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Abstract—Interpretability has become a crucial component
in the Machine Learning (ML) domain. This is particularly
important in the context of medical and health applications,
where the underlying reasons behind how an ML model makes
a certain decision are as important as the decision itself for the
experts. However, interpreting an ML model based on limited
local data may potentially lead to inaccurate conclusions. On the
other hand, centralized decision making and interpretability, by
transferring the data to a centralized server, may raise privacy
concerns due to the sensitivity of personal/medical data in such
applications.

In this paper, we propose a federated interpretability scheme
based on SHAP (SHapley Additive exPlanations) value and
DeepLIFT (Deep Learning Important FeaTures) to interpret
ML models, without sharing sensitive data and in a privacy-
preserving fashion. Our proposed federated interpretability
scheme is a decentralized framework for interpreting ML models,
where data remains on local devices, and only values that do
not directly describe the raw data are aggregated in a privacy-
preserving fashion to interpret the model.

Index Terms—explainable machine learning, privacy-
preserving, federated learning, epilepsy, seizure prediction,
seizure detection, EEG, ECG.

I. INTRODUCTION

For a Machine Learning (ML) model, interpretability is
crucial because it enables users to understand how the model
operates. This interpretability is especially important in fields
where decisions made by ML models have major conse-
quences, for instance, in the healthcare and medical domain. In
these domains, it is as important for the experts to understand
how an ML model makes a certain decision, as the decision
itself.

One of the main challenges, however, in these domains is
that interpreting an ML model based on limited data available
locally may potentially lead to drawing inaccurate conclusions.
At the same time, transferring the data to a centralized server
for centralized decision making and interpretation, may raise
privacy concerns due to the sensitivity of personal/medical data
in such applications. For instance, in the healthcare domain,
medical data such as patient records are highly sensitive.
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Many countries have stringent regulations, such as GDPR in
Europe [1] and HIPAA in the USA [2], governing the use and
transfer of personal data. This sensitivity poses a challenge
to the interpretability of ML models, as the data required to
understand model behavior is often dispersed across multiple
institutions and geographic locations.

Federated Learning (FL) is a machine learning framework
where multiple clients, such as mobile devices or organiza-
tions, collaboratively train a model under a central server’s
coordination while keeping the training data decentralized [3]-
[16]. To date, several studies on the interpretability of FL
have been conducted. Such studies target Interpretable Client
Selection [17]-[24], Interpretable Sample Selection [20], [24]-
[28], Interpretable Feature Selection [29]-[33], Interpretable
Model Optimization [34]-[37], and Interpretable Contribution
Evaluation [38]-[46]. These works focus on interpreting FL at
various stages. However, the collaborative, privacy-preserving
interpretation of an ML model in a federated setting has not
been addressed to date.

In this paper, we propose the first privacy-preserving feder-
ated interpretability framework, to the best of our knowledge,
inspired by FL. Our framework focuses mainly on SHAP value
[47], [48] and DeepLIFT [49] to thoroughly interpret an ML
model based on the decentralized data of different parties,
such as health centers, without explicitly sharing the raw
data. Federated interpretability is a decentralized approach for
interpreting ML models, where data remains on local devices,
and only values that do not directly describe the raw data are
shared and aggregated to interpret the model. However, adopt-
ing federated interpretability does not fully address the privacy
concerns associated with decentralized computing. Therefore,
in this work, we ensure that all data shared among the parties
involved in the federated interpretability remains secure by
adopting state-of-the-art privacy-preservation schemes. Our
main contributions are summarized as follows:

e We propose a federated framework to perform inter-
pretability considering the local data available on all par-
ticipating parties/clients. This is required because relying
only on the local data at each party to interpret the ML
model, as its distribution may be different from the overall
data, can result in inaccuracies in the interpretation.

e We extend this framework by introducing a privacy-
preserving scheme to enable federated interpretability
without privacy concerns. This is ensured not only be-
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cause the local data on each device remains local in
federated interpretability, but also thanks to the secure-
multi-party-computation scheme adopted.

