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public defense at Matematikcentrum, MH:Hörmander on Friday, the 31st of January 2025 at

13:00.



D
O
K
U
M
E
N
T
D
A
T
A
B
L
A
D

en
l
S
IS

6
1
4
1
2
1

Organization

LUND UNIVERSITY

Centre for Mathematical Sciences
Box 118
SE–221 00 LUND
Sweden

Author(s)
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Popular summary in English

A statistical model is a type of function that is fitted to a dataset in order to
make predictions about the future. An example of such a function could be a
program that, given an X-ray image, predicts whether a patient has cancer or
not. Another example is a computer program that generates text. Given a new
word, the next word in the sequence is determined by the program predicting
which word is most likely. This is possible because the program has previously
been exposed to a dataset consisting of large amounts of text.

In 1958, Rosenblatt published his paper ’The Perceptron: A Probabilistic Model
for Information Storage and Organization in the Brain’, in which he proposed
and analyzed the so-called perceptron. This is a statistical model inspired by
how the human brain processes information and can be considered the ancestor
of today’s artificial neural networks, which have become very large in artificial
intelligence.

When fitting a statistical model to a dataset, this is often done by introdu-
cing a so-called cost function. This is a function that applies a penalty if the
model’s prediction is far from the true value. One then tries to find model
parameters that result in the smallest penalty possible. In artificial intelligence,
this process is referred to as ’training’ the model. An analogy for this proced-
ure could be descending a mountainous landscape. At each stage, you take a
step downward. The penalty we receive from the cost function is our position’s
altitude, and the goal is to find the lowest point in a valley. The size of the
step we take is called the step size or learning rate. It is common in artificial
intelligence for cost functions to be very complicated and computationally in-
tensive to minimize. The landscape in the analogy above is very rocky, and it is
very difficult to take each step. In such cases, traditional optimization methods
are less suitable. Instead, one uses methods for which each step is cheaper to
take - so-called stochastic optimization methods. The most famous of these is
stochastic gradient descent, whose precursor was introduced in 1951 by Robbins
& Monro in the paper ’A Stochastic Approximation Method’. To simplify, these
methods can be described as follows: instead of always taking a step downward,
one moves somewhat randomly, but in such a way that, on average, one moves
downward. A problem with these methods is that the size of the steps must
be chosen carefully. If they are too large, one may move farther and farther
from the desired valley. If they are too small, it might take an eternity to reach
the lowest point. The focus of this thesis is exploring different ways to make
stochastic optimization methods more robust and less sensitive to the step size.
This is important from a sustainability perspective, as artificial intelligence is

v



becoming an increasingly large part of our daily lives and is claiming more and
more of our total energy consumption. More robust methods ensure that less
computational power and energy are required to train the models.
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Populärvetenskaplig sammanfattning p̊a svenska

En statistisk modell är en slags funktion som man anpassar till en datamängd
för att kunna göra förutsägelser om framtiden. Ett exempel p̊a en s̊adan funktion
skulle kunna vara ett program som givet en röntgenbild förutsäger om en patient
har cancer eller inte. Ett annat är ett datorprogram som genererar text. Givet ett
nytt ord, bestäms nästa ord i ordföljden genom att programmet förutsp̊ar vilket
ord som är mest troligt. Detta är möjligt tack vare att programmet tidigare har
f̊att se en datamängd som best̊ar av stora mängder text.

1958 publicerade Rosenblatt sin artikel “The perceptron: a probabilistic model
for information storage and organization in the brain”, i vilken han föreslog
och analyserar den s̊a kallade perceptronen. Detta är en statistisk modell som
inspirerats av hur den mänskliga hjärnan hanterar information och kan sägas
vara förfadern till de artificiella neuronnätverk som har kommit att bli väldigt
stora inom artificiell intelligens.

När man anpassar en statistisk modell till en datamängd gör man ofta det ge-
nom att introducera en s̊a kallad kostnadsfunktion. Detta är en funktion som
ger ett “straff” om modellens förutsägning ligger l̊angt ifr̊an det sanna värdet.
Man försöker sedan hitta parametrar till modellen som ger ett s̊a litet straff
som möjligt. Inom artificiell intelligens kallas detta för att man “tränar” model-
len. En analogi för den här proceduren skulle kunna vara en nedstigning genom
ett bergigt landskap. Vid varje etapp tar man ett steg ned̊at. Bestraffningen
vi f̊ar fr̊an kostnadsfunktionen är v̊ar positions altitud och m̊alet är att hitta
den lägsta punkten i en dal. Storleken p̊a steget vi tar kallas för steglängd eller
inlärningshastighet (fr̊an eng. learning rate). Det är vanligt inom artificiell intel-
ligens att kostnadsfuntionerna är väldigt komplicerade och beräkningsmässigt
krävande att minimera. Landskapet i analogin ovan är väldigt klippigt och det
är väldigt jobbigt att ta varje enskilt steg. D̊a är traditionella metoder för att
utföra mindre lämpliga att använda. I stället använder man metoder där varje
steg är “billigare” att ta - s̊a kallade stokastiska optimeringsmetoder. Den kanske
mest kända av dessa är stochastic gradient descent, vars förlaga introducerades
1951 av Robbins & Monro med artikeln “A stochastic approximation method”.
Förenklat skulle dessa metoder kunna beskrivas p̊a följande vis: i stället för att
alltid ta ett steg som tar en ned̊at, g̊ar man lite p̊a m̊af̊a, men p̊a ett s̊adant
sätt att man i genomsnitt rör sig ned̊at. Ett problem med dessa metoder är att
man måste välja stegen man tar p̊a ett lämpligt sätt. Väljs de för stora kanske
man rör sig längre och längre ifr̊an den eftersökta dalen. Väljs de för sm̊a kan
de ta en evighet att komma till den lägsta punkten. Fokuset i den här avhand-
lingen är att undersöka olika sätt att göra stokastiska optimeringsmetoder mer

vii



robusta och mindre känsliga för steglängden som tas. Detta är viktigt ur ett
h̊allbarhetsperspektiv d̊a artificiell intelligens är p̊a väg att bli en större och
större del av v̊ar vardag och gör anspr̊ak p̊a mer och mer av v̊ar totala ener-
gi̊atg̊ang. Mer robusta metoder gör att det g̊ar åt mindre beräkningskapacitet
och energi för att träna modellerna.
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1. Introduction

For a differentiable function F : Rd → R, we consider the problem of solving

w∗ ∈ argmin
w∈Rd

F (w). (1.1)

Such problems are frequently encountered in the field of machine learning when
one seeks to estimate the parameters of a statistical model. A classical approach
for iteratively approximating a solution to (1.1) is to make use of the gradient
descent method:

wk+1 = wk − αk∇F (wk), (1.2)

where αk is the step size or learning rate. Gradient descent is an example
of a deterministic optimization algorithm. In machine learning, the objective
function F frequently takes the form

F (w) =
1

N

N∑

i=1

ℓ(yi, h(xi, w)), (1.3)

where {xi, yi}Ni=1 is a dataset of feature-label pairs and h(·, w) is a model with
model parameters w, e.g. a regression- or a classification model. It is common
that the size of the dataset N is very large and in this case it may become
very computationally expensive to compute the gradient in (1.2). A cheaper
alternative is to make use of stochastic optimization methods. This is what the
research presented in this thesis is concerned with. The most classical example
is the stochastic gradient descent method (SGD):

wk+1 = wk − αk∇f(wk, ξk),

which is a randomized version of (1.2). Here, ∇f(ξk, wk) is a stochastic approx-
imation to the gradient ∇F (wk). A typical choice is to take

∇f(w, ξk) =
1

|Bξk |
∑

i∈Bξk

∇ℓ(yi, h(xi, w)), (1.4)
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where Bξk ⊂ {1, . . . , N} is a mini-batch, chosen such that |Bξk | ≪ N . Using
SGD has been shown to have several advantages; it is less computationally costly
compared to the traditional algorithms such as gradient descent or Newton’s
method; another advantage is that the randomness allows the iterates to escape
local saddle points in the non-convex case, see [7, 21, 26]. The latter is an
important property, as many machine learning problems are indeed non-convex.
Perhaps most notable are deep neural networks, for which evidence suggest
that saddle points at which the value of the cost function is high, appear more
frequently than shallow local minima, [33]. Yet another benefit is the following:
the objective function used in machine learning problems is typically based on
the sample data set. In practice, the latter often contains data that is similar
and does not add much information to the gradient update. Here, stochastic
algorithms that only make use of a subset of the data tend to use information
more efficiently, see e.g. Section 3.3 in [14] or 8.1.3 in [33].

Despite the advantages of SGD, the step size αk often needs to be carefully
tuned; if it is chosen too small, it can take a long time before an acceptable
value of the objective function is reached; if it is chosen too large, the method
may blow up. Here, the need for stabilized methods that are less sensitive to
the choice of step size enters the picture. In the field of numerical analysis for
differential equations, methods that allow for larger step sizes have long been
used. Let f : R × Rd → Rd be a continuous function and consider the initial
value problem

y′ = f(t, y),

y(t0) = y0, t0 ∈ R.
(1.5)

The explicit Euler method is an iterative method for approximating the solution
to (1.5) on an interval [t0, T ]:

yk+1 = yk + hf(tk, yk),

for k = 0, . . . , n. Here n ∈ N, tk = t0 + hk and h = T−t0
n is the step size. SGD

can be viewed as a stochastic explicit Euler discretization of the gradient flow
equation

w′ = −∇F (w),

w(0) = w0.
(1.6)

When solving an initial value problem we want to find the solution over a certain
time period, while in the optimization case we want to solve it over an infinite
time interval to find an equilibrium solution w(t) = w∗, which by definition

2



satisfies

w′(t) = 0.

By (1.6), an equilibrium solution to the gradient flow is also a stationary point of
F . There is a severe step size restriction on the explicit Euler scheme, and thus
it can be good to use other schemes with larger stability regions. An example
of such a scheme are the Runge–Kutta–Chebyshev methods that we analyze in
Paper ii of this thesis.

In Paper i and ii of this thesis, we investigate how methods with good stabil-
ity properties that have proven to work well for solving differential equations
numerically, work when they are applied in the context of stochastic optimiza-
tion problems. The central theme is how the concept of stability of numerical
methods for ODEs translates to the stochastic optimization setting. In Paper
iii and iv, we deviate from this perspective and investigate so-called clipping
algorithms. These are methods that make use of gradient information to rescale
the vector field or step size to ensure stability. In Paper iv we also consider
momentum algorithms. A popular version of SGD is SGD with momentum:

pk+1 = βpk − α∇f(wk, ξk),

qk+1 = qk + pk+1,
(1.7)

which makes use of a weighted average of all the past gradients: By an iterative
argument, it holds that

pk+1 = −
k∑

i=0




k∏

j=i+1

βj


αi∇f(qi, ξi).

The algorithm determined by (1.7) can be viewed as a discretization of ODE

p′(t) = βp(t)−∇F (w(t)) (1.8)

q′(t) = p(t). (1.9)

Similar to (1.6), the equilibrium solutions of (1.8) are also the stationary points
of the objective function F . In Paper iv, we explore how other ODEs (more pre-
cisely dissipative Hamiltonian systems) can be used to study clipped momentum
algorithms.

The thesis is arranged as follows; Chapters 2 to 5 are intended to serve as an
introduction to the concepts encountered in Papers i– iv. The second chapter
gives an overview of supervised learning and risk minimization in general. Al-
though the research presented in the papers of the thesis is not mainly concerned

3



with this, it is important to have an understanding of the underlying problems
that the presented optimization algorithms aim to solve.

Chapter 3 gives a brief introduction to time stepping methods and stability of
numerical methods. First, we look at the explicit Euler method and discuss its
properties. Next, we discuss the implicit Euler method, which was the inspira-
tion for Paper i. The concept of stability of a numerical method is one of the
core concepts of the thesis. In connection with this, we also give a short intro-
duction to Runge–Kutta–Chebyshev methods, with which the second paper in
the thesis is concerned. In Chapter 4, we go through some of the most common
optimization methods and explain what their advantages and disadvantages are.
This thesis places a strong emphasis on optimization for non-convex functions,
and therefore we start with discussing what can be said in the deterministic case.
We also discuss stochastic optimization methods, and mention some of the most
common types of results that one encounters and their proof strategies. Chapter
5 is dedicated to the ODE-method, on which the analysis in Paper iv is based.
This is an approach for proving almost sure convergence of certain stochastic
algorithms that can be viewed as discretizations of ODEs. The analysis is more
involved than in the previous chapters, but it also allows us to demonstrate
that the entire sequence of iterates generated by the algorithm converges almost
surely to a stationary point in the non-convex case. In Chapter 6, we summarize
the research of the project and its conclusions, and consider some possible paths
for future research.

