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Abstract 
Biopharmaceuticals are highly valued for their ability to specifically and efficiently 
treat diseases. However, they require rigorous purification that involves complex 
unit operations to reach the levels of purity necessitated for use in patients. 
Maintaining this purity while recovering as much of the valuable biopharmaceutical 
as possible is the core challenge in biopharmaceutical downstream processing. 

Digitalization is a growing trend that has proven to increase efficiency in other 
manufacturing industries by implementing advanced automation based on high-
quality data, automatic control tools and digital twin technology. This thesis 
examines the application of digitalization to the biopharmaceutical downstream 
process through the lens of six case studies. The use of digital twins, automated data 
acquisition and Internet-of-Things connectivity is showcased, shedding light on 
how digitalization can be used to achieve more efficient, robust production of 
biopharmaceuticals. 
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Populärvetenskaplig sammanfattning 
Bioläkemedel 

Modern kemi ger mänskligheten möjligheten att tillverka specifika och komplexa 
läkemedelsmolekyler, men det finns gränser på hur stora och hur specifika dessa 
syntetiska molekyler kan bli. Därför har vi använt oss av naturens egna 
molekylfabriker, dvs levande celler, för att tillverka de molekyler som annars inte 
hade varit möjliga att syntetisera. Bioläkemedel syftar på just sådana medicinska 
molekyler som tillverkas i levande celler. Till exempel så har insulin tillverkats för 
att behandla diabetes sedan tidigt 1900-tal, då det utvanns ur kor och grisar. 
Framsteg inom biologi har gjort att vi inte behöver odla dem i levande djur, utan i 
isolerade jäst-, bakterie- eller animalieceller vars genetiska material modifierats till 
att tillverka molekylen i fråga. 

Dessa läkemedelstillverkande celler odlas i så kallade bioreaktorer i ett 
tillväxtmedium, en vätska som innehåller cellerna, läkemedlet de tillverkar, samt 
eventuella näringsämnen som de behöver för tillverkningen. Både cellerna och 
näringsämnena behöver separeras från läkemedlet innan detta kan tas i bruk. Utöver 
läkemedlet så tillverkar cellen också andra ämnen som till exempel endotoxiner, 
vilka är skadliga för en patient och således också behöver separeras. Därför finns ett 
behov för extremt effektiva reningsprocesser vid bioläkemedelstillverkning. Dessa 
reningsprocesser kallas för nedströmsprocessen, medan själva odlingen av cellerna 
samt det som sker innan det kallas för uppströmsprocessen. 

Ökande behov av nya bioläkemedel på grund av oväntade pandemier och 
upptäckten av nya kandidater till medicinska molekyler har orsakat ett behov av att 
accelerera utvecklingen av nya tillverkningsprocesser. Samtidigt så har långt ifrån 
alla människor på planeten tillgång till dessa läkemedel, på grund av både 
geografiska och ekonomiska skäl. Således finns det också en drivkraft till att göra 
den faktiska produktionen av bioläkemedlen mer effektiv. 

Digitalisering och Industri 4.0 

Modern teknik har gett upphov till kraftfullare datorer och snabbare 
nätverkskommunikation. Som följd finns det en trend hos tillverkande företag att 
tillvarata denna teknik genom att använda sig av små sensorer med förmågan att 
strömma data till centrala databaser, avancerade simuleringar av 
tillverkningsprocesser och smart, automatiserad drift av processteknik. Den ökade 
datorkraften möjliggör även tillämpningar av avancerade kommunikations- och 
beräkningslösningar som kan ske i realtid. Detta tillämpande av nya, digitala 
verktyg för att effektivisera tillverkning kallas för digitalisering, eller Industri 4.0. 
Det senare begreppet syftar på en fjärde industriell revolution, då denna nya våg av 
digitalisering anses vara en utveckling på samma nivå som ångmotorn, elkraften och 
datoriseringen en gång varit. Inom kemi- och bioteknik så har tre huvudsakliga 
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koncept identifierats som väsentliga till digitalisering. De är som följer: digitala 
tvillingar, dvs digitala representationer av fysiska objekt som kan användas för att 
designa, tolka, förutsäga och styra det fysiska föremålet; analys av stora 
datamängder med hjälp av moderna metoder så som maskininlärning, vilket 
möjliggör konkretiserandet av sagda data och drar ner på tiden människor behöver 
lägga på att göra detsamma; och Internet of Things, vilket syftar på användandet av 
maskiner som kan kommunicera med varandra över nätverk och utbyta information 
som samlas från sensorer, vilket gör det möjligt att samla enorma mängder 
värdefulla data. 

Digitalisering har potential att bidra till smartare automation i processindustrin, 
vilket reducerar produktionskostnader och effektiviserar tillverkningen. Genom att 
samla många data från processen via Internet of Things-integrerad utrustning och 
sedan analysera den med hjälp av metoder för hantering av stora datamängder, så 
kan underlag för att fatta beslut under processens gång skapas automatiskt. I 
kombination med digitala tvillingar och automatiska regleringstekniker så kan näst 
intill fullständig automation uppnås. 

Digitalisering av bioläkemedelsproduktion 

Många av de tekniker som utgör grundpelare i digitalisering har använts i många år 
i processindustrin. Mekanistisk modellering, reglerteknik och automatisk analys och 
insamling av data är exempel på sådana. Inom bioläkemedelstillverkning är 
nedströmsprocessen en särskild utmaning, eftersom en av de huvudsakliga 
enhetsoperationerna, kromatografi, är svår att samla data från och kräver särskilt 
tunga beräkningar för att simulera. Detta gör realtidsobservationer svåra, 
modellutveckling långsam och därav experiment dyra. Därför behövs metoder för 
att snabbare och automatiskt utveckla nya kromatografimodeller, automatiskt 
reglera kromatografiprocesser och bättre utnyttja de data som genereras under 
sådana processer. Historiskt har både datainsamling och modellering av 
kromatografi gjorts manuellt, och reglering av kromatografiprocesser är föga 
utforskat i litteraturen. Därför har jag, i denna avhandling, utforskat olika 
digitaliseringsförlopp för just kromatografiprocesser, med målet att både klargöra 
betydelsen av de olika digitaliseringskoncepten för produktionen av biologiska 
läkemedel, samt driva arbetet med att implementera sagda koncept framåt. 
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Introduction 

Biopharmaceuticals 
Biopharmaceuticals are molecules with pharmaceutical properties that are produced 
in living organisms, such as bacterial, mammal or fungal cells. This is in contrast to 
other pharmaceuticals that may be manufactured using, for example, organic 
synthesis. Biological systems have the advantage over other pharmaceutical 
manufacturing processes in that they are able to produce larger, more complex 
molecules, namely proteins, which in turn can have very specific effects in a patient. 
The advent of genetic manipulation of cells has broken further ground in the 
viability of biologics since they make it possible to tailor the molecules to specific 
needs. Indeed, the market for biologics has grown massively since the 1980s, when 
the use of monoclonal antibodies for cancer treatment was advancing [1]. Other 
examples of such molecules include insulin and adeno-associated viruses. 

One major challenge when working with biological systems is that the very same 
complexity that enables the production of such useful molecules, also results in 
many byproducts that either contribute nothing or may be harmful to the patient. 
Microorganisms produce other proteins referred to as host cell proteins (HCPs), that 
may cause harmful responses in patients. The desired pharmaceutical proteins may 
also form complexes with each other, such as polymers and oligomers, which can 
have similar effects. In addition, all bioreactors for biopharmaceutical production 
require the addition of nutrients and other substances that the cell requires to 
produce the desired molecule. Some biologics remain within the cells when they are 
produced, in which case the cells themselves need to be removed from the bioreactor 
and undergo lysis for the molecules to be accessed. This informs the need for 
thorough purification processes before biopharmaceuticals can be applied in 
treatment of diseases. 

The purification processes of biopharmaceuticals are usually referred to as 
downstream processes, as opposed to what happens prior to the first purification 
step, which is called the upstream process and includes the bioreactor. The 
downstream process constitutes the largest cost involved in biopharmaceutical 
manufacturing (henceforth referred to as biomanufacturing), standing for up to 80% 
of the total costs [2]. These costs stem from the expensive purification techniques 
that are required to ensure a degree of purification that is acceptable for patient use. 
The main workhorse of the downstream process is chromatography, which allows 
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for very high selectivity but requires the use of highly specialized and expensive 
resins, and is difficult to operate in a fast and optimized manner [3]. Another 
challenge to overcome in the downstream process is to keep pace with the 
developments occurring in the upstream. In order to increase productivity and drive 
down costs, much work has gone into optimizing and intensifying the upstream 
process, be it by improving operational conditions, engineering more efficient cell 
cultures or changing the mode of operation from batch-wise to continuous 
production [4], [5]. In order to handle the output from these improved upstream 
processes, many efforts have been made to adapt the downstream process, such as 
modifying it to take a continuous input and integrating process steps to decrease 
hold-up times. Finally, as humanity is afflicted by new diseases and pandemics, the 
biopharmaceuticals that are produced need to change and thus there is a need for 
rapid development of novel biomanufacturing processes, both up- and downstream. 