¢ We evaluate our proposed framework considering two
well-established interpretability schemes, namely, SHAP
value [47], [48] and DeepLIFT [49], based on two real-
world medical applications for mobile devices, namely,
epilepsy seizure prediction using EPILEPSIAE electro-
cardiogram (ECG) dataset [50] and epilepsy seizure
detection using CHB-MIT Scalp electroencephalogram
(EEG) dataset [51].

This paper is structured as follows: In Section II, we
introduce federated interpretability based on SHAP Value and
DeepLIFT. Then, in Section III, we extend our proposed
scheme and present the privacy-preserving federated inter-
pretability framework. In Section IV-A, we discuss the scenar-
ios considered for evaluating the proposed scheme, along with
their corresponding experimental setups. The experimental
results are presented in Section I'V. Finally, Section V provides
the conclusion of this paper.

II. FEDERATED INTERPRETABILITY

In this section, we illustrate our federated interpretabil-
ity framework, focusing mainly on SHAP value [47], [48]
and DeepLIFT [49]. The abstract overview of our privacy-
preserving federated interpretability procedure is illustrated in
Fig. 1.

A. Federated Interpretability Based on SHAP Value

Let us first consider the well-established framework of
SHAP [47], [48], [52]. The concept of SHAP values originates
from this game theory question: How should we divide up the
payoff among the players with different skills in a coalition?
To address this, the marginal contribution of each player is
calculated by adding them to the coalition set, and these
contributions are then averaged across all possible sets in
which the player could have joined.

This approach has been adapted to evaluate the importance
of different features in ML models. In this context, the SHAP
value represents the average contribution of a feature value to
the model’s output, considering all possible sets in which it
could be integrated. Therefore, it indicates the feature value’s
importance.

Additionally, SHAP values offer insights into how each
feature affects the model’s output and how decisions are made
by the model. Specifically, they allow us to determine when
a feature significantly influences the output and whether its
impact is positive or negative. Analyzing the SHAP values
enables us to potentially pinpoint the feature values that are
highly probable to result in a specific classification outcome
or prediction value for a feature with a significant impact on
the output.
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Fig. 1: Privacy-Preserving Federated Interpretability

Let us consider that we have a model with n features. For a
given sample x with feature values z1, s, ..., z,, the SHAP
value decomposition for the sample x is expressed as follows:

f(x) =E[f(z)] + Z ¢i(x), (1)

where f(x) is the model’s output for the sample x; ¢;(x) is
the SHAP value for feature i, representing the contribution of
feature x; to the output; and E[f(x)] is the expected value
of the model’s output over the entire dataset, serving as the
reference.

For a given sample x, the SHAP value for feature ¢ is
calculated as follows [47], [53]:

IS|LAN] — IS = 1)
SCNVi)

(F(SUfi}) = f(5)),
2

where N is the set of all features; S is a subset of features
excluding feature 7; |.S] is the size of subset S; |[N| = n is the
total number of features. Furthermore, f(S) is the model’s
output using only the features in subset S, and f(S U {i})
is the model’s output when feature i is added to subset S.
The term W is the weight given to each marginal
contribution, ensuring that the contributions are averaged over
all possible subsets of features.

We assume that we have m samples, denoted by x’ for
7 =1,...,m, for the interpretation of the model. In general,
the importance of feature ¢ is defined as follows:

m (i
5= T @) 5

m

Now, let us consider that the overall data is distributed
over different parties/clients, such as health centers or wear-
able devices. Due to privacy concerns, we cannot share the
data for interpretation. If we calculate the SHAP value for
a specific feature value considering the same generic ML
model at each party, based on Equation (2), the SHAP value
remains unchanged compared to the case of having all data for
interpretability. In other words, the SHAP values for a specific



input sample will remain the same regardless of whether the
entire dataset is used or just part of it. This is because the
SHAP values are computed based on the sample’s feature
values and the model, not the set of samples being considered.
However, the lack of sufficient data can lead to inaccuracies
in determining the significance of each feature, their impact
on the output, and the interactions between features.

