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A Characterization Result*

Tommy Andersson† and Lars-Gunnar Svensson‡
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Abstract

This paper considers an allocation problem with a finite number of objects and unit-demand
agents. The main result is a characterization of a class of strategy-proof price mechanisms on
a general domain where preferences over pairs of objects and houses are rational, monotonic,
and continuous. A mechanism belongs to this class if and only if the price space is restricted
in a special way and, given this restriction, that the mechanism selects minimal equilibrium
prices.
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1 Introduction

We consider an allocation problem with a finite number of indivisible objects and a finite number
of unit-demand agents. Since an agent’s willingness to pay for an object is private information,
we analyze mechanisms (i.e., allocation rules) that use agents’ reported preferences to determine
an allocation that consists of an assignment of objects to agents and a price vector that specifies
how much an agent has to pay (or receive) for the object that she is assigned. A mechanism is
strategy-proof if, for all preferences and all agents, it is a dominant strategy to report preferences
truthfully. It is well-known that strategy-proofness is obtained if the mechanism always chooses
an equilibrium allocation with the minimal equilibrium price vector. See, e.g., Vickrey (1961),

*We would like to thank Jens Gudmundsson for helpful comments on an earlier draft of this paper. Financial
support from the Jan Wallander and Tom Hedelius Foundation is gratefully acknowledged (grant number P22–0087).

†Department of Economics, Lund University, Sweden.
‡Department of Economics, Lund University, Sweden.
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Leonard (1983), Demange and Gale (1986), Sun and Yang (2003), or Andersson and Svensson
(2008).

This paper considers mechanisms defined on a general domain where preferences over pairs
of objects and prices are rational, monotonic, and continuous. On this domain, it is proved that
minimal prices are not only sufficient, but also necessary for mechanisms, the range of which
are equilibrium allocations, to be strategy-proof. It is also demonstrated how the set of feasible
prices has to be restricted in order to be consistent with strategy-proofness.

Characterizations of the set of strategy-proof mechanisms has previously been provided in
the literature under various assumptions and conditions. A common result is the necessity of
minimal prices for mechanisms to be consistent with strategy-proofness, while conditions on the
price space are not generally analyzed in contrast to the present paper. Miyake (1998) considers a
multi-object model where the price space is defined as all prices above exogenously given lower
bounds (e.g., the reservation prices of the seller). A similar model is considered in Morimoto
and Serizawa (2014). Also in their analysis, minimal prices follows from strategy-proofness.
However, their result is proved without assuming the outcome to be price equilibria. It is rather
a consequence of strategy-proofness and some other assumptions, e.g., that the outcomes of the
mechanisms are assumed to be efficient allocations and that the number of agents is strictly
greater than the number of objects. Svensson (2009) shows that not only prices have to be
minimal, but also that price vectors p necessarily have to satisfy a restriction p � p (where p

denotes some lower price bounds). In his model, the number of agents coincedes with the number
of objects, whereas the present paper allows an arbitrary relation. Alternative characterizations,
based on different axioms than the ones used in this paper, has been provided by, e.g., Mukherjee
(2014) and Sakai (2008, 2013).1

The rest of this paper is organized as follows. Section 2 provides the formal model. The
main results are derived in Section 3. A dynamic implementation of the results is suggested in
Section 4, while Section 5 provides some concluding remarks and an informal discussion of the
relationship between the concept of fairness and the main results of this paper.

2 The Formal Model

Let A = {1, 2, . . . , n} be a finite set of agents and H = {1, 2, . . . ,m} a finite set of indivisible
objects. The object could be interpreted as houses or jobs. In particular, negative prices may be
interpreted as positive wages, so in that case the objects may be jobs. The objects will mostly be
called houses, while consequences of the main result for the concept of fairness will be informally
discussed in Section 5 for the job interpretation of the model. There is also an outside option,
called null house, denoted by 0, the copies of which are unlimited. No agent in A owns a house
in H. There may be one or several owners of the objects, but because the number of owners is

1See Remark 1 for additional notes on the related literature.
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not important for the analysis, it will for simplicity be assumed that there is a single owner of all
objects in H ,

An assignment is a mapping µ : A ! H [ {0} such that µa = µa0 , for a, a0 2 A and a 6= a
0
,

only if µa = 0. The set of assignments is denoted by A. Prices on houses are real numbers
and a price vector is denoted by p = (p0, p1, . . . , pm) 2 m+1, where ph is the price on house
h 2 H [ {0}. A set ⇢ m+1 is a set of feasible price vectors if conditions (i)–(iii) below are
satisfied:

(i) For all p 2 , p0 = 0.

