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Abstract

Many economic models assume that random variables follow normal (Gaussian)

distributions. Yet, real-world variables may be non-normally distributed. How

sensitive are these models’ predictions to distribution misspecifications? This pa-

per addresses the question in the context of linear-quadratic beauty contests played

by rationally inattentive players. It breaks with the assumption that the (common

prior) distribution of the fundamental be Gaussian and provides a characterization

of the class of equilibria in continuous strategies. The characterization is used to

show that small departures from normality can lead to distributions of the equilib-

rium average action that are qualitatively different from those of Gaussian models.

Numerical results show that the rate at which an analyst’s errors in determining

the fundamental’s distribution are amplified in her prediction is higher when the

true prior is non-Gaussian than when it is an equally-misspecified Gaussian.
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1 Introduction

Many economic models assume that random variables follow normal (Gaussian) distri-

butions. This assumption can be well-founded (because of the central limit theorem,

for example), but it is often made because it makes the model tractable. This paper

studies how sensitive predictions are to the normality assumption.

The paper focuses on beauty-contest games, a central class of games for applications

of information economics in macroeconomics and finance (Angeletos and Pavan 2007;

Morris and Shin 2002; Vives 2008). A payoff-relevant state (the fundamental) follows a

commonly known prior over the real line. Each of many players takes an action (a real

number) and loses payoff according to a weighted average of (a) the squared distance

between her action and the realization of the fundamental and (b) the squared distance

between her action and the population-wide average action. This paper studies how

sensitive the model’s predictions are to relaxing the widespread assumption that the

payoff-relevant state and players’ information (signals) be normally distributed.

A possible approach to the robustness question would be to characterize all equi-

libria that can arise across all possible joint distributions over states and signals, an

approach in the spirit of Bergemann and Morris (2016). One could be worried that this

approach, although compelling, leaves too much room for potential negative results.

To put some discipline to the set of joint distributions, this paper assumes that players

endogenously choose what information to acquire. Before choosing her action, each

player can acquire information flexibly (à la Yang 2015). She can arbitrarily correlate

her signal to the fundamental, while paying a cost that is linear in the Shannon mutual

information between the two variables.

In this context, the choice of mutual information for the cost of information is nat-

ural. First, it is a widespread functional form in the literature on rational inattention

(Sims 2003). Second, and more importantly, it enables the embedding of the standard

Gaussian case into the analysis. When the fundamental is normally distributed, one can

easily—by guessing and verifying—find equilibria whereby the fundamental and play-

ers’ actions are jointly normally distributed and the average action is a linear function

of the fundamental.

The paper’s main technical contribution is a characterization of the class of equilibria
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in which players’ actions follow continuous distributions. The characterization implies

that the highly tractable equilibria in which the population-wide average action is a

linear function of the funamental exist only if the fundamental is normally distributed.

Based on this characterization, the paper proposes a novel method which allows the

study of non-Gaussian priors and which is used to study the robustness of equilibrium

predictions to misspecifications of the prior. The central finding of the paper is a neg-

ative result. Even small departures from a Gaussian prior can lead to distributions of

equilibrium actions that differ significantly from the ones obtained for normal priors.

The paper proceeds to quantify the sensitivity of the model’s predictions to misspecifi-

cations of the fundamental’s distribution.

The formal model is laid out in Section 2. Beauty contests and, more generally,

linear-quadratic models lend themselves to the study of information acquisition in strate-

gic environments (e.g. Dewan and Myatt 2008; Hellwig and Veldkamp 2009; Myatt and

Wallace 2012).1 In particular, they have been standard settings for models with ratio-

nally inattentive (à la Sims 2003) players (e.g. Hellwig, Kohls, and Veldkamp 2012;

Maćkowiak and Wiederholt 2009; Hébert and La’O 2020). The critical assumption that

makes many of these models tractable is that of a Gaussian prior.

Establishing the literature benchmark, the analysis begins in Section 3 with the case

of Gaussian priors and jointly-normal strategies. As in Hellwig and Veldkamp (2009),

players’ motives for coordination translate into strategic complementarities in infor-

mation acquisition. Importantly, the mutual-information cost function can make these

complementarities strong enough for multiple equilibria to arise (see also Myatt and

Wallace 2012; Hébert and La’O 2020).

Next, Section 4 parts with the assumption that the prior be Gaussian and finds a

necessary and sufficient condition for a player to have a continuous best response to

a well-behaved strategy profile of her opponents. The best response is such that after

receiving any signal, the player’s posterior belief about her optimal (or, best) action is a

Gaussian centered at the action that the signal prescribes her to take.2

1A closely related literature considers information aggregation and acquisition in markets that con-

sist of agents with linear-quadratic-loss or constant-absolute-risk-aversion (CARA) utility functions and

where fundamental values and agents’ signals are normally distributed (e.g. Grossman and Stiglitz 1980;

Hellwig 1980). A succinct and informative exposition of these models can be found in Vives (2008).
2This echoes Matějka and Sims (2010), if one uses the best action as the tracked state (rather than
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The characterization of equilibria in continuous strategies (Proposition 6, the pa-

per’s main technical result) is reached by demanding that the best-action distribution

to which the players are best responding be equal to the one that is generated from

their strategies, i.e., a fixed point. From the characterization, it follows that the model

has affine closed-form solutions only under the normal prior assumption, which hints

that some results derived for normal priors may not extend to other distributions. Even

though equilibria for a given prior cannot be computed directly, the characterization re-

sult allows one to generate pairs of prior and equilibrium distributions. Based on this,

Section 4.3 proposes a method to study equilibria under non-Gaussian priors.

The main results of the paper are laid out in Section 5, which studies the sensi-

tivity of predictions to misspecifications of the prior. First, examples generated with

the proposed method demonstrate that even when prior distributions are very close to

the normal, the distributions of the equilibrium population-wide average action can be

qualitatively different from those derived for a Gaussian prior. Second, numerical meth-

ods quantify how robust the predictions of the Gaussian model are to misspecifications

of the prior. This is done by comparing the error that results in the prediction of the

equilibrium average-action distribution (measured by the L1 distance) to the error in

the prior that caused it. The exercise shows that errors in the prior can be highly ampli-

fied in the model’s predictions (by more than twenty-fold in some cases; Section 5.3).

Moreover, using a misspecified Gaussian prior leads to larger error amplification rates

when the true prior is non-Gaussian than when the true prior is an equally-misspecified

Gaussian (Section 5.4). These error amplifications increase as coordination motives get

stronger and as information gets costlier.

Prior misspecifications lead to larger prediction errors as information costs increase

and as coordination motives get stronger. The intuition is the following. With costless

information, players can perfectly observe—and, subsequently, successfully coordinate

their actions on—any realization of the fundamental. As her information unit costs in-

crease, though, a rationally inattentive player acquires less information. This leads to

her paying attention to fewer features of the tracked variable’s distribution and, con-

sequently, to the distribution of her action getting more concentrated. Moreover,—

because of the coordination motives present—as her opponents concentrate their ac-

the fundamental).
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tions around some value, she optimally also takes actions close to that value more fre-

quently. As a result, if the normal prior assumption is slightly wrong, the predicted equi-

librium does not take account of the chain of “explosive” reasoning agents go through to

pick their actions. So, even a small change in the distribution of the fundamental gen-

erates a chain reaction in complementary actions leading to an equilibrium relatively

far from the one predicted on the basis of the Gaussian model.

Studying beauty contests and other economic models beyond the normality assump-

tion can yield qualitatively novel results. For example, small departures from the normal

prior in beauty contests can lead to highly skewed distributions of equilibrium actions.

This means that if some endogenous variable (e.g. the average price) is observed to

be highly skewed, this skewness can potentially be explained as the result of small

non-Gaussian “distortions” of the prior, amplified by market participants’ coordination

motives. The normal prior assumption mutes by construction this type of new insights.

The paper’s results demonstrate that even though the normality assumption can make

models highly tractable, their predictions are not always robust to distribution mis-

specifications. Analysts should therefore exercise caution when making the simplifying

normality assumption.

The paper is closely related to Myatt and Wallace (2012), who study economic

beauty contests with endogenous information acquisition, Yang (2015), who introduced

flexible information acquisition technology, and Jung et al. (2019), who study how

small changes in priors affect the optimal strategies of rationally inattentive agents.

Another related study is Denti (2020), who allows players to design signals that can

be correlated even after conditioning on the fundamental, while paying a cost that is

increasing in the Blackwell order (Blackwell 1951, 1953). In this sense, his agents use

an unrestricted information acquisition technology. The information structure used by

Denti (2020) is, therefore, richer than the one used herein, and leads to Bayes corre-

lated equilibria (Bergemann and Morris 2016). More recently, Hébert and La’O (2020)

use a similar technology to study efficiency and non-fundamental volatility under dif-

ferent information costs. A detailed discussion of how results in the existing literature

relate those presented here is postponed to Section 6.
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2 Model

Consider a large population of ex-ante identical expected-payoff-maximizing players

(i ∈ [0,1]). Players are Bayesian and have a common prior Pθ ∈∆(R) about a payoff-

relevant state of the world θ ∈ R, the fundamental.3 The prior has full support over

R, well-defined mean θ̄ (without loss of generality θ̄ = 0) and variance σ2, and a

probability density function (PDF) p, which is an analytic function. Each player i takes

an action ai ∈ R, while the population-wide average action is denoted by ā =
∫ 1

0
ai di.

Player objectives

The players have coordination motives with strength γ ∈ [0, 1) and fundamental mo-

tives with strength 1− γ. They receive payoffs according to

− (1− γ)(ai − θ )2 − γ(ai − ā)2. (1)

If a player knows θ and ā, she maximizes her payoff by playing the best action

b := (1− γ)θ + γā. (2)

Even when information is incomplete, the best action is very important to the players:

it is the random variable that each of them is trying to match. To see this, notice that the

objective (1) can be rewritten as −(ai− b)2−γ(1−γ)(ā−θ )2. Since player i maximizes

expected payoff, she optimally chooses her action ai so as to maximize

Ui := Ei

�

−(ai − b)2
�

. (3)

It follows that player i’s optimal action is her expected best action, given her belief.

Observation 1 (Ex-post optimality). A player i maximizes her payoff by playing ai =

Ei [b], where the expectation is taken according to her posterior belief.

Information acquisition

Before choosing her action, and simultaneously with her opponents, each player i can

acquire information about the fundamental. This information comes at a cost which

3Throughout the paper, ∆(X ) denotes the set of probability measures over set X , while Px denotes

the distribution of variable x .
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is linear in (Shannon) mutual information between the fundamental θ and her action

ai. Formally, an information acquisition strategy (or, simply, a strategy) is a family of

conditional probability measures Pai |θ that give the distribution over actions (i.e. mixed

strategy) conditional on the realization θ .4 When the various Pai |θ admit densities, these

are denoted by ri(·|θ ) and information costs are given by

Ci := µ I(ri; p) = µ

�∫ +∞

−∞

∫ +∞

−∞
p(θ )ri(ai|θ ) log

ri(ai|θ )
Ri(ai)

dai dθ

�

, (4)

where Ri(ai) =
∫ +∞
−∞ri(ai|θ )dθ is the marginal density of action ai and µ ≥ 0 is a

parameter which denotes the unit cost of information.5

A tuple (p,γ,µ) defines a game, which will occasionally be referred to as an economy.