In federated interpretability, if we have K parties, the
importance of feature 7 corresponding to party u for u €
{1,2,... K}, denoted by ¢, can be calculated privately and
then be shared. Each party also shares the number of exploited
samples for this calculation, denoted by m;'. Then, the overall
importance of feature ¢ is calculated as follows:

Sy i B
25:1 mj
Besides determining feature importance, by collectively

looking into the individual SHAP values received from dif-

ferent parties, we can thoroughly interpret the model. This
enables us to understand how each feature affects the output,
including whether a feature has a positive or negative impact
on the outcome, or if it favors one class in classification tasks.

With this information, we can further optimize the model to

improve its performance.

bi = “4)

B. Federated Interpretability Based on DeepLIFT

DeepLIFT [49] is a technique for attributing a neural net-
work’s output to its input features, offering a way to interpret
model decisions. It addresses the limitations in the traditional
attribution methods, such as gradient-based approaches [54],
[55], which can be noisy and prone to saturation.

DeepLIFT assigns attribution scores that explain how each
feature’s deviation from a reference impacts the output. It is
particularly effective when the reference represents a neutral or
typical input. Using customized backpropagation, DeepLIFT
computes each feature’s contribution relative to a reference
by propagating the difference between actual and reference
outputs.

Compared to SHAP, DeepLIFT is more computationally
efficient because it does not require evaluating all possible fea-
ture combinations. Its backpropagation-based approach scales
well with deep networks, making it faster and more efficient,
especially when a clear reference exists. DeepLIFT also has
extensions like DeepLIFT-SHAP, which approximates Shapley
values using its methodology.

In DeepLIFT, the reference is essential for interpreting the
contributions of each input feature. Let ] represent the value
of the i-th input feature in the reference. The contribution of
the deviation in the i-th input feature, i.e., Az, = z; — ], to
the change in output Af(x) = f(x) — f(x"), is denoted as
CAw,—Af(x)- DeepLIFT computes this attribution score using
multiplier Mag, A f(z):

Caz,»af(@) = Maw,saf(@) - AT;.

The multiplier Ma,, A f(z) is computed using the chain rule,
which propagates contributions through multiple layers in the

network. If we assume an input layer with neurons z; and a
hidden layer with neurons y;, the multiplier Ma,, s can
be obtained based on My, ay, and May, Ay as follows,

Mpz,—snp = Z Mag;—ay; - May,—af- )
J

The chain rule ensures that the contribution of the input feature
x; is propagated layer by layer, through both linear and non-
linear transformations, using appropriate multipliers at each
layer. For linear layers, the multiplier is proportional to the
weights between the input and the hidden neurons. For non-
linear layers (e.g., ReLU), the multiplier reflects the difference
in activations between the actual and reference inputs [49].

By recursively applying the chain rule across all layers,
DeepLIFT ensures that the sum of all feature contributions
equals the total change in the model’s output:

Af(x) = Z Caw,»Af(z)-

For interpreting the model across m samples, denoted by
for j = 1,...,m, the importance of feature ¢ for the model
output can be obtained by taking the absolute value of each
feature’s attribution score C'\ ol 5 Af(ad) and averaging them:

SO N
Ci _ j=1 AmlﬁAf( 7) (6)

This provides a robust measure of feature importance by
aggregating attribution scores across multiple outputs and
instances.

Now, let us assume that the entire dataset is spread across
several parties/clients, such as health centers or wearable
devices. Due to privacy concerns, sharing the data for the
interpretation is not feasible. Hence, we propose to use feder-
ated interpretability, where instead of sharing the local data,
the mean absolute attribution scores of different features are
shared. In federated interpretability, if we have K parties, the
importance of feature ¢ based on the data available at party u,
denoted by C}*, can be calculated privately and then be shared.
Each party also shares the number of exploited samples, i.e.,
mj', in this process. Finally, the overall importance of feature
7 is calculated as follows:

7

K
Zu:l m;LL

III. PRIVACY-PRESERVING FEDERATED
INTERPRETABILITY

Zf:l m; C}'

Ci= (N

The objective of this section is to build on our proposed
approach in the previous section and enable interpretability
among several parties each with local data in a federated
fashion, while ensuring privacy. We present the proposed
scheme step by step, as presented in the following.



A. Privacy-preserving calculation of the distribution of feature
contributions

In this section, we focus on the distributions of data,
because both SHAP or DeepLIFT work with distributions.
SHAP extracts the distribution of feature contribution across
all samples. Similarly, DeepLIFT extracts the contribution of
each feature.

