+1
(µil+1

, p′).

For [3], if il /∈ T and xm
il
P ′
il
(il, 0), then µil ̸= il and pµil

= pmµil
, and µ′

il
̸= il and p′µil

= pmµil
.

Then it follows as above p′µil
= pmµil

and we draw the same conclusions as above at the end in [2]

yielding p′µil+1
= pmµil+1

and (II) x′
il+1

I ′il+1
(µil+1

, p′). □

Proof of Theorem 2. Start as above with a profile R ∈ Q̃. Let a ∈ A be such that ua < ua.

Observe that for all v ∈ (ua, ua] by construction Rv
a is quasi-linear, and (Rv

a, R−a) ∈ Q̃ for
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almost all v ∈ (ua, ua]. Furthermore, given quasi-linear Ra and h ∈ H\{a}, (h, ra(h))Ia(a, 0)

and (h, 0)Ra(a, 0) imply vah − ra(h) = vaa and ra(h) = vah − vaa.

In order to show that the proof of Theorem 1 also proves Theorem 2, it remains to show that

any deviation can be chosen to be quasi-linear. It suffices to consider the first deviation in Case

1 (as all later deviations are analogous for the other agents).

Let R0 = R, f(R0) = x0 = (µ0, p0), a(1) = a′ and xm = xm0 = (µm0 , pm0). For ease of

notation we use below a instead of a(1) and xm = (µm, pm) instead of xm0 .

Note that R0
a is quasi-linear and p0µm

a
> pmµm

a
. Let R0

a be represented by u0
a with values

(v0ah)h∈H . Then xm
a P

0
ax

0
aR

0
a(a, 0) implies v0aµm

a
− pma > uaµ0

a
(p0) ≥ v0aa. Now we choose R1

a to

be quasi-linear with representation u1
a and values (v1ah)h∈H such that:

(I) v1aµm
a
= v0aµm

a
,

(II) v1aa ∈ (uaµ0
a
(p0), v0aµm

a
− pmµm

a
) such that p0µm

a
> v1aµm

a
− v1aa > pmµm

a
,

(III) for all h ∈ H\{a, µm
a } and all p, u1

ah(p) = u0
ah(p)− (1 + |v0aa| +maxh′∈H |v0ah′|)α where

α ∈ (1, 2).

Note that the choice v1aa in (II) is possible by (I) together with p0µm
a

> pmµm
a

and v0aµm
a
− pma >

uaµ0
a
(p0). Also v1aa < v0aµm

a
− pmµm

a
always implies (by (I)) r1a(µ

m
a ) = v1aµm

a
− v1aa > pmµm

a
, and for

v1aa close enough to v0aµm
a
− pmµm

a
, r1a(µ

m
a ) is arbitrarily close to pmµm

a
.

By (II) and (III), it follows that (ii) (a, 0)P 1
a (h, 0) for all h ∈ H\{a, µm

a }. Finally, (iii)

p0µm
a
> r1a(µ

m
a ) > pmµm

a
follows from (II) as r1a(µ

m
a ) = v1aµm

a
− v1aa. By quasi-linearity of R0

a, we

have:

u0
aµm

a
(r1a(µ

m
a )) = v0aµm

a
− (v1aµm

a
− v1aa) = v1aa

where the first equality follows from r1a(µ
m
a ) = v1aµm

a
− v1aa and the second from (I). Now as

v1aa > uaµ0
a
(p0), we obtain (µm

a , r
1
a(µ

m
a ))P

0
ax

0
a, which is the second part of (iii).

Now from the same arguments as in the proof of Lemma 3 there exist v1aa and α ∈ (1, 2) such

that (i) R1 = (R1
a, R

0
−a) ∈ Q̃.23

23Note that by (a, 0)P 1
a (h, 0) for all h ∈ H\{a, µm

a } in the proof of Lemma 3 in (ii) we must have a = a1 and
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A.3 Proof of Theorem 3

Let g be an MPE mechanism. We show that on the NCBI domain Q̊ there exists no strategy-

proof mechanism f dominating g. As for any agent a with preferences Ra, (a, p)Ia(a, 0) for all

prices p ≥ 0, below we use the convention to sometimes write a instead of (a, p) or (a, 0).

Suppose not, i.e., f is strategy-proof and f ⋗ |Q̊g. But then for all R ∈ Q̊ it follows that

fa(R)Raga(R)Ra(a, 0) for all a ∈ A as g is individually rational, and for f(R) = (µ, p), g(R) =

(ν, p) and all h ∈ H for agent a with µa = h ̸= a, we have:

(h, ph)Raga(R)Ra(h, ph),

which implies ph ≤ ph. Without loss of generality, we use the convention ph = ph if h = µa = a,

i.e., if agent a keeps her endowment under f(R), which together with the above implies 0 ≤ p ≤

p.