Equilibrium

Given a strategy profile r = (ri)i∈[0,1], the average action at a state θ is given by

ā(θ ) =

∫ 1

0

∫ +∞

−∞
a j r j(a j|θ )da j d j,

which is assumed to be well-defined for all θ and (Lebesgue-)measurable.6 Since a sin-

gle player’s choice of action cannot affect the population’s average action, the function

ā(·) is the object to which each player is best responding. Equivalently (for a fixed γ),

player i is best responding to the best action function

b(θ ) := (1− γ)θ + γā(θ ).

It is now possible to define a notion of equilibrium. In an equilibrium, each player’s

strategy ri should be optimal given ā(·) and the average action at any given state should

be the aggregate of all players’ actions, according to their strategies.

4 More generally, information acquisition strategies map states of the world θ to distributions over

messages. Standard arguments, though, establish that each message should just prescribe player i which

action to take (see Online Appendix).
5As most of the paper’s analysis focuses on strategies with densities, some definitions are stated for

such strategies, so as to ease exposition. It should be understood, though, that the definitions extend to

more general probability measures.
6Indeed, in all equilibria considered in the paper, the average action is well-defined and measurable.
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Definition 1. A strategy profile r∗ is an equilibrium of the game (p,γ,µ) if

r∗i ∈ argmax
ri∈(∆(R))R

∫ +∞

−∞

∫ +∞

−∞

�

−(1− γ)(ai − θ )2 − γ(ai − ā(θ )2
�

ri(ai|θ )p(θ )dai dθ−µ I(ri; p)

for all players i and the average action conditional on θ is given by

ā(θ ) =

∫ 1

0

∫ +∞

−∞
a j r

∗
j (a j|θ )da j d j.

The main equilibrium object of interest is the distribution Pā of the average action,

which summarizes the population’s equilibrium aggregate behavior (and is likely to be

observable in applications). If ā(·) is strictly increasing (which will be the case in all

equilibria considered), then Pā has a density, denoted by h. This PDF can be calculated

from the change of variables formula:

h(·) = p
�

ā−1(·)
� �

ā−1
�′
(·). (5)

With slight abuse, the term “h is an equilibrium of (p,γ,µ)” will be used occasionally.

2.1 Error amplification factor

A central aim of the paper is to study the sensitivity of equilibrium predictions to mis-

specifications of the prior p. This section introduces the measure that will be employed

in Section 5 to quantify this sensitivity.

Consider an analyst who tries to derive predictions about an economy (p,γ,µ) of

the type described above and who would make prediction h (an equilibrium of (p,γ,µ))

if she knew all three game parameters. Assume, now, that although the analyst knows

the coordination motive γ and information cost µ, she does not know the distribution p

of the fundamental (e.g., because she has observed only a finite amount of realizations

of θ). Instead, she works under the (incorrect) assumption that the fundamental is

distributed according to p̃ and predicts that the resulting average action distribution is

h̃, an equilibrium of (p̃,γ,µ). How wrong will her prediction h̃ be because of her using

an incorrect prior p̃ in her calculations? Or, to put it differently: At what rate will her

errors about the prior be translated into errors of her predictions?

In order to answer such questions, the notion of the error amplification factor A is

used. It compares the error made in the predicted average-action distribution to the
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error made in the measurement of the prior distribution, using the L1 norm.7

A=





h− h̃






1

‖p− p̃‖1

The higher the value of A, the more sensitive the model’s predictions are to misspecifi-

cations of the prior.

Note that A depends on both the priors p, p̃ and the predictions h, h̃ that the analyst

would make in case she knew the respective prior. If one were to define an amplification

factor solely based on the priors p, p̃ instead, identification issues could arise when p

or p̃ have multiple equilibria. In this light, any A value calculated for a pair of priors

p, p̃ and the respective predictions h, h̃ should be interpreted as a lower bound of the

amplification factor that can be reached under the prior pair p, p̃. That is, there might

be another pair of predictions h′, h̃′ that are equilibria of p and p̃, respectively, and for

which the error amplification is even higher than the one calculated for h, h̃.

3 Equilibrium under a Gaussian prior

Before addressing the general problem in Section 4, a benchmark case that is popular

in the literature is briefly presented. In this benchmark, the prior distribution is normal

(θ ∼ N(0,σ2)) and each player follows a strategy in which her expected action is linear

in θ .8 A formal definition of such strategies follows. In the definition, the degenerate

N(x , 0) is identified with the distribution that assigns all probability mass to x .

Definition 2 (Linear-Gaussian strategy). A strategy ri of a player i will be called linear-

Gaussian if by following ri, player i’s action conditional on the fundamental θ follows a

Gaussian distribution with a mean that is linear in θ :

ai|θ ∼ N
�

λiθ ,σ2
ai

�

for some λi ∈ [0, 1] and some σ2
ai
≥ 0.

7The reader is reminded that ‖ f ‖1 =
∫ +∞
−∞| f (x)|dx . Notice that since the total variation distance

between two probability measures P and Q is equal to 1
2‖P −Q‖1, the measure A used here would be the

same if total variation distance was used instead of the L1 distance.
8In the literature (e.g. Myatt and Wallace 2012), the strategies described here are usually reached

through the agents’ updating of their (improper uniform) prior after observing a public signal and a

private signal whose precision they can determine endogenously.
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One, then, guesses and verifies that an equilibrium in linear-Gaussian strategies

exists and proceeds with analyzing its properties.

Best response Indeed, if a player i’s opponents follow linear-Gaussian strategies, then

the average action to which she best responds is linear in θ (i.e., ā(θ ) = λ̄θ) with slope

λ̄ :=
∫ 1

0
λ j d j ∈ [0,1]. It follows that the best action is also linear (i.e., b(θ ) = κθ)

with slope κ =
�

(1− γ) + γλ̄
�

∈ [0,1]. Under a Gaussian prior, player i’s unique best

response to such a profile is also linear-Gaussian (see, e.g., Sims 2003; Jung et al. 2019).

Its slope is given by (see Appendix A.1 for all calculations)

Λ(λ̄) =

(
�

(1− γ) + γλ̄
�

− µ

2((1−γ)+γλ̄)σ2 if µ < 2
�

(1− γ) + γλ̄
�2
σ2

0 otherwise
. (6)

As her opponents’ average action slope λ̄ increases, player i increases her own slope

λi in her best response. This happens for two reasons. First, a higher λ̄ implies that

the best action b—the variable that player i is trying to track—is more correlated to the

fundamental. So, it is in her best interest to increase the correlation of her action with

the fundamental too. Second, while player i acquires information about the fundamen-

tal θ , she uses this information to match the best action b = κθ . As her opponents’

average action slope increases, b gets more correlated with θ and player i can use the

information she acquires more efficiently. That is, she can implement the same slope

λi at a lower cost. In effect, a higher λ̄ reduces the cost of any given λi. This creates a

strategic complementarity in addition to the more obvious one implied by the form of

the game’s payoff Ui.

Equilibrium Since the best response to linear-Gaussian profiles is linear-Gaussian

(and continuous on the compact interval [0,1]), equilibria in linear-Gaussian strategies

exist.9 Moreover, for a large enough coordination motive γ and an appropriate range of

information costs µ, the complementarities descibed above can create multiple linear-

Gaussian equilibria (see Vives 2005). Proposition 1 characterizes these equilibria and

describes their stability properties. The notion of stability used is defined below (see

Manzano and Vives 2011).

9In fact (as is shown in Appendix B), such equilibria exist only if the prior is Gaussian.
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Λ(λ)=λ

Figure 1: Examples of best responses and stability analysis for the slope λ of the average

action in linear-Gaussian equilibrium (θ ∼ N(0,1)).

Definition 3. A linear-Gaussian equilibrium is stable if its corresponding slope λ∗ ∈ [0,1]

is a stable fixed point for the best-response function Λ(·), i.e., if |Λ′(λ∗)|< 1. It is unstable

otherwise.

Proposition 1. Let p be Gaussian. Then, generically, the game (p,γ,µ) has either one

or three linear-Gaussian equilibria. If it has three linear-Gaussian equilibria, then one of

them has a slope λ = 0 and is stable. From the two equilibria with λ > 0, the one with

the higher λ is stable, while the one with the lower λ is unstable.

Proof. See Appendix A.1.

The equilibria of Proposition 1 (in particular, the stable equilibrium with positive

λ) will serve as the benchmark in the sensitivity analysis of Section 5. Figure 1 plots

the best-response function for selected (γ,µ) combinations. The mechanisms behind

equilibrium multiplicity are briefly discussed in Section 6.
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4 Equilibrium characterization with an arbitrary prior

Relaxing the normal prior assumption that was imposed in Section 3, Section 4 pro-

ceeds to address the general model laid out in Section 2. It begins by calculating best

responses and proceeds with characterizing equilibria in continuous strategies.

4.1 Best responses

This paper studies players’ behavior in equilibria where they follow strategies that have

densities, termed continuous strategies. A formal definition follows.

Definition 4 (Continuous strategy). A strategy of player i is continuous if the marginal

Pai
(·) =

∫ +∞
−∞Pai |θ (·|θ )p(θ )dθ is absolutely continuous with respect to the Lebesgue mea-

sure.

Note that Pai |θ (·|θ ) being absolutely continuous for Pθ -almost all θ is sufficient for

player i’s strategy to be continuous, but it is not necessary. For example, the strategy that

assigns probability mass 1 to the action ai = θ is continuous: the marginal Pai
= Pθ is

absolutely continuous, even though Pai |θ (·|θ ) is not absolutely continuous for any θ . In

contrast, the constant-action strategy that assigns probability mass 1 to action ai = 0 for

all θ leads to Pai
putting all probability mass to ai = 0 and, therefore, is not continuous.

As will be promptly shown (Lemma 2), when information costs are low enough, con-

tinuous strategies are best responses to strategy profiles that satisfy certain smoothness

conditions, termed smooth, monotone, full-support profiles.

Definition 5 (Smooth, monotone, full-support profile). A strategy profile r is a smooth,

monotone, full-support profile if

1. the profile’s average action function ā(·) is analytic in its argument, and

2. ā′(θ )> −1−γ
γ for all θ ∈ R.

The requirements of Definition 5 ensure that the best action function b(·) is strictly

increasing, analytic, and bijective. Condition 2 is not too restrictive: it is satisfied for

any increasing ā(·) but also allows for decreasing average action functions, as long as
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the decrease is not too fast (even though such behavior may not make intuitive sense).10

Since in a smooth, monotone, full-support profile b(·) is bijective, it is also invertible.

Let θ (·) := b−1(·) denote the inverse of b(·) and g denote the PDF of the distribution

that the best action follows. The PDF g is, then,

g(·) = p (θ (·))θ ′(·) (7)

and is analytic. The variance of the best action (the variance of g) is denoted by σ2
b.

