
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Machine Learning for Perception and Localization: Efficient and Invariant Methods

Berg, Axel

2024

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Berg, A. (2024). Machine Learning for Perception and Localization: Efficient and Invariant Methods . [Doctoral
Thesis (compilation), Centre for Mathematical Sciences]. Centre for Mathematical Sciences, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 18. Jul. 2025

https://portal.research.lu.se/en/publications/5aab1153-8262-437e-8dce-7fef5fa9f606

Machine Learning for
Perception and Localization
Efficient and Invariant Methods

AXEL BERG

Lund University
Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

 – CE N T R U M S C I E N T I A R U M M AT H E M AT I C A R U M –

Machine Learning for Perception and Localization
Efficient and Invariant Methods

Machine Learning for
Perception and Localization

Efficient and Invariant Methods

by Axel Berg

Thesis for the degree of Doctor of Philosophy in Engineering

Thesis advisors:
Assoc. Prof. Magnus Oskarsson, Dr. Chuteng Zhou, Prof. Kalle Åström

Faculty opponent:
Assoc. Prof. Jesper Rindom Jensen

Aalborg University

To be presented, with the permission of the Faculty of Engineering of Lund University, for public criticism in
Hörmandersalen (MH:H) at the Centre for Mathematical Sciences on the 7:th of February 2025 at 13:15.

D
O
K
U
M
EN

TD
A
TA

BL
A
D
en

lS
IS
61

41
21

Organization

LUND UNIVERSITY

Centre for Mathematical Sciences
Box 118
SE–221 00 LUND
Sweden

Author(s)

Axel Berg

Document name

Doctoral Thesis
Date of presentation

2025­02­07
Sponsoring organization

Arm, WASP

Title and subtitle

Machine Learning for Perception and Localization: Efficient and Invariant Methods

Abstract

This thesis covers a set of methods related to machine perception and localization, which are two important building blocks of artificial intelligence.
In Paper I, we explore the concept of regression via classification (RvC), which is often used for perception tasks where the target variable is either ordinal
or when the distance metric of the target space is not well­suited as an objective function. However, it is not clear how the discretization of the target
variable ought to be done. To this end, we introduce the concept of label diversity and propose a new loss function based on concepts from ensemble
learning that can be used for both ordinal and continuous targets.

Papers II and III deal with applying the concept of self­attention to different data domains. In Paper II we focus on point clouds, which are modeled
as unordered sets in 3D space. Although applying self­attention to sets is straightforward, we find that this mechanism in itself is not enough to improve
feature learning. Instead, we propose a hierarchical approach inspired by graph neural networks, where self­attention is applied to both patches of
points, and to points within the patches. This results in improved predictive performance and reduced computational cost, while preserving invariance
to permutations of points in the set.

In Paper III we explore the use of self­attention for auditory perception. Using a simple Transformer architecture, we achieve state­of­the art
performance for speech classification. However, deploying speech recognition models in real world scenarios often involves making trade­offs between
predictive performance and computational costs. In Paper IV, we therefore explore floating point quantization of neural networks in the context of
federated learning and propose a new method that allows training to be performed on low­precision hardware. More specifically, we propose a method
for quantization aware training and server­to­device communication in 8­bit floating point. This allows for a significant reduction in the amount of
data that needs to be communicated during the training process. Building upon the results in Paper III, we also show that our Transformer­based model
can be quantized and trained in a realistic federated speech recognition setup and still achieve good performance.

Papers V, VI and VII also deal with auditory perception, but from the localization point of view. This involves processing signals from microphone
arrays and extracting spatial cues that enable the system to infer the location of the sound source. One such cue is the time difference of arrival (TDOA),
which is estimated by correlating signals from different pairs of microphones. However, measuring TDOA in adverse acoustical conditions is difficult,
which motivates the use of machine learning for this task. In Paper V, we propose a learning­based extension of a classical method for TDOA estimation
that improves prediction accuracy, while simultaneously preserving some of the properties of the classical method. This is achieved by using a model
architecture that is equivariant to time shifts together with an RvC training objective.

TDOA estimates are often used as input to sound source localization (SSL) systems. In Paper VI, we extend the method from Paper V to predict
TDOA’s from multiple overlapping sound sources and show that this is a good pre­training task for extracting correlation features to an SSL system,
with improved localization performance compared to popular handcrafted input features.

In Paper VII, we instead focus on a single sound source, but with variable number of microphones in the array. Most machine learning methods for
SSL are trained using a specific microphone array setup and will not work if a microphone is turned off or moved to a different position. We solve this
problem by modeling pairs of audio recordings and microphone coordinates as nodes in a multi­modal graph. This enables the use of an attention­based
autoencoder model that infers the location of the sound source using both microphone coordinates, i.e. a set of points in 3D space, and audio features,
while preserving invariance to permutations of microphones. Furthermore, we address variants of the problem where data is partially missing, such as
signals from a microphone at an unknown location.

Keywords

neural networks; deep learning; machine perception; ordinal regression; shape recognition; transformer; audio
classification; quantization; sound source localization

Classification system and/or index terms (if any)

Supplementary bibliographical information Language

English

ISSN and key title

Doctoral Thesis in Mathematical Sciences
1404­0034

ISBN

978­91­8104­314­3 (print)
978­91­8104­315­0 (pdf)

Recipient’s notes Number of pages

260
Price

Security classification

I, the undersigned, being the copyright owner of the abstract of the above­mentioned dissertation, hereby grant to
all reference sources the permission to publish and disseminate the abstract of the above­mentioned dissertation.

Signature Date 2024­12­16

Machine Learning for
Perception and Localization

Efficient and Invariant Methods

by Axel Berg

Thesis for the degree of Doctor of Philosophy in Engineering

Thesis advisors:
Assoc. Prof. Magnus Oskarsson, Dr. Chuteng Zhou, Prof. Kalle Åström

Faculty opponent:
Assoc. Prof. Jesper Rindom Jensen

Aalborg University

To be presented, with the permission of the Faculty of Engineering of Lund University, for public criticism in
Hörmandersalen (MH:H) at the Centre for Mathematical Sciences on the 7:th of February 2025 at 13:15.

.

Cover illustration: waveform of a recording
of the author uttering the sentence
“Machine Learning for Perception and Localization”.

pp. i­91 © 2024, Axel Berg
Paper I © 2021, IEEE
Paper II © 2022, IEEE
Paper III © 2021, ISCA
Paper IV © 2024, The Authors
Paper V © 2022, ISCA
Paper VI © 2024, The Authors (CC BY 4.0)
Paper VII © 2024, IEEE

Centre for Mathematical Sciences
Lund University
Box 118
SE­221 00 Lund
Sweden

Doctoral Thesis in Mathematical Sciences 2024:5
ISSN: 1404­0034
ISBN: 978­91­8104­314­3 (print)
ISBN: 978­91­8104­315­0 (electronic)
LuTfMA­1088­2024

Printed in Sweden by Media­Tryck, Lund University, Lund 2024

Dedicated to my parents
Karin and Roger

Abstract

This thesis covers a set of methods related to machine perception and localization, which are
two important building blocks of artificial intelligence. In Paper I, we explore the concept
of regression via classification (RvC), which is often used for perception tasks where the
target variable is either ordinal or when the distance metric of the target space is not well­
suited as an objective function. However, it is not clear how the discretization of the target
variable ought to be done. To this end, we introduce the concept of label diversity and
propose a new loss function based on concepts from ensemble learning that can be used
for both ordinal and continuous targets.

Papers II and III deal with applying the concept of self­attention to different data domains.
In Paper II we focus on point clouds, which are modeled as unordered sets in 3D space.
Although applying self­attention to sets is straightforward, we find that this mechanism in
itself is not enough to improve feature learning. Instead, we propose a hierarchical approach
inspired by graph neural networks, where self­attention is applied to both patches of points,
and to points within the patches. This results in improved predictive performance and
reduced computational cost, while preserving invariance to permutations of points in the
set.

In Paper III we explore the use of self­attention for auditory perception. Using a simple
Transformer architecture, we achieve state­of­the art performance for speech classification.
However, deploying speech recognition models in real world scenarios often involves mak­
ing trade­offs between predictive performance and computational costs. In Paper IV, we
therefore explore floating point quantization of neural networks in the context of federated
learning and propose a new method that allows training to be performed on low­precision
hardware. More specifically, we propose a method for quantization aware training and
server­to­device communication in 8­bit floating point. This allows for a significant reduc­
tion in the amount of data that needs to be communicated during the training process.
Building upon the results in Paper III, we also show that our Transformer­based model can
be quantized and trained in a realistic federated speech recognition setup and still achieve
good performance.

Papers V, VI and VII also deal with auditory perception, but from the localization point
of view. This involves processing signals from microphone arrays and extracting spatial
cues that enable the system to infer the location of the sound source. One such cue is the
time difference of arrival (TDOA), which is estimated by correlating signals from differ­
ent pairs of microphones. However, measuring TDOA in adverse acoustical conditions is
difficult, which motivates the use of machine learning for this task. In Paper V, we pro­
pose a learning­based extension of a classical method for TDOA estimation that improves
prediction accuracy, while simultaneously preserving some of the properties of the classical

ix

method. This is achieved by using a model architecture that is equivariant to time shifts
together with an RvC training objective.

TDOA estimates are often used as input to sound source localization (SSL) systems. In
Paper VI, we extend the method from Paper V to predict TDOA’s from multiple overlap­
ping sound sources and show that this is a good pre­training task for extracting correlation
features to an SSL system, with improved localization performance compared to popular
handcrafted input features.

In Paper VII, we instead focus on a single sound source, but with variable number of mi­
crophones in the array. Most machine learning methods for SSL are trained using a specific
microphone array setup and will not work if a microphone is turned off or moved to a differ­
ent position. We solve this problem by modeling pairs of audio recordings and microphone
coordinates as nodes in a multi­modal graph. This enables the use of an attention­based
autoencoder model that infers the location of the sound source using both microphone
coordinates, i.e. a set of points in 3D space, and audio features, while preserving invariance
to permutations of microphones. Furthermore, we address variants of the problem where
data is partially missing, such as signals from a microphone at an unknown location.

x

List of Publications

The contents of this thesis is based on the following publications:

Paper I Deep Ordinal Regression with Label Diversity
Axel Berg, Magnus Oskarsson, Mark O’Connor
Proc. 2020 25th International Conference on Pattern Recognition (ICPR),
2021, pp. 2740­2747

Paper II Points to Patches: Enabling the Use of Self­Attention for 3D Shape
Recognition
Axel Berg, Magnus Oskarsson, Mark O’Connor
Proc. 2022 26th International Conference on Pattern Recognition (ICPR),
2022, pp. 528­534

Paper III Keyword Transformer: A Self­Attention Model for Keyword Spotting
Axel Berg, Mark O’Connor, Miguel Tairum Cruz
Proc. Interspeech 2021, pp. 4249­4253

Paper IV Towards Federated Learning with on­device Training and Communica­
tion in 8­bit Floating Point
Bokun Wang, Axel Berg, Durmus Alp Emre Acar, Chuteng Zhou
Submitted. A shorter version of this paper was presented at FedKDD: In­
ternational Joint Workshop on Federated Learning for Data Mining and
Graph Analytics, 2024.

Paper V Extending GCC­PHAT using Shift Equivariant Neural Networks
Axel Berg, Mark O’Connor, Kalle Åström, Magnus Oskarsson
Proc. Interspeech 2022, pp. 1791­1795

Paper VI Learning Multi­Target TDOA Features for Sound Event Localization and
Detection
Axel Berg, Johanna Engman, Jens Gulin, Kalle Åström, Magnus Oskarsson
Proc. Detection and Classification of Acoustic Scenes and Events 2024
Workshop (DCASE2024), pp. 16­20

Paper VII wav2pos: Sound Source Localization using Masked Autoencoders
Axel Berg, Jens Gulin, Mark O’Connor, Chuteng Zhou, Kalle Åström,
Magnus Oskarsson
Proc. 2024 14th International Conference on Indoor Positioning and In­
door Navigation (IPIN), pp. 1­8

xi

This thesis is an extension of my Licentiate thesis Applications of Diversity and the Self­
Attention Mechanism in Neural Networks [15], which includes Papers I – III.

Subsidiary Publications

I have also made contributions to the following publication, which is not considered to be
a part of the thesis.

The LU System for DCASE 2024 Sound Event Localization and Detection Chal­
lenge
Axel Berg, Johanna Engman, Jens Gulin, Kalle Åström, Magnus Oskarsson
DCASE2024 Challenge. Technical Report.
Paper VI is an extension of this work.

xii

Acknowledgements

I would like to give sincere thanks to my main supervisor Magnus Oskarsson for all the
advice and helpful discussions during the course of my studies. Likewise, I would like to
thank my industrial supervisor at Arm, Chu Zhou, and my academic co­supervisor Kalle
Åström. I am also grateful to Mark O’Connor, who was my industrial supervisor at Arm
during the first years of my studies. This dissertation would not have been possible without
the guidance from all of you.

The contents of this thesis is to a large extent the result of collaborative work, for which I
am very grateful. I would therefore like to give a special thanks to my other co­authors Jens
Gulin, Johanna Engman, Bokun Wang, Alp Acar and Miguel Tairum­Cruz, for working
together with me on my research projects. In addition, I would like to thank everyone in
the computer vision and machine learning group (CVML) at the Centre for Mathematical
Sciences for all the discussions and feedback, and also for providing a fun and stimulating
research environment. A special thanks to my office mate Martin Trimmel for providing
me with good company during my studies.

The opportunity for me pursue doctoral studies had not been possible without the support
from many people at Arm, both in Lund and abroad. In particular, I would like to thank
Fredrik Nordström, Johan Grönqvist, Paul Whatmough, Magnus Midholt and Fredrik
Knutsson. I would also like to acknowledge the WASP community and in particular the
members of the geometric deep learning cluster for valuable meetings and discussions.

Finally, I would like to express my gratitude to my family, and especially my wife Anna, for
supporting me in pursuing my studies.

Axel Berg, November 2024

xiii

Funding

This work was financially supported by Arm and by the Wallenberg AI, Autonomous Sys­
tems and Software Program (WASP), funded by the Knut and Alice Wallenberg (KAW)
Foundation. Computational infrastructure was provided by Arm and by the KAW Foun­
dation at the National Supercomputer Centre in Sweden. Travel costs were partially sup­
ported by the Royal Physiographic Society in Lund.

xiv

Popular summary

Perception is an important building block in artificial intelligence (AI) systems which al­
lows them to process sensory information from the outside world. The “senses” of an AI
system are the sensors that convert physical phenomena into digital signals, e.g. cameras,
microphones and antennas. The perception consists of interpreting these signals by extract­
ing the relevant information, such as the semantic content of the images captured by the
camera or the words in a speech recording captured by the microphones. Depending on
the use case of the system, the information can be used in different ways. For example,
an autonomous robot might use perception in order to navigate through its surroundings.
In other use cases, perceptive AI systems can assist human decision making, such as in
advanced driver­assistance systems used in many modern vehicles.

Today, most state of the art perceptive methods are built using machine learning, i.e. sta­
tistical algorithms, or “models”, that learn representations of the signals by training on
interpreting large amounts of data. In this thesis, a set of new machine learning methods
for perception tasks are introduced, with focus on auditory perception. Designing such
methods includes training models for classifying different types of sound recordings.

In some scenarios, it is necessary to also be able to localize the sound events in 3D space.
Sound source localization has several important applications within the fields of robotics
and navigation, and there are also military applications. For this task, it is typically necessary
to work with multiple audio recordings from a synchronized microphone array. This is
analogous to how humans benefit from having two ears when localizing sounds. Training
a localization model for this task therefore involves processing multichannel audio and
extracting spatial cues that allows the model to infer the locations of the sound events.

When designing machine learning models for perception, there are several evaluation cri­
teria that ought to be considered. Perhaps most importantly, the inferences made by the
system ought to be as accurate as possible. However, just as is the case in human percep­
tion, there will always be a small probability of making incorrect inferences. For example,
the system might not be able to understand speech with poor pronunciation. Other fac­
tors, such as background noise and interference can also make it difficult for the system to
understand the data. Therefore it is important to design the training data for the perceptive
model in such a way that it contains all the scenarios required to be managed by the system.

When using AI systems in real­world scenarios it is also necessary to consider the limited
hardware capabilities of the machine on which the model is being deployed. In recent years,
there has been an accelerating trend for models to become more complex and have larger
number of trainable parameters. This increases both the memory footprint of the model
and possibly also the time required to perform inferences. In this thesis, the perceptive
models are therefore analyzed from a computational perspective as well, and solutions for

xv

Pre-processing

Perceptive m
odel

Hi!

“car”

“speech”

Conceptual overview of an auditory perceptive system that simultaneously classifies and localizes multiple audio events. Audio
signals are recorded by a microphone array and after some pre-processing, they are sent to the perceptive model which infers
information about the events and their location. In this thesis, we propose learning-based methods for solving these types of
problems.

reducing model complexity are proposed.

In the illustration shown above, we show a simplified example of one of the perceptive
tasks considered in the thesis. Here, the goal is to train a model that can detect, classify,
localize and track different sound events over time. Most approaches to this problem rely
on a pre­processing stage that extracts two types of hand­crafted audio features: 1) spectral
features that are good for distinguishing different types of sounds and 2) spatial features
that contain information about the location of the sounds source. However, these spatial
features do not deal adequately with overlapping sounds and noisy environments, leading
to incorrect inferences. To overcome this, a new spatial feature that can be trained to adapt
to different environments and learn to separate overlapping sound events is introduced in
this thesis. We test this method on real­world audio recordings and the results show that
our learning­based approach to feature extraction yields better localization performance
than the hand­crafted one.

Machine learning methods have proven to be very successful at solving problems related
to perception due to their ability to model reality by learning from data. Nevertheless,
the performance of the methods do not only depend on the quality of the data, but also
the structure of the models and how the learning procedure is implemented. How should
we design the models in order efficiently extract relevant information from the data? One
answer is that the model design ought to be adapted to the underlying structures, or sym­
metries, of the inputs and outputs to the model, which depend not only upon the data,
but also on the particular task the model is being trained for. Continue reading the thesis
in order to find out how symmetries can be exploited in order to improve the performance
of perceptive models.

xvi

Populärvetenskaplig sammanfattning

Perception är en viktig komponent i system baserade på artificiell intelligens (AI) som
möjliggör bearbetning av signaler från olika sensorer. AI­systemets sinnen utgörs av sensorer
som omvandlar fysikaliska fenomen till digitala signaler, till exempel kameror, mikrofoner
och antenner. Perceptionen består av att tolka dessa signaler genom att extrahera relevant
information, så som det semantiska innehållet i kamerabilder eller orden i en talinspelning
från mikrofoner. Beroende på systemets användningsområde kan informationen användas
på olika sätt. Om systemet används för att styra en autonom robot, kan perceptionen ex­
empelvis användas för att möjliggöra navigering i omgivningen. Perceptiva AI­system kan
också användas för att assistera människors beslutsfattande, vilket är vanligt förekommande
i bland annat förarassistanssystem.

Numera konstrueras de flesta perceptiva metoder med hjälp av maskininlärning, som byg­
ger på statistiska modeller som kan lära sig representationer av signaler genom att träna på
stora mängder data. I denna avhandling introduceras flera nya maskininlärningsmetoder,
med fokus på bearbetning av ljudsignaler. Dessa metoder innefattar träning av modeller
för att klassificera olika typer av ljud från mikrofoninspelningar.

I vissa scenarier kan det vara nödvändigt att även kunna lokalisera ljudkällor i systemets om­
givning. Ljudlokalisering har flera viktiga tillämpningar inom bland annat robotik och nav­
igering, och det finns även militära tillämpningar. För att åstadkomma noggrann lokaliser­
ing är det nödvändigt att använda en uppsättning med flera mikrofoner, precis som att vår
egen förmåga att lokalisera ljud till stor del är beroende av att vi har två öron. Att träna en
modell för lokalisering innebär således att behandla en uppsättning signaler och extrahera
spatial information som gör det möjligt att uppskatta ljudkällans position.

Det finns ett flertal olika sätt att utvärdera prestandan för perceptiva maskininlärningsmod­
eller som bör beaktas i designprocessen. Ett viktigt kriterium är att slutledningsförmågan
är tillräckligt bra för att systemet ska kunna användas i verklighetstrogna användningsom­
råden. Därför är det nödvändigt att träna modellen på en datamängd som innehåller även
svåra och ovanliga fall. För en taligenkänningsmodell kan detta innebära exempelvis in­
spelningar med otydligt uttal eller mycket bakgrundsbrus.

För att ett AI­system skall vara användbart i realistiska scenarier, är det även nödvändigt att
kunna implementera det på hårdvara med begränsad beräkningskapacitet. De senaste åren
har det emellertid funnits en trend där dessa system blivit mer och mer beräkningsinten­
siva, vilket till stor del beror på att antalet modellparametrar ökat. Ett viktigt fokusområde i
avhandlingen är därför att designa och utvärdera metoder även utifrån ett komplexitetsper­
spektiv.

xvii

Förbearbetning

Perceptionsm
odell

Hej!

“bil”

“tal”

Konceptuell överblick av ett perceptionssystem som samtidigt klassificerar och lokaliserar flera ljudhändelser. Inspelningarna från
mikrofonerna förbehandlas och bearbetas därefter av en perceptiv modell som klassificerar ljudhändelserna och uppskattar deras
position. I denna avhandling introducerar vi inlärningsbaserade metoder för att lösa denna typ av problem.

Illustrationen ovan visar ett förenklat exempel på ett av problemen som behandlas i avhan­
dlingen. Problemet består i att träna en modell som kan detektera, klassificera, lokalisera
och spåra olika typer av ljud. Det vanligaste sättet att angripa detta problem är att först
använda sig av ett förbearbetningssteg som extraherar två typer av ljudrepresentationer:
1) en spektral representation som är bra för att särskilja olika slags ljud och 2) en spatial
representation som innehåller information om ljudkällans position. Den spatiala repre­
sentationen är emellertid ofta inte tillräckligt bra för att kunna hantera överlappande ljud
och bakgrundsbrus, vilket kan leda till felaktiga slutledningar. I denna avhandling intro­
ducerar vi därför en metod för att extrahera en adaptiv representation utifrån träningsdata.
Vi utvärderar denna representation på realistiska ljudinspelningar och demonstrerar bättre
lokaliseringsförmåga jämfört med andra spatiala representationer.

Maskininlärningsmodeller har visat sig vara bra på att lösa perceptionsrelaterade problem
på grund av deras förmåga att extrahera representationer av verkligheten från träningsdata.
Likväl är deras förmåga också beroende på hur modellernas struktur och hur träningen
utformas. Hur bör vi designa dessa modeller för att på bästa sätt extrahera relevant infor­
mation från en datamängd? Ett möjligt svar på denna fråga är att utnyttja de underliggande
symmetrierna som bestämmer förhållandet mellan indata och utdata för det specifika prob­
lemet. Läs gärna resten av avhandlingen för att få reda på hur symmetrier kan användas för
att förbättra perceptiva modellers prestanda för en mängd olika problem.

xviii

List of Abbreviations

k­NN k­nearest neighbour

ACCDOA Activity­coupled Cartesian DOA

ADAM Adaptive moment estimation

ADPIT Auxiliary duplicating permutation invariant training

ASR Automatic speech recognition

BN Batch normalization

CE Cross entropy

CNN Convolutional neural network

DCT Discrete cosine transform

DOA Direction of arrival

FLOPS Floating point operations per second

FMR Feature matching recall

FP Floating point

GCC­PHAT Generalized cross correlation with phase transform

GNN Graph neural network

LN Layer normalization

MAE Mean absolute error

MAP Maximum a posteriori probability

MFCC Mel­frequency cepstrum coefficients

mIoU mean intersection­ over ­union

ML Maximum likelihood

MLP Multi­layer perceptron

MSA Multi­head self­attention

MSE Mean squared error

xix

NGCC­PHAT Neural generalized cross correlation with phase transform

PIT Permutation invariant training

QAT Quantization aware training

RANSAC Random sample consensus

RDE Relative distance error

RNN Recurrent neural network

RvC Regression via classification

SA Self­attention

SALSA Spatial cue­augmented log­spectrogram

SELD Sound event localization and detection

SGD Stochastic gradient descent

SLAM Simultaneous localization and mapping

SNR Signal­to­noise ratio

SSL Sound source localization

TDOA Time­difference of arrival

UQ Unbiased quantization

xx

Contents

Abstract . ix
List of Publications . xi
Acknowledgements . xiii
Funding . xiv
Popular summary . xv
Populärvetenskaplig sammanfattning . xvii
List of Abbreviations . xix

Background and Research Context 1
1 Introduction . 3

1.1 Motivation and Research Objectives 4
1.2 Outline of the Thesis . 5

2 Artificial Neural Networks and Deep Learning 7
2.1 Supervised Learning . 8
2.2 Training a Neural Network . 10
2.3 Federated Learning . 12
2.4 Number Formats for Neural Network Training and Inference . . . 14

3 Diversity and Ordinal Regression . 19
3.1 Regression Ensembles . 20
3.2 The Bias­Variance Decomposition 21
3.3 Label Binning . 23
3.4 Regression via Classification . 26
3.5 Ordinal Regression . 29
3.6 Label Diversity . 29

4 Neural Network Architectures and Input­Output Symmetries 33
4.1 Permutation Symmetry and Learning on Sets 34
4.2 Permutation Invariant Training 36
4.3 Relation Networks . 37
4.4 Learning on Graphs . 38
4.5 Translational Symmetry and Convolutional Neural Networks . . . 39
4.6 Self­Attention and Transformers 40

5 Audio Recognition and Sound Source Localization 47

5.1 Audio Feature Descriptors . 47
5.2 Speech Recognition and Keyword Spotting 54
5.3 Sound Source Localization . 56

6 Summary of Contributions . 69
6.1 Paper Contributions . 69
6.2 Conclusions and Outlook . 75

References . 77

Scientific Publications 91

I Deep Ordinal Regression with Label Diversity 95
1 Introduction . 95
2 Related Work . 97

2.1 Methods . 97
2.2 Relevant Applications . 98

3 Proposed Method . 100
3.1 Label Diversity by Overlapping Bins 100
3.2 Backpropagation . 100
3.3 Inference . 101

4 An Illustrative Example . 103
5 Experiments . 104

5.1 Age Estimation . 105
5.2 Head Pose Estimation . 106
5.3 Historical Image Dating . 107

6 Conclusion . 108
References . 109

II Points to Patches: Enabling the Use of Self­Attention for 3D Shape Recognition 115
1 Introduction . 115
2 Related Work . 116
3 Method . 118
4 Experiments . 121

4.1 Shape Classification . 121
4.2 Ablation Study . 123
4.3 Feature Matching on 3DMatch 125

5 Conclusions . 126
References . 127

III Keyword Transformer: A Self­Attention Model for Keyword Spotting 133
1 Introduction . 133
2 Related Work . 135

2.1 Keyword Spotting . 135
2.2 Self­Attention and the Vision Transformer 135

xxii

3 The Keyword Transformer . 136
3.1 Model Architecture . 136
3.2 Knowledge Distillation . 137

4 Experiments . 138
4.1 Keyword Spotting on Google Speech Commands 138
4.2 Ablation Studies . 139
4.3 Attention Visualization . 140
4.4 Latency Measurements . 141

5 Conclusion . 142
References . 142

IV Towards Federated Learning with on­device Training and Communication in
8­bit Floating Point 149
1 Introduction . 149
2 Related Work . 151

2.1 Federated Learning with Quantized Communication 151
2.2 FP8 Quantization for Neural Networks 152

3 Method . 153
3.1 Preliminaries . 153
3.2 Floating Point Representation 153
3.3 On­Device Quantization­Aware Training 154
3.4 Unbiased Quantized Communication 155
3.5 Server­Side Optimization (SERvEROpTIMIZE) 157
3.6 Overall algorithm . 158

4 Convergence analysis and theoretical motivations 159
5 Experiments and Ablation Studies . 160

5.1 Datasets and models . 160
5.2 Mixed Precision Quantization Implementation 162
5.3 Results . 162
5.4 Ablation studies . 164

6 Conclusions and Future Work . 165
References . 166
Appendix . 170
A Quantization Function . 170
B Convergence Analysis of Quantization­aware Training (QAT) 170
C Convergence Analysis of FP8FedAvg­UQ 173

C.1 Lemmas on the Stochastic Quantization for Model Communication 174
C.2 Lemma on a Single Communication Round 176
C.3 Proof of the Main Theorem . 182

V Extending GCC­PHAT using Shift Equivariant Neural Networks 187
1 Introduction . 187

xxiii

2 Method . 188
3 Experiments . 192
4 Conclusions . 195
5 Acknowledgments . 195
References . 195

VI Learning Multi Target TDOA Features for Sound Event Localization and De­
tection 201
1 Introduction . 201
2 Method . 203

2.1 Background . 203
2.2 Permutation Invariant Training for TDOA Estimation 204

3 Experimental Setup . 205
3.1 Using TDOA Features for SELD 205
3.2 Dataset and Model Training . 207

4 Results . 208
5 Conclusions . 210
References . 210

VIIwav2pos: Sound Source Localization using Masked Autoencoders 217
1 Introduction . 217
2 Method . 219
3 Experimental Results . 223
4 Conclusions and Future Work . 227
References . 227
Appendix . 232

xxiv

Background and Research Context

1. Introduction

1 Introduction

Machine perception and localization are two important aspects of artificial intelligence (AI).
In this context, perception refers to the ability of an AI system to process and interpret sen­
sory information, for example images and audio. As of today, most methods for machine
perception are built using machine learning, where the perceptive system is able to approx­
imate input­output relations by learning from a collection of data. The widespread use
of machine learning has accelerated the capabilities of AI systems over the last couple of
decades and the research area is now moving forward at a quick pace. In particular, the
use of artificial neural networks has played an important part in this trend, and they are a
central component in all the methods presented in this thesis.

In order for a perceptive system to be useful in a real­world application it has to fulfill
certain criteria in terms of both accuracy and efficiency. The inferences should be accurate,
because otherwise the system cannot be relied on for decision making. However, they
should also be efficient in terms of the computational intensity, memory requirements and
communication bandwidth. For example, consider an automatic speech recognition (ASR)
system that provides automatic captions for an online teleconference application. Such a
system is only useful if it can operate in real­time, which puts restrictions on the complexity
of the system in relation to the hardware on which it is being deployed. Furthermore, a
model that can run in real­time on a server or desktop computer may be slower on an
edge device, for example a mobile phone. Running a system on such a device may require
optimizing the structure of the perceptive system in order to reduce the computational
workload.

In terms of performance evaluation, a reasonable expectation is for such a system to be at
least as good as a human transcriber. But how can we compare the performance of an ASR
system to a human? A common measure is the word error rate (WER). In 2016, a group
of researchers first designed a system with human­level performance (5.8 % WER) on a
dataset consisting of recorded telephone conversations [4]. However, the speakers were na­
tive English speakers, and subsequent research has shown that performance of ASR systems
drop significantly when evaluated on non­native speakers [12]. Human­level performance
has also been claimed for other perceptive tasks, including machine translation [101], image
classification [59] and 3D object detection [44].

In addition to perception, some systems might be required to perform localization. This
could involve localizing external objects in the vicinity of the object, or self­localization in
relation to a known map of the environment. When both the location and the map are
unknown, these need to be estimated jointly by exploiting movements, a problem known
as simultaneous localization and mapping (SLAM).

SLAM systems can be used in autonomous systems, where navigation is performed using

3

Background and Research Context

the constructed map, or as assistants to human navigation, for example in advanced driver­
assistance systems (ADAS). This is another example where efficiency is especially important,
since navigation becomes difficult without real­time updates to the map. Furthermore,
ADAS systems need to satisfy very stringent safety requirements. In some use cases, the
system might also be required to process and interpret multiple data streams simultaneously,
which requires more computational capabilities. For example, many SLAM methods for
ADAS depend on inputs from both cameras and LiDAR [25].

In other scenarios, SLAM can also be performed using sound measurements from a single
[71] or multiple [43] microphones. Using acoustic measurements for localization can be
useful as a cheaper alternative to using cameras and they can also work in poor lightning
conditions where camera sensors fail to operate, given that there are some active sound
sources in the surroundings. Other applications of acoustic localization include smart tele­
conference systems. For example, when applying ASR to multichannel audio recordings
from a microphone array, performance can be improved if the speech can be localized in
space and separated from other interfering sound events by exploiting spatial diversity from
the array [45, 24].

When designing methods for perception and localization, it is often useful to consider the
intrinsic properties of input­output relations. For example, when evaluating a localization
system, we are not interested in the order in which the detected events are arranged, only
how accurate and efficient the system is at detecting and localizing the events. In other
words, the evaluation method should be invariant to reordering of events. In some scenar­
ios, the setup of the sensor array might be reordered, and hence we want to design a model
that is invariant to reordering of the input. Such properties can either be learned implicitly
from the data, or be explicitly built into the neural network architecture. In this thesis, we
emphasize the latter approach while designing methods for perception and localization.

1.1 Motivation and Research Objectives

This thesis deals with problems related to both perception and localization, in a variety of
different contexts and problem setups. For each task, we present learning­based methods
that deal with different aspects of solving the problem, such as accuracy, computational
efficiency and invariance to input and output transformations. Although the scope of this
thesis is rather broad and the contributions span several different research areas within
the topics of perception and localization, they are centered around common themes and
motivations. Here, we briefly state some research questions that we have tried to answer
during the course of this research project.

[RQ1] What objective functions are suitable for perception and localization? More specifi­
cally, we examine different objective functions for problems where the target variable

4

1. Introduction

can be regarded as either continuous or categorical. In addition, we investigate differ­
ent ways that regression problems can be modeled as ordinal classification problems.

[RQ2] How can the Transformer architecture be applied to different data modalities, such
as audio and point clouds? In recent years, the Transformer has become the most
widely adopted neural network architecture for many categories of problems. First
proposed in 2017 [131], it quickly became popular in the natural language processing
research community and it has contributed greatly towards the development and suc­
cess of large language models. However, it was not until the Vision Transformer [40]
was proposed in 2020 that it became popular in the computer vision community.
One of our research objectives is to leverage the potential of adopting Transformers in
other domains and compare their performance with more traditional architectures.

[RQ3] Can these models be used without excessive computational footprint? Transform­
ers are known for achieving high benchmark scores on many tasks, but often this is
achieved by increasing the number of parameters compared to other models, which is
undesirable in many use cases. Can we achieve the same model performance without
requiring more parameters and computations?

[RQ4] How can machine learning be applied to sound source localization problems? Al­
though some aspects of sound source localization using machine learning have been
widely explored, there are other scenarios where classical methods are still widely
used. This is a great research opportunity, since deep learning has been very success­
ful in other aspects of audio processing. Localization performance is often limited
by adverse acoustic conditions in the environment, which is something that adaptive
methods can potentially alleviate. We therefore investigate properties of the classical
localization methods and try to develop machine learning methods that can replace
components of the classical methods in order to improve performance.

[RQ5] How can intrinsic properties of perception and localization problems, such as in­
variance and equivariance, be exploited to design better models for perception and
localization? Choosing the neural network architecture is an important step in de­
signing perceptive systems. We investigate different choices in representations of the
inputs and outputs, as well as the networks internal representations. We also explore
how concepts from geometric deep learning, such as invariance and equivariance,
can be exploited in the design process of machine learning models.

1.2 Outline of the Thesis

Section 2 briefly covers some of the basic concepts related to neural networks and super­
vised learning that lay the foundation for the rest of the thesis. In Section 3, we cover
the background of some specific problems related to the choice of objective function for

5

Background and Research Context

regression and classification problems. We then proceed to discuss some neural network
architectures and their properties in Section 4. In Section 5 we discuss audio processing
and sound source localization from a machine learning perspective. Finally, in Section 6 we
highlight the main contributions of the thesis and present the main results of the included
publications.

6

2. Artificial Neural Networks and Deep Learning

2 Artificial Neural Networks and Deep Learning

Feature extraction is an important step in pattern recognition that deals with finding useful
representations of data, for example images or audio. These representations can then be
used to solve downstream tasks. Sometimes it is possible to design hand­crafted feature
extractors based on human intuitions [33], however in recent years they have to a large
extent fallen out of favor and been replaced by machine learning models that learn to ex­
tract features based on patterns in large data collections. In recent years, the use of neural
networks as feature extractors has accelerated progress in many fields. In this section, we
provide a brief introduction to some important concepts in deep learning.

An artificial neural network consists of a set of neurons, with corresponding weights and
activation functions, that form a computational graph. A network fθ : X → Y , parame­
terized by a set of parameters θ, defines a mapping from the input space X to the output
space Y . The simplest form of neural network is the perceptron [107], which was origi­
nally inspired by neurons in the brain. It maps an input vector x = [x(1), ..., x(d)]T to an
output y, using a weighed sum

y = σ(xTw + b). (1)

Here σ is a non­linear function, also known as the activation function. The perceptron is
parameterized by the weight vector w = [w(1), ..., w(d)]T and the bias b, which can be
modified in order for the perceptron to compute different functions.

By combining multiple layers of perceptrons, we get a directed computational graph which
is referred to as a multi­layer perceptron (MLP) [108], as shown in Figure 3. The neu­
rons in­between the input and the output layer are “hidden” layers and their outputs store
intermediate values that are propagated forward through the network. By increasing the
number of hidden layers, we arrive at what is commonly referred to as a deep artificial
neural network, although there is no strict definition on where to draw the line between
shallow and deep networks.

Under certain conditions, MLPs are universal function approximators, in the sense that
they can approximate any continuous function with arbitrary precision. In theory, a single
hidden layer with sufficient width is enough to achieve this property [31]. A similar result
can be shown for or a single neuron per layer with residual connections and sufficient depth
[79], but in practice most networks are designed by finding a good trade­off between width
and depth [53].

7

Background and Research Context

...

...

...

x(1)

x(2)

x(dx)

h(1)

h(2)

h(3)

h(dh)

y(1)

y(2)

y(dy)

Figure 3: An MLP with a single hidden layer. The inputs x(1), ..., x(dx) are first propagated to the hidden layer, where activa-
tions h(1), ..., h(dh) are computed. These are then propagated to the final layer, where the output y(1), ..., y(dy)

of the neural network is obtained.

2.1 Supervised Learning

When performing function approximation using a neural network, a learning rule is neces­
sary to update the parameters of the network. In the context of supervised learning, this is
done by minimizing a loss function, which depends on the problem type. More specifically,
given a set of input and output pairsS = {(xn, tn)}Nn=1, we want to update the parameters
of our network such that we minimize some objective function L : Y × Y → R+, which
often is referred to as the loss function. Under the assumption that the data samples are
independent and identically distributed (i.i.d.), we seek to optimize the parameters θ such
that the likelihood log pθ(tn|xn) of the observed data is maximized. This is equivalent to
minimizing the negative log­likelihood:

θML = argmax
θ

N∏
n=1

pθ(tn|xn) = argmin
θ

−
N∑

n=1

log pθ(tn|xn). (2)

This is known as the maximum likelihood (ML) estimate and it can take various forms
depending on how we choose to model the data distribution. For example, assume that
the underlying process generating the data can be modeled as tn = fθ(xn) + ϵn, where
ϵn ∼ N (0, σ2) are i.i.d. random variables sampled from a Gaussian distribution and fθ is
our neural network model. Our ML estimate in (2) then simplifies to

8

2. Artificial Neural Networks and Deep Learning

θML = argmin
θ

−
N∑

n=1

log
1√
2πσ2

exp(−(tn − fθ(xn))
2

2σ2
)

= argmin
θ

N

2
log 2πσ2 +

N∑
n=1

1

2σ2
(tn − fθ(xn))

2.

(3)

Ignoring the constants, we find that maximizing the likelihood corresponds to minimizing
the squared error between the network predictions and the ground truth data labels. In
this case it is therefore natural to use the mean squared error as loss function:

LMSE(x, t;θ) =
1

N

N∑
n=1

(tn − fθ(xn))
2. (4)

When choosing the neural network architecture for this problem, which is a form of non­
linear regression, the last layer of the network has a single output neuron such that the
predictions yn = fθ(xn) ∈ R. Furthermore, the regression problem can be easily extended
to higher dimensions.

In other scenarios, networks are used for multi­way classification problems where the targets
tn ∈ {1, ...,K} belong to a set of discrete categories. The network architecture then has to
be modified to useK output neurons, where each neuron models the probability pθ(k|xn)
ofxn being an instance of class k. In order to generate a probability distribution over classes,
the output of the last hidden layer h is typically normalized using a softmax function as

softmax(h)(k) =
eh

(k)∑K
j=1 e

h(j)
. (5)

This guarantees that the predicted probabilities are non­negative and sum to 1. While there
are other functions with these properties, the softmax is most commonly used because it has
several desirable properties, such as invariance to additive scalars. Furthermore, the softmax
can be interpreted as a smooth differentiable approximation of the arg max function [53].

Although the performance of a classification model is usually evaluated using its accuracy,
i.e. the fraction of correctly classified data samples, this objective is difficult to optimize in
practice. Therefore it is more common to use a loss function that measures the similarity
between the predicted distribution and the ground truth distribution q(k|xn), such as the
cross­entropy (CE), which for an individual data sample is defined as

9

Background and Research Context

H(q, pθ) = −
K∑
k=1

q(k|xn) log pθ(k|xn). (6)

Since the data points belong to a set of discrete classes, we can use a one­hot encoding to
model the ground truth distribution:

q(k|xn) =

{
1, tn = k

0, otherwise.
(7)

Note that the choice of q(k|xn) need not be a one­hot distribution. For example, label
smoothing [123], which is a form of network regularization, uses a smoothing parameter α
that penalizes over­confident predictions

q(k|xn) =

{
1− α, tn = k
α

K−1 , otherwise.
(8)

For ordinal regression problems, where the classes can be ranked on an ordinal scale, there
are other several other possible label encodings, which are further discussed in Section 3.

There exists an intimate connection between the CE loss and the ML estimation technique.
Using the one­hot encoding in 7, we can calculate the average cross­entropy across the entire
data set as

LCE(x, t;θ) = −
1

N

N∑
n=1

K∑
k=1

q(k|xn) log pθ(k|xn) = −
1

N

N∑
n=1

log pθ(tn|xn), (9)

where pθ(tn|xn) here should be interpreted as the likelihood of the parameters θ given the
observations (xn, tn). By comparing this with equation (2), we can conclude that under
these assumptions, minimizing the average cross entropy is in fact equivalent to minimizing
the average negative log­likelihood.

2.2 Training a Neural Network

Training a neural network is an optimization problem where the goal is to minimize the
expected loss E(xn,tn)∼S [L(xn, tn;θ)] for the entire data set. Ideally, if the network is able

10

2. Artificial Neural Networks and Deep Learning

to recognize patterns in the training data, and consequently minimize the loss function, it
will be able to infer the same patterns on data not seen during training. An assumption is
that the unseen data is drawn from the same underlying distribution as the training data.
For example, if a neural network has been trained to classify images of cats and dogs, it
will hopefully generalize to unseen examples of cats and dogs. However, if the training set
only contains dogs of specific races, e.g. Labrador Retrievers, the classification performance
might not generalize well to images of Chihuahuas.

Another common problem in neural network training is poor generalization due to mem­
orization of training examples, also referred to as overfitting. This can occur when the
parameter space is too large, which in practice often means that the network is too deep
(has too many layers) or too wide (each layer has too many parameters). Therefore, an
obvious way to regularize a network is to make it smaller, but in practice it has been shown
that over­parameterized networks perform better even on simpler tasks [144, 90]. Instead,
different regularization strategies are thus applied during training, which can be done for
example by modifying the loss function to penalize memorization of training examples. For
instance, weight decay (WD) can be applied by adding an extra term to the loss function
which penalizes the l2­norm of the parameters:

LWD(x, t;θ) = L(x, t;θ) +
λ

2
θTθ. (10)

Here, λ > 0 is a hyperparameter that determines the regularization strength. The intuition
behind weight decay is that it encourages the optimizer to find a “simple” solution where
the weights are close to 0. Furthermore, it can be shown that adding weight decay in the
loss function is equivalent to setting a Gaussian prior on θ [46]. Regularization can also be
achieved by randomly deleting activations in the network during training. This technique
is known as Dropout [120] and applying it results in a regularization penalty similar to that
of weight decay [11].

Another common regularization technique is to use data augmentation in order to arti­
ficially expand the training set by feeding the network multiple augmented copies of the
same data samples. For example, when learning to classify images of dogs and cats, we can
use random scaling, rotations and cropping of the images. This also forces the network to
be approximately invariant to those transformations, since the labels are not being changed
(a rotated cat is still a cat). In some cases, it may also be desirable to make the network
exactly invariant by restricting the architecture of the network itself. This topic is further
explored in Section 4.

In practice, neural networks are optimized using various forms of gradient descent. The
optimization procedure consists of 1) estimating the gradient ∇θL of the loss function
with respect to the network parameters and 2) updating the parameters in the negative

11

Background and Research Context

direction of the gradient. In its simplest form, the learning rule is given by

θ ← θ − η∇θL, (11)

where η is the learning rate. The update is applied repeatedly until convergence is reached,
which usually requires iterating over the training data multiple times. Since the neural
network is essentially a computational graph, the gradient with respect to individual scalar
parameter of the network can be found using backpropagation, which involves applying
the chain rule recursively.

In practice, it is not computationally efficient (or even feasible) to compute the expected
gradient using all training samples, since only a subset is needed to get an estimate of the
gradient. The most common learning rule is batched stochastic gradient descent (SGD),
where for each update the gradient is estimated using a randomly sampled subset of the
training data. More specifically, each update uses a minibatch B ⊂ S of training data and
then estimates the gradient as

∇θL ≈
1

|B|
∑

xn,tn∈B
∇θL(xn, yn;θ). (12)

In recent years, more advanced learning rules that use gradient momentum in order to
adaptively adjust the learning rate, such as Adam [69], have been proposed in order to
reach faster convergence. The success of SGD­based optimization, together with the fast
evolution of modern computer hardware that allow for efficient acceleration of both train­
ing and inference on computational graphs, has made deep neural networks a ubiquitous
tool for machine learning research, and also feasible to deploy in many commercial appli­
cations. In this section we have only made a brief introduction to this topic and the reader
is referred to [53] for a more rigorous treatment of basic deep learning concepts.

2.3 Federated Learning

In some scenarios, it can be difficult to access a centralized dataset to train on. For example
in medical applications, it is not uncommon for hospitals to store large amounts of medical
records for their patients, but due to the sensitive nature of the data, it cannot always be
shared with researchers outside the hospital without complicated legal procedures. This
makes it difficult to combine data from different hospitals and use it for model training.

Suppose that instead of centralizing data from different hospitals and training a single
model, we could train one model for each local dataset and then combine the local models
into a centralized model. This is the main idea behind federated learning. At the start of

12

2. Artificial Neural Networks and Deep Learning

Client 1

Server

Client 2 Client K

model aggregation

training on local datasets

Figure 4: Conceptual overview of federated learning. For each training round t, the server distributes its model parameters θt

to the clients, and each client then performs training on its local dataset Sk. At the end of the training round, the
updated parameters θk

t+1 are sent back to the server and aggregated to a central model, before being distributed
again in the next round. In the general setting, not all clients are required to participate in every training round.

each training round t, a subset of clients Pt ⊂ {1, . . . ,K} receive a copy of the same
model weights θt and then perform local training using a certain number of local gradient
updates computed from their own local disjoint datasets {Sk}k∈Pt , which results in a set
of different local models {θk

t+1}k∈Pt . At the end of the training round, the weights are
sent to the server and aggregated to a centralized model. The new centralized model is then
transmitted back to the clients at the start of the next round t + 1, that perform another
round of training, and so on. Figure 4 shows an illustration of the learning process.

The simplest form of server aggregation is to use a weighted average [86] of the client model
weights

θt+1 ←
|Sk|
|S|

∑
k∈Pt

θk
t+1, (13)

where Sk is the local dataset of the k:th client. In a scenario where all the local datasets
are independent and identically distributed, and each client only takes a single gradient
step, the federated average reduces to a form of distributed SGD. However, when more
local training steps are performed by each client, the local models will diverge from each
other, which makes the training dynamics quite different from centralized training. In

13

Background and Research Context

order to alleviate this problem, more sophisticated training strategies have been developed
[66, 78, 5] that prevent client drift by adding regularization to the local training objectives
or by modifying the aggregation method.