1) Setup for privacy-preserving federated interpretability
scheme: The first step in our proposed scheme is the setup
of pair-wise private keys. Our approach here is based on the
scheme proposed in [56]. We consider K data-holder parties,
and the set of parties is represented by . In our method,
all participating parties must establish pair-wise private keys
to generate random masks for secure aggregation. To facilitate
this, the Diffie-Hellman key exchange protocol [57] is adopted
by the parties.

In this scheme, each party, denoted by p* foru =1,..., K,
shares its public key with the other K —1 parties via the server.
The private pairwise key between p“ and p is generated on
each party and denoted by DHKey,, .

2) Distribution of feature contributions: Next, we discuss
how to obtain the distribution of each feature contribution in
a privacy-preserving fashion, as follows:

o Step 1: Each party p*“ locally calculates the distribution
of SHAP values or DeepLIFT attribution scores for each
feature ¢ across all local data points.

o Step 2: Each party p* divides the distribution of SHAP
values or DeepLIFT attribution scores for each feature
into discrete intervals or bins (e.g., based on quantiles or
fixed ranges). Then, calculate the Binned Contribution
Scores for each bin j of each feature ¢ on party p%,
denoted as b;' j.l

o Step 3: Each party p* multiplies b}’ ; by m;’;, the number
of SHAP values or attribution scores in bin j (where
>_;mi; = my), to obtain the secret value s;';. This
secret value will be securely aggregated with the secret
values from other parties.

o Step 4: Each party p* generates random masks using the
Diffie-Hellman pair-wise keys:

— Mask,.: Generate and aggregate masks based on
DHKey,, ,, forall v € U : u <.

- Mask;..,;; Generate and aggregate masks based on
DHKey,, ,,, forall v e U : u > v.

o Step 5: The masked secret value is calculated as 5;'; =
st + Maskify, — Maskg, .2

o Step 6: The masked results are sent to the central server,
which aggre%(ates them and divides by the total number of
samples, > .~ m¥, to calculate the global contribution
score b; ;.

3) Mean absolute attributions: Finally, we discuss how to
obtain other quantitative values, e.g., mean absolute attribution
¢; in SHAP, from the distribution of each feature contribution

'Note that b; corresponds to ¢; or C; in the previous section.
2All calculations are modulo R, i.e., (mod R).

in a privacy-preserving fashion. The following briefly outlines
the process for securely obtaining the mean absolute attribu-
tion scores, given the distribution of each feature contribution,
i.e., b; ;. Let us assume that each bin captures the occurrence of
feature contribution in the interval [I; ;, I; j 1), 1.e., h; ;. Then,
the mean absolute attributions can be estimated as follows:
bi = (g hig) ™t (X hiy - Lutliaet) Note that, the
mean absolute attribution ¢; can be obtained with an arbitrary
precision, by using fine-grain bins in the histogram. Alterna-
tively, given each party has computed the local mean absolute
attribution ¢;', the proposed scheme can be adjusted to exactly
obtain the value of ¢; = (fo:l mi)~L. (Zle sitp), if we
assume that our distribution has only one bin.

4) Privacy and correctness: As discussed, Maskpige and
Mask evear are the results of aggregating several other masks
generated based on the pairwise Diffie-Hellman keys. A mask
generated based on DHKey,, ,, is denoted by M, ,,. Note that
My = M, since DHKey,, , = DHKey,, ,,.

Privacy: To determine the secret value of p“, we need both
Masky;y. and Masky, ... Calculating these masks requires all
pairwise Diffie-Hellman keys between p* and the other parties

to generate all relevant M values associated with p“.
Correctness: Here, we show that the sum of the masked
secret values equals the sum of the original secret values:

K K
it Z Maskt 4o — Z Mask%,car 8)
u=1
K K

u=1
;‘l,j + Z Z Mu,v - Z Z Mu,y

u=lveld:u<v u=lveld:v<u

M=
&

I
M=
Nm:

<
Il
-
<
Il
-

S

M

S
Il
-

-

8is (mod R).