(ii) is a closed subset of m+1 and bounded from below, i.e., there is a lower bound p 2 m+1

such that ⇢
�
p 2 m+1 : p � p

 
.

(iii) is monotonic, i.e., if p 2 and p
0 2 m+1

, p
0 � p and p

0
0 = 0, then p

0 2 .

Each agent a 2 A has rational preferences Ra on houses and prices, i.e., on bundles of type
(h, ph) 2 (H [ {0}) ⇥ . To simplify notation, let (h, p) ⌘ (h, ph). That is, by (h, p) we mean
house h at price ph at the price vector p. Preferences are further assumed to satisfy the following
assumptions:

• Monotonicity. For all houses h 2 H where p
a

h
2 , (h, p0

h
)Pa (h, ph) if p0

h
< ph.

• Continuity. For all houses h 2 H, the sets {ph 2 : (h, ph)Ra (h, p0h)} and {ph 2 : (h, p0
h
)Ra (h, p)}

are closed for all p0
h
2 .

• Bounded desirability. For each agent a 2 A, there is a vector qa 2 m+1
, where is

the extended real line, with q
a

0 = 0 and q
a

h
2 [�1,1) for all h 2 H, such that for all

h, h
0 2 H [ {0} with q

a

h
, q

a

h0 2 , (h, qa) Ia (h0
, q

a). This means that qa is an “indifference
point” for the preferences Ra.2

A (preference) profile is a list R = (Ra)a2A of agents’ preferences. The set of profiles is
R = ⇥a2ARa, where agent a’s preferences are in the set Ra of rational, monotonic, continu-
ous, and boundedly desirable preferences on (H [ {0})⇥ .

A state is a pair x = (µ, p) , where µ is an assignment and p a price vector. Here, xa = (µa, p)

for a 2 A. The set of unassigned houses in state x is denoted by µ0, i.e.:

µ0 = {h 2 H : µa 6= h for all a 2 A} [ {0} .

Note that 0 2 µ0 since there is an unlimited number of copies of the null house. The set of states
is denoted by S .

2Of course, qah = �1 means that agent a cannot or will not consume house h at any price (or, in a job interpre-
tation of the model, cannot or will not take job h at any wages).
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Definition 1. For a profile R 2 R, a state x = (µ, p) is a (price) equilibrium if: (i) p 2 , (ii) for
all a 2 A, xaRa(h, p) for all h 2 H [ {0} , and (iii) for all h 2 µ0 and " > 0, (ph � ", p�h) 62 .
For a given profile R 2 R, the set of equilibria is denoted ER and the set of corresponding price
vectors ⇧R.

The definition of equilibrium is the usual one. That is, each agent is assigned her most preferred
bundle at the equilibrium price vector. Note that this is also an individual rationality condition
since xaRa(0, p). Further, prices on unassigned houses are on the lower bound of the price space.

Denote by r sets of the type r= {h 2 H [ {0} : ph � rh} , where r 2 m+1 and r0 = 0.

Clearly r satisfies the conditions for a feasible set of price vectors and the vector r is a lower
bound for r

. Note that for feasible sets of prices r, the equilibrium condition (iii) in Definition
1 means that ph = rh if h 2 µ0. If r is a vector of the house owners’ reservation prices and house
h is not assigned to any agent at equilibrium, then its price is on its lower bound, i.e., ph = rh.