There are many practical applications of federated learning, with perhaps the most well
known example being Google’s mobile keyboard prediction model [58]. When users type
on their smartphone, the keyboard provides next­word predictions from a model that has
been trained on user data. Due to the ethical concerns of storing user inputs on a central
server, each smartphone instead trains their own local model and these are then combined
to form a central model with better predictive performance than the individual models.
The same technique is also used to some extent for training speech models in voice assis­
tants [2]. Furthermore, ensuring that the trained models do not leak information about
the training data is essential, which has lead to the development of differentially private
federated learning methods [87].

2.4 Number Formats for Neural Network Training and Inference

Training large neural networks requires significant resources and hardware capabilities,
which has lead to the development of hardware accelerators for general matrix multipli­
cations (GEMM). Specialized hardware, such as graphics processing units (GPUs) and
neural processing units (NPUs), rely on parallelism across multiple cores in order to speed
up training. This is done by utilizing single­instruction, multiple data (SIMD) execution
which allows for increased total throughput compared to processing data sequentially. For
example, consider the MLP in Figure 3. Here, each value in the hidden layer can be com­
puted independently using dot­products between the input vector and the corresponding
weight vector, followed by an element­wise activation function. These operations can thus
be executed in parallel by exploiting multiple computational cores.

The increasing computational resources available to researchers has been a driving factor
towards designing larger and larger neural networks. However, an increasing demand for
machine learning applications everywhere has also lead to an opposite research trend, with
the goal of making models available on consumer devices, such as laptops, smartphones or
even microcontrollers [146]. Part of this research involves designing neural networks under
hardware constraints that makes it feasible for them to run on devices with limited hardware
capabilities. Another aspect is how to optimize the designs of widely available models. This
includes system optimizations, where the computations are made efficiently implemented
for specific hardware capabilities, as well as model compression, which involves re­designing
parts of the model. Whereas system optimizations preserve the computational structure of
the model, model compression can lead to a degradation of the predictive performance.
Methods for model compression include quantization, pruning and knowledge distillation
[96]. Here we give a brief overview of neural network quantization using different number

14

2. Artificial Neural Networks and Deep Learning

formats that are popular for deep learning applications.

The computations inside a neural network are typically done using one of two number
formats: floating point (FP), typically using 32, 16 [21], or 8 [135] bits, or fixed point integer
using 8 bits (INT8) [64] or fewer [138]. Whereas the former can be used for both training
and inference, the latter is typically only used for inference, since training requires a higher
dynamic range in order to capture variability in the gradients during backpropagation. A
set of signed floating point numbers F ⊂ R consists of numbers of the form

x = (−1)s2p−b
m∑
i=0

di2
−i, s, di ∈ {0, 1}, p ∈ {0, 1, . . . , 2e−1}. (14)

Here, s is the sign bit, m is the number of mantissa bits, e is the number of exponent bits
and b is the exponent bias. Given a fixed number of bits available, they can be assigned to
either the exponent part, which yields a higher dynamic range, or the mantissa, which gives
higher precision. The exponent bias can be used to scale all the numbers into the desired
range. A common floating point format is IEEE single precision, which uses 1 sign bit, 8
bits for the exponent and 23 for the mantissa [3].

For “normal” numbers, d0 is always set to 1. The special case where p = 0 is reserved for
“subnormal” numbers by setting d0 = 0, which allows for an exact representation of 0.
Also note that we can use the same framework to represent the integer format by using a
single exponent bit.

In practice, the same number format does not need to be used in all operations. In a neural
network accelerator, different number formats can be used for storing weights and activa­
tions in memory, computing the arithmetic operations and accumulating the results. This
technique is also known as mixed precision training [88]. For example, it is common to
use FP16 arithmetic combined with FP32 accumulators, which allows for improved train­
ing speed without sacrificing performance. Furthermore, different network layers might
require different levels of numerical precision, which implies that finding the best trade­
off between efficiency and performance might require using different number formats for
different layers.

Quantization of neural networks typically follows one of two paradigms: post­training
quantization (PTQ) and quantization­aware training (QAT). PTQ can be applied to any
pre­trained model by quantizing the weights and activations of the network into a low­
precision format. For example, when using INT quantization, each scalar value needs to
be scaled using a linear transformation and then rounded to the nearest integer. Infer­
ence can then be run using dynamic or static quantization. For dynamic quantization, the
transformations are calculated on the fly for each example using the dynamic range of the
inputs to the network and all intermediate activations. For static quantization, this trans­

15

Background and Research Context

1 1

E1M2
E2M1

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

Q
(x

)

0.1 0.0 0.1
Quantization error

De
ns

ity

Figure 5: Visualization of the quantization gridpoints (top), the corresponding quantization functions (left) and the error distri-
bution for two different 4-bit floating point number formats using E exponent bits and M mantissa bits and 1 sign bit.
Since the grids are symmetric around 0, the total number of gridpoints is 24 − 1 = 15. Here, the exponent bias has
been adapted to achieve a dynamic range between -1 and 1, and the error distribution is based on inputs uniformly
distributed in this interval. Note that the E1M2 format corresponds to uniform quantization, i.e. INT4, whereas the
E2M1 yields lower quantization error for numbers close to 0 and larger quantization error for numbers close to ± 1.

formation needs to be computed beforehand using a calibration dataset. In either case, due
to the loss of precision caused by the weight and activation quantization, PTQ typically
results in a loss of the models predictive performance. To what extent the performance of
a neural network is affected by quantization is also architecture­dependent and different
quantization techniques might be required for different network architectures [89].

QAT is a training technique that tries to mitigate the performance drop caused by PTQ
by introducing quantization errors into the training process. This is done by applying a
quantization operator before and after each layer in the network. For each scalar value x(i)

in the vector x, applying the quantization operator can be written as

Q(x(i)) =


xmin, x(i) ≤ xmin,

si

⌊
x(i)

si

⌉
,

xmax, x(i) ≥ xmax,

(15)

where si is a scale­factor and ⌊·⌉ denotes rounding to the nearest integer. Furthermore,
values that fall outside the range [xmin, xmax] of the smallest and largest representable num­

16

2. Artificial Neural Networks and Deep Learning

bers in the quantized format are clipped. For integer quantization, the quantization grid
is uniform, which implies that the scale factor is the same for all elements in the vector. A
natural choice that leaves all elements unclipped would be si = maxi |x(i)| ∀i. Floating
point quantization, on the other hand, corresponds to uniform quantization with m bits
in intervals of consecutive powers of two [2p−b, 2p−b+1). The scale factor that leads to
uniform quantization in this interval is therefore given by log2 si = ⌊log2 |x(i)|⌋ − m.
Figure 5 shows examples of two different quantization functions.

When performing QAT, each layer in the network receives its own scale factors that are
treated as extra learnable parameters. After training, the scale factors are frozen and can
be used to map the weights and activations to the right dynamic ranges before converting
the model into the quantized number format. For both integer and floating point formats,
QAT typically results in lower performance drop compared to PTQ [130]. Furthermore,
the quantization noise introduced during QAT can act as a regularizer similar to weight
decay [9]. Another aspect of QAT is that gradients need to be backpropagated through
the quantization operator. Since this function has zero gradients at all points where it
is differentiable, this is done by instead using the straight­through estimator (STE) [14],
which is given by ∂⌊x⌉

∂x = 1.

Finally, it is worth noting that quantizing neural networks can bring other benefits that
are not directly related to running the actual computations. In the previous section, we
briefly introduced the federated learning concept, in which model parameters need to be
sent back and forth between a server and multiple clients during the training phase. This
can potentially result in large communication costs and reducing the amount of communi­
cation is therefore an important aspect of training efficiency. Quantizing model parameters
before the communication step can thus lead to large savings in the amount of transmitted
data. In Paper IV we further explore the synergy effects that can be leveraged when us­
ing low­precision number formats for training and communication in a federated learning
context.

17

3. Diversity and Ordinal Regression

3 Diversity and Ordinal Regression

In this section, we will cover the notion of diversity in the context of statistical learning
theory, which serves as background material for Paper I. Here, diversity refers to differences
of properties within a collection of models, data sets or predictions. Hence, a diverse set
of models can mean either models with different architectures or different values of their
parameters. Likewise, a diverse data set contains a wide variety of samples that are not
biased towards a particular setting. For example, a non­diverse data set with images of
cats and dogs might only contain instances of particular breeds, or only images captured
indoors, whereas a diverse data set should capture enough variety in both of these aspects.
Obviously, it is not trivial to quantify diversity in this aspect, since the notion is inherently
subjective and depends on the context. However, a diversity in predictions is easier to
quantify, since we can measure the variance of the predictions. Therefore a set of predictions
can be considered diverse if they have a variance larger than zero.

An analogy for diverse predictions can be made with juries used for grading in sport compe­
titions, for example gymnastics and figure skating, where the final score is assigned to each
competitor by averaging scores assigned by individual jurors. This mitigates the influence
of biased jurors and is therefore considered more fair than a single juror, a phenomenon
sometimes referred to as the wisdom of the crowd. In order to make the final score robust
to outlier judges, it is common to use a trimmed average, where e.g. the lowest and highest
scores are not included.

Diversity is also used to improve fairness in legal systems. In countries where juries are
used in judicial courts, a convicting verdict can only be reached if a majority of jurors are
in agreement (often, a supermajority or even unanimity is required). Furthermore, during
the jury selection process, it is often considered desirable to have diversity within the jury
with respect to e.g. income, gender and occupation, which is similar to the notion of model
diversity.

In wireless communication, diversity can be exploited in order to mitigate the influence
of random processes. For example, when a mobile phone has poor signal reception, the
cell tower may transmit a repeated version of the signal, which can then be averaged in
the receiver. The white noise generated in the receiver antenna will then tend to zero as the
number of repetitions increase. In some applications, multiple receiver or (and) transmitter
antennas are used as well, which increases the probability of at least one antenna pair having
good reception [137].

Diversity in machine learning is closely related to ensemble learning, in which a set of model
predictions are combined in order to improve predictive performance compared to a single
model on a given task. An old saying goes “two heads are always better than one”, and as we
shall prove in this section, the error of an ensemble average is always smaller than the average

19

Background and Research Context

error of the individual ensemble members, as long as there is enough diversity among the
ensemble members. This makes it possible to combine a set of weak models, with predictive
performance only slightly better than random guessing, into a strong ensemble model with
good predictive performance, a method known as boosting [48].

3.1 Regression Ensembles

For a given problem, we might have several models fmθ , m = 1, ...,M , that we wish to
combine in order to create an ensemble model. For a regression problem with predictions
ym = fmθ (x), the simplest form of combination is to use a linear combination of the
individual predictions

yens =

M∑
m=1

wmym, (16)

where the set of weights {wm}Mm=1 are typically restricted to be non­negative and sum to
1, which is also referred to as a convex linear combination. The simplest form of linear
combination is to assign equal weight to each individual predictor, i.e. wm = 1/M, ∀m,
but it is also possible to optimize them to minimize the prediction error on a validation
data set [97].

Given that we have calculated an ensemble average of our predictions, we would like to
understand the benefit of this operation. Fortunately, there exists an easy way to decompose
the ensemble error, which allows us to quantify the error directly in terms of the errors of
the individual predictors.

Theorem 3.1. The Ambiguity Decomposition (Krogh and Vedelsby [72]) Consider an en­
semble of m = 1, ...,M models and the convex linear ensemble average computed as in
(16). The quadratic error between the ensemble average yens and the target t then satisfies

(yens − t)2 =
M∑

m=1

wm(ym − t)2 −
M∑

m=1

wm(ym − yens)2. (17)

Proof : The result can easily be shown by manipulation of terms:

20

3. Diversity and Ordinal Regression

M∑
m=1

wm(ym − t)2 =
M∑

m=1

wm(ym − yens + yens − t)2

=

M∑
m=1

wm

[
(ym − yens)2 + (yens − t)2 + 2(ym − yens)(yens − t)

]
= (yens − t)2 +

M∑
m=1

wm(ym − yens)2,

(18)

where we have used the fact that yens =
∑

mwmym and
∑

mwm = 1. The final result is
obtained by rearranging the terms. �

The ambiguity decomposition states that the error of the ensemble average is less than or
equal to the average error of the individual predictions of the ensemble members. In order
for the ensemble error to be small, the first term in (17) should be minimized, which requires
that the individual predictions are accurate. However, the second term, which grows with
increased variance within the ensemble predictions, should be large. Therefore there is a
trade­off to be made between accurate and diverse ensemble members.

3.2 The Bias­Variance Decomposition

In Section 2, we briefly mentioned the concept of overfitting, which occurs when a model
explains the training data well, but fails to generalize to previously unseen examples in a
held­out test set. Here we shall define this in more precise terms.

Assume that we are given a dataset of input­output pairs S = {(xn, tn)}Nn=1, where xn ∈
Rd and tn ∈ R, which can be modeled as tn = f(xn) + ϵn, where ϵn are i.i.d. random
variables with meanE[ϵn] = 0 and variance Var[ϵn] = E[ϵ2n]−E[ϵn]2 = σ2. Furthermore,
assume that we have a trained model fθ, and we are interested in decomposing the expected
prediction errors (also known as the prediction risk), which we define as

R(fθ) = Ex∼S

[
(f (x)− fθ (x))2

]
. (19)

The bias­variance decomposition then tells us that the expected error can be decomposed
as [49]

R(fθ) = (BiasS [fθ])2 + VarS [fθ] + σ2, (20)

21

Background and Research Context

where

BiasS [fθ] = Ex∼S [fθ(x)− f(x)] , (21)

VarS [fθ] = Ex∼S

[
(Ex∼S [fθ (x)]− fθ (x))2

]
. (22)

The bias­variance decomposition tells us that the expected prediction errors can be decom­
posed into three terms. The first term is the bias of the model, which tells us how well the
model fits the training data. The second term is the variance, which tells us how sensitive
predictions are to the noise in the training data, and the third term is the irreducible error.
According to the decomposition, we can in theory trade­off bias and variance by making
design choices in our model, which might be beneficial in some scenarios. For example, the
weight decay introduced in equation (10) acts as a regularization term that reduces over­
fitting. In terms of the bias­variance decomposition, weight decay reduces the variance of
the model at the cost of an increased bias. On the other hand, too much regularization
can result in underfitting. According to this interpretation, a task for the machine learning
practitioner is then to find the sweet­spot, i.e. the amount of regularization that makes the
best trade­off.

The irreducible error σ2 does not depend on how the predictive model is constructed. For
example, consider the problem of age estimation from a single image of a person’s face. Is it
possible to construct a model with zero prediction error? The answer is clearly no, since the
age of a person cannot be inferred solely on the basis of a photograph. For this problem, it
therefore makes sense to model the error which cannot be explained by the content of the
image as an additive noise term in the underlying model.

We also note that the bias­variance decomposition looks similar to the ambiguity decom­
position in equation (17). In fact, one can show that for an ensemble of M models with
zero covariance, the ensemble average has the same bias as the average individual ensemble
member, but achieves a variance reduction by a factor of 1/M [19]. However, if ensemble
predictions have positive covariance, this will increase the variance of the ensemble. This
has lead to the development of techniques for negative correlation learning, where ensemble
members are explicitly trained to have negative covariance [80].

The conventional interpretation of the bias­variance trade­off tells us that our models should
not have too many parameters, since this will lead to overfitting the training data However,
the success of deep learning seems to contradict this, since many deep neural networks with
millions of parameters generalize better than shallower networks with fewer parameters,
even on small datasets. This has lead researchers to question the validity of the supposed
trade­off in the high­parameter regime of deep networks and proposed a different inter­
pretation, where variance decreases as the number of parameters increase beyond a certain

22

3. Diversity and Ordinal Regression

threshold [13, 91, 140]. Note that the decomposition of the expected prediction error itself
is still valid, but how the variance and bias are affected by the model size and architecture
is non­trivial.

3.3 Label Binning

For some problems, the labels exhibit a certain pattern where they can be grouped into
clusters. Again, consider the problem of age estimation from a single image, where the
input x is an image of a human face and the label t is the age of the person in the image.
Firstly, the choice of objective function will depend on how the age is represented. Perhaps
the most natural choice is to model the domain of the labels as t ∈ R+, i.e. the age is a
positive real number. However, in some scenarios the labeled examples in the training data
only contains the year of birth of each person. Therefore, another natural choice would be
to use a set of non­negative integers, e.g. t̃ ∈ {0, 1, ..., 100}. The rounding error can then
be modeled as uniformly distributed noise.

In general, it is hard to say which label representation is better, as the effect of grouping
labels depends on the properties of both the model and the dataset. However, in order to
highlight possible benefits of label binning, we hereby construct a toy example where it can
be shown to yield variance reduction compared to using ordinary least squares minimiza­
tion.

Assume a linear regression model T = Xθ, where X = [x1, . . . ,xN]T ∈ RN×d is a
rank­d feature matrix with N ≥ d, T = [t1, . . . , tN]T ∈ RN are the labels and θ ∈ Rd

are the linear model parameters. Suppose that we are given the feature matrix and a set
of corrupted labels T̃ = T + ϵ, where ϵ is i.i.d. zero­mean noise with covariance σ2I.
Furthermore, assume that the noise is bounded, such that the addition of the noise does
not change the order of the labels, i.e. if t1 < t2 < ... < tN , then it also holds that
t1 + ϵ1 < t2 + ϵ2 < ... < tN + ϵN . In practice this means that we can sort the labels and
the label noise does not change the outcome of the sorting.

The ordinary least squares estimate of θ is given by θ̂ = (XTX)−1XTT and the pre­
dictions (on the training data) are given by Y = LT, where L = X(XTX)−1XT is a
projection matrix. Assume now that we divide the training data into K separate clusters
{Dk}Kk=1, or “bins”, where each bin containsN ′ samples. We can then assign new labels t̃n
to each training example by averaging the labels in each cluster, i.e. t̃n = 1

N ′
∑

n′∈Dk
tn′

for all n ∈ Dk. In this hypothetical example, we can show that there is a benefit to perform­
ing the label binning before fitting our model, because it leads to a reduction in variance.

Given some predictions Y, we define the variance as

23

Background and Research Context

Var(Y) = tr(cov(Y,Y)) =
N∑

n=1

Var(yn), (23)

where tr and cov denote the matrix trace and covariance respectively. With this definition,
we can show the following

Lemma 3.2 (Variance of a linear model with label binning). Given the binned labels Tbin,
the variance of the re­projections Ybin are bounded as Var(Ybin) ≤ σ2min(d,K).

Proof: Assuming that the labels are sorted, we can write the re­projections of the binned
regression model as Ybin = LbinT̃ where Lbin = LB and B is a matrix that performs the
binning operation on the labels. Since this consists of averaging N ′ labels in each cluster,
we can write B as a block­diagonal matrix with K blocks on the diagonal and zeros in all
other entries, i.e.

B =
1

N ′

 JN ′ 0
. . .

0 JN ′

 , (24)

where JN ′ is an N ′ ×N ′ matrix containing all ones. Then we have

Var(Ybin) = tr(cov(LbinT̃,LbinT̃)) = σ2tr(cov(Lbin,Lbin)) = σ2 ∥Lbin∥2F , (25)

where ∥·∥F is the Frobenius norm and we have used the fact that cov(T̃, T̃) = σ2I. The
norm can be bounded as

∥Lbin∥2F ≤ rank(Lbin) ∥Lbin∥22 ≤ rank(LB) ∥L∥22 ∥B∥
2
2 , (26)

where ∥·∥2 is the induced 2­norm. Since L is a projection matrix, it satisfies rank(L) =
rank(X) = d and ∥L∥2 = 1. It is easy to verify that rank(B) = K and ∥B∥2 =
1. Furthermore, rank(LB) ≤ min(rank(L), rank(B)), which directly gives the desired
result.

Note that the variance of ordinary least squares regression Var(Y) = σ2d is obtained for
K = N , which implies a bin size of N ′ = 1 samples. The insight from this result is that
if the labels appear to be clustered, we can achieve a model that is more robust to the label
noise by binning the labels. However, in contrast to ordinary least squares regression, the
model will not be unbiased, since according to the Gauss­Markov theorem ordinary least
squares has lowest variance of all unbiased estimators [126].

24

3. Diversity and Ordinal Regression

N ′ = 1, K = 200

N ′ = 2, K = 100

N ′ = 5, K = 40

N ′ = 10, K = 20

N ′ = 20, K = 10

N ′ = 50, K = 4

N ′ = 100, K = 2

tn + ϵn

t n

Figure 6: Examples of several datasets with clustered labels, highlighting the transition from continuous targets to something
that looks more like categorical targets. Here, N ′ indicates the number of samples in each cluster andK is the total
number of clusters. When performing label binning, each label is replaces by the mean value of all labels in the same
cluster.

In order to visualize the bias­variance trade­off for our example, we can estimate the two
terms using Monte­Carlo simulation of our example. Figure 6 shows sets of label pairs
with and without noise generated from a rank d = 100 linear model with N = 200
samples. In this toy example, each dataset has been generated in a way such that the labels
can naturally be divided intoK bins. For each dataset, we fit two linear models to the noisy
labels: ordinary least squares and least squares with label binning. In order to estimate the
variance and bias of the two models, we then repeat the process 500 times and calculate
the sample variance and bias. In each iteration, the features X and labels Y are constant,
but the noise term ϵ is re­sampled from the same Gaussian distribution.

Figure 7 shows how the MSE of the binned regression model, decomposed into the variance
and bias parts, compared to the ordinary least squares MSE. As the number of samples per
bin N ′ increases, the re­projection variance decreases proportional to 1/N ′. However, as
N ′ grows larger, the bias also increases and eventually the error reduction due to binning
starts decreasing.

25

Background and Research Context

100 101 102
0

0.1

0.2

0.3

0.4

0.5

0.6

N ′

M
ea

n
Sq

ua
re

d
Er

ro
r

Bias(Ybin)/Nσ
2

Var(Ybin)/Nσ
2

Least Squares MSE

Figure 7: Bias and variance of least squares regression with label binning compared to the ordinary least squares without binning.

3.4 Regression via Classification

When using label binning, MSE minimization might not be the best option, since the the
labels now appear to belong to a set of discrete classes. Figure 6 shows that as the number
of clusters decreases, the labels transition into something that looks more like categorical
targets. When designing a model, we therefore need to decide on whether to model the
labels as continuous points on the real number line, or categorical targets belonging to
different classes.

The difference between the choice of representation is subtle, but it has consequences for
both the objective function and the model architecture when designing for example a neural
network. In terms of the objective function, the first choice leads to a regression problem
where the network has a single output that directly predicts target variable. The second
choice leads to a classification problem, where the network outputs a probability score that
models the likelihood of the input belonging to a certain class. Is it possible to say which
of these two choices is better in terms of the final predictive performance of the network?

For certain problems, using direct regression (or regression with label binning) might be
undesirable due to difficulties in finding a suitable loss function. Consider for example the
problem of pose estimation, where the target variable t ∈ [0, 2π) is an angle of rotation.

26

3. Diversity and Ordinal Regression

fθ
t

c1

c2

c3

c4

c5

c6c7

c8

c9

c10

c11

c12

Figure 8: An example of how to perform RvC for image rotation prediction. Here, each continuous angle t ∈ [0, 2π) is mapped
to one ofK = 12 categorical labels using intervals of equal width on the unit circle. The model then tries to classify
each image in the correct bin, instead of predicting the angle directly.

If we use the standard MSE loss function as in (4), it will suffer from discontinuity at
t = k2π, k ∈ Z. For example, if the target is t = 2π − ϵ for some small value of ϵ,
and the model predicts y = ϵ, the error modulo 2π is 2ϵ. However, the squared error is
(2π − 2ϵ)2, so using the MSE loss is not suitable for this problem.

We could try to use a periodic loss function with several minima at k2π, e.g. sin2((y −
t)/2), but having several local minima makes optimization more difficult. This could be
solved for example by letting the model predict a pair of coordinates on the unit circle,
instead of directly predicting the pose angle, but this would require a normalization of
the outputs that makes optimization difficult. Here we will instead focus another method
known as regression via classification (RvC) [127].

The main idea of RvC is to consider the target as a categorical variable, which makes it
possible to use classification methods for predictions. However, it is not always obvious
how the categorical classes ought to be defined for a given problem. The simplest solution
is to create bins of equal width that span the entire domain of the target. In the case of pose
estimation where the target variable is an angle, we can for instance divide it intoK equally
wide bins, forming a set of categorical variables {ck}Kk=1, where each class corresponds to
an interval, such that ck = [k−1

K 2π, k
K 2π). Now, we can define a mapping from the

continuous targets to the K classes by simply assigning class k to all targets that belong to
the interval ck, as shown in Figure 8.

When selecting the number of intervalsK that spans the target domain, there is a trade­off
to be made between the discretization error and the number of training examples in each

27

Background and Research Context

class. For example, if we assume that our training data consists of N data points we can
let K = N and have one training example per class. This will make it difficult for the
model to generalize to unseen data points, since it will not learn to group nearby angles in
the same category. On the other extreme end, we could let K = 2, such that c1 = [0, π)
and c2 = [π, 2π), which corresponds to a binary classification problem where the pose
is classified into two segments of the unit circle. Obviously, this is not a good choice,
because even if the classifier can achieve high accuracy, we want to be able to infer poses
with higher precision than this. Therefore we can conclude that the optimal number of
bins lies somewhere in between these extremes, although there is no general rule that can
be inferred on what the optimal value for K ought to be.

When training the model, we assign each training data point to one of the classes and create
labels using e.g. a one­hot distribution

q(ck) =

{
1, t ∈ ck,
0, otherwise.

(27)

The model is trained to match the labels by predicting a probability distribution p(tn ∈
ck|xn) that matches the labels. For brevity, we will from here forth denote the predicted
probability simply as p(ck|x).

Model optimization can be done using the same procedure as for an ordinary classification
problem, using e.g. the cross­entropy loss function

L = −
K∑
k=1

q(ck) log p(ck|x). (28)

The RvC approach might seem counter intuitive at first, but it effectively solves the problem
of discontinuous loss functions, since predictions on either side of the cutoff angle t = 2π
will be penalized equally. However, the price that we pay for using a categorical label
representation is that the loss function is now agnostic to the magnitude of the error, because
it does not take into account which classes are nearby. For example, using the categorical
labels in Figure 8, if the true angle lies in c1, the loss will be the same if the model predicts
c2 or c7, although c2 is clearly a better prediction.

From this it becomes obvious that the RvC method has thrown away useful information
about the labels, namely 1) the ordinal relationship between the classes and 2) the distance
metric used to compute the prediction errors, which in this case is the shortest path along
the unit circle. However, there are ways to exploit this information even in the context of
RvC. One solution, proposed by Diaz et al. [36], is to use a soft label representation

28

3. Diversity and Ordinal Regression

p(ck|x) =
e−ϕ(γ(ck),t)∑K
i=1 e

−ϕ(γ(ck),t)
, (29)

where ϕ is a distance metric and γ(ck) is the midpoint of the interval. In other words, the
probability assigned to each class is inversely proportional to the distance between the class
and the true class. In practice, this will penalize nearby class predictions less than far away
predictions according to the chosen distance metric.

3.5 Ordinal Regression

Now let us consider a problem domain where a natural distance metric does not exist.
Consider for example the problem of ranking, where the objective is to classify objects into
ordinal categories t ∈ {1, ..,K} and the classes can be ordered, but there doesn’t exist a
well­defined distance between classes. An example of such a problem would be to predict
survey responses on a Likert scale, i.e. from “strongly disagree” to “strongly agree”, based on
some features of the respondent. This setting is referred to as ordinal regression and several
methods have been proposed for solving it.

Frank et al. [47] proposed to treat K­class ranking problem as K − 1 separate binary
classification problems by noting that instead of predicting “what is the rank of x?”, asking
“is the rank of x greater than k”, for k = 1, ...,K − 1. In a machine learning setting,
a model can then be trained to predict p(t > k|x) for all relevant values of k, and the
ranking probabilities can then be recovered by noting that

p(t = 1|x) = 1− p(t > 1|x),
p(t = k|x) = p(t > k|x)− p(t > k − 1|x), k = 2, ...,K − 1,

p(t = K|x) = p(t > K − 1|x).
(30)

Although this method is simple, it does not automatically guarantee that the predictions
are rank­consistent, i.e. that p(t > 1|x) ≥ p(t > 2|x) ≥ ... ≥ p(t > K − 1|x), but
methods have later been developed to enforce rank­consistency [77]. Nevertheless, training
a model by summing the individual losses of each binary classifier will result in an overall
loss that penalizes errors based on their magnitude on the ordinal scale.

3.6 Label Diversity

In Paper I, we consider an alternative approach to RvC and ordinal regression that exploits
diversity, but in the labels rather than in the data. This approach is inspired by the fact that

29

Background and Research Context

t

d12

d13

d14
d15d16

d17

d18

d19

d110

d111 d11

t

d22

d23
d24d25

d26

d27

d28

d29

d210 d211

d21

. . . t

d122

d123

d124

d125
d126d127

d128

d129

d1210

d1211

d121

Figure 9: An example of how to create diverse sets of intervals by combining nearby classes. In this example, there areM = 12
different sets of labels, each containing L = 11 intervals that span the unit circle.

there are many possible ways to create categorical labels from continuous targets and that
there is no general method for knowing a priori which categorical representation will be
most suitable for a particular task. Going back to the example of pose estimation in Figure
8, we note that there are several arbitrary design choices that have to be made dividing
the unit circle into intervals. For instance, how do we choose the number of intervals K?
Should the intervals have equal length and should there be overlap between them?

From ensemble theory we know that combining different model predictions, where each
model has been trained on a different label representation, will yield a smaller prediction
error than the average error from the individual models. Therefore, without knowing which
representation is most suitable, we can create a diverse set of representations and use an
ensemble of models to combine the predictions on the different representations into a final
prediction. For example, we could train M different models using different values of K,
and combine the the model predictions using an ensemble average.

The method of label diversity extends ordinary multi­class classification and ordinal re­
gression problems, since different labels can be grouped in arbitrary ways. For example, a
K­way classification problem can be expanded to M = K different L­way classification
problems, where L = K −R+ 1 by grouping R consecutive classes

d11 = c1 ∪ c2 ∪ . . . ∪ cR, d12 = cR+1, . . . , d1L = cK ,

d21 = c2 ∪ c3 ∪ . . . ∪ cR+1, d
2
2 = cR+2, . . . , d2L = c1,

...

dK1 = cK ∪ c1 ∪ . . . ∪ cR−1, d
K
2 = cR, . . . , dKL = cK−1.

(31)

For example, by combiningR = 2 nearby classes in our discretization of the unit circle, we
can create M = 12 different 11­way classification problems, as shown in Figure 9. Each

30

3. Diversity and Ordinal Regression

individual predictor can then be trained to output a probability pm(dml |x), using labels
q(dml |x) obtained as in (27). Note that the way labels are combined in (31) is simply an
illustrative example, since in general we don’t need to restrict L to be the same for each of
the M classifiers. In other words, each circle in Figure 9 could be divided into a different
number of intervals.

Before combining the individual predictions, we first need to marginalize over dml to recover
distributions pm(ck|x) over the original class intervals ck for each individual predictorm.
We note that p(ck|dml ,x) only depends on the overlap between ck and dml . For example,
using our sets of labels in Figure 8 and 9, we can infer that p1(c1|x) = 1

2 ·p1(d
1
1|x). More

generally we have that

p(ck|dml ,x) =
||dml ∩ ck||
||dlm||

=

{
1
R , dml ∩ ck ̸= ∅,
0, otherwise.

(32)

This allows us to calculate the posterior likelihoods as

pm(ck|x) =
L∑
l=1

p(ck|dml ,x)pm(dml |x), m = 1, ...,M. (33)

Now we combine the predicted likelihoods of the ensemble using a convex combination:

p(ck|x) =
M∑

m=1

wmpm(ck|x). (34)

If each classifier is trained by minimizing the cross­entropy loss, then the sum of the indi­
vidual losses will incorporate the ordinal ranking of the targets. This can be seen by noting
that nearby angles will fall into the same intervals for some classifiers, and different intervals
for others. For example, a pair of very small angles ϵ and−ϵ will be mapped to d211 and d210
respectively, but they will both be mapped to d121 . Hence the total loss will incorporate the
fact that these angles are close, but not equal, and therefore the method of label diversity
can be regarded as a form of ordinal regression.

For regression problems where the target is continuous, the method of label diversity can
be generalized even more. For example, we can consider generating M sets of intervals
{Dm}Mm=1 where Dm = {dml }

Lm
l=1 are arbitrary discretizations of the unit circle, with the

restriction that the intervals in each set are non­overlapping. For any particular angle, we
can then directly map it to an interval in each set Dm. Since this mapping will obviously
not be injective, we will still have to deal with any discretization error.

31

Background and Research Context

There are several ways that the predicted likelihoods can be used to form an estimate ym
of the angle. One possibility is to use the midpoint γ(dml) of the interval with the highest
likelihood, i.e. ym = γ(dml∗), where l∗ = argmaxl p(d

m
l |x). Another option is to use the

expected value as ym =
∑

l γ(d
m
l)p(dml |x). The predictions of the ensemble members

can then be combined using a convex combination as in (16). From the ambiguity decom­
position, we can then establish that the ensemble error will be smaller than the average error
of the ensemble members, since a non­zero variance is induced by the different discretiza­
tions. If the discretization errors are small, but independent, then the ensemble average
will mitigate the effects of discretization. Likewise, there will be a trade­off between the
discretization error of each member and the number of members required in the ensemble
for good accuracy.

There remain several questions on how to implement label diversity in practice, as well
as investigating in which types of problems this is most useful. We refer to Paper I for
examples of applying label diversity on real problems and performance comparisons with
standard regression and RvC.

32

4. Neural Network Architectures and Input­Output Symmetries

4 Neural Network Architectures and Input­Output Symmetries

An important aspect of neural network architecture design is to incorporate geometric pri­
ors by making the networks invariant (or equivariant) to certain transformations. As was
briefly mentioned in Section 2.2, this can be regarded as a form of regularization, since
it restricts the search space of optimization to be limited to a smaller set of functions that
obey the imposed restrictions. In practice, this can be done by designing the computational
graph of the network such that the invariance is satisfied. For example, for a particular prob­
lem, such as classifying cats and dogs, where we have two augmented versions of the same
image x and x̃, we can strive to design our network such that fθ(x) = fθ(x̃), regardless of
the particular value of θ. In general, we say that a transformation that does not change the
underlying property of the object is a symmetry of that object. For example, in the context
of image classification, a rotated and translated cat, is still a cat.

In order to formalize the notion of invariant neural networks, it is useful to borrow some
concepts from group theory. Here we will briefly state some useful definitions and we
refer to [18] for a more in­depth treatment of the relationship between group theory and
deep learning. Given a symmetry group G with group actions g ∈ G, we define the
corresponding group representations as ρ : G → GLn(R), where GLn(R) is the general
linear group consisting of invertible n× n matrices with elements in R. Here, the matrix
dimension n depends on the feature space X on which the representations are acting. We
now have the following definition:

Definition 4.1. A function f : X → Y is invariant with respect to G if f(ρ(g)x) = f(x)
for all x ∈ X and g ∈ G. Similarly, if X = Y , f is said to be equivariant with respect to
G if f(ρ(g)x) = ρ(g)f(x).

For example, consider the simple case where X = RN and G is the group of isotropic
scaling. The group actions g are then different scalings of the input vector, and the group
representations ρ(g) are scalar matrices cI, where c > 0 and I is theN×N identity matrix.
A scale­invariant function should then satisfy f(cx) = f(x) for all x ∈ RN . This can
be achieved, for example, by letting f(x) = g(x/||x||) for some function g. Similarly, a
scale­equivariant function should satisfy f(cx) = cf(x), which holds for all linear maps.

A common method used for designing neural networks that are invariant with respect to
symmetry groups is to use compositions of invariant and equivariant layers, which can be
realized by modifying the computational graph [30]. For example, if a neural network
can be decomposed into two layers as fθ = f inv

θ1
◦ f equiv

θ2
, where f inv

θ1
is G­invariant and

f
equiv
θ2

is G­equivariant, then obviously fθ is going to be G­invariant. In general, if we can
decompose a deep neural network containingD layers as fθ = fDθD ◦ ...◦f

1
θ1

, where layers
1, ..., D− 1 are equivariant, then the entire network will be invariant (equivariant) if layer

33

Background and Research Context

D is invariant (equivariant).

Going back to the MLP example in Figure 3, we note that the function computed by
this network will in general not exhibit any type of invariance, which has inspired the
development of more advanced network architecture. In this section we will take a closer
look at different network architectures and their relation to input­output symmetries.

4.1 Permutation Symmetry and Learning on Sets

We will now investigate how group invariance can be applied to design network operating
on unordered sets and graphs. Let us first consider the problem of function approximation
on sets consisting of vector­valued elements {xu}Nu=1, wherexu ∈ Rd. (Here, the subscript
u denotes a vector­valued set element of a single data point, not the u:th member of the
data set as in the previous sections). Without loss of generality, we can stack the set elements
in a feature matrix X = [x1, ...,xN]T where each row corresponds to an element of the
set, but the ordering of the rows is arbitrary. The task of the network is then to output
either a global feature of the entire set or element­wise features, or both. Learning on sets
has several interesting applications, including 3D shape recognition from point clouds and
text retrieval [143]. In contrast to pixels on a grid, the set elements need not have a well­
defined ordering, and therefore our function approximator should yield the same prediction
regardless of how the rows of X are arranged. More precisely, we can define permutation
invariance in the following way:

Definition 4.2. A function f : RN×d → Y is invariant with respect to the permutation
group ΣN if f(PX) = f(X) for all X ∈ RN×d and N × N permutation matrices P.
Similarly, if Y = RN×d′ , f is said to be equivariant with respect to ΣN if f(PX) =
Pf(X).

Designing a permutation­invariant neural network puts severe restrictions on what types
of layers can be used, but fortunately we can use our recipe of combining equivariant and
invariant layers in order to achieve this. In general, we can describe the set of permutation
invariant functions using a decomposition of two functions. Let ψ : Rd → RM be a
function that acts on individual set elements xu, u ∈ {1, ..., N}, i.e. the rows of X, and
let ϕ : RM → Y . A permutation equivariant function can then be realized as

f(X) = ϕ

(
�
u

ψ(xu)

)
, (35)

where � is any permutation­invariant aggregation operation, for example summation, in
which case we say that this is a sum­decomposition of f via the latent space RM . This

34

4. Neural Network Architectures and Input­Output Symmetries

ψx1

ψx2

ψxN

...

∑
ϕ f(X)

Figure 10: An illustration of the Deep Sets [143] architecture. Each set element is processed by the same neural network ψ and
the outputs are aggregated using summation. The aggregated output is then fed into another neural network ϕ
that predicts a global property of the set. Note that summation can be replaced by any other permutation-invariant
aggregation.

suggests that we could design an invariant neural network in this way by equipping ψ and
ϕ with their own set of layers and learnable parameters, a method which is known as Deep
Sets [143] and is illustrated in Figure 10. A similar method, using the max­decomposition
as aggregation function, has also been proposed [102].

A natural question to ask is then if this design will satisfy universal approximation and, if
so, are there any restrictions on the dimension of the latent space M ? Although, there is
no definitive answer under general conditions, some important results exist if we restrict
ourselves to scalar sets (d = 1) and continuous functions with codomain Y = R.

Theorem 4.3. Wagstaff et al. (2019) [133]. Let M > N . Then there exist permutation
invariant continuous functions f : RM → R which are not sum­decomposable via RN .

The theorem gives us a necessary condition on the latent space in order to make sure that all
functions can be represented, although clearly some functions exist that can be represented
with a smaller latent space. In particular, the minimum size of the latent space depends
on the number of elements in the set, such that larger input sets require a larger latent
space. Furthermore, the following theorem proves that a latent space of size N is not only
necessary, but also sufficient:

Theorem 4.4. Wagstaff et al. (2019) [133]. Let f : RM → R be continuous. Then f is
permutation­invariant if and only if it is continuously sum­decomposable via RM .

The reader is referred to [133] for proofs of theorems 4.3 and 4.4, which together have the
following important implication: the Deep Sets architecture is guaranteed to have universal
continuous function representation on sets of size N if and only if the dimension of the
latent space is at leastN . Although these theorems deal with universal representation, they
have also been adapted for universal approximation with the same conclusions [134]. It
should also be noted that this does not imply that the function approximation can always

35

Background and Research Context

be practically implemented using a neural network, since the choice ψ and ϕ together with
the optimization procedure might result in a network that in practice does not converge
to the true function. Nevertheless, it gives a strong suggestion that the latent space of the
network should grow with the number of elements in the input set.

4.2 Permutation Invariant Training

For some problems, we are more interested in invariance with respect to permutations of
the output rather than the input. Suppose that we have a model that outputs a set of
K predictions {yk}Kk=1 = f (x), where the ordering of the predictions is unimportant.
A useful technique for achieving this is permutation invariant training (PIT), which was
first proposed for the task of speech separation [142, 141], also known as the cocktail­party
problem. For this task, the input is an audio recording that consists of multiple components
as x =

∑
k xk, where each component represents a single speaker. The goal is then to train

a model that separates each component in a unique output channel. When evaluating the
speaker separation performance, we do not know a­priori which output should be matched
to which speaker. Therefore, we need to construct a loss function that is capable of finding
the best speaker permutation that matches the outputs.

Let Perm ({1, . . . ,K}) denote the set of all possible permutations of the label ordering
{1, ...,K}. For each permutation α, we can then evaluate the loss between the set of
model predictions {yk}Kk=1 and permuted targets {tα(k)}Kk=1. In order to achieve permu­
tation invariance during training, we can aggregate over all the outputs and then take the
minimum over all permutations as

L = min
α∈Perm({1,...,K})�

k

ℓ
(
yk, tα(k)

)
, (36)

where ℓ(·, ·) is the pairwise loss that we want to minimize, for example the squared error.

A problem with PIT is that it scales poorly with the number of outputs, sinceK! individual
loss components need to be evaluated when solving the assignment problem. However,
some researchers have recently proposed methods using faster techniques than brute­force
computation of all permutations, such as the Hungarian algorithm which achievesO(K3)
complexity [41]. By relaxing the problem to approximate the best permutation, it is also
possible to achieve further speedups using Sinkhorn iteration [124].

Another aspect of PIT that if the number of speakers K is not fixed, the method needs to
be extended to handle an arbitrary number of outputs. This can be handled by recursively
separating each speaker until a stopping criterion is reached [125]. Another method that
uses auxiliary duplication is discussed in Section 5.3.

36

4. Neural Network Architectures and Input­Output Symmetries

ψ{x1,x1}

...

∑
ϕ f(X)

ψ{x1,x2}

ψ{x1,xN}

ψ{x2,x1}

...

ψ{x2,x2}

ψ{x2,xN}

ψ{xN ,x1}

...

ψ{xN ,x2}

ψ{xN ,xN}. . .

. . .

. . .

. . .

Figure 11: An illustration of the relation network [113] architecture. This can be viewed as an extension of Deep Sets, where
relation features for all N2 pair-wise combinations of set elements are computed before aggregation. In practice,
some relations, for example pairing set elements with themselves, can be omitted.

4.3 Relation Networks

In certain applications, neural networks are used to reason about the relationship between
set elements. For example, consider a set of images depicting various objects and suppose
that we want to infer how many duplicates there are in the set. In order to do this, we can
for example compare each image in the set to every other image and infer whether they
are duplicates or not. When comparing the images, we are inferring a relation between
them, which tells us something about their similarity. After inferring all relations, we need
to perform an aggregation over all N2 pair­wise relations and compute the number of
duplicates. Combining these two operations (computing relations and aggregating them)
can be viewed as computing a function over the the set of images.

A relation network (RN), first coined by Santoro et al. [113], is defined as

f(X) = ϕ

(
�
u,v

ψ (xu,xv)

)
, (37)

where the relations are typically computed for all N2 pairwise combinations, although
it might not be necessary to compare set elements to themselves. Note that in general
ψ (xu,xv) ̸= ψ (xv,xu), which implies that both relations need to be computed in order
for the whole RN to be permutation invariant, as shown in Figure 11. As we shall see
in Section 5, RN’s have nice properties that allow them to be applied to problems where

37

Background and Research Context

pairwise features are used as input.

4.4 Learning on Graphs

Learning on sets can be viewed as a special case of learning on graphs. Consider the graph
G = (V, E), with vertices V = {u}Nu=1 and directed edges E ⊆ V × V . Each vertex
u of the graph can then be assigned certain features using row­vectors xu and the edges
model interaction between the vertices. A graph neural network (GNN) can then learn to
extract features from the graph and predict properties of the vertices and edges, as well as the
entire­graph. Applications of GNNs include modelling of social networks, where vertices
are members of the network with their associated features and edges represent interactions
between members. Another example is drug discovery, where graphs are used to model
interactions between atoms in a molecule [18].

In this context, learning on sets is a special case of learning on graphs, where the set of edges
is empty, i.e. E = ∅. However, if the set of edges is non­empty, we can use the adjacency
matrix A, which has elements of the form

au,v =

{
1, (u, v) ∈ E
0, otherwise.

(38)

For the sake of brevity, we only consider undirected graphs where A = AT . Using this
notation, a GNN can in general be described by a function that takes both the vertex fea­
tures X and the adjacency matrix A as input. Similarly as for sets, we require permutation
invariance for GNNs, since in general it is not possible to order the vertices of the graph
in a well­defined manner. Since a permutation of the rows of X implies a permutation of
both the rows and columns of A, we can define the notion of permutation invariance for
functions on graphs as follows:

Definition 4.5. Let A be the set of adjacency matrices of all the corresponding graphs of
cardinality N = |V|. A function f : RN×d × A → Y is invariant with respect to the
permutation group ΣN if f(PX,PAPT) = f(X,A) for all X ∈ RN×d and N × N
permutation matrices P. Similarly, if Y = RN×d′ , f is said to be equivariant with respect
to ΣN if f(PX,PAPT) = Pf(X,A).

GNNs are often realized using various forms of message­passing. This means that, in each
layer l of the network, the features hl(xu) of each vertex u are updated with messages from
their neighbouring vertices Nu = {v : (u, v) ∈ E}. Letting h0(xu) = xu, this can be
written as

38

4. Neural Network Architectures and Input­Output Symmetries

hl(xu) = ϕ

(
hl−1(xu),�

v∈Nu

ψ(hl−1(xu), h
l−1(xv))

)
, l = 1, ..., L. (39)

Note that we require permutation invariance with respect to the ordering of the vertices in
Nu. The message passing is then repeated at each layer and if the graph is connected, i.e.
there exists a path between every pair of vertices, then information can propagate between
all vertices, given that there are sufficiently many layers in the network. If the goal is to
predict a global feature of the graph, we can of course aggregate over all vertices in the graph
in the last layer L as

f(X) = φ

(
�
u

hL(xu)

)
. (40)

Here we can make the observation that Deep Sets is a special form of GNN, because if
E = ∅ then each layer (39) simplifies to an update for each individual set element, without
any interaction between different elements of the set. Furthermore, RNs can also be viewed
as a form of GNN for complete graphs, i.e. E = V × V .

4.5 Translational Symmetry and Convolutional Neural Networks

When the input domain is a grid, which is common when the input domain consists of e.g.
2D images or 1D audio signals, it can be beneficial to work with translational symmetry.
For example, when performing image classification, we want our classification function to
be invariant to the location of the object inside the image. In other use cases, we might
have multiple objects in the same image and the goal is to output a heatmap of detections
for a particular class of objects. For this scenario, the function should be equivariant to the
object locations.