Digitalization 
In this section, the term digitalization will be studied in closer detail, with the end 
goal of specifying and limiting future discussions of the term. Digitalization can 
mean vastly different things in different fields, and variations of the phrase such as 
digitization and digital transformation are used interchangeably by some authors, 
while they are considered separate by others. One common distinction is the 
following: digitization refers to the act of converting analogue information into 
digital form, whereas digitalization refers to the adoption, application and utilization 
of digital technology [6], [7]. To give concrete examples, scanning physical books 
into a computer and adding them to a database would constitute digitization, while 
introducing a formal workflow involving said database to an organization would be 
digitalization. For a chemical engineering example, making use of digital tools such 
as logistics software or modelling and simulation would constitute examples of 
digitalization [8]. 

In chemical engineering, digitalization is often discussed in conjunction with the 
term Industry 4.0, or the fourth industrial revolution. This term refers to the 
application of digitalization tools to chemical manufacturing processes, which 
involves advanced automation by means of network communication between 
process units, generation and exploitation of process data, and autonomous 
decision-making based on these data to minimize human intervention. Differs from 
Industry 3.0, which refers to the unification of computers and equipment for 
automation, in that the automation is taken to a further extent by implementing 
advanced data analytics in real time by implementation of modern technologies and 
concepts [9], [10], [11]. In one study, Udugama et al. (2022) highlight three main 
technologies that differentiate Industry 4.0, which are all closely tied to the idea of 
digitalization. These are digital representations or digital twins, data-based 



3 

methodologies and Internet of Things [12]. It is through the lens of these concepts 
that I will continue to discuss digitalization in this thesis, and thus it is imperative 
that we understand what they are before we continue to talk about digitalization in 
the biopharmaceutical manufacturing process. 

Digital twins 
Digital representations in chemical engineering are, according to Udugama et al. 
[12], closely related to the term digital twins. Digital twins in a manufacturing 
context can be simply defined as digital representations of physical objects, but a 
very thorough discussion on the definition of a digital twin can be found in 
Kritzinger et al. (2018) [13]. In said study, the use of the term digital twins is 
examined in literature and an attempt is made to create a more unified definition. 
The result is a classification system for digital twins based on the level of integration 
between the digital and the physical worlds in terms how automated the flow of 
information is between the two. The following three classes were proposed: 

• A digital model is a digital representation of a physical object with no 
automated flow of information between the two. A manual flow of 
information may have occurred from the physical to the digital in order to 
obtain model behavior that replicates the physical object (i.e., model 
calibration). Conversely, the digital model may inform decisions and 
actions in the physical object based on simulations, and thus a manual 
transfer of information may occur form the digital to the physical world. 
However, changes in either the digital or physical object have no direct 
effect on the other. 

• A digital shadow takes the integration a step further by implementation of 
a one-way, automated flow of information between the physical and the 
digital. For instance, if a change occurs in the physical object, the digital 
object is updated to reflect that.  

• A digital twin is, naturally, when data flows automatically from the physical 
object to the digital and vice versa, meaning that a change in either will 
affect the state of the other. As an example, data may flow from the physical 
to the digital object, and the resulting change of states in the digital object 
automatically informs a decision to be made about the physical object, 
which is executed automatically. In this example, the digital object acts as 
a controller for the physical. 

A reader with experience from chemical engineering or other kinds of 
manufacturing may realize that the definitions of these classes are reminiscent of 
existing concepts in the field. In particular, the digital twin sounds very similar to 
any type of automatic controller, such as PID controllers. Indeed, while digital twins 
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may be novel in many other disciplines, the term is applicable to technologies that 
have been present in chemical engineering for decades. Still, it is worthwhile to 
examine these technologies from this broader perspective. Examples of different 
applications of digital twins in all different classes will constitute the larger part of 
this thesis. 

Data-based methodologies 
The collection and utilization of data in manufacturing has been common practice 
for a long time, for example to perform linear, nonlinear, and/or multivariate 
regression to find correlations between operating conditions and process outputs. 
However, when the term “data-based methodologies” is used in the context of 
digitalization and Industry 4.0, it refers to management of large datasets that 
necessitate the use of more modern, automated data analysis methods [12]. 
Examples of such methods include clustering, classification, and modern regression 
techniques based on principal component analysis (PCA) or artificial neural 
networks (ANNs). Common for these methods is that they are, in the best case, 
capable of analyzing extremely large datasets that would take a substantial time to 
go through using classic data analysis techniques, potentially even finding 
correlations that are difficult to discern for the human eye. Another differentiating 
property of modern data analysis techniques is that they often function in an 
unsupervised manner, where the point of human interaction lies in the tuning of 
hyperparameters of the analytical method used, rather than wrangling with the data 
itself. 

Internet of Things 
Internet of Things (IoT) is another term that is very broad in its application. In an 
everyday life example, a so-called “smart home”, where appliances in a home are 
connected to a network and can be accessed and controlled via a singular device, 
such as a smartphone, is an example of IoT. From an information technology 
standpoint, much focus lies in the specific technology used to achieve network 
communication between such appliances. One more practical definition of IoT is 
the deployment of relatively small devices equipped with sensors that are capable 
of streaming data obtained from said sensors, as well as being controlled via network 
communication. From an industrial standpoint and based on the above definition, 
IoT can refer to the deployment of small sensors with network connectivity to a 
manufacturing plant that has no supervisory control and data acquisition (SCADA) 
system in place, making it a low-cost alternative that is made more viable by the 
availability of cheap, accessible devices such as Arduino micro controllers or 
Raspberry Pi computers. [14] 
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A natural question to ask is: what differentiates IoT from existing SCADA systems 
in manufacturing? One study by Wan et el. (2016) [15] discusses the application of 
IoT from an Industry 4.0 perspective and highlight one roadblock: the heterogeneity 
of hard- and software prevents efficient communication between different pieces of 
equipment over a network. From this identified issue, we can determine that an 
industrial IoT application refers to the unification of different pieces of equipment 
(sensors, industrial robots, etc.) and the data they provide into a common 
architecture that can be used to improve process operation, by means of network 
communication. Simply put, the interconnectivity of different process units is a key 
factor in industrial IoT. 

Thesis Aim and Outline 
The remainder of this thesis will be dedicated to discussing how these digitalization 
concepts can be applied to the downstream processing of biologics. The papers 
included correspond to different studies performed both on individual unit 
operations in the pharmaceutical downstream processes, as well as on a full 
downstream processing train. During these studies, many techniques have been 
applied that can be connected to the above-mentioned three main pillars of 
digitalization, and the aim of this thesis is to bring the terminology of digitalization 
as a broad concept into the field of biopharmaceutical downstream process research. 
Many of the techniques that I have used have a long history in the chemical 
engineering field as a whole, and I aim to highlight the connection between existing 
techniques and new terminology to paint a clearer picture of what digitalization and 
Industry 4.0 mean for the biopharmaceutical industry. Automation is a major theme 
in most of my papers, and discussion on the role of automation in the digitalization 
workflow will also be included. 

The outline for the remainder of this thesis is as follows: in Chapter 2, I will give an 
example of a downstream process that aligns with the trends of continuous 
manufacture and digitalization, as well as showcase the methods that can be used to 
operate such a system in an autonomous fashion. In Chapters 3, I will talk about 
how digital twins can be applied in many different steps of downstream process 
development, from design of both unit operations and controllers, to real-time 
applications. In Chapter 4, I will go over data-based methodologies that were 
applied in this work. Mainly, these will cover data acquisition, labelling and storage, 
which are essential for the advanced data analytics covered by this term to be used. 
In Chapter 5, the relationship between the methods I have used, and the Internet of 
Things will be explored. Finally, Chapter 6 concludes the thesis and sets up a future 
perspective on what work remains to be done for these concepts to go further and 
satisfy an Industry 4.0 viewpoint. 
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The Biopharmaceutical Downstream 
Process: Design and Operation 

Continuous process for production of monoclonal 
antibodies 
In this chapter, I will present a downstream process for purification of a monoclonal 
antibody (mAb) that will be used as the context for the digitalization tools discussed 
in the rest of this thesis. The process in question, discussed in more detail in Paper 
VI, was designed to handle a continuous inflow of bioreactor harvest fluid 
(previously produced and frozen for storage). The mAb in question was 
trastuzumab, otherwise known as Herceptin, cultivated in Chinese hamster ovary 
cells [16], [17]. 

The process consisted of three primary unit operations: virus inactivation, product 
capture, and product polishing [18]. The virus inactivation took place in a packed 
bed column that was packed to such a height that it maintained a residence time of 
at least 30 minutes to ensure sufficient contact with the solvent and detergent system 
that was used to deactivate the viruses. The product capture was performed on three 
protein A chromatography columns operated in parallel using a configuration called 
periodic counter-current chromatography (PCC). Protein A chromatography is used 
due to its selectivity to the mAb: the mAb binds to the column while anything else 
passes through. The bound mAb is then released, or eluted, from the column by 
pumping an elution buffer through the column. In a PCC configuration, two protein 
A columns are connected in sequence and loaded with the bioreactor harvest (after 
virus inactivation) while the third column is being eluted. By altering which 
columns are being loaded and eluted, the PCC system can receive a continuous 
inflow of bioreactor harvest. The output from the PCC system is periodic, meaning 
that pulses of the product are received periodically from the eluted column.  