The first result of the paper about general priors is Lemma 2. It provides nec-

essary and sufficient conditions for the existence of a continuous best response to a

smooth, monotone, full-support profile (see also Matějka and Sims 2010). In the re-

sult’s statment—and throughout the paper—the Fourier and inverse Fourier transforms

are denoted as

Fx[ f (x)](ξ) =

∫ +∞

−∞
f (x)exp(−2πıxξ)dx

and F−1
ξ
[F(ξ)](x) =

∫ +∞

−∞
F(ξ)exp(2πıxξ)dξ

respectively (ı is the imaginary unit). Moreover, the shorthand notation with the hat

operator f̂ (ξ) :=Fx[ f (x)](ξ) is occasionally used.

Lemma 2. Consider a game (p,γ,µ). Let r−i be a smooth, monotone, full-support strategy

profile of player i’s opponents. Player i has a continuous best response to r−i if and only if

Ri :=F−1
ξ

�

exp
�

µπ2ξ2
�

ĝ(ξ)
�

is the PDF of a probability distribution. (8)

This continuous strategy is her unique best response and is given by

ri(ai|θ ) =

¨

δ(ai − b(θ )) if µ= 0

Ri(ai)
b′(θ )
p(θ )

1p
πµ exp

�

− (ai−b(θ ))2

µ

�

if µ > 0

where δ(·) is Dirac’s delta function and Ri(ai) is the marginal density of action ai.

Proof. See Appendix D.1.

10In fact, in Proposition 5 it will be shown that such unintuitive behavior does not take place in equi-

librium, even though the definition of smooth, monotone, full-support profile does not preclude it.
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Lemma 2 shows that results known for individual decision making (“tracking”) prob-

lems under rational inattention (Matějka and Sims 2010) can be applied to derive best

responses in strategic environments, provided the variable being tracked is appropri-

ately defined.11

It is worth noting that continuous strategies are best responses not only to pro-

files where (almost) all opponents follow continuous strategies. In particular, they

can be best responses even when all opponents are using discrete strategies à la Jung

et al. (2019) or Matějka and McKay (2015), where the probability assigned to each

action is an analytic function of the fundamental. Moreover, the best response to a

smooth, monotone, full-support profile is continuous as long as information costs are

low enough. So, when information is not too expensive, continuous equilibria should

be more likely. These two observations are formalized in the following proposition.

Proposition 3. Let
¦

Pa j |θ

©

j 6=i
be a profile of player i’s opponents’ strategies where Pai |θ (A|θ )

is analytic in θ for all Lebesgue-measurable sets A and all j 6= i. Let also ā(θ ) be well-

defined and ā′(θ ) > −1−γ
γ for all θ . Then, there exists a µ∗ ≥ 0 such that player i’s best

response to ā(·) is continuous if µ ∈ [0,µ∗) and discontinuous if µ > µ∗.

Proof. See Appendix D.2.

4.1.1 Conditional normality

According to Lemma 2, player i’s best response is continuous only if the best action b,

viewed as a random variable, can be written as the sum of two independent random

variables, one of which follows a Gaussian with variance µ/2.12 That is, only if there

exists a PDF Ri for which the sum of the random variables ai ∼ Ri and εi ∼ N(0,µ/2)

follows the same distribution as b (ai+εi = b).13 For this to be feasible, the “resolution”
p

µ/2 of εi must be small enough.14 In this best response, the marginal distribution of

11Note that R̂i as calculated from eq. (8) might be the Fourier transform of a probability distribution

with atoms. In that case, player i’s best response is still given by Lemma 2, but it is no longer in continuous

strategies.
12Throughout the paper boldface letters denote random variables.
13 To see this, from eq. (8), one gets ĝ(ξ) = R̂i(ξ) exp

�

−µπ2ξ2
�

= R̂i(ξ) Fx

�

1p
πµ exp

�

− x2

µ

��

(ξ) and

so, by the convolution theorem, g is the convolution of Ri and the Gaussian N(0,µ/2).
14A necessary condition is that Ri as calculated from (8) has a positive variance, i.e., that σ2

b > µ/2.

Another, stronger, necessary condition is that Var(ai |b)> 0 for all b.
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the player’s action is that of the “residual” variable ai. It follows that, when she best

responds, player i’s posterior belief on b is (i) normally distributed and (ii) independent

of the prior distribution of the fundamental. Proposition 4 provides a formal statement.

Proposition 4. In player i’s continuous best response to a smooth, monotone, full-support

strategy profile, her posterior belief about the best action b has a PDF given by

%i(b|ai) =
1
p
πµ

exp

�

−
(ai − b)2

µ

�

.

Proof. See Appendix D.3.

This is a result of two things: the quadratic-losses objective and the Shannon-

entropy-based information costs. First, the quadratic-losses form of the objective func-

tion imposes ex-post optimality—i.e., that the action taken should be equal to the ex-

post belief about the best action (see Observation 1)—and penalizes strategies accord-

ing to the variance of the action ai around b (see eq. (3)). So, when taking action ai,

player i’s posterior belief about b should be centered at ai and with the smallest vari-

ance possible. Now, among the family of distributions with full support on R which

have a given mean ai and variance σ2, the Gaussian N(ai,σ
2) is the distribution with

the maximum Shannon entropy (in this sense, the normal distribution is “information-

ally efficient”). Therefore, a normally distributed posterior is the “cheapest” one that

achieves any given variance level.15

4.1.2 Expected action in a best response

Finally, Proposition 5 offers a reassuring result. It confirms that, in line with intuition,

in a player’s best response, her expected action follows the direction in which the best

action and the fundamental move.

Proposition 5. Let g be the distribution of the best action of a smooth, monotone, full-

support strategy profile of player i’s opponents that satisfies condition (8). Then, in player

i’s best response, b 7→ E(ai|b) and θ 7→ E(ai|θ ) are increasing functions.

Proof. See Appendix D.6.
15The Online Appendix has a variant of this result for a broader class of games. Just as in Proposition

4, a player’s posterior on b does not depend on the prior but only depends on the payoff function and

the information cost. It is Gaussian iff payoffs are given by quadratic losses. See also Jung et al. (2019).
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4.2 Equilibrium

Building on the results of Section 4.1, this section sets out to characterize the class of

equilibria in which players use continuous strategies (see Definition 4).

Definition 6 (Smooth, monotone, full-support equilibrium). A strategy profile r is called

a smooth, monotone, full-support equilibrium if (a) it is is a smooth, monotone, full-

support profile (Definition 5), (b) it is an equilibrium (Definition 1), and (c) each player’s

strategy ri is continuous (Definition 4).

The following proposition characterizes the class of SMFE. It is the main technical

contribution of the paper and enables the sensitivity analysis of Section 5.

Proposition 6. Consider a game (p,γ,µ). The following two statements are equivalent

(A) θ (·) is the inverse of the best action function and g is the PDF of the distribution of

the best action in an SMFE.

(B) θ : R→ R is a strictly increasing bijection, F−1
ξ
[exp

�

µπ2ξ2
�

ĝ(ξ)] is a probability

distribution,

θ (b) = b−
µγ

2(1− γ)
d

db
(log(g(b))), and (9)

g(b) = p(θ (b))θ ′(b). (10)

Proof. See Appendix D.7.

While equation (9) holds independently of the prior and has to do with the way indi-

viduals acquire information, equation (10) forces the distribution g to be generated by

the particular best action function (or, to be precise, its inverse) given the fundemental’s

prior distribution p, as seen in equation (7). According to Proposition 6, a distribution

g generates a unique θ (·) through (9). Similarly, a best action function with inverse

θ (·) generates a unique distribution g through (10). If these hold simultaneously, then

an equilibrium has been identified.

In Appendix B it is shown that SMFE in which the best action is an affine function

of the fundamental exist only if the prior is Gaussian. While Gaussian priors deliver
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tractable beauty contest models, the analyst should be careful when making this as-

sumption, as her predictions may not be robust. Section 5 argues more to that point.

Although a general equilibrium existence theorem is not provided, Sections 3 and 5

demonstrate that SMFE do exist for certain classes of priors and for information costs

µ bounded away from zero. With this in hand, the existence of SMFE for other families

of priors and non-vanishing costs can be established through homotopy arguments.

Some properties of this class of equilibria are described in the Online Appendix.

There, it is also shown that if players have heterogeneous information costs, the char-

acterization result of Proposition 6 still holds, as long as all players have low enough

information costs. One only needs to replace the cost µ in eq. (9) with the population-

wide average cost µ̄. Finally, the Online Appendix characterizes the SMFE in a broader

class of games. The absence of explicit payoff formulas in these more general games,

though, limits the applicability of the characterization therein.

4.3 A method to address non-normal priors

Despite it being challenging to identify equilibria in the usual way (i.e. to find smooth,

monotone, full support equilibria for a given parameter combination (p,γ,µ)), consid-

erable progress can be made through following a “backwards” procedure. In particular,

one can postulate some distribution g to be the PDF of the best action b in an SMFE

and then, making use of equation (9), calculate (analytically or numerically) the prior

distribution of the fundamental through16

p(·) = g(b(·))b′(·).

Similarly, one can calculate the mapping α(·) that gives the average action as a function

of b (Lemma 9 in Appendix D.5) and the PDF of the equilibrium average action through

h(·) = g
�

α−1(·)
� �

α−1
�′
(·).

A major challenge that arises during this process lies in confirming whether condition

(8) holds, i.e., whether the calculated distribution of a player’s action is, indeed, a

16To ensure that b(·) is strictly increasing (Definition 5), γ and µ should be low enough so as to make

maxb∈R (log(g(b))))′′ < 2(1− γ)/µγ (see eq. (9)).
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(continuous) distribution. In order to overcome this problem, one can make use of best

action distributions g which are conjugate for the normal distribution.

Since the equilibrium best action b is the sum of ai ∼ Ri and εi ∼ N(0,µ/2) (Sec-

tion 4.1.1), when g is conjugate for the Gaussian, g and Ri belong to the same distribu-

tion family with Ri having the same mean as g and a variance reduced by µ/2. In this

way, confirming that (8) gives, indeed, the PDF of a probability distribution boils down

to making sure that the parameters calculated for Ri fall within the allowed ranges for

the particular distribution family.

4.3.1 Distribution families

Two families of distributions are used in the applications of Section 5: the skew normal

(SN(χ))—where the parameter χ ∈ R determines the skewness of the distribution—

and equal-weight mixtures of two Gaussians of the same variance but whose centers

are around β and −β (termed mixture normal and denoted as MN(β)). These families

are described in detail in Appendix C. Note that each of these distributions reduces to

the standard normal, if the respective parameter is set to zero.

5 Equilibrium sensitivity to misspecifications of the prior

Employing the characterization result and the method of Section 4, this section studies

how sensitive analysts’ predictions are to misspecifications of the fundamental’s distri-

bution. Section 5.1 uses examples to show that moving away from the Gaussian prior

assumption leads to new insights about how equilibrium actions and economic fun-

damentals are related. Sections 5.2 and 5.3 calculate error amplification factors for

Gaussian misspecifications of Gaussians and non-Gaussians. Finally, Section 5.4 com-

pares the two cases and shows that assuming a Gaussian prior leads to more severe

errors when the true distribution of the fundamental is non-Gaussian than when it is

an equally-misspecified Gaussian.
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5.1 Qualitative implications of using misspecified priors

In applied theoretical research, using normal priors when real-world distributions of

economic fundamentals are, in fact, non-normal will obviously lead to predictions that

are not entirely accurate. One may wonder, though, to what extent a simplifying as-

sumption of normality produces inaccurate results and, importantly, whether such a

simplification leads to the researcher missing out on new insights, especially given the

high tractability of models with normal distributions (Section 3). Using examples of dis-

tributions from Appendix C (summarized in Section 4.3.1), this section demonstrates

that even when prior distributions are very close to the normal, distributions of equi-

librium objects can be qualitatively different from those derived for the normal.