]
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—

To prove that the above equation holds, we show
that the set of pairs summed over in the two expres-

. K K
sions Zu:l Zvell:v<u M’U«ﬂ) and Eu:l Zvell:u<v M’U«ﬂ) are
equal, i.e.,

K K
Z Mu,v - Z Z Mu,v = 0’

u=lvel:u<v u=lveld:v<u

(mod R). (9)

Let us consider the two sets A = {(u,v) eU XU | u < v}
and B = {(u,v) € U x U | v < u}. The first sum is over
pairs in A, and the second sum is over pairs in B. We define a
bijection 1) : A — B by swapping the elements of each pair:
P(u,v) = (v,u). For any (u,v) € A, since u < v, it follows
that (v,u) € B. Similarly, for any (v,u) € B, swapping gives
(u,v) € A. Therefore, 1 is a bijection between A and B.

Using the bijection 1 and the equality of M, ,, and M,, ,,
we can relate the sums over A and B:

ST Muy = >

V(u,v)EA (v,u)=9(u,v),V(u,v)EA

Mv,u =

> Mo

V(v,u)€B

Therefore, the sum over A is equal to the sum over B:
Y (uwyea Muw = Xy e Mu,w- This means that the differ-
ence of the two sums in equation (9) is zero.



B. Handling dropped parties

The proposed protocol is designed assuming that all parties
reliably communicate with the server during the entire process.
In certain scenarios, e.g., in real-world applications such as
Internet of Things (IoT) settings, however, several parties may
fail to communicate their results to the server. This failure
disrupts the proposed scheme’s process because the masks
corresponding to the dropped parties are introduced by other
available parties but are not canceled by the missing masks
from the unavailable parties.

To address this issue, we implement a k-out-of-n threshold
secret sharing scheme, namely the Shamir secret sharing
method [58]. The objective of this scheme is to divide a secret
into n pieces such that any k£ out of those n parties can
collaborate to reconstruct the original secret when necessary.

Using this approach, each party divides its private Diffie-
Hellman key into K pieces and distributes each piece to a
different party. In the event that party p* fails to communicate
its masked data to the server, the server can request the other
parties to share their respective pieces of p“’s private Diffie-
Hellman key. The server can then reconstruct p“’s private
Diffie-Hellman key and generate the corresponding masks
related to p“, allowing it to remove those masks from the
result.

Next, we discuss the privacy and correctness aspects of our
approach discussed above.

Privacy: Since the private Diffie-Hellman key of each
party is divided and shared using a k-out-of-n threshold
secret sharing scheme, it can be reconstructed through the
collaboration of k parties. Reconstructing this key allows the
regeneration of the masks and their removal from the masked
secret value, thereby revealing the original secret value. The
privacy challenge associated with this approach is discussed
in Section III-C. Specifically, if the masked secret values of a
party, which was assumed to be unavailable, are delayed and
later delivered to the server, even an honest-but-curious server
could potentially identify the secret value. This vulnerability
is addressed in Section III-C by introducing individual masks
for each party.

Correctness: If a party becomes unavailable, its masks are
regenerated by the server. Therefore, for all parties, regardless
of their availability, we have Maskpige and Maskieyeq. Conse-
quently, in Equation 8, since s; ; for the unavailable parties
is zero (a neutral value for aggregation), then the equality

S st = K st still holds.

C. Addressing the privacy issue for handling dropped parties

In certain cases, network delays may cause the input from a
party, which was initially assumed to be dropped, to arrive late
at the server. In such a situation, the private Diffie-Hellman
key of that party might have already been reconstructed under
the assumption that the party was unavailable. This creates a
privacy risk, even in scenarios where the server is honest-but-
curious, since the server could use the regenerated masks to
infer the party’s secret information.

To mitigate this risk, each party must aggregate its masked
secret with an additional individual mask. These individual
masks do not cancel out with each other. To ensure that the
individual masks can be removed from the final aggregation
result, each party splits its individual mask into K pieces
and shares each piece with another party using the k-out-of-n
threshold secret sharing scheme.