The product obtained from the PCC is very close to pure due to the high selectivity 
of protein A chromatography. What remains to be separated from the product pool 
are variants of the mAb that are similar in structure, but different in effect. Size 
variants such as high molecular weight (HMW) species, or aggregated mAb 
molecules that have formed polymers, can have adverse effects in patients if they 
remain in the product and must be removed. The content of charge variants, i.e., 
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mAbs that are structurally identical but possess different surface charges, also needs 
to be regulated. It is to this end that the polishing step is applied. In this process, the 
polishing step was performed using a multi-modal chromatography column 
operated in flowthrough mode, meaning that the product flows through the column 
without fully binding to it. Different size and charge variants interact differently 
with the column packing, leading to different residence times, which enables 
separation. 

The virus inactivation and capture steps were implemented on an ÄKTA PCC 
chromatography system (Cytiva, Uppsala, Sweden). The polishing step was 
implemented on an ÄKTA Pure system (Cytiva, Uppsala, Sweden). The full 
downstream process is illustrated in Figure 1. 

 

Figure 1 
An example of a continuous downstream process for purification of monoclonal antibodies. A virus 
inactivation column receives a continuous flow of bioreactor harvest fluid. The flow is sent to a three-
column PCC setup, in which two columns are loaded in sequence while one column is eluted. This 
means that the output of the PCC is periodic, while the input is continuous. The periodic product output 
is polished further in a multi-modal chromatography step in flowthrough mode. Three sampling points 
are indicated, where important process information may be obtained. 
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This process is an alternative to the continuous mAb platform applied by Scheffel 
et al. (2022) [16] and Schwarz et al. (2022) [17], which used cat- and anion exchange 
chromatography columns in sequence as the polishing step, the former in bind-and-
elute mode and the latter in flowthrough mode. In other words, many different kinds 
of chromatography can be used in a biopharmaceutical downstream process, from 
Protein A, to ion exchange, to multimodal.  

Operation of downstream processes using Orbit 
The ÄKTA chromatography systems used in the downstream process are typically 
controlled using a software interface called Unicorn (Cytiva, Uppsala, Sweden), 
which can be used to send instructions to the pumps, valves and sensors of a 
chromatography system. However, in the totality of my work, I have used a Python-
based software interface called Orbit, which was developed at the Division of 
Chemical Engineering at Lund University, to operate the ÄKTA systems instead 
[19], [20]. Orbit acts as a bridge between Python and Unicorn, and enables users to 
define instructions as Python scripts. It is not limited to ÄKTA systems, but can be 
used with any piece of laboratory equipment with an open interface for 
programming via serial or Ethernet connections. For instance, Orbit has previously 
been used to control an analytical high-performance liquid chromatography (HPLC) 
system from Agilent (California, USA) via their own application programming 
interface (API) [21]. 

A schematic overview of Orbit is shown in Figure 2. The Orbit kernel consists 
primarily of a real time control engine, which executes commands in real time until 
certain conditions are met, and an object library, which contains digital 
representations of physical pieces of equipment. These digital objects contain 
methods that are specific to the physical object, such as setting valve positions or 
pump flowrates. They can also contain attributes that correspond to the physical 
characteristics of the object, such as tube volumes, column porosities, etc. While a 
process is being operated, information from the physical objects such as sensor 
signals and flowrates, is streamed to the real-time controller, which in turn sends 
instructions to the digital objects so that instructions may be executed in the physical 
configuration. 
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Figure 2 
Schematic overview of Orbit and the way that users interact with it. 

The Orbit kernel is highly flexible in that it can be extended with computational 
methods that function in tandem with the real time engine. For example, a real-time 
visualization program can be used to showcase important data as the process is being 
executed, or automatic control tools can be implemented thanks to the flexibility of 
the Orbit code. In addition, new communications interfaces can be implemented to 
make Orbit compatible with other types of equipment, as previously mentioned. 
Orbit can even be used to communicate with other instances of Orbit operating other 
pieces of equipment over a local area network. 

The user interacts with Orbit via Python scripts in two ways. First, via a script that 
defines the configuration of the specific application to be used, i.e., the list of pumps, 
valves, sensors, columns, tubes and other units that make up the physical equipment 
configuration. Second, via a script that defines the specific sequence of instructions 
to be executed, as well as the conditions that need to be fulfilled for the individual 
items of the sequence to continue to the next step. In addition to these two points of 
interaction, the user may also make use of pre-existing applications when defining 
their application sequence. This is a core strength of the Orbit code: existing code 
may be reused and adapted to address new challenges. 
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Digital Twins in Biopharmaceutical 
Downstream Processes 

Digital twins have been applied in design of biopharmaceutical downstream 
processes for many years, although they may not have been referred to as such. The 
concept of the digital model has been central to the Quality-by-Design paradigm 
that was introduced by the U.S. Food and Drug Administration in the 2000s, which 
aimed to reduce the number of supplemental applications for approval of minor 
changes to a biomanufacturing process that occurred as responses to process 
variations, as well as to encourage the implementation of novel technologies and 
improvements to the process. The idea was to combine the quality assurance work 
into the design process for new biopharmaceuticals by improving understanding of 
the product and the process at an early stage. [22] 

One key role of digital models in Quality-by-Design, particularly as it pertains to 
the downstream process, has been to aid in the determination of design spaces. 
When an optimal operating point has been selected for, e.g., a chromatographic 
separation step, its robustness can be tested by perturbing the operating parameters 
slightly and measuring their impact on critical quality attributes (CQA) of the 
process, such as product purity. Examples of operating parameters that may be 
relevant to product quality are the salinity and pH of buffers used in the 
chromatography process, or the concentration of the product in the feed to the 
process. By applying this methodology, a span of values of the operating parameters 
can be determined, within which the CQAs maintain acceptable values. While these 
design space characterizations can be performed by experimentation, it has been 
showcased that digital, mechanistic models posses the ability to predict process 
behavior in a wide region around an operating point, and enable the user to avoid 
extensive, exploratory laboratory work by substituting it with computer simulations 
[23], [24], [25]. The bulk of the experimental work is instead shifted to finding the 
parameters of the mechanistic model. 

As was alluded to in the introduction of this thesis, the framework defined by 
Kritzinger et al. (2018) [13] allows for model-based controllers to be thought of as 
digital twins. Numerous examples of automatic control applied to a variety of 
biopharmaceutical DSPs, from control of specific unit operations to plant-wide 
control, as well as ranging from mechanistic to data-driven approaches [26], [27], 
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[28], [29], [30], [31]. In this chapter, different methodologies for creating digital 
twins will be covered, as well as some examples from the list of papers. 

Methodology: Mechanistic or Data-driven? 
Modelling is central to the concept of digital twins, and the discussion on what 
constitutes a model is similar to that surrounding the definition of a digital twin. Is 
a 3D render of a chromatography column a model? Or is an equation that describes 
the chemical interactions in the column a model? Arguably, both are correct. 
Similarly, is the 3D render a digital twin of the column, or is the equation the digital 
twin? Again, arguably, both are true depending on the context: the purpose of the 
model or twin determines its applicability. In biopharmaceutical manufacturing and 
development, a narrow definition would be “a digital representation of the process 
with all the relevant specifications, user requirements and information sources, that 
supports associated stakeholders in their decision taking and enables direct control 
of the physical system” [32]. In the source of this citation, the authors stress the 
significance of the prediction and extrapolation capabilities of a digital twin. When 
regarding digital twins of individual unit operations, these are properties attainable 
through mathematical models, which will be the focus in the remainder of this 
section. Mathematical models can belong to different classes, two of which will be 
covered here: mechanistic and data driven. A combination of the two constitutes a 
third class, hybrid models, which are a very interesting avenue of research that is 
outside of the scope of this thesis. 

Mechanistic Models 
Mechanistic models are based on the fundamental laws of physics and chemistry, 
representing a process by describing the underlying physical phenomena that govern 
system behavior. In the context of biopharmaceutical downstream processing, this 
involves modelling fluid flow, mass transfer, and adsorption kinetics in processes 
like chromatography. 

In Paper III, we modelled the complete flow path of a chromatography system using 
a mechanistic approach. Three processes were of particular importance: continuous, 
ideally stirred tanks; fluid flow in cylindrical channels, i.e., tubing; and flow through 
porous, packed beds with descriptions of adsorption equilibria, i.e., chromatography 
columns. Stirred tanks can be modelled as follows: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝐹𝐹
𝑉𝑉

(𝑑𝑑𝑖𝑖𝑖𝑖 − 𝑑𝑑) (3.1) 
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The concentration of a component, 𝑑𝑑, varies over time 𝑑𝑑 as function of itself, the 
flowrate 𝐹𝐹, the tank’s volume 𝑉𝑉 and the concentration at the inlet, 𝑑𝑑𝑖𝑖𝑖𝑖. 

Flow through tubing can be described by a one-dimensional convection-dispersion 
equation, as follows: 

𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑

= 𝐷𝐷𝑎𝑎𝑎𝑎
𝜕𝜕2𝑑𝑑
𝜕𝜕𝑧𝑧2

− 𝑢𝑢
𝜕𝜕𝑑𝑑
𝜕𝜕𝑧𝑧

(3.2) 

Here, the concentration 𝑑𝑑 of a component propagates along the spatial dimension 𝑧𝑧 
by two mechanisms: axial dispersion, quantified by the dispersion coefficient 𝐷𝐷𝑎𝑎𝑎𝑎, 
and convection via the superficial velocity, 𝑢𝑢.  