Definition 2. A mechanism is a mapping f : R ! S of profiles to states. It is a price mechanism
if for all R 2 R, the outcome f(R) = (µ, p) is an equilibrium state such that the number
|a 2 A : µa = 0| is minimal subject to (i) and (ii) in the definition of an equilibrium.3

The requirement of minimal number of assignments of null houses in a price mechanism is
introduced to reduce the number of utility equivalent assignments. In particular, this is relevant
when agents may be indifferent between a null house and a “real” house (i.e., a house in H).
In that case, the assignment shall be the real house instead of the null house. Hence, the price
mechanism prefers “trade” to “no trade.” Obviously, it is in the interests of the owner that a
house is sold to an agent even if the agent is indifferent between the null house and buying the
real house.

Definition 3. A mechanism f is manipulable at a profile R 2 R by an agent a 2 A if there is
a profile (R0

a
, R�a) 2 R such that x0

a
Paxa for some x

0 = f(R0
a
, R�a) and some x = f(Ra). A

mechanism f is strategy-proof if no agent can manipulate at any profile.

3 The Class of Strategy-Proof Price Mechanisms

In this section, necessary conditions on a strategy-proof price mechanism are investigated. First,
it is demonstrated that the set of feasible price vectors has to be restricted to a set:

r = {p 2 m+1 : p � r} where r 2 m+1 and r0 = 0.

Second, it is demonstrated that for a price mechanism f(R) = (µ, p) to be strategy-proof, the
price vector p chosen by the mechanism has to minimal in the set ⇧R of equilibrium price vectors.
Finally, it is concluded that minimal prices and the restricted domain for feasible price vectors
also are sufficient for the price mechanism f to be strategy-proof.

3Throughout the paper, |S| denotes the number of elements in a set S.
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3.1 Restrictions on the Set of Feasible Price Vectors

It is first demonstrated how the set of feasible price vectors must be restricted. To show this, note
that the set r is closed, bounded from below, and monotonic. It is, consequently, consistent with
the definition of a set of feasible prices vectors.

Theorem 1. Let f : R ! A⇥ be a price mechanism. Then f is manipulable if 6= r
,

r 2 m+1
.

Proof. To obtain a contradiction, suppose that f is strategy-proof and that 6= r
, r 2 m+1

.

Let p be a lower bound for . Then, since 6= r
, there are two vectors r0, r00 2 , r

0 6= r
00
, both

minimal in . To see this, let r0 be minimal in . There is such a vector since is closed and
bounded from below. Consider now the set r

0
. Since is monotonic, r

0 ⇢ and r
0 6= .

Hence, there is a vector r00 2 � r
0
. Now, r00 can be chosen minimal in . Then r

0 as well as
r
00 are minimal in and r

0 6= r
00
.

Consider now the two minimal vectors in , r0 and r
00, and note that they can be chosen so that

there are houses h1 and h2 such that r0
h1

< r
00
h1

and r
0
h2

> r
00
h2

. Without loss of generality, assume
that h1 = 1 and h2 = 2. Define now the preference profiles R0 = (R0

a
)
a2A and R

00 = (R00
a
)
a2A

according to:

• Preferences R0
a

are linear and represented by utility functions u0
ah
(p).

• u
0
10(p) = 0 and u

0
11(p) = r

0
1 � p1. For h > 1, u0

1h(p) = �1.

• u
0
20(p) = 0 and u

0
22(p) = r

0
2 � p2. For h = 1 and h > 2, u0

2h(p) = �1.

• u
0
a0(p) = 0 and u

0
ah
(p) = �1 for each agent a > 2 and for all h 2 H .

Preferences R00
a

are defined analogously where u
0 is replaced with u

00 and r
0 replaced with r

00.
Clearly x

0 = (µ0
, p

0) 2 ER0 and x
00 = (µ00

, p
00) 2 ER00 if µ0 = µ

00 and µ
0
a
= a for a  2

and µ
0
a
= 0 for a > 2. Moreover, p0

h
= r

0
h

for h = 1, 2 while for h > 2, p0 must be chosen
minimal in {p 2 : ph = r

0
h

for h = 1, 2} . The price vector p00 is chosen analogously. Note that
all equilibria in ER0 and ER00 must have this form. For instance, one cannot choose p

0
1 < r

0
1

because then p
0 62 by Definition 1(i), and if p

0
1 > r

0
1 then 1 2 µ

0
0 which is not consistent

with Definition 1(iii). Further, p01 = r
0
1 and µ

0
1 = 0 is not consistent with the maximal trade

requirement in Definition 2. Since all equilibria have this form, it also follows that f(R0) = x
0

and f(R00) = x
00.