In order to illustrate these differences, consider two beauty contests both of which

have a coordination motive γ = 0.5 and information cost µ = 0.35. In the first beauty

contest there is an SMFE in which the best action’s distribution gSN is the skew normal

SN(−2). Similarly, in the second beauty contest there is an SMFE in which the best

action is distributed according to a normal distribution gN such thatE(gN) = E(gSN) = 0

and Var(gN) = Var(gSN). The two distributions can be seen in the left-hand-side panel

of Figure 2a.

Using the method described in Section 4.3, one can calculate the prior distribution

of the fundamental and the equilibirium distribution of the average action for each of

the two beauty contests. These are seen in the middle- and right-hand-side panels of

Figure 2a, respectively. From the diagrams it is clear that although the two priors are

barely different, the equilibrium distributions of ā differ significantly. In particular, the

distribution of the best action in the SMFE with gSN is highly skewed (the right tail

almost disappears), even though the prior that gives rise to it is only slightly away from

the Gaussian prior of the second beauty contest.

The preceding analysis shows that highly skewed market obervables do not neces-

sarily reflect highly skewed fundamentals but can be the result of small fundamental

non-normalities, amplified by strong coordination motives and costly information.

Take, for example, a situation based on the model of Hellwig and Veldkamp (2009):

Competing firms choose their (log) price ai trying to match a demand shock (the funda-

mental) in the presence of coordination motives (higher average price leads to higher

best-response price from an individual firm). Now consider an analyst who wants to
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Figure 2: Comparison of distributions of prior and equilibrium objects between SMFE

with non-normal and normal best-action distributions. In all cases (µ,γ) = (0.35, 0.5).

study the distribution of the demand shock θ in this market. As fundamentals are un-

observable, what the analyst can observe are individual and (more realistically) aggre-

gate data, such as the average price. After multiple observations, the analyst observes

a highly skewed distribution of the average price and concludes that the underlying

distribution of the fundamental has a similar property and is by no means close to a

Gaussian. The example presented above, shows that this reasoning is heavily flawed

and that, in fact, the fundamental can be very close to a Gaussian.

Naïvely attempting to draw conclusions about the (unobservable) distribution of the

fundamental from observed market behavior may lead to over-estimating its skewness

and under-estimating its variance. Consequently, this can exacerbate the issues that sta-

tistical inference with skewed distributions brings about (e.g. constructing confidence

intervals). These effects become stronger as information costs or coordination motives

increase.

The results of the same exercise with a mixture normal distribution of the best ac-
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Figure 3: Error amplification for Gaussian misspecifications. The “true” prior has vari-

ance σ2 =ω2 > 1, while the misspecified prior has variance σ̃2 = 1. Curves are drawn

only for (µ,γ) combinations for which both games have a linear-Gaussian equilibrium

with λ > 0 (i.e., µ < 2(1− γ)2).

tion (b ∼ MN(1)) are shown in Figure 2b. A similar observation can be made in this

case: One should not conclude that the distribution of the fundamental is bimodal just

because the distribution of the equilibrium average action is bimodal. The remainder of

Section 5 aims to quantify the errors that prior misspecifications create and to analyze

what true distributions of the fundamental lead to larger error amplifications.
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5.2 Error amplification in a linear-Gaussian world

In the case of Gaussian priors and linear-Gaussian equilibria, the error amplification

factor

A=





h− h̃






1

‖p− p̃‖1

of Section 2.1 can be calculated in closed form (see Appendix A.3). The analyst bases

her predictions on the (mistaken) assumption that the distribution of the fundamental

p̃ is the Gaussian N(0, σ̃2), while the true distribution p is N(0,σ2). The predictions

h, h̃ associated the two priors are assumed to be the respective stable linear-Gaussian

equilibria with positive slope λ+ (see Proposition 1). Since the error amplification factor

depends only on the quotient of the two standard deviations, the single parameterω :=

σ/σ̃ is used in what follows.

When information is costless (µ= 0), in the unique equilibrium, the (linear) average

action function has slope λ = 1. Thus, the distribution h of the equilibrium average

action is equal to the distribution p of the prior for both the correct and the misspecified

model. This means that any misspecifications of p translate to misspecifications of h at

a one-to-one rate and, therefore, A= 1.

Figure 3 plots A values for varying ω in different (γ,µ) regimes, assuming σ̃ =

1.17 The figure shows that as ω increases, mistakes in the prior are amplified less (A

decreases). However, this does not mean that the mistakes of the predictions get smaller

in absolute value but, rather, that mistakes in predictions are increasing at a slower rate

than mistakes in the prior. Importantly, in the presence of information costs, mistakes

in the prior are always amplified (A > 1), moderately for small values of µ and γ but

quickly increasing as these parameters increase.18

The intuition is the following. As each player faces higher fundamental uncertainty

(i.e., σ increases), she suffers more severe losses from not (or from under-) acquiring

information. That is, her marginal benefit from acquiring information increases. Now,

17 Figure 3 focuses on values of ω> 1. The same analysis can also be conducted for ω< 1, as long as

ω remains large enough for the game
�

N
�

0, (ωσ̃)2
�

,γ,µ
�

to have an equilibrium with positive slope λ

(see Proposition 1).
18 Note that asω→ 1, both the numerator and the denominator in the definition of A tend to zero. So,

even though they tend to the same value, their quotient does not necessarily tend to 1. The amplification

factor is equal to 1 only in the absense of information costs (µ= 0).
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as player i’s information costs are convex in λi (see Appendix A.1), a higher marginal

benefit from information implies that—in her best response—the player acquires more

information as σ increases and her action becomes more responsive to the fundamental

(λi increases). Since the game is one of strategic complements, the comparative stat-

ics of the “largest” equilibrium’s slope λ+ follow the same direction (see, e.g., Milgrom

and Roberts 1994). So, the standard deviation of the equilibrium marginal-action dis-

tribution σh = λ+σ reacts more-than-proportionally to changes of the prior standard

deviation σ. This leads to any misspecification of p being amplified in h, i.e., to A> 1.

Overall, this shows that the predictions of such models are sensitive to prior distri-

bution misspecifications, even when the true prior is Gaussian.

5.3 Error amplification with non-Gaussians

With the method of Section 4.3 and by using numerical techniques, one can conduct

sensitivity analyses like the one in Section 5.2, even when closed-form solutions cannot

be obtained. For this analysis, a non-Gaussian distribution is postulated to be the true

best-action distribution g in an SMFE, under coordination and cost parameters (γ,µ)

(with fundamental and average-action distributions p and h, respectively). Then, in the

spirit of Section 2.1, an analyst who knows the values of γ and µ is assumed to make

her predictions according to the misspecified (linear-Gaussian) SMFE whose best-action

distribution g̃ is the Gaussian with Var( g̃) = Var(g) (with fundamental and average-

action distributions p̃ and h̃, respectively).

As in Section 5.2, the error amplification factor A is used to quantify how sensitive

predictions are to the analyst’s mistake of using a Gaussian prior instead of the correct,

non-Gaussian one. Figure 4 presents the results of numerical calculations of A for the

two families of g distributions described in Appendix C.19

The figure shows that higher error amplification factors are reached as information

costs and the coordination motive increase. In the case of skew normal best-action dis-

tributions, larger deviations from the Gaussian increase the error amplification factor of

A, which can reach values exceeding 20 for highly-skewed g. In contrast, in the case of

mixture normal distributions g, the error amplification factor begins at relatively high

19 Similar to the Gaussian misspecification case, when χ → 0 or when β → 0, both the numerator and

the denominator in the definition of A tend to zero. So, their quotient does not necessarily tend to 1.
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Figure 4: Error amplification (A) for Gaussian misspecifications (p̃) of non-Gaussian

distributions (p). In all comparisons, Var( g̃) = Var(g).

values but decreases as g deviates further from the Gaussian (while always exceeding

unity). This is due to the ‖p̃− p‖1 distance increasing faster than




h̃− h






1 (see also

Section 5.2 and fig. 3). Echoing the qualitative results of Section 5.1, Figure 4 quan-

titatively demonstrates that errors made by incorrectly assuming a Gaussian prior in

place of a non-Gaussian one can lead to much larger errors in an analyst’s predictions,

especially if fundamentals are skewed.

5.4 Comparison between Gaussian misspecifications of Gaussians

and non-Gaussians

Say that an analyst makes predictions under the mistaken assumption that the funda-

mental is distributed according to the Gaussian distribution p̃. Under what true distri-

butions p does her mistake lead to larger errors in her predictions? Note that direct

comparisons between Figures 3 and 4 cannot give a satisfactory answer, as the compar-

isons in the two figures are between different pairs of distributions p and p̃.

To make the comparison meaningful, the analyst is assumed to be using the same

Gaussian p̃ for her predictions, while the two scenarios compared are: (a) the true

distribution of the fundamental is a non-Gaussian p and (b) the true distribution of

23



the fundamental is a Gaussian p̌. Importantly, the distributions p and p̌ are such that

the analyst’s assumption p̃ is equally wrong (according to the ‖·‖1 measure) in the two

scenarios, i.e.,

‖p̌− p̃‖1 = ‖p− p̃‖1. (11)

To operationalize this approach computationally, starting from a postulated non-Gaussian

distribution g of the best action in an SMFE, the related p and h distributions are cal-

culated, along with the misspecified distributions g̃, p̃ and h̃, exactly as in Section 5.3.

Then, using the distance ‖p− p̃‖1, the distribution p̌ is defined to be the Gaussian that

is as “far” from p̃ as p is (eq. (11)).20 Finally, ȟ is calculated as the distribution of

the average action in the linear-Gaussian equilibrium of p̌ with the steepest slope λ

(see Proposition 1). The extent to which the error of the Gaussian misspecification of

a non-Gaussian is larger than that of a Gaussian is quantified by comparing the error

amplification factors in the two scenarios:

Ω=
A

Ǎ
=





h− h̃






1/‖p− p̃‖1




ȟ− h̃






1/‖p̌− p̃‖1

=





h− h̃






1




ȟ− h̃






1

.

Larger values of Ω indicate that a quantitatively equal error in the measurement of the

distribution of the fundamental leads to larger errors in the prediction of the equilib-

rium average action distribution when the true distribution is non-Gaussian than when

the true distribution is Gaussian. The results of the calculations for the families of g

distributions of Appendix C are seen in Figure 5.