Many approaches exist to modelling chromatography processes, and depending on 
the specific adsorption mechanism and application, different models may be viable. 
In Papers I, III and IV, ion-exchange chromatography was studied, and thus an 
appropriate model was selected. In general, chromatography can be described by an 
extension of the convection-dispersion equation that takes the porous nature of the 
bed into account, as well as adds an adsorption term: 

𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑

= 𝐷𝐷𝑎𝑎𝑎𝑎
𝜕𝜕2𝑑𝑑
𝜕𝜕𝑧𝑧2

−
𝑢𝑢
𝜀𝜀
𝜕𝜕𝑑𝑑
𝜕𝜕𝑧𝑧

−
(1 − 𝜀𝜀𝑐𝑐)

𝜀𝜀
𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

(3.3) 

𝜀𝜀 = 𝜀𝜀𝑝𝑝 + (1 − 𝜀𝜀𝑐𝑐)𝜀𝜀𝑝𝑝 (3.4) 

The velocity is adjusted with the total packed bed porosity, 𝜀𝜀, which in turn is a 
function of the column void fraction, 𝜀𝜀𝑐𝑐, and the particle porosity, 𝜀𝜀𝑐𝑐. The added 
term describes adsorption taking place in the pore volume of the bed, which involves 
compensating with the column porosity, 𝜀𝜀𝑐𝑐. The concentration of the component 
adsorbed to the column, 𝜕𝜕, is in turn described by an adsorption model specific to 
the application. In ion-exchange chromatography, the steric mass action model is 
often used. This model has the benefit of including a description of how a molecule 
that is adsorbed to the stationary phase of the column acts as a steric hindrance to 
other molecules binding to adjacent sites [33], [34].  While the base form of the 
model involves descriptions of ionic capacity, steric hindrance and characteristic 
charge of proteins, a simplified version of the model can be formulated which lumps 
several of the parameters together: 

𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝑑𝑑

= 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖,𝑖𝑖 �𝐻𝐻0,𝑖𝑖𝑑𝑑𝑖𝑖 �1 −�
𝜕𝜕𝑗𝑗

𝜕𝜕𝑚𝑚𝑎𝑎𝑎𝑎,𝑗𝑗

𝑖𝑖

𝑗𝑗=1

�

𝑣𝑣𝑖𝑖

− 𝑑𝑑𝑠𝑠𝑣𝑣𝑖𝑖𝜕𝜕𝑖𝑖� (3.5) 
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In this kinetic expression of the steric mass action model, the adsorption of species 
𝑖𝑖 is dependent on the concentration of salt in the mobile phase, 𝑑𝑑𝑠𝑠, as well as on 
lumped parameter 𝐻𝐻0,𝑖𝑖 , which combines the equilibrium partitioning coefficient 
between the mobile and stationary phases, the protein’s characteristic charge, 𝑣𝑣𝑖𝑖, 
and the ligand density. The maximum adsorption capacity of one component, 𝜕𝜕𝑚𝑚𝑎𝑎𝑎𝑎, 
is a combination of the ligand density of the column, and the characteristic charge 
and steric shielding factor of the protein [35]. The benefit of this lumped parameter 
version of the model is the reduced dimensionality of the calibration problem: fewer 
parameters lead to better convergence. 

While the models used in the papers included in this thesis are sufficiently covered 
in this section, other relevant mechanistic models for alternative unit operations 
exist. Membrane filtration, virus inactivation, ultrafiltration/diafiltration, and 
membrane chromatography constitute a few examples of important unit operations 
for which mechanistic models exist [36]. 

Data-driven Models 
While mechanistic models offer deeper insights into the process, data-driven 
models—which rely on empirical correlations between inputs and outputs—are 
often more practical for certain use cases. These models do not attempt to describe 
the underlying physics but instead use historical or real-time data to predict system 
behavior. Data-driven models excel at tasks such as pattern recognition and real-
time optimization, especially when large datasets are available. They typically 
require less computational power than mechanistic models and can be rapidly 
deployed. However, their ability to extrapolate beyond the conditions in which they 
were trained is limited, meaning that they perform best within the dataset's bounds. 

An example of a simple, data-driven model is shown in Papers I and II. A simple, 
linear, input-output model of linear gradient elution in chromatography was used as 
the basis for the iterative learning controller developed in that work: 

�
𝑦𝑦1
𝑦𝑦2� = �

𝑔𝑔11 𝑔𝑔12
𝑔𝑔21 𝑔𝑔22� �

𝑢𝑢1
𝑢𝑢2�

(3.5) 

The two inputs, 𝐮𝐮 = [𝑢𝑢1 𝑢𝑢2], are mapped to the outputs, 𝐲𝐲 = [𝑦𝑦1 𝑦𝑦2], by a linear 
function written on matrix form, 𝐆𝐆. The resulting two-input, two-output model is 
fast to execute as it is a simple matrix multiplication, which makes it ideal for real-
time applications. In this particular work, the inputs were the initial and final salt 
fractions of a linear salt gradient during the elution of two proteins, and the outputs 
were the residence times of the two proteins, expressed in volume. This is illustrated 
in Figure 3. Of course, the true elution behavior is non-linear, as can be seen in the 
steric mass action model. However, in a limited region, as in the acceptable design 
space for the process, the system behavior may be approximated by linearization. 
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Figure 3 
A description of how a data-driven model can be constructed for the elution of two components in a 
bind-and-elute chromatography process. 

In the context of Industry 4.0, data-driven models typically refer to a more advanced 
approach to process modelling. One example of this is the artificial neural network 
(ANN). While not explored in the papers that constitute this thesis, ANNs possess 
several key benefits over simpler, linear models such as that detailed above, the 
main one being their ability to capture complex and non-linear correlations. This is 
also a benefit they possess over mechanistic models: when the process dynamics are 
too complex and not fully known, as tends to be the case in bioreactors [37] and 
membrane filtration [38], [39], [40] due to the complex composition of the fluid 
streams involved, an ANN may be capable of providing better predictions than a 
mechanistic model. Another advantage of ANNs over certain mechanistic models is 
their execution time. In chromatography, the mechanistic models are very complex 
sets of non-linear, partial differential equations. Their use in computation-heavy 
methods such as optimization, where the model needs to be evaluated several times 
to solve the problem, leads to long computation times. Using an ANN model as a 
surrogate for the mechanistic model can significantly hasten optimization problems. 
The main weaknesses of ANNs is the requirement of large volumes of data, which 
may be incredibly expensive to generate in biopharmaceutical contexts, and the 
difficulty of training such models, since they are prone to overfitting and thus may 
be less suitable for extrapolation beyond the range of the training data. 
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Use Cases and Trade-offs 
The choice between mechanistic and data-driven models depends on the specific 
needs of the digital twin. Mechanistic models are invaluable for situations where it 
is important to understand the system's internal behavior and to predict outcomes 
under a wide range of conditions. They are most useful when developing new 
processes or scaling up production, where the ability to extrapolate is critical. On 
the other hand, data-driven models are ideal for real-time process control and 
optimization tasks where the system is already well understood, and rapid response 
is more important than deep physical insight. Since operation of a process is 
typically performed within a range of operation conditions, the ability to extrapolate 
may not be as critical. For instance, a mechanistic model can be used initially to 
develop a digital twin and generate reliable predictions, while a data-driven model 
can take over in day-to-day operations to handle real-time adjustments based on 
incoming process data. 

Applying and Enabling Digital Twins 
With the concept of digital twins in mind, we can now examine the case studies in 
this thesis and learn more about how different classes of digital twins, based on 
different types of models, can be applied to solve engineering problems in the 
biopharmaceutical downstream process. One important concept that will be 
highlighted is how enabling digital twins in one application can expedite novel 
digital twins in others. 

Digital Models 
In Papers I and II, an automatic batch-to-batch controller for an ion exchange 
chromatography step was developed and showcased. The initial development of the 
controller, shown in Paper I, was based on a mechanistic model of the ion exchange 
chromatography process, i.e., a physically accurate and predictive description of the 
system. This allowed for a lot of freedom in experimentation on how the controller 
should be designed, as well as for some validation of the controller through 
simulated test runs with artificial disturbances, all while obeying the behavior of the 
physical system. Several experimental designs were tested until a functioning proof-
of-concept controller was finalized, with no chemicals, proteins or other lab 
resources expended. This final controller design was then tested against real 
disturbances in a physical setup, as shown in Paper II. This shows how digital 
models can be used to expedite the development of novel technologies while 
minimizing trial-and-error experiments and operational costs of a research lab. 
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A major strength of mechanistic models is their ability to extrapolate beyond the 
conditions used to calibrate the model, making them highly valuable for designing 
new processes or optimizing existing ones under untested conditions. This is what 
made the in-silico iterative learning controller development possible. However, 
these models are often more complex and require extensive experimentation to 
obtain parameter values. When developing similar technology for different 
molecules, such as in novel drug development, significant work is needed to develop 
such a model. To mitigate the time and effort required for mechanistic modelling, a 
framework for modelling and calibration of chromatography was developed and 
presented in Paper III. 