4



2. Supervised learning and
risk minimization

One of the main applications of stochastic optimization methods is to minimize
an objective function F that takes the form of a sum

F (w) =
1

N

N∑

i=1

Fi(w),

in order to estimate a statistical parameter w. The hope is that the objective
function is a good approximation of an expectation that one does not have at
hand. In this chapter, we discuss when this is the case, and under what con-
ditions. Although the research presented in this thesis is not mainly concerned
with this topic, it plays an important role in the theory of machine learning
problems, and is important for understanding the problems that the thesis is
concerned with.

2.1 Supervised learning

In a supervised learning problem, we have some measurements {(xi, yi)}ni=1,
where xi are called features and yi labels. The task is to estimate the label y for
new inputs x by finding a prediction function h such that h(x) is not too far from
y for any feature-label pair (x, y) that could be produced. The precise meaning
of “not too far” will be made clear later on. In image classification, each xi could
correspond to an image and the yi to the class of that particular image. In linear
regression, xi would be the independent variable and yi the dependent variable.
Regardless of what the underlying problem is or from where the data emanates,
before we set out and gather the data for the experiment, we do not know
what the actual value of either the features or the corresponding labels will be.

5



Thus, it is not unreasonable to think of the feature-label pairs as independent,
identically distributed random vectors {(Xi, Yi)}Ni=1, defined on a probability
space (Ω,A,P), where X takes values in the feature space and Y in the space of
all labels. In the field of statistical inference, one would refer to {(Xi, Yi)}Ni=1 as
a random sample (compare with [16, Definition 5.1.1]). If we for example were
to classify the images of the famous MNIST dataset [45], where each feature is
a 28× 28-pixel image of a handwritten digit between 0 and 9, we could

X : (Ω,A,P) → R28×28,

Y : (Ω,A,P) → {0, . . . , 9}.

2.2 Empirical risk minimization

The question now is how to determine a good prediction function h. Suppose
that we have some class of measurable functions H = {h(·, w)}w∈Θ, that we
restrict ourselves to. Here w is a parameter and Θ the parameter space. The
set of functionsH could for example be all functions of the form h(x,w) = ax+b,
with w = (a, b), or all convolutional neural networks with a certain structure.
Our question in the following will be, how do we know if a certain function
h(·, w) from the chosen class H is a good candidate. The common way to
measure this is to introduce a loss function ℓ that gives us a penalty if h(x,w)
is not equal to the true value of y - the farther away, the larger the penalty. In
a linear regression problem we would for example use the square loss function
ℓ(y, h(x,w)) = (y − h(x,w))2, where h(x,w) = ax + b as above. We then seek
to minimize the risk functional

R(w) =

∫

Ω
ℓ (h(X(ω), w), Y (ω))P(dω). (2.1)

Rather than working with the integral in the abstract probability space, it is
often more convenient to work with the measure P(X,Y ) induced by P in the
feature-label space, i.e. P(X,Y )(A) = P ({ω : (X(ω), Y (ω)) ∈ A}), where A ∈
B
(
Rd
)
, the Borel σ−algebra on Rd, compare [41, p. 10]. This allows us to

talk about the joint-, marginal- and conditional distributions of (X,Y ). In the
MNIST example, (2.1) would become

R(w) =

∫

R28×28×{0,...,9}
ℓ (h(x,w), y)PX,Y (dx× dy).

where PX,Y is the joint distribution of (X,Y ) defined by

PX,Y (A) = P ({ω : (X(ω), Y (ω)) ∈ A}) .

6



In many cases the conditional distribution of Y given X can be modelled as
deterministic. Using the MNIST dataset as an example again, it is natural to
put P (Y = 3) = 1 given that X is an image of a 3, and so on. The rationale for
this procedure is that choosing a function h(·, w) ∈ H that gives a low value for
the risk functional will give us a low loss ℓ(h(x,w), y) on average. The problem
is that in most cases, the joint distribution PX,Y is unknown to us. We can
however obtain a random sample {(Xi, Yi)}Ni=1 and hence what we can minimize
is the empirical risk functional

RN (w) =
1

N

N∑

i=1

ℓ (h(Xi, w), Yi) . (2.2)

Minimizing (2.2) rather than (2.1) is sometimes referred to as the principle of
empirical risk minimization, see [64, p. 32]. We note that the minimizer w∗ of
(2.2) is an estimator, i.e. a function of the random sample {(Xi, Yi)}Ni=1 (com-
pare with [16, Definition 7.1.1] and the discussion that follows). In general, w∗
could be non-measurable and/or set-valued. In this discussion, we for simplicity
assume that it is a random variable, i.e. single-valued and measurable. There
are several ways to deal with non-measurability (see for example [66, 4.4] and
the discussion on the outer expectation in [63]) and set-valued random variables
(see [1, 14.91]), but this is outside the scope of this thesis.

2.3 Generalization error

An important concept in machine learning is that of generalization. Assume
that there is w0 in the parameter space Θ such that R(w0) = infw∈ΘR(w) and
let w∗ be a minimizer of (2.2). Suppose that we want to estimate w0 by finding
w∗. Can we guarantee that R(w∗) will get closer to R(w0) in some sense -either
in probability or almost surely- if we increase the number of samples?

Closely following [66], the difference R(w∗)−R(w0) can be split up as follows

R(w∗)−R(w0) =R(w∗)−RN (w∗)︸ ︷︷ ︸
T1

+RN (w∗)−RN (w0)︸ ︷︷ ︸
T2

+

RN (w0)−R(w0)︸ ︷︷ ︸
T3

.

The second term T2 is less than or equal to 0 since w∗ is a minimizer of RN (w).
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According to the law of large numbers we have for a fixed w that

lim
N→∞

1

N

N∑

i=1

ℓ (h(Xi, w), Yi) =

∫

Ω
ℓ (h(X(ω), w)), Y (ω)) dP(ω),

in probability or almost surely (depending on wether we use the strong- or weak
law of large numbers). The parameter w0, being the minimizer of R(w), is
independent of the random sample and is thus a deterministic quantity. Thus
we can conclude that T3 converges to 0. (Again, at this point we keep the
discussion general, so we are not specifying the mode of convergence).

We now turn our attention to the first term T1. The problem is that w∗ is
not fixed as it depends on the random variables {(Xi, Yi)}Ni=1. Therefore, we
need a uniform bound on the difference R(w)−RN (w) so that we can guarantee
beforehand that the difference will not be too large, independent of what sample
we get and what distribution they have. The common approach to ensure this
is to restrict the functions that we consider to various function classes for which
uniform convergence holds, see [64]. Under certain conditions on the class H it
is for example possible to say that RN converges uniformly, almost surely, to R,
i.e.

P
({

ω : lim
N→∞

sup
w∈Θ

|R(w)−RN (w)| ≠ 0
})

= 0,

compare [64, Thm. 3.5]. In machine learning, one often considers classes of
prediction functions H with finite VC-dimension. In the expression (2.2), we
could for example have H = {h(·, w)}w∈Rd . Intuitively, one can say that these
are classes of functions that do not overfit the data. Suppose that the functions
are also bounded, in the sense that there are constants A and B such that
A ≤ h(x) ≤ B holds for all h ∈ H. Then it holds for a class H of finite
VC-dimension v that

P
({

ω : sup
w∈Θ

|R(w)−RN (w)| > ϵ
})

≤ 4 exp

{
N

(
v
(
ln(2Nv ) + 1

)

N
− ϵ2

B −A

)}
,

(2.3)

when N > v
2 , compare (3.10) and Thm. 3.3 in [65]. That is, RN converges

uniformly in probability to R. If we look at how the constant on the right-
hand side of (2.3) behaves, we see that for a fixed VC-dimension v, we have
uniform convergence in w as the number of samples N is increased. We also see
that for a fixed number of samples, N , the gap between R(w) and RN (w) can
increase if we use a function class with larger VC-dimension v. For other classes
of functions, such as the set of unbounded, non-negative functions, there are
similar bounds on the gap between the empirical risk and the risk functional,
compare [65, Ch. 3.7], but this is not the focus of this thesis.
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3. Time integration

The optimization methods that are proposed in the papers of this thesis are
based on numerical schemes for time-integration. In this chapter we therefore
give a brief overview of the corresponding time-integration schemes, as well as
some of the most relevant concepts from the field.

3.1 Explicit Euler

The goal of time integration methods is to approximate the solution to the
problem

w′(t) = f(t, w(t)), t ∈ (t0, T ],

w(t0) = w0,
(3.1)

where f : [t0, T ]× Rd → R.

The most simple method is perhaps the explicit Euler method. We start with
choosing a grid of time points {tk}Nk=0 defined by tk+1 = tk + h, with h = T−t0

N ,
where h is the step size. Using the knowledge that w(t0) = w0, we define a
sequence of approximations {wk}Nk=0 iteratively, where each wk ≈ w(tk), by ap-
proximating the left-hand side of (3.1) with a forward difference approximation

w(t+ h)− w(t)

h
≈ f(t, w(t))

which gives the recursion

wk+1 = wk + hf(tk, wk). (3.2)

Suppose that we at time point tk actually have the exact value of w(tk) at hand.
An important question that arises is how far the approximation wk+1 will be

9



from w(tk+1), if we make use of (3.2). Assuming that f is twice continuously
differentiable, we get by Taylor expansion that

w(tk+1) = w(tk + h) = w(tk) + h · w′(tk) +
h2

2
· w′′(θk) (3.3)

= w(tk) + h · f(tk, w(tk)) +
h2

2
· w′′(θk), θk ∈ [tk, tk+1]. (3.4)

Hence we see that if supθk∈[tk,tk+1]
∥w′′(θk)∥ is bounded, the local error defined

by rk = w(tk+1)− (w(tk) + h · f(tk, w(tk))) satisfies

∥rk∥ ≤ C · h2, C > 0,

which tends to 0 as h tends to 0. A method that satisfies this property is referred
to as a consistent method. In this case, as the local error is O(h2), we say that
the order of consistency of the method is 1.

Another quantity of interest is the global error, given by ek = w(tk)−wk. While
the local error measures the error made in one step, the global error measures
the accumulated error at time tk. With starting point in the local error (3.3),
we subtract wk+1 from both sides which yields the equation

w(tk+1)− wk+1 = w(tk)− wk + h · (f(tk, w(tk))− f(tk, wk)) + w′′(θk)
h2

2
.

If we assume that f is Lipschitz continuous with Lipschitz constant L, we get
the following bound on the global error

∥ek+1∥ ≤ (1 + hL) ∥ek∥+ C · h2,

where C = w′′(θk)
2 . It can be shown by induction, along with the fact that

1 + x ≤ ex for x ≥ 0, [40, p. 6] that the global error satisfies

∥ek∥ ≤ c

L

(
e(T−t0)L − 1

)
h. (3.5)

This also means that the explicit Euler method is convergent ; the maximum er-
ror tends to 0 as the step size tends to 0, and this holds for any initial value prob-
lem (3.1) for which the function f on the left-hand side is Lipschitz-continuous
and whose solution is twice continuously differentiable, with bounded second
derivative. The error constant in (3.5) is not very good for practical purposes;
it is however possible to obtain sharper error bounds, see [40].
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3.2 Implicit Euler

Instead of evaluating the function on the right-hand side of (3.1) at (tk+1, wk+1)
one obtains the implicit Euler update

wk+1 = wk + hf(tk+1, wk+1). (3.6)

This can be rewritten on the form

wk+1 = Rkwk, (3.7)

where Rk = (I + hf(tk+1, ·))−1 is the resolvent of f . In order to investigate the
order of consistency, we consider the difference

rk+1 = w(tk+1)− w(tk)− hf(tk+1, w(tk+1)).

Following [40, Chap. 1.4], we expand the first term in Taylor series around tk
and exchange the last for w′(tk+1). This yields

rk+1 = w(tk) + hw′(tk) +
h2

2
w′′(tk) +O(h3)− w(tk)− hw′(tk+1).

We proceed with expanding the last term in Taylor series around tk which gives

rk+1 =w(tk) + w′(tk)h+
h2

2
w′′(tk) +O(h3)− w(tk)−

h

{
w′(tk) + hw′′(tk) +O(h2)

}
.

From this we see that

rk+1 = w(tk+1)− w(tk)− hf(tk+1, w(tk+1)) = −h2

2
w′′(tk) +O(h3), (3.8)

We see that the local error is O(h2), and hence the implicit Euler scheme is
consistent of order 1.

As in the explicit Euler case, it is possible to show that the global error ek =
w(tk) − wk satisfies a bound similar to (3.5). See e.g. [27, 40]. The advantage
of using the implicit Euler method over the explicit Euler method is that it is
more stable and allows for larger step sizes. It is however more computationally
costly in general compared to explicit methods, as one needs to solve an implicit
equation in order to obtain the next iterate in each step.
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3.3 Runge–Kutta methods

The starting point of Runge–Kutta methods, is the observation that the problem
(3.1) equivalently can be written as an integral equation

w(t) = w0 +

∫ t

0
f(s, w(s))ds.