Now, consider the profile R = (R00
1, R

0
�1) and let f(R) = x = (µ, p). Then, by the arguments

above, µ = µ
0 while p1 = r

00
1 and p2 = r

0
2. Then p 2 since is monotonic. Now, it follows

that u22(p) = u
0
22(p) = r

0
2 � r

0
2 = 0 while u22(p00) = u

00
22(p) = r

0
2 � r

00
2 > 0. Hence, agent

2 can manipulate at state x by changing preferences from R
0
2 to R

00
2 , contradicting strategy-

proofness.
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3.2 Minimal Equilibrium Prices

According to Theorem 1, the set of feasible price vectors has to be restricted to sets of the type
r for some r 2 m+1 with r0 = 0 in order for the mechanism to be strategy-proof. It is next

demonstrated that strategy-proofness also requires the prices to be minimal equilibrium prices.
For a profile R 2 R, a price vector pm 2 ⇧R is minimal if for any p 2 ⇧R, p  p

m only if
p = p

m
. The set ⇧R of equilibrium prices is closed and bounded from below. Because the set

⇧R also is a lattice if = r, there is a unique minimal price vector in ⇧R (see, e.g., Crawford
and Knoer, 1981; Demange and Gale, 1985). A mechanism f is a minimal price mechanism if f
is a price mechanism and f(R) = (µm

, p
m), where p

m is the minimal price vector in ⇧R.
The following result is the main characterization result of the paper (the proof can be found

in Section 3.3).

Theorem 2. A price mechanism f : R ! A⇥ is strategy-proof if and only if the set of feasible
price vectors is = r for some r and f is a minimal price mechanism.

Remark 1. Special cases of Theorem 2 can be found in the existing literature. Svensson (2004,
2009) obtains the restriction on feasible prices (wages) as well as the necessity of minimal prices
(wages) in a less general version of the model considered in this paper, e.g., because the prefer-
ences are quasi-linear, there is no outside option (i.e., null houses), and the number of objects and
agents coincides. Miyake (1998) considers a model that is logically similar to the one considered
in this paper, but for a somewhat smaller preference domain. Another main difference is that the
set of feasible price vectors is assumed to be exogenously given and of type r

, rh � 0. As in
the present study, the characterization problem in Miyake (1998) assumes a price mechanism.
This is not the case in Morimoto and Serizawa (2015) as they assume only that the range of the
mechanism is the efficient states. Given this weaker assumption, the minimal prices follows from
the strategy-proof condition. Compared to the present study, their considered preference domain
is somewhat smaller than the one considered here and, importantly, n > m, i.e., the number of
agents is strictly greater than the number of objects. The proof techniques in the above mentioned
studies are also very different from the method used in this paper. ⇤

3.3 The Proof of Theorem 2

This section is devoted to the proof of Theorem 2. A specific subset of preferences R0
a
⇢ Ra

will be crucial in the proof, so the first step is to define this subset. For this purpose, let a 2 A

be an agent, R 2 R and x
m = (µm

, p
m) 2 ER an equilibrium where p

m is the minimal price
vector in ⇧R. Let further the price difference for house h at price vectors p and p

m be given
by �h ⌘ ph � p

m

h
. Preferences Ra 2 Ra are represented by continuous and strictly decreasing

utility functions uah(�), h 2 H, while ua0(�) is constant since p0 = 0 for all �. Denote by ūa

the maximal utility at xm
, i.e., ūa = uaµm

a
(�m). By choice of unit, we let ua0(�) = 0. Then, by
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individual rationality, it follows that ūa � 0. Moreover, denote by Sa the set of houses that yields
maximal utility at xm to agent a, i.e.:

Sa = {h 2 H [ {0} : (h, ph)Iax
m

a
} .