This automated framework was made possible by the flexibility of the Orbit 
software. Orbit has an embedded simulator, which makes use of the user-defined 
system configuration (i.e., the list of physical units in the system and their 
interconnectivity) to generate a mechanistic, digital model structure of the system. 
A detailed overview of the Orbit simulator is given by Tallvod et al. (2022) [35], 
who applied it to model the elution behavior of a single protein in ion exchange 
chromatography. In Paper III, we extended the framework to calibrate model 
parameters for multiple components and applied it to a ternary ion exchange 
separation. A short overview will be given here. 

The Orbit simulator works by reading the system definition and sequential 
instructions given by the user when operating a physical piece of laboratory 
equipment, such as an ÄKTA chromatography system. The system configuration is 
read, and an adequate model equation is chosen for each physical unit, as shown in 
Figure 4. Proper boundary conditions for each unit are selected depending on how 
they are interconnected. For instance, in Figure 4, consider the chromatography 
column connected to the column valve (ColV): the outlet of the column is mapped 
to the inlet of the following piece of tubing as a boundary condition. 
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Figure 4 
An example of a flowpath used in automatic model calibration. The Orbit simulator selects an 
appropriate model equation depending on each physical piece of equipment included in the system 
definition so that tubes, mixer chambers, valves and columns are properly represented. 

Once the model system of equations has been set up, the calibration procedure is set 
into motion. In summary, several parameters of the model such as dead volumes, 
column porosities, void fractions, and adsorption parameters are each calibrated by 
corresponding sets of experiments. The experiments and their corresponding control 
sequences are pre-defined in Orbit code by the user, and so the calibration procedure 
pulls from this library of existing code to perform experiments, from which data are 
saved. 

Once all experiments have been performed and the data have been obtained, the 
same code used to run the experiments is used to perform simulations of the 
chromatography system using initial guesses of the model parameter values. The 
simulations result in simulated data that correspond to the real data obtained from 
the experiments, be it UV absorbance or conductivity measurements. The difference 
between the simulated and measured data forms an objective function, and selecting 
parameter values that minimize this objective function is the goal of the calibration 
procedure. To this end, a mathematical optimization algorithm is used. Several of 
these optimization problems need to be solved in order to find all parameter values, 
and each optimization problem corresponds to one control sequence. An overview 
of the calibration procedure is given in Figure 5. 



19 

 

Figure 5 
Schematic of the automatic calibration procedure workflow. The user interacts with both the physical 
system and simulated systems using the same code interface. The physical system works 
independently of the simulated one, and the recorded sensor signals are stored for use in the 
calibration procedure. An optimization problem is solved for each control sequence, each 
corresponding to a set of model parameters. Once an optimal set of parameter values is found, the 
next control sequence is used in the simulated system to solve the values of the next set of 
parameters, until all parameters have been determined. 

In Paper III, optimization of the yield and productivity of the ternary separation 
based on the calibrated model was performed as part of the automated procedure. 
This filled two purposes: to demonstrate the use case of a digital model for process 
design, and to generate a set of validation data to determine the model fit. Three 
different optima were obtained, obeying different constraints on product purity and 
placing a different weight on yield or productivity. One of the found optima was 
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selected, and a corresponding physical experiment was performed to validate the 
model at this optimum point. The results showed a surprisingly good fit to the data, 
although some discrepancies were found due to the optimum operating at conditions 
outside of the range of the model calibration data. These discrepancies could be 
assuaged through selection of a different model structure (i.e., a different adsorption 
model to that shown in Equation 3.5). Regardless, this further showcased how an 
automated framework can facilitate digital model development and application. 

Digital Shadows 
In Paper IV, a real-time state estimation tool was implemented for model-based 
monitoring of ion exchange chromatography. The tool in question was based on 
Kalman filters, linear-quadratic state estimators that are used to combine real-time 
measurements with model predictions to obtain improved process understanding 
over what is possible with the two individually. Kalman filters have been applied in 
many industrial contexts for over 60 years, and is thus not a novel technology. 
However, their application to real-time control systems in industry has been limited 
due to the high level of complexity involved in performing the state estimation [41], 
[42]. From the perspective of the digital twin classification system, a Kalman filter 
can be regarded as a digital shadow due to the continuous nature of the flow of 
information from the physical system (via sensor measurements) to the digital. 

A brief walkthrough of the Kalman filter algorithm is as follows: at a given point in 
time, a model of the system being monitored is evaluated to predict the system states 
at a later point in time, based on a system input. The state variance is also computed. 
This is called the prediction step. Next, as a measurement of the system output is 
obtained from the physical system, the difference between the model prediction and 
the real measurement is corrected based on the magnitude of the error and the state 
variance. The state variance is also updated. This is referred to as the update step. 
Every time a new measurement is obtained, one cycle of the algorithm is performed. 
A more in-depth explanation of the Kalman filter algorithm is provided in Paper IV. 

In chromatography, the main benefits of Kalman filters are two-fold: from a model 
prediction perspective, one can obtain a better estimate of the true process states by 
integrating real-time data into the prediction. From a monitoring point of view, the 
detail provided by a model can give information that is unavailable when only using 
online measurements such as UV absorption or conductivity. To elaborate, in 
chromatography, typically the concentration profiles of eluting components inside 
the column are unavailable for measurement. Instead, measurement instruments are 
placed at the column outlet. UV detectors act as the primary measurement of elution 
profiles, and have the downside that components are difficult to distinguish from 
each other in the chromatogram if their chromatogram peaks overlap. A model of 
multiple components can distinguish between their respective elution peaks, but 
models are not perfect and will contain prediction errors in many cases. A Kalman 
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filter combines the strengths of real-time data and detailed modelling to create a 
best-of-both-worlds scenario. To illustrate this improvement, the open-loop, 
unfiltered process model prediction is compared to the Kalman filtered prediction 
in Figure 6. 

 

 

Figure 6 
Comparison between unfiltered (left) and filtered (right) model predictions of two co-eluting components 
in ion exchange chromatography. The UV measurement (blue triangles) does not distinguish between 
the two components. The un-filtered model captures the elution profiles of the two separate 
components, but does not fit perfectly to the data. The Kalman filtered model response is able to 
correct for the model errors and matches the individual elution profiles better than the pure process 
model. A small, unphysical, negative prediction is seen in the filtered model prediction of one 
component (red). 

The Kalman filter implementation in Paper IV was based on two filters working in 
tandem: one linear Kalman filter for the salt elution profile, which is crucial when 
describing bind-and-elute behavior; and one extended Kalman filter to describe the 
non-linear elution of binding components. The conductivity at the column outlet 
was used as the measurement for the former, and the UV absorbance for the latter. 
This split between two filters was essential due to the highly non-linear dynamics 
of the separation. By lifting the salt propagation in the column out of the binding 
model, the non-linearity was reduced, and the computational burden was lowered.  

The execution time of the Kalman filter algorithm is a crucial factor to its 
implementation. The sampling frequency, i.e., the rate at which new measurements 
are obtained, needs to happen with enough time between each sample, that the 
Kalman filter algorithm is able to complete its execution before the next sample is 
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obtained. In Paper IV, we were able to achieve a robust Kalman filter with a 
sampling frequency of once every five seconds. This was accomplished through 
parallel computing, i.e., by distributing calculations of the algorithm across multiple 
computer processors to allow them to be performed in parallel, rather than in series. 
This was sufficient for the low loads on the chromatography column in the case 
study, but may not prove to be sufficient in a real case, where the load is much 
higher and may lead to higher degrees of non-linearity and thus longer computation 
times. 

The Kalman filters were implemented as a computational extension to Orbit, along 
with a real-time visualization extension to monitor the Kalman filter performance 
in terms of model fit and execution time, as shown in Figure 7. 

 

 

Figure 7 
Graphic description of the Kalman filter implementation in Orbit. Measurements are obtained in real 
time from the physical system via Orbit, which are then used in the two Kalman filters to obtain an 
improved model prediction. The results are used in a real-time visualization extension, which can be 
used to monitor the Kalman filter performance. 

The Kalman filter implementation in Paper IV falls under the category of digital 
shadow due to the one-way, continuous flow of information from the physical 
system to the digital. The improved model predictions are the main benefits of this 
application, but the possibilities do not end there. Thanks to the model predictions 
being accessible to Orbit, the step towards making use of them for model-based 
control of, e.g., product pooling, is a short one indeed. This use of a digital shadow 
for automatic control of the physical system introduces information flow from the 
digital to the physical, achieving two-way flow and thus reaching the digital twin 
stage. 
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Digital Twins 
The most straight-forward example of a two-way flow of information between a 
digital model and a physical system in a manufacturing process is an automatic 
controller. Such a controller is tasked with maintaining a process outcome at a 
desired set point value when exposed to process disturbances, for instance, 
maintaining a desired product yield or process productivity. To this end, the 
controller is able to manipulate control variables that affect the outcome, such as the 
slope of a linear elution gradient in chromatography or the elution flowrate. Paper 
II showcased such a controller application, where the residence times, or volumes, 
of two proteins in a bind-and-elute ion-exchange separation were controlled by the 
linear gradient settings during elution (see Figure 3). The real-time exchange of 
information between the physical and the digital was enabled by the Orbit 
implementation, which was able to both access the sensor data to determine the 
residence times of each component based on the chromatogram, and send 
instructions to the physical instrument as the control variables were determined.  