Suppose for some R ∈ Q̊ and a ∈ A (where f(R) = (µ, p) and g(R) = (ν, p)) we have

fa(R) = (µa, p)Pa(νa, p). From p ≤ p and (νa, p)Ra(µa, p) we obtain 0 ≤ pµa < pµa
and

µa ̸= a.

Now let R′
a be such that (µa, p)PaaPa(µa, p) and aPa(h, 0) for all h ∈ H\{µa, a}, and

R′ = (R′
a, R−a) ∈ Q̊. By strategy-proofness and individual rationality of f and g on the NCBI

domain we have fa(R
′) = (µa, pµa) and ga(R

′) = a. Because g is an MPE mechanism, for

g(R′) = (ν ′, p′) we have pµa < p′µa
. Note that we continue to have fa(R

′)P ′
aga(R

′).

If there exists another agent a′ ̸= a for whom fa′(R
′)Pa′ga′(R

′), then we do the same as

above. Let S denote the agents for whom we changed preferences as above. By construction for

any a ∈ S there exists ha ∈ H\{a} such that aPa(h, 0) for all h ∈ H\{ha, a}.

Thus, we arrive at a profile R such that (where f(R) = (µ, p) and g(R) = (ν, p)) for all

a ∈ A, fa(R)Paga(R) implies a ∈ S, µa = ha, 0 ≤ pha < pha
, and either ga(R) = a or

ga(R) = (ha, p). Let T = {a ∈ A : fa(R)Paga(R)}. But now for the last agent a who changed

h2 = µm
a and in (iii) we must have hr = µm

a and ar = a (and in both these cases v1aa = u1
aµm

a
(p) and v1aa can be

adjusted); and in (i) we must have a = aj , hj = µm
a ̸= hj+1 or hj ̸= hj+1 = µm

a (and either u1
aµm

a
(p) = u1

ahj
(p)

or u1
aµm

a
(p) = u1

ahj+1
(p) and in both cases α can be adjusted).
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her preference we have ga(R) = a, 0 ≤ pha < pha
and a ∈ T ⊆ S.

As g(R) = (ν, p) is an MPE and R ∈ Q̊ ⊆ Q̃, the MP price condition ensures that there

exists h ∈ H such that ph = 0. Hence, from 0 ≤ p ≤ p, we obtain ph = 0. Let j ∈ A be such

that fj(R) = (h, 0). But then:

(h, 0)Rjgj(R)Rj(h, 0),

where the first relation follows from fj(R)Rjgj(R) and the second one from the fact that g(R)

is an MPE. Hence, fj(R) = (h, 0)Ijgj(R) = (νj, pνj). Let H0 = {h ∈ H : ph = 0} and

N0 = {i ∈ A : µi ∈ H0}. By the above argument, we have ph = 0 for all h ∈ H0 and

fi(R)Iigi(R) for all i ∈ N0. Furthermore, for the last agent a for whom we changed preferences,

we have pµa
> pµa ≥ 0 and µa = ha ̸= a = νa, i.e., H0 ̸= H .

Note that from µ to ν houses are exchanged in cycles. Let c = (i1, . . . , it) be such that

µil = νil−1
for all l = 2, . . . , t and µi1 = νit . Abusing notation, let c also denote the coalition

of agents in this cycle, and where we choose c such that a ∈ c (where a is the last agent who

changed her preference). Thus, t ≥ 2. Let Hc = {µi : i ∈ c} be the houses exchanged in cycle

c. By definition, Hc = {νi : i ∈ c}.

We distinguish the following two cases.

Case 1: Hc ∩H0 ̸= ∅.

Let h ∈ Hc ∩ H0. Then ph = ph = 0. Let il ∈ c be such that µil = h. As fil(R)Rilgil(R),

(ν, p) is an MPE and ph = 0, we obtain (h, 0)Iil(νil , p). By NCBI , νil ̸= il and pil > 0.

By the MP condition, there exists k ∈ A\{il} with (νk, p)Ik(νil , p). Again by NCBI , νk ̸= k

and pνk > 0.

Now consider houses {νil , νk}. Since pνil
> 0 and pνk > 0 the MP condition ensures the

existence of m ∈ A\{il, k} such that (νm, p)Im(νk, p) or (νm, p)Im(νil , p). Independently of

whether m ∈ {νk, νil} or m /∈ {νk, νil}, NCBI yields νm ̸= m and pνm > 0.