Then, by construction, h = 0 2 Sa if and only if ūa = 0.
Given an agent a 2 A and a profile R 2 R, preferences R0

a
are defined by utility functions

u
0
ah
(�), h 2 H [ {0} , satisfying the following conditions:

(a) u
0
a0(�) = ūa = 0 if 0 2 Sa, otherwise u

0
a0(�) = �1,

(b) u
0
ah
(�) = ūa � ↵a�h, ↵a > 0, for h 2 Sa and h 6= 0,

(c) u
0
ah
(�) = ūa � ↵a�h � 100, for h 62 Sa [ {0}.

Let R0
a

denote the subset of preferences in Ra that satisfies conditions (a)–(c). The following
lemma reveals an invariance property of the minimal price vector.

Lemma 1. Let = r
, rh = 0 for all h 2 H [ {0} . Let also a

0 2 A be an agent, R a profile in
R, and x

m = (µm
, p

m) 2 ER an equilibrium where p
m is the minimal price vector in ⇧R. Then

p
m is also the minimal price vector in ⇧R0 , where R

0 = (R0
a
)a2A, R0

a0 2 R0
a0 and R

0
a
= Ra for

a 6= a
0
.

Proof. Let, without loss of generality, a0 = 1 and consider u
0
1µm

1
(�m). Note first that by the

definition of the set S1, for all h 2 S1,

u
0
1µm

1
(�m) = ū1 � ↵1�

m

µ
m
1
= ū1 = u

0
1h(�

m),

while for h 62 S1,

u
0
1µm

1
(�m) > u

0
1h(�

m).

We start by proving that xm 2 ER0 and, consequently, that pm 2 ⇧R0 . To see this, note first that
x
m = (µm

, p
m) 2 ER. Now, for R0

a
= Ra, we have x

m

a
Rax

m

a0 for all a0 6= 1 since x
m 2 ER. For

a = 1, we have u
0
1µm

1
(�m) = ū1 � ↵1�

m

µ
m
1
= ū1 since µ

m

1 2 S1. Further, u0
1h(�

m) � ū1 � ↵1�
m

h

for all h 2 H. Hence, xm 2 ER0 and p
m 2 ⇧R0 .

To prove that pm is minimal in ⇧R0 , suppose that there is a vector p0 2 ⇧R0 such that p0  p
m

and p
0 6= p

m
. Let x0 = (µ0

, p
0) 2 ER0 and define:

H
0 = {h 2 H : p0

h
< p

m

h
} and H

00 = {h 2 H : p0
h
= p

m

h
},

G
0 = {a 2 A : µ0

a
2 H

0} and G
00 = {a 2 A : µ0

a
2 H

00}.

Note that H 0 6= ; by assumption. By definition of equilibrium, H 0 \ µ
m

0 = ;, i.e., if h 2 µ
m

0 ,
then p

m

h
= 0, and hence, p0

h
� p

m

h
, which contradicts our assumptions.
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We next show that for all a 2 G
00
, x

m

a
Pa(h, pm) for all h 2 H

0. To obtain a contradiction,
suppose that there is an agent a 2 G

00 and a house h 2 H
0 such that (h, pm)Rax

m

a
. Then the

following five statements hold:

• (h, pm)Rax
m

a
by assumption,

• x
m

a
Ra(h0

, p
m) by the equilibrium x

m, where h
0 = µ

0
a
,

• (h0
, p

m) = (h0
, p

0) since a 2 G
00 and then p

m

h0 = p
0
h0 ,

• (h0
, p

0)R0
a
(h, p0) by the equilibrium x

0,

• (h, p0)Pa(h, pm) by monotonicity, pm
h
> p

0
h

since h 2 H
0
.