The figure shows that the amplification rates follow the same patterns as those of

Figure 4, even compared to amplification rates of equally-sized misspecifications of

Gaussians. In particular, non-Gaussian fundamental distributions are always prone to

larger errors than Gaussians. From an applied point of view, this means that analysts

should be cautious when they have reasons to believe that fundamentals might not be

Gaussian, as their predictions from using the Gaussian model can bear errors much

larger than if they were to just use the wrong variance of a Gaussian.

20 As the L1 distance between two Gaussians with the same mean depends only on the ratio between

their standard deviations (see Appendix A.2), for any given Gaussian p̃ (with standard deviation σ̃) and

distance δ ∈ (0,2) there are two Gaussians p̌ that solve ‖p̃− p̌‖1 = δ. These solutions have standard

deviations ωσ̃ and σ̃/ω for some ω > 0. To guarantee the existence of a linear-Gaussian equilibrium

for p̌, the solution of eq. (11) with the larger standard deviation is used to define p̌.
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Figure 5: Error amplification comparisons (
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1) between Gaussian mis-

specifications (p̃) of non-Gaussian (p) and Gaussian (p̌) distributions. In all compar-

isons, Var( g̃) = Var(g) and ‖p̌− p̃‖1 = ‖p− p̃‖1.

6 Discussion

This paper studied beauty contests played by rationally inattentive agents. It demon-

strated that while assuming a Gaussian prior makes such models tractable, their pre-

dictions are very sensitive to misspecifications of the prior. What follows discusses and

relates the paper’s results to the ones found in other studies.

Equilibrium sensitivity Jung et al. (2019) make the point that small differences in

the prior of decision-theoretic problems of rational inattention can lead to very different

behavior of the agent. In particular, the agent may switch from continuous to discontin-

uous strategies in problems whose priors are very close. In Section 5 it was shown that

in games with rationally inattentive agents problems with very similar priors can lead to

very different equilibrium behavior even if the equilibria in both problems are in contin-

uous strategies. The reason for the high sensitivity of solutions to the prior in Jung et al.

(2019) is the information cost being too high for continuous strategies to be optimal in

one of the problems (see Proposition 3 in this paper), or the distribution having fat tails.

In contrast, the driving force behind the similar result of Section 5 lies in the coordina-
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tion motive working together with the information cost. Even small asymmetries in the

prior can lead to players having a preference for one side of the distribution over the

other when they coordinate (since they cannot follow the fundamental closely because

of information costs). Similarly, the distribution of the equilibrium average action can

exhibit different features from that of the fundamental (e.g., bimodality).

Equilibrium multiplicity Entropy-related information costs, as those used in this pa-

per, can lead to multiple equilibria (e.g. Hellwig, Kohls, and Veldkamp 2012). In the

present model, multiple linear-Gaussian equilibria arise for intermediate values of µ

(bounded away from zero for any fixed γ > 1/2). To understand why, recall that while

higher information costs disincentivize information acquisition, they also strenghthen

strategic complementarities (Section 3). Equilibrium multiplicity, then, requires infor-

mation to be costly enough for the strategic complementarity to be strong, but not too

costly, so that an equilibrium with positive information acquisition can be sustained (see

also Hébert and La’O (2020) and Myatt and Wallace (2012) for similar analyses). The

largest and the smallest equilibria are stable (Echenique 2002; Vives 1990), while there

is an intermediate unstable equilibrium.21

With flexible information acquisition technology, when information is cheap, play-

ers obtain more of it and the game gets closer to a complete-information one. Yang

(2015) uses such a technology to study a two-player coordination game. The complete-

information game has multiple equilibria for a range of realizations of the random vari-

able and this multiplicity is recovered when information costs are low. Both in this

paper and in Yang (2015), as information costs vanish, the equilibrium structure of

the complete-information game is recovered: a unique equilibrium in the present case,

multiple in Yang’s.

According to Morris and Yang (forthcoming), what drives this result is the entropy-

reduction cost function. In their setting—which has multiple equilibria under complete

information—continuous stochastic choice breaks when it is sufficiently easy to distin-

21 See also Manzano and Vives (2011) who study equilibrium stability in a general CARA-normal

model of financial markets. In their model strategic decisions are complements/substitutes at different

points of the strategy space, whereas in this paper information acquisition decisions are always strategic

complements.
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guish nearby states, and multiple equilibria appear.22 Under entropy costs, nearby and

far away states are equally hard to distinguish, making discontinuous stochastic choice

feasible. In turn, this leads to the equilibrium structure of the complete-information

game being recovered as information costs vanish. In contrast, in the global-games

context (Carlsson and van Damme 1993), arbitrarily accurate signals lead to unique

equilibrium selection, as stochastic choice is continuous (see Vives 2005, sec. 7.2 for

an analysis of the driving forces behind this result).

Linear equilibria The notion of a linear equilibrium is often encountered in existing

literature studying linear-quadratic games (see for example Angeletos and Pavan 2007;

Morris and Shin 2002; Myatt and Wallace 2012). In linear equilibria each player takes

an action that is a linear combination of the messages she receives from (potentially) dif-

ferent sources. When signal noises and the prior follow normal distributions—which is

the common modelling choice in the aforementioned literature—then any linear equi-

librium is a linear-Gaussian one in the sense of Section 3. As shown in Appendix B,

linear tractability of equilibria when players are rationally inattentive is heavily depen-

dent on this very assumption. Importantly, Proposition 6 and the method of Section 4.3

can help identify or approximate equilibria even when the prior is not normal.

Conditionally correlated signals Hellwig and Veldkamp (2009) point out that strate-

gic complementarities lead to complementarities in players’ information acquisition de-

cisions. Moreover, one can think of situations where a player may want to have in-

formation about other players’ signal realizations or may even want other players to

have information about her own realization (as in Kozlovskaya 2018, for example).

The model presented here does not allow for such correlation, as the only information

players can obtain is about the fundamental and not about others’ signal realizations

(signals are always conditionally independent). However—as Denti (2020) argues—

when all players are “small” and aggregate behavior is all that matters, incentives to

learn about others’ signal realizations disappear, since aggregate behavior becomes a

deterministic function of the fundamental.

22Goryunov and Rigos (2020) test the predictions of this model in a laboratory experiment.

27



Efficiency Individual players do not consider how their own information acquisition

affects the average action and may, therefore, under-acquire information, compared

to the social optimum.23 This externality can give rise to inefficient equilibria as, for

example, the unstable linear-Gaussian equilibrium with the smaller positive slope λ−
(see Proposition 1 and fig. 1). However, Hébert and La’O (2020) argue that (a dis-

cretized version of) any game (p,γ,µ) is guaranteed to have efficient equilibria, given

the mutual-information-based cost function and the linear-quadratic payoff function

used in this paper. Following the intuition behind the externality, efficient equlibria are

the ones in which players acquire the most information. Moreover, continuous strate-

gies convey more information than “similar” strategies that assign probability mass to

only a discrete subset of actions (see Matějka and Sims 2010). Consequently, if a game

admits equilibria in continuous strategies (SMFE), efficent equilibria should be in this

class.

Appendix

A Calculations for linear-Gaussian equilibria

A.1 Proof of Proposition 1

Consider a profile in which all of player i’s opponents use linear-Gaussian strategies.

Then, the average-action function to which player i best responds is defined through

ā(θ ) =
∫ 1

0
λ jθ d = λ̄θ and the best-action function through b(θ ) = κθ with κ :=

(1 − γ) + γλ̄. So, player i’s optimization problem boils down to tracking the variable

b ∼ N(0, (κσ)2) and her optimal strategy is linear-Gaussian (see Sims 2003; Jung et al.

2019).

Now, when using a linear-Gaussian strategy, player i’s posterior beliefs on the fun-

23Regarding this externality, see also the discussion on strategic complementarity through information

costs in Section 3.
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damental and on the best action follow Gaussian distributions. From Bayes’s law:

θ |ai ∼ N

�

σ2λiai

λ2
iσ

2 +σ2
ai

,
σ2σ2

ai

λ2
iσ

2 +σ2
ai

�

b|ai ∼ N

�

κσ2λiai

λ2
iσ

2 +σ2
ai

,
κ2σ2σ2

ai

λ2
iσ

2 +σ2
ai

�

Payoffs

The expected value of the objective of a player i who uses a linear-Gaussian strategy

(λi,σ
2
i ) against a best-action slope κ can be calculated to be

Ui = E[−(ai − b)2; (λi,σ
2
ai
)] = −σ2

ai
− (κ−λi)

2σ2. (12)

Since both the prior and all posterior beliefs are Gaussian, the cost of a linear-Gaussian

strategy (λi,σ
2
ai
) is (see eq. (4))

Ci =
µ

2
log

�

σ2
prior

σ2
i,posterior

�

=
µ

2
log

�

1+
λ2

iσ
2

σ2
ai

�

. (13)

Ex-post consistency (Observation 1) imposes

σ2
ai
= λi(κ−λi)σ

2 (14)

on player i’s strategy. Substituting eq. (14) into eq. (12) and eq. (13) makes player i’s

objective:

Ui − Ci = −κ(κ−λi)σ
2 −
µ

2
log

�

κ

κ−λi

�

and reduces the decision problem of player i to simply choosing λi ∈ [0,1]. The solution

to the maximization problem leads to the best-response function (after substituting

κ= (1− γ) + γλ̄):

Λ(λ̄) :=

(

((1− γ) + γλ̄)− µ

2((1−γ)+γλ̄)σ2 if µ < 2((1− γ) + γλ̄)2σ2

0 otherwise
.

The equilibrium condition that Λ(λ̄) = λ̄, leads to the equilibrium slopes being

λ+ =
1

2γ

�

2γ− 1+

√

√

1−
2µγ

(1− γ)σ2

�

λ− =
1

2γ

�

2γ− 1−
√

√

1−
2µγ

(1− γ)σ2

�

.

(15)

The number of equilibria varies, depending on the model parameters:
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1. If either (a) γ ≤ 1
2 and σ2 >

µ

2(1−γ)2 or (b) γ > 1
2 and σ2 ≥ µ

2(1−γ)2 , then there is a

unique equilibrium with λ∗ = λ+ (λ∗ = 1− µ

2σ2 when γ= 0).

2. If γ > 1
2 and σ2 = 2µγ

(1−γ) , then λ+ = λ− and there are two equilibria with slopes

λ∗ ∈ {λ+, 0} (this case is not generic, though).

3. If γ > 1
2 and σ2 ∈

�

2µγ
1−γ ,

µ

2(1−γ)2

�

then there are three equilibria with slopes λ∗ ∈
{λ+,λ−, 0}.

4. If either (a) γ ≤ 1
2 and σ2 ≤ µ

2(1−γ)2 or (b) γ > 1
2 and σ2 <

2µγ
(1−γ) , then there is a

unique equilibrium with slope λ∗ = 0.

Stability

The stability condition is |Λ′(λ∗)| < 1. By evaluating Λ′(λ) at the different equilibrium

slopes λ, the stability results are obtained for the relevant cases (excluding the non-

generic case 2.):

1. The unique equilibrium is stable.

3. The equilibria with slopes λ = 0 and λ = λ+ are stable. The equilibrium with

slope λ= λ− is unstable.