The relation between the solution to (3.1) at time tk and tk+1 can thus be
expressed as

w(tk+1) = w(tk) +

∫ tk+1

tk

f(s, w(s))ds. (3.9)

Given an approximation wk ≈ w(tk), we can obtain an approximation to w(tk+1)
by using a quadrature formula to approximate the integral on the right-hand
side of (3.9), i.e.

wk+1 = wk + h

s∑

i=0

bif(tk,i, wk,i). (3.10)

Here tk,i ∈ [tk, tk+1] and the coefficients bi are weights from the quadrature rule.
As we do not have the function w(t) at hand, we need approximations wk,i to
the points w(tk,i). In Runge–Kutta methods, the intermediate stages wk,i are
computed in a recursive fashion according to the rule

wk,i = wk + h

s∑

j=1

ai,jf(t+ hcj , wk,j). (3.11)

If ai,j = 0 for j ≥ i, the method is explicit, otherwise implicit. The coefficients
ai,j , bi, cj , in (3.10) and (3.11) are chosen such that the local and global error
satisfies certain order conditions. A common assumption is that ci =

∑s
j=1 ai,j ,

see [35]. For consistency of order 1, which is used in Paper ii, we need to impose
the condition that

∑s
i=1 bi = 1, see Section II.1.1 of [38].

The advantages of Runge–Kutta methods is that they can have larger stability
regions than the explicit Euler method and allow for larger step sizes. This
comes with the price of a higher computational cost in each step.
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3.4 Stability

Consider the initial value problem

w′(t) = f(w(t)), t > t0,

w(t0) = w0,
(3.12)

where f : Rd → R. For simplicity, we consider autonomous systems in this
section. We say that w(t) = w∗ is an equilibrium solution if w′(t) = 0, i.e. it is
constant in time. It is said to be a stable equilibrium solution, if for any ε > 0,
there is a δ > 0 such that ∥w(t0) − w∗∥ < δ implies that ∥w(t) − w∗∥ < ε,
for all t ≥ t0. That is, any small perturbation of the equilibrium solution will
remain in an ε−neighborhood of w∗ at any time t ≥ t0. If it also holds that
limt→∞∥w(t)− w∗∥ = 0, the solution is said to be asymptotically stable.

It is possible to show that w∗ is an asymptotically stable equilibrium solution
if all the eigenvalues of the Jacobian of f at w∗ have negative real part, see
Theorem 1.2.5 in [68]. If we assume that the Jacobian at w∗ is diagonalizable,
then the linearized system

w′
l(t) = Jf (w∗)wl(t), t > t0,

wl(t0) = w0,
(3.13)

is equivalent to a d−dimensional system of equations

x′(t) = Λx(t), t > t0,

x(t0) = x0−
Here Λ is a diagonal matrix such that Jf (w∗) = Q−1ΛQ, for some invertible
matrix Q, and whose diagonal elements are the eigenvalues of Jf (w∗). We have
also made the change of variable x(t) = Qwl(t). We thus have d linear equations,
all of the form

y′(t) = λy(t), λ ∈ C, t > t0,

y(0) = y0.
(3.14)

Equation (3.14) is known as the linear test equation. Since we have |y(t)| =
eRe(λ)t|y0| for Equation (3.14), we see that y∗ = 0 is stable if and only if Re(λ) ≤
0. For Re(λ) < 0 it is asymptotically stable.

For a numerical method that produces a sequence of approximations {yk}k≥0 to
the solution to (3.14), it would be desirable that it mimicked this behavior; i.e.
it should satisfy

lim
k→∞

yk = 0, (3.15)
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when applied to equation 3.14 with Re(λ) < 0.

If we apply the explicit Euler method from Section 3.1 to (3.14), we obtain the
difference equation

yn+1 = R(z)yn,

where R(z) = 1+ z and z = hλ. The function R(z) is referred to as the stability
function of the method. For the values z ∈ C such that |R(z)| < 1 (the stability
domain of the method), (3.15) holds as we have that |yn+1| < |yn|. In the case
of the explicit Euler method, we require that |1+z| < 1. If λ ∈ R− (the negative
real line including 0), this results in a step size restriction h < − 2

λ .

For the implicit Euler method from Section 3.2, the stability function is given
by R(z) = (1 − z)−1. The stability domain is thus {z ∈ C : |1 − z| > 1}.
For the implicit Euler method it holds that C− = {z ∈ C : Re(z) < 0} is
contained in the stability domain. A method that satisfies this, is said to be
A-stable, see Definition 3.3 in [36]. In particular, the negative real line R−, is
included in the stability domain of an A-stable method. This means that there
is no restriction on the step size for λ ∈ C−. However, A-stable Runge–Kutta
methods are always implicit, compare Lemma 4.2 in [40] and its corollary. This
means that it is in generally necessary to solve a non-linear equation to obtain
the update in each step. A-stable Runge–Kutta methods are therefore generally
more computationally demanding than explicit Runge–Kutta methods.

For the Runge–Kutta methods introduced in Section 3.3, applying (3.10) and
(3.11) to (3.14), gives the update yn+1 = R(z)yn, where R(z) = 1 + zbt(I −
zA)−1

1, where 1 = (1, . . . , 1)T ∈ Rs, b is a vector containing the bi coefficients
of (3.10) and

A =




a1,1 a1,2 . . . a1,s
a2,1 a2,2 . . . a2,s
...

...
. . .

...
as,1 as,2 . . . as,s


 .

Hence the stability domain S = {z ∈ C : |R(z)| < 1} of a Runge–Kutta method
depends on the coefficient matrix A and the vector b.

One thing to note is that the larger part of the negative real axis the stability
region S of a method contains, the larger step size it allows for. Following
[38], we define the real stability boundary of a method, βR > 0, as the largest
number such that [−βR, 0] ⊂ S̄. Here S̄ denotes the closure of the stability
region. For any explicit s-stage Runge–Kutta method, it holds that βR ≤ 2s2,
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Figure 3.1: Stability region of a RKC method with 5 stages. We see that there are points z on the negative real axis for
which |R(z)| = 1.

compare [38, Thm. 1.1]. There is a class of Runge–Kutta methods whose
real stability boundary satisfies βR = 2s2. These are knows as Runge–Kutta–
Chebyshev methods. For brevity, we will refer to these as RKC methods. The
stability function of such a method is given by

Rs(z) = Ts

(
1 +

z

s2

)
, (3.16)

where s is the number of stages of the method and Ts is the s-th Chebyshev
polynomial, defined by the recurrence relation

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x).

In Figure 3.2, we see the stability region for a RKC method with s = 5 stages.
A problem with RKC methods, is that there will be points z ∈ (−βR, 0) such
that |R(z)| = 1. This means that a small error due to numerical inaccuracy
could cause the iterates to end up outside of the stability domain. A remedy
for this, see [38, V.1], is to introduce a damping factor. Instead of using the
stability polynomials in (3.16), one uses damped versions of these;

Rs(z) =
Ts (ω0 + ω1z)

Ts (ω0)
, ω1 =

Ts (ω0)

T ′
s (ω0)

,

where ω0 > 1 is a parameter. With ω0 = 1 + ε
s2
, for ε > 0, the real stability

boundary then becomes βR = 2ω0T ′
s(ω0)

Ts(ω0)
≈
(
2− 4

3ε
)
s2, see [38]. For small ε > 0

it is a slight reduction compared to that of the undamped method, but instead
we gain some margin around the critical points. See Figure 3.2 for an illustration
of the stability region of a damped RKC-method with 5 stages.
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Figure 3.2: Stability region of a damped RKC method with 5 stages. The damping parameter ε = 0.05.
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4. Optimization

The principle of empirical risk minimization, described in Chapter 2, tells us that
we can minimize the empirical risk functional (2.2), instead of the risk functional
(2.1). Thus, we have transformed the problem from that of finding the minimum
of the unknown function (2.1), to an unconstrained optimization problem with
the empirical risk functional (2.2) as the objective function. In this chapter,
we will describe various common optimization methods for approximating the
solution to such problems.

4.1 Gradient descent

Let F : Rd → R be a continuously differentiable function such that its derivative
is Lipschitz-continuous with Lipschitz constant L. Further, assume that F is
bounded below by some number F∗. Suppose that we want to find a solution to
the problem

w∗ = argmin
w∈Rd

F (w). (4.1)

A common algorithm for approximating the solution w∗, is the gradient descent
method. We start by choosing an initial iterate w1. A sequence of approxima-
tions {wk}k≥1 is then produced by letting

wk+1 = wk − αk∇F (wk), (4.2)

for a step size/learning rate αk > 0. We note that (4.2) corresponds to the
explicit Euler method in Chapter 3. By the Lipschitz continuity of the gradient
of F , it holds that

F (wk+1) ≤ F (wk) + ⟨∇F (wk), wk+1 − wk⟩+
L

2
∥wk+1 − wk∥22, (4.3)
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compare Lemma 1.2.3 in [52]. If we use (4.2) in this expression, we obtain

F (wk+1) ≤ F (wk)− αk

(
1− Lαk

2

)
∥∇F (wk)∥22. (4.4)

Assuming that αk < 2
L , the term 1 − Lαk

2 is positive and hence we see that
the sequence {F (wk)}k≥1 is a decreasing sequence. By differentiating φ(α) =

−α + Lα2

2 , we find that the maximum decrease we can achieve in an iteration
is when we take αk = 1

L . Let us now suppose for simplicity that αk = 1
L . Then

(4.4) becomes

1

2L
∥∇F (wk)∥22 ≤ F (wk)− F (wk+1).

By summing up from 1 to K we see that

1

2L

K∑

k=0

∥∇F (wk)∥22 ≤ F (w0)− F (wK+1) ≤ F (w0)− F∗,

where F∗ is the lower bound of (4.1). If we let K tend to ∞ in the sum above,
we see that the sum it is finite, since the right-hand side is independent of K.
Thus, we can conclude that

lim
k→∞

∥∇F (wk)∥2 = 0,

i.e. we reach a stationary point of F in the limit. It turns out that we can say
more about the local convergence under further assumptions. Closely following
Section 1.2.3 in [52], we assume that

1. The Hessian ∇2F of F is Lipschitz continuous with Lipschitz constant M .

2. There is a local minimum w∗ at which the Hessian is positive definite, with
the smallest eigenvalue l > 0 and largest eigenvalue L > 0.

3. The initial iterate w0 is close enough to w∗ in the sense that

∥w0 − w∗∥2 <
2l

M
. (4.5)
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Then we can ensure that ∥wk+1−w∗∥2 < ∥wk−w∗∥2. To see this, we start with
noting that

∇F (wk) = ∇F (wk)−∇F (w∗) =
∫ 1

0
∇2F (w∗ + t(wk − w∗))(wk − w∗)dt

=: Gk(wk − w∗).

By adding subtracting w∗ from both sides of (4.2) we get the recurrence relation

wk+1 − w∗ = (I − αkGk) (wk − w∗).

Using the Lipschitz continuity of ∇2F , it is possible to show that if ∥wk−w∗∥2 <
2l
M , then

∥I − αkGk∥ < 1,

compare Corollary 1.2.2 and Theorem 1.2.4 in [52]. In the expression above, ∥·∥
denotes the 2-norm for matrices. From this, and the fact that ∥wk+1 − w∗∥2 ≤
∥I −αkGk∥∥wk −w∗∥2, we see that the sequence {wk}k≥0 converges to w∗. For
the optimal choice of step size

αk =
2

l + L
,∀k ≥ 1, (4.6)

one obtains a linear convergence rate, in the sense that

∥wk − w∗∥ ≤ 2lL∥w0 − w∗∥
2l − L∥w0 − w∗∥

(
1− 2l

L+ 3l

)k

.

For a derivation of this result, see Theorem 1.2.4 in [52]. As an example of
a function that fulfills the assumptions above, we can take F (w) = sin(w) for
w ∈ R. Given that we start close enough to w∗ = 3π

2 , we will converge to w∗ if
the step size is small enough.

The previous convergence guarantee holds for non-convex functions that are
sufficiently smooth. As long as we start close enough to a local minimum, we
will converge to that minimum linearly. This is under the premise that the step
size is chosen according to (4.6). It essentially tells us that the non-convex case
behaves like the convex case if we are close enough to a local minimum. The issue
with this is that it might be hard in practice to estimate the constants l, L and
M . Therefore, it is difficult to estimate (4.6) and ensure that the convergence
is linear. Similarly, it is in most cases not possible to find the constant on
the right-hand side of (4.5). Furthermore, the local minimum w∗ is not known
beforehand, and it is not feasible to choose the initial iterate w0 according to
(4.5).
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4.2 Proximal point method

In the previous section, we noted that the update (4.2) could be seen as an ex-
plicit Euler discretization of the gradient flow equation (1.6). Another common
option is to instead use the implicit Euler scheme as discretization; instead of
evaluating ∇F at wk, we choose to evaluate it at wk+1, which gives the update

wk+1 = wk − αk∇F (wk+1). (4.7)

In the optimization setting, the update is often seen in the form

wk+1 = proxF,αk
(wk) = argmin

w∈Rd

{
F (w) +

1

2αk
∥w − wk∥22

}
. (4.8)

For differentiable F , the equivalence of (4.7) and (4.8) can be seen by differen-
tiating the expression F (w) + 1

2αk
∥w − wk∥22. Another way to look at (4.8), at

least for convex functions, is as a generalization of orthogonal projection. If we
let C be a convex set, then the indicator function

IC(w) =

{
0 , w ∈ C,

∞, w /∈ C,

is a convex function and we have that

proxIC ,αk
(wk) = argmin

w∈Rd

{
IC(w) +

1

2αk
∥w − wk∥22

}
,

which is the orthogonal projection of wk onto C.