For brevity, we here give the definition of translational symmetry on 1D grids. Such a grid
can be viewed as a directed graph, where the connectivity is defined as

au,v =

{
1, (v − u) mod N = 1

0, otherwise.
(41)

In other words, each node u has a directed edge to its neighbor u + 1. In order to deal
with edge effects at the start (u = 1) and end (u = N) of the grid, these nodes should
be connected. Given a signal X on this grid, we can then define a translation of X as
circulant shifts of the rows of X. More specifically, shifting X with ∆ grid­points upwards

39

Background and Research Context

can be written as SX, where S is an N × N circulant shift matrix with elements suv =
δu,(v+∆) mod N . We can now give the following definition:

Definition 4.6. A function f : RN×d → Y is equivariant with respect to the group of 1D
translations TN if f(SX) = f(X) for all inputs X ∈ RN×d and N × N circulant shift
matrices S. Similarly, if Y = RN×d′ , f is said to be translation equivariant with respect to
TN if f(SX) = Sf(X)

It is clear that all functions of the form f(X) = CX, whereC is a circulant matrix, are shift
equivariant. This operation is equivalent to a circular convolution, and therefore CNNs can
be implemented as MLPs with circulant matrices. In practice, many CNNs that are used
in practice use convolutions with other types of padding at the grid edges, which results in
only approximate equivariance [68]. It is also common to use strided pooling layers, which
perform a downsampling operation on the feature maps, that breaks equivariance [23].

4.6 Self­Attention and Transformers

Self­attention is a special form of message­passing where the messages passed from v to u
only depend on the features of v, but each message is weighted using a scalar attention
weight

hl(xu) = ϕ

(
hl−1 (xu) ,�

v∈Nu

α
(
hl−1 (xu) , h

l−1 (xv)
)
ψ
(
hl−1 (xv)

))
. (42)

The attention weight α(hl−1(xu), h
l−1(xv)) can be interpreted as a form of “soft” adja­

cency, indicating the strength of the connection between vertices u and v. Although there
are many ways to implement self­attention, the most popular method is to calculate the
attention weights using the scaled dot product of linear projections of the features. Let
qu = xuWq and kv = xvWk denote the queries and keys, where Wq,Wk ∈ Rd×dh

are learnable parameters of the model. The raw attention scores are calculated as

suv =
quk

T
v√
dh

, (43)

and the scaled dot­product attention weights are then given by

α(xu,xv) =
esuv∑

v′∈Nu

esuv′
. (44)

40

4. Neural Network Architectures and Input­Output Symmetries

Note that due to the softmax normalization, we have that α(xu,xv) > 0 and∑
v∈Nu

α(xu,xv) = 1. The message generating function in (42) is here simply defined
as another linear projection ψ(xv) = xvWv where Wv ∈ Rd×dh .

The scaled­dot product attention was originally proposed in [131] in order to improve nat­
ural language processing (NLP) models. In the context of NLP, self­attention is applied to
sequences of tokens, which allows the model to exploit complex word­to­word interactions
when processing the text. The connection between self­attention and GNNs here is subtle,
but when self­attention is applied to the entire sequence, this can be regarded as modelling
the sequence as a complete graph, i.e. Nu = V , ∀u. Using the complete graph allows us
to write the self­attention weights in matrix form as

Ã(X) = softmax
(
QKT

√
dh

)
, (45)

where Q = XWq, K = XWk and the softmax function is applied on each row in­
dividually. With this notation it follows that Ãuv = α(xu,xv), and we can define the
self­attention (SA) operator as

SA(X) = Ã(X)V, (46)

where V = XWv, Wv ∈ Rd×dh . In order to make the operation even more expressive,
it can be performed several times in parallel to for the multi­headed self­attention (MSA)
operator

MSA(X) = [SA1(X), SA2(X), . . . , SAh(X)]WP , (47)

where WP ∈ Rhdh×d. GNNs based on multi­headed self­attention are known as Trans­
formers.

Position and Modality Encodings

Transformers have become the key component in large language models (LLMs), most
notably the series of Generative Pre­trained Transformer (GPT) [20, 6] models. However,
since the MSA operation is permutation invariant by design, Transformers are not able
to distinguish between sequences of words where words have been re­ordered. Therefore,
language models use some form of internal positional encoding that contains information
about the position of the word in the sequence. In practice, this is often done by either
modifying the self­attention module [122] or adding a position embedding to elements of

41

Background and Research Context

the input features before the Transformer layers, which yields a sequence of modified input
{x̃u}Nu=1 as x̃u = xu + pu.

Several variants of positional encoding have been proposed. The first Transformer networks
used a hard­coded positional encoding that consists of sinusoidal waves with frequency
that depends on the absolute position of each element in the sequence [131]. Others have
proposed learnable embeddings [40], that are updated as other learnable parameters of the
network during training. Both hard­coded and learnable position encodings can encode
either absolute or relative [32] position of the sequence elements, and the latter can be
used in order to achieve translational equivariance. Relative position encoding is also more
straightforward to extend to arbitrary sequence lengths, since it does not require specifying
a maximum sequence length. Conditional position encodings have also been suggested
[29], where pu is a function of xu and its neighbors.

Properties other than position of input elements can also by encoded by adding different
encodings. Suppose for example, that the input consists of two different types of modalities:
a and b. These could be for example images and their respective captions, which we can
group into feature pairs {xa

u,x
b
u}. Transformers can then be used to learn representations

of images and text in a shared latent space, but in order for the model to distinguish between
different input modalities, we need to encode them by adding modality encodings qa and
qb [50]. Together with position encoding, the inputs to the model then take the form

x̃a
u = xu + pu + qa

x̃b
u = xu + pu + qb

u = 1, . . . , N. (48)

Other ways to deal with multi­modality include summation and concatenation of input
features, as well as special cross­modality attention layers [139].

Learnable Input Tokens

An important feature of the Transformer architecture is its ability to deal with variable
sequence lengths. This enables Transformers to process e.g. texts with different number of
words. Another advantage is that it allows for prediction of multiple outputs by appending
the input sequence with special elements, or “tokens”. Suppose that we have a sequence
of N elements, and we want to predict the next element in the sequence. We can then
append a special “mask” token xmask at the end of the input sequence [35], such that the
input (before adding position encoding) becomes {x1, . . . ,xN ,xmask}. Similarly, we can
predict multiple elements by just appending more mask tokens. Typically, the mask token
is a learnable parameter of the network, similar to to the position encoding. Information
is then propagated from the sequence elements to the mask tokens via the self­attention

42

4. Neural Network Architectures and Input­Output Symmetries

f1

x1

x2

xN

.

.

.

xmask

f2 fD

x̂1

x̂2

x̂N

.

.

.

x̂mask

next element prediction,

sequence classification, ...

. . .

Figure 12: An illustration of the principle of mask token insertion. Before the first layer of the model, a mask token is appended
at the end of the input sequence. The entire sequence is then passed through series of Transformer layers f =
fD ◦ ... ◦ f1, where information is transferred to the mask token via self-attention. At the final layer, the updated
mask token can be used to form predictions about the input sequence.

mechanism in each Transformer layer. An illustration of this concept is shown in Figure
12. Here, the mask token is appended before the first transformer layer, but of course it
could just as well be appended in­between two consecutive layers.

Inserting special tokens can also be used for summarizing the contents input sequence. For
example, if we want to classify the entire sequence, we can append a token that is trained to
encode the class of the inputs. This is equivalent to inserting a mask token, but sometimes
it is referred to as a “class token” instead. Predicting missing elements in a sequence is
also useful as a technique for unsupervised learning, where elements are randomly masked
out from the input during training and replaced with mask tokens, a technique known as
masked autoencoders [60].

Transformers for Image Recognition

So far, we have shown that the self­attention mechanism is one of many possible message­
passing functions that can be derived from permutation invariance on sets or graphs, even
though it was not originally proposed in this context. We shall now move on to discuss
some problems where it is not obvious that self­attention is better than alternative methods,
nor trivial to adapt to the particular setting.

When designing deep networks, the family of architectures considered usually depends on
the input domainX . For example, the problem of image classification has the input domain
of RGB images of a particular resolution, i.e. X = Rh×w×3. Since the domain is a three­
dimensional grid of pixels, we can use convolutions and pooling with local receptive fields in
order to design networks that are either invariant or equivariant with respect to the location
of objects in the picture. The representation of an image on a two­dimensional grid is
intuitive, in the sense that it corresponds well with the way that we as humans perceive them
with our eyes. However, this does not necessarily imply that this particular representation is
optimal for neural network learning. For example, the image can just as well be represented

43

Background and Research Context

on the one­dimensional grid R3hw by stacking the pixel values in a vector. Furthermore,
an image can also be represented as an unordered set {xu}hwu=1, where each element xu =

[r(u), g(u), b(u), p
(u)
x , p

(u)
y]T stores information about the color intensity and coordinates of

the pixels. From a human perspective, they appear to be counter intuitive representations,
but from a deep learning perspective, it is not obvious if they are better or worse suited for
learning.

More generally, we can describe images, and many other types of data, as graphs. If we
extract square patches from an image with resolution (P, P), then we can represent each
patch xu on the domain RCP 2 , yielding a total of N = hw/P 2 patches. We can then
construct a graph G = ({xu}Nu=1, E) by defining the set of edges E . There are several
ways to do this, and the edges of the graph will be redundant if we also use positional
encodings for each patch. One possibility is to define edges between neighbouring patches
in the image. Another possibility is to assign edges based on the semantic contents of
the patches, i.e. let patches with similar objects be connected, but it is not clear how the
semantic similarity would be defined. Finally, it is also possible to let the graph be complete
and let all patches have edges between them, and then learn the strength of the connections,
which is exactly what a Transformer does.

Recent work in computer vision [40, 129] suggests that the patch­based representation of
images might be better suited for deep learning than a grid. By treating an image like a
complete graph of small patches, and applying self­attention to infer the strength of the
connections, Transformer­based networks can achieve equal or stronger performance in
image classification tasks compared to convolutional networks. This is in many ways re­
markable, since the Transformer­based network is not inherently translation invariant, and
was not originally designed for solving problems in computer vision.

Transformers for Point Cloud Recognition

An important application of GNNs is point cloud processing. Point clouds are frequently
encountered in computer graphics, but can also be obtained from measurements collected
by 3D scanners, such as radar or LiDAR. Common applications include simultaneous
localization and mapping (SLAM), which can be used for indoor navigation, and driver
assistants in vehicles. In both scenarios, point clouds are used for creating maps of the
environment. In order to create global maps, point clouds from different measurements
need to be registered in a common frame of reference. This requires local point features
that are resilient to outliers, since the measured data often contain noise and artifacts. The
features can be based on purely geometrical properties, but with the advent of deep learning
it is also possible to extract semantic features that describe the contents of the observations.
Furthermore, such features can also be used for scene segmentation and object detection,
which is used in self­driving cars for detecting e.g. lanes, signs and other vehicles.

44

4. Neural Network Architectures and Input­Output Symmetries

xu

Nu

Figure 13: An example of a sparse k-NN graph created from a point cloud. Each anchor point (shown in blue), is connected
with a directed edge from itself to its neighbours.

A point cloud is an unordered set {xu}Nu=1, where xu = [p
(u)
x , p

(u)
y , p

(u)
z]T are the 3D

Cartesian coordinates for an individual point. Deep networks for point cloud processing
can be designed to extract global features that can be used for downstream tasks such as
classification and retrieval, but also point­wise features that can be used for segmentation.
Pioneering works in the field include PointNet [102] and Deep Sets [143], which used
permutation invariant aggregation over the entire point cloud. It was also shown that the
network satisfies universal approximation for a large enough dimension of the latent space,
a result which is closely related to Theorems 4.3 and 4.4. Nevertheless, networks that
treat the point cloud as an unordered set come with some limitations, namely that they do
not allow interactions of neighbouring points. This motivates the introduction of GNNs,
which can capture local interaction more effectively.

In order to model the point cloud as a graph, we can use the k­nearest neighbours (k­NN)
of xu. Specifically, the k­NN graph of the point cloud is defined by edges between xu and
xv if xv is one of xu:s k­nearest neighbours in terms of Euclidean distance. We can then
use GNNs with message­passing from all the neighbours of each point to the point itself.
Other forms of local connectivity is also possible, for example by allowing edges from xu

to all points within a certain distance. These ideas were first explored in [103] and [136],
where the latter also considered dynamic graphs that are updated in various stages of the
network.

We may also choose to model point clouds using complete graphs with message passing
between all points using self­attention, which was first proposed in [75]. However, the
self­attention matrix Ã in (45) for N points will have size N × N , which implies that

45

Background and Research Context

the computational and memory requirements of the network will grow as O(N2). For
large inputs (point clouds often have thousands of points), using the complete graph will
therefore not be computationally efficient.

Furthermore, it is not obvious that self­attention is useful when applied on individual point
features, since a single point contains no semantic information. A natural extension is there­
fore to consider attention between patches of points, since a collection of neighbouring
points can describe objects or parts of objects. One way to do this is to sample a sparse set
of anchor points and create patches by aggregating over their neighbours, as shown in Fig­
ure 13. Applying attention between these patches would both decrease the computational
complexity and capture more semantically meaningful connections between, compared to
using the complete graph. These ideas are explored in more detail in Paper II, where they
are also verified by extensive experiments on both real and synthetic data.

46

5. Audio Recognition and Sound Source Localization

5 Audio Recognition and Sound Source Localization

Hearing is an important part of human perception that allows us to detect, understand and
localize sound in our environment. Sounds perceived by humans through our hearing sense
arises from rapid periodic changes in air pressure which are picked up from the tympanic
membrane (ear drum) via the pinna and auditory canal (see Figure 14). The vibrations in­
duced in the ear drum are then transmitted via the ossicles—the three small bones malleus,
incus and stapeus—to the cochlea, where they are further transmitted in fluid canals. At
the end of the cochlea, hair cells convert the vibrations to electric signals in the nervous
system that eventually make their way to the brain [99]. We will not delve into the details
of human hearing, but the basic structure presented here serves as a useful blueprint for
machine perception of sound.

The “ears” of a computer audition (CA) system are the microphones, that convert the sound
waves to electric signals. Similar to the ear drum, they typically use a sensitive membrane
that vibrates as air pressure changes. The vibrations can then be used to induce voltage
changes in an electric circuit by connecting it to e.g. the plates in a capacitor or the magnet
in an induction coil. In order to be able to further process the signal in a computer, it
is then sampled using an analog­to­digital converter. Although this necessarily leads to
some distortion of the signal due to aliasing and quantization, it is not a problem in most
practical applications, given that a sufficiently large bit depth and sampling frequency is
used. Since human hearing is limited to frequencies approximately between 20 Hz and 20
kHz, the Nyquist­Shannon sampling theorem tells us that a sample rate of 40 kHz suffices
for purposes mimicking human auditory perception [117]. Indeed, 44.1 kHz is a commonly
used sampling frequency, for example in CDs and DVDs where it is used together with a
bit depth of 16 bits [109].

5.1 Audio Feature Descriptors

We can represent a digital audio signals of length N as a real­valued vector in RN . When
performing perceptive tasks, one option is to use this directly as input to a neural network
and train it to learn better internal representations. However, for many applications, it is
common to use other input representations of the signal. Here we will briefly introduce
the signal spectrogram, ceptogram and the mel­scale representations, which are commonly
used for audio recognition tasks, as well as techniques for learning features from raw audio
waveforms.

47

Background and Research Context

Figure 14: Anatomy of the human external and middle (left) and inner (right) ear. The shape of the outer ear filters the sound
such that the spectral response is changed depending on the direction of arrival of the sound. The eardrum (tympanic
membrane) transmits the pressure changes in the ear via the ossicles to the cochlear fluid. Hair cells inside the cochlea
then convert the fluid vibration to electric signals which can be interpreted by the brain. Illustration borrowed from
Henry Gray’s Anatomy of the Human Body [54].

Spectrograms, Ceptograms and the Mel­frequency Scale

Let F : RN → CN denote the discrete Fourier transform (DFT) of a real­valued signal.
The DFT pairs X = F(x) is defined as

X[k] =

N−1∑
n=0

x[n]e
−i2πkn

N ⇔ x[n] =
1

N

N−1∑
k=0

X[k]e
i2πkn

N , (49)

for time samples n = 0, . . . , N − 1 and frequencies k = 0, . . . , N − 1. Since x is
real­valued, it follows that X is even symmetric, i.e. X[k] = X∗[−k mod N], where ∗

denotes the complex conjugate. The square of the absolute value of the transformed signal
|X[k]|2 is often refered to as the power spectrum, or simply the spectrum, of x.

An important property of the DFT is that shifting the signal in the time domain corre­
sponds to multiplying the signal with a linear phase in the frequency domain. Specifically,
if we let (x)τ denote a circular shift of τ ∈ Z samples, then

F ((x)τ) [k] = X[k]e
−i2πkτ

N . (50)

A consequence of this is that the spectrum is invariant to circular shifts of the signal in
the time domain. This makes the spectrum a useful feature when we are only interested
in the frequency contents in the signal and do not care about “where” in the signal these

48

5. Audio Recognition and Sound Source Localization

Figure 15: Anatomy of the human vocal tract. Sounds are produced by the vocal cords, also known as vocal folds, and their
vibration frequency determines the pitch of the sound. The as the sound proceeds through the pharynx, its charac-
teristics are changed and this process gives rise to a formant structure that depends on the position of the jaw and
tongue. Roughly, this process can be described as linear filtering. Illustration borrowed from Henry Gray’s Anatomy
of the Human Body [54].

frequencies are active. Suppose, for instance, we want to train a neural network to detect
the presence of a sound with a particular frequency pattern in audio signals that otherwise
only contain silence. Using the spectrum as the input feature would automatically make the
outcome of the prediction invariant to where in the signal the pattern occurs. Hence, by
using the power spectrum, we can achieve invariance without using an invariant network
architecture, e.g. a CNN with max­pooling.

For some types of audio signals, for example in music or human speech, the frequencies
are associated with multiple overtones. Given a fundamental frequency f0, the overtones
are the multiples fm = mf0, where m is a positive integer. The energy in the overtones
usually decays with higher frequency. Fundamental frequency detection, also known as
pitch estimation, is an important problem related to music and speech applications [28].

49

Background and Research Context

s[n] |S[k]| cs[n]

h[n] |H[k]| ch[n]

0 20 40 60
Time [ms]

x[n] = (s ∗ h)[n]

0 500 1000
Frequency [Hz]

|X[k]|= |X[k]| · |H[k]|

0 20 40 60
Quefrency [ms]

cx[n] = cs[n] + ch[n]

Figure 16: Illustrative example of the additive properties of the signal cepstrum. Here, a signal sampled at 16 kHz with a
fundamental frequency of f0 = 50 Hz is convolved with an impulse response consisting of a direct path and an
attenuated echo arriving with a delay of τ = 35 ms. The spectrum of the received signal therefore contains two
periodic components that can be resolved in the cepstrum. The first peak at quefrency 20ms = 1 / (50 Hz) corresponds
to the fundamental frequency and the second one at 35 ms corresponds to the time delay of the echo.

A feature which is sometimes used for speech analysis is the so called cepstrum [93] of a
signal, which is defined as

cx =
∣∣F−1

{
log |F{x}|2

}∣∣2 . (51)

In order to gain intuition for the cepstrum as a feature, we can give a toy example of a
signal consisting of a fundamental frequency f0 and M overtones. In the time domain,
we can write this as s[n] =

∑M
m=0 α

me2πimf0n, where 0 < α < 1 is the decay factor
of the overtones. For simplicity we have assumed a complex­valued signal, although the
following derivations can be made for real signals as well. The spectrum of the signal is
given by S[k] =

∑M
m=1 α

mδ[k −mf0]. This is a “pulse train”, with equidistantly spaced
pulses f0 units apart. In other words, the spectrum of the signal is periodic with a frequency
of f0.

Suppose now that the original signal is recorded in an environment where there is an

50

5. Audio Recognition and Sound Source Localization

attenuated echo of the signal arriving at the microphone slightly after the direct path.
The impulse response from the sound source to the microphone can then be written as
h[n] = δ[n] + βδ[n − τ], with 0 < β < 1, and the recorded signal is the convolution
between the original sound and impulse response, i.e. x[n] = (s ∗ h)[n]. Due to the
properties of the DFT, the spectrum of the received signal can be written as a product:
|X[k]|2 = |S[k]|2|H[k]|2. Since H[k] is periodic with a period of τ , this will result in
a spectrum that is periodical in both f0 and τ . Separating these two components can be
difficult using spectral analysis, which motivates the use of the cepstrum.

From Equation (51), we can see that the cepstrum is defined as the absolute value squared
of the inverse DFT of the logarithm of the spectrum. Note that taking the logarithm of the
spectrum results in the two periodic components of the spectrum becoming additive rather
than multiplicative. Taking the inverse DFT then yields a “spectrum of the spectrum”,
which has peaks at the quefrencies corresponding to f0 and τ . Consequently, cepstral anal­
ysis allows us to resolve both frequencies and echos in a single feature. See Figure 16 for an
illustration of this example.

In general, the cepstrum can be used for separating signals from other types of transfer
functions, such as distortions induced by the recording equipment, which makes it a useful
feature for audio analysis. Another form of filtering also takes place in the human vocal
tract. As sounds are produced in the vocal cords, they pass through the vocal tract before
exiting the mouth, as shown in Figure 15. This process can be modeled as a form of con­
volutional filtering, where the impulse response of the vocal tract gives rise to a periodic
formant structure corresponding to harmonics excited by the resonance. Cepstral analysis
therefore provides a good tool for finding the pitch, i.e. fundamental frequency, in human
speech [92].

So far, we have dealt with spectral representations on a linear scale. However, human per­
ception of frequencies is not linear, since it is easier for us to distinguish different frequen­
cies at the lower end of the hearing spectrum than the in the higher. Therefore, perceptual
scales of frequencies are often used, which are typically logarithmic. The most common
one is the mel scale [121], for which the mapping is given by

fmel = 2595 log10

(
1 +

fHz

700

)
. (52)

Using the mel­scale allows us to compute the mel spectrum, log­mel spectrum and the mel
cepstrum (or “mel frequency cepstral coefficients”, often abbreviated as MFCC), which are
all widely used features, in particular for speeech recognition. The conversion from Hz to
mel scale is in practice done by applying a filter bank with triangular kernels to the spec­
trum. Therefore, the number of filters (and coefficients for the MFCC) is a hyperparameter
that needs to be chosen. For audio classification, between 20 and 80 filters are typically

51

Background and Research Context

Fr
eq

ue
nc

y
Spectrogram

M
el

fre
qu

en
cy

Mel spectrogram

0 0.5 1 1.5 2 2.5
Time [s]

Qu
ef

re
nc

y

Mel ceptogram

Figure 17: Different representations of an audio recording of a speaker uttering the sentence “the horizon seems extremely
distant”. Can you spot where the letter “s” is being pronounced?

used, where fewer filters often lead to more robust performance [128]. In terms of the
number of MFCC coefficients, the range is similar, although for vowel classification five
coefficients is descriptive enough [67].

When the patterns in the signals vary over time, the spectrum or cepstrum are not suitable
as features for long signals. In human speech, for instance, the frequency pattern changes
over time as different syllables are pronounced. Clearly, the order in which the syllables
occur is also important for understanding speech, yet this information is not captured by
the signal spectrum.

A better alternative is to use the spectrogram (or ceptogram) of the signal, which consists of
multiple power spectrums (or cepstrums), where each feature is calculated over a short time
window where the frequency content can be regarded as stationary. For speech, it common
to use a window length between 20 and 40 ms [128]. Recent work has also suggested to
use a learnable window length that is dynamically adjusted based on the training data [84].
Figure 17 shows illustrations of different time­varying representations, where the warping
between linear and mel­scale frequency can be seen.

52

5. Audio Recognition and Sound Source Localization

Learnable Feature Descriptors

Although the mel­scale representation of frequencies provides a good heuristic for human
perception, this does not automatically imply that it is the best representation. Therefore, a
natural extension of this idea is to try and learn a better representation that is well­suited for
a particular task. A simple way to do this is to use convolutional filters, using e.g. a CNN,
that learns to adapt to the data and extract useful features. Several works [94, 112, 63]
have shown that this approach is able to match the performance of that when using log­
mel or MFCC input features for speech recognition tasks. However, one downside to this
approach is that due to the lack of inductive bias it requires a large enough dataset for the
filters to learn meaningful features. Furthermore, it requires a potentially large number of
parameters compared to computing hand­crafted features such as the MFCC.

In order to learn features more efficiently, some works have proposed a strategy of learning
features by adding constraints to the filters [111, 116]. Notably, Ravanelli and Bengio pro­
posed the SincNet architecture [104], in which the filters in the first layer of the CNN is
replaced by learnable bandpass filters. In time domain, we can write these filters as

g[n] = 2f2sinc(2πf2n)− 2f1sinc(2πf1n), (53)

which in the frequency domain becomes

G[k] = rect
(
k

2f2

)
− rect

(
k

2f1

)
, (54)

where rect(·) is the rectangular function and f1 and f2 are the learnable cutoff frequencies
of the bandpass, with f2 > f1 > 0. During training, the cutoff frequencies are updated
and adapted to find the important frequency ranges in the training data. This implies that
there are only two parameters per filter, regardless of the filter length, which makes them less
expensive compared to regular convolutional layers. Furthermore, we can insert inductive
bias into the model by choosing a clever initialization of the cutoff frequencies, such as the
ones corresponding to the mel­scale.

For the tasks of speaker identification and verification, it was shown that SincNet features
yielded lower error rates compared to using a fixed filterbank, regular CNN filters or MFCC
features [104]. Even more, the learned frequency response of the bandpass filters showed
visible peaks corresponding to the pitch and first and second formants for English vowels.
However, it is difficult to say which types of audio features are “best” in general, since
this might be task specific, and also depend on the amount of training data available. For
small datasets we can expect hand­crafted features to have an advantage. Some studies

53

Background and Research Context

have compared using hand­crafted and learnable filterbanks and handcrafted features for
the task of keyword spotting, [82, 83] and found no significant difference in performance,
although learnable filter banks were found to be more noise robust. When it comes to
using different hand­crafted features, log­mel spectrograms and MFCC give roughly the
same performance [105, 42]. One study used neural architecture search and found that
using MFCC features was able to achieve better accuracy than SincNet features, but at the
cost of higher parameter count [98]. In the next section, we will explore keyword spotting
more in depth and compare some of the different approaches that can be used for this task.

5.2 Speech Recognition and Keyword Spotting

An important use­case of the audio feature descriptors described in the previous section is
automatic speech recognition (ASR). Deep learning is well suited for this problem, since it is
difficult to derive hand­crafted heuristics that transcribe the semantic contents of the speech
signal. By leveraging large amounts of training data together with deep neural networks,
ASR has now become a standard feature of our daily lives, for example in smart voice
assistants.

An example of a smart assistant pipeline is shown in Figure 18. The first step in the process
is wake­word detection, which is often done in an always on manner, that triggers the
device to analyze the audio further. The second step is keyword spotting, where the goal is
to detect the presence of keywords from a small dictionary. Examples of keywords could
be commands like “play” or “pause” in the context of listening to music. If no keyword
is detected, then ASR is triggered, which is sometimes done on a remote server if on­
device computational resources are limited. There are several advantages of performing
each step locally on­device, including reduced latency. Data privacy can also be of concern
and local audio processing reduces the amount of potentially sensitive data that needs to
be transmitted to the server.

In Paper III, we focus on the problem of keyword spotting, which is an audio classifica­
tion task where the goal is to classify short snippets of speech as one of the keywords in
the dictionary or “silence” or “unknown”. As previously mentioned, most state­of­the­art
keyword spotting methods do not operate on the raw audio input, but on pre­processed
audio representation such as mel­spectrograms or MFCC, as shown in Figure 19.

Let cn ∈ Rd denote the d cepstral coefficients of the n:th time window. By stacking all
time windows in a matrix as C = [c1, . . . , cT]

T ∈ RT×d, we get a mel­ceptogram, which
resembles an image on a grid, with one grid axes for time and one for mel­scale quefrency.
The most common network architecture for keyword spotting has been CNNs [81]. Since
the ceptogram can be viewed as a T × d image, architectures from computer vision can be
directly applied to this type of input. Variants of this architecture that have been explored

54

5. Audio Recognition and Sound Source Localization

Wake­word detection Keyword spotting Keyword?

Take action

Yes

No

ASR
”Hey google ...”

On­device processing

Figure 18: An example speech processing pipeline for smart assistants. Wake-word detection and keyword spotting are per-
formed on-device. If no keyword is detected, the audio data is sent to a server where ASR is performed.

include depth­wise separable [145], temporal [27] and recurrent [34] CNNs.

However, given the surprising success of Transformers in computer vision, an interesting
questions is whether this architecture also works well for audio processing. In the same
way that an image can be partitioned into patches, this can also be done to the ceptogram.
Unlike for the case of point clouds, the ordering of the time slots matter, so positional
encoding is necessary in order for the Transformer to exploit this information. In Paper
III we introduce the Keyword Transformer (KWT) and demonstrate superior classification
performance to CNNs, while being more efficient in terms of latency.

Concurrent work introduced the Audio Spectrogram Transformer (AST) [51], expanding
the idea of Transformers for speech classification to longer audio sequences and other types
of audio. Subsequent variants of AST [52, 10] include elements of self­supervised learning
by reconstructing masked patches in the spectrogram, i.e. using AST as a form of masked
autoencoder. This highlights another benefit of modeling audio as patches, since it allows
for exploiting training techniques that are well­suited for Transformers.

Subsequent work has developed further optimizations of the KWT models. Jelčicová and
Verhelst showed that 80 % of the multiply­accumulate operations in KWT can be removed
while maintaining the overall classification accuracy of the model [65]. This is achieved
by noting that there exists a redundancy in the input MFCC tokens, because many of
them carry similar information. By pruning tokens based on a similarity threshold, only a
sparse set of tokens are fed through the self­attention and MLP layers. Furthermore, this
method does not require any additional training of the model. Al­Qawlaq et al. proposed
KWT­Tiny [7], which only uses 0.3 % of the original parameter count by using fewer
cepstral coefficients, smaller embedding dimension and INT8 quantization. However, the
model was designed for only binary classification of two different keywords and yielded an
accuracy loss of 10 percentage points.

Training speech recognition models in a centralized setting could potentially require col­
lecting large amounts of speech recordings from users. An alternative would be to use a
distributed training method in order to avoid collecting private data. In Paper IV we there­
fore explore training the KWT in a federated learning setting. Federated keyword spotting
was first explored in [76] and the setup can be simulated by splitting the dataset based on

55

Background and Research Context

MFCC
feature extraction fθ pθ(k|x)

Figure 19: A keyword spotting pipeline. The raw audio waveform is first processed by extracting the MFCC spectrogram, which
is then fed into a neural network that predicts a probability distribution over the different keywords.

speaker identity, as would be the case in a realistic scenario. Furthermore, it would involve
training on low­end edge devices, and we therefore combine federated learning with low­
precision training. The results indicate that training KWT in FP8 rather than FP32 yields
a small drop in accuracy, but with the benefit of lower communication costs and potential
energy savings.

5.3 Sound Source Localization

Auditory perception does not only involve interpreting the contents of audio, but also
physically localizing the audio source in 3D space. Just as humans benefit from having
two ears when localizing sound sources, most sound source localization methods rely on
recordings from multiple microphones. Although localization using a single microphone is
possible by exploiting echoes in a room with known geometry [95] or by using microphones
with direction­dependent filtering [114], we focus on multichannel recordings in this thesis.

Classical methods for sound source localization (SSL) include trilateration and multilater­
ation, both of which depend on measuring distances between the sound source and micro­
phones. If the sound source and microphones are synchronized, and the time at which the
sound event occurred is known, the distances can be measured by estimating the time of
flight, i.e. the time it takes for the sound to travel from the sound source to the microphone.
Trilateration is then the process of computing the sound source coordinate, given the dis­
tance measurements and the known microphone array geometry. Solving the trilateration
problem amounts to finding the intersection of spheres and closed form solutions exist in
the the minimal case using three microphones [74].

However, in most SSL scenarios we do not know at which point in time the sound was
transmitted, and the distances cannot be measured directly. Instead, we can resort to mea­
suring differences between distances by estimating the time difference of arrival (TDOA)
between pairs of microphones. Multilateration then refers to the process of computing the
sound source coordinate given the distance difference measurements and the known mi­
crophone locations, which corresponds to finding the intersection between hyperboloids.
Closed form solutions to the multilateration problem therefore exist in the minimal case
with four microphones. Since the solutions to the minimal trilateration and multilateration
problems are not unique, additional measurements can be used to form over­determined

56

5. Audio Recognition and Sound Source Localization

systems that can be solved in the least squares sense. For the general 3D localization prob­
lem with non­colinear microphone coordinates, at least four microphones are required for
a unique least squares solution to the trilateration problem, and five for multilateration
[39].

If the microphone locations are also unknown and we want to localize them simultaneously,
the problem can still be solved up to a coordinate transformation by exploiting movements
of the sound source. Techniques like multidimensional scaling can then be used to solve
for sound source and microphone locations jointly [74].

If the distance between the microphones in the array is small compared to the distance to
the sound source, the incident sound can be approximated as planar waveforms. In this
setup it is appropriate to estimate the direction of arrival (DOA), since movements towards
or away from the array are difficult to distinguish from TDOA measurements. A common
application of DOA estimation is spatial filtering, which allows sound to be amplified or
attenuated based on its location [73].

In recent years, SSL methods based on deep learning have become more popular. Although
classical methods such as multilateration perform well in many scenarios, their localization
performance is limited by the accuracy of the TDOA estimates. If these were error­free,
then the sound source location can be recovered exactly. However, in adverse acoustic
conditions, noise and reverberation can lead to unreliable TDOA estimates, which then
lead to poor localization performance. The benefits of using deep learning methods for
SSL is therefore that it allows for dealing with such acoustic conditions, which can be hard
to model explicitly. Deep learning methods can be trained to predict the sound source
coordinates (or DOA) directly, or indirectly by predicting e.g. the TDOAs [57].

Paper V, VI and VII all deal with methods for SSL. The contributions in the papers are
related to two different aspects of the problem:

1. Learning feature descriptors, which can be used as input to a localization method. In
Paper V, we develop a method for improving TDOA estimation for pairs of micro­
phones. These estimates can then be used as input features to a localization method,
e.g. a multilateration algorithm or a machine learning method, which we demon­
strate in Paper VI and VII.

2. Learning to predict the sound source location, given the microphone coordinates
and some set of input features from microphone recordings. This problem is dealt
with in Paper VI (using a small tetrahedral microphone array) and Paper VII (using
a general ad­hoc microphone setup).

57

Background and Research Context

Room Acoustics

Suppose there is a single sound source located at s ∈ R3 and a set of M microphones
located at ri ∈ R3, i = 1, . . . ,M . The received signal at microphone i can then be
modeled as

xi[n] = (hs,ri ∗ u)[n] + wi[n], (55)

where u is the sound emitted by the source and hs,ri is the impulse response from the
source to the i:th microphone and wi is i.i.d. white additive noise. The impulse response
depends on the length of the path from source to the microphone, as well as indirect paths
that depend on the room geometry and materials. For training SSL methods, it is common
to train on synthetic data, which requires realistic simulation of sound wave propagation.
With the model in Equation (55), this can be done by simulating the impulse response
for a given room geometry with known material properties. A frequently used method is
the so called image source method [8], which exploits the fact that an indirect path caused
by a reflection on a surface can be modeled as a mirrored “image” source on the opposite
side of the surface. Second order reflections then create new mirrored sources, and so on.
Due to the exponential growth in the number of images, higher order reflections need to
be truncated at some point for tractability.

Given the set of source images Vr(s) and the absorption coefficient α ∈ [0, 1] of the wall
materials, the impulse response can be generated using Green’s function as

hs,ri [n] =
∑

s̃∈Vr(s)

(1− α)gen(s̃)

4π ∥ri − s̃∥
δLP

(
n− Fs

∥ri − s̃∥
c

)
, (56)

where gen(s̃) is the reflection order of the image source s̃ and δLP is a windowed sinc
function (an ideal low­pass filter) that samples the ideal impulse response. Several software
implementations of the image source method exist that allows for simulating acoustics in
indoor environments, where the room geometry and materials can be specified [115, 38].
This is useful for both training and evaluating SSL models when real recordings are not
available. It is also possible to measure impulse responses in a physical room using frequency
sweeps [85]. The recordings can then be used to simulate realistic propagation together with
some database of sound events [106].

In order to understand how an SSL method is affected by the room acoustics, we need a way
to quantify how reverberant a given room is. A common metric for this is the reverberation
time t60, which is defined as the time it takes for the sound pressure level to be reduced

58

5. Audio Recognition and Sound Source Localization

by 60 dB. The reverberation time depends on the room volume and wall materials. An
approximation is given by Sabine’s formula [110]

t60 = 0.161
V

αS
, (57)

where V is the total volume of the room, S is the total surface area of the walls and α is the
absorption coefficient. In reality, the reverberation time is frequency dependent and also
depends on the geometry of the room, but for our purposes we can use this formula when
evaluating SSL methods. Note that we have assumed that the absorption is the same for
all walls in the room, which allows us to invert the formula and compute the absorption
coefficient needed to produce a room with a given reverberation time.

Time Delay Estimation

As previously mentioned, classical methods such as multilateration depend on TDOA mea­
surements from microphone pairs. The TDOA τij (as measured in samples) for the micro­
phone pair (i, j) is defined as

τij = ⌊
Fs

c
(||s− ri||2 − ||s− rj ||2)⌉, (58)

where Fs is the sampling rate and c is the speed of sound. For the sake of simplicity, let’s
consider an example with two microphones where there is no noise or reverberation and
the received signals only differ in terms of amplitude and time delay. We can then write
the two signals as

x1[n] = a1u[n− t1],
x2[n] = a2u[n− t2],

(59)

where t1 − t2 = τ12 is the TDOA and a1, a2 > 0. A useful tool for TDOA estimation is
the cross­correlation function, which we here define for a real­valued function as

(x1 ⋆ x2)[m] =
N−1∑
n=0

x1[n]x2[(n−m) mod N]. (60)

Note that this corresponds to a circular convolution between x1[n] and the time­reversed
x2[−n mod N]. The convolution theorem states that circular convolution in the time

59

Background and Research Context

20 0 20

anechoic, SNR = ∞

20 0 20

anechoic, SNR = 10 dB

CC
GCC-PHAT

20 0 20

reverberant, SNR = 10 dB

m

|R
x

1
x

2
[m

]|

Figure 20: Illustration of the cross correlation (CC) with and without PHAT filtering in three different setups, using the signal
from Figure 16. In the leftmost figure, the two signals are identical and noise-free. The CC therefore corresponds to
the autocorrelation of the transmitted signal, with a peak centered at a delay of 0 samples. Similarly, GCC-PHAT is a
unit pulse centered the same delay. In the center figure, additive white noise has been added to both signals, with a
signal-to-noise ratio (SNR) of 10 dB. In the rightmost figure, two echoes with delays of 4 and 8 samples have been
added. This causes smearing of the CC, resulting in a peak that is not centered at the correct delay. In contrast, the
GCC-PHAT resolves the echoes as two additional peaks with lower amplitude.

domain corresponds to element­wise multiplication in the frequency domain, i.e.
F(x1 ∗ x2) = F(x1)⊙F(x2). We can use this to compute the cross­correlation as

(x1 ⋆ x2) = F−1 (F(x1)⊙F(x2)
∗) , (61)

where we have used the fact that time reversal corresponds to conjugation in the frequency
domain for real­valued signals. Equivalently, we can thus write the cross­correlation as

(x1 ⋆ x2)[m] =
1

N

N−1∑
k=0

X1[k]X
∗
2 [k]e

i2πkm
N . (62)

The TDOA can then be found as the delay which maximizes the cross­correlation. How­
ever, the peak in the cross­correlation is not always sharp, since its shape depends on the
autocorrelation function of the transmitted signal. In scenarios where reflections are present
in the signal, this can cause multiple peaks in the cross­correlation to overlap an “smear”
the peak of the direct path. A well­established method for dealing with this problem is to
introduce a pre­filtering of the signals, which can be done directly in the frequency domain.
This method is known as the generalized cross­correlation (GCC) [70], which is given by

60

5. Audio Recognition and Sound Source Localization

Rx1x2 [m] =
1

N

N−1∑
k=0

Wx1x2 [k]X1[k]X
∗
2 [k]e

i2πkm
N , (63)

whereWx1x2 is a linear filter. If the spectrum of the signal and noise are known a priori, one
can construct the maximum likelihood filter, but in practice we often do not have access to
this information. The most widely adopted GCC uses the phase transform (PHAT) filter,
which is given by

W PHAT
x1x2

[k] =
1

|X1[k]X∗
2 [k]|

. (64)

The PHAT filter weights the contribution to the phase of each frequency in the cross­
correlation by normalization with the spectral amplitude. Experiments have also shown
that in practice, the PHAT filter yields better predictions than using the ML filter [17]. A
potential negative side­effect of the PHAT filter is that for frequencies with zero power, the
phase is undefined. Division by zero can be avoided with by adding a small constant to the
denominator, but it will still result in an incorrect phase estimate contributing to the total
sum.

In order to see why the GCC­PHAT generates sharper peaks than the standard cross­
correlation, consider again the simplified model in Equation (59). Here, the GCC­PHAT
becomes

Rx1x2 [m] =
1

N

N−1∑
k=0

a1U [k]e−
i2πkt1

N a2U
∗[k]e

i2πkt2
N∣∣∣a1U [k]e−

i2πkt1
N a2U∗[k]e

i2πkt2
N

∣∣∣e i2πkm
N

=
1

N

N−1∑
k=0

e
i2π(m−(t1−t2))k

N = δt1−t2 [m]

. (65)

The peak is a unit pulse centered at the TDOA for the microphone pair and does not
depend on the autocorrelation of the transmitted signal, which makes it is easier to resolve
peaks from multiple paths (see Figure 20). Note that the result only holds exactly for
circular signal delays, which is not realistic. In practice, even in perfect noise­free acoustic
conditions, there will be parts of the two signals at the beginning and end of the recording
that do not overlap. However, if the time delay is small compared to the signal length, the
peak can still be clearly resolved.

In Paper V, we expand on the idea of pre­filtering the signals by using learnable filters.
This allows the filters to adapt to a particular type of signal as well as removing additive

61

Background and Research Context

noise. Furthermore, we use multiple non­linear filters, compute multiple correlations for
each filtered signal pair and then combine the result into a single output. However, we
want to make sure that applying the filters does not change or remove information about
the TDOA, which is what we ultimately want to recover. From Section 4.5, we know that
this information is preserved for CNN’s with circular convolutions, and we can apply the
following lemma for cross­correlations:

Lemma 5.1. Let f : RN → RN×d and g : RN×d → RN be translation­equivariant neural
networks. Then the neural cross­correlation resulting from applying f and g before and
after the cross­correlation is equivariant to the difference in circular translations t1, t2 ∈ Z
of the two input signals, i.e.

g
(
f
(
(x1)t1

)
⋆ f
(
(x2)t2

))
= (g (f (x1) ⋆ f (x2)))t1−t2

. (66)

Proof. The lemma follows directly from the composition of equivariant functions and the
definition of the cross­correlation.

When the standard cross­correlation is exchanged for GCC­PHAT, the same property
holds, since the frequency weighting­function is invariant to translations and delays. Hence,
we can construct a neural GCC­PHAT (NGCC­PHAT), by letting f and g be two CNNs.
Furthermore, we can use the SincNet architecture previously discussed, in order to learn
to extract features in the relevant frequency bands. Training of the weights can then be
done by predicting TDOAs between pairs of microphones and backpropagating through
the GCC­PHAT operation¹. This idea is demonstrated in Paper V, showing that this im­
proves TDOA prediction accuracy compared to the classic GCC­PHAT. In Paper VII we
also demonstrate improved localization performance using a multilateration algorithm with
TDOA estimates from NGCC­PHAT. In Paper VI, we extend the method to multiple
sound events, which we will discuss in the next section.

Sound Event Localization and Detection

For small microphone arrays with known geometry, GCC­PHAT correlations can be mapped
directly to the DOA by using a steered­response power (SRP). UsingM microphones, it is
calculated by summing the contributions of each microphone pair at delays corresponding
to different source locations s ∈ R3 as

¹Although the PHAT filter is not everywhere complex­differentiable, backpropagation is still possible by
using Wirtinger derivatives [1].

62

5. Audio Recognition and Sound Source Localization

Feature
extraction SELD model

audio
recordings

audio
features

"bell"

"dog"

"dog"

time

activity

DOA

azimuth

elevation

Figure 21: Overview of the SELD task considered in Paper VI. Given a stationary microphone array, the tasks consists of 1)
detecting and classifying active, possibly overlapping, sound events and 2) localizing them terms of the DOA. Both
the detection and localization is done on a frame-by-frame basis in order to perform tracking of events over time.
The task can also be extended to include distance estimation.

P (s) =
M∑
i=1

M∑
j=1

Rxixj [τij(s)] . (67)

An estimate of the DOA is then given by the angle to the coordinate ŝ = argmaxs P (s)
that maximizes the SRP over some set of candidate coordinate points. When training
neural networks for DOA prediction, it is common to use the SRP [37, 26] or individual
GCC­PHAT features [100] as input to the network.

In certain applications, it might also be necessary to simultaneously localize multiple events.
This requires developing some heuristics for handling overlapping events in time and how
to distinguish them. The sound event localization and detection (SELD) problem is an
extended variant of the SSL problem, where the task is to detect, classify, localize and track
multiple sound events over time, as shown in Figure 21. Since GCC­PHAT carries little
information about spectral characteristics of a particular sound, it is common to combine
GCC­PHAT with log­mel spectrograms or MFCC features as input to SELD models for
improved detection and classification performance. When events other than speech are
present, some studies have indicated that using log­mel spectrograms gives better classifi­
cation performance than using MFCC [22, 16]. Some studies have also explored SELD
using raw waveforms as input [61, 62].

63

Background and Research Context

In order to localize multiple sound events, a SELD model needs to be able to separate events
and output a prediction for each event detected. In section 4.2 we introduced permutation
invariant training (PIT), which is a common training technique for handling the permu­
tations of different events. Given a maximum of K events belonging to one of C possible
classes, the model uses CK separate outputs, where each output predicts the DOA for a
single active event. Inactive events can either be handled using a separate binary classifica­
tion output, or by modeling the DOA as an activity­coupled Cartesian DOA (ACCDOA)
vector where the magnitude is either 0 or 1 depending on whether the event is active or
not [118]. When more than one, but less than K events are active for a single class, it is
beneficial to duplicate the target label of the active event, since it allows each output to
be trained to predict the same output as if there was only a single active event [119]. This
technique is known as auxiliary duplicating PIT (ADPIT).

In Paper VI, we experiment with using NGCC­PHAT features as input to a SELD model.
In order to be able to train it to perform TDOA prediction on a dataset with multiple over­
lapping events, we incorporate ADPIT during the training phase. Experiments show that
NGCC­PHAT features together with log­mel spectrograms provides significantly better
performance compared to using regular GCC­PHAT features.

Localization using Ad­Hoc Arrays

For many SSL problems, we can use audio descriptors as input to a neural network and
trained it to predict the sound source location. For example, Vera­Diaz et al. proposed to
predict the sound source location as a function of the audio recordings using an end­to­end
CNN model [132]. However, this only works as long as the microphones are stationary and
the network can learn the mapping from signals to locations from the data. If the micro­
phones can be moved into a different configuration, then such a model would not be able
to learn, since the mapping depends on the configuration. Hence, a more general model
for SSL needs to also use the microphone locations as input in this setting, as illustrated in
Figure 22.

A model using both audio and microphone coordinates as input was proposed in [56], but
the method assumes that the number of microphones in the array does not change. Still, in
the event where a microphone is turned off or is removed from the array for some reason,
we would ideally still want to be able to make predictions. Furthermore, the proposed
CNN model is also not permutation invariant, which implies that the predictions will
change if the microphones are re­ordered. We can therefore make the case that an SSL
model ought to be able to handle a variable number of microphones during both training
and inference, while also being permutation invariant, which is not the case for many deep
learning approaches to SSL. From Section 4 we know that graph neural networks such as
Transformers are both permutation invariant and support variable number of inputs, and

64

5. Audio Recognition and Sound Source Localization

here we shall see how we can model the SSL problem using a graph structure.