Once the server has received all the inputs from the available
parties, it will request the shares of the individual masks
from the available parties. Based on any k of these pieces,
the server can reconstruct the individual masks and remove
them from the aggregation result. It is important to note that
to maintain privacy, the server must not have access to both
the individual mask value and the mask generated based on
the Diffie-Hellman key. Therefore, after all the inputs from
available parties have been received, the server will: (i) For
parties that were available and whose inputs were received:
request the pieces of their individual masks. (ii) For parties
that were dropped and whose inputs were not received: request
the pieces of their private Diffie-Hellman keys.

Now, we discuss the privacy and correctness aspects of our
approach presented above.

Privacy: Bach party’s individual mask is divided and shared
using a k-out-of-n threshold secret sharing scheme, allowing
for reconstruction through the collaboration of k parties. In our
scheme, the server can request either the shares of a party’s
private Diffie-Hellman key or its individual mask. However,
the server cannot simultaneously remove both the individual
masks and the pairwise masks from a party’s masked secret
values.

Correctness: For all parties, 5; ; includes their individual
mask. If a party is available, its individual mask will be
reconstructed from the k pieces received from k parties. This
mask will then be subtracted from 5;;, leaving the result
as the secret value masked by pairwise masks. If a party is
unavailable, its individual mask can be considered as zero.
Therefore, as shown in Equation 8, the sum of the masked
secret values (after removing the individual masks) will be
equal to the sum of the secret values.

D. Communication overhead of our scheme

In the setup phase, i.e., Section III-A, all parties share their
public Diffie-Hellman keys through the server. This means
that each party sends and receives one message. Moreover,
regarding the sharing of the splits of private Diffie-Hellman
keys and individual masks using the Shamir scheme, as
discussed in Sections III-B and III-C, each party encrypts each
split based on the pairwise Diffie-Hellman key and shares the
splits through the server. This also involves each party sending
and receiving one message, but this occurs sequentially after
the previous step since the pairwise Diffie-Hellman keys are
needed for this step.

In the main secure aggregation phase, each party sends one
message to the server to share their masked secret values. The
server then checks the availability of parties, and based on
that, it sends a message to all parties instructing them to either



share a split of their private Diffie-Hellman key (if the party
was unavailable) or a split of their individual mask (if the party
was available).

1V. EVALUATION
A. Experimental Setup

We consider two different applications of federated in-
terpretability: federated interpretability for epileptic seizure
prediction based on ECG and federated interpretability for
epileptic seizure detection based on EEG.

1) Federated Interpretability for Epileptic Seizure Predic-
tion Based on ECG: Epilepsy is a brain disorder causing
recurrent seizures. The prediction of epileptic seizures can
improve epileptic patients’ lives by preventing or reducing the
severity of the seizures by administering drugs, providing first
aid in time, and preventing accidents caused due to seizures.
In this paper, first, we focus on using federated interpretability
for interpreting the epileptic seizure prediction done by a
generic ML model. This interpretation can be done to collect
important information to update the generic model, while the
data remains at the local wearable devices.

ECG Dataset and Data Preparation: We utilize the ECG
data from the public EPILEPSIAE dataset [50], which is
among the largest epilepsy datasets manually annotated by
medical experts for the purposes of seizure detection and
prediction. The recordings are conducted in a routine clin-
ical setting, meaning they may contain various non-seizure
activities and artifacts such as head/body movements, chewing,
blinking, early stages of sleep, and electrode pops/movement.
The dataset includes complex partial (CP), simple partial (SP),
and secondarily generalized (GS) seizures, with no restrictions
on seizure types.

The EPILEPSIAE ECG data is collected from 30 patients,
covering 4603 hours of recordings segmented into one-hour
files, with 277 seizures recorded. The recordings are sampled
at 256 Hz with 16-bit resolution. The number of seizures per
patient ranges from 5 to 23, with an average of 9.23 seizures
per patient, and the average seizure duration is 75.81 seconds.
The total recording time per patient varies between 92.90 and
266.36 hours, with an average of 153.43 hours.

For the pre-ictal signals, we select 14 minutes from the
one-hour segments containing seizures, ensuring the selected
period is at least one hour away from the previous seizure
and one minute before the next. For inter-ictal signals (those
far from seizures), we also select 14 minutes, ensuring the
signal is at least one hour away from both the previous and
next seizures. These pre-ictal and inter-ictal signals are then
windowed into 60-second segments with a 30-second overlap.
Any windowed signals with no information, e.g., signals equal
to zero, are discarded.