The controller was based on iterative learning control, an automatic control concept 
originating from the field of robotics. The core idea behind iterative learning control 
is to improve the performance of processes that repeat over time by harnessing the 
data generated during each repetition. This makes it suitable for ion exchange 
separations in bind-and-elute mode, since the cycle of loading, washing, eluting, 
and regenerating the column is repeated during a continuous process run.  

The controller algorithm is executed once for every process cycle, denoted 𝑘𝑘. The 
process inputs (linear gradient settings, denoted 𝐮𝐮) in cycle 𝑘𝑘 − 1 are used in the 
chromatography process, 𝐆𝐆, and results in two residence times, 𝐲𝐲. Depending on a 
set of disturbances 𝐝𝐝 which may affect the process, 𝐲𝐲 may differ from the desired 
value, 𝐲𝐲𝑑𝑑. The task of the controller, 𝐊𝐊𝐊𝐊, is to compensate for this error in the next 
cycle, by adjusting the process inputs. Three kinds of disturbances are considered: 
disturbances to the input (via, e.g., errors in the buffers used in the elution), 
disturbances to the process dynamics (due to column aging and capacity loss), and 
disturbances to the output (via errors in determining the residence times due to noisy 
data). The controller’s effect on the former two was seen in Paper II, while the latter 
was not seen directly. In addition to these disturbances, a functionality was added 
to allow the user to change the desired value 𝐲𝐲𝑑𝑑  and have the controller pre-
emptively adjust the inputs to conform to the change. This was achieved with a feed-
forward element to the controller, 𝐅𝐅𝐅𝐅. An overview of the controller structure is 
provided in Figure 8. 
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Figure 8 
Block diagram of the controller structure from Paper II. At cycle number 𝑘𝑘 − 1, the chromatography 
process (denoted 𝐆𝐆) takes an input 𝐮𝐮 and results in an output 𝐲𝐲. The process is subject to disturbances 
𝐝𝐝 to the input, output and the process dynamics, which leads to a deviation from the desired process 
outcome 𝐲𝐲𝑑𝑑. On the next cycle, 𝑘𝑘, the error is corrected by the controller (denoted 𝐊𝐊𝐊𝐊). A feed-forward 
controller (𝐅𝐅𝐅𝐅) was also implemented to preemptively adjust for changes to the set point by the user. 

Reflection and Conclusion 
Different classes of digital twins have been applied in Papers I-IV. In this section, I 
will go over the ways in which the choices of mechanistic or data-driven models 
affected the different case studies in the papers and how the approach to each case 
may be improved upon. 

In Papers I and III, digital models were applied, i.e., there was at most a one-time, 
manual transfer of information from the physical to the digital and vice-versa. This 
occurred in terms of model parameter calibration and process design. The 
mechanistic model’s ability to, in detail, capture the behavior of the physical system 
proved essential in Paper I, where a new technology for automatic control (an 
iterative learning controller) was developed entirely in-silico, entirely foregoing lab 
trials during the development stage. This shows how digital models enable creative 
problem solving by giving the researcher freedom in pursuing many different 
avenues before going to the physical system for validation of the developed 
technology. In Paper III, this same, detail-oriented modelling approach proved very 
useful in the optimization performed at the end of the model calibration sequence, 
although its limits were tested by going outside of the range of the calibration data 
and some discrepancies between the model and the data were seen. In addition, the 
computationally expensive partial differential equations that constituted the model 
resulted in long optimization times. Previous studies have shown how mechanistic 
models can be used to generate simulated data to train artificial neural networks, 
which post-training are very fast to evaluate and can be used as a surrogate for the 
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mechanistic model in numerical optimization [43], [44], [45]. Still, it is important 
to consider the risk of overfitting when using ANNs: either the optimization must 
be constrained within the operating conditions used in the training data, or other 
constraints need to be placed on the ANN. Physics-informed neural networks 
(PINN) are an interesting avenue, since they embed the mechanistic model 
equations in the neural network without requiring expensive numeric integration 
[46], [47].  

In Paper IV, the implementation of a digital shadow, with automated, real-time data 
flow from the physical to the digital system, was shown using existing engineering 
concepts (Kalman filters). The combination of online sensor data and mechanistic 
modelling provided an improved model prediction over what either could in 
isolation. However, the long simulation times of mechanistic chromatography 
models proved an even bigger hurdle in this study due to the sampling frequency of 
the online sensors: ideally, the higher the sampling frequency, the better the Kalman 
filter. Thus, data-driven surrogate models are also an interesting alternative in this 
case. Here, the overfitting is less of an issue since the model is not used to explore 
different configurations of operating parameters: it is enough if the fit is good to and 
around the operating point. This digital shadow application is very close to being a 
digital twin. By utilizing the improved predictions to, e.g., automatically control the 
pooling of the product, an automated flow of information in both directions is 
achieved. 

Finally, in Paper II, a digital twin was implemented with a data-driven model as its 
foundation using an iterative learning controller approach. The consistent process 
performance even under disturbances is the main benefit of automatic controllers, 
in addition to how they reduce human intervention. Data-driven models are 
executed quickly and are thus suitable for real-time applications such as this. An 
overview of the types of models used in the papers, as well as their place in the 
digital twin classification system, is given in Figure 9. 
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Figure 9 
Graphical overview of the digital twin applications covered in this thesis. All three levels of the digital 
twin hierarchy have been applied, using both mechanistic and data-driven approaches. Two potential 
improvements have been identified, shown with dashed lines: the computation time of both the real-
time monitoring tool (Paper IV) and the process optimization (Paper III) could be accelerated by 
applying appropriate, data-driven surrogate models, e.g., based on artificial neural networks. 

In conclusion, both mechanistic and data-driven models have their place in the 
development and implementation of digital twins in biopharmaceutical downstream 
processes. Mechanistic models provide the depth and predictive power needed for 
extrapolation and the design of new processes and technologies, while data-driven 
models offer simplicity, ease of use, and faster computation for real-time 
applications. By leveraging automated modelling and calibration frameworks and 
implementing parallelized computation, it is possible to overcome the challenges 
associated with mechanistic models, making them more accessible for real-time use. 
Ultimately, the choice of model should align with the specific goals of the digital 
twin, whether it be long-term process optimization or immediate control and 
monitoring. 

The development of digital twins for downstream processing in biopharmaceuticals 
is a significant milestone in the ongoing evolution toward Industry 4.0. By 
combining real-time simulations, advanced process modelling, and automation, 
digital twins offer powerful tools for optimizing biomanufacturing processes, 
improving both efficiency and product quality. Although challenges remain in terms 
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of optimization of simulation times and model accuracy, the groundwork laid by 
digital shadows, such as the Kalman filter applications, provides a stepping stone 
toward fully integrated digital twins that will redefine process control in 
biopharmaceutical manufacturing. Novel technologies such as ANNs give a 
promising outlook on the future of digital twins in biopharmaceutical downstream 
processes. 
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Data-based Methodologies 

Introduction 
As biopharmaceutical processes move toward higher degrees of automation, the 
ability to generate, process, and interpret large datasets has become crucial for 
ensuring process reliability, product quality, and operational efficiency. The 
complexity of the bioreactor harvest composition can make real-time mechanistic 
modelling applications difficult, since clear information about the actual 
composition of the fluid flow cannot be obtained from conventional sensors. 
Instead, more involved analytical methods need to be applied to obtain high-quality 
data. Such data can then be used to obtain data-driven models for digital twin 
applications, or to mine important information about process performance and 
product quality via the use of analytical tools for large data sets. However, both of 
these applications require vast amounts of data, and the quality of said data directly 
affects the performance of the application. A robust framework must be established 
to automate sample collection, preparation, and analysis, as well as to correctly label 
and store the data in a centralized manner for accessibility purposes. 

This chapter focuses on the development of such frameworks, emphasizing the need 
for continuous and automated data acquisition systems that streamline the collection 
of high-quality data. In particular, we explore the automated quality analysis system 
(QAS) developed for continuous downstream processes. This framework forms the 
basis for the generation of process data, which can be further leveraged for 
applications such as digital twins in downstream bioprocess control. Additionally, 
this data allows for monitoring of key performance indicators (KPIs) that can be 
integrated into a plant-wide control strategy. 

Framework for Automated Data Acquisition: The 
Quality Analysis System 
The core of this chapter revolves around the implementation of the Quality Analysis 
System, developed to enable at-line sampling, sample preparation, and analysis in 
continuous downstream processes. The QAS provides a solution to one of the major 
bottlenecks in data acquisition: manual sample handling, which is both time-
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consuming and prone to human error. By automating the sampling process, the QAS 
ensures consistent and reliable data collection, reducing variability and allowing for 
high-frequency sampling over extended process runs. 

Paper V details the first implementation of the QAS as a support system to periodic 
counter-current chromatography (PCC) purification setup for mAbs. It was 
designed to automatically collect samples from two critical points: the bioreactor 
supernatant and the product pool from the chromatography columns. These samples 
were then conditioned and analyzed using high-performance liquid chromatography 
(HPLC), providing data on key product quality attributes such as aggregate content 
and charge variant composition. The hardware setup is showcased in Figure 10. 