4.3 Stochastic gradient descent

For machine learning problems, the function F in (4.1) is often of the form

F (w) =
1

N

N∑

i=1

ℓ(h(xi, w), yi), (4.9)

where ℓ is a loss function, h(·, w) is a prediction function and {(xi, yi)}Ni=1 is
a sample of feature-label pairs. In Chapter 2, we adopted the point of view
that the objective function depended on a random sample. Now, we are in-
stead concerned with the problem of minimizing (4.9) with respect to w, for a
known sample {(xi, yi)}Ni=1. Hence, the objective function (4.9), is a determin-
istic function. For each of the functions in the sum of (4.9), we need to evaluate
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the gradient if we want to compute∇F (w). Hence, the gradient update (4.2) can
be very computationally expensive for a large number of samples N . A solution
to this is the stochastic gradient descent method which, instead of computing
the full gradient at each iteration, computes an approximation ∇f(wk, ξk) which
is used instead:

wk+1 = wk − αk∇f(wk, ξk). (4.10)

Here {ξk}k≥1 is a sequence of i.i.d random variables defined on a probability
space (Ω,F ,P) and could for example denote the act of choosing a batch, i.e. a
random subset of indices Bk ⊂ {1, . . . , N}. In this case, we would get

∇f(wk, ξk) =
1

|Bk|
∑

i∈Bk

ℓ(h(xi, w), yi). (4.11)

In the following, we will by Eξk [·] denote the conditional expectation taken with
respect to σ−algebra generated by the sequence ξk−1, . . . , ξ1. Note that as wk

only depends on ξj for j < k, wk is independent of ξk, by the assumption that
the sequence {ξk}k≥1 are mutually independent. There are several strategies for
showing convergence of the stochastic gradient descent method. In this section,
we will closely follow the approach in [14]. We start with looking at the results in
the non-convex case, and we assume that there exists some global lower bound
F∗ such that

F∗ ≤ F (w), ∀w ∈ Rd. (4.12)

Another common assumption, which we will also make, is that F has Lipschitz
continuous gradients. By (4.3) and the fact that

wk+1 − wk = −αk∇f(wk, ξk),

we get that

F (wk+1)− F (wk) ≤ −αk⟨∇F (wk),∇f(wk, ξk)⟩+
Lα2

k

2
∥∇f(wk, ξk)∥22.

If the stochastic gradient is an unbiased estimate of ∇F (w), i.e.

Eξ[∇f(w, ξ)] = ∇F (w), (4.13)

we get, after taking the expectation w.r.t. ξk and using that wk is independent
of ξk,

Eξk [F (wk+1)]− F (wk) ≤ −αk∥∇F (wk)∥22 +
Lα2

k

2
Eξk

[
∥∇f(wk, ξk)∥22

]
. (4.14)
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We now introduce the assumption that

Eξk

[
∥∇f(wk, ξk)∥22

]
≤ M +MG∥∇F (wk)∥22, ∀k ≥ 1, (4.15)

for some constants M,MG > 0. This essentially means that the variance is
allowed to grow if the gradient grows and is bounded at stationary points. If we
insert (4.15) into (4.14), we get

Eξk [F (wk+1)]− F (wk) ≤ −αk

(
1− αkLMG

2

)
∥∇F (wk)∥22 +

LMα2
k

2
.

Here we see that if we impose the step size restriction αk ≤ 1
LMG

, the term

1− αkLMG
2 > 1

2 . Thus, the previous bound becomes

Eξk [F (wk+1)]− F (wk) ≤ −αk

2
∥∇F (wk)∥22 +

LMα2
k

2
. (4.16)

We now take the expectation of the previous expression:

E [F (wk+1)]− E [F (wk)] ≤ −αk

2
E
[
∥∇F (wk)∥22

]
+

LM

2
α2
k. (4.17)

If we rearrange the terms and sum from 1 to K, we arrive at the inequality

K∑

k=1

αkE
[
∥∇F (wk)∥22

]
≤ 2 (F (w1)− E [F (wK+1)]) + LM

K∑

k=1

α2
k. (4.18)

Here we have used the fact that E [F (w1)] = F (w1) since w1 is deterministic.
The left-hand side of the previous inequality can be bounded from below by as
follows

min
1≤k≤K

E
[
∥∇F (wk)∥22

] K∑

k=1

αk ≤
K∑

k=1

αkE
[
∥∇F (wk)∥22

]
. (4.19)

After dividing both sides by
∑K

k=1 αk we then get

min
1≤k≤K

E
[
∥∇F (wk)∥22

]
≤ 2 (F (w1)− F∗) + LM

∑K
k=1 α

2
k∑K

k=1 αk

, (4.20)

where we have used (4.12) in order to bound −E [F (wK+1)] by −F∗. From (4.20)
we see that the sequence

{
min

1≤k≤K
E
[
∥∇F (wk)∥22

] }
K≥1

(4.21)
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converges to 0, if we require that

∞∑

k=1

αk = ∞ and

∞∑

k=1

α2
k < ∞. (4.22)

With the additional regularity assumptions that ∥∇F (w)∥22 is differentiable, it
is possible to show

lim
k→∞

E
[
∥∇F (wk)∥22

]
= 0,

although not with a rate, compare Corollary 4.12 in [14].

We will now turn our attention to the convex case. A common assumption is
that the objective function is strongly convex with convexity constant c > 0, i.e.

F (w′)− F (w) ≥ ⟨∇F (w), w′ − w⟩+ c

2
∥w′ − w∥22, w, w′ ∈ Rd.

Strongly convex (and differentiable) functions satisfy the inequality

2c (F (w)− F (w∗)) ≤ ∥∇F (w)∥22, (4.23)

where w∗ is the unique global minimum of F , see Appendix B in [14]. The
fact that such a minimum exists follows from (4.12), the continuity of F along
with the strong convexity, compare Corollary 11.17 in [5]. Inserting (4.23) into
inequality (4.17), we get

E [F (wk+1)]− F (wk) ≤ −cαk (E [F (wk)]− F (w∗)) +
LM

2
α2
k.

Here we can subtract F (w∗) and add F (wk) from both sides, which yields the
recurrence inequality

E [F (wk+1)]− F (w∗) ≤ (1− cαk) (E [F (wk)]− F (w∗)) + LMα2
k. (4.24)

Using an induction argument as in Theorem 4.7 in [14], we can use (4.24) to
show that with αk = β

k+γ , where β > 1
c and γ > 0, we have

E [F (wk)− F (w∗)] ≤
ν

k + γ
, (4.25)

and where

ν = max

{
LMβ2

2(cβ − 1)
, (1 + γ) (F (w1)− F (w∗))

}
.
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The constant ν is chosen such that we can perform the base- and induction step
of the proof, as in [14]. The decreasing step size in (4.22) and (4.25) is needed
for convergence. If we use a fixed step size, i.e. αk = α for all k ∈ N, the bound
(4.20) becomes

min
1≤k≤K

E
[
∥∇F (wk)∥22∥

]
≤ 2 (F (w1)− F∗)

αK
+ LMα. (4.26)

Letting the number of iterations K tend to infinity, the first term on the right-
hand side tends to 0, while the second is unaffected. Thus, the sequence (4.21)
stays bounded, but it does not necessarily converge to 0. This is sometimes
referred to as a noise-ball around a stationary point. Similarly, we can use
(4.24) with a fixed step size, to show that the sequence {F (wk)}k≥1 converges
to a bounded region around the minimum F (w∗), see [14, Thm. 4.6]. Indeed,
by subtracting Lα

c from both sides of (4.24), we get the bound

E [F (wk+1)]− F (w∗)−
Lα

c
≤ (1− 2cα)

(
E [F (wk)]− F (w∗)−

Lα

c

)
.

If α < 1
c this will be a contraction, and we find that

E [F (wk+1)]− F (w∗) ≤
Lσ2α

4c
+ (1− 2cα)k

(
F (w1)− F (w∗)−

Lσ2α

4c

)
,

(4.27)

from which we conclude that E [F (wk+1)] − F (w∗) is bounded by Lσ2α
4c as k

tends to infinity. A potential strategy is to start a scheme with a constant step
size until we are close to the bounded region around the stationary point, and
then use a decreasing step size to obtain convergence. It is possible to control
the size of the bound in (4.27) and (4.26), by choosing the constant step size
α small enough. A classical choice is to take α = 1/

√
K, so that the step size

depends on the number of iterations. If we plug this value of α into (4.26), we
see that we will have achieved an error of size O(1/

√
K) after K iterations in

the non-convex case.

Another result that one sometimes encounters is the following; consider (4.18)
and divide both sides by

∑K
j=1 αj :

K∑

k=1

αk∑K
j=1 αj

E
[
∥∇F (wk)∥22

]
≤ 2 (F (w1)− F∗) + LM

∑K
k=1 α

2
k∑K

k=1 αk

.

If we for a fixed number of total iterations K introduce a random variable R
such that

P (R = k) =
αk∑K
k=1 αk

, for k = 1, . . . ,K. (4.28)
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Then we can rewrite the previous inequality as

E
[
∥∇F (wR)∥22

]
≤ 2 (F (w1)− F∗) + LM

∑K
k=1 α

2
k∑K

k=1 αk

.

With a constant step size of αk = 1√
K

we get

E
[
∥∇F (wR)∥22

]
≤ 2 (F (w1)− F∗) + LM√

K
.

This means that an algorithm whose output is a randomly selected iterate ac-
cording to (4.28), will on average have “small” gradients. How small the gradi-
ents are on average depends on the total number of iterationsK. This view point
is for instance adopted in [32]. The rationale is that such an algorithm does not
require any additional computational effort to estimate min0≤k≤K∥∇F (wk)∥2.
We can obtain similar results for the algorithms in Paper ii and Paper iii as
well, although this is not explicitly stated.
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5. ODE method

The results in Chapter 4.4.3 allows us to conclude that a subsequence of SGD
converges to a stationary point of the objective function for non-convex func-
tions. This can for instance be shown by making use of (4.21) in the previous
chapter, along with Chebyshev’s inequality. See e.g. Corollary 7 of Paper iii.
We can however not conclude that the entire sequence converges to a stationary
point. In this chapter, we will discuss the ODE method, which provides a frame-
work for demonstrating such convergence. The analysis presented in Paper iv
is based on this method. For the sake of illustrating the method, we will here
for simplicity perform the analysis for the gradient flow

w′(t) = −∇F (w(t)), (5.1)

and SGD-update

wk+1 = wk − αk∇f(wk, ξk), (5.2)

but the main ideas translates to the analysis of the Hamiltonian system (7)
and update (9) in Paper iv. The method originates from [47] and the partic-
ular strategy that we will employ here is due to [43, 44]. It can be broadly
summarized in four steps:

Step 1 Introduce a pseudo-time tk =
∑k−1

i=0 αi and construct a piecewise con-
stant interpolation W0(t) of {wk}k≥0 generated by (5.2).

Step 2 Show that the time shifted process Wk(t) = W0(tk + t) asymptotically
satisfies (5.1).

Step 3 Demonstrate that every subsequence of {Wk}k≥0 has a further sub-
sequence converging to a solution to (5.1).

Step 4 At last, make use of the underlying dynamics of (5.1) to conclude that
{wk}k≥0 converges almost surely to a stationary point of F . We split
this up into two steps:
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i) Show that the sublevel sets of F , {w : F (w) ≤ c} are locally
asymptotically stable.

ii) Make use of the Kushner & Clark theorem (Theorem 5.2 in [44])
to show that the sequence {wk}k≥0 generated by (5.2) converges
to a stationary point of F .

We are interested in extracting converging subsequences of {Wk}k≥0 whose limit
satisfies (5.1). This will allow us to argue by contradiction to conclude that
{wk}k≥0 converges to a stationary point. Step 2 above implies that if a sub-
sequence of {Wk}k≥0 converges, then it converges to a solution to (5.1). To
show Step 3, we first demonstrate that {Wk}k≥0 satisfies an extended form of
equicontinuity. We can then appeal to a version of the Arzelà–Ascoli theorem,
compare [44].

We will divide the outline of the proof in the next section according to four
above-mentioned steps.