Note that we can always continue the chain with an agent distinct from the previously chosen

ones and a house distinct from the previously chosen ones, which is a contradiction to finiteness

of A and H .

37



Case 2: Hc ∩H0 = ∅.

Thus, by a ∈ Hc, pa > 0. Now applying the MP condition to Hc yields i ∈ A\c such that

(νi, p)Ii(ĥ, p) for some ĥ ∈ Hc. If pνi > 0, then we consider Hc ∪ {νi} and apply again the MP

condition. Now iteratively applying the MP condition and as H0 ̸= ∅, we obtain a shortest path

from H0 to Hc:

(h, 0) = (νj0 , p)
j0−→ (νj1 , p)

j1−→ (νj2 , p)
j2−→ · · · ju−→ (ĥ, p), (4)

where (νjl , p)Ijl(νjl+1
, p) for l ∈ {0, . . . , u − 1}, and (νju , p)Iju(ĥ, p) and ĥ ∈ Hc. Note that as

this is a shortest path from H0 to Hc, we have {j0, j1, . . . , ju}∩c = ∅, {νj0 , νj1 , . . . , νju}∩Hc = ∅

and pνjl
> 0 for all l = 1, . . . , u. Furthermore, by NCBI we have νjl ̸= jl−1 for all l = 1, . . . , u,

and ĥ ̸= ju (and pĥ > 0).

Let il ∈ c be such that νil = ĥ. Then either fil(R)Pilgil(R) or fil(R)Iilgil(R).

Subcase 2.1: fil(R)Pilgil(R).

As il ∈ c and |c| ≥ 2, we have µil ̸= νil which together with il ∈ S implies gil(R) = il = ĥ,

µi1 = hil and phil
> phil

≥ 0. Without loss of generality, ilPil(hil , p).
24 Let R′

il
be such that

(hil , p)P
′
il
(h, 0)P ′

il
ilP

′
il
(h′, 0) for all h′ ∈ H\{hil , h, il}, and R′ = (R′

il
, R−il) ∈ Q̊. But then

executing the cycle (j0, j1, . . . , ju, il) in (ν, p) yields a weak price equilibrium for R′. Hence,

p ∈ ΠR′ and for g(R′) = (ν ′, p′) we obtain 0 ≤ p′ ≤ p, p′h = 0 and (by (h, 0)P ′
il
il) ν ′

il
̸= il.

By strategy-proofness of f and g, and the construction of R′
il

, we still obtain fil(R
′) =

(hil , phil
)P ′

il
gil(R

′), and for f(R′) = (µ′, p′), we have p′hil
> p′hil

= phil
. Furthermore, we may

suppose ν ′
il
= h as otherwise νi1 = hil and we change R′

il
to R′′

il
such that:

(hil , p)P
′′
il
(h, 0)P ′′

il
ilP

′′
il
(hil , p

′
il
)P ′′

il
(h′, 0),

for all h′ ∈ H\{hil , h, il}, and obtain the same conclusions for (R′′
il
, R−il) and R as we did above

for R′ and R.

But then consider the cycle c′ according to which agents exchange houses from µ′ to ν ′ with

24If ilIil(hil , p), then we change Ril to R′
il

such that (hil , p)P
′
il
ilP

′
il
(hil , p) and obtain the same conclusions.
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agent il belonging to it. But then ν ′
il
= h and p′h = 0, and we obtain a contradiction as in Case 1.

Subcase 2.2: fil(R)Iilgi1(R).

By NCBI (starting the chain from (h, 0) as in (4)), we have µil ̸= il and pµil
> 0 (as

otherwise pµil
= 0 = pµil

). Now consider agent il−1. If fil−1
(R)Pil−1

gil−1
(R), then as il−1 ∈ c

and |c| ≥ 2, µil−1
= hil−1

̸= il−1 = gil−1
(R) and phil−1

> phil−1
≥ 0. Then change Ril−1

to R′
il−1

in the same way as we did in Subcase 2.1 for Ril by:

(hil−1
, p)P ′

il−1
(h, 0)P ′

il−1
il−1P

′
il−1

(h′, 0),

for all h′ ∈ H\{hil−1
, h, il−1} and obtain as in Subcase 2.1 the contradiction. If fil−1

(R)Iil−1
gil−1

(R),

then by NCBI , we have µil−1
̸= il−1 and pµil−1

> 0 (as otherwise pµil−1
= 0 = pµil−1

). Now

we continue as above. Since a ∈ c and fa(R)Paga(R), at some point we find il−v ∈ c such that

fil−v
(R)Pil−v

gil−v
(R) and obtain a contradiction as in Subcase 2.1.
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