Let rm ∈ R3,m = 1, . . . ,M denote the Cartesian coordinates of a distributed micro­
phone array and consider the fully connected graph G = (V, E) of microphones with
vertices V = {m}Mm=1 and edges E = V × V . The TDOA features {Rij}Mi,j=1 (for ex­
ample GCC­PHAT) can be viewed as a set of pairwise relations on G. Hence, we can use
the relation network architecture from Section 4.3. But we also need to incorporate the
microphone coordinates into the relations. Then we can aggregate over all relations in or­
der to get a relation network that predicts the sound source coordinate. This idea was first
proposed by Grinstein et al. [55], where the model structure was formulated as

ŝ = ϕ

∑
i ̸=j

ψ (ri, rj ,Rij)

 , (68)

where and ψ and ϕ are typically implemented using MLPs. The relation network archi­
tecture has several nice properties which makes it suitable for localization using distributed
microphone arrays. Importantly, the number of input microphones is variable, since we
can easily remove vertices from the graph without changing the network architecture. Fur­
thermore, the output is invariant to the ordering of the microphones, which implies that
if two microphones switch position, the prediction will not be affected.

In Paper VII, we try to make the idea of SSL from a graph structure more general. In
particular, we design a model that in addition to standard SSL, can also handle the following
variations to the problem:

1) A subset of the microphones have unknown location.

2) A subset of the signals are missing.

3) Combinations of 1) and 2).

4) The transmitted signal is known. This corresponds to the trilateration problem where
we can measure the time of flight by exploiting the known signal.

The relation network structure on its own is not able to handle these scenarios, since if for
example ri is known, but we don’t know rj , we cannot evaluate the expression in Equation
(68).

In order to design a model that can be used in all of these setups, we resort to the masked
autoencoder method that we introduced in Section 4.6. Using this method allows us to
model unknown coordinates using mask tokens. First, we define two new sets of graph

65

Background and Research Context

mic coordinates
 , , , , ...,

SSL model

sound source location

audio recordings
 , , , , ...,

Figure 22: Overview of the SSL task considered in Paper VII. Given the the coordinates and audio recording from a distributed
ad-hoc microphone array, the task is to localize a single sound source. Note that the microphone coordinates are
needed as input to the system, since the microphone positions are not necessarily stationary. In this example, five
microphones are used, but the system ought to handle an arbitrary number of microphones. The task can be extended
to localize microphones with unknown coordinates as well.

vertices S = {m : xm known} andR = {m : rm known}, that correspond to the sets of
known recorded audio signals and coordinates respectively. We can then learn a function
that takes the set of known signals and coordinates as input and predicts the sound source
location as

ŝ = f
(
{xm}m∈S , {rm}m∈R

)
, (69)

where f can be implemented using a Transformer architecture. The missing coordinates
and recordings are added to the set of features inside the Transformer using mask tokens.
And in the scenario where the transmitted audio signal is known, it can simply be added to
the set of known input signals. In Paper VII, we also experiment with predicting multiple
outputs, which it to predict the unknown microphone coordinates using the mask tokens.

Note that the set of microphone coordinates is essentially a 3D point cloud and we know
that Transformers are well suited for dealing with this data type. However, compared to
large point clouds from e.g. a LiDAR scan that contain thousands of points, the number of
microphones is much smaller, so the computational complexity of the self­attention mech­
anism will not be a problem. When it comes to audio, we do not want to use spectrograms
or other features that do not preserve the relative time delays between different signals,
thus removing important spatial information. Therefore, we use raw waveforms, with the
possibility of adding TDOA features separately.

In order for the Transformer to distinguish between coordinates and audio tokens, a modal­
ity encoding can be added to the inputs as in Equation (48). Note that we should not add

66

5. Audio Recognition and Sound Source Localization

positional encoding to the inputs, since this would break invariance with respect to permu­
tations of the microphone ordering. However, we still must preserve the information about
which microphone coordinate corresponds to which audio recording. This can be done by
doing message passing between the two types of tokens, which does not break permutation
invariance.

Masking can also be used as a technique to evaluate a similar relation network as the one in
Equation (68). This requires replacing unknown coordinates with mask tokens. In Paper
VII, we do this using both GCC­PHAT and NGCC­PHAT as TDOA features. Notably,
we find that the localization performance of the Transformer­based autoencoder model is
increased when combining it with TDOA features from a relation network compared to
when using only raw waveform as inputs. Although this result could be due to other factors,
such as limited training data, it shows that GCC­PHAT and similar features have a strong
inductive bias for localization tasks.

67

6. Summary of Contributions

6 Summary of Contributions

Table 1: Summary of data modalities, scientific concepts and author contributions in the included papers.
Modalities: - images, - audio, ∴ - point coordinates.

Author contributions: : main contribution, : significant contribution, : minor contribution

Modalities Author contributions

Publication ∴ Main Concepts Ideas Experiments Writing

Paper I 3 RvC, label diversity
Paper II 3 Transformers, perm. symmetry
Paper III 3 Transformers
Paper Iv 3 3 quantization, model diversity
Paper v 3 RvC, transl. symmetry
Paper vI 3 RvC, perm. symmetry
Paper vII 3 3 Transformers, perm. symmetry

We have now covered the necessary background theory for the included papers. In this
section, we briefly summarize the main contributions of each paper and the author con­
tributions. A summary of the different data modalities, scientific concepts and author
contributions in the included papers is shown in Table 1.

Although each paper is a standalone contribution, there is overlap both in terms of the
tasks considered and the methods used, and the contribution of the thesis is therefore best
understood if they are read in order. A conceptual overview of the how the papers are
related is shown in Figure 23.

6.1 Paper Contributions

Paper I Deep Ordinal Regression with Label Diversity

Axel Berg, Magnus Oskarsson, Mark O’Connor
Proc. 2020 25th International Conference on Pattern Recognition
(ICPR), 2021, pp. 2740­2747
Preprint: https://arxiv.org/abs/2006.15864
Code: https://github.com/axeber01/dold

Scientific contributions: This paper deals with applying the notion of label diversity to a
wide range of problems in computer vision, where the data labels are both continuous and
ordinal. By exploiting the possibility to combine different discretizations of continuous
labels, and combinations of ordinal labels, we propose several strategies to induce label

69

https://arxiv.org/abs/2006.15864
https://github.com/axeber01/dold

Background and Research Context

Paper I

Paper II

Paper IIIPaper IV

Paper V

Paper VII Paper VI

Speech
recognition

Computer vision

Transformers
for point sets

TDOA estimation

Transformers for
audio classification

RvC

Images Point sets Audio

SSL

Figure 23: Conceptual overview of the included papers. Colors indicate different data modalities and arrows indicate how the
papers relate to prior work.

diversity in practice. Furthermore, we provide a method for implementing label diversity
with minimal computational overhead that can be used in conjunction with standard neural
network feature extractors. The method is based on using multiple prediction heads, one
for each label representation. During the training phase, each head learns to classify the
data into a specific set of labels, and during inference the predictions are combined in an
ensemble­like fashion. From the ambiguity decomposition in Equation (17), we know that
the prediction error of the ensemble average is guaranteed to be smaller than the average
individual prediction error. By thorough experiments we also show that label diversity can
reduce the prediction errors compared to standard methods like regression and RvC.

Author contributions: AB came up with the idea after some help from the other authors,
developed the theory and implemented the experiments. The paper was written by AB,

70

6. Summary of Contributions

with input from the other authors.

Paper II Points to Patches: Enabling the Use of Self­Attention for 3D Shape
Recognition
Axel Berg, Magnus Oskarsson, Mark O’Connor
Proc. 2022 26th International Conference on Pattern Recognition
(ICPR), 2022, pp. 528­534
Preprint: https://arxiv.org/abs/2204.03957
Code: https://github.com/axeber01/point-tnt

Scientific contributions: We apply Transformers to point cloud processing, where the main
problem is to reduce the quadratic complexity of the self­attention operator. We do this
by using a hierarchical Transformer that applies self­attention locally and globally in a two­
stage process. Experiments show that this not only reduces the computational footprint,
but also makes the features of the Transformer better suited for downstream tasks such
as classification and segmentation. Finally, we also show that the proposed method can
be used to improve feature matching between point clouds, which is commonly used in
SLAM and other applications.

Author contributions: AB came up with the idea after some discussions with the other
authors. The implementation and all experiments were done by AB. The paper was written
by AB, with input from the other authors.

Paper III Keyword Transformer: A Self­Attention Model for Keyword Spotting

Axel Berg, Mark O’Connor, Miguel Tairum Cruz
Proc. Interspeech 2021, pp. 4249­4253
Preprint: https://arxiv.org/abs/2104.00769
Code:
https://github.com/ARM-software/keyword-transformer

Scientific contributions: Inspired by the success of Transformer models for natural lan­
guage processing and computer vision, we investigate the use of this architecture for au­
dio classification. We propose the first Transformer­based keyword spotting method and
achieves state­of­the­art results on common benchmarks. By ablation studies we highlight
the benefit of applying temporal self­attention to the MFCC input features, and we show
that the model learns to attend to the time slots that are most important for classifica­

71

https://arxiv.org/abs/2204.03957
https://github.com/axeber01/point-tnt
https://arxiv.org/abs/2104.00769
https://github.com/ARM-software/keyword-transformer

Background and Research Context

tion. In addition, we measure latency on a mobile phone and show that Transformers are
competitive in this regard as well.

Author contributions: MOC came up with the idea of applying Transformers to key­
word spotting and AB implemented the model. AB implemented most of the experiments,
except for knowledge distillation, which was done by MOC, and latency measurements,
which was done by MTC. The paper was written jointly by the three authors.

Paper IV Towards Federated Learning with on­device Training and Commu­
nication in 8­bit Floating Point
Bokun Wang, Axel Berg, Durmus Alp Emre Acar, Chuteng Zhou
Submitted. A shorter version of this paper was presented at Fed­
KDD: International Joint Workshop on Federated Learning for Data
Mining and Graph Analytics, 2024.
Preprint: https://arxiv.org/abs/2407.02610

Scientific contributions: Training models in a federated setting comes with two major
challenges, both of which we address in this paper: 1) limited hardware capabilities of the
clients and 2) high communication costs due to server­client communication. This paper
explores federated learning in 8 bit floating point, which is a training format expected to
become widely adopted by the industry. We emulate low­precision hardware computation
using quantization­aware training and show that this only has a small impact on model
performance. Furthermore, we investigate the impact of quantized model weights in the
communication step, and our experiments show that for a given model performance, this
results in significant reduction of communicated data compared to using full 32­bit preci­
sion. We also provide the theoretical convergence rate and motivate the use of stochastic
quantization. Finally, we introduce a server­side optimization method that is able to re­
cover some of the performance loss induced by weight quantization. Experiments are done
both using CNNs for image classification and the Transformer model from Paper III, which
is trained in a realistic federated keyword spotting setup.

Author contributions: BW developed and implemented the main method, including FP8
QAT training, quantization of neural network layers, federated training setup and server­
side optimization. BW did the experiments on the image classification task, and AB did the
experiments for keyword spotting. AA and CZ developed the convergence analysis, with
input from the other authors. The paper was written jointly by all authors.

72

https://arxiv.org/abs/2407.02610

6. Summary of Contributions

Paper V Extending GCC­PHAT using Shift Equivariant Neural Networks

Axel Berg, Mark O’Connor, Kalle Åström, Magnus Oskarsson
Proc. Interspeech 2022, pp. 1791­1795
Preprint: https://arxiv.org/abs/2208.04654
Code: https://github.com/axeber01/ngcc

Scientific contributions: Many methods for SSL depends on accurate TDOA estimation,
yet the standard GCC­PHAT method is still commonly used for SSL. The main contri­
bution of this paper is a simple yet very effective way to improve the TDOA estimation
accuracy of GCC­PHAT. This is done by applying of trainable convolutional filters before
and after the GCC­PHAT operation and we refer to this method as Neural GCC­PHAT
(NGCC­PHAT). Due to the translation equivariance of convolutions, there are some guar­
antees of TDOA recovery in ideal conditions, even though the method is data driven. The
filters can be trained end­to­end for TDOA estimation using RvC. Experiments on simu­
lated data with a single sound source show improved performance compared to standard
GCC­PHAT.

Author contributions: KÅ proposed the idea of using machine learning for TDOA esti­
mation. The goal was initially to develop a method that replaces GCC­PHAT estimates in
a localization pipeline. AB proposed exploiting the translation equivariance of CNNs to
filter the signals independently before computing the GCC­PHAT. AB implemented the
method, created the simulated dataset and performed model training and evaluation. AB
wrote most of the paper with input from the other authors.

Paper VI Learning Multi­Target TDOA Features for Sound Event Localiza­
tion and Detection
Axel Berg, Johanna Engman, Jens Gulin, Kalle Åström, Magnus Os­
karsson
Proc. Detection and Classification of Acoustic Scenes and Events
2024 Workshop (DCASE2024), pp. 16­20
Preprint: https://arxiv.org/abs/2408.17166
Code: https://github.com/axeber01/ngcc-seld

Scientific contributions: This paper extends the method from Paper V to multiple over­
lapping sound sources using permutation invariant training. We show that the learned
NGCC­PHAT features can be used as input to an existing SSL method with improved
performance compared to other commonly used input features. The method is evaluated

73

https://arxiv.org/abs/2208.04654
https://github.com/axeber01/ngcc
https://arxiv.org/abs/2408.17166
https://github.com/axeber01/ngcc-seld

Background and Research Context

on a widely adopted benchmark as part of the DCASE challenge.

Author contributions: AB proposed the idea of using permutation­invariant training in
combination with the NGCC­PHAT method from Paper V in order to extract better fea­
tures as input for SELD models. The method implementation and evaluation was done by
AB. The paper was written by AB and JG, with input from the other authors.

Paper VII wav2pos: Sound Source Localization using Masked Autoencoders

Axel Berg, Jens Gulin, Mark O’Connor, Chuteng Zhou, Kalle
Åström, Magnus Oskarsson
Proc. 2024 14th International Conference on Indoor Positioning
and Indoor Navigation (IPIN), pp. 1­8
Preprint: https://arxiv.org/abs/2408.15771
Code: https://github.com/axeber01/wav2pos

Scientific contributions: In Paper VI we considered SSL with a fixed microphone array.
Here, we instead consider another version of the SSL task where the number of micro­
phones, or their coordinates, are not necessarily known at inference time and therefore
needs to be used as input to the model, as in the case of classical multilateration. We pro­
pose an autoencoder based method that can handle a variety of such SSL tasks. Further­
more, it can exploit audio from a microphone at an unknown location or from the source
itself. Another contribution from this paper is that we evaluate the TDOA estimates from
NGCC­PHAT with a classical multilateration method, which extends the results from Pa­
per V.

Author contributions: MOC proposed the idea of using a masked autoencoder that could
learn to solve the localization problem with varying number of microphones. AB refined
this idea and drew inspiration from other multimodal autoencoders with modality em­
beddings. AB proposed the idea of pair­wise positional encoding to preserve permutation
equivariance.

The model implementation, data set generation and all experiments were done by AB.
KÅ provided an implementation of the multilateration method and AB evaluated it us­
ing TDOA estimates from GCC­PHAT and NGCC­PHAT. The implementations for the
other methods used for comparisons were retrieved online from the official code reposito­
ries and AB trained and evaluated them using the same setup as the proposed method. The
paper was written by AB, JG and MO, with input from the other authors.

74

https://arxiv.org/abs/2408.15771
https://github.com/axeber01/wav2pos

6. Summary of Contributions

6.2 Conclusions and Outlook

The outcome of this thesis can be summarized by revisiting the research questions in Section
1.1. In Paper I, we addressed [RQ1] by proposing an new objective function that exploits
label diversity. We found that this is a suitable objective for several problems in computer
vision. Although RvC was used for TDOA estimation in Paper V, we did not experiment
with the method of label diversity for this problem, which we leave for future work. It
would also be interesting to apply label diversity to DOA prediction, which has a similar
output domain as the pose estimation problem considered in Paper I.

[RQ2] and [RQ3] are dealt with in Papers II, III and IV, where we investigate efficient
implementations of Transformer models for point cloud analysis and speech recognition,
respectively. The combined findings of these studies indicate that Transformers can be
trained to achieve high classification accuracy for both of these data modalities, while still
being computationally efficient. Further efficiency improvements can be obtained by train­
ing in low­precision number formats, such as FP8.

Papers V, VI and VII all deal with various aspects of [RQ4] (machine learning for SSL).
Notably, we show that a learning­based method can achieve good TDOA prediction per­
formance and that the learned representations can be used as input to either a classical
multilateration method, or to a neural network, for solving the SSL problem. Another
important finding is that predicting the sound source location using only raw audio wave­
forms as input to a neural network is difficult, since the localization performance of the
autoencoder model in Paper VII was significantly improved when TDOA features were
used as input to the model. Hence, we conclude that using features with a strong induc­
tive bias, such as TDOA features, yields better localization performance (at least when the
dataset is not sufficiently large).

In terms of [RQ5], we have dealt with invariance to several types of transformations in the
different methods: invariance with respect to input permutations (Paper II and VII) and
output permutations (Paper VI), as well as invariance with respect to relative translations
of signals (Paper V). For the SSL problem, an interesting future research direction would
be to also consider input­output equivariance with respect to other transformations of the
microphone coordinates, e.g. reflections, rotations and translations.

Other aspects of future work could involve combining different aspects of the methods in
the thesis in order to construct more advanced system for machine perception. For ex­
ample, by combining the contributions from speech recognition (Paper III), low­precision
training (Paper IV) and SSL (Papers V­VII), it would be possible to develop a system that
can perform sound event detection, localization speech recognition and localization, while
running on a low­end device. One interesting application could be augmented reality,
where these methods are also combined with methods for visual perception (as in Paper

75

Background and Research Context

I) or LiDAR data (as in Paper II). Combining different types data in order to construct
multimodal AI systems has been a strong research trend in recent years and the capabilities
of such systems are improving each year. We therefore anticipate that future work will fur­
ther develop the findings of this thesis and incorporate them into larger scale AI systems
for perception and localization.

76

References

References

[1] Autograd mechanics. PyTorch 2.4 documentation. https://pytorch.org/
docs/stable/notes/autograd.html#complex-autograd-doc. [Accessed
27­09­2024].

[2] Federated Learning with Formal Differential Privacy Guar­
antees (blog post). https://research.google/blog/
federated-learning-with-formal-differential-privacy-guarantees/.
[Accessed 06­09­2024].

[3] Ieee standard for floating­point arithmetic. Technical Report IEEE Std 754­2008,
IEEE Computer Society, 2008.

[4] Achieving human parity in conversational speech recognition. arXiv preprint
arXiv:1610.05256, 2016.

[5] D. A. E. Acar, Y. Zhao, R. Matas, M. Mattina, P. Whatmough, and V. Saligrama.
Federated learning based on dynamic regularization. In International Conference on
Learning Representations, 2021.

[6] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt­4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[7] A. Al­Qawlaq, D. John, et al. Kwt­tiny: Risc­v accelerated, embedded keyword
spotting transformer. arXiv preprint arXiv:2407.16026, 2024.

[8] J. B. Allen and D. A. Berkley. Image method for efficiently simulating small­room
acoustics. The Journal of the Acoustical Society of America, 65(4):943–950, 1979.

[9] M. AskariHemmat, R. A. Hemmat, A. Hoffman, I. Lazarevich, E. Saboori, O. Mas­
tropietro, S. Sah, Y. Savaria, and J.­P. David. Qreg: On regularization effects of
quantization. arXiv preprint arXiv:2206.12372, 2022.

[10] A. Baade, P. Peng, and D. Harwath. Mae­ast: Masked autoencoding audio
spectrogram transformer. In Interspeech 2022, pages 2438–2442, 2022. doi:
10.21437/Interspeech.2022­10961.

[11] P. Baldi and P. J. Sadowski. Understanding dropout. Advances in neural information
processing systems, 26, 2013.

[12] I. Beaver. Is ai at human parity yet? a case study on speech recognition. AIMagazine,
43(4):386–389, 2022.

77

https://pytorch.org/docs/stable/notes/autograd.html#complex-autograd-doc
https://pytorch.org/docs/stable/notes/autograd.html#complex-autograd-doc
https://research.google/blog/federated-learning-with-formal-differential-privacy-guarantees/
https://research.google/blog/federated-learning-with-formal-differential-privacy-guarantees/

Background and Research Context

[13] M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine­learning
practice and the classical bias–variance trade­off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

[14] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradi­
ents through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

[15] A. Berg. Applications of Diversity and the Self­Attention Mechanism in Neural Net­
works. Licentiate thesis, Lund University, 2022.

[16] A. Berg, J. Engman, J. Gulin, K. Åström, and M. Oskarsson. The LU System for
DCASE 2024 Sound Event Localization and Detection Challenge. Technical report,
DCASE2024 Challenge, June 2024.

[17] M. S. Brandstein and H. F. Silverman. A robust method for speech signal time­delay
estimation in reverberant rooms. In 1997 IEEE International Conference on Acoustics,
Speech, and Signal Processing, volume 1, pages 375–378. IEEE, 1997.

[18] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges, 2021.

[19] G. Brown. Diversity in neural network ensembles. PhD thesis, University of Birming­
ham, 2004.

[20] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee­
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert­Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCan­
dlish, A. Radford, I. Sutskever, and D. Amodei. Language models are few­shot
learners. In Advances in Neural Information Processing Systems, volume 33, pages
1877–1901, 2020. URL https://proceedings.neurips.cc/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[21] N. Burgess, J. Milanovic, N. Stephens, K. Monachopoulos, and D. Mansell. Bfloat16
processing for neural networks. In 2019 IEEE 26th Symposium on Computer Arith­
metic (ARITH), pages 88–91, 2019. doi: 10.1109/ARITH.2019.00022.

[22] E. Cakir, T. Heittola, H. Huttunen, and T. Virtanen. Polyphonic sound event de­
tection using multi label deep neural networks. In 2015 international joint conference
on neural networks (IJCNN), pages 1–7. IEEE, 2015.

[23] A. Chaman and I. Dokmanić. Truly shift­invariant convolutional neural networks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni­
tion, pages 3773–3783, 2021.

78

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

References

[24] S. E. Chazan, H. Hammer, G. Hazan, J. Goldberger, and S. Gannot. Multi­
microphone speaker separation based on deep doa estimation. In 2019 27th European
Signal Processing Conference (EUSIPCO), pages 1–5. IEEE, 2019.

[25] M. Chghaf, S. Rodriguez, and A. E. Ouardi. Camera, lidar and multi­modal slam
systems for autonomous ground vehicles: a survey. Journal of Intelligent & Robotic
Systems, 105(1):2, 2022.

[26] J.­H. Cho and J.­H. Chang. SR­SRP: Super­Resolution based SRP­PHAT for Sound
Source Localization and Tracking. In Proc. INTERSPEECH2023, pages 3769–3773,
2023. doi: 10.21437/Interspeech.2023­2369.

[27] S. Choi, S. Seo, B. Shin, H. Byun, M. Kersner, B. Kim, D. Kim, and S. Ha. Temporal
Convolution for Real­Time Keyword Spotting on Mobile Devices. Proc. Interspeech
2019, pages 3372–3376, 2019.

[28] M. G. Christensen, P. Stoica, A. Jakobsson, and S. H. Jensen. Multi­pitch estimation.
Signal Processing, 88(4):972–983, 2008.

[29] X. Chu, Z. Tian, B. Zhang, X. Wang, and C. Shen. Conditional positional encodings
for vision transformers. In The Eleventh International Conference on Learning Repre­
sentations, 2023. URL https://openreview.net/forum?id=3KWnuT-R1bh.

[30] T. Cohen and M. Welling. Group equivariant convolutional networks. In Interna­
tional conference on machine learning, pages 2990–2999. PMLR, 2016.

[31] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of control, signals and systems, 2(4):303–314, 1989.

[32] Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. Le, and R. Salakhutdinov. Transformer­
xl: Attentive language models beyond a fixed­length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pages 2978–
2988, 2019.

[33] J. G. Daugman. Uncertainty relation for resolution in space, spatial frequency, and
orientation optimized by two­dimensional visual cortical filters. J. Opt. Soc. Am. A,
2(7):1160–1169, 1985.

[34] D. C. de Andrade, S. Leo, M. L. D. S. Viana, and C. Bernkopf. A neural attention
model for speech command recognition. arXiv preprint arXiv:1808.08929, 2018.

[35] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre­training of deep bidirec­
tional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Hu­
man Language Technologies, NAACL­HLT, pages 4171–4186. Association for Com­
putational Linguistics, 2019.

79

https://openreview.net/forum?id=3KWnuT-R1bh

Background and Research Context

[36] R. Diaz and A. Marathe. Soft labels for ordinal regression. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4738–4747, 2019.

[37] D. Diaz­Guerra, A. Miguel, and J. R. Beltran. Robust Sound Source Tracking using
SRP­PHAT and 3D Convolutional Neural Networks. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 29:300–311, 2020.

[38] D. Diaz­Guerra, A. Miguel, and J. R. Beltran. gpurir: A python library for room im­
pulse response simulation with gpu acceleration. Multimedia Tools and Applications,
80(4):5653–5671, 2021.

[39] J. Díez­González, R. Álvarez, L. Sánchez­González, L. Fernández­Robles, H. Pérez,
and M. Castejón­Limas. 3d tdoa problem solution with four receiving nodes. Sensors,
19(13):2892, 2019.

[40] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. In Interna­
tional Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=YicbFdNTTy.

[41] S. Dovrat, E. Nachmani, and L. Wolf. Many­speakers single channel speech sep­
aration with optimal permutation training. In Interspeech 2021, pages 3890–3894,
2021.

[42] I. L. Espejo, Z.­H. Tan, and J. Jensen. An experimental study on light speech features
for small­footprint keyword spotting. In IberSPEECH 2022, 2022.

[43] C. Evers, A. H. Moore, and P. A. Naylor. Acoustic simultaneous localization
and mapping (a­slam) of a moving microphone array and its surrounding speak­
ers. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6–10. IEEE, 2016.

[44] L. Fan, Y. Yang, Y. Mao, F. Wang, Y. Chen, N. Wang, and Z. Zhang. Once detected,
never lost: Surpassing human performance in offline lidar based 3d object detection.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
19820–19829, 2023.

[45] J. Feldmaier, M. Rothbucher, and K. Diepold. Sound localization and separation for
teleconferencing systems. Technical report, Lehrstuhl für Datenverarbeitung, 2014.

[46] M. A. Figueiredo. Adaptive sparseness using jeffreys prior. In NIPS, pages 697–704,
2001.

80

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

References

[47] E. Frank and M. Hall. A simple approach to ordinal classification. In European
conference on machine learning, pages 145–156. Springer, 2001.

[48] Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In
Proceedings of the Thirteenth International Conference on International Conference on
Machine Learning, pages 148–156, 1996.

[49] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance
dilemma. Neural computation, 4(1):1–58, 1992.

[50] X. Geng, H. Liu, L. Lee, D. Schuurmans, S. Levine, and P. Abbeel. Multimodal
Masked Autoencoders Learn Transferable Representations. In First Workshop on Pre­
training: Perspectives, Pitfalls, and Paths Forward at ICML 2022, 2022.

[51] Y. Gong, Y.­A. Chung, and J. Glass. Ast: Audio spectrogram transformer. In Inter­
speech 2021, pages 571–575, 2021. doi: 10.21437/Interspeech.2021­698.

[52] Y. Gong, C.­I. Lai, Y.­A. Chung, and J. Glass. Ssast: Self­supervised audio spec­
trogram transformer. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 10699–10709, 2022.

[53] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[54] H. Gray and W. H. Lewis. Anatomy of the human body. Philadelphia, Lea and
Febiger, 1918. URL https://www.biodiversitylibrary.org/item/60234.

[55] E. Grinstein, M. Brookes, and P. A. Naylor. Graph Neural Networks for Sound
Source Localization on Distributed Microphone Networks. In ICASSP 2023­2023
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 1–5. IEEE, 2023.

[56] E. Grinstein, V. W. Neo, and P. A. Naylor. Dual Input Neural Networks for Po­
sitional Sound Source Localization. EURASIP Journal on Audio, Speech, and Music
Processing, 2023(1):32, 2023.

[57] P.­A. Grumiaux, S. Kitić, L. Girin, and A. Guérin. A Survey of Sound Source Lo­
calization with Deep Learning mMthods. The Journal of the Acoustical Society of
America, 152(1):107–151, 2022.

[58] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein, H. Eich­
ner, C. Kiddon, and D. Ramage. Federated learning for mobile keyboard prediction.
arXiv preprint arXiv:1811.03604, 2018.

81

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.biodiversitylibrary.org/item/60234

Background and Research Context

[59] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human­
level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026–1034, 2015.

[60] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders
are Scalable Vision Learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 16000–16009, 2022.

[61] Y. He and A. Markham. Sounddoa: Learn sound source direction of arrival and
semantics from sound raw waveforms. In Interspeech, pages 2408–2412, 2022.

[62] Y. He and A. Markham. SoundSynp: Sound Source Detection from Raw Waveforms
with Multi­Scale Synperiodic Filterbanks. In International Conference on Artificial
Intelligence and Statistics, pages 9010–9023. PMLR, 2023.

[63] Y. Hoshen, R. J. Weiss, and K. W. Wilson. Speech acoustic modeling from raw
multichannel waveforms. In 2015 IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 4624–4628. IEEE, 2015.

[64] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko. Quantization and training of neural networks for efficient integer­
arithmetic­only inference. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2704–2713, 2018.

[65] Z. Jelčicová and M. Verhelst. Delta keyword transformer: Bringing transformers to
the edge through dynamically pruned multi­head self­attention. In tinyML Research
Symposium’22, 2022.

[66] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. Scaffold:
Stochastic controlled averaging for federated learning. In International conference on
machine learning, pages 5132–5143. PMLR, 2020.

[67] T. Kathiresan, D. Maurer, and V. Dellwo. Highly spectrally undersampled vowels
can be classified by machines without supervision. The Journal of the Acoustical Society
of America, 146(1):EL1–EL7, 2019.

[68] O. S. Kayhan and J. C. v. Gemert. On translation invariance in cnns: Convolutional
layers can exploit absolute spatial location. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14274–14285, 2020.

[69] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Ben­
gio and Y. LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7­9, 2015, Conference Track Proceedings, 2015.
URL http://arxiv.org/abs/1412.6980.

82

http://arxiv.org/abs/1412.6980

References

[70] C. Knapp and G. Carter. The Generalized Correlation Method for Estimation of
Time Delay. IEEE transactions on acoustics, speech, and signal processing, 24(4):320–
327, 1976.

[71] M. Kreković, I. Dokmanić, and M. Vetterli. Echoslam: Simultaneous localization
and mapping with acoustic echoes. In 2016 IEEE International Conference on Acous­
tics, Speech and Signal Processing (ICASSP), pages 11–15. Ieee, 2016.

[72] A. Krogh, J. Vedelsby, et al. Neural network ensembles, cross validation, and active
learning. Advances in neural information processing systems, 7:231–238, 1995.

[73] K. Kumatani, J. McDonough, and B. Raj. Microphone array processing for distant
speech recognition: From close­talking microphones to far­field sensors. IEEE Signal
Processing Magazine, 29(6):127–140, 2012.

[74] M. Larsson. Localization using Distance Geometry: Minimal Solvers and Robust Meth­
ods for Sensor Network Self­Calibration. PhD thesis, Lund University, 2022.

[75] J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi, and Y. W. Teh. Set transformer: A
framework for attention­based permutation­invariant neural networks. In Interna­
tional Conference on Machine Learning, pages 3744–3753. PMLR, 2019.

[76] D. Leroy, A. Coucke, T. Lavril, T. Gisselbrecht, and J. Dureau. Federated learning for
keyword spotting. In ICASSP 2019­2019 IEEE international conference on acoustics,
speech and signal processing (ICASSP), pages 6341–6345. IEEE, 2019.

[77] L. Li and H.­T. Lin. Ordinal regression by extended binary classification. InAdvances
in neural information processing systems, pages 865–872, 2007.

[78] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated
optimization in heterogeneous networks. Proceedings of Machine learning and systems,
2:429–450, 2020.

[79] H. Lin and S. Jegelka. Resnet with one­neuron hidden layers is a universal approxi­
mator. Advances in neural information processing systems, 31, 2018.

[80] Y. Liu. Negative correlation learning and evolutionary neural network ensembles. PhD
thesis, University College, The University of New South Wales, 1998.

[81] I. López­Espejo, Z.­H. Tan, J. H. Hansen, and J. Jensen. Deep spoken keyword
spotting: An overview. IEEE Access, 10:4169–4199, 2021.

[82] I. López­Espejo, Z.­H. Tan, and J. Jensen. Exploring filterbank learning for keyword
spotting. In 2020 28th European Signal Processing Conference (EUSIPCO), pages
331–335. IEEE, 2021.

83

Background and Research Context

[83] I. López­Espejo, R. C. Shekar, Z.­H. Tan, J. Jensen, and J. H. Hansen. Filterbank
learning for noise­robust small­footprint keyword spotting. In ICASSP 2023­2023
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 1–5. IEEE, 2023.

[84] J. Martinsson and M. Sandsten. Dmel: The differentiable log­mel spectrogram as a
trainable layer in neural networks. In ICASSP 2024­2024 IEEE International Con­
ference on Acoustics, Speech and Signal Processing (ICASSP), pages 5005–5009. IEEE,
2024.

[85] T. McKenzie, L. McCormack, and C. Hold. Dataset of spatial room impulse re­
sponses in a variable acoustics room for six degrees­of­freedom rendering and anal­
ysis. arXiv preprint arXiv:2111.11882, 2021.

[86] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas.
Communication­efficient learning of deep networks from decentralized data. In
Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017.

[87] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang. Learning differentially
private recurrent language models. In International Conference on Learning Represen­
tations, 2018.

[88] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg,
M. Houston, O. Kuchaiev, G. Venkatesh, et al. Mixed precision training. In Inter­
national Conference on Learning Representations, 2018.

[89] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. Van Baalen, and
T. Blankevoort. A white paper on neural network quantization. arXiv preprint
arXiv:2106.08295, 2021.

[90] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever. Deep double
descent: Where bigger models and more data hurt. In International Conference on
Learning Representations, 2020.

[91] B. Neal, S. Mittal, A. Baratin, V. Tantia, M. Scicluna, S. Lacoste­Julien, and
I. Mitliagkas. A modern take on the bias­variance tradeoff in neural networks. In
ICML 2019 Workshop on Identifying and Understanding Deep Learning Phenomena.

[92] A. M. Noll. Cepstrum pitch determination. The journal of the acoustical society of
America, 41(2):293–309, 1967.

[93] A. V. Oppenheim and R. W. Schafer. From frequency to quefrency: A history of the
cepstrum. IEEE signal processing Magazine, 21(5):95–106, 2004.

84

References

[94] D. Palaz, M. Magimai­Doss, and R. Collobert. Analysis of cnn­based speech recog­
nition system using raw speech as input. In Interspeech 2015, pages 11–15, 2015. doi:
10.21437/Interspeech.2015­3.

[95] R. Parhizkar, I. Dokmanić, and M. Vetterli. Single­channel indoor microphone
localization. In 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1434–1438. IEEE, 2014.

[96] Y. Park, K. Budhathoki, L. Chen, J. M. Kübler, J. Huang, M. Kleindessner, J. Huan,
V. Cevher, Y. Wang, and G. Karypis. Inference optimization of foundation models
on ai accelerators. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 6605–6615, 2024.

[97] M. P. Perrone and L. N. Cooper. When networks disagree: Ensemble methods for
hybrid neural networks. In How we learn; How we remember: Toward an understand­
ing of brain and neural systems: Selected papers of Leon N Cooper, pages 342–358.
World Scientific, 1995.

[98] D. Peter, W. Roth, and F. Pernkopf. End­to­end keyword spotting using neural
architecture search and quantization. In ICASSP 2022­2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3423–3427.
IEEE, 2022.

[99] C. J. Plack. The sense of hearing. Routledge, 2018.

[100] A. Politis, A. Mesaros, S. Adavanne, T. Heittola, and T. Virtanen. Overview and
evaluation of sound event localization and detection in dcase 2019. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 29:684–698, 2020.

[101] M. Popel, M. Tomkova, J. Tomek, Ł. Kaiser, J. Uszkoreit, O. Bojar, and Z. Žabokrt­
sk�. Transforming machine translation: a deep learning system reaches news transla­
tion quality comparable to human professionals. Nature communications, 11(1):1–15,
2020.

[102] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 652–660, 2017.

[103] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in Neural Information Processing
Systems, 30, 2017.

[104] M. Ravanelli and Y. Bengio. Speaker recognition from raw waveform with sincnet.
In 2018 IEEE Spoken Language Technology Workshop (SLT), pages 1021–1028. IEEE,
2018.

85

Background and Research Context

[105] A. Riviello and J.­P. David. Binary speech features for keyword spotting tasks. In
INTERSPEECH, pages 3460–3464, 2019.

[106] I. R. Roman, C. Ick, S. Ding, A. S. Roman, B. McFee, and J. P. Bello. Spatial
scaper: a library to simulate and augment soundscapes for sound event localization
and detection in realistic rooms. In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2024.

[107] F. Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

[108] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mech­
anisms. Spartan Books, 1962.

[109] F. Rumsey. Digital Audio Recording Formats and Editing Principles, pages 703–
729. Springer New York, New York, NY, 2008. ISBN 978­0­387­30441­
0. doi: 10.1007/978­0­387­30441­0_36. URL https://doi.org/10.1007/
978-0-387-30441-0_36.

[110] W. Sabine. Reverberation. The American Architect, 1900.

[111] T. N. Sainath, B. Kingsbury, A.­r. Mohamed, and B. Ramabhadran. Learning filter
banks within a deep neural network framework. In 2013 IEEE workshop on automatic
speech recognition and understanding, pages 297–302. IEEE, 2013.

[112] T. N. Sainath, R. J. Weiss, A. Senior, K. W. Wilson, and O. Vinyals. Learning the
speech front­end with raw waveform cldnns. In Interspeech 2015, pages 1–5, 2015.
doi: 10.21437/Interspeech.2015­1.

[113] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, and
T. Lillicrap. A simple neural network module for relational reasoning. Advances in
neural information processing systems, 30, 2017.

[114] A. Saxena and A. Y. Ng. Learning sound location from a single microphone. In
2009 IEEE International Conference on Robotics and Automation, pages 1737–1742.
IEEE, 2009.

[115] R. Scheibler, E. Bezzam, and I. Dokmanić. Pyroomacoustics: A Python Package for
Audio Room Simulation and Array Processing Algorithms. In 2018 IEEE interna­
tional conference on acoustics, speech and signal processing (ICASSP), pages 351–355.
IEEE, 2018.

[116] H. Seki, K. Yamamoto, and S. Nakagawa. A deep neural network integrated with
filterbank learning for speech recognition. In 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5480–5484. IEEE, 2017.

86

https://doi.org/10.1007/978-0-387-30441-0_36
https://doi.org/10.1007/978-0-387-30441-0_36

References

[117] C. Shannon. Communication in the presence of noise. Proceedings of the IRE, 37
(1):10–21, 1949. doi: 10.1109/JRPROC.1949.232969.

[118] K. Shimada, Y. Koyama, N. Takahashi, S. Takahashi, and Y. Mitsufuji. Accdoa:
Activity­coupled cartesian direction of arrival representation for sound event local­
ization and detection. In ICASSP 2021­2021 IEEE International Conference on Acous­
tics, Speech and Signal Processing (ICASSP), pages 915–919. IEEE, 2021.

[119] K. Shimada, Y. Koyama, S. Takahashi, N. Takahashi, E. Tsunoo, and Y. Mitsufuji.
Multi­ACCDOA: Localizing and detecting overlapping sounds from the same class
with auxiliary duplicating permutation invariant training. In ICASSP 2022­2022
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 316–320. IEEE, 2022.

[120] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal
of machine learning research, 15(1):1929–1958, 2014.

[121] S. S. Stevens, J. Volkmann, and E. B. Newman. A scale for the measurement of the
psychological magnitude pitch. The journal of the acoustical society of america, 8(3):
185–190, 1937.

[122] J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. Roformer: Enhanced transformer
with rotary position embedding. Neurocomputing, 568:127063, 2024.

[123] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the in­
ception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2818–2826, 2016.

[124] H. Tachibana. Towards listening to 10 people simultaneously: An efficient per­
mutation invariant training of audio source separation using sinkhorn’s algorithm.
In ICASSP 2021­2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 491–495. IEEE, 2021.

[125] N. Takahashi, S. Parthasaarathy, N. Goswami, and Y. Mitsufuji. Recursive speech
separation for unknown number of speakers. In Interspeech 2019, pages 1348–1352,
2019. doi: 10.21437/Interspeech.2019­1550.

[126] H. Theil. Linear algebra and matrix methods in econometrics. Handbook of econo­
metrics, 1983.

[127] L. Torgo and J. Gama. Regression using classification algorithms. Intelligent Data
Analysis, 1(4):275–292, 1997.

87

Background and Research Context

[128] W. Toussaint, A. Mathur, A. Y. Ding, and F. Kawsar. Characterising the role of pre­
processing parameters in audio­based embedded machine learning. In Proceedings
of the 19th ACM Conference on Embedded Networked Sensor Systems, pages 439–445,
2021.

[129] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou. Training
data­efficient image transformers & distillation through attention. In International
Conference on Machine Learning, pages 10347–10357. PMLR, 2021.

[130] M. van Baalen, A. Kuzmin, S. S. Nair, Y. Ren, E. Mahurin, C. Patel, S. Subrama­
nian, S. Lee, M. Nagel, J. Soriaga, et al. Fp8 versus int8 for efficient deep learning
inference. arXiv preprint arXiv:2303.17951, 2023.

[131] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is All You Need. Advances in neural information pro­
cessing systems, 30, 2017.

[132] J. M. Vera­Diaz, D. Pizarro, and J. Macias­Guarasa. Towards End­to­End Acoustic
Localization using Deep Learning: From Audio Signals to Source Position Coordi­
nates. Sensors, 18(10):3418, 2018.

[133] E. Wagstaff, F. Fuchs, M. Engelcke, I. Posner, and M. A. Osborne. On the limitations
of representing functions on sets. In International Conference on Machine Learning,
pages 6487–6494. PMLR, 2019.

[134] E. Wagstaff, F. B. Fuchs, M. Engelcke, M. A. Osborne, and I. Posner. Universal
approximation of functions on sets. Journal of Machine Learning Research, 23(151):
1–56, 2022.

[135] N. Wang, J. Choi, D. Brand, C.­Y. Chen, and K. Gopalakrishnan. Training deep
neural networks with 8­bit floating point numbers. Advances in neural information
processing systems, 31, 2018.

[136] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. Dy­
namic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog),
38(5):1–12, 2019.

[137] J. H. Winters, J. Salz, and R. D. Gitlin. The impact of antenna diversity on the
capacity of wireless communication systems. IEEE transactions on Communications,
42(234):1740–1751, 1994.

[138] H. Xi, C. Li, J. Chen, and J. Zhu. Training transformers with 4­bit integers. Advances
in Neural Information Processing Systems, 36:49146–49168, 2023.

88

References

[139] P. Xu, X. Zhu, and D. A. Clifton. Multimodal learning with transformers: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(10):12113–12132,
2023.

[140] Z. Yang, Y. Yu, C. You, J. Steinhardt, and Y. Ma. Rethinking bias­variance trade­
off for generalization of neural networks. In International Conference on Machine
Learning, pages 10767–10777. PMLR, 2020.

[141] D. Yu, X. Chang, and Y. Qian. Recognizing multi­talker speech with permutation
invariant training. In Interspeech 2017, pages 2456–2460, 2017. doi: 10.21437/
Interspeech.2017­305.

[142] D. Yu, M. Kolbæk, Z.­H. Tan, and J. Jensen. Permutation invariant training of
deep models for speaker­independent multi­talker speech separation. In 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
241–245. IEEE, 2017.

[143] M. Zaheer, S. Kottur, S. Ravanbhakhsh, B. Póczos, R. Salakhutdinov, and A. J.
Smola. Deep sets. In Proceedings of the 31st International Conference on Neural Infor­
mation Processing Systems, pages 3394–3404, 2017.

[144] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64
(3):107–115, 2021.

[145] Y. Zhang, N. Suda, L. Lai, and V. Chandra. Hello edge: Keyword spotting on
microcontrollers. arXiv preprint arXiv:1711.07128, 2017.

[146] Y. Zhu, M. Mattina, and P. Whatmough. Mobile machine learning hardware at arm:
A systems­on­chip (soc) perspective. SysML 2018.

89

Scientific Publications

Paper I

Reprinted from Proc. 25th International Conference on Pattern Recognition (ICPR), 2021, pp. 2740­2747,
© 2021, with permission from IEEE

Deep Ordinal Regression with Label Diversity

AxEL BERg¹,², MAgNuS OSkARSSON², MARk O’CONNOR¹

¹Arm Research, ²Centre for Mathematical Sciences, Lund University

Abstract: Regression via classification (RvC) is a common method used for regression
problems in deep learning, where the target variable belongs to a set of continuous
values. By discretizing the target into a set of non­overlapping classes, it has been
shown that training a classifier can improve neural network accuracy compared to
using a standard regression approach. However, it is not clear how the set of discrete
classes should be chosen and how it affects the overall solution. In this work, we
propose that using several discrete data representations simultaneously can improve
neural network learning compared to a single representation. Our approach is end­
to­end differentiable and can be added as a simple extension to conventional learning
methods, such as deep neural networks. We test our method on three challenging
tasks and show that our method reduces the prediction error compared to a baseline
RvC approach while maintaining a similar model complexity.

1 Introduction

Choosing the right objective function is a crucial part of successfully training an accurate
and generalized regression model, for example a deep neural network. Among the standard
objective functions are the mean squared error (MSE, or L2 loss), the mean absolute error
(MAE, orL1­loss) and hybrid variants such as the Huber loss. Much attention has also been
given to deriving problem­specific objective functions that incorporate certain aspects of the
target variable, such as modularity and norm constraints for geometric regression. It is also
possible to treat a continuous dependent variable as belonging to a finite number of discrete
classes, although this necessarily comes at the expense of introducing a discretization error.
Such approaches are known as regression via classification (RvC) and they are frequently
used in tasks where a regression loss would at first seem more natural [31, 30, 33, 29, 1, 27].

Ordinal regression techniques can be applied to classification problems where the depen­
dent variable exhibits a relative ordering. Techniques for ordinal regression can be applied
to RvC problems in order to preserve the ordinal structure of the labels, and recent work has
shown that this method can be used to improve the accuracy in several regression problems,
such as age estimation [24] [3], image ranking and depth estimation [9].

One problem with the RvC approach is the ambiguity in how the discrete classes should be
created from the distribution of the dependent variable. The standard approach is to create
bins of equal width covering the target output range. For skewed distributions one can

95

Paper I

Softmax

Softmax

Softmax

CNN Backbonexn

p(d1|xn)

p(d2|xn)

p(dM |xn)

Σ ȳn

Figure 1: An illustration of the neural network architecture with multiple output heads. At inference time the expected values
of the different distributions are combined using an ensemble average.

also apply the method of equal frequency, where the bins are created from the cumulative
distribution function of the target, such that each bin contains the same number of training
examples. Regardless of the method, the number of bins must be selected and optimized
for the given task, which raises the question of what the optimal number of bins is for a
given problem. If the bin­width is too small, this can result in few training examples in
each class, but if it is too large, the discretization error can become a limiting factor.

The ambiguity in how to bin a continuous variable leads to a diverse range of possibilities
in how to represent the target values — a fact that can be exploited. From previous research
it is well known that a diverse ensemble of individual predictors can be combined in order
to reduce the overall prediction error. Such approaches often involves training multiple
regressors where the diversity is ensured by either data augmentation or model selection.
This leads to increased overhead at both training and inference time [26]. However, with
the use of label diversity and deep neural networks, one can create a multi­output predictor
that enforces diversity without extra computational complexity.