One of the key assumptions for the approach to work is that

sup
k∈N

∥wk∥ < ∞ (5.3)

almost surely. This is relatively strong, but as we shall see, it does hold for (5.2)
under the same assumptions on the noise that we made in the previous chapter
if the objective function is coercive. In this chapter, we thus make the same
assumptions on the objective function F as in Chapter 4.4.1 and the stochastic
setting is the same as in Chapter 4.4.3.

5.1 ODE method

In this section, we follow the approach of [44] adapted to Equation (5.1), while
filling in many details that are omitted in [44].

Step 1

Consider the sequence {wk}k≥0 defined by the stochastic gradient update (5.2).
We can write it as

wk+1 = wk − αk∇F (wk) + αkδMk, (5.4)
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where δMk = ∇F (wk)−∇f(wk, ξk). We start by defining a sequence of pseudo-
time points {tk}k≥0 by t0 = 0 and tk =

∑k−1
i=0 αi. Let W0 be given by

W0(t) =

{
wk, tk ≤ t < tk+1

w0, t < t0
,

or equivalently

W0(t) = w0 · I(−∞,t0)(t) +
∞∑

i=0

wi · I[ti,ti+1)(t), (5.5)

where I[tk,tk+1)(t) denotes the indicator function of the interval [tk, tk+1). We
note that W0(t) is a stochastic process defined on the underlying probability
space (Ω,F ,P), depending on ω ∈ Ω through the random variables {wk}k≥0.
By introducing the function m(t), defined by

m(t) = k, tk ≤ t < tk+1, (5.6)

we can write

W0(t) = w0 −
m(t)−1∑

i=0

αi∇F (wi) +M0(t), (5.7)

whereM0(t) =
∑m(t)−1

i=0 αiδMi. At this point, we introduce the shifted sequences
{Wk(t)}k≥0 and {Mk(t)}k≥0:

Wk(t) = W0(tk + t) and Mk(t) = M0(tk + t)−M0(tk). (5.8)

We note that we can write

Mk(t) =

m(tk+t)−1∑

i=k

αiδMi. (5.9)

From (5.7) and the fact that Wk(0) = wk we have that

Wk(t) = Wk(0)−
m(tk+t)−1∑

i=k

αi∇F (wi) +Mk(t). (5.10)

Step 2

We will now show that {Wk}k≥0 can be written as the integral equation corres-
ponding to (5.1), except for terms that converge to 0 uniformly on compact sets
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as k → ∞. For this sake, consider the integral

Ik = −
∫ t

0
∇F (Wk(s))ds.

Assume that t ≥ 0 to begin with. From (5.5) and (5.8) we have that

Ik = −
∫ t

0
∇F (W0(tk + s))ds

= −
∫ t

0
∇F

(
w0 · I(−∞,0)(t) +

∞∑

i=0

wi · I[ti,ti+1)(t)

)
ds.

Since tk + s belongs to a single interval [ti, ti+1) and [ti, ti+1)∩ [tj , tj+1) = ∅, for
i ̸= j, we can further rewrite this as

Ik = −
∫ t

0
∇F (w0) · I(−∞,0)(tk + s) +

∞∑

i=0

∇F (wi) · I[ti,ti+1)(tk + s)ds.

Since tk + s ≥ 0 and t ≥ 0 (by assumption), we see that (−∞, 0) is not in
the interval of integration. Hence, first term inside the parenthesis does not
contribute to the integral. Similarly, since ti − tk ≤ 0 for i ≤ k, any interval
[ti, ti+1) for i < k does not contribute to the integral. Thus we can ignore
the first term in the integral and start the sum of the second term at i = k.
Consequently,

Ik = −
∫ t

0

∞∑

i=k

∇F (wi) · I[ti,ti+1)(tk + s)ds.

Furthermore, by (5.8), it holds that tm(tk+t) ≤ tk + t < tm(tk+t)+1. This means
that the terms of the sum of index i ≥ m(tk + t) + 1 will be outside the region
of integration as well. Therefore

Ik = −
∫ t

0

m(tk+t)∑

i=k

∇F (wi) · I[ti,ti+1)(tk + s)ds.

At last, since αi =
∫ ti+1

ti
I[ti,ti+1)(t)dt, we see that the previous expression can

be written as

−
m(tk+t)−1∑

i=k

αi∇F (wi) + ρk(t),
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where

ρk(t) = −∇F (wm(tk+t))(t− tm(tk+t) + tk).

and accounts for the fact that we are not (necessarily) integrating over the entire
interval [tm(tk+t), tm(tk+t)+1). It follows that

−
m(tk+t)−1∑

i=k

αi∇F (wi) = −
∫ t

0
∇F (Wk(s))ds+ ρk(t). (5.11)

A similar manipulation of the integral gives an equivalent expression when t < 0.

Under the assumption that (5.3) holds almost surely, we have by the continuity
of ∇F that

∥ρk(t)∥2 ≤ ∥∇F (wm(tk+t))∥2(t− tm(tk+t) + tk) ≤ sup
k∈N

∥∇F (wk)∥αm(tk+t).

This, along with the fact that limk→∞ αk = 0 tells us that

lim
k→∞

sup
t∈[0,T ]

∥ρk(t)∥ = 0,

for every compact set T > 0, P−almost surely. Thus, the sequence {ρk}k≥0

tends to 0 uniformly on compact sets in t, except on a set of probability 0 in ω.
Combining (5.10) and (5.11) we see that

Wk(t) = Wk(0)−
∫ t

0
∇F (Wk(s))ds− ρk(t) +Mk(t). (5.12)

One can show that for any T ≥ 0, it holds that

lim
k→∞

sup
t∈[0,T ]

∥Mk(t)∥2 = 0,

P−almost surely, see Paper iv or [44] for a proof of this. The main idea is
essentially to use the bounded variance, E

[
∥δMk∥22

]
< ∞, to construct a mar-

tingale which bounds supt∈[0,T ]∥Mk(t)∥2, and then apply Doob’s submartingale
inequality, see e.g. [44, 69]. This means that any limit function W (with respect
to uniform convergence) of {Wk}k≥0 satisfies

W (t) = W (0)−
∫ t

0
∇F (W (s))ds. (5.13)

The argument is essentially same as that in the proof of Lemma 4.5 in Paper
iv.
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Step 3

Our next task is to establish that any subsequence of {Wk}k≥0 has a further
subsequence that converges to a solution to (5.13). We will do this by showing
that {Wk}k≥0 satisfies a generalized form of equicontinuity and then appeal to
a version of the Arzelà–Ascoli theorem:

Definition 5.1 (Extended equicontinuity). A sequence of functions {Wk}k≥0,
where Wk : Rd → R for each k, is said to be equicontinuous in the extended
sense if supk∥Wk(0)∥ < ∞ and for every T and ϵ > 0 there is δ > 0 such that

lim sup
k→∞

sup
0<|t−s|≤δ, t,s∈[0,T ]

|Wk(t)−Wk(s)| ≤ ϵ. (5.14)

Theorem 5.2 (Arzelà–Ascoli). Let {Wk}k≥0 be a sequence of functions Wk :
Rd → R that are equicontinuous in the extended sense. Then there is a sub-
sequence {Wnk

}k≥0 of {Wk}k≥0 that converges to a continuous function W .

The limit functions W that we can extract are not necessarily unique and may
depend on the subsequence. The proof can be found in e.g. [22] and [12].

We now show that the process {Wk}k≥0 is equicontinuous in the extended sense,
P-almost surely. This means that any limit function of {Wk}k≥0 (i.e. any limit
of a subsequence of {Wk}k≥0) satisfies (5.13). Since W is continuous by the
previous theorem, this implies that W is in fact differentiable and a solution
to (5.1). By the construction of the process {Wk}k≥0 as a piecewise constant
interpolation of {wk}k≥0, it also follows that the limit function W takes values
in the set of limit points of {wk}k≥0, compare Proposition 1.b of [28]. We will
use this fact later on.

Lemma 5.3 (Equicontinuous in the extended sense). Consider the sequence
{Wk}k≥0 defined by (5.8). Suppose that {wk}k≥0 is given by (5.4), that the as-
sumptions on the noise and the objective function satisfies those in Chapter 4.4.3
and that supk∈N∥wk∥ < ∞, P-almost surely. Then {Wk}k≥0 is equicontinuous
in the extended sense, P-almost surely.

The proof is very similar to that of Lemma 4.3 in paper iv and is therefore
omitted here. Roughly, the idea is to make use of the Lipschitz continuity of
∇F to bound the difference ∥Wk(t)−Wk(s)∥2 by C(ω) ·αk, where C(ω) is finite
almost surely. Then the fact that αk tends to 0 as k → ∞ yields the desired
result.
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Step 4.i)

We now have a connection between the algorithm determined by (5.2) and the
solutions to (5.1) through the interpolation sequence {Wk}k≥0. Our next goal
is to determine the limit behavior of the solutions to (5.1). But first, we will
introduce the concept of a locally asymptotically stable set [13, 44]:

Definition 5.4 (Locally asymptotically stable set). A set A is said to be Lya-
punov stable if for any ϵ > 0, there exists a δ > 0 such that every trajectory
initiated in the δ-neighborhood of A (which we denote by Nδ(A)) remains in its
ϵ-neighborhood, Nϵ(A). A set A is said to be locally asymptotically stable if
every such path ultimately goes to A. The largest open set O such that all paths
initiated in O stays in O and converges to A is called the domain of attraction
of A.

Now, we show that the sublevel sets of F are locally asymptotically stable:

Lemma 5.5. Suppose that the objective function F is differentiable and coercive.
Then the sub-level sets {w : F (w) ≤ c} are locally asymptotically stable sets for
(5.1).

Demonstrating Lyapunov stability requires a bit of caution; we need to relate
the sublevel sets of F to the δ−neighborhoods of A = {w : F (w) ≤ c} for a
given c. For more details, see the proof of Lemma 4.12 in paper iv.

Since F is coercive and continuous, the sublevel sets are compact, compare
Proposition 11.12 in [5]. Furthermore, F is decreasing along the paths of (5.1)
since for any solution W to (5.1) which is not an equilibrium solution, it holds
that

d

dt
F (W (t)) = ⟨∇F (W (t)), Ẇ (t)⟩ = −∥∇F (W (t))∥22 < 0,

Hence any solution tends to a stationary point of F . However, to find a δ-
neighborhood of the set {w : F (w) ≤ c} such that all paths starting within it
tend toward {w : F (w) ≤ c}, we need to ensure that this neighborhood contains
no other stationary points of F . Hence, we make the following assumption:

Assumption 5.6. Let Λ be the set of stationary points of F . For every compact
set K ⊂ R, the cardinality of K ∩ F (Λ) is finite.

Under this assumption, we can show that any solution to (5.1) that starts close
enough to a given sub-level set, will ultimately end up in it. Hence, we have
shown that the sublevel sets of the objective function are asymptotically stable.
The details can be found in Lemma 5.16 of Paper iv.
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Step 4.ii)

We have seen that we can relate the algorithm (5.2) to the dynamical system
(5.1) through the sequence of interpolations {W k}, and we have shown that the
sublevel sets of the objective function are locally asymptotically stable for the
solutions to (5.1). We will now see how this translates to the limit behavior of
the algorithm.

Let A be a locally asymptotically stable set and assume that {wk}k≥0 enters a
compact set K in the domain of attraction of A infinitely often (i.e. there exists
a subsequence {wnk

}k≥0 of {wk}k≥0 which is contained in K). The following
lemma states that this implies that for every δ-neighborhood Nδ(A) of A, there
exists a subsequence of {wk}k≥0 that lies in Nδ(A):

Lemma 5.7. Let the sequence {wk}k≥0 be given by (5.4) and F be a differen-
tiable and coercive function which is bounded below. Further, assume that (5.3)
holds. Then for every δ > 0 there exists a subsequence {wmk

}k≥0 of {wk}k≥0

that lies in Nδ(A).

For a proof, see Lemma A.6 in Paper iv. The previous lemma is then used to
show that for any δ > 0, the sequence {wk}k≥0 cannot escape the δ-neighborhood
of A infinitely often.

Theorem 5.8 (Kushner & Clark). Let the assumptions of Lemma 5.7 hold.
Further, assume that A is a locally asymptotically stable set for (5.1) and that
{wk}k≥0 enters a compact set in the domain of attraction of A infinitely often.
Then {wk}k≥0 converges to the set A almost surely. That is, there is a set U
such that P(U) = 1, and for any ω ∈ U it holds that

lim
k→∞

inf
a∈A

∥wk(ω)− a∥2 = 0.

The proof can be carried out by a contradiction argument: assuming that there
do exist a ϵ > 0 and a subsequence {wnk

}k≥0 outside Nϵ(A), we can by the
Arzelà–Ascoli theorem construct solutions w(t) to (5.1) that starts in Nδ(A) as
in Definition 5.4, and either leaves the ϵ-neighborhood of A or never reaches A.
This contradicts the local asymptotic stability of A. For details see the proof of
Theorem 5.16 in Paper iv.