If a 6= 1, we have (h, pm)Rax
m

a
Ra(h0

, p
m)Ra(h, p0)Pa(h, pm), which is a contradiction. If a = 1,

then (h0
, p

0)R0
a
(h, p0) means that ū1 �↵1�

0
h0 � ū1 �↵1�

0
h

or ū1 �↵1�
0
h0 � ū1 �↵1�

0
h
� 100 since

h
0 2 S1. In both cases �

0
h
� �

0
h0 , which is a contradiction since h 2 H

0 and h
0 2 H

00
. Thus,

the assumption (h, pm)Rax
m

a
always leads to a contradiction, so it must be the case that for all

a 2 G
00
, x

m

a
Pa(h, pm) for all h 2 H

0.
But if the latter condition holds, it follows from the Perturbation Lemma in Alkan, Demange

and Gale (1991) that prices p
m

h
, h 2 H

0
, can be decreased such that there is an equilibrium

x
00 = (µ00

, p
00) 2 ER with p  p

m
, p 6= p

m. But this is a contradiction to p
m being minimal in

⇧R. Thus, pm is minimal also in ⇧R0 .

Recall from Theorem 1 that = r for some r is necessary for strategy-proofness. Assume now,
without loss of generality, that rh = 0 for all h 2 H [ {0}. Given Lemma 1, Theorem 1 can
now be proved by contradiction. To obtain such contradiction, suppose that f is strategy-proof,
but that there is a profile R 2 R such that f(R) = x ⌘ (µ, p) and p � p

m
, p 6= p

m
, where p

m is
minimal in ⇧R, i.e., f(R) = (µ, p) and p � p

m
, p 6= p

m
.

Given this assumption, it follows that ph > p
m

h
for some h 2 H, and h 6= 0 since p0 = 0

for all p, and hence, p0 = p
m

0 . Without loss of generality, assume that p1 > 0 and µ1 = 1. Then,
x
m

1 P1x1 since x
m

1 R1(µ1, p
m) by equilibrium, and (µ1, p

m)P1(µ1, p) by monotonicity. Moreover,
0 62 S1, so µ

m

1 6= 0.

Let R0 = (R0
1, R�1) 2 R be a profile defined by R

0
1 2 R0

1 according to conditions (a)–(c)
from the above. Then by Lemma 1, pm is minimal in ⇧R0 . Let x0 = (µ0

, p
0) = f(R0) and µ

0
1 = h

0
.

Now, x0 2 ER0 , so x
0
1R

0
1(0, p

0), i.e., u0
1h0(�0) � u

0
10(�

0). Hence, if 0 2 S1 then u
0
1h0(�0) � 0, and

if 0 62 S1 then u
0
1h0(�0) � �1. It is next demonstrated that h0 = 0 for ↵1 “sufficiently large” by

analyzing the following two cases:

Case (i), h0 6= 0. If h0 2 S1, then u
0
ah0(�) = ū1 � ↵1�

0
h0 � u

0
10 = �1. Hence, �0

h0 
(ū1 + 1)/↵1. This also means that �0

h0 ! 0 as ↵1 ! 1.

8



Case (ii), h0 62 S1 [ {0}. If h0 62 S1 [ {0}, then u
0
ah0(�) = ū1 � ↵1�

0
h0 � 100 � u

0
10 = �1.

Hence, �0
h0  (ū1 � 99)/↵1. This also means that �0

h0 ! 0 as ↵1 ! 1.

To see that h0 = 0 for ↵1 sufficiently large in both Cases (i) and (ii), let �↵1 = u1h0(�0)� u11(�).

Here, u1h0(�0) ! ū1 as �
0
h0 ! 0 since u1h0 is continuous and �

m

h
= 0 for all h 2 S1. But then

�↵1 > 0 for ↵1 sufficiently large. This is true in both Cases (i) and (ii). However, �↵1 > 0 is not
consistent with f being strategy-proof. Hence, for ↵ sufficiently large, h0 = 0 must be the case.

To summarize, for each profile R 2 R such that f(R) = x ⌘ (µ, p) and p � p
m
, p 6= p

m
,

where p
m is minimal in ⇧R, there is an agent a 2 A such that xm

a
Paxa. If Ra 62 R0

a
then agent a

can make a similar substitution as in the above, and the profile R is changed to R
0 = (R0

a
, R�a).

If f(R0) = (µ0
, x

0), then µ
0
a
= 0. Repeat now this type of substitution process as many times as

possible. This process stops at a profile R when, for f(R) = (µ, p), there is no agent a such that
x
m

a
Paxa and Ra 62 R0

a
.