To divide the data into training and test sets, we group all
windowed signals from each one-hour file into one of the sets.
This approach prevents any overlap across the training and test
sets. 70% of the windowed signals are allocated to training and
30% for testing. Next, we balance the data so that each set

contains an equal number of pre-ictal and inter-ictal windowed
signals.

Seizure Prediction Model: For epileptic seizure prediction,
we use a Random Forest classifier [59] to train a prediction
model based on the EPILEPSIAE dataset. The model incorpo-
rates well-established Heart Rate Variability (HRV) features,
which have been previously utilized for seizure prediction
[60]-[62], in addition to ECG Lorenz features, primarily
employed for seizure detection [63]-[67]. We assume the
model is trained using the entire training set. Subsequently,
all clients utilize this trained model.

2) Federated Interpretability for Epileptic Seizure Detection
Based on EEG: Besides epileptic seizure prediction, which
aims to forecast seizures before they occur, it is important to
consider seizure detection. Detection focuses on identifying
seizures as they happen in real-time, allowing for immediate
intervention to ensure patient safety. Seizure detection is criti-
cal for recognizing and responding to ongoing events, helping
to mitigate risks and manage seizures effectively. In this paper,
we also consider using federated interpretability based on
DeepLIFT for interpreting the epileptic seizure detection, done
by a generic Deep Neural Networks (DNN) model.

EEG Dataset and Data Preparation: We use CHB-MIT
Scalp EEG Dataset [51]. This dataset contains 23 cases from
22 patients (5 males and 17 females) with epilepsy. Only
two channels (T7F7 and T8F8) are considered to maintain
consistency with wearable IoT devices for real-time seizure
monitoring [68]-[70]. Patients 6, 14, and 16 are excluded due
to very short-lasting seizures.

A bandpass filter with a passband of 1-30 Hz is applied
to the raw EEG signals. The filtered signal is segmented
with a window length of 4 seconds (i.e., 1024 samples) and
standardized using Z-score normalization [71]. The FFT is
computed for the windowed signal, and the FFTs of the two
channels are concatenated into 2048 dimensions, serving as
input for the DNNs. The dataset includes seizure and non-
seizure data, where 70% of each is used for training. The
30% remaining data is split randomly in such a way that 70%
is allocated to validation and 30% to testing.

Seizure Detection Model: For epileptic seizure detection,
we use an end-to-end model, a 1-Dimensional Convolutional
Neural Network (1D-CNN), exploiting the FFT of the win-
dowed EEG signals. This 1D-CNN consists of two convo-
lutional layers with ReLU activation for feature extraction,
followed by max-pooling layers to reduce dimensionality. A
dropout layer with a 20% rate is included to prevent overfitting.
The extracted features are passed through two fully connected
layers, with the final layer producing an output for binary
classification. We assume the model is trained using the entire
training set. Subsequently, all clients utilize this trained model.

3) Implementation Details: In this study, we trained, vali-
dated, tested, and interpreted our models in Python, leveraging
the SHAP and DeepLIFT packages for interpretation. All ex-
periments conducted in this study were performed on a system
characterized by an 11th Gen Intel(R) Core(TM) i7-11800H
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Fig. 2: SHAP value summary plots from an individual client/wearable device and federated interpretability.

@ 2.30GHz, 2304 Mhz, 8 Core(s), 16 Logical Processor(s),
and a physical memory (RAM) capacity of 16.0 GB.

B. Experimental Results

In this section, we examine the performance of proposed
federated interpretability. First, we focus on SHAP-based
federated interpretability for epileptic seizure prediction us-
ing ECG features. Next, we evaluate the performance of
DeepLIFT-based federated interpretability for epileptic seizure
detection, utilizing an end-to-end model based on EEG data.