 

 

Figure 10 
Hardware configuration of the automated quality analysis system. Continuous capture chromatography 
was performed in a periodic counter-current setup on an ÄKTA Pure system. A sample preparation 
system was configured on an ÄKTA Explorer system, which included a superloop for sample collection 
and preparation. The collected sample was sent to an Agilent analytical chromatography system for 
analysis. 

The sampling functioned by diverting the fluid flow of the purification process to 
the sample preparation system by switching its valves. Regard, for example, 
sampling of the product pool from the PCC system. If a sample is ordered, the 
product collection valve on the ÄKTA Pure system would switch positions and 
divert the pump flow away from the product collection vessel, and instead to the 
sample preparation system. There, it would be stored in a superloop, which is a 
cylindrical vessel that is divided into two parts by a small, watertight piston. The 
sample would fill one side of the piston, where a small magnetic stirrer was placed 
to homogenize the concentration of the sample. Once collected, the sample could be 
prepared in many different ways, be it by adjusting pH or adding reagents required 
for whatever analytical method needs to be performed. The prepared sample would 
then be sent from the sample preparation system to an analytical system. In Paper 
V, this was an Agilent 1260 Infinity II HPLC system, where two different analysis 
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protocols were implemented: size exclusion chromatography for determining the 
contents of size variants of the mAb, and weak cation exchange chromatography for 
investigating the charge variant profile. For the latter, the pH needed to be higher 
than the elution pH of the Protein A chromatography on the PCC, a conditioning 
buffer was added to the sample on the preparation system prior to being sent for 
analysis. 

Data Storage and Labelling 
The concept of the QAS was expanded in Paper VI in two ways. Firstly, it was 
applied to an end-to-end, integrated downstream process with additional sampling 
points (see Figure 1). Secondly, database connectivity for data collection, storage 
and labelling was implemented. The database was based on the non-SQL MongoDB 
framework and was hosted on a server in our laboratory. Orbit interfaces with the 
database via network communication and streams information such as sensor data, 
pump flowrates, accumulated volumes and valve positions to the database in real 
time, giving access to chromatograms, conductivity profiles etc. The data stream 
begins at the start of an Orbit run, and is tagged with a randomized ID number. 

Collections of data stored in the database can be broadly divided into two different 
types: discrete and continuous data collections. Discrete data collections contain 
information such as the user-defined name of a process run, time stamps for the start 
and end of the run, the type of run, the physical system configuration and other 
information that pertains to the run as a whole. Essentially, any metadata about the 
run is stored in a discrete data collection. In contrast, continuous data collections 
gather time-varying information from the process during a run, most notably 
recorded sensor signals. This can be expanded by the user to include other 
information about the process that changes over time, like states in the process such 
as valve positions and pump flowrates. The continuous data is essentially the result 
of a run, and is linked to the run’s metadata, i.e., to a discrete data collection. One 
way of viewing it is that discrete data collections are filled with information at the 
start and end of a run, i.e., at discrete points in time, while continuous data 
collections are constantly updated with new information during a run, i.e., they are 
continuously updated with new information. The continuous data is what the user 
would make use of to draw chromatograms, for example. The relationship between 
discrete and concrete data collections is shown in Figure 11. 

 



32 

 

Figure 11 
Relationship between discrete and continuous data collections in the database used in Paper VI. 
Discrete data collections correspond to a full run and contain metadata about the run in question. 
Continuous data collections correspond to a run, are linked to the run’s discrete data collection by a run 
ID number, and contain continuously changing information from the run, such as sensor measurement. 

When a process was initialized in Paper VI, individual discrete runs were created 
on the database for each of the involved systems. When a sample was ordered, a 
database run of type “sample” was created to correspond to the sample, which 
included a connection to its corresponding process run’s ID number. As analyses 
were performed on each sample, a run of type “analysis” was created and linked to 
the corresponding sample run, also by ID number. The continuous data obtained 
from each analysis would then be saved as a result of that analysis run. The data 
obtained from the main process would, correspondingly, be saved as a result of the 
process run. Thus, all data is accessible via the main process run. This is illustrated 
in Figure 12. 
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Figure 12 
Example of the relationships between process, sample, and analysis runs, as well as their 
corresponding results, in the database. All information is accessible from the main process run via 
unique ID numbers. 

The structure of the database makes it possible to keep specific data that may be 
relevant to only a certain type of run in the discrete data collection, while keeping 
the continuous results congruent for ease of access. For example, a collection of the 
type “sample” may contain the volume of the sample as it was received, the volume 
post-dilution and pH adjustment, and a list of “analysis” runs that correspond to the 
analyses that were performed. The main process run would then contain a list of all 
runs of type “sample” that correspond to the samples taken. Thanks to the different 
types of data being connected in a logical fashion, the step towards e.g. automated 
data analysis in real time during a process run, via the database, becomes 
exceptionally shortened. 

Potential Applications of the QAS 

Leveraging Data for Digital Twins 
The high-quality data provided by the QAS can be used to enhance the accuracy of 
digital twins by feeding real-time information into the model. For example, data on 
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the concentration of aggregates or charge variants from chromatography can be 
integrated into the digital twin of the downstream process, allowing the virtual 
model to make more accurate predictions about process performance. 

Furthermore, this data can be used to continually update and calibrate the digital 
twin, ensuring that it remains reflective of the physical system. The ability to 
synchronize real-time data with the virtual model enhances process control by 
allowing for real-time adjustments based on the digital twin's predictions. This is 
particularly useful for processes with slow dynamics, where real-time feedback is 
essential for maintaining product quality and operational efficiency. 

The Kalman filter we developed is very dependent on known information about the 
input to the chromatography step, i.e., the concentration of product in being loaded. 
In a continuous processing train that includes the bioreactor, changes to the product 
concentration due to the reactor need to be taken into consideration for the Kalman 
filter to continue operating robustly. Thus, it is important to sample and analyze the 
composition of column-binding components in the bioreactor harvest at regular 
intervals so that the Kalman filter has accurate, up-to-date information to work from. 
While the product concentration is expected to vary over time during a continuous 
manufacturing run, in a case such as the manufacturing platform discussed in 
Chapter 2, the dynamics are expected to be very slow. This means that the frequency 
of the sampling can be low, e.g., once every 24 hours. The capacity of the QAS is 
well-suited for this type of application, and is a potential solution to this issue. 

Real-time Decision-making 
One key, potential application of the data obtained from the QAS is for real-time 
decision making in the process. For example, if a sudden increase in aggregate 
content or shift in the charge variant profile is detected during a process run, the 
user has a chance to intervene thanks to the anomaly being made visible by the QAS. 
One potential roadblock for this application is the capacity of the QAS. The analysis 
protocols were not optimized in any of the case studies, and were thus quite lengthy. 
In particular, the cation exchange protocol was around 40 minutes long. However, 
the PCC load cycle times in the case study in Paper VI were up to approximately 
220 minutes long, and thus the analysis times fell within the time limit for 
intervention in the process on a cycle-to-cycle basis. 

In order for this type of anomaly detection to be possible, the process of analyzing 
the data from the QAS needs to be automated. As previously mentioned, the data in 
the database is structured in such a way that data automation is a simple to 
implement since all relevant information is accessible, both on a specific sample 
level and an overall process level. Thanks to the database being accessible from 
Orbit, one could conceptualize an observer Orbit that interacts with the database in 
real time during operation of the integrated downstream process from Paper VI. This 



35 

instance of Orbit would perform data analysis as new data is available on the 
database, and make decisions about actions to be taken based on the outcome. 
Combined with Orbit’s ability to communicate with other instances of Orbit over a 
local area network, such decisions could be executed automatically, since each 
individual process is controlled by an instance of Orbit. Figure 13 shows how the 
different instances Orbit involved in such an application would interact. 

 

 

Figure 13 
Example of how an observer Orbit instance could be implemented in the integrated mAb purification 
platform described in Paper VI. The observer would access the database and perform data analysis on 
new information as it is added to the database in real time. Decisions could then be made based on 
predefined protocols and be executed by sending the relevant information to the corresponding 
instance of Orbit via the local area network connection. 
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Conclusion 
The developed automated sampling and analysis platform offers several benefits. 
Firstly, it reduces manual labor. With samples being collected and analyzed 
automatically, the need for manual intervention is minimized, freeing up time for 
more critical process development tasks. Secondly, it achieves consistent data 
acquisition. The platform eliminates variability associated with manual sampling, 
ensuring that data collected throughout the process is both accurate and reliable. 
Finally, it enables the implementation of further automation in data analysis thanks 
to its database connectivity. Making use of such automated frameworks for data 
collection and storage is a quintessential aspect of digitalization. In this thesis, I 
have focused mainly on the process control and automation aspect of data collection, 
but in industry, this type of unified database provides benefits in generating reports 
on process and product performance, particularly during audits of the manufacturing 
plant. Of course, if one wishes to implement artificial neural networks or other data-
driven analysis methods, consistent and frequent data generation is invaluable. By 
implementing an automated framework such as this, the workload of generating 
such data is also significantly reduced. 



37 

Internet of Things in 
Biopharmaceutical Downstream 
Processes 

The Internet of Things (IoT) has gained significant attention across various 
industries for its potential to interconnect devices and systems, enabling seamless 
data exchange and enhanced control over complex operations. In the realm of 
biopharmaceutical manufacturing, the application of IoT presents unique 
opportunities and challenges, particularly in downstream processes. However, the 
usefulness of IoT in biomanufacturing is not always clear due to the presence of 
established control systems such as Supervisory Control and Data Acquisition 
(SCADA) and proprietary software provided with commercial equipment. 