4. The unique equilibrium is stable.

A.2 Calculation of distance between two Gaussians

Let f1 and f2 be the PDFs and F1 and F2 be the CDFs of two Gaussians with mean 0 and

variances σ2
1 and σ2

2, respectively (σ2 > σ1, without loss). There is a unique point x∗

such that x < x∗ implies that f2(x)> f1(x) (see Figure 6). This point is given by

x∗ = −

√

√

√

√

2 log
�

σ2
σ1

�

σ2
1σ

2
2

σ2
2 −σ

2
1

.
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f1

f2

x*

Figure 6: The L1 distance between Gaussians. The shaded area is equal to ‖ f1 − f2‖1/4.

Due to the symmetry of f1 and f2, F1(0) = F2(0) = 1/2. So, the L1 distance between

f1 and f2 is:

‖ f1 − f2‖1 = 2

∫ 0

−∞
| f1(x)− f2(x)|dx = 2

�

∫ x∗

−∞
( f2(x)− f1(x))dx +

∫ 0

x∗
( f1(x)− f2(x))dx

�

= 4 (F2(x
∗)− F1(x

∗)) = 2

�

erf

�

x∗

σ2

p
2

�

− erf

�

x∗

σ1

p
2

��

Substituting x∗ and using the fact that erf is an odd function, calculations yield

‖ f1 − f2‖1 = 2






erf






−

√

√

√

√

log
�

σ2
σ1

�

σ2
1

σ2
2 −σ

2
1






− erf






−

√

√

√

√

log
�

σ2
σ1

�

σ2
2

σ2
2 −σ

2
1













= 2






erf






σ2

√

√

√

√

log
�

σ2
σ1

�

σ2
2 −σ

2
1






− erf






σ1

√

√

√

√

log
�

σ2
σ1

�

σ2
2 −σ

2
1












.

Now, if σ2 =ωσ1 with ω> 1, the formula for L(ω) := ‖ f1 − f2‖1 is obtained.

L(ω) = 2

�

erf

�

ω

√

√ logω
ω2 − 1

�

− erf

�√

√ logω
ω2 − 1

��

.

As the distance depends only on the ratio between σ1 and σ2, it must be that L(ω) =

L(1/ω). So, a more general formula, which holds for any ω> 0, is

L(ω) = 2

�

�

�

�

�

erf

�

ω

√

√ logω
ω2 − 1

�

− erf

�√

√ logω
ω2 − 1

�

�

�

�

�

�

. (16)
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A.3 Calculation of error amplification for Gaussians

The misspecified prior p̃ is assumed to have a standard deviation of σ̃, while the true

prior p is assumed to have a standard deviation ofωσ̃. The ratio between the standard

deviations of the two resulting equilibrium average-action distributions is

ωh =
σh

σ̃h
=
σλ+

σ̃λ̃+
=
ωσ̃λ+

σ̃λ̃+
=ω

Ç

1− 2µγ
(1−γ)ω2σ̃2 + 2γ− 1

Ç

1− 2µγ
(1−γ)σ̃2 + 2γ− 1

,

and the error amplification is

A=
L(ωh)
L(ω)

with L(·) as defined in eq. (16).

B Aggregately affine equilibria

The conditions of Proposition 6 imply that in an SMFE, the best action function satisfies

b(θ ) = θ +
µγ

2(1− γ)
1

b′(θ )
d

dθ

�

log
�

p(θ )
b′(θ )

��

(17)

and the average action function satisfies

ā(θ ) = θ +
µ

2(1− γ)(1+ γ(ā′(θ )− 1))

�

p′(θ )
p(θ )

−
γā′′(θ )

1+ γ(ā′(θ )− 1)

�

, (18)

neither of which is possible to solve in the general case. Instead, one can use the above

equations to characterize the SMFE of a specific class: those in which the equilibrium

average action (and, thus, also the equilibrium best action) is affine in θ , like the linear-

Gaussian equilibria of Section 3. These are formally defined as follows.

Definition 7 (Aggregately affine equilibrium). An SMFE will be called an aggregately

affine equilibrium (AAE) if the best action function has the form b(θ ) = κθ + d for some

constants κ > 0 and d ∈ R.

The following proposition gives a necessary and sufficient condition for AAE to exist.

Proposition 7. Consider a game (p,γ,µ) with µ > 0 and γ > 0. The following statements

are equivalent:
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(A) (p,γ,µ) admits an aggregately affine equilibrium.

(B) p is the PDF of a normal distribution, and

(i) either γ≤ 1
2 and σ2 >

µ

2(1−γ)2

(ii) or γ > 1
2 and σ2 >

2µγ
1−γ .

Proof. “(A)⇒ (B)”
In an AAE the best action function is given by b(θ ) = κθ + d. So, b′(θ ) = κ and

b′′(θ ) = 0 for all θ . Moreover, an AAE is an SMFE, so b(·) should satisfy (17). From

equation (17) one obtains:

κθ + d = θ +
µγ

2(1− γ)
1
κ

d
dθ

log p(θ ).

And thus,

log p(θ ) =

∫

2(1− γ)κ
µγ

((κ− 1)θ + d)dθ + C

where C ∈ R is an integrating constant. It will have to be chosen so that the condition
∫ +∞
−∞p(θ )dθ = 1 is satisfied. From the previous equation:

log p(θ ) =
(1− γ)κ
µγ

((κ− 1)θ 2 + 2dθ ) + C .

Completing the square in the brackets and taking the exponential of both sides one

obtains:

p(θ ) = exp
�

C ′
�

exp

�

(1− γ)κ(κ− 1)
µγ

�

θ −
d

1−κ

�2
�

for some other constant C ′. Now, for
∫ +∞
−∞p(θ )dθ = 1 to be satisfied, it has to be

that κ ∈ (0,1), otherwise the resulting p will not be integrable. It is clear that—for

an appropriate selection of C ′—the previous expression is a normal distribution with a

mean θ0 = d/(1−κ) and variance

σ2 =
µγ

2(1− γ)κ(1−κ)
.

More than that, since in an AAE it has to be that σ2
b > µ/2, one gets that κ2σ2 >

µ/2 i.e. that σ2 > µ/2κ2. Using this together with the above equation, one gets that

κ > 1−γ. So, a lower bound for the value of σ2 is given by the solution to the problem

min
κ∈(0,1)

µγ

2(1− γ)κ(1− κ)
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s.t. κ≥ 1− γ

The solution is κ = 1/2 when γ > 1/2 and κ = 1− γ when γ ≤ 1/2 yielding the lower

bounds of the variance to be

σ2 >
µ

2(1− γ)2
when γ≤

1
2

and σ2 >
2µγ
1− γ

when γ >
1
2

.

“(B)⇒ (A)”
According to Proposition 6 if b(θ ) = κθ + d satisfies (17) and condition (8), then b(·)
is the best action function of an SMFE; and since it is affine, it is also the best action

function of an AAE. All that needs to be shown is that such κ > 0 and d ∈ R exist.

The fundamental is distributed according to

p(θ ) =
1

p
2πσ

exp

�

−
(θ − θ̄ )2

2σ2

�

.

So, p′(θ )
p(θ ) = −

θ−θ̄
σ2 . This, along with b′(θ ) = κ and b′′(θ ) = 0 make equation (9), read:

κθ + d = θ −
µγ

2(1− γ)κ
θ − θ̄
σ2

.

Solving for κ and d, one obtains two solutions:

κ+ =
1
2

�

1+

√

√

1−
2µγ

(1− γ)σ2

�

d+ =
µγ

2(1− γ)σ2κ+
θ̄

and

κ− =
1
2

�

1−
√

√

1−
2µγ

(1− γ)σ2

�

d− =
µγ

2(1− γ)σ2κ−
θ̄ .

For either of κ+ or κ− to be positive reals, it is needed that σ2 >
2µγ
1−γ .

The second requirement for b(θ ) = κθ+d to qualify for an AAE best action function

is that Var(b)> µ/2 i.e. that κ2σ2 > µ/2. This condition for the solution κ+, d+ implies

that either σ2 >
µ

1−γ or σ2 >
µ

2(1−γ)2 . Together with σ2 >
2µγ
1−γ , the restrictions require

that

• either γ≤ 1/2 and σ2 >
µ

2(1−γ)2

• or γ > 1/2 and σ2 >
2γµ
1−γ .

These are exactly the conditions assumed in statement (B). So, the solution with slope

κ+ is always the best action function of an AAE.
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C Distribution families for error amplification Analysis

C.1 Skew normal g

The skew normal distribution SN(b0, s,χ) with parameters b0 ∈ R, s ∈ (0,∞), and

χ ∈ R (introduced by O’Hagan and Leonard 1976), is a continuous distribution over R
with PDF

fSN(b; b0, s,χ) =
2
s
φ

�

b− b0

s

�

Φ

�

χ

�

b− b0

s

��

where φ(·) and Φ(·) are, respectively, the PDF and cumulative distribution function

(CDF) of the standard normal distribution (N(0,1)). The important variable here is χ

that adds skewness to the distribution (notice that when χ = 0, the distribution boils

down to a Gaussian).

Using the fact that the skew normal distribution is conjugate for the normal distribu-

tion, if b ∼ SN(b0, s,χ), then ai ∼ SN
�

b0,
p

s2 −µ/2, χs
�

s2 −µ(1+χ2)/2
�−1/2�

(see

Azzalini 1985). So, as long as information costs are not too large (µ < 2s2/(1+ χ2)),

the function R defined through (8) is the PDF of a skew normal probability distribution,

and the players have a continuous best response to g.

Section 5.3 uses a subset of skew normal distributions, parameterized by the single

variable χ. In particular, the family of distributions used is

SN(χ) := SN(−χ
Æ

2/(π(1+χ2)), 1,χ),

so that E[b] = 0.

C.2 Mixture normal g

Another parameterization of a familiy of g functions is an equal-weight mixture MN(β , s)

of two normal distributions that have the same variance s2 and are centered at β and

−β , respectively. The resulting PDF is

fMN(b;β , s) =
1
p

2πs

�

1
2

exp

�

−
(b− β)2

2s

�

+
1
2

exp

�

−
(b+ β)2

2s

��

.

Clearly, when β = 0, the distribution is a Gaussian. The mixture normal distribution is

conjugate for the normal distribution: when b ∼MN(β , s), then ai ∼MN(β ,
p

s2 −µ/2).
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As long as s2 > µ/2, the function R defined through (8) is the PDF of a mixture normal

probability distribution, and the players have a continuous best response to g.

Section 5.3 uses a subset of mixture normal distributions, parameterized by the

single variable β . In particular, the family of distributions used is

MN(β) :=MN(β , 1).

D Omitted proofs and calculations

D.1 Proof of Lemma 2

D.1.1 Case 1: µ= 0

As µ = 0, player i can obtain full information on the value of θ without paying any

costs. So, conditional on the value of θ , her optimization problem becomes

max
ai

−(1− γ)(ai − θ )2 − γ(ai − ā(θ ))2

Taking a first order condition (the objective is concave in ai), one obtains that the op-

timal action is given by

(1− γ)θ + γā(θ ).

So, given any ā(·) and any value of θ , player i has a unique best action given by the

expression b(θ ) = (1− γ)θ + γā(θ ). Thus, her best response is to assign a probability

mass of 1 to that action (conditional on θ). That is, her best response is to use ri given

by ri(ai|θ ) = δ(ai − b(θ )) with δ being Dirac’s delta function (almost all θ).