Contribution: In this paper, we show that a collection of different binning variants of the
target values can be used to improve prediction accuracy without increasing the compu­
tational complexity compared to a standard classifier. We do so by training a deep multi­
output convolutional neural network (CNN) to classify training examples in multiple over­
lapping bins simultaneously. By doing so, we can effectively take into account the ordinal
structure of the regression problem, while also making use of the diversity of the different
possible representations of the target variable. We demonstrate our method on a number of
different tasks and show competitive results compared to current state­of­the­art methods.

96

2 Related Work

2.1 Methods

Ordinal Regression

Ordinal regression, or ranking learning, is used for problems where the target variable ex­
hibits a relative ordering on an arbitrary scale, e.g. categories such as ”bad”, ”good” and
”very good”. When performing vanilla RvC, the ordinal information contained in the
target values is lost, but this can be resolved by using ordinal regression techniques. A
common variant is to use extended binary classification, where a single multi­class classifi­
cation problem is reduced to a set of several binary classification problems [20]. With the
advance of deep learning in recent years, ordinal regression has been used successfully for
several tasks, including monocular depth estimation [12], age estimation [24], head pose
estimation [17], medical diagnosis [21] and historical image dating [22].

Ensemble Learning

The fact that a set of individual regressors or classifiers can be combined into an ensemble in
order to reduce the overall prediction accuracy of a model is frequently exploited in machine
learning research [26]. A key notion in ensemble learning is the bias­variance­covariance
decomposition, which says that in order for an ensemble to reduce the prediction error,
there has to be some variance in the predictions of the ensemble members. Therefore, the
aim should be to create ensembles that consist of accurate but diverse predictors.

Diversity can be created in several ways, most commonly through methods like bagging
[5] and boosting [11], which rely on different forms of data diversity. However, using such
method comes at the cost of extra model complexity and training time. Recently, Zhang
et al. [35] proposed a framework for training an ensemble of networks using negative
correlation learning, where the high level features are learned via parameter sharing. This
reduces the overhead, while keeping the benefits of a diverse ensemble. In general, a multi­
output neural network can be used to form an ensemble, which we exploit in our proposed
method.

97

Paper I

2.2 Relevant Applications

Age Estimation

Deep learning methods have been used successfully for age estimation, where the task con­
sists of predicting the age of a person given a single RGB image of the person’s face. De­
pending on the implementation, a person’s age can be considered either as a continuous
variable on the positive real numbers, or as a class belonging to a set of discrete positive
integers. Rothe et al. [27] first highlighted the use of end­to­end training of CNNs for
age estimation from a single image. The authors noted that classification yielded better
results than direct regression and since then, several new methods using ordinal regression
techniques have been published.

Agustsson et al. [2] performed end­to­end piecewise linear regression by assigning each
regressor to an anchor point. Others have observed that it is easier for a human to distin­
guish differences in age between two persons, rather than their absolute age and used this
as a design principle for ordinal regression [36, 24]. Alternative methods have focused on
various soft encodings of the age over classes, where the elements of the probability vector
are proportional to the distance from the true class [13, 34, 9]. In this way both the ordinal
and metric information can be effectively encoded in the labels. Furthermore, it has also
been shown that forcing the output of the classifier to be rank consistent over ages can
improve the overall accuracy [3, 7].

Head Pose Estimation

Head pose estimation is the task of predicting the pose of a human head with three degrees
of freedom, given an image and possibly depth information [23]. There are several ways
to represent the pose, including three rotation angles (pitch, yaw and roll) with respect to
a set of principal axes, a 3 × 3 rotation matrix or a single quaternion. During the past
years, several CNN­based head pose estimators trained on specific loss functions have been
proposed. Chang et al. [8] combined direct head pose regression with facial landmark de­
tection and used it for facial alignment. Ruiz et al. [28] used a multi­loss CNN and showed
that using a balanced hybrid variant of regression and classification yielded improvements
over previous methods. Ordinal methods have also been used, such as in [17], where a
combined ranking and MSE regression loss is used in conjunction with a quaternion rep­
resentation of the head pose. The results indicated that training the CNN to regress the
three angles while simultaneously solving several binary ranking problems improved the
prediction accuracy compared to a standard regression or classification baseline.

98

ck

D1

D2

D3

︷ ︸︸ ︷

D1

D2

D3

C

d
1

l
︷ ︸︸ ︷

a) Standard RvC

b) Equal width

c) Random bins

d
1

l
︷ ︸︸ ︷

...

...

Figure 2: Examples of how the sets of class intervals Dm can be constructed using the different methods.

Historical Image Dating

Palermo et al. [25] first introduced the task of automatically estimating the historical time
in which a color photograph was taken using machine learning techniques. The authors
noted that there are several features of the color imaging process that are typical to the era
in which the images were taken, such as hue, saturation and color histogram. They then
used a support vector machine to classify the images into different decades and showed
that this method vastly outperformed untrained humans in terms of classification accuracy.
Ginosar et al. [14] used American high school yearbooks to train a deep neural network
for the same task, but in this case the extracted features were also dependent on the image
content, e.g. facial attributes and hairstyle. Recently, ordinal regression techniques have
also been applied successfully to the task of image dating [22, 4].

99

Paper I

3 Proposed Method

3.1 Label Diversity by Overlapping Bins

Let xn ∈ Rp denote the nth input (independent variable) and let tn ∈ R be the corre­
sponding target value (dependent value) for n = 1, ..., N . Now let C = {ck}Kk=1 be a set
of of non­overlapping intervals on the real line R, as shown in Figure 2a, such that ∪Kk=1ck
covers the samples tn for all n. The standard RvC approach would now be to map each
target value tn to a unique class ck and train a classifier to predict the posterior probability
over classes p(ck|xn).

In order to create label diversity, we instead introduceM new sets of class intervals Dm =
{dml }

Lm
l=1 for m = 1, ...,M , such that ∪Lm

l=1d
m
l = ∪Kk=1ck, ∀m. By doing so, we have

created several new discretizations that all cover the support of the target value, but in
different ways. Here we do not provide an answer to exactly how these discretizations ought
to be chosen, since this in itself is an optimization problem where the solution most likely
depends on the problem domain, but instead we focus on the two following possibilities,
where we assume that Lm = L, ∀m, such that each discretization contains equally many
classes:

1. Assuming that we do not want to increase the complexity of the training algorithm
compared to the standard RvC approach, we fix the total number of classes such that
ML = K. Then we create M discretizations, each containing L equally wide bins,
such that the overlap between dml and dm+1

l is fixed. An illustration of this approach
is shown in Figure 2b. We refer to this method as ”equal width”.

2. In order to maximize diversity between different discretizations, for eachm = 1, ...,M ,
we randomly sample L < K classes (with replacement) from C and let these classes
be the centers of the new bins in Dm, such that target values that do not belong
to any of the chosen classes are assigned to the nearest neighbor in the sample. An
illustration of this approach is shown in Figure 2c We refer to this method as ”ran­
domized bins”.

If the target is multi­dimensional, the same methods can be applied by creating classes for
each dimension individually.

3.2 Backpropagation

The proposed methods can be used together with a neural network by replacing the last
fully connected layer and activation with M fully connected layers of size L in parallel,

100

Softmax

Softmax

Softmax

CNN Backbone
∂E
∂p

Figure 3: During training, the loss is backpropagated through the different softmax heads to the previous layers.

where each layer has its own softmax activation. The network is trained by minimizing the
sum of the negative cross­entropies between the individual classifier and the targets over
each mini­batch of size Nb. The loss function then becomes

E = −
Nb∑
n=1

M∑
m=1

Lm∑
l=1

qn(d
m
l) log p(dml |xn), (1)

where qn(dml) is a one­hot encoding of the binned target value, such that the only non­zero
element is the one where the bin overlaps the true target:

qn(d
m
l) =

{
1, tn ∈ dml
0, otherwise

(2)

The predictions p(dml |xn) are computed using the M individual softmax heads of size L,
and the loss is then back­propagated through the network by differentiating with respect
to the predictions as shown in Figure 3.

In order to see how the loss function incorporates the ordinal relationship between the
targets, we can again consider Figure 2. In order to make a correct prediction, each softmax
head must output a high probability for the correct class in each discretization. If the output
probabilities are correct for only a subset of the M different discretizations (which implies
that the prediction is slightly off) then this will be penalized by an increased loss.

3.3 Inference

At inference time, the output posterior should be evaluated and converted to a point es­
timate of the target value by a hard decision. For standard RvC methods, this is typically
done by either taking the expected value of the output distribution over classes or using the
maximum­a­posteriori estimator. Therefore, we propose two similar methods to perform
inference.

101

Paper I

For problems where the target value tn belongs to the real line, we do this by computing
the expected value over each estimated posterior distribution as

ŷm,n =

Lm∑
l=1

wm
l p(d

m
l |xn), (3)

wherewm
l denotes the mean value of the bin dml . This gives usM different estimates of the

target, which are then combined using a weighted average. Here we only consider uniform
weighting of the individual estimates, i.e.

ȳn =
1

M

M∑
m=1

ŷm,n. (4)

This is a form of ensemble average, and we note that we can decompose an individual error
made by the ensemble using the ambiguity decomposition [6] as

(ȳn − tn)2 =
1

M

M∑
m=1

(ŷn,m − tn)2 −
1

M

M∑
m=1

(ŷn,m − ȳn)2, (5)

which shows that the ensemble error is less than the average error of the individual estimates
if there is enough variance within the ensemble. In this case, the non­zero variance is
guaranteed by the different weights associated with each expected value in equation (3).

On the other hand, if the target belongs to a set of ordinal classes where we cannot de­
fine a useful distance metric, it is more suitable to use the MAP estimate. We do this by
marginalizing over dml in order to estimate the average posterior over the original classes ck
as

p(ck|xn) =
1

M

M∑
m=1

Lm∑
l=1

p(ck|dml , xn)p(dml |xn), (6)

where we assume that the conditional probability p(ck|dml , xn) is independent of the input
xn, i.e.

p(ck|dml , xn) =
||dml ∩ ck||
||dml ||

. (7)

Then we compute the MAP estimate as

k∗ = argmax
k

p(ck|xn). (8)

This shows that our method can be used both for true regression problems where we can
measure distances between target values and for classification problems where an ordering
of targets exists, but without a well­defined distance. In section V we show experiments for
tasks of both the first and second kind.

102

2 4 8 16 32 64

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Figure 4: The MAE on the rotated MNIST datasets using the randomized bins method for different combinations of L andM

4 An Illustrative Example

In order to demonstrate the ensemble­like effect of our method, we train a shallow CNN on
the task of predicting the rotation angle of digits from the MNIST dataset of handwritten
digits [19]. The dataset consists of 5,000 training images and 5,000 test images, where
a digit is rotated by an integer drawn uniformly in the interval tn ∈ [−45◦, 45◦]. We
implemented label diversity using the randomized bins method for all combinations of
M ∈ [2, 4, 16, 8, 32, 64] and L ∈ [8, 16, 32, 64]. We then trained a five­layer CNN, with
M softmax heads, each containing L output units, to predict the one­hot encoded labels
of the rotation angles. At inference time, we used equation (4) for prediction and evaluated
the MAE on the test set. For comparison, we also trained a regression baseline by using the
same shallow CNN with the MSE loss, but where the softmax heads were replaced by a
single output unit with a linear activation. The training process was repeated for 10 random
initializations of the network and the MAE was averaged over the 10 different trials.

The results of the experiment is presented in Figure 4. Here we clearly see the ensemble­
like effect of our method, where the error decreases as the number of softmax heads M is
increased. This is expected from the error decomposition in equation (5). Additionally, we
note that increasing the number of output unitsL, which leads to a decreased discretization
error caused by the binning of the target, does not necessarily imply a decrease in prediction
error. In this experiment, L = 16 yielded the smallest MAE for all values ofM . This agrees

103

Paper I

with previous findings, namely that too few bins leads to a large discretization error, but
too many can lead to poor convergence [9, 12]. In general, the optimal number of bins
depends on the specific task and finding it therefore requires an extensive parameter search.

5 Experiments

Figure 5: A subset of the images in UTKFace dataset [37] with ground truth (GT) labels and predictions using the equal width
method.

We compare our method with direct regression and classification baselines, as well as current
state of the art methods on three challenging datasets. In order to make fair comparisons of
the methods, we use the same baseline architecture for all experiments. More specifically,
we use a pre­trained ResNet50 [16] and replace the final fully connected layer with one fully
connected layer of size 2048, a ReLU activation, and then a method­specific layer. For the
direct regression approach (referred to as ”Direct”), we use a fully connected layer of size 1
with a linear activation and train it by minimizing the MSE. For the RvC approach, we use
one fully connected layer of size K with a single softmax activation and train it using the
cross­entropy loss function. For our own method we use M fully connected layers of size
L, with an individual softmax activation function on each layer, and train it by minimizing
the sum of the individual cross­entropies for each discretization as in equation (1).

For all datasets, we train the network for 30 epochs using the ADAM optimizer [18] with a
mini­batch size of 32, a learning rate of 0.0005 that is decreased by a factor of 0.1 every 10th
epoch, and an L2­regularization factor of 0.001 on the weights. For data augmentation, we
use random horizontal flipping of the images and apply a uniformly distributed random

104

translation and scaling between [­20, 20] pixels and [0.7, 1.4] respectively. All results are
averaged over 10 trials with different random initializations of the last fully connected layers.
The experiments were implemented in Matlab and the network training was done using
an NVIDIA Titan V graphics card. The source code for our experiments is available at
https://github.com/axeber01/dold.

5.1 Age Estimation

Table 1: Mean average error in years for the different methods on the UTKFace [37] test set.

Method CORAL [7] DCTD [15] Direct (Ours) RvC (Ours) Equal Width (Ours) Randomized Bins (Ours)
MAE 5.47± 0.01 4.65± 0.02 4.60± 0.02 4.71± 0.03 4.58± 0.03 4.55 ± 0.04

For age estimation, we test our method on the UTKFace dataset [37], which provides a large
collection of images with human subjects labeled with ground truth ages. More specifically,
we use the same train­test split of the data as in [7] and [15], where the ages are in the set of
integers tn ∈ [21, 60]. The subset contains 13,144 training images and 3,287 test images.
Furthermore, the images have been cropped such that only the faces of the subjects are
visible, as is shown in the examples in Figure 5.

For the RvC baseline, we simply use one class per age group in years, such that C =
{21, 22, ..., 60}. We compare the baseline with two implementations of the proposed
method: equal­width overlapping bins and randomized bins. For the equal width approach
we let L = 8 andM = 5, such that LM = 40, which means that the network complexity
similar to the complexity of the RvC baseline. In practice this means that the first output
head will classify images into age categories of D1 ={21—25, 26—30, ..., 56—60}, while
the second output head will have D2 ={21, 22—26, 27—31, ..., 57—60} and so on.

For the randomized bins approach, we let L = 10 andM = 30 and draw a new sample of
randomized bins for each run. This approach leads to a increased number of output heads
compared to the RvC baseline, but the increase in model complexity is still small in relation
to the size of the CNN backbone.

The results are shown and compared to current state­of­the art methods in Table 1, where
we have evaluated the mean average error (MAE) of the different methods on the test set.
The results are averaged over the trials with different random seeds and presented with
the corresponding standard deviation. Of the two baselines, the direct method performs
best. Since this is perhaps the most natural design choice, it should not come as a surprise,
although other papers have reported contrary results on age estimation tasks [27]. Both the
equal width and randomized bins approach improve over the RvC baseline significantly,
and they yield a small improvement over the direct method, which show that for this task,
our proposed methods are more effective than the baseline methods. Furthermore, we

105

https://github.com/axeber01/dold

Paper I

reduce the average error compared to current state of the art by 2%. We hypothesize that
this error reduction is due to the diverse representation of the target values, which also
incorporates the ordinal relationship between the age categories.

5.2 Head Pose Estimation

Figure 6: A subset of the images in BIWI dataset [10] with ground truth (GT) labels and predictions using the equal width
method.

The BIWI dataset [10] consists of 24 video sequences of 20 subjects recorded in a controlled
environment and each frame is labeled with the corresponding head pose of the subject. We
use the train­test split defined as protocol 2 in [32], where 16 videos are used for training
and 8 for testing. In total, the training set consists of 10,063 images and the test set of 5,065
images. The pose is represented using the yaw, pitch and roll angles of the head, where each
angle is approximately distributed in the range tn ∈ [−75◦, 75◦].

Following [15], we use the same approach as for head pose estimation, but with small
modifications needed to get a three dimensional output from the network. For the direct
regression approach, we simply replace the last fully connected layer of size 1 by three fully
connected layers of the same size. For the RvC, we use three chains of fully connected
layers at the end, one for each angle, with a corresponding softmax head. We discretize
each angle using 1 degree per bin, such that C = {−75,−74, ..., 75}.

For the equal width approach, we let M = 3 and L = 50, such that LM = 150. Again,
this gives a similar network complexity as the RvC baseline. Hence each softmax head has
3 degrees per bin, i.e. D1 ={(­75) — (­73), ..., 72 — 75}, D2 ={­75, (­74) — (­71), ...,
73 — 75 } and similarly for D3. For the randomized bins approach, we let L = 20 and
M = 30 and make a new sample of randomized bins for each run.

106

The results for the BIWI dataset are shown in Table 2, where we have evaluated the MAE
for the three different angles for each method. On average, direct regression performs best,
while the randomized bins method is best at predicting the yaw angle. However, both
equal width and randomized bins outperform the standard RvC approach. Additionally,
our direct method reduces the current state of the art average error by 16 %, which shows
that a carefully tuned regression baseline can outperform more sophisticated methods on
this problem.

Table 2: Mean average error in degrees for the different methods on the Biwi [10] test set.

Method Yang et al. [32] DCTD [15] Direct (Ours) RvC (Ours) Equal Width (Ours) Randomized Bins (Ours)
Yaw 2.89 2.67± 0.08 2.64 ± 0.16 2.85 ± 0.12 2.62 ± 0.11 2.52 ± 0.06
Pitch 4.29 3.61± 0.12 2.75 ± 0.05 3.22 ± 0.09 3.12 ± 0.08 3.01 ± 0.10
Roll 3.60 2.75± 0.10 2.24 ± 0.07 2.48 ± 0.08 2.33 ± 0.09 2.34 ± 0.10

Average 3.60 3.01± 0.07 2.54 ± 0.05 2.85 ± 0.08 2.69 ± 0.04 2.63 ± 0.04

5.3 Historical Image Dating

c1
︷ ︸︸ ︷

c2
︷ ︸︸ ︷

c3
︷ ︸︸ ︷

c4
︷ ︸︸ ︷

c5
︷ ︸︸ ︷

︸ ︷︷ ︸

d1

1

︸ ︷︷ ︸

d1

2

︸ ︷︷ ︸

d2

1

︸ ︷︷ ︸

d2

2

︸ ︷︷ ︸

d2

3

︸ ︷︷ ︸

d3

1

︸ ︷︷ ︸

d3

2

︸ ︷︷ ︸

d3

3

︸ ︷︷ ︸

d4

1

︸ ︷︷ ︸

d4

2

︸ ︷︷ ︸

d4

3

︸ ︷︷ ︸

d5

1

︸ ︷︷ ︸

d5

2

Figure 7: The sets of overlapping classes used for label diversity on the historical image dating task.

In order to test our method on a small dataset with a small number of ordinal classes, we
ran experiments on the Historical Color Images (HCI) dataset [25]. The dataset consists of
1,375 color images from five decades, spanning from the 1930s to the 1970s. For evaluation,
we use Monte Carlo random sampling with an 80/20 train­test split for each decade, drawn
randomly at each iteration.

For this dataset, the target value can then be considered as belonging to one of five ordinal
classes C = {c1, c2, c3, c4, c5}, where each class corresponds to one of the five decades.
Likewise, the number of possibilities for creating our new sets of bins is limited, so the

107

Paper I

methods of overlapping and randomized bins are not suitable. We instead create 5 new
sets {Dm}5m=1 as shown in Figure 7 and refer to this method simply as ”Label Diversity”.
Although it is possible to define a distance metric between classes as the distance in decades,
this is unsuitable, since the year 1939 is closer to 1940 than it is to 1949, but the distances
in decades are the same. We therefore treat this as an ordinal classification problem and use
the MAP estimate in equation (8) for inference.

We evaluate the methods in terms of classification accuracy and MAE. A sample of correct
and incorrect predictions are shown in Figure 8. The results are shown in Table 3 and we
conclude that using label diversity improves both accuracy and MAE over the regression
baseline. Label diversity also decreases MAE compared to the RvC baseline, which we
claim is due to the exploitation of the ranking between classes. Furthermore, our method
improves the accuracy by one percentage point compared to the current state of the art
method [4].

Table 3: Accuracy and mean average error in decades for the different methods on the HCI dataset [25].

Method CNNOr [22] PN [4] ELB [4] Direct (Ours) RvC (Ours) Label Diversity (Ours)
Acc (%) 41.56 56.67 ± 2.30 54.90± 2.40 46.9± 1.7 57.1 ± 1.9 57.7 ± 2.0
MAE 1.04 0.67± 0.05 0.63 ± 0.04 0.76± 0.01 0.72± 0.04 0.67± 0.03

Figure 8: A subset of the images in HCI dataset [25] with ground truth (GT) labels and predictions using the label diversity
method.

6 Conclusion

In this work, we have shown that employing a series of different discrete representations of
the target values, it is possible to improve the predictive performance of a deep neural net­
work, compared to when using a single such representation. For some problems, it can also
outperform direct regression. We note that our methods yield the strongest improvement
compared to the regression baseline on historical image dating, where the target belongs
to a small set of ordinal classes. For head pose estimation, where the target is continuous,
the improvement was either small or negligible, but there is a significant improvement over

108

the RvC baseline. For age estimation, where the target belongs to a large set of ordered
classes, there is an improvement over both the regression and RvC method. Nevertheless,
our method consistently improves over the RvC baseline for all methods. Hence our con­
clusion is that, if it is suitable to approach a regression problem via classification, then using
several diverse representations can improve performance.

This opens up a wide range of options when it comes to selecting the representations, since
there are many ways to create different discrete binnings of a continuous target value. As we
have also shown, the number of discretizations and the number of bins for each discretiza­
tion will have an impact on the prediction performance, but since these choices also affect
the training convergence, it is difficult to select them for a given problem without extensive
parameter search. In future research we will continue to investigate these questions and
how diversity in label representations can be exploited in other ways.

References

[1] A. Abbas and A. Zisserman. A geometric approach to obtain a bird’s eye view from
an image. arXiv preprint arXiv:1905.02231, 2019.

[2] E. Agustsson, R. Timofte, and L. Van Gool. Anchored regression networks applied
to age estimation and super resolution. In Proceedings of the IEEE International Con­
ference on Computer Vision, pages 1643–1652, 2017.

[3] C. Beckham and C. Pal. Unimodal probability distributions for deep ordinal classi­
fication. arXiv preprint arXiv:1705.05278, 2017.

[4] S. Belharbi, I. B. Ayed, L. McCaffrey, and E. Granger. Deep ordinal classification
with inequality constraints. arXiv preprint arXiv:1911.10720, 2019.

[5] L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[6] G. Brown and J. L. Wyatt. The use of the ambiguity decomposition in neural network
ensemble learning methods. In Proceedings of the 20th International Conference on
Machine Learning (ICML­03), pages 67–74, 2003.

[7] W. Cao, V. Mirjalili, and S. Raschka. Rank­consistent ordinal regression for neural
networks. arXiv preprint arXiv:1901.07884, 2019.

[8] F.­J. Chang, A. Tuan Tran, T. Hassner, I. Masi, R. Nevatia, and G. Medioni. Face­
posenet: Making a case for landmark­free face alignment. In Proceedings of the IEEE
International Conference on Computer Vision Workshops, pages 1599–1608, 2017.

[9] R. Diaz and A. Marathe. Soft labels for ordinal regression. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4738–4747, 2019.

109

Paper I

[10] G. Fanelli, T. Weise, J. Gall, and L. V. Gool. Real time head pose estimation from
consumer depth cameras. In 33rd Annual Symposium of the German Association for
Pattern Recognition (DAGM’11), September 2011.

[11] Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. Citeseer,
1996.

[12] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao. Deep ordinal regression
network for monocular depth estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2002–2011, 2018.

[13] B.­B. Gao, C. Xing, C.­W. Xie, J. Wu, and X. Geng. Deep label distribution learning
with label ambiguity. IEEE Transactions on Image Processing, 26(6):2825–2838, 2017.

[14] S. Ginosar, K. Rakelly, S. Sachs, B. Yin, and A. A. Efros. A century of portraits: A
visual historical record of american high school yearbooks. In Proceedings of the IEEE
International Conference on Computer Vision Workshops, pages 1–7, 2015.

[15] F. K. Gustafsson, M. Danelljan, G. Bhat, and T. B. Schön. Dctd: Deep conditional
target densities for accurate regression. arXiv preprint arXiv:1909.12297, 2019.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[17] H.­W. Hsu, T.­Y. Wu, S. Wan, W. H. Wong, and C.­Y. Lee. Quatnet: Quaternion­
based head pose estimation with multiregression loss. IEEE Transactions on Multime­
dia, 21(4):1035–1046, 2018.

[18] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio
and Y. LeCun, editors, 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7­9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

[19] Y. LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/.

[20] L. Li and H.­T. Lin. Ordinal regression by extended binary classification. In Advances
in neural information processing systems, pages 865–872, 2007.

[21] X. Liu, Y. Zou, Y. Song, C. Yang, J. You, and B. K Vijaya Kumar. Ordinal regres­
sion with neuron stick­breaking for medical diagnosis. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 0–0, 2018.

[22] Y. Liu, A. W.­K. Kong, and C. K. Goh. Deep ordinal regression based on data rela­
tionship for small datasets.

110

http://arxiv.org/abs/1412.6980

[23] E. Murphy­Chutorian and M. M. Trivedi. Head pose estimation in computer vision:
A survey. IEEE transactions on pattern analysis and machine intelligence, 31(4):607–
626, 2008.

[24] Z. Niu, M. Zhou, L. Wang, X. Gao, and G. Hua. Ordinal regression with multiple
output cnn for age estimation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4920–4928, 2016.

[25] F. Palermo, J. Hays, and A. A. Efros. Dating historical color images. In ECCV (6),
pages 499–512, 2012.

[26] Y. Ren, L. Zhang, and P. N. Suganthan. Ensemble classification and regression­recent
developments, applications and future directions. IEEE Computational intelligence
magazine, 11(1):41–53, 2016.

[27] R. Rothe, R. Timofte, and L. Van Gool. Dex: Deep expectation of apparent age from
a single image. In Proceedings of the IEEE international conference on computer vision
workshops, pages 10–15, 2015.

[28] N. Ruiz, E. Chong, and J. M. Rehg. Fine­grained head pose estimation without key­
points. In Proceedings of the IEEE conference on computer vision and pattern recognition
workshops, pages 2074–2083, 2018.

[29] S. Tulsiani and J. Malik. Viewpoints and keypoints. In Proceedings of the IEEE Con­
ference on Computer Vision and Pattern Recognition, pages 1510–1519, 2015.

[30] X. Wang, D. Fouhey, and A. Gupta. Designing deep networks for surface normal
estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 539–547, 2015.

[31] S. Workman, M. Zhai, and N. Jacobs. Horizon lines in the wild. In British Machine
Vision Conference (BMVC), 2016.

[32] T.­Y. Yang, Y.­T. Chen, Y.­Y. Lin, and Y.­Y. Chuang. Fsa­net: Learning fine­grained
structure aggregation for head pose estimation from a single image. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 1087–1096,
2019.

[33] B. Zeisl and M. Pollefeys. Discriminatively trained dense surface normal estimation.
In European conference on computer vision, pages 468–484. Springer, 2014.

[34] X. Zeng, C. Ding, Y. Wen, and D. Tao. Soft­ranking label encoding for robust facial
age estimation. arXiv preprint arXiv:1906.03625, 2019.

111

Paper I

[35] L. Zhang, Z. Shi, M.­M. Cheng, Y. Liu, J.­W. Bian, J. T. Zhou, G. Zheng, and
Z. Zeng. Robust regression via deep negative correlation learning. arXiv preprint
arXiv:1908.09066, 2019.

[36] Y. Zhang, L. Liu, C. Li, and C. C. Loy. Quantifying facial age by posterior of age
comparisons. arXiv preprint arXiv:1708.09687, 2017.

[37] Z. Zhang, Y. Song, and H. Qi. Age progression/regression by conditional adversarial
autoencoder. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2017.

112

Paper II

Reprinted from Proc. 26th International Conference on Pattern Recognition (ICPR), 2022, pp. 528­534,
© 2022, with permission from IEEE

Points to Patches: Enabling the Use of Self­Attention for 3D
Shape Recognition

AxEL BERg¹,², MAgNuS OSkARSSON², MARk O’CONNOR¹

¹Arm Research, ²Centre for Mathematical Sciences, Lund University

Abstract: While the Transformer architecture has become ubiquitous in the ma­
chine learning field, its adaptation to 3D shape recognition is non­trivial. Due to
its quadratic computational complexity, the self­attention operator quickly becomes
inefficient as the set of input points grows larger. Furthermore, we find that the at­
tention mechanism struggles to find useful connections between individual points
on a global scale. In order to alleviate these problems, we propose a two­stage Point
Transformer­in­Transformer (Point­TnT) approach which combines local and global
attention mechanisms, enabling both individual points and patches of points to at­
tend to each other effectively. Experiments on shape classification show that such
an approach provides more useful features for downstream tasks than the baseline
Transformer, while also being more computationally efficient. In addition, we also
extend our method to feature matching for scene reconstruction, showing that it can
be used in conjunction with existing scene reconstruction pipelines.

1 Introduction

Due to the unordered nature of 3D point clouds, applying neural networks for shape recog­
nition requires the use of permutation­equivariant architectures. The Transformer, first in­
troduced by Vaswani et al. [33] for the task of natural language processing, is an example of
such an architecture and given its recent success in the fields of image classification [17, 31],
object detection [3], video analysis [25], speech recognition [10, 5, 21, 2], and more, its
application to 3D point clouds is a natural step of exploration. While some attempts to
adopt the Transformer architecture for this task have been made [19, 40, 11], they all suf­
fer from different weaknesses, such as a reduced receptive field and high computational
cost. Inspired by the Transformer­in­Transformer architecture for image processing [13],
we propose a method that addresses both of these problems by using a two­stage attention
mechanism which is able to learn more descriptive features while also lowering the number
of required computations.

In summary, our main contributions are

1. We propose a two­stage Transformer architecture that combines attention mecha­
nisms on a local and global scale. By sampling a sparse set of anchor points we create

115

Paper II

0 2 4 6 8 10 12 14

GFLOPs

65

70

75

80

85

A
cc

u
ra

cy
 [

%
]

PointNet

PointNet++

DGCNN

Cloud Transformer

Transformer Baseline

SimpleView

MVTN

GBNet

Point-TnT-1,2,3

Figure 1: Classification accuracy and GFLOPs on the ScanObjectNN dataset [32]. Our proposed Point-TnT networks provides the
best trade-off between accuracy and fast inference when compared to previous methods, and significantly improves
performance compared to a Transformer baseline.

patches of local features. Self­attention can then be applied both on points within
the patches and on the patches themselves.

2. Our experiments show that this approach gives significant uplifts compared to apply­
ing self­attention on the entire set of points, while also reducing the computational
complexity.

3. We show that our proposed architecture achieves competitive results on 3D shape
classification benchmarks, while requiring less floating point operations (FLOPs)
compared to other methods, and that it can be used for improving 3D feature match­
ing.

2 Related Work

Shape Recognition Extracting useful features from 3D point cloud shapes requires spe­
cial considerations. In contrast to images, where the pixels are naturally ordered on a grid
structure, a point cloud is typically represented as an unordered set of data points, each con­
taining three­dimensional coordinates and possibly other feature channels, such as normal
vectors and color information. This prevents the direct use of classical deep learning tech­
niques like multi­layer perceptrons (MLPs) and convolutional neural networks (CNNs)

116

L×

Figure 2: Overview of our proposed Point Transformer-in-Transformer method. Given an input point cloud, we sample a sparse
set of anchor points and then create local patches around each anchor using the k-nearest neighbour graph. The
anchors and patches are then fed into a sequential network of local and global Transformers, each with its own self-
attention mechanism. At the final layer, global and local features can be extracted and used for downstream tasks,
such as 3D shape classification.

when combining features from different points, since their predictions depend on the or­
dering of the input features. In recent years, several paradigms have been developed to
work around this problem and they can roughly be divided into three categories: volumet­
ric, multi­view and set based approaches.

The volumetric approach, as proposed in [36, 23], aims to map the points onto a three­
dimensional occupancy grid of voxels, which allows for the use of CNNs for feature extrac­
tion. However, this approach suffers from poor scaling behaviour with the grid­resolution,
making it intractable for processing of large point cloud scenes. This problem can be alle­
viated to some extent by using sparse convolutions [6], but will inevitably suffer from loss
of geometric detail when points are mapped to an occupancy grid. In contrast, the multi­
view approach instead maps the point clouds onto multiple two­dimensional grids, each
capturing a different view of the scene. This method, first proposed in [30], has later been
refined to use adaptive views that are learned at training time [12]. Others have proposed
combining the multi­view approach with graph convolutional networks (GCN) in order
to aggregate views over nearby view positions [35].

A family of neural networks termed Deep Sets, which allows for feature extraction on un­
ordered sets without mapping them to any grid­like structure, was introduced by Zaheer
et al. [38]. Such networks can be realized by weight sharing across all input points and the
use of a symmetric aggregation function, e.g. the max or mean values of the sets, which
enables extraction of permutation­equivariant point features. Concurrent work by Qi et
al. [27] introduced PointNet, where this architecture was combined with a Spatial Trans­
former network [16] (not to be confused with the attention­based Transformer), that can
learn to align point clouds in a common frame of reference [27]. This approach has later
been enhanced by exploiting geometric properties of the point cloud, such as the nearest
neighbour graph [28, 34], which enables aggregation not only over the entire point cloud,

117

Paper II

but also over local neighbourhoods of points.

Self­Attention and the Transformer The Transformer architecture [33] belongs to the fam­
ily of permutation­equivariant neural networks and is therefore a natural extension of the
Deep Sets architecture. By allowing all elements of the input set to attend to each other,
the Transformer is able to learn interactions between elements, which greatly enhances the
network ability to learn complex interactions. It was first applied to point clouds by Lee
et al. [19], who noted that this quickly becomes infeasible as the computational require­
ment grows quadratically with number of input points. They addressed this problem by
introducing the concept of induced set attention by allowing the points to attend to a set
of learnable parameters instead of themselves.

Zhao et al. [40] proposed a modified Transformer architecture, which only computes local
attention between a point and its nearest neighbours. However, this approach removes the
main benefit of self­attention, namely that it enables a global receptive field in early layers
of the network. In contrast, Guo et al. [11] introduced offset attention with a neighbour
embedding module in order to perform attention between groups of points, where each
group is represented by a local feature. This method omits local attention entirely and for
segmentation tasks it also suffers from quadratic complexity in the number of input points.
Finally, a third approach has been explored in [4], where self­attention is computed both
between points and channels within points, but only at a late stage in the network and only
for the particular task of areal LiDAR image segmentation.

Recently, Transformers have also shown great success in the domain of computer vision in
the form of the Vision Transformer [17, 31], where an image is regarded as a set of local
patches, which can then be processed using a Transformer with minimal modifications.
Han et al. [13] proposed the Transformer­in­Transformer architecture, which extends the
baseline vision Transformer with pixel­wise attention within patches. Our approach is
inspired by this work, in the sense that we use two branches of Transformers, one for local
and one for global attention. This enables a global receptive field early in the network,
while reducing the computational requirement of the self­attention operation compared to
a baseline Transformer implementation.

3 Method

Preliminaries Let X ∈ RN×d be a matrix representation of a set, containing N features
in d­dimensional space. Furthermore, following the definitions introduced in [33], let
Q = XlWQ, K = XlWK and V = XlWV denote the queries, keys and values respec­
tively, where WQ,WK ,WV ∈ Rd×dh are learnable parameters and dh is the attention­

118

head dimension. We then define the self­attention (SA) operator as

SA(X) = Softmax
(QKT

√
dh

)
V, (1)

where the softmax function is applied on each row individually. We note that the SA
operation is permutation­equivariant, since for any permutation π over the rows of X ,
we have that SA(πX) = πSA(X). This property is especially useful if X represents a
collection of unordered points, which is common in many 3D learning scenarios.

By performing multiple SA operations, where each operator has its own learnable set of
weights, in parallel and concatenating the results column­wise, we can define the multi­
headed SA operator (MSA) as

MSA(X) = [SA1(X); SA2(X); ...; SAh(X)]WP , (2)

where ; denotes column­wise concatenation,WP ∈ Rhdh×d is another learnable parameter
and h is the number of attention heads. Using the above notation, we can define the
Transformer layer Tθ as

X̃ = MSA(LN(X)) +X, (3)

Tθ(X) = MLP(LN(X̃)) + X̃, (4)

where MLP denotes a multi­layer perceptron with a single hidden layer and GELU activa­
tion [15], LN is the LayerNorm [1] operation and θ is the collection of parameters for the
particular layer. Here we use the pre­norm [14] variant of the Transformer, where Layer­
Norm is applied before the MSA and MLP operations.

In order to aggregate features in a permutation­invariant fashion, we follow [34] and com­
pute the maximum and average over all features and concatenate the results column­wise.
This can be compactly expressed as

α(X) = [max
i
Xi;

1

N

∑
i

Xi], i = 1, ..., N, (5)

where Xi are the rows of X .

Point Transformer­in­Transformer Now we are ready to define our main architecture. Let
X = {xi}Ni=1 be a set of N points in three­dimensional space. A naive application of
the Transformer architecture would be to apply self­attention between all points, such that

119

Paper II

xm
emj

xj

Figure 3: An example of the sparse subgraphH, usingM = 5 anchor points (shown in orange) and k = 2 nearest neighbours.

each point in the set can attend to every other point. Here we instead investigate how the
attention mechanism can be applied within and between local patches of points, effectively
splitting the self­attention operator into two different branches. An overview of our method
can be seen in Figure 2.

First, we compute the k­nearest neighbour (k­NN) graph G = (V, E), with vertices V =
{i}Ni=1 and directed edges E ⊂ V × V from vertex i to j if xj is one of xi’s k­nearest
neighbours. In order to create patches, we then sample a sparse set of M anchor points
and aggregate features from their neighbours. We do this by considering the subgraph
H = (V, E ′) of G, which has edges from i to j if i ∈ V ′ ∧ (i, j) ∈ E , where V ′ ⊂ V
and |V ′| = M < N . In practice, we create H by sampling a subset of points using
farthest point sampling [8], as shown in Figure 3, which guarantees that the vertices in V ′
are evenly distributed across the whole point cloud. From now on, we will refer to the set
Y = {xm}m∈V ′ as the anchor points.

Since local geometry is best represented in a local frame of reference [34], we then extract
edge features for each anchor point as Em = [em1, ..., emk]

T , where

emj = xj − xm, (m, j) ∈ E ′. (6)

Without loss of generality, we can stack the anchor points into a matrixY = [x1, ..., xM]T ∈
RM×3, where the order of the anchor points is not important. These are then, together
with their corresponding edge features, projected to higher dimensions as Y0 = YWY and
Em

0 = EmWE , where WY ∈ R3×dY and WE ∈ R3×dE respectively.

The anchor and edge features are then processed using two branches of L sequential Trans­
former blocks. The local branch computes self­attention between edge features, which
enables interaction between edges within the neighbourhoods of the anchor points:

Em
l = T local

θl
(Em

l−1), l = 1, .., L. (7)

120

After each local Transformer layer, the neighbourhood features are aggregated and concate­
nated into a new matrix as El = [α(E1

l), ..., α(E
M
l)] ∈ RM×2dE , which is then added

to each anchor point using another linear projection:

Ỹl−1 = Yl−1 + ElWl, l = 1, ..., L, (8)

where Wl ∈ R2dE×dY . Now, Yl contains feature descriptors for the local patches around
each anchor point. The global branch then computes attention between the patches, which
enables interaction on a global scale:

Yl = T
global
θl

(Ỹl−1), l = 1, ..., L. (9)

In order to exploit intermediate feature representations, the anchor point features from
each layer are concatenated, combined using a single­layer MLP and aggregated in order
to form a single global feature for the entire point cloud:

Z = α(MLP([Y1; ...;YL])), (10)

such thatZ ∈ R2df , where df is the embedding dimension of the global feature. The global
feature is then used for downstream tasks, using e.g. another MLP for classification. Allud­
ing to the Transformer­in­Transformer for images [13], we refer to our proposed method
as Point Transformer­in­Transformer (Point­TnT).

Computational Analysis Whereas a naive transformer implementation requires O(N2)
computations for the SA operator, the complexity is reduced significantly by splitting the
attention into local and global branches. For our method, the complexity of the local and
global transformers are O(Mk2) and O(M2) respectively, resulting in a reduced number
of self­attention operations compared to a naive Transformer implementation as long as
Mk2 +M2 < N2, a condition which can easily be satisfied by limiting the number of
neighbours and anchor points.

4 Experiments

4.1 Shape Classification

We train and evaluate our model on the ScanObjectNN dataset [32], which contains 14,510
real­world 3D objects in 15 categories, obtained from scans of indoor environments. This
dataset is particularly challenging, since the point clouds contain cluttered backgrounds

121

Paper II

and partial occlusions. We use the hardest version of the dataset (PB_T50_RS), which
has been altered using random perturbations, and the official 80/20 train/test split. This
dataset also comes with per­point labels that can be used to segment the point cloud into
the object and background categories. While some methods use the segmentation masks
during training in order to learn to discard points belonging to the background, we do not
exploit this information, since it requires additional computational overhead.

In the default setting, we use M = 192 anchor points and k = 20 neighbours. The
embedding dimensions are chosen as dY = 192 and dE = 32 for the anchor points
and edges respectively, and we use a global feature embedding dimension of df = 1024
and a total of L = 4 sequential Transformer blocks. Following [31], we let dY /h =
64 and consequently use h = 3 attention heads for both Transformer branches. As in
[34], the final MLP used for classification contains two hidden layers of size 512 and 256
respectively, with batch normalization and dropout applied in each layer. We train our
network using the standard cross­entropy loss function for 500 epochs, with a batch size
of 32 using the AdamW optimizer [22] with a weight decay of 0.1 and a cosine learning
rate schedule starting at 0.001. For data augmentation, we use RSMix [18] in addition to
random anisotropic scaling and shifting. For each experiment, we train our model three
times and report a 95 % confidence interval for the mean accuracy¹.

We compare our method to a naive approach that applies self­attention directly on all
points, which corresponds to using all points as anchors and no neighbours, thereby dis­
carding the local branch of the network, and refer to this method simply as Baseline. When
comparing to previously published methods, we use two different evaluation protocols.
Protocol 1 uses the model at the last training epoch for evaluation on the test set, whereas
Protocol 2 evaluates the model on the test set each training epoch and reports the best ob­
tained test accuracy. Although Protocol 2 clearly exploits information from the test set, we
present results using both protocols for better side­by­side comparisons with other meth­
ods. For further discussion of different evaluation protocols, we refer to [9].

We compare the overall accuracy and average per­class accuracy to previously published
methods in Table 1. Our method achieves an accuracy on par with state­of­the­art results,
and the best result among the methods that do not exploit the background segmentation
masks during training, outperforming all multi­view methods. Furthermore, it can be
observed that using a sparse set of anchor points in conjunction with aggregation over
neighbouring points performs significantly better than the baseline approach, which is not
competitive on this task. This shows that global point­wise attention is not enough to
capture semantic properties of objects, and that it is necessary to consider local geometric
properties in order to efficiently utilize the attention mechanism.

For completeness, we also evaluate our method on the ModelNet40 dataset [36], which

¹Code is available at https://github.com/axeber01/point-tnt

122

https://github.com/axeber01/point-tnt

Table 1: Classification results on ScanObjectNN [32]. Results obtained using Protocol 2 are marked by ∗.

Method input overall acc. mean acc.

PointNet [27] 1024p 68.2 63.4
SpiderCNN [37] 1024p 73.7 69.8
PointNet++ [27] 1024p 77.9 75.4
DGCNN [34] 1024p 78.1 73.6
PointCNN [20] 1024p 78.5 75.1
BGA­PointNet++ [32] mask, 1024p 80.2 77.5
BGA­DGCNN [32] mask, 1024p, 79.7 75.7
Cloud Transformer [24] mask, 2048p 85.5∗ 83.1∗

SimpleView [9] 6 views 79.5 ­
GBNet [29] 1024p 80.5∗ 77.8∗

MVTN [12] 12 views 82.8∗ ­

Baseline (ours) 1024p 74.4± 1.3
75.4± 0.4∗

69.6± 1.5
71.3± 1.1∗

Point­TnT (ours) 1024p 83.5± 0.1
84.6± 0.5∗

81.0± 1.3
82.6± 1.2∗

Point­TnT (ours) 2048p 84.2± 0.9
85.0± 0.9∗

81.8± 0.9
83.0± 0.8∗

contains 9,843 synthetic shapes for training and 2,468 for testing, in 40 different categories.
We obtain 92.6 ± 0.2 % and 93.2 ± 0.2 % accuracy using Protocol 1 and 2 respectively,
which is competitive with other methods.

We visualize the learned attention patterns from the different attention heads, as shown
in Figure 4, using our proposed method and the naive baseline. It can be seen that when
using a sparse set of anchor points, using their neighbours to form patches, the attention
mechanism effectively learns to segment the point cloud into semantically meaningful parts.
This allows the network to connect different parts of the point cloud when computing
the global feature. However, when using the baseline approach, the attention map is not
semantically meaningful. This illustrates the importance of neighbourhood context when
computing self­attention, which is not used in the naive baseline approach.

4.2 Ablation Study

Model scaling In order to highlight the trade­off between model size, computational com­
plexity and classification accuracy, we ablate the number of attention heads (and scale the
embedding dimension dY accordingly) for our method. In Table 2 it can be seen that ac­
curacy increases with the model size and that the number of FLOPs is low compared to the

123

Paper II

Figure 4: Visualization of the learned attention patterns in the final Transformer layer. The blue cross indicates the point for
which the attention map is computed and the red, green and yellow dots highlight the attention for the three different
heads, where the size of the points are scaled proportionally to the magnitude of the attention weights. Top: our
proposed method using a sparse set of anchor points. Bottom: baseline method, using all points as anchors.

baseline, even for similar model sizes. As shown in Section 3, splitting the self­attention
operator into two branches reduces the number of computations significantly, which in
practice leads to a reduced number of FLOPs per forward­pass through the network.

In Figure 1, we illustrate the trade­off between FLOPs and classification accuracy for dif­
ferent methods, highlighting the competitive trade­off our proposed method. This result is
in agreement with recent trends in computer vision, where Transformers are shown to be
more computationally efficient compared to other architectures [13].

Attention mechanisms In order to demonstrate the effectiveness of the self­attention mech­
anisms, we ablate both the global and local attention modules in the Transformer blocks
of the network by disabling the corresponding MSA operations. For the baseline method,
there is only a single (global) attention mechanism which can be ablated. The results, shown
in Table 3, verify that for our proposed method, both modules are indeed useful and in­
crease the overall accuracy. Furthermore, they are additive in the sense that they can be
used interchangeably or in combination, in order to trade­off accuracy for computation
and model size. The tighter bound on the accuracy when using global attention also sug­
gests that it helps stabilize training. The baseline method also benefits from attention to
some extent, but adding it to the network does not yield the same improvement as simply
splitting the network into two branches.

Number of anchors and neighbours Finally, we investigate the effect of varying the num­
ber of anchor points and neighbours, as shown in Table 4. As expected, a relatively large
number of anchors is required in order to accurately represent the global shape of the point
cloud. However, concerning the number of nearest neighbours, it seems that 10 is suffi­
cient for good accuracy, but increasing it further reduces variance between different training

124

runs.
Table 2: Model size, computational complexity and accuracy on ScanObjectNN for the baseline and our proposed method with

different number of attention heads.