1) Evaluation of SAHP-Based Federated Interpretability:
The summary plots of the SHAP values for the generic seizure
prediction model, based on test data from a single wearable
device/patient and leveraging federated interpretability, are
shown in Fig. 2. In a SHAP value summary plot, the inter-
pretation for each feature value is represented by a single dot
on each feature row. In this plot, feature importance decreases
from top to bottom, determined by the mean absolute SHAP
values across all feature values. In a summary plot, the
horizontal axis indicates whether a feature’s effect is associated
with a higher output (favoring the pre-ictal class) or a lower
output (favoring the inter-ictal class). The color represents
feature values, with high values shown in red and low values
in blue.

According to Fig. 2b, exploiting federated interpretability,
the four most important features are “Mean_RR,” “RMSSD,”
“pNNS50,” and “sdl,” respectively, as they appear on top of
the summary plot. However, if we have access to only one
client’s or patient’s test data, the most important features in
this model are identified as “Mean_RR,” “pNN50,” “RMSSD,”
and “Tot_pow,” respectively.

Fig. 3 presents SHAP dependence plots for “Mean_RR”
and “pNNS50,” based on test data from one of the wearable

devices/patients and utilizing federated interpretability. These
plots show the SHAP values corresponding to the feature
values. SHAP dependence plots can be used to gain deeper
insights into the influence of individual features on the output
of an ML model. In this figure, we observe that for federated
interpretability when “Mean_RR” values are more than 1.12,
the SHAP values are consistently positive and also not neg-
ligible, implying that samples with “Mean_RR” values more
than 1.12 are likely to be classified as pre-ictal samples by the
prediction model. However, if we rely on the data from only
one of the wearable devices, we cannot reach this conclusion
due to the lack of sufficient test samples.

Furthermore, if we only consider the test data from one
wearable device, the “pNN50” dependence plot (Fig. 3b)
may suggest that samples with “pNN50” values between 0.34
and 0.39 consistently have significant negative SHAP values,
implying that these samples are likely to be classified as inter-
ictal by the prediction model. However, when looking at Fig.
3d, which accounts for SHAP values across all clients, we can
see this conclusion is not accurate. There is a considerable
number of SHAP values close to zero, indicating that in this
interval, other features also play a significant role in decision-
making.

2) Evaluation of DeepLIFT-Based Federated Interpret abil-
ity: Frequency components of EEG signals are valuable for
detecting epileptic seizures [72]. By analyzing the DeepLIFT
mean absolute attribution scores, it is possible to identify
which components or frequency bands play a more significant
role in this detection. The DeepLIFT mean absolute attribution
scores for the FFT of the windowed EEG signals in our
DNN seizure detection model, based on the available test
data at one of the wearable devices and by utilizing federated
interpretability, are shown in Fig. 4.
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Fig. 3: Dependence plots from an individual client/wearable device and federated interpretability.

As it can be seen from Fig. 4, interpreting the generic ML
model using local data from a single client yields a different
understanding of important frequency components compared
to federated interpretability, which takes into account the
overall data distribution without requiring data sharing across
clients. Hence, any generic model debugging or updating based
solely on the available data from only one client, in order to
be applicable across all different clients, can be inaccurate.

V. CONCLUSIONS

In this paper, we address the collaborative, privacy-
preserving interpretation of a generic ML model, which we
refer to as federated interpretability, inspired by FL. We
propose federated interpretability based on SHAP values and
DeepLIFT to interpret a generic ML model deployed across
different parties/clients, such as health centers, without sharing
their data. Federated interpretability is a decentralized ap-
proach for interpreting ML models, where data remains on
local devices, and only values that do not directly describe
the raw data are shared and aggregated to interpret the model.
We extend our framework by introducing a privacy-preserving
scheme to enable federated interpretability without privacy
concerns. This is ensured not only because the local data on
each device remains local, but also thanks to the secure-multi-
party-computation scheme adopted.

We have evaluated the performance of our proposed fed-
erated interpretability framework considering two medical
applications. First, we evaluate SHAP-based federated inter-
pretability for epileptic seizure prediction using ECG features.
Then, we assess the performance of DeepLIFT-based federated
interpretability for epileptic seizure detection, utilizing an end-
to-end DNN model based on EEG data. Our experimental
results confirm the importance of federated interpretability in
enabling the model interpretation, with data distributed among
different parties/clients.
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