D.1.2 Case 2: µ > 0

For expositional clarity, in this proof, Ai = R denotes the action space, whereas Θ = R
denotes the state space. Consider variations of the strategy of player i. These variations

will be of the type r̃ = r + εη for some ε > 0. These variations should still be feasible.

That is, for all θ , it is required that r(·|θ ) + εη(·|θ ) is a probability distribution over

Ai. It is required, thus, that for all θ ,
∫

Ai
r(ai|θ ) + εη(ai|θ )dai = 1 which leads to the

condition that for all θ ,
∫

Ai
η(ai|θ )dai = 0. It also has to be that r(ai|θ )+εη(ai|θ )≥ 0
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and so η(ai|θ )≥ −r(ai|θ )/ε for all ai and θ . From the above equations, the following

is calculated:24

U(ri + εη, r−i) = −(1− γ)
∫

Θ

∫

Ai

(ai − θ )2(ri(ai|θ ) + εη(ai|θ ))p(θ )dai dθ −

− γ

∫

Θ

∫

Ai

(ai − ā(θ ))2(ri(ai|θ ) + εη(ai|θ )p(θ )dai dθ . (19)

Next, the following derivatives are calculated:

dU(r + εη, r−i)
dε

�

�

�

�

ε=0

= −(1− γ)
∫

Θ

∫

Ai

(ai − θ )2η(ai|θ )p(θ )dai dθ − (20)

− γ

∫

Θ

∫

Ai

(ai − ā(θ ))2η(ai|θ )p(θ )dai dθ

and, denoting H(ai) :=
∫

Θ
η(ai|θ )p(θ )dθ ,

dI(r + εη)
dε

�

�

�

�

ε=0

=

∫

Θ

∫

Ai

log(r(ai|θ ))η(ai|θ )p(θ )dai dθ − (21)

−
∫

Ai

log(Ri(ai))H(ai)dai.

Since the variations considered have to be feasible, player i has to solve the following

constrained optimization problem:

max
ri∈L1(Θ,p)

U(ri, r−i)−µI(ri)

s.t.

∫

Ai

ri(ai|θ )dai = 1 for all θ ∈ Θ.

Using k(θ ) to denote the Lagrange multiplier for the θ -constraint, the Lagrangian for

player i’s decision problem is

L (ri, k(θ )) = U(ri, r−i)−µI(θ , ai)−
∫

Θ

k(θ )

�

∫

Ai

r(ai|θ )dai − 1

�

p(θ )dθ .

Therefore, for any given θ ∈ Θ and all possible perturbations η, an optimal strategy

r should satisfy the following first order conditions:

dL (ri + εη, k(θ ))
dε

�

�

�

�

ε=0

= 0⇒

24The effect of the other players’ strategies is incorporated in ā(θ ).
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∫

Θ

∫

Ai

�

ui(ai,θ )−µ log
�

r(ai|θ )
Ri(ai)

�

− k(θ )
�

η(ai|θ )p(θ )dai dθ = 0 (22)

and

∫

Ai

ri(ai|θ )dai = 1 for all θ ∈ Θ. (23)

Where

ui(ai,θ ) = −(1− γ)(ai − θ )2 − γ(ai − ā(θ ))2. (24)

Since condition (22) has to be satisfied for all η, it has to be the case that

−(1− γ)(ai − θ )2 − γ(ai − ā(θ ))2 −µ [log(ri(ai|θ ))− log(Ri(ai))] = k(θ ) for all θ ∈ Θ.

So r(ai|θ ) has to be:

r(ai|θ ) = Ri(ai)exp
�

−
k(θ )
µ

�

exp
�

ui(ai,θ )
µ

�

(25)

and, denoting K(θ ) := exp
�

− k(θ )
µ

�

, (25) can be rewritten as

r(ai|θ ) = Ri(ai)K(θ )exp
�

ui(ai,θ )
µ

�

. (26)

All that remains to be done is to determine the functions K(·) and Ri(·). Now, from the

definition of Ri(ai):

Ri(ai) =

∫

θ

r(ai|θ )p(θ )dθ ⇒
∫

Θ

r(ai|θ )
Ri(ai)

p(θ )dθ = 1.

After substituting from (26) and (24), simple calculations give
∫ +∞

−∞
K(θ )exp

�

−
(ai − b(θ ))2

µ

�

exp
�

−
γ(1− γ)
µ

(θ − ā(θ ))2
�

p(θ )dθ = 1. (27)

In the above, b(θ ) = (1−γ)θ +γā(θ ). By assumption (smooth, monotone, full-support

strategy profile), b is invertible with b−1 being the inverse of b. Because of assumption

2 of Definition 5, b(·) is bijective and strictly increasing. Thus, limb→∞ b−1(b) =∞
and limb→−∞ b−1(b) = −∞. So, with a change of the variable of integration from θ to

b = b(θ ), and by defining G(·) as

G(b) =
K(b−1(b))exp

�

−γ(1−γ)µ (b−1(b)− ā(b−1(b)))2
�

p(b−1(b))

(1− γ) + γā′(b−1(b))
(28)
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condition (27) can be rewritten as
∫ +∞

−∞
G(b)exp

�

−
1
µ
(ai − b)2

�

db = 1. (29)

Notice that the above condition has to hold for all ai ∈ R. This can only happen if

G(b) = 1/
p
πµ.

Proof. Notice that the left-hand side of equation (29) is the convolution of G and f

given by f (x) = exp
�

−x2/µ
�

. Now, take the Fourier transform on both sides and use

the convolution theorem:

Fai
[(G ∗ f )(ai)](ξ) = Fai

[1](ξ)⇒Fai
[G(ai)](ξ) · Fai

[ f (ai)](ξ) = δ(ξ)

⇒Fai
[G(ai)](ξ) =

1
p
πµ

exp
�

µπ2ξ2
�

δ(ξ)

Where δ(·) is Dirac’s delta function. By taking the inverse Fourier transform on both

sides, the statement is proven:

G(b) = F−1
ξ

�

1
p
πµ

exp
�

µπ2ξ2
�

δ(ξ)

�

(b)

=
1
p
πµ

∫ +∞

−∞
exp(2πıξx)exp

�

µπ2ξ2
�

δ(ξ)dξ=
1
p
πµ

.

So now K(θ ) can be calculated.

K(θ ) =
1+ γ(ā′(θ )− 1)

p(θ )pπµ
exp

�

γ(1− γ)
µ

(θ − ā(θ ))2
�

(30)

Using (30) in (26) yields

r(ai|θ ) = Ri(ai)
1+ γ(ā′(θ )− 1)

p(θ )pπµ
exp

�

−
(ai − b(θ ))2

µ

�

. (31)

The solution has to also satisfy
∫ +∞
−∞ r(ai|θ )dai = 1 for all θ . Again, changing the

variable from θ to b = b(θ ), this condition yields

∫ +∞

−∞
Ri(ai)exp

�

−
(b− ai)2

µ

�

dai =
p
πµp(b−1(b))

�

b−1
�′
(b). (32)
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Notice that the left-hand side of equation (32) is the convolution of Ri and f . Now, take

the Fourier transform on both sides and use the convolution theorem

Fai
[Ri(ai)](ξ) · Fb[ f (b)](ξ) =

p
πµ · Fb[p(b

−1(b))
�

b−1
�′
(b)](ξ)⇒

Fai
[Ri(ai)](ξ) = exp

�

µπ2ξ2
�

· Fb[p(b
−1(b))

�

b−1
�′
(b)](ξ)⇒ (33)

Ri(ai) =F−1
ξ
[exp

�

µπ2ξ2
�

· Fb[p(b
−1(b))

�

b−1
�′
(b)](ξ)](ai) (34)

If the expression above is the PDF of a probability distribution, then the solution is

calculated by equation (26) which — after noticing that g(b) = p(b−1(b))
�

b−1
�′
(b) is

the PDF of the best action b = b(θ )— becomes

ri(ai|θ ) = Ri(ai)
b′(θ )

p(θ )pπµ
exp

�

−
(ai − b(θ ))2

µ

�

(35)

with

Ri(ai) =F−1
ξ
[exp

�

µπ2ξ2
�

· Fb[g(b)](ξ)](ai). (36)

This solution is unique. The analyticity of p(·) and b(·) (and, therefore, of g(·)) ensures

that the solution to the player’s decision problem is actually in continuous strategies

rather than in strategies that put positive probability mass on a countable set of actions

i.e. discrete or strategies with both a discrete and a continuous part (see Matějka and

Sims 2010, Proposition 2).

Now, for the “only if” part, if R(·) defined through (36) was not the PDF of a prob-

ability distribution, player i would not have a continuous best reply to r−i. Because if

she did, the marginal of her action would need to be defined by equation (36).

D.2 Proof of Proposition 3

The conditions of the proposition on Pa j |θ ensure that ā(θ ) given by

ā(θ ) =

∫

j∈[0,1]\{i}

�∫

R
a j Pa j |θ (da j|θ )

�

d j

is analytic in θ . Together with ā′(θ ) > 1−γ
γ , this means that b(·), i.e., θ 7→ γā(θ ) +

(1− γ)θ , is an analytic and strictly increasing bijection. That is,
¦

Pa j |θ

©

j 6=i
is a smooth,

monotone, full-support profile. As b(θ ) is continuous in θ and Pθ is absolutely contin-

uous, it follows that Pb is also absolutely continuous (with PDF g(·)).
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Use M and M to denote the sets

M := {µ ∈ R+ : µ ∈ [0,µ]⇒ best response to g(·) is continuous}

M :=
¦

µ ∈ R+ : µ≥ µ⇒ best response to g(·) is not continuous
©

.

Step 1: When µ = 0, then player i’s best response is given by δ(ai − b(θ )) and

Ri(ai) =
∫ +∞
−∞δ(ai − b)g(b)db = g(ai), i.e., Pai

is absolutely continuous and player i’s

best response is continuous. So, player i’s best response is continuous when µ = 0.

Therefore, M is nonempty, since 0 ∈ M .

Step 2: Assume that for some µ > 0 player i has a continuous best response to g(·),
i.e., that Ri := F−1

ξ

�

exp
�

µπ2ξ2
�

ĝ(ξ)
�

is a probability density function. Since Ri is a

PDF, by Bochner’s theorem (Bochner 1933; Rudin 1962, p.19), the function bRi, given

by bRi(ξ) = exp
�

µπ2ξ2
�

ĝ(ξ), is positive definite. Consider some µ ∈ (0,µ) and begin

with the following observation:

exp
�

µπ2ξ2
�

ĝ(ξ) = exp
�

−(µ−µ)π2ξ2
�

exp
�

µπ2ξ2
�

ĝ(ξ) = exp
�

−(µ−µ)π2ξ2
�

bRi(ξ).