Method #params GFLOPs acc.

Baseline 3.8M 4.33 74.4± 1.3
Point­TnT­1 1.7M 0.80 82.6± 0.4
Point­TnT­2 2.6M 0.97 83.3± 0.1
Point­TnT­3 3.9M 1.19 83.5± 0.1

Table 3: Accuracy on ScanObjectNN with and without different attention mechanisms for the baseline and our proposed
method.

Method local att. global att. acc.

Baseline 7 67.1± 0.7
3 74.4± 1.3

Point­TnT

7 7 79.8± 0.8
3 7 80.4± 1.8
7 3 82.9± 0.1
3 3 83.5± 0.1

Table 4: Accuracy on ScanObjectNN for different number of anchor pointsM and nearest neighbours k.

anchors neighbours

M/k 12 48 192 5 10 20
acc. 74.2± 0.7 82.5± 0.8 83.5± 0.1 79.7± 1.6 83.5± 1.5 83.5± 0.1

4.3 Feature Matching on 3DMatch

In order to demonstrate how Point­TnT can be applied to a real­world scene resonstruction
scenario, we consider the problem of feature matching on the 3DMatch dataset [39], which
consists of 62 indoor scenes collected from RGB­D measurements. The goal of the feature
matching task is to generate descriptors of local patches of the scenes which can be used for
matching scans that have significant overlap. More specifically, given a pair of point cloud
scenes (X ,X ′) with at least 30 % overlap, we find the corresponding points by extracting
local features and matching them using nearest neighbour search. It then becomes possible
to register the two scenes by estimating a rigid transformation using e.g. RANSAC.

We use the official split, with 54 scenes for training and 8 for testing, and the same pre­
processing setup as in DIP [26], with the exception of the feature extraction network.
Whereas the original implementation uses a Spatial Transformer for initial alignment of
the point clouds and then a simple PointNet for feature extraction, we remove the Spa­
tial Transformer entirely and replace the PointNet with our Point­TnT model. During

125

Paper II

training, we sample local patches consisting of N = 256 points from the overlapping re­
gions, and train by minimizing the hardest contrastive loss [7]. We train our network for 10
epochs using the AdamW optimizer [22] with a weight decay of 0.1 and a cosine learning
rate schedule starting at 0.0001, without any data augmentation. Since each local patch
processed by the network consists of only 256 points, we modify the parameters of our
method to use M = 48 and k = 10 anchor points and neighbours respectively. For fair
comparison to DIP, we use the same feature dimension (32) at the final layer as the original
implementation.

During evaluation, we randomly sample 5000 points from each fragment and report the
feature matching recall (FMR), i.e. the fraction of successful alignments with an inlier ratio
of at least 5 %, where an inlier pair is defined by being less than 10 cm apart. In order to
match corresponding patches, we use the global feature pairs (Z,Z ′), where Z and Z ′ are
calculated using (10) for the two patches, and perform mutual nearest neighbour search in
feature space. We refer to the original DIP authors’ publication for a complete description
of the experimental settings and evaluation protocol [26].

The results shown in Table 5 suggest that Point­TnT finds more descriptive features than
the original DIP implementation and reduces the number of unsuccessful matches by 38
%, without requiring any initial alignment, which shows that our method can be used for
improving real­world scene reconstruction pipelines.

Table 5: Feature matching recall and standard deviation on 3DMatch.

Method FMR std

DIP [26] 0.948 0.046
DIP + Point­TnT 0.968 0.031

5 Conclusions

In this work, we have explored the limitations and advantages of the Transformer architec­
ture for 3D shape recognition. We have shown that naively applying self­attention to all
points in a point cloud is both computationally inefficient and not very useful for learn­
ing descriptive feature representations. However, when applied within and between local
patches of points, representation ability is drastically improved. This result is in agreement
with recent works in image classification [17, 13], where the Transformer architecture has
shown to work better on local image patches rather than individual pixels. It also makes
feature extraction more computationally tractable, which creates new opportunities for ap­
plying attention mechanisms to edge use cases that rely on unstructured 3D data, such as
simultaneous localization and mapping (SLAM), where computational resources are lim­

126

ited. In future work, we will consider integrating and extending our method for mobile
SLAM pipelines.

References

[1] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization. arXiv preprint
arXiv:1607.06450, 2016.

[2] A. Berg, M. O’Connor, and M. T. Cruz. Keyword Transformer: A Self­Attention
Model for Keyword Spotting. In Proc. Interspeech 2021, pages 4249–4253, 2021. doi:
10.21437/Interspeech.2021­1286.

[3] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End­to­
end object detection with transformers. In European Conference on Computer Vision,
pages 213–229. Springer, 2020.

[4] L. Chen, Z. Xu, Y. Fu, H. Huang, S. Wang, and H. Li. Dapnet: A double self­
attention convolutional network for segmentation of point clouds. arXiv preprint
arXiv:2004.08596, 2020.

[5] X. Chen, Y. Wu, Z. Wang, S. Liu, and J. Li. Developing real­time streaming trans­
former transducer for speech recognition on large­scale dataset. In ICASSP 2021­2021
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5904–5908. IEEE, 2021.

[6] C. Choy, J. Gwak, and S. Savarese. 4d spatio­temporal convnets: Minkowski con­
volutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3075–3084, 2019.

[7] C. Choy, J. Park, and V. Koltun. Fully convolutional geometric features. In Proceed­
ings of the IEEE/CVF International Conference on Computer Vision, pages 8958–8966,
2019.

[8] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi. The farthest point strategy for
progressive image sampling. IEEE Transactions on Image Processing, 6(9):1305–1315,
1997.

[9] A. Goyal, H. Law, B. Liu, A. Newell, and J. Deng. Revisiting point cloud shape
classification with a simple and effective baseline. International Conference onMachine
Learning, 2021.

[10] A. Gulati, J. Qin, C.­C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang,
Z. Zhang, Y. Wu, et al. Conformer: Convolution­augmented Transformer for Speech
Recognition. Proc. Interspeech 2020, pages 5036–5040, 2020.

127

Paper II

[11] M.­H. Guo, J.­X. Cai, Z.­N. Liu, T.­J. Mu, R. R. Martin, and S.­M. Hu. Pct: Point
cloud transformer. Computational Visual Media, 7(2):187–199, 2021.

[12] A. Hamdi, S. Giancola, and B. Ghanem. Mvtn: Multi­view transformation network
for 3d shape recognition. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1–11, 2021.

[13] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang. Transformer in transformer.
arXiv preprint arXiv:2103.00112, 2021.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[15] D. Hendrycks and K. Gimpel. Gaussian Error Linear Units (GELUs). arXiv preprint
arXiv:1606.08415, 2016.

[16] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial transformer networks. Ad­
vances in neural information processing systems, 28:2017–2025, 2015.

[17] A. Kolesnikov, A. Dosovitskiy, D. Weissenborn, G. Heigold, J. Uszkoreit, L. Beyer,
M. Minderer, M. Dehghani, N. Houlsby, S. Gelly, T. Unterthiner, and X. Zhai. An
image is worth 16x16 words: Transformers for image recognition at scale. 2021.

[18] D. Lee, J. Lee, J. Lee, H. Lee, M. Lee, S. Woo, and S. Lee. Regularization strategy
for point cloud via rigidly mixed sample. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 15900–15909, 2021.

[19] J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi, and Y. W. Teh. Set transformer: A
framework for attention­based permutation­invariant neural networks. In Interna­
tional Conference on Machine Learning, pages 3744–3753. PMLR, 2019.

[20] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen. Pointcnn: Convolution on x­
transformed points. Advances in neural information processing systems, 31:820–830,
2018.

[21] A. T. Liu, S.­W. Li, and H.­y. Lee. Tera: Self­supervised learning of transformer
encoder representation for speech. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 29:2351–2366, 2021.

[22] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2018.

[23] D. Maturana and S. Scherer. Voxnet: A 3d convolutional neural network for real­
time object recognition. In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 922–928. IEEE, 2015.

128

[24] K. Mazur and V. Lempitsky. Cloud transformers: A universal approach to point
cloud processing tasks. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10715–10724, 2021.

[25] D. Neimark, O. Bar, M. Zohar, and D. Asselmann. Video Transformer Network.
arXiv preprint arXiv:2102.00719, 2021.

[26] F. Poiesi and D. Boscaini. Distinctive 3d local deep descriptors. In 2020 25th Inter­
national Conference on Pattern Recognition (ICPR), pages 5720–5727. IEEE, 2021.

[27] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 652–660, 2017.

[28] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in Neural Information Processing
Systems, 30, 2017.

[29] S. Qiu, S. Anwar, and N. Barnes. Geometric back­projection network for point cloud
classification. IEEE Transactions on Multimedia, 2021.

[30] H. Su, S. Maji, E. Kalogerakis, and E. Learned­Miller. Multi­view convolutional
neural networks for 3d shape recognition. In Proceedings of the IEEE international
conference on computer vision, pages 945–953, 2015.

[31] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou. Training
data­efficient image transformers & distillation through attention. In International
Conference on Machine Learning, pages 10347–10357. PMLR, 2021.

[32] M. A. Uy, Q.­H. Pham, B.­S. Hua, T. Nguyen, and S.­K. Yeung. Revisiting point
cloud classification: A new benchmark dataset and classification model on real­world
data. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 1588–1597, 2019.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is All You Need. Advances in neural information processing
systems, 30, 2017.

[34] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):
1–12, 2019.

[35] X. Wei, R. Yu, and J. Sun. View­gcn: View­based graph convolutional network for
3d shape analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1850–1859, 2020.

129

Paper II

[36] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d shapenets: A
deep representation for volumetric shapes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1912–1920, 2015.

[37] Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao. Spidercnn: Deep learning on point sets
with parameterized convolutional filters. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 87–102, 2018.

[38] M. Zaheer, S. Kottur, S. Ravanbhakhsh, B. Póczos, R. Salakhutdinov, and A. J. Smola.
Deep sets. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, pages 3394–3404, 2017.

[39] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T. Funkhouser. 3dmatch:
Learning local geometric descriptors from rgb­d reconstructions. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1802–1811, 2017.

[40] H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun. Point transformer. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 16259–16268,
2021.

130

Paper III

Reprinted from Proc. InterSpeech, 2021, pp. 4249­4253, © 2021, with permission from ISCA.

Keyword Transformer: A Self­Attention Model for Keyword
Spotting

AxEL BERg1,2,∗, MARk O’CONNOR1,∗ , MIguEL TAIRuM CRuZ1

1Arm Research, 2Centre for Mathematical Sciences, Lund University

Abstract: The Transformer architecture has been successful across many domains,
including natural language processing, computer vision and speech recognition. In
keyword spotting, self­attention has primarily been used on top of convolutional or
recurrent encoders. We investigate a range of ways to adapt the Transformer archi­
tecture to keyword spotting and introduce the Keyword Transformer (KWT), a fully
self­attentional architecture that exceeds state­of­the­art performance across multi­
ple tasks without any pre­training or additional data. Surprisingly, this simple ar­
chitecture outperforms more complex models that mix convolutional, recurrent and
attentive layers. KWT can be used as a drop­in replacement for these models, setting
two new benchmark records on the Google Speech Commands dataset with 98.6%
and 97.7% accuracy on the 12 and 35­command tasks respectively.

1 Introduction

Recent works in machine learning show that the Transformer architecture, first introduced
by Vaswani et al. [28], is competitive not only in language processing, but also in e.g.
image classification, [12, 27, 34], image colorization [18], object detection [7], automatic
speech recognition [14, 8, 20], video classification [22] and multi­agent spatiotemporal
modeling [5]. This can be seen in the light of a broader trend, where a single neural network
architecture generalizes across many domains of data and tasks.

Attention mechanisms have also been explored for keyword spotting [11, 25], but only as
an extension to other architectures, such as convolutional or recurrent neural networks.

Inspired by the strength of the simple Vision Transformer (ViT) model [12] in computer vi­
sion and by the techniques that improves its data­efficiency [27], we propose an adaptation
of this architecture for keyword spotting and find that it matches or outperforms existing
models on the much smaller Google Speech Commands dataset [32] without additional
data.

We summarize our main contributions as follows:

1. An investigation into the application of the Transformer architecture to keyword

*Equal contribution.

133

Paper III

Waveform

Time-domain
patches

Mel-scale
spectrogram

…

Linear projection of flattened patches

Transformer encoder layers

Linear head

1 2 3 4 n0*
Class token
embedding

Patch + position
embeddings

Output class “yes”, “go”, …

Details in
figure 2

Figure 1: The Keyword Transformer architecture. Audio is preprocessed into a mel-scale spectrogram, which is partitioned into
non-overlapping patches in the time domain. Together with a learned class token, these form the input tokens for a
multi-layer Transformer encoder. As with ViT [12], a learned position embedding is added to each token. The output
of the class token is passed through a linear head and used to make the final class prediction.

spotting, finding that applying self­attention is more effective in the time domain
than in the frequency domain.

2. We introduce the Keyword Transformer, as illustrated in Figure 1, a fully self­attentional
architecture inspired by ViT [12] that can be used as a drop­in replacement for exist­
ing keyword spotting models and visualize the effect of the learned attention masks
and positional embeddings.

3. An evaluation of this model across several tasks using the Google Speech Commands
dataset with comparisons to state­of­the­art convolutional, recurrent and attention­
based models.

4. An analysis of model latency on a mobile phone, showing that the Keyword Trans­
former is competitive in edge use cases.

134

Multi-head attention

Embedded patches

Norm

Norm

MLP

L ×

Multi-head attention

Embedded patches

Norm

Norm

MLP

L ×

Figure 2: The PostNorm (left) and PreNorm (right) Transformer encoder architectures. KWT uses a PostNorm encoder.

2 Related Work

2.1 Keyword Spotting

Keyword spotting is used to detect specific words from a stream of audio, typically in a
low­power always­on setting such as smart speakers and mobile phones. To achieve this,
audio is processed locally on the device. In addition to detecting target words, classifiers
may also distinguish between “silence” and “unknown” for words or sounds that are not in
the target list.

In recent years, machine learning techniques, such as deep (DNN), convolutional (CNN),
recurrent (RNN) and Hybrid­Tree [13] neural networks, have proven to be useful for key­
word spotting. These networks are typically used with a pre­processing pipeline that ex­
tracts the mel­frequency cepstrum coefficients (MFCC) [10]. Zhang et al. [35] investi­
gated several small­scale network architectures and identified depthwise­separable CNN
(DS­CNN) as providing the best classification/accuracy tradeoff for memory footprint and
computational resources. Other works have improved upon this result using synthesized
data [19], temporal convolutions [9, 21], and self­attention [11]. Recently Rybakov et al.
[25] achieved a new state of the art result on Google Speech Commands using MHAtt­
RNN, a non­streaming CNN, RNN and multi­headed (MH) self­attention model.

2.2 Self­Attention and the Vision Transformer

Dosovitskiy et al. introduced the Vision Transformer (ViT) [12] and showed that Trans­
formers can learn high­level image features by computing self­attention between different
image patches. This simple approach outperformed CNNs but required pre­training on

135

Paper III

large datasets. Touvroun et al. [27] improved data efficiency using strong augmentation,
careful hyperparameter tuning and token­based distillation.

While Transformers have been explored for wake word detection [31] and voice triggering
[4], to the best of our knowledge fully­attentional models based on the Transformer archi­
tecture have not been investigated for keyword spotting. Our approach is inspired by ViT,
in the sense that we use patches of the audio spectrogram as input and closely follows [27]
to understand how generally this technique applies to new domains. We restrict ourselves
to a non­streaming setting in this work, noting that others have previously investigated
extensions of Transformers to a streaming setting [31, 8].

3 The Keyword Transformer

3.1 Model Architecture

Let X ∈ RT×F denote the output of the MFCC spectrogram, with time windows t =
1, ..., T and frequencies f = 1, ..., F . The spectrogram is first mapped to a higher dimen­
sion d, using a linear projection matrixW0 ∈ RF×d in the frequency domain. In order to
learn a global feature that represents the whole spectrogram, a learnable class embedding
Xclass ∈ R1×d is concatenated with the input in the time­domain. Then a learnable po­
sitional embedding matrix Xpos ∈ R(T+1)×d is added, such that the input representation
fed into the Transformer encoder is given by

X0 = [Xclass;XW0] +Xpos (1)

The projected frequency­domain features are then fed into a sequential Transformer en­
coder consisting ofLmulti­head attention (MSA) and multi­layer perceptron (MLP) blocks.
In the l:th Transformer block, queries, keys and values are calculated as Q = XlWQ,
K = XlWK and V = XlWV respectively, where WQ,WK ,WV ∈ Rd×dh and dh is the
dimensionality of each attention­head. The self attention (SA) is calculated as

SA(Xl) = Softmax
(QKT

√
dh

)
V (2)

The MSA operation is obtained by linearly projecting the concatenated output, using an­
other matrix WP ∈ Rkdh×d, from the k attention heads.

MSA(Xl) = [SA1(Xl); SA2(Xl); ...; SAk(Xl)]WP (3)

In our default setting, we use the PostNorm [28] Transformer architecture as shown in
Figure 2, where the Layernorm (LN) [6] is applied after the MSA and MLP blocks, in

136

contrast to the PreNorm [15] variant, where LN is applied first. This decision is discussed
further in the ablation section. As is typical for Transformers, we use GELU [16] activations
in all MLP blocks.

In summary, the output of the l:th Transformer block is given by

X̃l = LN(MSA(Xl−1) +Xl−1), l = 1, ..., L (4)

Xl = LN(MLP(X̃l) + X̃l), l = 1, ..., L (5)

At the output layer, the class embedding is fed into a linear classifier. Our approach treats
time windows in a manner analogous to the handling of image patches in ViT. Whereas
in ViT, the self­attention is computed over image patches, the attention mechanism here
takes place in the time­domain, such that different time windows will attend to each other
in order to form a global representation in the class embedding.

The model size can be adjusted by tuning the parameters of the Transformer. Following
[27], we fix the number of sequential Transformer encoder blocks to 12, and let d/k = 64,
where d is the embedding dimension and k is the number of attention heads. By varying
the number of heads as k = 1, 2, 3, we end up with three different models as shown in
Table 1.

Table 1: Model parameters for the KWT architecture.

Model dim mlp­dim heads layers # parameters

KWT­1 64 256 1 12 607K
KWT­2 128 512 2 12 2,394K
KWT­3 192 768 3 12 5,361K

3.2 Knowledge Distillation

As introduced by Hinton et al. [17], knowledge distillation uses a pre­trained teacher’s
predictions to provide an auxiliary loss to the student model being trained. Touvron et al.
[27], introduced a distillation token, finding this benefits Transformers in the small data
regime. This method adds a learned distillation token to the input. At the output layer
this distillation token is fed into a linear classifier and trained using hard (one­hot) labels
predicted by the teacher.

Let Zsc be the logits of the student class token, Zsd be the logits of the student distillation
token and Zt be the logits of the teacher model. The overall loss becomes

L =
1

2
LCE(ψ(Zsc), y) +

1

2
LCE(ψ(Zsd), yt), (6)

137

Paper III

where yt = argmax(Zt) are the hard decision of the teacher, y are the ground­truth labels,
ψ is the softmax function andLCE is the cross­entropy loss. At inference time the class and
distillation token predictions are averaged to produce a single prediction. Note that unlike
Noisy Student [33], the teacher receives the same augmentation of the input as the student,
effectively correcting labels made invalid by very strong augmentation. In all experiments,
we use MHAtt­RNN as a teacher and denote distillation models with KWT .

4 Experiments

4.1 Keyword Spotting on Google Speech Commands

We provide experimental results on the Google Speech Commands dataset V1 and V2
[32]. Both datasets consist of 1 second long audio snippets, sampled at 16 kHz, containing
utterances of short keywords recorded in natural environments. V1 of the dataset contains
65,000 snippets of 30 different words, whereas V2 contains 105,000 snippets of 35 different
words. The 12­label classification task uses 10 words: ”up”, ”down”, ”left”, ”right”, ”yes”,
”no”, ”on”, ”off”, ”go”, and ”stop”, in addition to ”silence” and ”unknown”, where instances
of the latter is taken from the remaining words in the dataset, whereas the 35­label task
uses all available words. We use the same 80:10:10 train/validation/test split as [32, 35, 25]
for side­by­side comparisons. We adhere as closely as possible to the evaluation criteria
of [25], and for each experiment, we train the model three times with different random
initializations.

As our intention is to explore the extent to which results using Transformers from other
domains transfer to keyword spotting, we follow the choices and hyperparameters from
[27] as closely as possible, with the notable exception that we found increasing weight
decay from 0.05 to 0.1 to be important. Furthermore, we use the same data pre­processing
and augmentation policy as in [25], which consists of random time shifts, resampling,
background noise, as well as augmenting the MFCC features using SpecAugment [24]. We
train our models over the same number of total input examples as MHAtt­RNN (12M)
to allow a fair comparison. For clarity, the hyperparameters used in all experiments are
reported in Table 2.

The results are shown in Table 3, where for our own results, we report a 95% confidence
interval for the mean accuracy over all three model evaluations. Our best models match or
surpass the previous state­of­the­art accuracies, with significant improvements on both the
12­label and 35­label V2­datasets. In general, Transformers tend to benefit more from large
amounts of data, which could explain why KWT does not outperform MHAtt­RNN on
the smaller V1­dataset. Nevertheless, we also note that knowledge distillation is effective in
improving the accuracy of KWT in most scenarios.

138

Table 2: Hyperparameters used in all experiments.

Training

Training steps 23,000
Batch size 512
Optimizer AdamW
Learning rate 0.001
Schedule Cosine
Warmup epochs 10

Regularization

Weight decay 0.1
Label smoothing 0.1
Dropout 0

Pre­processing

Time window length 30 ms
Time window stride 10 ms
#DCT Features 40

Data augmentation

Time shift [ms] [­100, 100]
Resampling [0.85, 1.15]
Background vol. 0.1
#Time masks 2
Time mask size [0,25]
#Frequency masks 2
Frequency mask size [0,7]

Table 3: Accuracy on Speech Commands V1 [2] and V2 [3].

Model V1­12 V2­12 V2­35

DS­CNN [35] 95.4
TC­ResNet [9] 96.6
Att­RNN [11] 95.6 96.9 93.9
MatchBoxNet [21] 97.48 ±0.11 97.6
Embed + Head [19] 97.7
MHAtt­RNN [25] 97.2 98.0
Res15 [29] 98.0 96.4

MHAtt­RNN (Ours) 97.50 ±0.29 98.36 ±0.13 97.27 ±0.02
KWT­3 (Ours) 97.24±0.24 98.54 ±0.17 97.51 ±0.14
KWT­2 (Ours) 97.36 ±0.20 98.21 ±0.06 97.53 ±0.07
KWT­1 (Ours) 97.05 ±0.23 97.72 ±0.01 96.85 ±0.07

KWT­3 (Ours) 97.49 ±0.15 98.56 ±0.07 97.69 ±0.09

KWT­2 (Ours) 97.27 ±0.08 98.43 ±0.08 97.74 ±0.03

KWT­1 (Ours) 97.26 ±0.18 98.08 ±0.10 96.95 ±0.14

4.2 Ablation Studies

We investigate different approaches to self­attention by varying the shapes of the MFCC
spectrogram patches that are fed into the Transformer. Using our default hyperparameters,
the spectrogram consists of 98 time windows, containing 40 mel­scale frequencies. Our
baseline uses time­domain attention, but we also investigate frequency­domain attention
and intermediate steps where rectangular patches are used. We find time­domain attention
to perform best, as shown in Figure 3. This is in agreement with previous findings that
temporal convolutions work well for keyword spotting [9], since the first projection layer
of our model can be interpreted as a temporal convolution with kernel size (40, 1) and
stride 1 in the time­domain.

139

Paper III

(1, 98) (2,20) (5,8) (8,5) (20, 2) (40, 1) (40, 1)
 Pre-norm

Patch size (Frequency, Time)

94

95

96

97

98

99

100

Ac
cu

ra
cy

 [%
]

Figure 3: Accuracy on Speech Commands V2-12 using KWT-3 with different patch sizes.

We also investigate the use of PreNorm and PostNorm and found that the latter improves
performance for keyword spotting in our experiments. This is contrary to previous findings
on other tasks [23], where PreNorm has been shown to yield better results and we encourage
further work to explore the role of normalization in Transformers across different domains.

4.3 Attention Visualization

In order to examine which parts of the audio signal the model attends to, we propagate the
attention weights of each Transformer layer from the input to the class token by averaging
the attention weights over all heads. This produces a set of attention weights for each time
window of the input signal. Figure 4 shows the attention mask overlayed on the waveform
of four different utterances. It can be seen that the model is able to pay attention to the
important parts of the input while effectively suppressing background noise.

We also study the position embeddings of the final model by analyzing their cosine similar­
ity, as shown in Figure 5. Nearby position embeddings exhibit a high degree of similarity
and distant embeddings are almost orthogonal. This pattern is less emphasized for time
windows near the start and the beginning of the audio snippets. We hypothesize that this
is either because words are typically in the middle of each snippet and therefore relative
position is more important there, or because the audio content at the start and end is less
distinguishable.

140

Stop No Right Yes

Input audio
Attention mask

Figure 4: The learned attention mask, propagated from the input to the class token, overlaid on four different audio snippets,
without (top) and with (bottom) background noise.

4.4 Latency Measurements

We converted our KWT models, DS­CNN (with stride) [35], TC­ResNet [9] and MHAtt­
RNN [25] to Tensorflow (TF) Lite format to measure inference latency on a OnePlus 6
mobile device based on the Snapdragon 845 (4x Arm Cortex­A75, 4x Arm Cortex­A55)
and report accuracy figures for the Google Speech Commands V2 with 12 labels and 35
labels [3, 25]. The TFLite Benchmark tool [1] is used to measure latency, defined by the
processing time of a single one­second input. For each model, we do 10 warmup runs
followed by 100 inference runs, capturing the average latency on a single thread.

In Figure 6 we observe that Transformer­based models are competitive with the existing
state­of­the­art despite being designed with no regard to latency. There is a broad body
of research on optimizing Transformer models — of particular note is the replacement
of layer normalization and activations in [26] that decreases latency by a factor of three.
Our findings here suggest many of these results could be leveraged in the keyword spotting
domain to extend the practicality of these models.

141

Paper III

0 20 40 60 80
Time window

0

20

40

60

80

Ti
m
e w

in
do

w

Position embedding similarity

−1

1

Co
sin

e s
im

ila
rit
y

Figure 5: Cosine similarities of the learned position embeddings of KWT.

5 Conclusion

In this paper we explore the direct application of Transformers to keyword spotting, using a
standard architecture and a principled approach to converting the audio input into tokens.

In doing so we introduce KWT, a fully­attentional model that matches or exceeds the
state­of­the­art over a range of keyword spotting tasks with real­world latency that remains
competitive with previous work.

These surprising results suggest that Transformer research in other domains offers a rich
avenue for future exploration in this space. In particular we note that Transformers benefit
from large­scale pre­training [12], have seen 5.5x latency reduction through model com­
pression [26] and up to 4059x energy reduction through sparsity and hardware codesign
[30]. Such improvements would make a meaningful impact on keyword spotting applica­
tions and we encourage future research in this area.

References

[1] Tflite model benchmark tool. URL https://github.com/tensorflow/
tensorflow/tree/master/tensorflow/lite/tools/benchmark.

142

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/tools/benchmark
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/tools/benchmark

Figure 6: Latency and accuracy of processing a one-second input, on a single thread on a mobile phone.

[2] Speech commands dataset v1., . URL http://download.tensorflow.org/
data/speech_commands_v0.01.tar.gz.

[3] Speech commands dataset v2., . URL https://storage.googleapis.com/
download.tensorflow.org/data/speechcommands_v0.02.tar.gz.

[4] S. Adya, V. Garg, S. Sigtia, P. Simha, and C. Dhir. Hybrid transformer/ctc networks
for hardware efficient voice triggering. Proc. Interspeech 2020, pages 3351–3355, 2020.

[5] M. A. Alcorn and A. Nguyen. baller2vec: A Multi­Entity Transformer For Multi­
Agent Spatiotemporal Modeling. arXiv preprint arXiv:1609.03675, 2021.

[6] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization. arXiv preprint
arXiv:1607.06450, 2016.

[7] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End­to­
end object detection with transformers. In European Conference on Computer Vision,
pages 213–229. Springer, 2020.

[8] X. Chen, Y. Wu, Z. Wang, S. Liu, and J. Li. Developing Real­time Streaming Trans­
former Transducer for Speech Recognition on Large­scale Dataset. arXiv preprint
arXiv:arXiv:2010.11395, 2020.

[9] S. Choi, S. Seo, B. Shin, H. Byun, M. Kersner, B. Kim, D. Kim, and S. Ha. Temporal
Convolution for Real­Time Keyword Spotting on Mobile Devices. Proc. Interspeech
2019, pages 3372–3376, 2019.

143

http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz
http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz
https://storage.googleapis.com/download.tensorflow.org/data/speechcommands_v0.02.tar.gz
https://storage.googleapis.com/download.tensorflow.org/data/speechcommands_v0.02.tar.gz

Paper III

[10] S. Davis and P. Mermelstein. Comparison of parametric representations for mono­
syllabic word recognition in continuously spoken sentences. IEEE transactions on
acoustics, speech, and signal processing, 28(4):357–366, 1980.

[11] D. C. de Andrade, S. Leo, M. L. D. S. Viana, and C. Bernkopf. A neural attention
model for speech command recognition. arXiv preprint arXiv:1808.08929, 2018.

[12] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929,
2020.

[13] D. Gope, G. Dasika, and M. Mattina. Ternary hybrid neural­tree networks for
highly constrained iot applications. In A. Talwalkar, V. Smith, and M. Za­
haria, editors, Proceedings of Machine Learning and Systems, volume 1, pages 190–
200, 2019. URL https://proceedings.mlsys.org/paper/2019/file/
a97da629b098b75c294dffdc3e463904-Paper.pdf.

[14] A. Gulati, J. Qin, C.­C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang,
Z. Zhang, Y. Wu, et al. Conformer: Convolution­augmented Transformer for Speech
Recognition. Proc. Interspeech 2020, pages 5036–5040, 2020.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[16] D. Hendrycks and K. Gimpel. Gaussian Error Linear Units (GELUs). arXiv preprint
arXiv:1606.08415, 2016.

[17] G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a Neural Network.
In NIPS Deep Learning and Representation Learning Workshop, 2015. URL http:
//arxiv.org/abs/1503.02531.

[18] M. Kumar, D. Weissenborn, and N. Kalchbrenner. Colorization Transformer. arXiv
preprint arXiv:2102.04432, 2021.

[19] J. Lin, K. Kilgour, D. Roblek, and M. Sharifi. Training keyword spotters with limited
and synthesized speech data. In ICASSP 2020­2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 7474–7478. IEEE, 2020.

[20] A. T. Liu, S.­W. Li, and H.­y. Lee. Tera: Self­supervised learning of transformer
encoder representation for speech. arXiv preprint arXiv:2007.06028, 2020.

[21] S. Majumdar and B. Ginsburg. MatchboxNet: 1D Time­Channel Separable Con­
volutional Neural Network Architecture for Speech Commands Recognition. Proc.
Interspeech 2020, pages 3356–3360, 2020.

144

https://proceedings.mlsys.org/paper/2019/file/a97da629b098b75c294dffdc3e463904-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/a97da629b098b75c294dffdc3e463904-Paper.pdf
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531

[22] D. Neimark, O. Bar, M. Zohar, and D. Asselmann. Video Transformer Network.
arXiv preprint arXiv:2102.00719, 2021.

[23] T. Q. Nguyen and J. Salazar. Transformers without tears: Improving the normaliza­
tion of self­attention. arXiv preprint arXiv:1910.05895, 2019.

[24] D. S. Park, W. Chan, Y. Zhang, C.­C. Chiu, B. Zoph, E. D. Cubuk, and Q. V.
Le. SpecAugment: A Simple Data Augmentation Method for Automatic Speech
Recognition. Proc. Interspeech 2019, pages 2613–2617, 2019.

[25] O. Rybakov, N. Kononenko, N. Subrahmanya, M. Visontai, and S. Laurenzo.
Streaming Keyword Spotting on Mobile Devices. Proc. Interspeech 2020, pages 2277–
2281, 2020.

[26] Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou. MobileBERT:
a Compact Task­Agnostic BERT for Resource­Limited Devices. arXiv preprint
arXiv:2004.02984, 2020.

[27] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou. Train­
ing data­efficient image transformers & distillation through attention. arXiv preprint
arXiv:2012.12877, 2020.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is All You Need. Advances in neural information processing
systems, 30, 2017.

[29] R. Vygon and N. Mikhaylovskiy. Learning Efficient Representations for Keyword
Spotting with Triplet Loss. arXiv preprint arXiv:2101.04792, 2021.

[30] H. Wang, Z. Zhang, and S. Han. SpAtten: Efficient Sparse Attention Architecture
with Cascade Token and Head Pruning. arXiv preprint arXiv:arXiv:2012.09852, 2021.

[31] Y. Wang, H. Lv, D. Povey, L. Xie, and S. Khudanpur. Wake word detection with
streaming transformers. In ICASSP 2021­2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5864–5868. IEEE, 2021.

[32] P. Warden. Speech commands: A dataset for limited­vocabulary speech recognition.
arXiv preprint arXiv:1804.03209, 2018.

[33] Q. Xie, M.­T. Luong, E. Hovy, and Q. V. Le. Self­Training With Noisy Student Im­
proves ImageNet Classification. In Proceedings of the IEEE/CVF Conference on Com­
puter Vision and Pattern Recognition (CVPR), June 2020.

[34] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, F. E. Tay, J. Feng, and S. Yan. Tokens­to­
Token ViT: Training Vision Transformers from Scratch on ImageNet. arXiv preprint
arXiv:2101.11986, 2021.

145

Paper III

[35] Y. Zhang, N. Suda, L. Lai, and V. Chandra. Hello edge: Keyword spotting on mi­
crocontrollers. arXiv preprint arXiv:1711.07128, 2017.

146

Paper IV

Submitted. A shorter version of this paper was presented at FedKDD: International Joint Workshop on Fed­
erated Learning for Data Mining and Graph Analytics, 2024. Copyright 2024, the authors.

Towards Federated Learning with on­device Training and
Communication in 8­bit Floating Point

BOkuN WANg1, AxEL BERg2,3, DuRMuS ALp EMRE AcAR2, CHuTENg ZHOu2

1Texas A&M University, 2Arm, 3Lund University

Abstract: Recent work has shown that 8­bit floating point (FP8) can be used for
efficiently training neural networks with reduced computational cost compared to
training in FP32/FP16. In this work, we investigate the use of FP8 training in a
federated learning context. This approach brings not only the usual benefits of FP8
which are desirable for on­device training at the edge, but also reduces client­server
communication costs due to significant weight compression. We present a novel
method for combining FP8 client training while maintaining a global FP32 server
model and provide convergence analysis. Experiments with various machine learn­
ing models and datasets show that our method consistently yields communication
reductions of at least 2.9x across a variety of tasks and models compared to an FP32
baseline to achieve the same trained model accuracy.

1 Introduction

A large amount of data is generated daily on personal smartphones and other devices at the
edge. This data is very valuable for training machine learning models to provide services
such as better voice recognition [18] or text completion [8]. However, the local data of­
ten carries sensitive personal information which needs to be protected for privacy reasons.
Furthermore, communication of local data between billions of devices and data centers is
expected to occupy lots of network bandwidth and transmission is costly in terms of power
consumption, which is a primary concern for edge devices running on batteries.

Despite these constraints, it is still possible to train a model without having to transmit this
local data using federated learning [23]. In federated learning, each local device performs
training locally with their local data and update their local models. When it comes to
communication, the central server receives local models from a subset of devices. The
central server then aggregates these local models and transmits a new global model back
to those devices for a model update. In this way, no local data is ever exposed during
communication and the global model can learn from local data as communication goes on.

Since its inception, new techniques around federated learning have been proposed to reduce
communication cost. The local models, albeit smaller than the local data, are still expensive
to transmit via wireless communication and will be taxing on local devices’ battery life if
performed very frequently. One method to reduce communication cost is to quantize the

149

Paper Iv

FP8 downlink
communication

Stochastic FP8
quantization

FP8 training
on local dataset

Stochastic FP8
quantization

Server

Client

FP8 uplink
communication

Global FP32
model

aggregation

Figure 1: Overview of the proposed federated learning with local FP8 on-device training and weight quantization in both uplink
and downlink communication. For time step t, the server sends quantized FP8 global model weights QFP8(wt) and
range parameters αt, βt for the weights and activations respectively. Each client k that participates in the training
round then performs FP8 local training and sends back updated weight and range parameters. At the server, new
global weights are obtained using global aggregation and an additional optimization step.

models before the communication occurs, and several works have shown that this can be
done with limited reduction of model accuracy [7, 11, 26].

In this paper, we focus on the use of a new type of short floating point number format
which has not yet been explored for federated learning: 8­bit floating point (FP8). An
8­bit floating point number is only ¼ of the length of a 32­bit floating point number.
Therefore, it has smaller representation power and lower precision than full 32­bit floating
point number format, but it offers great savings in terms of model storage and memory
access. Computation can be greatly accelerated with the FP8 format because of significantly
less bit­wise operations required compared to FP32/FP16. Application of FP8 number
format to deep learning model training and inference is in a nascent stage but is widely
expected to have fast growth.

Being a very efficient training datatype, FP8 is a good candidate for on­device training at
the edge and the wide industrial support [24] behind it points to wide­spread real­world
applications. A future scenario where edge devices can perform efficient on­device training

150

with native hardware support introduces a new class of federated learning problems. It also
increases device heterogeneity in a federated learning setting, where participating devices
and servers may have different levels of hardware support for FP8.

In this work, we introduce an implementation of federated learning with on­device FP8
training, which learns from quantized models effectively while being efficient in its com­
munication and computing cost. A high­level overview of this method is shown in Figure
1. We summarize our main contributions as follows:

1. A novel method for combining local FP8 client training with an FP32 server model.
The local FP8 training is simulated by quantization­aware training (QAT) and all
communication between the server and the clients is done in FP8. Furthermore, we
provide an additional optimization procedure for weight aggregation on the server
that alleviates potential performance drops caused by quantization, without affecting
communication costs.

2. We provide convergence analysis and motivation for the use of stochastic quanti­
zation for communication, but deterministic quantization for QAT. These design
choices are further supported by experimental ablation studies.

3. We proved experiments on image and audio classification benchmarks, showing min­
imal loss in performance while obtaining large reductions in communication costs
for both convolutional and transformer­based models.

2 Related Work

2.1 Federated Learning with Quantized Communication

Quantizing model weights is an effective way of reducing the communication cost of feder­
ated learning. For example, quantizing weights from 32 to 8 bits immediately reduces the
number of communicated bits by 75% per training round. However, in practice the same
functional performance is often not reached by the quantized model, because quantization
can cause slower convergence of the training process. As a consequence, the communica­
tion reduction obtained to yield a particular performance threshold is often far from the
ideal.

An important reason for the slower convergence obtained with quantized communication
is that quantization of the model weights will introduce a bias term, which makes the server
model a biased estimate of the average client model. In order to alleviate this problem, the
use of stochastic rounding has been proposed [39, 6]. Hence, when aggregating the client

151

Paper Iv

models at the server, the stochastic rounding errors tend to zero as the number of clients
grows large. This method has also been shown to improve the learning process from a
privacy perspective [38]. Similar work, He et al. [10], has shown that stochastic rounding
in conjunction with non­linear quantization can reduce the number of communication
rounds to reach convergence even more. Nevertheless, there is a limited amount of research
on how to effectively combine quantized communication with low­precision client training.

Yoon et al. [37] investigated a similar setup as ours, i.e. low­precision local training with
quantized communication, but only for uniform quanization schemes, such as INT4 and
INT8. This leads to sub­optimal performance compared to full­precision training, since
many neural networks are known to be sensitive to integer quantization, especially gradients
during training are thought to require a bigger dynamic range [16]. For this reason, the
industry is coalescing around FP8 for efficient training hardware [24]. This motivates an
investigation of local training in low­precision floating point, which provides better training
dynamics at the same communication cost.

2.2 FP8 Quantization for Neural Networks

While integer representations, have been widely adopted for neural network quantization
for efficient inference, the use of FP8 remains relatively new in comparison and has been
more focused on model training. A few recent works [34, 32, 29] have proposed centralized
neural network training in FP8 with promising results. However, for some networks, a
single FP8 representation was found to be insufficient for retaining accuracy in certain
operations. Notably, the backwards pass through the network typically requires higher
dynamic range than the forward pass. To this end, a binary interchange FP8 format that
uses both E4M3 (4­bit exponent and 3­bit mantissa) and E5M2 (5­bit exponent and 2­
bit mantissa) representations has been proposed, which allows for minimal accuracy drops
compared to FP16 across a wide range of network architectures [24]. Concurrent work,
Kuzmin et al. [16], proposed a similar solution, where the exponent bias is flexible and
updated for each tensor during training, which allows for maintaining different dynamic
ranges in different parts of the network.

An important factor in neural network quantization that is often overlooked, is that not all
model architectures are equally sensitive to quantization, since the distribution of weights
and activations are often architecture­dependent. As a consequence, a quantization scheme
that works well for e.g. convolutional networks might not be suitable for attention­based
models. Shen et al. [31] provided a thorough investigation of different quantization schemes
for models on a wide variety of applications and found that FP8 quantization, with a com­
bination of E4M3 and E3M4 in particular, was least detrimental to model performance.
Similar results were found by Nikolic et al. [27] by dynamically adjusting the number of
exponent and mantissa bits during training, which lead to large reductions in both memory

152

footprint and energy consumption. This makes FP8 training particularly interesting in a
federated training setup, where the available hardware resources are often limited.

3 Method

3.1 Preliminaries

Consider the federated learning problem, where K clients update their local models by
training on disjoint local datasets {Dk}Kk=1. Each client minimizes their own local objec­
tive functions Fk(w, Q, α, β) = E(x,y)∼Dk

[l(w;x, y,Q, α, β)], where w are the model
parameters, Q is a quantization operator and l is the loss function. Furthermore, α and β
are the per­tensor clipping values used for maintaining the dynamic range when quantiz­
ing weights and activations respectively. Henceforth, we denote quantized weights based
on range α as Q(w;α). In practice, each layer of the network has its own unique clip­
ping parameters for both the weights and activations, but we omit this in our notation for
readability.

We consider a modification of the standard federated averaging (FedAvg) [23] with quan­
tized weights, where the objective is to find

min
w

F (w, Q, α, β),

F (w, Q, α, β) =

K∑
k=1

nk
n
Fk(w, Q, α, β),

(1)

where nk = |Dk| is the number of training samples on the k:th device and n =
∑

k nk is
the total number of training examples.

3.2 Floating Point Representation

A floating point number x with e exponent bits and m mantissa bits can be written as

x = (−1)s2p−b

(
1 +

d1
2

+
d2
22

+ . . .+
dm
2m

)
, (2)

where s ∈ {0, 1} is the sign bit, di ∈ {0, 1} is the mantissa, p ∈ {0, 1, . . . , 2e−1} is the
exponent and b is the exponent bias. In addition, we assume that p = 0 is reserved for
subnormal numbers, which allows an exact representation of 0 and other special values.

Compared to integer quantization, the quantization grid for floating point numbers is not
uniform. Increasing the number of exponent bits results in a higher dynamic range, whereas

153

Paper Iv

increasing the number of mantissa bits increases the precision. Therefore, give a fixed bud­
get on the number of bits to allocate, there is a trade­off to be made between the two.

3.3 On­Device Quantization­Aware Training

Depending on the hardware support, on­device local training can be performed in native
FP8 or using quantization­aware training (QAT), or a mix of the two. Native FP8 training
is supported by the latest AI hardware in data centers such as Nvidia’s H100/H200 series
of GPUs. There is significant industry support behind FP8 and it is only a matter of time
for FP8 hardware support to arrive on edge devices.

For research purposes, we here resort to QAT, and follow the FP8 QAT method described
in Kuzmin et al. [16], using per­tensor quantization for both model weights and activations,
with one signed bit, andm = 3 and e = 4 bits for the mantissa and exponent respectively,
as well as a flexible exponent bias that depends on learnable clipping parameters. QAT
with both weights and activations quantization is a good way of simulating native FP8
training on supported hardware with low precision arithmetic. In our setting, we are not
simulating the effect of gradient quantization which happens on FP8­enabled hardware.
However, previous work, Kuzmin et al. [16], has shown that it is a good approximation to
ignore its effect.

Let x = (x1, ..., xd)
T ∈ Rd denote an FP32 input tensor and Qdet : Rd → Rd the

FP8 deterministic quantization operator with a clipping parameter α, whose element­wise
outputs are given by

Qdet(xi;α) =


−α, xi ≤ −α,
si

⌊
xi
si

⌉
,

α, xi ≥ α,
(3)

where ⌊·⌉ denotes rounding to the nearest integer. Here, si = 2pi is a scale factor that is
applied before and after rounding. The scale factor can be computed from pi using

pi =

{
⌊log2 |xi|+ b⌋ − b−m, ⌊log2 |xi|+b⌋ > 1

1− b−m, otherwise,
(4)

where the exponent bias depends on the clipping value α as b = 2e − log2 α+ log2(2−
2−m)−1. At training time, α is first initialized using the maximum absolute value of each
weight range, and then treated as a learnable parameter that is updated during training.
Furthermore, the gradients of the non­differentiable rounding operators are computed us­
ing the straight­through estimator (STE) [3], i.e. ∂⌊xi⌉

∂xi
= 1, with a key exception being

log2 |xi|, which is treated as a constant following a similar approach as in Kuzmin et al.

154

Algorithm 1 LOcALUpDATE
Input: w, α, β,Q,D, number of minibatches P

1: Set w1 = w, α1 = α, β1 = β
2: for p = 1, ..., P do
3: Sample minibatch Bp randomly from D
4: Do forward pass with Q on the minibatch Bp
5: Do backwards pass using STE and update wp+1, αp+1, βp+1

6: end for
7: Return wP+1, αP+1, βP+1

[16]. Activations are quantized using the same procedure, but with a separate clipping value
β. A summary of the local on­device training procedure is given in Algorithm 1.

3.4 Unbiased Quantized Communication

When applying FP8 QAT to a federated leaning scenario, an important aspect is the ability
to reduce communication overhead by transferring weights between clients and the server
using only 8 bits per scalar value. On client devices with hardware for FP8 mixed­precision
training support, a copy of high­precision master weights [33] is present as in our QAT
setup. Therefore, at the end of each communication round, the participating clients need
to perform a hard reset of their master weights to the de­quantized FP8 values on a quan­
tization grid. This approach allows for cost reduction in both the uplink and downlink
communication.

At each communication round t, active clients Pt will send the FP8­quantized weights to
the central server together with the clipping parameters. However, to form an unbiased es­
timate of the average client weight, we need a different quantization operator. We therefore
introduce stochastic quantization as

Qrand(xi;α) = si


⌈
xi
si

⌉
κ ≤ xi

si
−
⌊
xi
si

⌋
⌊
xi
si

⌋
otherwise,

(5)

for−α ≤ xi ≤ α and where κ is a Bernoulli random variable that takes the values 0 and 1
with equal probability. It is straightforward to verify that this randomized quantization is
unbiased from a statistics point of view, i.e. for −α ≤ xi ≤ α we have E[Qrand(xi;α)] =
xi, while the deterministic quantization introduced earlier is biased¹.

¹The unbiasedness of stochastic quantization assumes a finite domain of the input variable, such that no
clipping occurs. While clipping may occur for some values in practice, this does not affect the majority of the
weights or activations. In order to simplify theoretical analysis, the assumption of no clipping is often made in
the literature, see for example [19].

155

Paper Iv

0.04 0.02 0.00 0.02 0.04

w

Weight Value

(a) FP32 weight distribution

0.04 0.02 0.00 0.02 0.04

QFP8(w)

Weight Value

(b) FP8 weight distribution

DET
RAND

0.002 0.000 0.002

w−QFP8(w)

Quantization Error

(c) Quantization error
distribution.