At the profile R where the process stops, it is possible to construct a cycle (aj)
k+1
j=1 of agents

aj 2 A, all different except a1 = ak+1 (i.e., “the first” and “the last” agent in the cycle). Further,
for hj = µaj , let aj+1 be recursively defined by hj+1 = µaj+1 = µ

m

aj
. Finally, let a1 be the last

agent where the preferences were replaced by preferences in R0
a
. This means that h1 = 0 and

h1 62 Sa1 .

Consider now this cycle. Note first that, by equilibrium, ua1h1(�) � ua1h2(�). Furthermore,
Ra1 2 R0

a1
, and then, since h1 62 Sa1 and h2 2 Sa1 , it follows that:

ua1h1(�) = ua10(�) = �1 � ūa1 � ↵a1�h2 where h2 = µ
m

a1
.

Then, �h2 � (ūa1 + 1)/↵a1 > 0. Thus, �h2 > �
m

h2
= 0.

Now, µa2 = h2 and �h2 > 0 entail that xm

a2
Pa2xa2 and, hence, Ra2 2 R0

a2
. By repeating the

above arguments, we obtain:

ua2h2(�) = ūa2 � ↵a2�h2 � ūa2 � ↵a2�h3 where h3 = µ
m

a2
.

Then, �h3 � �h2 . By recursion, we have �hj+1 � �hj for 1 < j  k and �hk+1
� �hk

. However,
�hk+1

= �h1 , which is a contradiction since the sequence (�j)
k+1
j=1 of prices is increasing with

�h1 = 0, and �hk+1
> 0 since �h2 > 0. Hence, the original assumption, p � p

m
, p 6= p

m
, cannot

be true, and p = p
m must be the case.

Finally, we note that a minimal price mechanism is strategy-proof, see, e.g., Leonard (1983),
Demange and Gale (1985), or Andersson and Svensson (2008).

4 Dynamic Implementation

The minimal price mechanism analysed in the preceding section is a direct mechanism where
the agents are asked to report their complete preference relations. In Andersson and Svensson
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(2018), a dynamic mechanism is constructed and analyzed where only partial preferences are
required to reach the minimal price equilibrium. A simplified version of that mechanism can
also be applied for the problem considered in this paper.4

It the following, it is, without loss of generality, assumed that the feasible prices are the
vectors in =

�
p 2 m+1

+ : p0 = 0
 

. The price space is partitioned by a grid where each box is
of type S↵ ⇢ satisfying:5

�
m = {↵ 2 m

+ : ↵j = �kj for some kj 2 },
for each ↵ 2 �

m
, S↵ = (0, 0, . . . , 0)⇥ (⇥h2H [↵h,↵h + �)).

The vector ↵ is the minimal corner in a box and � > 0 defines the size of the boxes. The outcome
of the dynamic mechanism is a finite increasing sequence (pt)T

t=1 of price vectors, called an
English Price Sequence, and a corresponding finite increasing sequence of boxes, where no price
is increased more than �. In each box, only prices on over-demanded houses (see below for a
definition) are raised. Agents’ demands are required only in the various boxes in the sequence,
and the sequence of boxes ends when the unique minimal price equilibrium is obtained. The
sequences are formally defined in the following way.

Let a 2 A and p 2 , and denote by d
p

a
⇢ H [ {0} the (reported) demand set at the price

vector p, i.e.:

d
p

a
= {h 2 H [ {0} : (h, p)Ra (h

0
, p) for all h0 2 H [ {0}} .

A set H 0 ⇢ H of houses is over-demanded if |a 2 A : dp
a
⇢ H

0| > |H 0| and a minimal over-
demanded set if there is no over-demanded set H 00 ⇢ H

0
, H

00 6= H
0
.