The expression exp
�

−(µ−µ)π2ξ2
�

is the Fourier transform of the normal distribution

N(0, (µ−µ)/2) and, thus, a positive definite function. So, exp
�

µπ2ξ2
�

ĝ(ξ) is a positive

definite function as the product of two positive definite functions. This means that

F−1
ξ

�

exp
�

µπ2ξ2
�

ĝ(ξ)
�

is the PDF of a probability distribution. Thus, player i has a

continuous best response to g(·) when cost is µ and—since µ was arbitrarily chosen—

for any µ ∈ [0,µ]. Therefore, if the best response to g(·) is continuous when the cost is

µ, then µ ∈ M .

Step 3: Similarly, if player i’s best response is not continuous for some µ > 0, her

best response is not continuous for any µ≥ µ. Therefore, if the best response to g(·) is

not continuous when the cost is µ, then µ ∈ M .

Step 4: When µ > 2Var(b), the player’s best response is not continuous, as that

would imply a negative variance for Ri. So, the set M is nonemtpy.

Step 5: For any given µ the best response exists (Matějka and Sims 2010) and is

either continuous or not continuous. This, together with the results of Steps 2 and 3,

implies that the sets M and M partition R+.

Step 6: Using µ∗ = sup M = inf M completes the proof.
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D.3 Proof of Proposition 4

Let τi(·|b) be the PDF of player i’s action ai conditional on the best action being b.

Then, from Bayes’s rule, one gets:

%i(b|ai) =
τi(ai|b)g(b)

R(ai)
(37)

As b(·) is bijective with inverse b−1(·), one can derive τi from the result of Lemma 2

with a change of variable:

τi(ai|b) =
Ri(ai)

p(b−1(b)) (b−1)′ (b)
1
p
πµ

exp

�

−
(ai − b)2

µ

�

= Ri(ai)
1

g(b)
1
p
πµ

exp

�

−
(ai − b)2

µ

�

and comparing with (37), one obtains

%i(b|ai) =
1
p
πµ

exp

�

−
(ai − b)2

µ

�

.

D.4 Statement of Lemma 8

The following are standard properties of the Fourier transform that are used in later

proofs.

Lemma 8. The mean of a random variable x with PDF px is given by

E(x ) =
1
−2πı

(Fx[px (x)])
′(0) (38)

and its variance is given by

Var(x ) = σ2
x =

�

1
−2πı

�2

(Fx[px (x)])
′′(0)− (E(x ))2 . (39)

Proof. Follows from the definition of the Fourier transform.
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D.5 Statement and proof of Lemma 9

A key result for the characterization of continuous equilibria is Lemma 9.

Lemma 9. Let g(·) be the distribution of the best action of a smooth, monotone, full-

support strategy profile of player i’s opponents that satisfies condition (8). In player i’s

best response, her expected action conditional on the best action being b is given by

α(b) := E(ai|b) = b+
µ

2
d

db
(log(g(b))) . (40)

Proof.

To lighten notation, the player index i is suppressed in this proof. Denote by τ(a|b)
the probability density of action a conditional on the best action being b in player i’s

best response. From Bayes’s rule

τ(a|b) =
%(b|a)R(a)

g(b)
.

Using the property of the Fourier transform (see equation (38)), the expected action

of player i, conditional on b, is

α(b) = −
1

2πı
(Fa[t(a|b)])

′ (0) = −
1

g(b)2πı
(Fa[%(b|a)R(a)])

′ (0)

and using the convolution theorem as well as the properties of the Fourier transform,

α(b) = −
1

g(b)2πı

�

Fa[%(b|a)] ∗ (Fa[R(a)])
′� (0). (41)

Now

Fa[%(b|a)](x) =Fa

�

1
p
πµ

exp
�

−
(a− b)2

µ

�

�

(x)

=
1
p
πµ

exp(−2πıbx)Fa

�

exp
�

−
a2

µ

��

(x)

= exp(−2πıbx)exp
�

−µπ2 x2
�

≡ψ(x) (42)

and

(Fa[R(a)])
′ (x) =

d
dξ

�

exp
�

µπ2ξ2
�

· Fb̃[g
�

b̃
�

](ξ)
��

�

ξ=x
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= 2µπ2 x exp
�

µπ2 x2
�

Fb̃

�

g
�

b̃
��

(x)
︸ ︷︷ ︸

ζ1(x)

+exp
�

µπ2 x2
� �

Fb̃

�

g
�

b̃
���′
(x)

︸ ︷︷ ︸

ζ2(x)

(43)

So,

(ψ ∗ ζ1) (0) =

∫ +∞

−∞
ζ1(y)ψ(−y)dy

=

∫ +∞

−∞
2µπ2 y exp

�

µπ2 y2
�

Fb̃

�

g
�

b̃
��

(y)exp(2πıb y)exp
�

−µπ2 y2
�

dy

= 2µπ2

∫ +∞

−∞
exp(2πıb y)yFb̃

�

g
�

b̃
��

(y)dy = 2µπ2F−1
�

yFb̃

�

g
�

b̃
��

(y)
�

(b) = 2µπ2 1
2πı

g ′(b)

and

(ψ ∗ ζ2) (0) =

∫ +∞

−∞
ζ2(y)ψ(−y)dy

=

∫ +∞

−∞
exp

�

µπ2 y2
� �

Fb̃

�

g
�

b̃
���′
(y)exp(2πıb y)exp

�

−µπ2 y2
�

dy

=

∫ +∞

−∞
exp(2πıb y)

�

Fb̃

�

g
�

b̃
���′
(y)dy =

2π
ı

bg(b)

Bringing everything together

α(b) = −
1

g(b)2πı
((ψ ∗ ζ1) (0) + (ψ ∗ ζ2) (0))

and, finally,

α(b) = b+
µ

2
g ′(b)
g(b)

.

D.6 Proof of Proposition 5

The proof is given in the following steps:

1. The variance of player i’s action in her best response is given by

Var(ai) = Var(b)−µ/2 (44)

44



2. and its variance conditional on the best action being b is given by

Var(ai|b) =
µ

2
+
µ2

4
d2

db2
(log(g(b))) . (45)

3. Moreover, b 7→ E(ai|b) and θ 7→ E(ai|θ ) are increasing functions.

Proof of Item 1:

Recall the property of the Fourier transform (Lemma 8):

E(x ) =
1
−2πı

(Fx[px (x)])
′(0)

Now, start from eq. (36), take the first derivative on both sides at ξ= 0 and multiply by

(−2πı)−1 to get E(ai) = E(b). Proceed to take the second derivative on both sides of

equation (36) at ξ= 0, multiply by (−2πı)−2 and take into account that E(ai) = E(b).
Now, use the second part of Lemma 8 to get:

Var(ai) = −
µ

2
+σ2

b. (46)

Proof of Item 2:

Following the same process for τ(·|b), yields

Var(ai|b) =
�

1
−2πı

�2

(Fa[τ(a|b)])′′(0)− (E(ai|b))
2 . (47)

Now

(Fa[τ(a|b)])′′(x) =
�

Fa

�

%(b|a)R(a)
g(b)

��′′

(x) =
1

g(b)
(Fa[%(b|a)R(a)])

′′ (x)

and

(Fa[%(b|a)R(a)])
′′ (x) =

�

Fa[%(b|a)] ∗ (Fa[R(a)])
′′� (x). (48)

Taking (43) and calculating the derivative, one gets

(Fa[R(a)])
′′ (x) = R̂′′(x) =

4µ2π4 x2 exp
�

µπ2 x2
�

ĝ(x)
︸ ︷︷ ︸

ζ3(x)

+4µπ2 x exp
�

µπ2 x2
�

ĝ ′(x)
︸ ︷︷ ︸

ζ4(x)

+2µπ2 exp
�

µπ2 x2
�

ĝ(x)
︸ ︷︷ ︸

ζ5(x)

+exp
�

µπ2 x2
�

ĝ ′′(x)
︸ ︷︷ ︸

ζ6(x)

.
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Moreover, from (42)

Fa[%(b|a)](x) = exp(−2πıbx)exp
�

−µπ2 x2
�

≡ψ(x)

and

(ψ ∗ ζ3)(0) =

∫ +∞

−∞
ζ3(y)ψ(−y)dy = (2µπ2)2F−1

y

�

y2 ĝ(y)
�

(b) = −µ2π2 g ′′(b)

(ψ ∗ ζ4)(0) =

∫ +∞

−∞
ζ4(y)ψ(−y)dy = 4µπ2F−1

y [y ĝ ′(y)](b) = −4µπ2
�

g(b) + bg ′(b)
�

(ψ ∗ ζ5)(0) =

∫ +∞

−∞
ζ5(y)ψ(−y)dy = 2µπ2 g(b)

(ψ ∗ ζ6)(0) =

∫ +∞

−∞
ζ6(y)ψ(−y)dy =F−1

y [ ĝ
′′(y)](b) = −4π2 b2 g(b)

Substituting the above together with E(ai|b) = b+ µ

2
g ′(b)
g(b) into (47) yields the result:

Var(ai|b) =
µ

2
+
µ2

4
d2

db2
log(g(b))

Proof of Item 3:

From equation (40), one gets:

α′(b) = 1+
µ

2
d2

db2
log(g(b))

and, using the result of Item 2,

Var(ai|b) =
µ

2
α′(b).

Now, since τ(·|b) is a probability distribution, its conditional variance should be non-

negative and, since g is analytic, well-defined (finite). So, since Var(ai|b) ≥ 0, the

above equation leads to α′(b) ≥ 0. As b′(θ ) > 0 for all θ , E(ai|θ ) is an increasing

function of θ .

D.7 Proof of Proposition 6

Start with the following Lemma.
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Lemma 10. Consider a beauty contest with flexible information acquisition. Then all

SMFE are essentially symmetric i.e. in equilibrium all players use strategies that are equal

to the same strategy r̃ almost everywhere.

Proof. As there is a continuum of players, any single player i cannot influence the

average action taken by the population for any value of θ . This means that all players

face the same decision problem. Recall that each player has a unique best reply (up to

deviations of measure zero, see Lemma 2) to a smooth, monotone, full-support profile.

Thus, in equilibrium, the strategies that the players are using should be equal to the

same strategy r̃ almost everywhere.

The proof of Proposition 6 follows.

“(A)⇒ (B)”
In light of Lemma 10, since all players have essentially the same best response to the

equilibrium profile, the average action of the population conditional on b is given by

α(b) = b+
µ

2
g ′(b)
g(b)

.

In equilibrium, the best action b should be the one that is generated by aggregating the

best responses of the players, i.e.,

b = γα(b) + (1− γ)θ (b)

and, therefore, in equilibrium

θ (b) = b−
γµ

2(1− γ)
g ′(b)
g(b)

.

Moreover, g(·) should be the distribution that is generated by θ (·), i.e., (see eq. (7))

g(b) = p(θ (b))θ ′(b).

“(B)⇒ (A)”
Firstly, if θ (·) is the inverse of the best action function, then the best action’s distribu-

tion has the PDF g(b) = p(θ (b))θ ′(b). Since F−1
ξ
[exp

�

µπ2ξ2
�

ĝ(ξ)] is a probability

distribution, the unique best response to g is continuous (see Lemma 2).

The fact that θ (·) and g(·) satisfy (9) says that the profile where all players best

respond to θ (·) (equivalently, b(·)) gives rise to θ (·) as the inverse of the best action

function, i.e., that it is an SMFE.
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