This chapter explores the role and potential of IoT in biopharmaceutical downstream 
processes, focusing on its relevance to system integration, data acquisition, and 
process control. Drawing on my experience with the Orbit software framework, I 
argue that Orbit, which enables flexible access to sensor data and facilitates 
communication between independent systems over a local network, represents an 
novel application of IoT in biomanufacturing research. In particular, the Quality 
Analysis System in Papers V and VI, which links multiple ÄKTA chromatography 
systems, serves as a compelling example of IoT enabling a degree of system 
integration otherwise not possible with traditional software configurations. 

The Challenge of IoT in Biopharmaceutical 
Manufacturing 
The downstream processes in biopharmaceutical manufacturing—such as protein 
purification through chromatography—are traditionally controlled by sophisticated 
software systems like SCADA, which provide centralized monitoring and control 
over various unit operations. These systems are integral to ensuring process 
stability, regulatory compliance, and product quality. However, SCADA systems 
are typically closed-loop environments, which limit flexibility in how data is 
accessed and shared across different platforms. They are designed to optimize 
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performance within the boundaries of a predefined process flow, making system 
modifications and custom integration challenging. 

The rigid architecture of SCADA systems creates barriers for the widespread 
application of IoT in downstream processing. IoT typically requires open 
communication protocols that allow devices and systems to share data in real-time, 
enabling the creation of a connected, intelligent network of equipment that can 
respond dynamically to changes in the process. In biomanufacturing, such 
interconnectivity could allow for more modular and creative process designs, 
leading to improvements in efficiency, data acquisition, and process optimization. 
However, traditional SCADA-based environments are often incompatible with the 
decentralized, flexible approach required for true IoT implementation. 

Orbit: A Flexible IoT Framework for Biomanufacturing 
Despite the challenges posed by traditional control systems, my work with Orbit 
demonstrates how an IoT-based approach can be successfully implemented in 
biopharmaceutical downstream processes. Orbit is a Python-based software 
framework that provides direct access to sensors and instruments, allowing users to 
customize control strategies and data acquisition in ways that SCADA systems do 
not typically allow. More importantly, it enables multisystem integration by 
facilitating communication between different unit operations, such as 
chromatography systems, over a local area network (LAN). 

In our work on the Quality Analysis System (QAS), we utilized Orbit to connect 
multiple ÄKTA chromatography systems. Each system operated independently but 
communicated with the others through the LAN, exchanging data and synchronizing 
operations. An overview of this application is shown in the previous chapter, Figure 
13. In the study in Paper VI, the transfer of the capture pools from the capture step 
to the polishing step was enabled by synchronizing the valves and pumps of the 
ÄKTA PCC and the ÄKTA Pure systems. The QAS acted as an external client to 
these two systems, gathering samples and performing analyses automatically. 
Finally, a buffer preparation system was implemented that provided the individual 
systems with buffers automatically as they were close to running out. The 
communication framework established by Orbit allowed the systems to work 
together in a coordinated manner, ensuring the timing of sample collection and 
preparation, as well as the buffer preparation, was synchronized with the ongoing 
purification process. 

This ability to interconnect multiple systems and manage them through a unified 
communication network reflects the core principles of IoT. The Orbit framework 
provided the flexibility to work beyond the predefined configurations of individual 
ÄKTA systems, allowing for a more modular and adaptable approach to process 
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design. This modularity, which is often difficult to achieve with SCADA systems, 
enables a level of creativity in process development that is crucial for the 
advancement of digitalization in biomanufacturing. 

IoT as an Enabler of Digitalization: Digital Twins and 
Big Data 
The flexibility offered by IoT-enabled systems like Orbit is critical for the broader 
implementation of digital twins and big data methodologies in biopharmaceutical 
downstream processes. For digital twins to function effectively, real-time data from 
various unit operations must be continuously fed into the virtual model to ensure it 
remains reflective of the physical process. In traditional setups, accessing such data 
across multiple systems can be a significant challenge, particularly when these 
systems are siloed under different control platforms. However, with an IoT 
framework, data from different sources can be seamlessly integrated, enabling the 
continuous flow of information needed for accurate and timely digital twin updates. 

Moreover, IoT-based systems like Orbit allow for the direct capture of data from 
sensors, which can then be used to drive process optimization and advanced control 
strategies such as real-time control and monitoring. In my multisystem applications, 
the data obtained through Orbit's direct sensor access was used to develop and refine 
digital twins for chromatography processes. Additionally, this data was leveraged 
for real-time process monitoring using Kalman filters in Paper IV, providing 
accurate state estimates. Without the ability to directly access the sensor data in real 
time via Python, it would have been impossible to develop the iterative learning 
controller in Papers I and II and the Kalman filters at all. 

The Quality Analysis System is a perfect example of this integration. By connecting 
multiple chromatography systems via Orbit, the QAS enabled real-time sampling, 
data acquisition, and analysis that fed directly into process models. This modularity 
and ability to directly access and share data is a key benefit of IoT, which can be 
extended to other biopharmaceutical manufacturing operations to enhance process 
control and data-driven decision-making. 

Modular Process Design Through IoT 
One of the most significant advantages of IoT in biomanufacturing is the ability to 
create modular process designs. With traditional systems, processes are often 
constrained by the rigid architecture of the control system, making it difficult to 
modify workflows or integrate new technologies. However, by utilizing IoT 
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frameworks like Orbit, it becomes possible to introduce new unit operations, 
sensors, or control strategies into an existing process without the need for extensive 
system reconfiguration. 

In my work, this modular approach has allowed for greater flexibility during the 
process design stage. For example, the Orbit software enabled me to connect 
different chromatography systems and analytical devices in a way that was not 
possible using standard configurations. This flexibility allowed me to experiment 
with different sampling strategies, analytical methods, and control schemes, 
ultimately leading to more optimized and innovative process designs. 

The modularity introduced by IoT-based systems also has implications for 
scalability. By creating a flexible, interconnected network of devices, it becomes 
easier to scale processes up or down depending on production needs. New devices 
can be seamlessly integrated into the network, and process control can be adapted 
to account for changes in production scale or product complexity. This adaptability 
is crucial for biopharmaceutical manufacturers looking to transition from lab-scale 
production to pilot or commercial-scale manufacturing while maintaining process 
robustness and compliance. 

Conclusion 
The application of IoT in biopharmaceutical downstream processes offers 
significant potential for improving system integration, data acquisition, and process 
control. While traditional control systems such as SCADA limit the flexibility of 
IoT implementation, the use of Orbit demonstrates how IoT principles can be 
applied to create a more modular and interconnected process environment. By 
enabling communication between independent systems, Orbit allows for greater 
creativity in process design and supports the development of advanced digitalization 
tools such as digital twins, big data analytics, and real-time process control. 

As biopharmaceutical manufacturing continues to evolve, the ability to integrate 
IoT-based frameworks will be essential for achieving the level of digitalization 
required to meet the industry's growing demands for efficiency, scalability, and 
product quality. IoT, when combined with flexible software like Orbit, represents a 
key enabler of this transformation, paving the way for more modular, adaptive, and 
data-driven approaches to downstream processing. 
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Conclusions 

Digital twins can be applied in different ways for different purposes. In my work, I 
have shown all three versions of digital twins: a digital model was used to develop 
an iterative learning controller for linear gradient chromatography, which allowed 
for extensive trials without spending lab resources; a digital shadow was developed 
by applying state observer techniques called Kalman filters to improve monitoring 
and resolution of coeluting proteins, achieving a real-time flow of data from the 
physical to the digital; and a digital twin was used applied by means of an iterative 
learning controller, where two-way flow of information was achieved by computing 
the residence times of two proteins, and using them in a data-driven model to obtain 
an improved set of operating parameters. 

In addition to showing the use of different kinds of digital twins, I have also 
showcased an automated, integrated framework for developing mechanistic models 
for use in digital twins. Integrated in this case refers to the way in which the same 
code used to operate the chromatography system is used to simulate it, as well as to 
the manner in which the full system is included in the simulation: tubes, valves, 
sensors, mixers and chromatography columns alike.  

Big data analytics pose a major challenge in their application due to the cost of 
generating the large sets of data that are required. In this thesis, I have demonstrated 
how the collection, preparation and analysis of samples from a continuous 
downstream process can be automated using interconnected chromatography 
systems and network communications. By designing automated systems for 
obtaining high-quality data, a small step has been taken in the direction of big data 
applications in biopharmaceutical downstream processes. 

All of the solutions covered in this thesis were made possible through the use of the 
Orbit software, which allows for control, data acquisition and network 
communication. Operation of complex, interconnected processes with support 
systems for sample collection and analysis is enabled, which shows how the 
application of Internet of Things principles and the modularity that follows makes 
innovation possible. 

In conclusion, Industry 4.0 and digitalization can be realized by combining existing 
technology, such as mechanistic modelling and state observers such as Kalman 
filters, with the modern available tools such as network communication, machine 
learning algorithms and parallel computing. This thesis showcases several examples 
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of such applications. An important factor for future innovation is the availability of 
accessible APIs in process equipment, which will open the doors for more creative 
solutions to existing problems. 
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