In each box S↵, x = (µ, p) is a temporary state if p 2 S↵ and µa 2 d
p

a
. Given S↵ and a

temporary state x = (µ, p), p 2 S↵, a price regime ⇧x ⇢ S↵ is defined according to: p0 2 ⇧x if
and only if there is a temporary state x0 = (µ0

, p
0), with p

0 2 S↵, such that p0
h
= ph if h is not in a

minimal over-demanded set at p and for such an h, µ
0
a
= µa = h. Let x = (µ, p) be a temporary

state and let ⇠(x) = sup⇧x. Note that ⇠(x) need not be a singleton. Now, we can recursively
define a price sequence in the following way.

Definition 4. Given the partition of the set of feasible price vectors {S↵ : ↵ 2 �
m}, a sequence

(pt)T
t=1 of price vectors constitutes an English Price Sequence (EPS, henceforth) if there is a

sequence (xt)T
t=1 of supporting temporary states, with x

t = (µt
, p

t), such that pt+1 2 ⇠(xt). The
starting point is p1 with p

1
h
= 0 for all h 2 H [ {0} . The EPS terminates at step T if pT 6= p

T�1

and p
T+1 = p

T
.

Note that there can be several price changes in one and the same box, so the corresponding
sequence of boxes can have fewer steps than T. It can be proved that T < 1 and that the end-

4For proofs of the results in this section, see Andersson and Svensson (2018).
5 = {0, 1, 2, . . .}.
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point pT is the unique minimal price vector, while the sequence (pt)T
t=1 is not necessarily unique.

Let (S↵j)T
0

j=1 , T
0  T, be the sequence of boxes containing a price vector from the EPS (pt)T

t=1 .

Then the measure of the set [jS↵j ! 0 as � ! 0, so the part of the price space where agents
recursively report their demand can be arbitrarily small by choosing � small. The EPS can be
seen as the outcome of an auction rule defined as follows:

The Iterative English Auction Rule. Initialize the price vector to p
1. For each Step t :=

1, . . . , T :

1. Each agent a 2 A reports his demand set dpt
a

at prices pt.

2. Calculate a supporting temporary state x
t = (µt

, p
t).

3. Define a small price regime ⇧x
t and calculate p

t+1 2 ⇠(xt).

4. If pt+1 = p
t, stop. Otherwise, set t := t+ 1 and continue.

If the reported demand sets dp
a

in the Iterative English Auction Rule are consistent with rational
preferences R 2 R, i.e., a reported demand set dp

a
can be derived from some preference ordering

Ra 2 Ra, then bidding truthfully is an ex post Nash equilibrium.

5 Concluding Remarks and a Fair Wage Interpretation

We have considered an allocation problem with a finite number of objects and unit-demand
agents, and provided a characterization of a class of strategy-proof price mechanisms on a general
preference domain. But there is also an appealing fairness interpretation of the results that relates
to the version of the model with jobs and wages. More precisely, any definition of fairness is
faced with two fundamental problems, namely the uniqueness problem and the implementation
problem. For instance, if fairness requires an allocation to be envy-free (Foley, 1967), there are
in general many allocations satisfying this condition. In the jobs and wages interpretation of the
model, Theorem 2 may be useful in analyzing those two problems.

To see this, let H be a set of various jobs, and negative prices be wages, e.g., wj = �pj,

j 2 H. Feasible wages are ⇢ m+1, where w 2 if and only if w = �p for some p 2 r
.

Suppose now that necessary for fairness is a state x = (µ,w) with no envy, i.e., xaRaxa0 for all
agents a, a0 2 A. Since the calculation of such a state requires agents’ private information, and
that information can be obtained by using a strategy-proof mechanism, Theorem 2 shows that
the degree of freedom in choosing a fairness criterion is reduced to the choice of a feasible set

r of wages of the type, r = � r ⇢ � , where � is the exogenously given set of production
possibilities. Hence, the choice for the mechanism designer is one choice of a feasible wage
structure r which determines r

, and then there is only one mechanism that solves the uniqueness
problem and the implementation problem, and that is the “maximal wage mechanism,” i.e., the
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version of the minimal price mechanism with positive prices. In this model, the vector r may
be interpreted as a vector of reservation wages of the employers, and the mechanism results in a
non-manipulable rule for the employees, while the employers may manipulate by their choice of
r.
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