DET
RAND

0.002 0.000 0.002

w−ΣK
k= 1QFP8(w)/K

Quantization Error

(d) Quantization error
distribution of average
model.

Figure 2: Examples of FP8 quantized weights using the E4M3 format and the corresponding quantization errors for different
weight distributions. The range α of the quantization is calculated such that the entire distribution fits within the
dynamic range of the FP8 representation. In general, deterministic quantization yields the lowest quantization error
for any distribution. However, when weights are quantized independently on several devices (here we use K = 10)
and averaged, stochastic quantization yields smaller errors. Top row: uniform weight distribution, which is a common
initialization for convolutional layers. Bottom row: truncated normal distribution, which is commonly used to initialize
the linear layers in Transformer models.

The quantized weights are then aggregated at the server using a weighted federated average
as

wt+1 ←
∑
k∈Pt

nk
mt

Qrand(w
k
t+1;α

k
t+1), (6)

where mt =
∑

k′∈Pt
nk′ . The clipping values are also aggregated, but without quan­

tization, since their contribution to the communication overhead is small relative to the
weights. The aggregated weights are then quantized again to FP8 and transmitted to the
next set of active clients with a new set of quantization parameters.

An illustrative example of weight quantization is shown in Figure 2a­d, where different
weight distributions and the corresponding quantization errors are shown for both deter­
ministic and stochastic quantization. For a given scalar weight, deterministic quantization
always results in a lower quantization error, but for communication purposes we are more
interested in the quantization error of the aggregated server weights. As can be seen in
Figure 2d, stochastic quantization yields a lower error for the average model. For illustra­
tion purposes, we have here assumed that the weights are identical on each device, which is
not the case in practice. Nevertheless, with stochastic quantization, the average quantized
model will be an unbiased estimate of the average unquantized model.

156

Algorithm 2 SERvEROpTIMIZE
Input: {wk

t , α
k
t , nk}k∈Pt , Q

1: Compute mt =
∑
k

nk

2: Using gradient descent, update the weights as
wt+1 ← argmin

w

∑
k

nk
mt
∥Q(w;αt+1)−Q(wk

t ;α
k
t)∥22

3: Set S ← [min
k
αk
t ,max

k
αk
t]

4: Using grid search, update the range parameters as
αt+1 ← argmin

α∈S

∑
k∈Pt

nk
mt
∥Q(wt+1;α)−Q(wk

t ;α
k
t)∥22

5: Return wt+1, αt+1

3.5 Server­Side Optimization (SERVEROPTIMIZE)

The standard federated average of the weights in the un­quantized scenario corresponds
to the minimization of weighted mean squared error (MSE) between the server parame­
ters and the client parameters. However, when the server parameters are quantized before
transmission to the clients, this property no longer holds. We therefore propose a modifica­
tion to the server­side model aggregation, where the MSE is explicitly minimized. This can
be done without communication overhead since all computations are done on the server.
Another advantage of this approach is that it leverages the computing power of the server
to do more optimization, since the server typically possesses more computing power than
a client device.

At time step t, we perform model/parameters aggregation to obtain wt+1, αt+1 for the
next communication round by minimizing the following mean­squared error (MSE).

wt+1, αt+1 = argmin
w,α

∑
k∈Pt

nk
mt
∥Qrand(w;α)−Qrand(w

k
t ;α

k
t)∥22.

Note that when there is no communication quantization, the closed­form solution to
SERvEROpTIMIZE is the federated averagewt+1 =

∑
k∈Pt

nk
mt

wk
t . Since the problem above

has no closed­form solution for the quantized communication case, we use the alternating
minimization approach to optimize w and α. First, we optimize the model weights w,
while fixing α to αt+1 =

∑
k∈Pt

nk
mt
αk
t+1. This is done by minimizing the MSE as

wt+1 = argmin
w

∑
k∈Pt

nk
mt
∥Qrand(w;αt+1)−Qrand(w

k
t ;α

k
t)∥22. (7)

This minimization can be done using gradient descent with a fixed number of iterations

Next, we aim to optimize α while fixing w to wt+1. However, minimizing the MSE with
respect to α using gradient descent would require access to ∂si

∂α , which is non­differentiable

157

Paper Iv

Algorithm 3 FP8FedAvg­UQ, FP8FedAvg­UQ+
Input: w1, α1, β1, Qdet, Qrand

1: for t = 1, ..., T do
2: Sample a set Pt ∈ [K] of P active devices
3: for each client k ∈ Pt do
4: Receive Qrand(wt;αt), αt, βt from server
5: {wk

t+1, α
k
t+1, β

k
t+1} ← LOcALUpDATE(wt, Qdet;αt, βt,Dk)

6: Send Qrand(w
k
t+1;α

k
t+1), α

k
t+1, β

k
t+1 to server

7: end for
8: Compute mt =

∑
k∈Pt

nk

9: Compute βt+1 ←
∑

k∈Pt

nk
mt
βkt+1

10: Compute wt+1 ←
∑

k∈Pt

nk
mt
Qrand(w

k
t+1;α

k
t+1)

11: Compute αt+1 ←
∑

k∈Pt

nk
mt
αk
t+1

12: {wt+1, αt+1} ← SERvEROpTIMIZE({wk
t+1, α

k
t+1, nk}k∈Pt , Qrand)

13: end for
14: Evaluate on wT+1, αT+1, βT+1

at multiple points and therefore highly numerically unstable. We instead perform a grid
search over a fixed set of clipping values uniformly distributed inS = [mink∈Pt α

k
t ,maxk∈Pt α

k
t]

as

αt+1 = argmin
α∈S

∑
k∈Pt

nk
mt
∥Qrand(wt+1;α)−Qrand(w

k
t ;α

k
t)∥22. (8)

The SERvEROpTIMIZE routine is given in Algorithm 2, which takes place completely on the
server and can be used as an optional step in order to improve aggregation of the model
weights.

3.6 Overall algorithm

A summary of our proposed FP8 FedAvg with unbiased communication (FP8FedAvg­UQ)
method is presented in Algorithm 3, where the optional server­optimization step (UQ+)
corresponds to replacing the quantized federated averaging of the weight and range param­
eters with our two­step MSE minimization optimization in Equations (7) and (8). It is im­
portant to note that our method involves two different quantization operators. On­device
QAT uses a deterministic and biased quantizer, while the communication part adopts its
stochastic counterpart which is unbiased. In the next section, we will give a convergence

158

analysis result for FP8FedAvg­UQ and show that these design choices are well­motivated
from a theoretical perspective.

4 Convergence analysis and theoretical motivations

We briefly state our main convergence theorem here and refer to the Appendix for formal
assumption definitions and proof. Please note that we make the simplifying assumption to
only consider weight quantization in our proof, which is standard for this type of theoretical
analysis.

Theorem 4.1 (Convergence of FP8FedAvg­UQ). For convex and L­smooth federated
losses in (1) with G­bounded unbiased stochastic gradients using an FP8 deterministic
quantization method during training and an FP8 unbiased quantization method with
bounded scales for model communication, the objective gapE [F (Qrand(wτ))− F (w∗)]
decreases at a rate of

O

(
∆2 +G2U√

TU
+
UG2L

T︸ ︷︷ ︸
T1

+
GU2.5S

√
dL√

T︸ ︷︷ ︸
T2

+S
√
dG︸ ︷︷ ︸

T3

)
,

where ∆ = ∥w1 − w∗∥2 is the initial and optimal model difference, τ is uniformly
sampled from {1, 2, . . . , T}, T is the number of rounds,U is the total number of updates
done in each round, the quantization scales si are uniformly bounded by S, w1 is the
initial model, and w∗ is an optimal solution of (1).

Proof Structure. The proof builds on upper bounding a drift quantity similar to the one
defined in Karimireddy et al. [13] as²,

Vt =
1

KU

∑
k∈[K]

∑
u∈[U]

E
∥∥∥Qrand (wt)−Qdet

(
wk

t,u

)∥∥∥2
2
.

Note that if local models diverge, we get a higher Vt. If there is no quantization and local
models converge, we get Vt = 0. We focus on Vt and the server model w in a single
communication round and give the following Lemma as,

Lemma 1. For a setting that satisfies the assumptions listed in Theorem 4.1, we have,

Vt ≤ 18U3S
√
dGηt + 9U2η2tG

2, (9)

E∥wt+1 −w∗∥22 − E ∥wt −w∗∥22 ≤ +ηtLUVt

+ 2S
√
dGUηt + η2tU

2G2 − 2UηtE (F (Qrand (wt))− F (w∗)) (10)
²See Appendix C.2 on wk

t,u definition for inactive devices.

159

Paper Iv

where ηt is the learning rate. By combining the equations with proper coefficients, we get a
telescoping sum on the difference between the server model and the optimal model, as well
as the accumulation of the loss with respect to the optimal model. This leads to Theorem
4.1 and we provide the full proof in Appendix C.

Remark 1. T1 is a term similar to SGD convergence where it decreases with O
(

1√
T

)
and

depends on the bound on the second moment of stochastic gradientG, the smoothness L,
as well as the ℓ2­distance between the initial model w1 and the optimal solution w∗.

Remark 2. T2 and T3 are terms that arise due to quantization. Due to (4) and the defini­
tion of S, the terms T2 and T3 exponentially decay when the number of mantissa bits m
increases, i.e., T2 ∝ 2−m, T3 ∝ 2−m.

Remark 3. We emphasize that unbiased quantization during communication is crucial.
In the case of biased communication, the convergence proof does not hold and one can
construct even diverging cases [5] for FedAvg. To ensure convergence for biased commu­
nication, we need more sophisticated techniques such as error feedback [30].

Remark 4. Deterministic quantization is used during training. We bound the norm of
QAT quantization error in the proof. Since deterministic quantization has a smaller er­
ror norm than stochastic one, this motivates us to use deterministic quantization during
training.

As we shall see in the next section, we observe strictly worse results if we use stochastic
quantization during training or deterministic quantization during model transmission in
our experiments, which aligns with the remarks above.

5 Experiments and Ablation Studies

We test our proposed method on two different tasks: image classification and keyword
spotting. For each task, we use two different models and perform experiment using both
an i.i.d. and a non­i.i.d. dataset split across clients. In the i.i.d. setup, the dataset is split
randomly across the set of clients. In the non­i.i.d. setup, we simulate a more realistic
heterogenity across clients which is specific to each dataset.

5.1 Datasets and models

Image classification. For image classification, we use the CIFAR10 and CIFAR100 datasets
[14], which consist of 60 000 examples of 32x32 color images divided into 10 and 100 dif­
ferent classes respectively. For this task, we adopt two different convolutional networks: 1)

160

LeNet [17], which has 800K parameters, and ResNet18 [9], with 11M parameters. For the
ResNet model, we replace batch normalization after the convolutional layers with Group­
Norm [36], since this is known to work better in a federated setting with skewed data
distributions [12].

In the (independent and identical and distributed) i.i.d. scenario, we useK = 100 clients,
a participation rate of C = 0.1 in each round and train for R = 1000 rounds with a
local batch size of B = 50, where each client trains for 5 local epochs. In the non­i.i.d.
image classification setting we sample the local datasets from a Dirichlet distribution with
a concentration parameter of 0.3. Furthermore, we use SGD as the local optimizer with a
constant learning rate of 0.1, weight decay of 0.001 and random cropping and horizontal
flipping for data augmentation.

Keyword spotting. In order to apply our method to a more realistic federated learning task
and more advanced model architectures, we resort to keyword spotting, where the task is to
classify short snippets of audio as words in a small dictionary. For this, we use the Google
SpeechCommands v2 dataset, which consists of 105 000 one­second recordings belonging
to one of 35 classes [35]. Examples of classes in the dictionary include short words like
“go”, “yes” and “on”.

For the keyword spotting task, we train two different models: MatchboxNet3x1x64 [22],
which uses 1D time­channel separable convolutions with skip­connections, as well as the
Keyword Transformer (KWT­1) [4] model, which consists of sequential transformer layers
with time­domain self­attention. These two models have 350K and 450K parameters re­
spectively and they both use mel­frequency cepstral coefficients (MFCCs) as input features.

A known problem when training transformers is that SGD optimization requires many
iterations and may fail to converge to a good solution [15]. Due to the relatively small
number of local updates in a training round, SGD is therefore not a suitable optimization
method for transformers in this setup. To achieve better training convergence, we instead
use the momentum­based AdamW [21] as local optimizer for the clients, where the states of
the local optimizer for each active client are reset at the start of each communication round.
Furthermore, we use an initial learning rate of 0.001 with a cosine decay scheduler and a
weight decay of 0.1. For data augmentation, we apply SpecAugment [28] to the MFCCs
during training.

When training in the i.i.d. scenario, we use the same setup for keyword spotting as for im­
age classification. However, since the SpeechCommands datasets provides speaker identity
as well, we can simulate a more realistic heterogenity for the non­i.i.d. dataset split. We
therefore use the setup proposed in [20], such that all recordings from a given speaker are
assigned to a single client. This results in a total of K = 2112 clients. In order to get a
similar number of total training steps as in the i.i.d scenario, we reduce the participation
rate to C = 0.01, the number of rounds to R = 500 and the number of local gradient

161

Paper Iv

updates to 50.

5.2 Mixed Precision Quantization Implementation

Since most of the bandwidth during the communication phase between the server and
clients is used for transmitting the model weights in the fully connected and convolu­
tional layers, we focus on learning FP8 representations for these. Hence, we simulate a
mixed­precision training scenario where these parameters are trained in FP8, whereas bias
parameters and normalization layer parameters (GroupNorm for convolutional networks
and LayerNorm for transformers) are trained in FP32, since initial experiments showed
these to be sensitive to quantization. Note that this only results in a negligible impact on
the client­server communication, since these parameters account for less than 2 % of the
total parameter count in the models.

An illustration of how mixed­precision training can be simulated using QAT is shown in
Figure 3. The diagram illustrates the necessary operations for quantizing most layers in the
networks we use. A notable exception is the self­attention layers in the transformer model.
In these layers, we perform calculations of the keys, queries and values, as well as calculation
of the dot­product attention scores in FP8. Softmax normalization of the attention scores
is done in FP32, similar to how it is done for other activation functions.

For all experiments, we have used m = 3 and e = 4 bits for the mantissa and exponent
respectively. In addition, when performing server­side optimization of weight aggregation,
we use 5 gradient descent steps when optimizing for the quantized weights in Equation (7),
where the learning rate was selected using grid search in {0.01, 0.1, 1}, and 50 grid points
when optimizing the range values in Equation (8).

5.3 Results

The results are shown in Table 3, where we present the final centralized test accuracy and
standard deviation across three random seeds, as well as the average communication gain
compared to an FP32 baseline. In order to compare communication costs, we do not pick
a common accuracy threshold for all methods, but instead calculate the gains individually
for each method as the reduction in communicated bytes compared to FP32 training at the
maximum accuracy reached by both FP32 and FP8.

In Table 1 it can be seen that for most datasets and methods, FP8­FedAvg­UQ achieves
similar test accuracy as the FP32 baseline, which results in communication gains of 4.2x on
average, and for some experiments larger than 9x. Note that even though FP8 quantization
sometimes results in a small accuracy drop, a large communication gain is still possible due

162

FP32 weights

FP32
bias

linear/conv

norm+
activation

FP8 output
features

FP8 input
features

Figure 3: Illustration of the QAT method for a linear/convolutional layer. FP32 master weights are quantized using the range
parameters α, before being applied to the already quantized input. We then apply addition of bias, an optional
normalization layer and the activation function in FP32, before quantizing to FP8 again using the range parameters
β. In a real application, these operations could be performed using mixed-precision hardware.

to less data being transferred in each communication round. However, in certain cases,
for example when applying FP8 quantization to LeNet on CIFAR100, accuracy increases
significantly compared to the FP32 baseline. For these experiments, we observed that FP8
quantization to some extent prevented overfitting to the local client datasets, and thereby
acted as a regularizer. This effect of quantization has been observed in other studies as well
[2].

Table 1 further shows results for i.i.d. and a more realistic non­i.i.d. settings. Here, we
see an expected accuracy drop when moving from the i.i.d. to the non­i.i.d. setting, yet
our method shows gains in both scenarios. We note that our method could potentially be
combined with more advanced federated learning algorithms in heterogenous settings to
improve accuracy levels in the non­i.i.d. setting as well.

Finally, we note that the server­side optimization in most scenarios yields additional per­
formance improvements, with an average gain of 4.5x. The impact of this additional op­
timization is most notable when the FP8 quantization results in an accuracy drop com­

163

Paper Iv

Table 1: Final test accuracy and communication gain compared to FP32 FedAvg for our proposedmethods on CIFAR10/CIFAR100
and Google SpeechCommands.

Model Setting FP32 FedAvg FP8 FedAvg­UQ FP8 FedAvg­UQ+

CIFAR10

LeNet i.i.d. 82.1± 0.1 / 1× 82.0± 0.1 / 4.1× 82.2± 0.3 / 4.7×
Dir(0.3) 77.1± 0.4 / 1× 77.3± 0.9 / 3.9× 77.7± 0.5 / 3.9×

ResNet18 i.i.d 92.0± 0.1 / 1× 91.1± 0.2 / 3.4× 92.0± 0.1 / 3.9×
Dir(0.3) 85.5± 0.5 / 1× 87.4± 0.7 / 5.2× 87.5± 0.5 / 5.2×

CIFAR100

LeNet i.i.d. 43.0± 0.3 / 1× 44.8± 0.4 / 6.0× 44.9± 0.5 / 6.0×
Dir(0.3) 38.3± 0.7 / 1× 41.1± 0.3 / 9.1× 41.3± 0.7 / 9.5×

ResNet18 i.i.d 64.6± 0.3 / 1× 64.0± 0.2 / 3.5× 64.6± 0.1 / 4.0×
Dir(0.3) 56.1± 0.7 / 1× 55.4± 0.6 / 3.6× 55.5± 0.6 / 3.6×

SpeechCommands

MatchboxNet i.i.d. 91.5± 0.3 / 1× 90.0± 0.4 / 3.5× 90.8± 0.4 / 3.4×
speaker­id 79.6± 0.7 / 1× 75.4± 0.6 / 3.1× 77.0± 1.3 / 3.3×

KWT­1 i.i.d 91.4± 0.4 / 1× 89.2± 0.3 / 2.3× 90.7± 0.2 / 2.9×
speaker­id 83.2± 0.2 / 1× 79.6± 0.5 / 2.9× 82.4± 0.8 / 3.7×

Average gain 1× 4.2× 4.5×

pared to FP32. On the contrary, when there is no accuracy loss, the improvement due
to server optimization is smaller. Overall, the quantized communication in combination
with server­side optimization results in communication gains greater than 2.9x compared
to FP32 across all tasks and models.

5.4 Ablation studies

Next, we ablate the use of deterministic and stochastic quantization in order to validate
our design choices. Table 2 shows the server test accuracy when using the two different
quantization methods for the on­device QAT training. In general, we observe that per­
forming local QAT does not severely impact the accuracy of the global model. In some
cases, it can even increase test accuracy, which is the case for LeNet on CIFAR100, which
we attribute to the quantization noise acting as a regularizer during training. Overall, deter­
ministic quantization works slightly better, which can also be understood intuitively, since
in each forward pass through the network, deterministic quantization results in a smaller
quantization error. We refer to Appendix B for more details about QAT convergence.

In Table 3, we ablate the effect of deterministic and stochastic quantization in server­device
communication, and it is clear that stochastic quantization results in both higher accuracy
and gain. This is in agreement with Remark 3, which shows that stochastic quantization

164

Table 2: Final test accuracy on CIFAR10 and CIFAR100 (i.i.d.) for deterministic/stochastic QAT without quantized communication
compared to FP32.

Model FP32 FedAvg det. QAT rand. QAT

CIFAR10

LeNet 82.1± 0.1 82.1± 0.2 82.0± 0.2
ResNet18 92.0± 0.1 91.9± 0.2 91.8± 0.3

CIFAR100

LeNet 43.0± 0.3 44.4± 0.5 43.7± 0.6
ResNet18 64.6± 0.3 64.5± 0.1 63.5± 0.5

Table 3: Final test accuracy on CIFAR10 and CIFAR100 (i.i.d.) for different quantized communication (CQ) methods with deter-
ministic QAT compared to FP32.

Model FP32 FedAvg det. CQ rand. CQ

CIFAR10

LeNet 82.1± 0.1 80.1± 0.1 82.0± 0.1
ResNet18 92.0± 0.1 91.1± 0.1 91.7± 0.2

CIFAR100

LeNet 43.0± 0.3 38.0± 0.4 44.8± 0.4
ResNet18 64.6± 0.3 62.5± 0.9 64.0± 0.2

is important for the convergence of our algorithm. In addition, we show the server test
accuracy as a function of communication cost for different methods in Figure 4. Here we
can clearly see the gain arising from quantized communication, as well as the benefits of
stochastic quantization and server­side optimization.

6 Conclusions and Future Work

In this work, we show that on­device FP8 QAT training combined with quantized commu­
nication can be integrated into a federated learning setting with a well­designed algorithm.
Our results show that this can be done with minimal drop in model predictive perfor­
mance, while obtaining large savings in terms of communication cost. This opens up a
wide range of possibilities in terms of exploiting client heterogeneity. For example, it al­
lows for combining devices with different computational capabilities, which could involve
training with different levels of precision in different clients. The design of our algorithm
is well­motivated by theory. We show results for various different models and datasets, and
ablation studies to validate design choices.

Furthermore, our paper has important practical implications for machine learning hardware

165

Paper Iv

0.0 2.5 5.0 7.5 10.0 12.5 15.040

45

50

55

60

65

3.0×

3.5×

4.0×

ResNet18, CIFAR100 i.i.d.

0 5 10 15 2080.0

82.5

85.0

87.5

90.0

92.5

1.6×

2.3×

2.9×

KWT-1, SpeechCommands i.i.d.

FP32-FedAvg
FP8-FedAvg-BQ
FP8-FedAvg-UQ
FP8-FedAvg-UQ+Se

rv
er

 te
st

ac
cu

ra
cy

 [%
]

Communication cost [GBs]

Figure 4: Server test accuracy versus communication cost for FP32 FedAvg, and FP8 QAT with biased (BQ)/unbiased (UQ) quanti-
zation for communication, and server-side optimization (UQ+). For each method, the communication gain compared
to FP32 has been highlighted with arrows.

and system design, our results suggest that both deterministic and stochastic modes need
to be supported by hardware FP8 quantizer for better training convergence in a distributed
or federated setting.

Finally, since the use of low­precision number formats is orthogonal to the optimization
method itself, our proposed method may be extended beyond standard federated averaging.
FP8 local training may therefore be combined with more advanced optimization techniques
that deal with problems such as client drift. We leave this as future work and hope our work
will inspire the wider research community to explore different combinations of reduced
precision floating point number formats in a federated learning setting.

References

[1] D. A. E. Acar, Y. Zhao, R. Matas, M. Mattina, P. Whatmough, and V. Saligrama.
Federated learning based on dynamic regularization. In International Conference on
Learning Representations, 2021.

[2] M. AskariHemmat, R. A. Hemmat, A. Hoffman, I. Lazarevich, E. Saboori, O. Mas­
tropietro, S. Sah, Y. Savaria, and J.­P. David. Qreg: On regularization effects of
quantization. arXiv preprint arXiv:2206.12372, 2022.

[3] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradi­
ents through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

[4] A. Berg, M. O’Connor, and M. T. Cruz. Keyword Transformer: A Self­Attention
Model for Keyword Spotting. In Proc. Interspeech 2021, pages 4249–4253, 2021. doi:
10.21437/Interspeech.2021­1286.

166

[5] A. Beznosikov, S. Horváth, P. Richtárik, and M. Safaryan. On biased compression
for distributed learning. Journal of Machine Learning Research, 24(276):1–50, 2023.

[6] P. S. Bouzinis, P. D. Diamantoulakis, and G. K. Karagiannidis. Wireless quantized
federated learning: a joint computation and communication design. IEEE Transac­
tions on Communications, 2023.

[7] K. Gupta, M. Fournarakis, M. Reisser, C. Louizos, and M. Nagel. Quantization
robust federated learning for efficient inference on heterogeneous devices. TMLR,
2023.

[8] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein, H. Eichner,
C. Kiddon, and D. Ramage. Federated learning for mobile keyboard prediction. arXiv
preprint arXiv:1811.03604, 2018.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[10] Y. He, H.­P. Wang, M. Zenk, and M. Fritz. Cossgd: Communication­
efficient federated learning with a simple cosine­based quantization. arXiv preprint
arXiv:2012.08241, 2020.

[11] R. Hönig, Y. Zhao, and R. Mullins. Dadaquant: Doubly­adaptive quantization for
communication­efficient federated learning. In International Conference on Machine
Learning, pages 8852–8866. PMLR, 2022.

[12] K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons. The non­iid data quagmire
of decentralized machine learning. In International Conference on Machine Learning,
pages 4387–4398. PMLR, 2020.

[13] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. Scaffold:
Stochastic controlled averaging for federated learning. In International conference on
machine learning, pages 5132–5143. PMLR, 2020.

[14] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

[15] F. Kunstner, J. Chen, J. W. Lavington, and M. Schmidt. Noise is not the main
factor behind the gap between sgd and adam on transformers, but sign descent might
be. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=a65YK0cqH8g.

[16] A. Kuzmin, M. Van Baalen, Y. Ren, M. Nagel, J. Peters, and T. Blankevoort. Fp8
quantization: The power of the exponent. Advances in Neural Information Processing
Systems, 35:14651–14662, 2022.

167

https://openreview.net/forum?id=a65YK0cqH8g

Paper Iv

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient­based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[18] D. Leroy, A. Coucke, T. Lavril, T. Gisselbrecht, and J. Dureau. Federated learning for
keyword spotting. In ICASSP 2019­2019 IEEE international conference on acoustics,
speech and signal processing (ICASSP), pages 6341–6345. IEEE, 2019.

[19] H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Goldstein. Training quantized nets:
A deeper understanding. Advances in Neural Information Processing Systems, 30, 2017.

[20] X.­C. Li, J.­L. Tang, S. Song, B. Li, Y. Li, Y. Shao, L. Gan, and D.­C. Zhan. Avoid
Overfitting User Specific Information in Federated Keyword Spotting. In Proc. Inter­
speech 2022, pages 3869–3873, 2022.

[21] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2018.

[22] S. Majumdar and B. Ginsburg. MatchboxNet: 1D Time­Channel Separable Convo­
lutional Neural Network Architecture for Speech Commands Recognition. In Proc.
Interspeech 2020, pages 3356–3360, 2020.

[23] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas.
Communication­efficient learning of deep networks from decentralized data. In Ar­
tificial intelligence and statistics, pages 1273–1282. PMLR, 2017.

[24] P. Micikevicius, D. Stosic, N. Burgess, M. Cornea, P. Dubey, R. Grisenthwaite,
S. Ha, A. Heinecke, P. Judd, J. Kamalu, et al. Fp8 formats for deep learning.
arXiv:2209.05433, 2022.

[25] Y. Nesterov et al. Lectures on convex optimization, volume 137. Springer.

[26] R. Ni, Y. Xiao, P. Meadowlark, O. Rybakov, T. Goldstein, A. T. Suresh, I. L. Moreno,
M. Chen, and R. Mathews. Fedaqt: Accurate quantized training with federated learn­
ing. In ICASSP 2024­2024 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 6100–6104. IEEE, 2024.

[27] M. Nikolic, E. Torres Sanchez, J. Wang, A. Hadi Zadeh, M. Mahmoud, A. Abdel­
hadi, K. Ibrahim, and A. Moshovos. Schrodinger’s fp training neural networks with
dynamic floating­point containers. Proceedings of Machine Learning and Systems, 6:
60–73, 2024.

[28] D. S. Park, W. Chan, Y. Zhang, C.­C. Chiu, B. Zoph, E. D. Cubuk, and Q. V.
Le. SpecAugment: A Simple Data Augmentation Method for Automatic Speech
Recognition. In Proc. Interspeech 2019, pages 2613–2617, 2019.

168

[29] H. Peng, K. Wu, Y. Wei, G. Zhao, Y. Yang, Z. Liu, Y. Xiong, Z. Yang, B. Ni, J. Hu,
et al. Fp8­lm: Training fp8 large language models. arXiv preprint arXiv:2310.18313,
2023.

[30] P. Richtárik, I. Sokolov, and I. Fatkhullin. Ef21: A new, simpler, theoretically better,
and practically faster error feedback. Advances inNeural Information Processing Systems,
34:4384–4396, 2021.

[31] H. Shen, N. Mellempudi, X. He, Q. Gao, C. Wang, and M. Wang. Efficient post­
training quantization with fp8 formats. Proceedings of Machine Learning and Systems,
6:483–498, 2024.

[32] X. Sun, J. Choi, C.­Y. Chen, N. Wang, S. Venkataramani, V. V. Srinivasan, X. Cui,
W. Zhang, and K. Gopalakrishnan. Hybrid 8­bit floating point (hfp8) training and
inference for deep neural networks. NeurIPS, 32, 2019.

[33] A. Vishwanath. Mixed­precision training techniques using tensor
cores for deep learning. https://developer.nvidia.com/blog/
video-mixed-precision-techniques-tensor-cores-deep-learning/,
2019. Accessed: 2019­01­30.

[34] N. Wang, J. Choi, D. Brand, C.­Y. Chen, and K. Gopalakrishnan. Training deep
neural networks with 8­bit floating point numbers. Advances in neural information
processing systems, 31, 2018.

[35] P. Warden. Speech commands: A dataset for limited­vocabulary speech recognition.
arXiv preprint arXiv:1804.03209, 2018.

[36] Y. Wu and K. He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pages 3–19, 2018.

[37] J. Yoon, G. Park, W. Jeong, and S. J. Hwang. Bitwidth heterogeneous federated learn­
ing with progressive weight dequantization. In International Conference on Machine
Learning, pages 25552–25565. PMLR, 2022.

[38] Y. Youn, Z. Hu, J. Ziani, and J. Abernethy. Randomized quantization is all you need
for differential privacy in federated learning. In Federated Learning and Analytics in
Practice: Algorithms, Systems, Applications, and Opportunities, 2023.

[39] S. Zheng, C. Shen, and X. Chen. Design and analysis of uplink and downlink com­
munications for federated learning. IEEE Journal on Selected Areas in Communications,
39(7):2150–2167, 2020.

169

https://developer.nvidia.com/blog/video-mixed-precision-techniques-tensor-cores-deep-learning/
https://developer.nvidia.com/blog/video-mixed-precision-techniques-tensor-cores-deep-learning/

Paper Iv

Appendix

For FedAvg convergence proof, our analysis builds on [13, 19, 1]. [13, 1] focus on debiasing
the local losses in a standard non­quantized federated learning setting. Differently, we
show convergence using quantization aware training in federated learning. We can further
extend our analysis to use the sophisticated debiasing methods for better heterogeneity
control. Li et al. [19] proves convergence of different quantization aware training schemes
in a centralized non­federated setting. Differently, we give convergence of quantization
aware training in a distributed federated learning setting. Additionally, we give a proof
for more general non­uniform quantization grids such as FP8, which is different from the
uniform quantization consideration in [19].

A Quantization Function

Definition A.1 (Quantization). For an unquantized number x, we define the quantization
of x as

Qrand(x) = s

{⌈
x
s

⌉
p ≤ x

s −
⌊
x
s

⌋⌊
x
s

⌋
otherwise,

, Qdet(x) = s
⌊x
s

⌉
,

where p ∈ [0, 1] is a random variable.

We omit the parameter of quantization for the sake of simplicity in the notation. We
overload the notation and define quantization of a vector x ∈ Rd as the element­wise
quantization of the vector, Q(x) = [Q ([x]1) , Q ([x]2) , . . . , Q ([x]d)]

T

Let’s define the quantization error.

Definition A.2 (Quantization Error). Let rQ (w) = Q (w)−w.

Note that ifErQ (w) = 0, we have an unbiased quantization as in our model transmission
where expectation is over the randomness of the quantization.

Note that we simplified the definition by ignoring the quantization based learnable param­
eters such as α and β in our proof. Hence, we redefine them here.

B Convergence Analysis of Quantization­aware Training (QAT)

As a warmup, we provide the convergence analysis of QAT training on a single machine,
similar to the one in [19].

170

We want to find a quantized model that solves minw∈Rd F (w). We start with an unquan­
tized model as w1 and use QAT training as wt+1 = wt− ηt∇F (Q (wt) ; ξt) where ηt is
learning rate and ξt controls randomness of SGD at iterate t. Let us define the best model
as w∗ = argminw F (w).

Our analysis is based on the following assumptions on the objective function F .

Assumption 1 (Convexity). We assume that F is differentiable and convex, i.e.,

−⟨∇F (x),x− y⟩ ≤ −F (x) + F (y) ∀x,y.

Assumption 2 (Bounded Unbiased Gradients). We assume the gradients are unbiased and
bounded.

Eξ[∇F (x; ξ)] = ∇F (x) , Eξ∥∇F (x; ξ) ∥22 ≤ G2 ∀x.

where ξ defines the randomness due to stochastic gradient estimator. The algorithm draws
∇F (x; ξ) instead of ∇F (x).

Assumption 3 (Bounded Quantization Scales). We assume the scales si are uniformly up­
per bounded during the training by a constant S.

Next, we provide an upper bound on the quantization error.

Lemma 2. If assumption 3 holds, we have,

E∥rQ (w) ∥2 ≤
√
dS

Proof. Each dimension of rQ (w) can be at max S. We have d dimensions. Hence,
E∥rQ (w) ∥2 ≤

√
dS

We can then prove the following lemma on the t­th iteration of QAT training.

Lemma 3 (QAT step update). If assumptions 1, 2, and 3 hold and ηt = 1√
T

, we have,

E [F (Q (wt))− F (w∗)] ≤
√
T
2

[
−E∥wt+1 −w∗∥22 + E∥wt −w∗∥22

]
+G
√
dS + 1

2
√
T
G2

Proof. Based on the updatewt+1 = wt−ηt∇F (Q (wt) ; ξt) in the t­th iteration of QAT

171

Paper Iv

training,

E∥wt+1 −w∗∥22 = E∥wt − ηt∇F (Q (wt) ; ξt)−w∗∥22
= E∥wt −w∗∥22 − 2ηtE ⟨∇F (Q (wt) ; ξt) ,wt −w∗⟩+ η2tE∥∇F (Q (wt) ; ξt) ∥22
≤ E∥wt −w∗∥22 − 2ηtE ⟨∇F (Q (wt) ; ξt) ,wt −w∗⟩+ η2tG

2

= E∥wt −w∗∥22 − 2ηtE ⟨∇F (Q (wt)) ,wt −w∗⟩+ η2tG
2

= E∥wt −w∗∥22 − 2ηtE ⟨∇F (Q (wt)) , Q (wt)−w∗⟩
− 2ηtE ⟨∇F (Q (wt)) ,wt −Q (wt)⟩+ η2tG

2

≤ E∥wt −w∗∥22 − 2ηtE (F (Q (wt))− F (w∗))

− 2ηtE ⟨∇F (Q (wt)) ,wt −Q (wt)⟩+ η2tG
2

≤ E∥wt −w∗∥22 − 2ηtE (F (Q (wt))− F (w∗))

+ ηtE ∥∇F (Q (wt))∥2 ∥r (wt)∥2 + η2tG
2

≤ E∥wt −w∗∥22 − 2ηtE (F (Q (wt))− F (w∗)) + 2ηtGE ∥r (wt)∥2 + η2tG
2

≤ E∥wt −w∗∥22 − 2ηtE (F (Q (wt))− F (w∗)) + 2ηtG
√
dS + η2tG

2

where A.2, A.1, ⟨x,y⟩ ≤ ∥x∥2∥y∥2, A.2, and Lemma 2 are used respectively in the in­
equalities. We use the fact that gradients are unbiased as well, A.2. Let ηt = 1√

T
. Note that

the same rate can be obtained with a decreasing learning rate scheme with a couple extra
steps. Rearranging the terms and dividing with the learning rate give the Lemma.

By the telescoping sum of Lemma 3 over all iterations t = 1, . . . , T , we can prove the
convergence of QAT training.

Theorem B.1 (QAT Convergence). For a convex function with bounded unbiased stochas­
tic gradients using a quantization method with bounded scales, we have

E [F (Q (wτ))− F (w∗)] = O

(
1√
T

(
∥w1 −w∗∥22 +G2

)
+G
√
dS

)
where τ is a random variable that takes values in {1, 2, . . . , T} with equal probability³,
T is the number of iterations, w1 is the initial model and w∗ is the optimal model w∗ ∈
argminw F (w), and the remaining constants are defined in the assumptions.

³We could further derive a model bound using Jensen on LHS since the function is convex. This allows us to
avoid introducing another random variable τ , and would give LHS asE

[
F
(

1
T

∑T
t=1 Q (wt)

)
− F (w∗)

]
.

However the model, 1
T

∑T
t=1 Q (wt), is not necessarily a quantized model. Since we are interested in quan­

tized model performance, we further need to argue that the quantization error of the averaged model is small
and that would not change the rate. To avoid these extra steps, we introduced another random variable, τ , for
the sake of simplicity in the proof.

172

Proof. If we average Lemma 3 for all iterations we get,

E

[[
1

T

T∑
t=1

F (Q (wt))

]
− F (w∗)

]
≤ 1

2
√
T

[
−E∥wT+1 −w∗∥22 + E∥w1 −w∗∥22

]
+G
√
dS +

1

2
√
T
G2

≤ 1

2
√
T
∥w1 −w∗∥22 +G

√
dS +

1

2
√
T
G2

Note that LHS is the same if we choose Q (wt) at random from all iterations with equal
probability.

Remark 5. Note that the proof uses a bound on the quantization error in the form of
Lemma 2. Deterministic quantization would have a smaller bound on the norm of the
quantization error, E ∥rQ(w)∥2, compared to the stochastic quantization. This motivates
the use of deterministic quantization during the training phase.

Remark 6. LHS of the convergence rate in Theorem B.1 has two terms. First term decays
with O

(
1√
T

)
which is similar to the SGD rate. The second term is a constant. This

constant term accounts for irreducible loss due to quantization.

C Convergence Analysis of FP8FedAvg­UQ

We note that Fk is the local loss at device k ∈ [K] and F is the average of local functions,
.i.e F (x) = 1

K

∑K
k=1 Fk (w). We assume the number of data points in each device is the

same so that F is a non­weighted average of local functions for the sake of simplicity. We
note that results can be adjusted easily for non­equal dataset size cases. We denote w∗ as
the optimal model of the global loss, .i.e argminF (w). For simplicity, we consider the
balanced clients nk = n

K in our proof. However, the proof can be extended to the general
imbalanced case similar to [23].

Assumption 4 (Smoothness). We assume the functions are L smooth.

∥∇Fk(x)−∇Fk(y)∥2 ≤ L∥x− y∥2 ∀x,y, k.

Property 1. If we have smooth and convex functions, as in [13, 25, 1], for all w,x,y,

−⟨∇Fk (w) ,y − x⟩ ≤ −Fk (y) + Fk (x) +
L

2
∥y −w∥22 .

173

Paper Iv

C.1 Lemmas on the Stochastic Quantization for Model Communication

Lemma 4. Stochastic quantization is unbiased, i.e.,

ErQrand (x) = 0.

Proof. It follows directly from the definition as,

ErQrand (x) = EQrand (x)− x

= s
(x
s
−
⌊x
s

⌋)
⊙
(⌊x

s

⌋
+ 1
)
+ s

(
1− x

s
+
⌊x
s

⌋)
⊙
⌊x
s

⌋
− x = 0

where ⊙ denotes the element­wise product.

Lemma 5. Let Qrand be the stochastic unbiased quantization satisfying assumption 3 .
Then we have,

E
∥∥rQrand (x)

∥∥2
2
≤ S ∥x∥1 ≤ S

√
d ∥x∥2

Proof. Let’s start with a scalar case and we extend it to a vector case.

E
∣∣rQrand (x)

∣∣2 = s2
(x
s
−
⌊x
s

⌋)(⌊x
s

⌋
+ 1− x

s

)2
+ s2

(
1− x

s
+
⌊x
s

⌋)(⌊x
s

⌋
− x

s

)2
= s2

(x
s
−
⌊x
s

⌋)(
1 +

⌊x
s

⌋
− x

s

)
≤ s2min

(x
s
−
⌊x
s

⌋
, 1− x

s
+
⌊x
s

⌋)
≤ s2

∣∣∣x
s

∣∣∣ ≤ S|x|
where inequalities follow from the fact that x

s −
⌊
x
s

⌋
≤ 1.

We can add the scalar variances to bound a vector variance as,

E
∥∥rQrand (x)

∥∥2
2
=
∑
i∈[d]

E
∥∥rQrand ([x]i)

∥∥2
2
≤ S

∑
i∈[d]

|[x]i| = S ∥x∥1 ≤ S
√
d ∥x∥2

where we use Cauchy–Schwarz inequality in the last step.

Lemma 6 (Quantization Error Decomposition). Let assumption 3 holds. Both uniform
and FP8 quantization satisfies,

E |rQ (Q (x) + y)|2 ≤ S |y| .

For d dimensional vectors we get,

E ∥rQ (Q (x) + y)∥22 ≤ S
√
d ∥y∥2 .

174

Proof. We give a proof for scalar case. Vector version comes from upper bounding scalar
case using Cauchy­Schwarz. Note that variance is higher for randomized quantization so
let’s prove the bound for Qrand. Due to symmetry, we can assume Qrand (x) ≥ 0.

Let’s define grid points as gi where g0 = 0 and gi+1 > gi. Note that due to quantization
definitions, we have gi%(gi+1 − gi) = 0, .i.e ∃k ∈ Z+ such that gi = k (gi+1 − gi).
Furthermore, we have a finer resolution close to 0, .i.e gi+1 − gi ≥ gi − gi−1.

We extensively use a step in Lemma 5 as,

E
∣∣rQrand (z)

∣∣2 = s2qz (1− qz) ≤ s2min (qz, 1− qz) ≤ s2
∣∣∣z
s

∣∣∣ = s|z|

where qz = z
s −

⌊
z
s

⌋
. We use this relation by plugging in z = Qrand (x) + y and investi­

gating qQrand(x)+y.

Since Qrand (x) is already quantized, ∃i ≥ 0 such that Qrand (x) = gi. Let gj+1 >
Qrand (x) + y ≥ gj .

Let y = δ + gj − gi. Then we have gj+1 > δ + gj ≥ gj =⇒ gj+1 − gj > δ ≥ 0. We
also know gj+1 − gi > y ≥ gj − gi.

We have, by definition,

qQrand(x)+y =
gj + δ

gj+1 − gj
−
⌊

gj + δ

gj+1 − gj

⌋
=

δ

gj+1 − gj
−
⌊

δ

gj+1 − gj

⌋
= qδ

since gj is a multiple gj+1 − gj .

Let’s look at different cases.

Case i ≤ j

Note that gj − gi ≥ 0 so that |y| = |δ + gj − gi| ≥ |δ|. Then, we have,

E
∣∣rQrand (Q (x) + y)

∣∣2 ≤ (gj+1 − gj)2min (qδ, 1− qδ)
≤ (gj+1 − gj) |δ| ≤ S|δ| ≤ S|y| .

Case i > j + 1

Note that gj+1 − gi < 0 and y is negative. Let’s look at magnitude of y and δ.

0 > gj+1 − gi > y ≥ gj − gi =⇒ |y| > gi − gj+1 ≥ gj+2 − gj+1.

175

Paper Iv

We already know that gj+1 − gj > δ ≥ 0. Then we have,

|y| > gj+2 − gj+1 ≥ gj+1 − gj > δ

Since |y| > |δ|, we get,

E
∣∣rQrand (Q (x) + y)

∣∣2 ≤ (gj+1 − gj)2min (qδ, 1− qδ) ≤ (gj+1 − gj) |δ|
≤ S|δ| ≤ S|y| .

Case i = j + 1

We have y = δ + gj − gi = δ − (gj+1 − gj). Let’s look at qδ as,

qδ =
δ

gj+1 − gj
−
⌊

δ

gj+1 − gj

⌋
=
δ − (gj+1 − gj)
gj+1 − gj

−
⌊
δ − (gj+1 − gj)
gj+1 − gj

⌋
=

y

gj+1 − gj
−
⌊

y

gj+1 − gj

⌋
= qy

Then we have,

E
∣∣rQrand (Q (x) + y)

∣∣2 ≤ (gj+1 − gj)2min (qδ, 1− qδ)
= (gj+1 − gj)2min (qy, 1− qy) ≤ (gj+1 − gj) |y| ≤ S|y|.

Please note that the above proof holds for any quantization scheme of which the grid is
symmetric with respect to zero and the bin size increases monotonically going from zero to
plus or minus infinity. The FP8 quantization obviously satisfies this condition.

C.2 Lemma on a Single Communication Round

We define some useful quantities. For simplicity in the proof, let us define auxiliary models
as,

vk
t,u+1 = vk

t,u − ηt∇Fk

(
Qdet

(
vk
t,u

)
; ξkt,u

)
∀u ∈ [U], vk

t,1 = Qrand (wt)

176

where U is the total number of local updates per communication round per device. Fur­
thermore, we can unroll the recursion as,

vk
t,U+1 = vk

t,U − ηt∇Fk

(
Qdet

(
vk
t,U

)
; ξkt,U

)
= vk

t,UE−1 − ηt∇Fk

(
Qdet

(
vk
t,U−1

)
; ξkt,U−1

)
− ηt∇Fk

(
Qdet

(
vk
t,U

)
; ξkt,U

)
= . . . = Qrand (wt)− ηt

∑
u∈[U]

∇Fk

(
Qdet

(
vk
t,u

)
; ξkt,u

)

It is clear to see that wk
t+1 = vk

t,U+1 for active devices. Let’s define inactive device wk
t+1 =

vk
t,U+1 as well. Note that this is just for notation and the algorithm is unchanged. Because

if k is not active we do not use wk
t+1 in our algorithm. Let us define a drift quantity similar

to [13].

Vt =
1

KU

∑
k∈[K]

∑
u∈[U]

E
∥∥∥Qrand (wt)−Qdet

(
vk
t,u

)∥∥∥2
2
. (11)

Note that if local models diverge, we get a higher Vt. We can obtain the following lemma
for a single communication round of the FP8FedAvg­UQ algorithm.