The next step is to show that {wk}k≥0 actually enters a compact set in the
domain of attraction of A = {w : F (w) ≤ c} infinitely often, where c =
lim infk→∞ F (wk). Theorem 5.8 then implies that {wk}k≥0 converges to A.
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Moreover, it holds that

lim
k→∞

F (wk) = c, (5.15)

since otherwise we would have some subsequence of {wk}k≥0 that converges to
a lower functional value which is impossible by the choice of c.

From this it follows that {wk}k≥0 converges to the set of stationary points:
Otherwise we can construct a solution W̃ (·) to (5.1) such that F (W̃ (0)) = c.
This solution decreases along the paths of (5.1); therefore we can find a t′ > 0
such that F (W̃ (0)) > F (W̃ (t′)). But W̃ takes values in the set of limit points
of {wk}k≥0. Hence, we can find a subsequence {wmk

}k≥0 that converges to
F (W̃ (t′)), which contradicts (5.15).

If we further know that the equilibria of F are isolated, we can conclude that
{wk}k≥0 converges to a unique equilibrium point of (5.1): From the assumption
that supk∥wk∥2 < ∞, along with the continuity of the gradient ∇F , we have
that supk∥∇F (wk)∥2 < ∞, almost surely. Thus

∥wk+1 − wk∥2 ≤ αk · sup
k
∥∇F (wk)∥2,

which tends to 0 for ω ∈ U where U is as in Theorem 5.8. From the assumption
that supk∥wk∥2 < ∞, it follows that for fixed ω ∈ U , the limit set

L({wk}) = {w : ∃{wnk
}k≥0 ⊂ {wk}k≥0 : lim

nk→∞
wnk

= w}

is a connected set, compare [3]. But we know from the previous section that
L({wk}) ⊂ {w : ∇F (w) = 0}. Hence, if {w : ∇F (w) = 0} consists of isolated
points, we must have that L({wk}) = {w∗} for some equilibrium point w∗.

Remark. Note that in the case that the assumptions of Theorem 5.9 in Section
5.2 below are fulfilled, we can shorten the proof to conclude that (5.15) holds,
without making use of Theorem 5.8, since (5.15) follows from (5.17) in Theorem
5.9. This is for instance the case for (5.2) when the step size satisfies (4.22), F
is L−smooth, coercive and bounded below and the noise satisfies the assumptions
in Chapter 4.4.3.

5.2 The Robbins–Siegmund theorem

Several of the arguments in the previous section relies on the assumption that
supk∥wk∥2 < ∞ almost surely. To demonstrate this, one can make use of the
Robbins–Siegmund theorem:
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Theorem 5.9 (Robbins–Siegmund [58]). Let (Ω,F ,P) be a probability space
and F1 ⊂ F2 ⊂ . . . be a sequence of sub-σ-algebras of F . For each k = 1, 2, . . .
let Vk, βk, Xk and Yk be non-negative Fk-measurable random variables such that

E [Vk+1|Fk] ≤ Vk(1 + βk) +Xk − Yk. (5.16)

Then

V = lim
k→∞

Vk (5.17)

exists and is finite and
∑

k Yk < ∞ on the set
{
ω :
∑

k

βk < ∞,
∑

k

Xk < ∞
}
.

We can apply the theorem to the inequality (4.16) in Chapter 4.4.3:

Eξk [F (wk+1)]− F (wk) ≤ −αk

2
∥∇F (wk)∥22 +

LMα2
k

2
. (5.18)

taking Vk = F (wk)− F∗, βk = 0, Yk = αk
2 ∥∇F (wk)∥22 and Xk =

LMα2
k

2 . Since by
assumption

∑
k≥0 α

2
k < ∞, we have that

∑
k≥0Xk < ∞ everywhere. We can

thus conclude that limk→∞ F (wk) exists and satisfies

lim
k→∞

F (wk) < ∞,

almost surely. If the objective function F is coercive, then since the sub-level
sets are bounded, it holds that supk≥1∥wk∥2 < ∞, almost surely. In paper iv,
we derive a similar bound for the random variables Vk = H(pk, qk)− F∗ − ϕ∗ in
order to apply Theorem 5.9.

5.3 Asymptotic pseudo-trajectories and chain recur-
rence

In this section we will look at an alternative approach to the one in the previous
section. The approach in this section is due to Benäım [6, 7] and requires the
introduction of more technical terms, but also provides a more general form of
convergence to a so-called internally chain recurrent set. However, we will see
that under similar assumptions as in Section 5.1 it allows us to draw the same
conclusions.

We will structure this section similar to Section 5.1 and divide it into three
steps:
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Step 1 Introduce the notion of asymptotic pseudo-trajectories.

An asymptotic pseudo-trajectory for an ODE is a function that asymptotically
approximates solutions to the ODE; for any finite time interval and any tolerance
level, there is a solution to the ODE which it tracks within that tolerance.
We will see that we can extend the functions (5.10) to an asymptotic pseudo-
trajectory of (5.1).

Step 2 Present the concept of chain recurrence.

Roughly, chain recurrence is a generalization of periodic points, but for which
a certain margin of error is tolerated. Chain recurrence is intimately linked to
the limit behavior of stochastic algorithms, and the next step is to

Step 3 Characterize the limits of stochastic algorithms in terms of chain recur-
rent sets.

We will look at a result due to Benäım [6, 7], which states that certain stochastic
algorithms converge to a so-called internally chain recurrent set. We will also
touch upon a converse result from [8], which asserts that for any compact,
connected internally chain recurrent set, there is a stochastic algorithm that has
that set as its limit set. This means that it is not possible in general to say more
than that the stochastic algorithms we are interested in, converge to a compact,
connected, internally chain recurrent set. However, if there exists a Lyapunov
function for the ODE, then we will see that one can obtain convergence to a
stationary point.

Step 1

Let f : Rd → Rd be a Lipschitz-continuous function. The semiflow of f is the
family of mappings ϕ : R+ × Rd → R, defined by

d

dt
ϕ(t, x0) = f(ϕ(t, x0)), x0 ∈ Rd. (5.19)

The mapping ϕ is continuous and satisfies the group property ϕ(0, x0) = x0
and ϕ(s, ϕ(t, x0)) = ϕ(s+ t, x0). We now introduce the notion of an asymptotic
pseudo-trajectory :
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Definition 5.10. An asymptotic pseudo-trajectory for (5.19) is a function X :
R → R such that

lim
s→∞

sup
t∈[0,T ]

∥X(t+ s)− ϕ(t,X(s))∥ = 0 (5.20)

holds for any T > 0.

The intuition behind Definition 5.10 is the following: given an interval [0, T ] we
can make X track a solution to (5.19) on that interval which starts at X(s) with
arbitrary precision, if we choose s large enough.

Letting ϕ be the semiflow of (5.1), we see that for T > 0 and t ∈ [0, T ], we have
by (5.1) and (5.12) that

∥Wk(t)− ϕ(t, wk)∥2 =
∥∥∥∥
∫ t

0
∇F (Wk(s))−∇F (ϕ(s, wk))ds+ ρk(t) +Mk(t)

∥∥∥∥
2

≤ L

∫ t

0
∥Wk(s)− ϕ(s, wk)∥2ds+ sup

t∈[0,T ]
(∥ρk(t)∥2 + ∥Mk(t)∥2) ,

where we have used the assumption that ∇F is Lipschitz continuous. Hence,
making use of Grönwall’s inequality (see e.g. Theorem 5.1 in [25]) we obtain

∥Wk(t)− ϕ(t, wk)∥2 ≤ sup
t∈[0,T ]

(∥ρk(t)∥2 + ∥Mk(t)∥2) eLT .

Now,the fact that the functions ρk and Mk in (5.12) tends to 0 uniformly on
compact intervals as k tends to infinity implies that

lim
k→∞

sup
t∈[0,T ]

∥Wk(t)− ϕ(t, wk)∥2 = 0. (5.21)

This means that the entire sequence {Wk}k≥0 converges to the set of solutions
to (5.1) on every interval [0, T ]. It also follows that W0 is an asymptotic pseudo-
trajectory to ϕ. This can be seen from the fact that

sup
t∈[0,T ]

∥W0(s+ t)− ϕ(t,W0(s))∥2 ≤ sup
t∈[0,T ]

∥W0(s+ t)−W0(tm(s) + t)∥2

+ sup
t∈[0,T ]

∥W0(tm(s) + t)− ϕt(W0(tm(s)))∥2

+ sup
t∈[0,T ]

∥ϕ(t,W0(tm(s)))− ϕ(t,W0(s))∥2.

The second term on the right-hand side of the previous inequality tends to 0 as a
consequence of (5.21). The first term also converges to 0, as a consequence of the
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extended equicontinuity of {Wk}k≥0 (making use of the fact that W0(tm(s)+t) =
Wm(s)(t)) and that s− tm(s) ≤ αm(s). For the same reason, the third term can
be made arbitrarily small where we also make use of the continuity of ϕ.

The next theorem is an adaption of Lemma 4.2 in [6]. (See also Proposition 4.1
in [7]). It tells us that under certain conditions on the stochastic algorithm, its
interpolated process is an asymptotic pseudo-trajectory:

Lemma 5.11 (Benäım [6]). Let f : Rd → Rd be such that (5.19) has a unique
solution for each initial condition x0. Let {wk}k≥0 be a solution to the recursion

wk+1 = wk + αkf(wk) + uk + bk. (5.22)

Assume that

i) supk∥wk∥2 < ∞,

ii) limk→∞ bk = 0, and

iii) for each T > 0, it holds that

lim
k→∞

∥∥∥∥
m(tk+T )−1∑

i=k

αiui

∥∥∥∥
2

= 0.

Let tk =
∑k−1

i=0 αi and t0 = 0. Then, the interpolated process

W0(t) =

{
wk, tk ≤ t < tk+1,

w0, t < t0,
(5.23)

is an asymptotic pseudo-trajectory for (5.19) whose image has compact closure.

Remark. Note that the statement of Lemma 5.11 is deterministic but it also
translates to the stochastic setting: If Assumptions i) to iii) holds almost surely,
then for almost all ω ∈ Ω, W0(t) is an asymptotic pseudo-trajectory for (5.19).

Remark. Assumptions i) to iii) of Lemma 5.11 are known as the Kushner &
Clark assumptions, compare [6]. In the setting of the previous section when
{wk}k≥0 is generated by (5.2), we would have bk = 0 and uk = ∇F (wk) −
∇f(wk, ξk) for all k. Assumption iii) corresponds to the sequence {Mk}k≥0

given by (5.9) converging uniformly on compact sets to 0.

The proof can be found in [6, 7] for piecewise linear interpolation processes. For
piecewise constant interpolations, we essentially perform the same calculations
as we did in Section 5.1 and then apply Grönwall’s lemma as we did above. From
the fact that supk∈N∥wk∥2 < ∞, it follows that the image of W0 has compact
closure.
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Step 2

The limit set of the interpolated process W0 from (5.7) is given by

L(W0) = {x ∈ Rd : ∃ {ak}k≥0, s.t. ak → ∞ and lim
k→∞

W0(ak) = x}. (5.24)

In the case that W0 is a piecewise constant interpolation of a sequence {wk}k≥0

as above, it holds that L(W0) = L({wk}), where L({wk}) is the set of limit
points of {wk}k≥0.

Therefore, our next goal is to characterize L(W0) for asymptotic pseudotrajectories.

In order to do this, we will now introduce the concept of chain recurrence; an
idea that was originally introduced in [19]. One can think of a chain recurrent
point as one that would be taken to be periodic if one allows for arbitrarily small
measurement errors:

Definition 5.12. An (ϵ, T )-pseudo orbit from x to y is a sequence of points
{xi}ni=0 together with time points ti ≥ T such that x0 = x, xn = y and

∥ϕ(ti, xi)− xi+1∥ < ϵ.

If there for every ϵ > 0 and T > 0 exists a (ϵ, T )-pseudo orbit from x to itself,
x is said to be chain recurrent for ϕ. The set of chain recurrent points for ϕ is
denoted by R(ϕ). A non-empty, compact invariant set Λ is said to be internally
chain recurrent if the semiflow ϕ restricted to Λ satisfies R(ϕ|Λ) = Λ.

Remark. The difference between a chain recurrent set and an internally chain
recurrent set is that the chains (i.e. the points {xi}ni=0 in Definition 5.12) has
to lie inside the set itself for an internally chain recurrent set.

The set of ω−limit points of ϕ, denoted L(ϕ), is defined by

L(ϕ) = {y ∈ Γ : ∃x0, {tn}n≥0 : tn → ∞, ϕ(tn, x0) → y}.
If {ϕ(t, x0) : t ≥ 0}, for x0 ∈ Rd, has compact closure1, it holds that

L(ϕ) ⊂ R(ϕ), (5.25)

compare e.g. Proposition 1.5 in [51]. By Theorem 15.0.3 [68] the set L(ϕ) then
consists of equilibria for equation (5.1).2 Likewise, all periodic points are chain
recurrent since these are contained in L(ϕ), see [6]. However, in Figure 5.2 we
see an example of a chain recurrent set containing points that are not ω−limit
points. (As well as a chain recurrent set which is not internally chain recurrent).

1This is true for the solutions to (5.1) if F is coercive. See e.g. Theorem 2 in [72].
2This also holds for the equation considered in Paper iv since the Hamiltonian (6) is de-

creasing along the paths of (7).
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x0

ϕ(t0, x0)

x1
ϕ(t1, x1)

x2

ϕ(t2, x2)

x3

ϕ(t3, x3)

Figure 5.1: Illustration of an (ϵ, T )-pseudo orbit with 4 points: We can find points {xi}4
i=0 where x4 = x0 and time

points {ti}3
i=0 with ti ≥ T, i = 0, . . . , 3 such that ∥ϕ(ti, xi) − xi+1∥ < ϵ for i = 0, . . . , 3.

Step 3

The next theorem is an adaption of (a part of) Corollary 4.3 in [6]. It charac-
terizes the limit set of an asymptotic pseudo-trajectory in terms of internally
chain recurrent sets:

Lemma 5.13 (Benäım [6]). Let f : Rd → Rd be such that (5.19) has a unique
solution for each initial condition x0, and let ϕ be the semiflow generated by f .
If X is an asymptotic pseudo-trajectory for ϕ whose image has compact closure,
then L(X) is a compact and internally chain recurrent set for ϕ.

Using Lemma 5.11 and 5.13 in tandem we get that:

Theorem 5.14. Let {wk}k≥0 be a sequence that satisfies assumptions i) – iii)
of Lemma 5.11. Then its limit set L({wk}k≥0) is a compact, connected and
internally chain recurrent set.

As noted in the end of Section 5.1, connectedness follows from Assumption i)–
iii) of Lemma 5.11. For a proof see Corollary 4.3 in [6]. A converse result to
Lemma 5.11 and Theorem 5.13 is the following:
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Figure 5.2: Consider θ̇ = sin2(θ), for θ ∈ S1 = R\2πZ. The points 0 and π are fixed points and periodic points.
The entire circle is chain recurrent for the semiflow generated by the equation and the sets {0}, {π} and S1

are internally chain recurrent. The set [0, π] consists of chain recurrent points but is not an internally chain
recurrent set since the chains are not contained in it. Compare e.g. [2, 6].

Theorem 5.15 (Benaim & Hirsch [8]). Let L be a compact, connected set which
is internally chain recurrent for the semiflow induced by f (where f is as in
Theorem 5.11). Then there exists sequences {wk}k≥0, {bk}k≥0 and {uk}k≥0 such
that {wk}k≥0 is a solution to (5.22) of Theorem 5.11, and {wk}k≥0, {bk}k≥0 and
{uk}k≥0 satisfies i), ii) and iii) respectively and the set of limit points of {wk}k≥0

is equal to L.

The previous theorem implies that the result in Theorem 5.14 is tight in the
following sense: under the Kushner & Clark assumptions, one cannot in general
be more specific on the set of limit points of the sequence, than that it is an
internally chain recurrent, compact and connected set.

The conclusion of Theorem 5.13 is very general in that it holds for all algorithms
satisfying the Kushner & Clark assumptions. If more structure is imposed on
the system, we can however be more specific regarding the set of limit points of
the algorithm:

Definition 5.16 (Lyapunov function). Let ϕ be a semiflow on a compact metric
space X and let Λ ⊂ X be an invariant set. A function V : X → R is called
a Lyapunov function for Λ if the function t ∈ R+ 7→ V (ϕt(x)) is constant for
x ∈ Λ and strictly decreasing for x /∈ Λ. If Λ equals the set of equilibria, V is
called a strict Lyapunov function.

For (5.1), the objective function F is a strict Lyapunov function for Λ = {w :
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∇F (w) = 0}. For the algorithm in Paper iv, the Hamiltonian H(p, q) = F (q)+
φ(p) is a strict Lyapunov function.

We can now appeal to the two following results from [6]:

Lemma 5.17 (Proposition 3.2 [6]). Let ϕ be a semiflow on a compact metric
space X and let Λ ⊂ X be a compact invariant set. Let V : X → R be a strict
Lyapunov function for Λ and let the cardinality of V (Λ) be finite. Then

R(ϕ) ⊂ Λ.

A more general version of this theorem appears in [7] (Proposition 6.4) in which
the assumption that V (Λ) is finite is relaxed to V (Λ) having empty interior.

Corollary 5.18 (Corollary 3.3 [6]). Let Λ denote the set of equilibria of (5.1)
and suppose that these are isolated. Let {wk}k≥0 satisfy the assumptions of
Lemma 5.11. Then {wk}k≥0 converges towards an equilibrium.

As noted above, it holds that L({wk}k≥0) = L(W0). Let E denote the set of
equilibria of ϕ. Under the assumptions of Lemma 5.11, we have by Theorem
5.14 that L(W0) is a compact, connected and internally chain recurrent set. We
can then apply Lemma 5.17 to the semiflow restricted to L(W0). Since L(W0)
is internally chain recurrent it holds that

L(W0) = R(ϕ|L(W0)
) ⊃ L(ϕ|L(W0)

)

by (5.25). As noted above, the set L(ϕ|L(W0)
) consists of equilibria (by e.g.

Theorem 15.0.3 in [68]). This implies that the set E ∩ L(W0) is non empty.
Thus, since L(W0) is compact, we can apply Theorem 5.14 to ϕ|L(W0)

with
Λ = E ∩ L(W0) and conclude that Λ ⊃ R(ϕ|L(W0)

) = L(W0). Since L(W0)
is connected (from the fact that L(W0) = L({wk})) and Λ consists of isolated
points, L(W0) (and thus L({wk}k≥0)) is an equilibrium.

In this section, we have seen that the approach with asymptotic-pseudo traject-
ories provides an alternative way to demonstrate convergence of stochastic op-
timization algorithms. The convergence to an internally chain recurrent set that
can be deduced from Theorem 5.14 is weaker (but also under weaker assump-
tions) than the convergence that we obtained in the previous section. However,
in the case that a strict Lyapunov function exists, we saw that we could draw
the same conclusion. We have also seen that Theorem 5.15 justifies the notion
of chain recurrence for characterizing the limit sets of stochastic algorithms.
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6. Research

In this chapter, we summarize the results from Paper i–iv and link them to
the concepts introduced in the previous chapters of the thesis. We discuss the
implications of the research and touch on some possible paths for future studies.

The inspiration for the project was the idea that the gradient descent algorithm

wk+1 = wk − αk∇F (wk),

can be viewed as an explicit Euler discretization of the gradient flow equation

w′(t) = −∇F (w(t)). (6.1)

As in Section 3.4, this equation can be linearized around an equilibrium solution,
and we can consider the system

w′(t) = −HF (w∗)w(t).

From the discussion in Section 3.4, we saw that it is reasonable to expect al-
gorithms that have good stability properties for the linear test equation to per-
form well on the original problem, at least for strongly convex functions, whose
Hessians are positive definite or around a local minimum where it has positive
eigenvalues.

This is the view-point that is adopted in Paper i and Paper ii, where we invest-
igate the behavior of classical time-stepping methods in the context of stochastic
optimization. In Paper iii we analyze a generalization of tamed-Euler method,
which is used to integrate stochastic differential equations. Unlike the so-called
clipping-methods, which are frequently used to stabilize optimization algorithms
within the machine learning community. Another popular practice in the field
is the custom to use momentum: the introduction of an additional momentum
variable, in which the average of the past gradients accumulates. This also tends
to have a stabilizing effect on the algorithm. In Paper iv, we study a particular
form of clipping methods with momentum, and show that it can be viewed as a
discretization of a certain Hamiltonian system.
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6.1 Paper I

In Chapter 4.4.2, we introduce the proximal point method and note that it can
be viewed as the implicit Euler scheme from Section 3.2 in Chapter 3, applied
to the equation (6.1). In Paper i, we show convergence for a stochastic proximal
point method for convex functions. The analysis in Chapter 3 and 4 was done
on Rd for simplicity, but in Paper i, the analysis is performed in a general
Hilbert space setting. Let H be a real Hilbert space and F : H → R a strongly
convex function. We are then interested in finding the unique solution w∗ to the
problem

w∗ = argmin
w∈H

F (w). (6.2)

Let (Ω,F ,P) be a probability space and {ξk}k≥1 be a sequence of jointly inde-
pendent random variables on Ω.

The stochastic proximal point method seeks to approximate the solution to the
problem (6.2) by producing a sequence of iterates {wk}k≥1 according to the
update rule

wk+1 = wk − αk∇f(wk+1, ξk), (6.3)

where {αk}k≥1 is a step size sequence, i.e. αk > 0 for every k ≥ 0. In Paper i
we assume that the random functions f(·, ξ) are unbiased estimates of F (·), i.e.
that Eξ [f(w, ξ)] = F (w). Although the stochastic proximal point algorithm
is not new, it has not been analyzed in the infinite-dimensional framework to
a large degree before. A notable exception to this is [10] where a weak type
of convergence for maximal monotone operators is proved in a general setting.
Another example is [59] where the authors demonstrate norm convergence at
a rate, albeit with a rather strong global Lipschitz condition on the objective
function. Under the assumption that the gradient of f(·, ξ) satisfies a local
Lipschitz condition, and that it is µξ-strongly convex for a positive random
variable µξ (see Paper i for details), we get sublinear convergence in expectation
to the solution, i.e.

E
[
∥wk − w∗∥2H

]
≤ C

k
,

for some constant C and where w∗ is defined by (6.2). The research in Paper i
generalizes that in [60] and extends it to an infinite-dimensional setting. In
several cases, a closed-form solution of (6.3), to obtain wk+1, can be found, and
then the stochastic proximal method provides a more stable alternative to SGD,
at essentially the same computational cost, see [24, Sec. 5].
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6.2 Paper II

Although the proximal point method has very good stability properties, it can
be computationally costly to compute the implicit update (6.2) in the cases
when there is no closed-form solution at hand. An alternative in these cases is
to use explicit methods with larger stability regions. As noted in Chapter 3.3.4,
an example class of methods that are optimal in the sense that they maximize
the real stability boundary, are Runge–Kutta–Chebyshev methods. Although
well-known in the time-stepping community, the utility of these methods for
solving optimization problems have not been extensively studied. A notable
exception is [23], in which a deterministic optimization method that is based on
Runge–Kutta–Chebyshev methods is proposed.

In Paper ii, we propose a stochastic optimization algorithm –the Stochastic
Runge–Kutta–Chebyshev descent method (abbreviated as SRKCD)– based on
the Runge–Kutta Chebyshev methods introduced in Section 3.4 of Chapter 3
for approximating the solution to (6.2). The analysis is performed in a finite-
dimensional setting on Rd for simplicity. It can likely be extended to the infinite-
dimensional setting in the framework of monotone operators as in [37]. We ob-
tain convergence guarantees in expectation at a sublinear rate, see Theorem 2.6
in Paper ii. Under slightly stricter regularity assumptions, we obtain conver-
gence in expectation to a stationary point, see Theorem 2.10 in Paper ii. Al-
though not explicitly stated in the article, we obtain convergence at a rate for
the sequence {min1≤k≤K E

[
∥∇F (wk)∥22

]
}K≥1, i.e.

min
1≤k≤K

E
[
∥∇F (wk)∥22

]
= O

(
1

log(K)

)
, (6.4)

in the non-convex case similar to Theorem 4 of paper iii. This follows from
(4.19) in Section 4.3, (2.10) in Theorem 2.8 in Paper ii, along with the fact that

AK =

K∑

k=1

β

k + γ
≥
∫ K+1

1

β

x+ γ
dx = β (log(K + 1 + γ)− log(1 + γ)) . (6.5)

The argument is essentially the same as that in Chapter 4.4.3 or in the proof of
Theorem 4 in paper iii and is therefore omitted here.

It is also worth remarking that although we prove convergence in expectation in
Theorem 2.1 and Theorem 2.6 in Paper ii, a standard result in probability theory
states that this implies convergence in probability, compare [18, Prop. 3.1.5].
Thus, we can for example use (6.4), to say that

P
({

ω : min
1≤k≤K

∥∇F (wk)∥22 > ε
})

= O
(

1

log(K)

)
. (6.6)
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Note however, that the error constant inversely proportional to ε, see [18,
Prop. 3.1.5]. From (6.6) we can also conclude that the sequence

{ min
1≤k≤K

∥∇F (wk)∥22}K≥1 (6.7)

converges almost surely to 0. The argument is the same as in the proof of Corol-
lary 7 of Paper iii. This result is less strong than the one obtained in Paper iv,
where we obtain almost sure convergence of the entire sequence {wk}k≥0.

Methods with large stability region are particularly useful for stiff problems.
See [62] for a discussion of this. For a convex quadratic optimization problem,
this essentially corresponds to the Hessian having one very large eigenvalue, that
puts a severe step-size restriction on the gradient update. In Paper ii, we saw
that the use of SRKCD allowed for a much larger step size than SGD for such
problems.

6.3 Paper III

The main inspiration for Paper iii was the tamed Euler method, introduced in
[39]. This is a scheme that is used to obtain convergence for certain stochastic
differential equations where the explicit Euler scheme is known to fail. It is
similar to the so-called clipping-methods: if the norm of an iterate exceeds a
predefined threshold, the iterate is rescaled to prevent the method from explod-
ing. This concept was studied as early as in 1967 by Poljak, see [55], but was
made popular in the machine learning community by Mikolov in 2013 in the
context of large language models, compare [50].

Another widespread practice is the usage of component-wise rescaling of the
gradient, which was introduced in the Adam paper [42]. The idea in Paper
iii was to investigate a component-wise version of the tamed-Euler scheme as
a stochastic optimization method. During preliminary investigations for the
paper, we realized that the rescaling function for the tamed-Euler scheme ex-
hibits similar behavior to the arctan function. This spurred the idea of con-
sidering other nonlinear gradient clipping functions. One could loosely define a
“clipping-function” as a function that behaves like the identity close to 0, but
is “sufficiently” bounded below and above at ±∞. This is the behavior that we
aimed to capture with Assumption 1 in Paper iii. The analysis also allows for
clipping functions with “slow” growth at ±∞ or functions that are bounded.
See Figure 6.1 for an illustration.
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Figure 6.1: Examples of some clipping functions that are covered by the analysis in Paper iii.

The scheme analyzed in Paper iii is given by

wk+1 = wk − αkG(∇f(wk, ξk), αk) (6.8)

where G is an operator that applies a clipping function component-wise to the
stochastic gradient ∇f(wk, ξk). The assumptions about the noise in Paper iii
differ somewhat from those typically encountered. Assumption 4 reads: There
exists w∗ ∈ argminF (w) such that

E
[
∥∇f(w∗, ξ)∥2

]
≤ σ2.

The assumption is that the variance is bounded at some stationary point of F .
In addition to this we posit that there exists w∗ ∈ argminF (w) such that

E
[
∥wk − w∗∥32

]
≤ M, ∀k. (6.9)

This stability assumption is relatively strong, but it is in some sense analogous to
an assumption of having bounded stochastic gradients or a step-size restriction
and was necessary to deal with the nonlinearity of the clipping functions. This
is discussed in more detail in Appendix A of Paper iii. If a (rather restrictive)
step-size restriction is imposed, it is also possible to show convergence of the
scheme (6.8) under the assumption that

E
[
∥∇f(w, ξ)∥32

]
≤ M1 +M2∥∇F (w)∥32, (6.10)

where M1,M2 ≥ 1.

We also note that the ∥·∥32−terms that appear in (6.9) and (6.10) are due to the
fact that (6.8) can be rewritten as a second-order perturbation of SGD, where
the the perturbation term is of the order O

(
∥∇f(wk, ξk)∥32

)
.
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Another thing to touch upon is Assumption 5 of Paper iii, which in the literature
is known as an interpolation assumption; it states that there exists a minimum
w∗ of F , which is simultaneously a minimum of all the stochastic functions
f(·, ξ), almost surely. Over-parametrized machine learning models frequently
have the capacity to interpolate the data and achieve 0 loss on training data.
Empirical evidence suggests that the interpolation assumption is satisfied for
such models, compare [48, 74]. In Paper iii, we make use of Assumption 5 in
order to obtain a smaller error constant in the bound in Theorem 4.

In section 6 of Paper iii, the algorithms are tested on some classical machine
learning tasks such as image recognition and text prediction. We see that most
of the schemes exhibit performance on par with state-of-the-art algorithms such
as Adam and SGD with momentum. The analysis in Paper iii opens up for the
usage of a large class of non-linear clipping functions for stochastic optimization
algorithms.

6.4 Paper IV

In Paper iv, we continue to explore the realm of clipped stochastic optimization
algorithms. We now also consider clipped momentum algorithms. Momentum-
based optimization algorithms were first considered in the deterministic case in
[56]. The main idea is to make use of a weighted average of all the past gradients
instead of just the gradient. There are many different formulations of SGD with
momentum and the particular formulation that we consider is on the form

pk+1 = pk − αk∇f(qk, ξk)− αkγpk

qk+1 = qk + αkpk+1.
(6.11)

One can view this as a stochastic implicit-explicit discretization of the ODE

ṗ = −∇F (q)− γp,

q̇ = p.

Introducing a separable Hamiltonian H(p, q) = F (q) +
∥p∥22
2 , one finds that the

previous system is a dissipative Hamiltonian system:

ṗ = −∇qH(p, q)− γ∇pH(p, q),

q̇ = ∇pH(p, q).
(6.12)

If we now generalize this to H(p, q) = F (q) + φ(p), we can get other schemes
that are interesting. A case of special interest is

φ(p) =
√
ϵ+ ∥p∥22,
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where ϵ > 0. Since ∇φ(p) = p√
ϵ+∥p∥22

, the corresponding discretization gives

us a version of normalized SGD with momentum for small ϵ. For larger values
of ϵ (e.g. ϵ = 1), the scheme behaves like a soft-clipping algorithm. Similar
formulations have been previously considered in the deterministic case in e.g.
[29, 30]. The algorithm we consider in Paper iv is therefore

pk+1 = pk − αk∇f(qk, ξk)− αkγ∇φ(pk)

qk+1 = qk + αk∇φ(pk+1).
(6.13)

The analysis is based on the ODE method which is illustrated in Section 5.1.
The analysis of the algorithm in Paper iv is different than that in [44] since
the algorithm in Paper iv is an explicit-implicit discretization of (6.12) and
this compels us to demonstrate that the difference between the explicit and the
implicit discretization

κk(t) =

∫ t

0
∇φ(Pk+1(s))−∇φ(Pk(s))ds

converges to 0 uniformly on compact intervals. The assumption on the noise in
[44] is also different; translated to the algorithm in Paper iv, it would correspond
to requiring that

sup
k

E
[
∥∇f(qk, ξk)∥22

]
< ∞.

We also show that the iterates generated by (6.13) are finite almost surely in
three different settings that are adapted to the stochastic optimization setting.
Another merit of Paper iv is its rigorous proof, within the specific setting, of
the results cited in [44], where details are scarce.

We first show that the algorithm converges to a stationary point under the
assumption that the iterates {pk}k≥0 and {qk}k≥0 are almost surely bounded.
This is Theorem 4.14 in Paper iv. We then demonstrate that the latter holds if
the objective function is coercive. This is Theorem 4.15.

The analysis in Paper iv is done under three different sets of assumptions. In the
first, we assume that the gradient is Lipschitz continuous and that the stochastic
gradients satisfy

E
[
∥∇f(q, ξ)−∇F (q)∥22

]
≤ σ2 + κ (F (q)− F∗) + τ∥∇F (q)∥22.

Since the objective function is assumed to be coercive, this allows for infinite
variance in the case that the iterates escape to infinity or when the gradient
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blows up. In the second setting, we weaken the regularity assumption on the
gradient to the so-called (L0, L1)-smoothness assumption introduced in [75]:

∥∇F (x)−∇F (y)∥2 ≤ (L0 + L1∥∇F (y)∥2) ∥x− y∥2,

whenever ∥x− y∥2 ≤ 1
L1

. In this setting, we assume that the noise satisfies

E
[
∥∇f(q, ξ)−∇F (q)∥22

]
≤ σ2.

Empirical evidence suggests that the stochastic gradient noise for SGD may be
more heavy-tailed in some cases, compare [34]. To account for such noise, we
also analyze the algorithm defined by (6.13) in the empirical risk minimization
setting. More precisely, we assume that the objective function is of the form

F (q) =
1

N

N∑

i=1

fi(q),

for some loss functions fi that are bounded below and that the stochastic gradi-
ents can be written as

∇f(q, ξ) =
1

|Bξ|
∑

i∈Bξ

∇fi(q),

where Bξ ⊂ {1, . . . , N} and |Bξ| is the cardinality of Bξ. We further assume
that the stochastic functions f(·, ξ) are (L0, L1)−smooth. In this setting, we
can prove convergence for noise that is merely bounded in expectation:

E [∥∇f(q, ξ)−∇F (q)∥2] ≤ σ.

The assumptions on the noise are relatively weak compared to other results
analyzing stochastic algorithms in the (L0, L1)-smoothness setting. A common
assumption is that the noise is almost surely bounded, see [20, 46, 73, 75]. An
exception to this is [67], which analyzes AdaGrad for (L0, L1)-smooth functions
under the affine variance assumption (Assumption 4.iii of Paper ii). The as-
sumption we pose on the noise in third setting of Paper iv is strictly weaker
than the affine variance assumption, since it allows for heavy-tailed noise. Some
studies suggest that this may be a problem for certain machine learning models,
compare [34, 76] as well as [53].

At last, a remark on the existence of solutions to (6.12) is in order. To use the
ODE method we need to know that the solutions to (6.12) exists for all future
time. This is less obvious for an objective function that is (L0, L1)−smooth, but
it follows from the fact that there exists a Lyapunov function which is coercive:
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Take z = (p, q) and put V (z) = H(p, q)− F∗ − φ∗. Since V is decreasing along
the paths of V we have that

V (z(t)) ≤ V (z(0)).

Suppose that there exists a T > 0 such that limt→T−∥z(t)∥ = ∞. Then the fact
that V is coercive implies that limt→T− V (z(t)) = ∞, which is a contradiction.
Hence, the solutions to (6.12) exist for all future time and are bounded. Compare
with Theorem 2 in [72].

6.5 Outlook

The non-convex results in Paper ii– iv only guarantees convergence to a sta-
tionary point of the objective function F . Without more knowledge, this could
be a saddle point or a maximum. Under the assumption that

E [⟨∇F (w)−∇f(w, ξ), v⟩+] ≥ c, (6.14)

for some constant c > 0 and all unit vectors v, one can show that SGD and
Adam, under suitable assumptions converges almost surely to a local minimum,
compare [4, 31, 49]. Here (·)+ = max{x, 0}. This type of analysis dates back
to [54] and [15] (see also [7, 9]). The assumption (6.14) essentially means that
the algorithm has noise in all directions and will get “pushed out” of a stable
manifold, see [7, 54]. The following example from [54] illustrates what happens
if (6.14) fails to hold: Consider the system

(
ẋ
ẏ

)
=

(
−1 0
0 1

)(
x
y

)
.

The origin is an unstable equilibrium for this equation, but for any initial condi-
tion (x0, 0), the solutions will converge to the origin along the stable manifold. If
we take X to be a standard Gaussian random variable and consider a stochastic
algorithm which has the noise αkX in the x−direction (but no noise in the
y−direction) and starts at (x0, 0), this algorithm will converge to the origin as
well.

A similar convergence result for a version of SGD with momentum was obtained
in [31], and this can likely be extended to the algorithms in Paper iv, as they be-
have similarly. An analysis of this kind could be complemented by a convergence
rate analysis in the region around local minima, as in [49].
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Another possible direction for future research is to extend the results in Pa-
per iv to demonstrate convergence in the constant step size case. Consider the
algorithm

wα
k+1 = wα

k − α∇f(wα
k , ξk),

where the superscript α is to denote the dependence on the constant step-size
α. Introducing the piecewise constant interpolation process

Wα
0 (t) =

{
wα
k , kα ≤ t < (k + 1)α,

wα
0 , t ≤ 0.

we may as in Section 5.1, study the time-shifted process Wα
0 (kαα + t), where

{kα} is a sequence of integers that tends to ∞ as α → 0. Theorem 2.1 of Section
8.2 in [44] provides an analogue of Theorem 5.8 of Section 5.1: Loosely speaking,
it holds under suitable assumptions that every subsequence of {Wα

0 (kαα+ t)}kα
has a further subsequence that converges in distribution to a solution to the
ODE (5.1), as α → 0. It is also possible to obtain convergence guarantees in
probability of the type

lim sup
k→∞

P (d(wα
k , S) > ϵ) = 0, as α → 0,

see [11] in which a projected version of SGD is analyzed.

Other conceivable paths for future research are to extend the algorithms in
this thesis to account for correlated noise and functions with non-differentiable
gradients. For non-convex functions, the generalized subgradient defined by

∂f(x) = {y : f0(x; v) ≥ ⟨y, v⟩ for all v ∈ Rd}, (6.15)

where f0(x; v) is

f0(x; v) = lim sup
y→x,t→0+

f(y + tv)− f(y)

t
,

the generalized directional derivative of f at x in the direction of v, compare [17].
This was for instance made use of in [11] to analyze SGD for non-differentiable
functions.
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[6] M. Benäım. A dynamical system approach to stochastic approximations.
34(2), 1996.
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