Lemma 7. If assumptions 1, 2, 3, 4 hold and we use an unbiased quantization for model
transmission, we have,

E∥wt+1 −w∗∥22 ≤ E ∥wt −w∗∥22 − 2UηtE (F (Qrand (wt))− F (w∗))

+ ηtLUVt + 2S
√
dGUηt + η2tU

2G2 (12)

Vt ≤ 18U3S
√
dGηt + 9U2η2tG

2 (13)

Proof. First, we prove Eq. 12. Due to the model­to­server communication and the model
aggregation on the server in the t­th round, we have

E ∥wt+1 −w∗∥22 = E

∥∥∥∥∥∥ 1P
∑
k∈Pt

Qrand

(
wk

t+1

)
−w∗

∥∥∥∥∥∥
2

2

≤ 1

P
E
∑
k∈Pt

∥∥∥Qrand

(
wk

t+1

)
−w∗

∥∥∥2
2
=

1

K

∑
k∈[K]

E
∥∥∥Qrand

(
wk

t+1

)
−w∗

∥∥∥2
2

where we use definition of wt+1 and triangular inequality (∥∑n∈[N] an∥
2≤N

∑
n∈[N]∥an∥

2).
Lastly, we use the fact that active devices are sampled uniformly at random so that each

177

Paper Iv

device has an activation probability of P
K . Let’s continue as

E ∥wt+1 −w∗∥22 ≤
1

K

∑
k∈[K]

E
∥∥∥Qrand

(
wk

t+1

)
−w∗

∥∥∥2
2

=
1

K

∑
k∈[K]

E
∥∥∥rQrand

(
wk

t+1

)
+wk

t+1 −w∗

∥∥∥2
2

=
1

K

∑
k∈[K]

E
∥∥∥rQrand

(
wk

t+1

)∥∥∥2
2
+ 2E

〈
rQrand

(
wk

t+1

)
,wk

t+1 −w∗

〉
+ E

∥∥∥wk
t+1 −w∗

∥∥∥2
2


=

1

K

∑
k∈[K]

E
∥∥∥rQrand

(
wk

t+1

)∥∥∥2
2
+ E

∥∥∥wk
t+1 −w∗

∥∥∥2
2



where we use the fact that Qrand is an unbiased quantizer. Let’s bound E
∥∥wk

t+1 −w∗
∥∥2

as

E
∥∥∥wk

t+1 −w∗

∥∥∥2
2
= E

∥∥∥∥∥∥Qrand (wt)−w∗ − ηt
∑
u∈[U]

∇Fk

(
Qdet

(
vk
t,u

)
; ξkt,u

)∥∥∥∥∥∥
2

2

=E ∥Qrand (wt)−w∗∥22 − 2ηt
∑
u∈[U]

E
〈
Qrand (wt)−w∗,∇Fk

(
Qdet

(
vk
t,u

)
; ξkt,u

)〉

+ η2tE

∥∥∥∥∥∥
∑
u∈[U]

∇Fk

(
Qdet

(
vk
t,u

)
; ξkt,u

)∥∥∥∥∥∥
2

2

≤E ∥Qrand (wt)−w∗∥22 − 2ηt
∑
u∈[U]

E
〈
Qrand (wt)−w∗,∇Fk

(
Qdet

(
vk
t,u

)
; ξkt,u

)〉
+ η2tU

2G2

=E ∥Qrand (wt)−w∗∥22 − 2ηt
∑
u∈[U]

E
〈
Qrand (wt)−w∗,∇Fk

(
Qdet

(
vk
t,u

))〉
+ η2tU

2G2

≤E ∥Qrand (wt)−w∗∥22

+ 2ηt

∑
u∈[U]

E [−Fk (Qrand (wt)) + Fk (w∗)] +
L

2

∥∥∥Qrand (wt)−Qdet

(
vk
t,u

)∥∥∥2


+ η2tU
2G2

=E ∥Qrand (wt)−w∗∥22 − 2UηtE (Fk (Qrand (wt))− Fk (w∗))

178

+ ηtL
∑
u∈[U]

∥∥∥Qrand (wt)−Qdet

(
vk
t,u

)∥∥∥2
2
+ η2tU

2G2

where we use the fact that gradients are bounded, ∇Fk

(
Qdet

(
vk
t,u

)
; ξkt,u

)
is an unbiased

gradient estimate and property 1. We further restate E ∥Qrand (wt)−w∗∥22 as,

E ∥Qrand (wt)−w∗∥22 = E
∥∥rQrand (wt) +wt −w∗

∥∥2
2

= E
∥∥rQrand (wt)

∥∥2
2
+ 2E

〈
rQrand (wt) ,wt −w∗

〉
+ E ∥wt −w∗∥22

= E
∥∥rQrand (wt)

∥∥2
2
+ E ∥wt −w∗∥22

where we use the fact that Qrand is an unbiased quantizer. Then, we have,

E
∥∥∥wk

t+1 −w∗

∥∥∥2
2

≤ E ∥Qrand (wt)−w∗∥22 − 2UηtE (Fk (Qrand (wt))− Fk (w∗))

+ ηtL
∑
u∈[U]

∥∥∥Qrand (wt)−Qdet

(
vk
t,u

)∥∥∥2
2
+ η2tU

2G2

= E
∥∥rQrand (wt)

∥∥2
2
+ E ∥wt −w∗∥22 − 2UηtE (Fk (Qrand (wt))− Fk (w∗))

+ ηtL
∑
u∈[U]

∥∥∥Qrand (wt)−Qdet

(
vk
t,u

)∥∥∥2
2
+ η2tU

2G2

Using Lemma 6 we have,

E
∥∥∥rQrand

(
wk

t+1

)∥∥∥2
2
= E

∥∥∥∥∥∥rQrand

Qrand (wt)− ηt
∑
u∈[U]

∇Fk

(
Qdet

(
vk
t,u

)
; ξkt,u

)∥∥∥∥∥∥
2

2

≤ S
√
dE

∥∥∥∥∥∥ηt
∑
u∈[U]

∇Fk

(
Qdet

(
vk
t,u

)
; ξkt,u

)∥∥∥∥∥∥
2

≤ S
√
dGUηt

where U is the number of local iterates. Finally, we can upper bound RHS as,

E ∥wt+1 −w∗∥22 ≤
1

K

∑
k∈[K]

E
∥∥∥rQrand

(
wk

t+1

)∥∥∥2
2
+ E

∥∥∥wk
t+1 −w∗

∥∥∥2
2


≤ E ∥wt −w∗∥22 − 2UηtE (F (Qrand (wt))− F (w∗))

+
ηtL

K

∑
k∈[K]

∑
u∈[U]

∥∥∥Qrand (wt)−Qdet

(
vk
t,u

)∥∥∥2
2
+ 2S

√
dGUηt + η2tU

2G2

= E ∥wt −w∗∥22 − 2UηtE (F (Qrand (wt))− F (w∗)) + ηtLUVt + 2S
√
dGUηt + η2tU

2G2

179

Paper Iv

This completes Eq. 12’s proof.

Remark 7. Note that we extensively use unbiasedness of stochastic quantization via
E
〈
·, rQrand (w)

〉
= 0. Otherwise, we need to upper bound this term. There exists cases

where a biased resetting diverges [5]. Hence, stochastic quantization is needed for conver­
gence.

Next, we prove Eq. 13 for upper bounding the drift Vt in round t defined in (13).

E
∥∥∥Qdet

(
vk
t,u+1

)
−Qrand (wt)

∥∥∥2
2

= E
∥∥∥rQdet

(
vk
t,u+1

)
+ vk

t,u+1 −Qrand (wt)
∥∥∥2
2

= E
∥∥∥rQdet

(
vk
t,u+1

)
+ vk

t,u − ηt∇Fk

(
Qdet

(
vk
t,u

)
; ξkt,u

)
−Qrand (wt)

∥∥∥2
2

= E
∥∥∥rQdet

(
vk
t,u+1

)
− rQdet

(
vk
t,u

)
− ηt∇Fk

(
Qdet

(
vk
t,u

)
; ξkt,u

)
+Qdet

(
vk
t,u

)
−Qrand (wt)

∥∥∥2
2

≤ U

U − 1
E
∥∥∥Qdet

(
vk
t,u

)
−Qrand (wt)

∥∥∥2
2

+ UE
∥∥∥rQdet

(
vk
t,u+1

)
− rQdet

(
vk
t,u

)
− ηt∇Fk

(
Qdet

(
vk
t,u

)
; ξkt,u

)∥∥∥2
2

≤ U

U − 1
E
∥∥∥Qdet

(
vk
t,u

)
−Qrand (wt)

∥∥∥2
2

+ 3UE
∥∥∥rQdet

(
vk
t,u+1

)∥∥∥2
2
+ 3UE

∥∥∥rQdet

(
vk
t,u

)∥∥∥2
2
+ 3Uη2tE

∥∥∥∇Fk

(
Qdet

(
vk
t,u

)
; ξkt,u

)∥∥∥2
2

≤ U

U − 1
E
∥∥∥Qdet

(
vk
t,u

)
−Qrand (wt)

∥∥∥2
2

+ 3UE
∥∥∥rQdet

(
vk
t,u+1

)∥∥∥2
2
+ 3UE

∥∥∥rQdet

(
vk
t,u

)∥∥∥2
2
+ 3Uη2tG

2

where we use ∥x+ y∥22 ≤
(
1 + 1

A

)
∥x∥22+(A+1) ∥y∥22, triangular inequality and bound

on the gradients.

Let’s bound E
∥∥rQdet

(
vk
t,u+1

)∥∥2
2

using Lemma 6 as,

E
∥∥∥rQdet

(
vk
t,u+1

)∥∥∥2
2
= E

∥∥∥∥∥∥rQdet

Qrand (wt)− ηt
∑
s∈[u]

∇Fk

(
Qdet

(
vk
t,s

)
; ξkt,s

)∥∥∥∥∥∥
2

2

≤ S
√
dE

∥∥∥∥∥∥ηt
∑
s∈[u]

∇Fk

(
Qdet

(
vk
t,s

)
; ξkt,s

)∥∥∥∥∥∥
2

≤ S
√
dGuηt

180

This leads to

E
∥∥∥Qdet

(
vk
t,u+1

)
−Qrand (wt)

∥∥∥2
2

≤ U

U − 1
E
∥∥∥Qdet

(
vk
t,u

)
−Qrand (wt)

∥∥∥2
2
+ 3UE

∥∥∥rQdet

(
vk
t,u+1

)∥∥∥2
2

+ 3UE
∥∥∥rQdet

(
vk
t,u

)∥∥∥2
2
+ 3Uη2tG

2

≤ U

U − 1
E
∥∥∥Qdet

(
vk
t,u

)
−Qrand (wt)

∥∥∥2
2
+ 6U2S

√
dGηt + 3Uη2tG

2

Let’s unroll the recursion noting that Qdet
(
vk
t,1

)
= Qrand (wt),

E
∥∥∥Qdet

(
vk
t,u+1

)
−Qrand (wt)

∥∥∥2
2

≤ U

U − 1
E
∥∥∥Qdet

(
vk
t,u

)
−Qrand (wt)

∥∥∥2
2
+ 6U2S

√
dGηt + 3Uη2tG

2

≤
(

U

U − 1

)2

E
∥∥∥Qdet

(
vk
t,u−1

)
−Qrand (wt)

∥∥∥2
2

+
(
6U2S

√
dGηt + 3Uη2tG

2
)(

1 +
U

U − 1

)
. . .

≤
(
6U2S

√
dGηt + 3Uη2tG

2
)(

1 +
U

U − 1
+ . . .+

(
U

U − 1

)u−1
)

Let’s bound the second term in the RHS as,

1 +
U

U − 1
+ . . .+

(
U

U − 1

)u−1

≤ u
(

U

U − 1

)u−1

= u

(
1 +

1

U − 1

)u−1

≤ U
(
1 +

1

U − 1

)U−1

≤ Ue ≤ 3U

Hence we get

E
∥∥∥Qdet

(
vk
t,u+1

)
−Qrand (wt)

∥∥∥2
2
≤ 18U3S

√
dGηt + 9U2η2tG

2 (14)

Note that we inherently assume U > 1 in order to have a coefficient as U
U−1 . Assume

U = 1. Then we have, Vt = 0 by definition and Eq. 14 holds. If we average Eq. 14 over
U and K we get Eq. 13 as, Vt ≤ 18U3S

√
dGηt + 9U2η2tG

2.

181

Paper Iv

C.3 Proof of the Main Theorem

Now, we are ready to present the main theorem on the convergence of the proposed FP8FedAvg­
UQ algorithm.

Theorem C.1 (FP8FedAvg­UQ Convergence). For convex and smooth federated losses
with bounded unbiased stochastic gradients using a quantization method with bounded
scales during training and an unbiased quantization with bounded scales for model trans­
fer, we have,

E [F (Q (wτ))− F (w∗)]

= O

(
1√
TU
∥w1 −w∗∥22 +

1

T
UG2L+

1√
T
G
√
U
(
G+ U2S

√
dL
)
+ S
√
dG

)
where τ is a random variable that takes values in {1, 2, . . . , T} with equal probability,
T is the number of rounds, U is the total number of updates done in each round, the
quantization scales si are uniformly bounded by S, w1 is the initial model, and w∗ is an
optimal solution of (1).

Combining Eq. 12 and ηtLU times Eq. 13 gives,

E∥wt+1 −w∗∥22 ≤ E ∥wt −w∗∥22 − 2UηtE (F (Qrand (wt))− F (w∗))

+ 2S
√
dGUηt + η2tU

2G2 + 18U4S
√
dGη2tL+ 9U3η3tG

2L

Rearranging the terms and dividing both sides with 2Uηt gives,

E [F (Qrand (wt))− F (w∗)] ≤
1

2Uηt

(
−E∥wt+1 −w∗∥22 + E ∥wt −w∗∥22

)
+ S
√
dG+

1

2
ηtUG

2 + 9U3S
√
dGηtL+

9

2
U2η2tG

2L

Let ηt = 1√
UT

. Note that we can get the same rate with a decreasing learning rate as well.
Let’s average the inequality over t as,

182

E

[[
1

T

T∑
t=1

F (Qrand (wt))

]
− F (w∗)

]

≤ 1

2
√
TU

[
−E∥wT+1 −w∗∥22 + E∥w1 −w∗∥22

]
+

1

T

9

2
UG2L

+
1√
T
G
√
U

(
1

2
G+ 9U2S

√
dL

)
+ S
√
dG

≤ 1

2
√
TU
∥w1 −w∗∥22 +

1

T

9

2
UG2L+

1√
T
G
√
U

(
1

2
G+ 9U2S

√
dL

)
+ S
√
dG

= O

(
1√
TU
∥w1 −w∗∥22 +

1

T
UG2L+

1√
T
G
√
U
(
G+ U2S

√
dL
)
+ S
√
dG

)

183

Paper V

Reprinted from Proc. InterSpeech, 2022, pp. 1791­1795, © 2022, with permission from ISCA. Minor typos
in equation (1) and (9) that appeared in the published version of this paper have been corrected in this reprint.
Also, the term ”mean average error” has been corrected to ”mean absolute error”.

Extending GCC­PHAT using Shift Equivariant Neural Networks

AxEL BERg1,2, MARk O’CONNOR3, KALLE ÅSTRöM2, MAgNuS OSkARSSON2

1Arm, 2Centre for Mathematical Sciences, Lund University, 3Tenstorrent

Abstract: Speaker localization using microphone arrays depends on accurate time
delay estimation techniques. For decades, methods based on the generalized cross
correlation with phase transform (GCC­PHAT) have been widely adopted for this
purpose. Recently, the GCC­PHAT has also been used to provide input features to
neural networks in order to remove the effects of noise and reverberation, but at the
cost of losing theoretical guarantees in noise­free conditions. We propose a novel
approach to extending the GCC­PHAT, where the received signals are filtered using
a shift equivariant neural network that preserves the timing information contained
in the signals. By extensive experiments we show that our model consistently reduces
the error of the GCC­PHAT in adverse environments, with guarantees of exact time
delay recovery in ideal conditions.

1 Introduction

Time delay estimation (TDE) is an essential component in many applications involving
acoustic localization, including sound source tracking [7], robotics [14] and self­calibration
[3]. In a typical setup, time delays are estimated by analyzing the signals received by a set
of synchronized microphones with known positions. The transmitted waveform, which
is assumed to have originated from a single sound source, is considered unknown, as is
the time at which it was transmitted. Therefore, the time of travel from the source to the
microphones cannot be obtained directly, but instead the time difference of arrival (TDOA)
is measured by correlating the received signals. The set of TDOA measurements from a
microphone array can then be used to compute the signal direction of arrival (DOA) or the
sound source position using multilateration [2].

The generalized cross­correlation (GCC) has been the most widely adopted method for
TDOA estimation for many decades. In particular, the phase transform (GCC­PHAT)
[13] filter is commonly used in many acoustic scenarios, due to its fast implementation
and robustness in adverse environments. However, with the recent advent of deep learn­
ing, a wide variety of methods for sound source localization estimation have been developed
without the use of cross­correlations, instead processing only the raw waveforms or spectro­
grams of the signals [8]. Furthermore, several of these methods do not explicitly estimate
the TDOAs, but instead train the models to directly predict the DOA [4, 16] or sound
source coordinates [24].

187

Paper v

fθ

fθ

x1

x2

GCC-PHAT

y1

y2

R̃
gθ′ p(m|x1,x2)

Figure 1: An illustration of our proposed method. The input signals are first filtered using the same neural network fθ , then
correlated using GCC-PHAT, whose outputs are mapped to a probability distribution over time delays by another neural
network gθ′ .

Other works have instead attempted to combine GCCs with neural networks [27, 9]. Co­
manducci et al. [6] used an autoencoder network on the outputs of a frequency sliding
GCC [5] in order to de­noise the correlations. Wang et al. [25] instead used a neural net­
work for predicting a speech mask that can be interpreted as a learnable frequency­selective
linear filter. The speech mask is then applied together with the PHAT when correlating
the received signals. Notably, Salvati et al. [21] proposed computing multiple GCCs, each
with its own weighted transfer function, and processing the outputs using a convolutional
neural network (CNN) that predicts the TDOA for the two signals. Although this method
reduces the average error, it struggles to make accurate prediction within a few samples,
which is required for high­precision localization.

We propose a novel method for TDOA estimation by filtering the raw waveforms using
a neural network before computing the GCC­PHAT. The network can then be trained
to exploit patterns in the data, e.g. the acoustic properties of human speech, in order to
remove the effects of noise and reverberation. Furthermore, by using a shift equivariant
CNN (SE­CNN), the network can learn to find useful representations while preserving
the timing information contained in the signals.

2 Method

Prerequisites. Consider a reverberant three­dimensional room with two microphones po­
sitioned at r1, r2 ∈ R3 and a single sound source positioned at rs ∈ R3 emitting an
unknown acoustic signal s. Assuming a time­window of N samples, the received signals
x1,x2 ∈ RN at the two microphones can be written as

x1[n] = (h1 ∗ s)[n] + w1[n],

x2[n] = (h2 ∗ s)[n] + w2[n],
(1)

for n = 0, .., N − 1. Here h1[n], h2[n] and w1[n], w2[n] are the channel impulse re­
sponses from the source to the microphones and additive white noise respectively. Taking

188

the discrete Fourier transform (DFT) of both sides of (1) yields

X1[k] = H1[k]S[k] +W1[k],

X2[k] = H2[k]S[k] +W2[k],
(2)

for k = 0, ..., N − 1. With this notation, the GCC is defined as

R[m] =
1

N

N−1∑
k=0

ϕ[k]X1[k]X
∗
2 [k]e

i2πkm
N , (3)

for m = −τmax, ..., τmax. The maximal delay is typically taken to be τmax = ⌊||r1 −
r2||Fs/c⌋ where c is the speed of sound and Fs is the sample rate. Furthermore, ϕ[k] is
a weighting function. In particular, the PHAT [13] weighting function is given by ϕ[k] =
1/|X1[k]X

∗
2 [k]|. The estimated time delay is then obtained as

τ̂ = argmax
m

R[m]. (4)

The PHAT can be regarded as a weighting function that places equal importance on all
frequencies in the signal spectrum and only considers the phase of received signals. In an
anechoic noise­free environment, the GCC­PHAT outputs a unit impulse centered at the
correct time­delay. In the presence of echoes, the PHAT filter attenuates the interference to
some extent by limiting the smearing of the correlation, which makes it possible to recover
the line of sight component. However, the PHAT also introduces errors from frequency
components outside the signal spectrum, which motivates the introduction of a learnable
filter that can suppress noise and interference.

Extending GCC­PHAT. The main idea of the proposed method is to apply a non­linear
filter function on the received signals in order to remove effects of reverberation and noise,
which can be realized by using a neural network. However, in the process of doing so,
the network needs to preserve the timing information stored in the signals, since this is
what we seek to recover when estimating the TDOA. Hence, we seek to employ a network
architecture that is explicitly designed for this purpose, and the following definition is then
useful.

Definition 2.1. Let x be a signal and (x)τ denote a column­wise circular shift of x. Then
f : RN → RN×L is said to be equivariant with respect to time shifts if for any time lag
τ ∈ Z we have that f((x)τ) = (f(x))τ .

Although CNNs are generally approximately shift­equivariant, not all implementations
satisfy this property exactly, due to edge effects. We therefore employ circular padding of
the signals before each convolutional layer in the network in order to preserve the timing

189

Paper v

−20 −10 0 10 20
m

R
[m

]

−20 −10 0 10 20
m

R̃
[m
,l

]

−20 −10 0 10 20
m

p(
m
|x

1,
x 2

)

−20 −10 0 10 20
m

R
[m

]

(a) Baseline GCC-PHAT output R.

−20 −10 0 10 20
m

R̃
[m
,l

]

(b) GCC-PHAT output R̃ of filtered
signals.

−20 −10 0 10 20
m

p(
m
|x

1,
x 2

)

(c) Classifier output p(m|x1,x2).

Figure 2: Examples of the baseline GCC-PHAT output R and R̃ for the unfiltered speech signals x1,x2 and the filtered signals
y1,y2 respectively, where the true delay is marked with a red line. For better visualization, only the first five columns
of R̃ are shown. In an ideal environment, the correlations are identical up round-off errors. However, in an adverse
environment not all correlations exhibit a clear peak, but the classifier is able to recover the correct delay by combining
them into a single probability distribution p(m|x1,x2). Top row: ideal noise-free environment. Bottom row: noisy
environment.

information completely. For further discussion on convolutions and shift equivariance, we
refer to [11].

An overview of the proposed method is illustrated in Figure 1. Let fθ : RN → RN×L

denote the SE­CNN parameterized by a set of learnable weights θ. The network receives
input signals of length N and outputs L new signals of the same length

y1 = fθ(x1),

y2 = fθ(x2),
(5)

where y1,y2 ∈ RN×L, such that each column of the outputs represent a filtered signal.
By letting L > 1, the network can learn to apply different non­linear filters that capture
different properties of the transmitted signals. For each of the L signal components, we
then apply the GCC­PHAT individually as

R̃[m, l] =
1

N

N−1∑
k=0

Y1[k, l]Y
∗
2 [k, l]

|Y1[k, l]Y ∗
2 [k, l]|

e
i2πkm

N , (6)

where Y1,Y2 are the column­wise DFTs of y1,y2 and R̃ ∈ R(2τmax+1)×L. Now if x1 =
(x2)τ , then then it follows from the shift equivariance of the network that y1 = (y2)τ ,
or equivalently that Y1[k, l] = Y2[k, l]e

− i2πkτ
N . Evaluating the GCC­PHAT of the two

190

filtered signals yields

R̃[m, l] =
1

N

N−1∑
k=0

Y1[k, l]Y
∗
1 [k, l]e

− i2πkτ
N

|Y1[k, l]Y ∗
1 [k, l]e

− i2πkτ
N |

e
i2πkm

N

=
1

N

N−1∑
k=0

e
i2πk(m−τ)

N = δτ [m],

(7)

where δτ is a unit pulse centered at time τ . This shows that in an ideal anechoic noise­free
environment, applying fθ to the signals will not prevent the GCC­PHAT from recovering
the timing perfectly, as can be seen in Figure 2b. However, in a reverberant and noisy
environment, the network is trained to learn to remove these effects and output signal
representations that are equal up to a circular time shift.

In order to output a probability distribution over time shifts, the GCC­PHAT output is
fed into another network gθ′ : R(2τmax+1)×L → R(2τmax+1), with its own set of parameters
θ′ that combines the L different correlations and applies softmax normalization in the final
layer. Consequently, the final predictions are obtained as

p(m|x1,x2) = gθ′(R̃), (8)

such that p(m|x1,x2) contains the probabilities for each time delaym = −τmax, ..., τmax
considered in the correlation. As can be seen in Figure 2c, the trained classifier is able to
combine a set of noisy correlations into an accurate prediction.

The two networks fθ and gθ′ can be trained jointly by minimizing the cross­entropy (CE)
loss function, which for a single training example becomes

L(x1,x2) = −
τmax∑

m=−τmax

δτ [m] log p(m|x1,x2), (9)

where τ = round((||r1 − rs|| − ||r2 − rs||)Fs/c) is the true time delay rounded to the
nearest sample. This approach can be regarded as a form of regression­via­classification
(RvC), where the model tries to classify the set of correlations into the correct time delay.
In contrast, a regression­based approach, such as the one proposed in [21], tries to estimate
τ directly and the model is trained to minimize the mean squared error (MSE). In Section
3 we compare the two methods experimentally in order to justify our RvC approach.

Network architecture. In order to efficiently process the raw waveforms, we use the SincNet
[20] architecture, which consists of a series of parallel band­pass filters with learnable cutoff
frequencies, in the first layer of fθ. Specifically, we use 128 filters of length 1023. The
following layers consist of regular convolutions with filter lengths of 11, 9 and 7, each with
L = 128 output channels. Similarly, gθ′ consists of 4 convolutional layers with filters of

191

Paper v

length 11, 9, 7 and 5, all of which has 128 output channels, except for the last layer that
has a single output channel which models the log­probabilities for each time delay. In both
networks, we use BatchNorm [10] and LeakyReLU [15] activations in each layer.

3 Experiments

We perform a series of simulated experiments in order to evaluate our method and com­
pare it to baselines. In order to simulate realistic sound propagation, we use Pyroomacous­
tics [22], which enables modeling of reverberant indoor environments based on the image
source method [1]. The audio signals were collected from the LibriSpeech dataset [18],
which contains speech recordings from read audiobooks in English, sampled at Fs = 16
kHz. We split the data based on speakers, such that 40 speakers were used for training,
3 for validation and 3 for testing. For each recording we first remove silent parts using a
voice activity detector and then extract a 2 second long snippet from each recording. This
results in 1892 snippets for training (corresponding to roughly one hour of audio), 188 for
validation and 216 for testing. During training, we randomly sample a frame ofN = 2048
samples for each snippet, while during testing we evaluate on each of 15 non­overlapping
windows, for a total of 216 · 15 = 3240 time delay estimates.

Network training was done inside a simulated room of dimension 7 × 5 × 3 m, with
microphones placed roughly in the middle of the room at r1 = [3.5, 2.25, 1.5]T and r2 =
[3.5, 2.75, 1.5]T m from the origin. This setup results in a maximum delay of τmax = 23
samples. The source positions rs were sampled from randomly from a uniform distribution
over the entire room for each training sample. Furthermore, random reverberation times
T60 and signal­to­noise ratios (SNR) were uniformly sampled in the ranges [0.2, 1.0] s and
[0, 30 dB] respectively. We use the Adam optimizer [12] with a batch size of 32, a learning
rate of 0.001 with a cosine decay schedule and train the network for 30 epochs.¹

For comparison, we implement the PGCC­PHAT method following the description in
[21]. The method uses a CNN that takes several differently weighted GCC­PHAT corre­
lations as input and combines them into a single time delay prediction. Each correlation
has a different filter ϕβ[k] = 1/|X1[k]X

∗
2 [k]|β , for β ∈ {0, 0.1, ..., 1}. In contrast to our

method, the network is trained to minimize the MSE loss.

The trained models were evaluated in a different room with dimensions 6 × 4 × 2.5 m
and with the microphones placed at r1 = [3, 1.75, 1.25]T and r2 = [3, 2.25, 1.25]T m
respectively, and the source positions were again sampled randomly across the whole room.
Each recording was evaluated for SNRs∈ {0, 6, 12, 18, 24, 30} dB and reverberation times
T60 ∈ {0.2, 0.4, 0.6, 0.8, 1} s.

¹Code available at: https://github.com/axeber01/ngcc

192

https://github.com/axeber01/ngcc

0 10 20 30
SNR [dB]

10

15

20
M

A
E

[cm
]

GCC-PHAT
PGCC-PHAT
Ours

(a) Mean absolute error for different
SNRs

0.2 0.4 0.6 0.8 1.0
T60 [s]

5

10

15

20

M
A

E
[cm

]

(b) Mean absolute error for different
reverberation times

0 10 20 30
SNR [dB]

40

50

60

Ac
c@

10
cm

[%
]

(c) Accuracy for different SNRs

0.2 0.4 0.6 0.8 1.0
T60 [s]

40

60

80

Ac
c@

10
cm

[%
]

(d) Accuracy for different reverbera-
tion times

0 5 10
η [cm]

0.0

0.2

0.4

0.6

P
(|τ
−
τ̂
|<

η
)

GCC-PHAT
PGCC-PHAT
Ours

(e) Average probability of a correct de-
tection at various thresholds

Figure 3: Performance of the different methods in a room of size 6 × 4 × 2.5 m.

The results are presented in Figure 3, where the mean absolute error (MAE) and accuracy
is presented for different SNRs and reverberation times. All TDOA errors have been con­
verted to their corresponding distance errors and the accuracy should be interpreted as the
probability P (|τ − τ̂ | < η), where η = 10 cm, since this a typical level of average pre­
cision that can be achieved by an acoustic localization system [17, 26]. For completeness,
we show results for lower thresholds in Figure 3e as well. Our method achieves the high­
est accuracy in all conditions and the lowest MAE for conditions with high SNR or low
reverberation time, consistently outperforming the GCC­PHAT baseline. A comparison
of error distributions for the different methods in a high SNR environment can be seen in
Figure 4. Since PGCC­PHAT has been trained to minimize the MSE, its error distribution
has a smaller tail but fails to make accurate predictions within a few centimeters, which is
necessary for real­world indoor localization. The large number of predictions at τ̂ = 0
is due to imperfect audio pre­processing, which results in some time windows containing
long periods of silence.

In order to disentangle the influence of the CE and MSE loss functions, we ablate the two
by changing only the last layer of the networks. In Table 1 it can be seen that the higher
accuracy of our method cannot be attributed solely to the CE loss, since it is more accurate

193

Paper v

−50 0 50
τ [cm]

−50

0

50
τ̂

[cm
]

GCC-PHAT

MAE: 5.51 cm
Acc@10cm: 82.9 %

−50 0 50
τ [cm]

−50

0

50

τ̂
[cm

]

PGCC-PHAT

MAE: 8.59 cm
Acc@10cm: 71.5 %

−50 0 50
τ [cm]

−50

0

50

τ̂
[cm

]

Ours

MAE: 2.65 cm
Acc@10cm: 93.1 %

Figure 4: Scatter plots of ground truth and predicted time delays for reverberation time T60 = 0.2 s and SNR = 30 dB.

than PGCC­PHAT when trained with the same loss function. However, our method is not
as effective when trained with the MSE loss. We attribute this to the fact that in contrast to
PGCC­PHAT, the entries of our correlation matrix R̃ do not exhibit any time­smearing,
which causes the correlation peaks to be uniformly distributed for incorrect detections.
Nevertheless, the RvC approach is preferable for both methods when accuracy is most
important. Additionally, the smaller number of parameters in our model makes it more
feasible for use in efficient real­time inference on small devices.

In order to demonstrate the effectiveness of using multiple GCC­PHAT correlations, we
ablate the number of channels L in the last layer of our feature extractor fθ, leaving the
other layers unchanged. In Table 2, it can be seen that adding more channels yields better
performance. Moreover, replacing the SincNet layer with a standard learnable convolu­
tion with the same filter length results in a performance drop, which motivates the use of
learnable bandpass filters in the first layer.

Table 1: Results using different loss functions for reverberation time T60 = 0.2 s, averaged over all SNRs.

Model GCC­PHAT PGCC­PHAT Ours

#params 0 11.5M 0.9M
Loss ­ MSE CE MSE CE

RMSE [cm] 15.21 10.87 13.61 12.44 13.24
MAE [cm] 6.84 6.59 5.39 8.38 5.13
Acc@10cm 80.2 80.6 85.7 71.9 86.5

194

Table 2: Results for our method using different number of correlation channels L for reverberation time T60 = 0.2 s, averaged
over all SNRs.

#channels L 1 8 32 128 128 w/o SincNet

MAE [cm] 5.59 5.35 5.23 5.13 5.38
Acc@10cm 84.4 85.6 85.8 86.5 85.4

4 Conclusions

We have demonstrated that our proposed method is able to consistently improve detec­
tion accuracy over the baseline GCC­PHAT and PGCC­PHAT. Furthermore, as the signal
strength increases relative to noise and echoes, in the limit our method is guaranteed to
recover the time delay within sample accuracy. Although incorrect detections sometimes
results in large errors, this is of less practical importance, since robust localization methods
are designed to handle a large fraction of incorrect detections by removing outliers in the
measurements [2, 19, 23]. Moreover, it can be used as a drop­in replacement for GCC­
PHAT, and the outputs from the SE­CNN can be re­used when considering more than
two microphones. We therefore conclude that our method would be a suitable alternative
for time delay estimation in real­world speaker localization scenarios.

In future work, we will consider integrating our method into a full sound source localization
system. This requires tracking delays over time, as well as considering the geometry of
the microphones and sound sources. Here we see further potential of applying machine
learning methods in order to tackle the localization problem with an end­to­end approach.

5 Acknowledgments

This work was partially supported by ELIIT and the Wallenberg AI, Autonomous Systems
and Software Program (WASP), funded by the Knut and Alice Wallenberg Foundation.

References

[1] J. B. Allen and D. A. Berkley. Image method for efficiently simulating small­room
acoustics. The Journal of the Acoustical Society of America, 65(4):943–950, 1979.

[2] K. Åström, M. Larsson, G. Flood, and M. Oskarsson. Extension of Time­Difference­
of­Arrival Self Calibration Solutions using Robust Multilateration. In 2021 29th Eu­
ropean Signal Processing Conference (EUSIPCO), pages 870–874. IEEE, 2021.

195

Paper v

[3] S. Burgess, Y. Kuang, and K. Åström. Toa sensor network self­calibration for receiver
and transmitter spaces with difference in dimension. Signal Processing, 107:33–42,
2015.

[4] S. Chakrabarty and E. A. Habets. Broadband doa estimation using convolutional
neural networks trained with noise signals. In 2017 IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA), pages 136–140. IEEE, 2017.

[5] M. Cobos, F. Antonacci, L. Comanducci, and A. Sarti. Frequency­sliding generalized
cross­correlation: A sub­band time delay estimation approach. IEEE/ACM Transac­
tions on Audio, Speech, and Language Processing, 28:1270–1281, 2020.

[6] L. Comanducci, M. Cobos, F. Antonacci, and A. Sarti. Time difference of arrival
estimation from frequency­sliding generalized cross­correlations using convolutional
neural networks. In ICASSP 2020­2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4945–4949. IEEE, 2020.

[7] D. Diaz­Guerra, A. Miguel, and J. R. Beltran. Robust Sound Source Tracking using
SRP­PHAT and 3D Convolutional Neural Networks. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 29:300–311, 2020.

[8] P.­A. Grumiaux, S. Kitić, L. Girin, and A. Guérin. A survey of sound source localiza­
tion with deep learning methods. arXiv preprint arXiv:2109.03465, 2021.

[9] W. He, P. Motlicek, and J.­M. Odobez. Deep neural networks for multiple speaker
detection and localization. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 74–79. IEEE, 2018.

[10] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. In International conference on machine learning,
pages 448–456. pmlr, 2015.

[11] O. S. Kayhan and J. C. v. Gemert. On translation invariance in cnns: Convolutional
layers can exploit absolute spatial location. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14274–14285, 2020.

[12] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

[13] C. Knapp and G. Carter. The Generalized Correlation Method for Estimation of
Time Delay. IEEE transactions on acoustics, speech, and signal processing, 24(4):320–
327, 1976.

[14] X. Li, L. Girin, F. Badeig, and R. Horaud. Reverberant sound localization with a robot
head based on direct­path relative transfer function. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2819–2826. IEEE, 2016.

196

[15] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural
network acoustic models. In in ICML Workshop on Deep Learning for Audio, Speech
and Language Processing, 2013.

[16] T. N. T. Nguyen, N. K. Nguyen, H. Phan, L. Pham, K. Ooi, D. L. Jones, and W.­
S. Gan. A general network architecture for sound event localization and detection
using transfer learning and recurrent neural network. In ICASSP 2021­2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
935–939. IEEE, 2021.

[17] M. Omologo and P. Svaizer. Use of the crosspower­spectrum phase in acoustic event
location. IEEE Transactions on Speech and Audio Processing, 5(3):288–292, 1997.

[18] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. Librispeech: An ASR Corpus
Based on Public Domain Audio Books. In 2015 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pages 5206–5210. IEEE, 2015.

[19] A. Plinge, F. Jacob, R. Haeb­Umbach, and G. A. Fink. Acoustic microphone geometry
calibration: An overview and experimental evaluation of state­of­the­art algorithms.
IEEE Signal Processing Magazine, 33(4):14–29, 2016.

[20] M. Ravanelli and Y. Bengio. Speaker recognition from raw waveform with sincnet.
In 2018 IEEE Spoken Language Technology Workshop (SLT), pages 1021–1028. IEEE,
2018.

[21] D. Salvati, C. Drioli, and G. L. Foresti. Time Delay Estimation for Speaker Local­
ization Using CNN­Based Parametrized GCC­PHAT Features. In Proc. Interspeech
2021, pages 1479–1483, 2021. doi: 10.21437/Interspeech.2021­988.

[22] R. Scheibler, E. Bezzam, and I. Dokmanić. Pyroomacoustics: A Python Package for
Audio Room Simulation and Array Processing Algorithms. In 2018 IEEE interna­
tional conference on acoustics, speech and signal processing (ICASSP), pages 351–355.
IEEE, 2018.

[23] J. Velasco, D. Pizarro, J. Macias­Guarasa, and A. Asaei. Tdoa matrices: Algebraic
properties and their application to robust denoising with missing data. IEEE Trans­
actions on signal processing, 64(20):5242–5254, 2016.

[24] J. M. Vera­Diaz, D. Pizarro, and J. Macias­Guarasa. Towards End­to­End Acoustic
Localization using Deep Learning: From Audio Signals to Source Position Coordi­
nates. Sensors, 18(10):3418, 2018.

[25] J. Wang, X. Qian, Z. Pan, M. Zhang, and H. Li. Gcc­phat with speech­oriented
attention for robotic sound source localization. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 5876–5883. IEEE, 2021.

197

Paper v

[26] L. Wang, N. Kitaoka, and S. Nakagawa. Robust distant speaker recognition based on
position­dependent cmn by combining speaker­specific gmm with speaker­adapted
hmm. Speech communication, 49(6):501–513, 2007.

[27] X. Xiao, S. Zhao, X. Zhong, D. L. Jones, E. S. Chng, and H. Li. A learning­
based approach to direction of arrival estimation in noisy and reverberant environ­
ments. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 2814–2818. IEEE, 2015.

198

Paper VI

Proc. Detection and Classification of Acoustic Scenes and Events 2024 Workshop (DCASE2024), pp. 16­20.
This work is licensed under a Creative Commons Attribution 4.0 International License.

Learning Multi­Target TDOA Features
for Sound Event Localization and Detection

AxEL BERg1,2, JOHANNA ENgMAN1, JENS GuLIN1,3,
KARL ÅSTRöM1, MAgNuS OSkARSSON1,

1Computer Vision and Machine Learning, Centre for Mathematical Sciences,
Lund University, Sweden
2Arm, Lund, Sweden

3Sony Europe B.V., Lund, Sweden

Abstract: Sound event localization and detection (SELD) systems using audio record­
ings from a microphone array rely on spatial cues for determining the location of
sound events. As a consequence, the localization performance of such systems is
to a large extent determined by the quality of the audio features that are used as
inputs to the system. We propose a new feature, based on neural generalized cross­
correlations with phase­transform (NGCC­PHAT), that learns audio representations
suitable for localization. Using permutation invariant training for the time­difference
of arrival (TDOA) estimation problem enables NGCC­PHAT to learn TDOA fea­
tures for multiple overlapping sound events. These features can be used as a drop­in
replacement for GCC­PHAT inputs to a SELD­network. We test our method on the
STARSS23 dataset and demonstrate improved localization performance compared to
using standard GCC­PHAT or SALSA­Lite input features.

1 Introduction

The sound event localization and detection (SELD) task consists of classifying different
types of acoustic events, while simultaneously localizing them in 3D space. The DCASE
SELD Challenge [1] provides first order ambisonics (FOA) recordings and signals captured
from a microphone array (MIC). In recent years, most systems submitted to the challenge
have utilized the former format, whereas the latter has been less explored. In this work, we
therefore focus on how to better exploit information in the MIC recordings by learning to
extract better features.

Generalized cross­correlations with phase transform (GCC­PHAT) [8] combined with

This work was partially supported by the strategic research project ELLIIT and the Wallenberg AI,
Autonomous Systems and Software Program (WASP), funded by the Knut and Alice Wallenberg (KAW)
Foundation. Model training was enabled by the Berzelius resource provided by the KAW Foundation at the
National Supercomputer Centre in Sweden.

Code: https://github.com/axeber01/ngcc-seld/

201

https://github.com/axeber01/ngcc-seld/

Paper vI

NGCC-PHAT

ADPIT cross-
entropy loss

TDOA
labels

TDOA predictions

mic recordings

TDOA
features

Conv

MLP

Acoustic
scene

Figure 1: Overview of our pre-training strategy with K = 3 tracks. Given a set of sound events, we train a neural GCC-PHAT
to predict the TDOA of each event. When the number of sound events is less than K, auxiliary duplication of the
labels is used. In this illustration, only two microphones are shown for brevity.

spectral audio features is the basis for most SELD methods for microphone arrays. The
spectral features contain important cues on what type of sound event is active, whereas
the purpose of GCC­PHAT is to extract the time­differences of arrival (TDOA) for pairs
of microphones. The TDOA measurements can then be mapped to direction­of­arrival
(DOA) estimates, given the geometry of the array. However, GCC­PHAT is known to be
sensitive to noise and reverberation [4]. GCC­PHAT can also fail to separate TDOAs for
overlapping events, since two events at different locations can have the same TDOA for a
given microphone pair, which yields only one correlation peak.

To improve separation of overlapping events, Xu et al. [26] proposed a beamforming ap­
proach, where phase differences from the cross­power spectrum are used as input features.
Similarly, Cheng et al. [5] showed that localization performance can be improved by first
filtering the audio signals using a sound source separation network before performing fea­
ture extraction. Several works [23, 7] have also proposed end­to­end localization from raw
audio signals. The most widely adopted input feature is however the spatial cue­augmented
log­spectrogram (SALSA) [12] and variants thereof (SALSA­Lite) [13], that combine direc­
tional cues with spectral cues in a single feature. This is done by calculating the principal
eigenvector of the spatial covariance matrix for the different frequencies in the spectrogram.

202

Although some recent works [25, 19, 2] have approached TDOA estimation using learning­
based methods, there is a lack of research in how to combine this with the SELD task. Berg
et al. [2] proposed using a shift­equivariant neural GCC­PHAT (NGCC­PHAT) network.
However, this method, as it was originally proposed, only supports single­source TDOA
estimation and was not evaluated in a real­world localization scenario.

In this work, we describe how NGCC­PHAT can be trained to extract TDOA features for
multiple sound sources. We show that such features can be learnt by employing permu­
tation invariant training, which allows for prediction of TDOAs for multiple overlapping
sound events. Furthermore, we show that these features can be used with an existing SELD­
pipeline on a real­world dataset, for better performance compared to using traditional input
features. The material presented in this work is an extension of our DCASE 2024 challenge
submission [3].

2 Method

2.1 Background

Consider an acoustic scene, as shown in Figure 1, withM microphones located at positions
rm ∈ R3 for m = 1, . . . ,M . Furthermore, let sp ∈ R3, p = 1, . . . , P denote the
locations of the active sound events. For a given time frame, each microphone records a
signal xi, which is composed of the sum of active events as

xi[n] =

P∑
p=1

(hp,i ∗ up)[n] + wi[n], n = 1, . . . , N, (1)

where up is the p:th active event, hp,i is the room impulse response from the p:th event to
the i:th microphone, wi is additive noise and N is the number of samples. Furthermore,
we define the TDOA for microphone pair (i, j) and the p:th event as

τpij = ⌊
Fs

c
(||sp − ri||2 − ||sp − rj ||2)⌉, (2)

where Fs is the sampling rate, c is the speed of sound and ⌊·⌉ denotes rounding to the
nearest integer.

The GCC­PHAT is defined as

Rij [τ] =
1

N

N−1∑
k=0

Xi[k]X
∗
j [k]

|Xi[k]X∗
j [k]|

e
i2πkτ

N , (3)

203

Paper vI

where (Xi, Xj) are the discrete Fourier transforms of (xi, xj). The feature is calculated
for time delays τ = −τmax, ..., τmax, where τmax = maxi,j⌊||ri − rj ||2Fs/c⌉ is the largest
possible TDOA for any pair of microphones. In an anechoic and noise­free environment
with a single sound event up, this results in Rij [τ] = δτpij [τ], where

δτpij [τ] =

{
1, τ = τpij ,

0, otherwise.
(4)

In practice, GCC­PHAT will often yield incorrect TDOA estimates due to noise and re­
verberation. In the case of multiple overlapping sound events, the different events may
interfere and result in difficulties resolving peaks in their signal correlations.

NGCC­PHAT attempts to alleviate this problem by filtering the input signals using a learn­
able filter bank with L convolutional filters, before computing GCC­PHAT features Rl

ij ,
l = 1, . . . , L for each channel in the signals independently. In theory, such a filter bank
can perform source separation so that different channels in the NGCC­PHAT correspond
to TDOAs for different sound events. Note that for an ideal filter bank that perfectly sep­
arates the p:th sound event to the l:th channel, we would have Rl

ij [τ] = δτpij [τ] in an
anechoic and noise­free environment, due to the shift­equivariance of the convolutional
filters.

2.2 Permutation Invariant Training for TDOA Estimation

We extend NGCC­PHAT to predict time delays for multiple events in a single time frame
using auxiliary duplicating permutation invariant training (ADPIT) [20], by creating sep­
arate target labels for each active sound event. This is done by training a classifier network
to predict the TDOA of all active events for all pairs of microphones by treating it as a
multinomial classification problem. The L correlation features are first processed using
another series of convolutional layers with C output channels. These are then projected
to K different output tracks which are assigned to the different events. The last layer of
the NGCC­PHAT network therefore outputs probability distributions pk(τ |xi,xj) for
k = 1, . . . ,K over the set of integer delays τ ∈ {−τmax, ..., τmax}, as illustrated in Figure
1.

With K as the number of tracks, assume for now that there are also P = K active events.
Furthermore, let Perm([K]) denote the set of permutations of the events {1, . . . ,K}. For
a single microphone pair (i, j) and an event arrangement α ∈ Perm([K]), the loss is

204

calculated using the average cross­entropy over all output tracks as

lα(xi,xj) = −
1

K

K∑
k=1

τmax∑
τ=9τmax

δ
τ
α(k)
ij

[τ] log pk(τ |xi,xj). (5)

Due to the ambiguity in assigning different output tracks to different events, we calculate
the loss for all possible permutations of the events and use the minimum. The loss is then
averaged over all M(M − 1)/2 microphone pairs, giving the total loss

L =
2

M(M − 1)

M∑
i,j=1
i<j

min
α∈Perm([K])

lα(xi,xj). (6)

Note that this loss function is class­agnostic, since the output tracks are not assigned class­
wise. The main purpose of the TDOA features are therefore to provide better features for
localization when combined with spectral features that are suitable for classification.

When the assumption P = K does not hold, the formal implication is that α needs to
cover another set of event arrangements. Our approach is equivalently to transform each
such case into subcases where the assumption holds. Time frames with no active events
(P = 0) are discarded in the loss calculation, since no TDOA label can be assigned. When
1 ≤ P ≤ K−1, we perform auxiliary duplication of events following the method in [20],
which makes the loss invariant to both permutations and which events that are duplicated.
Furthermore, in the case of K < P , it is possible to compute the loss for all subsets of K
events from P and use the minimum.

3 Experimental Setup

3.1 Using TDOA Features for SELD

In order to show the benefits of better TDOA features for SELD, we demonstrate how
they can be used in conjunction with a SELD­system. This involves two training phases:
1) pre­training of the NGCC­PHAT network for TDOA prediction and 2) training the
SELD­network using the TDOA features as input. The NGCC­PHAT network operates
on raw audio signals and consists of four convolutional layers, the first being a SincNet
[17] layer, and the remaining three use filters of length 11, 9, and 7 respectively. Here, each
convolutional layer has L = 32 channels and together form the filter bank mentioned
in Section 2.1, which is applied independently to audio from the different microphones.
GCC­PHAT features are computed channel­wise for each microphone pair, and the fea­
tures are then processed by another four convolutional layers, where the final layer has
C = 16 output channels.

205

Paper vI

The maximum delay used is chosen for compatibility with the setup in the STARSS23
dataset [21], which uses a tetrahedral array withM = 4 microphones. The diameter of the
array is 8.4 cm, which corresponds to a maximum TDOA of τmax = 6 delays at a sampling
rate of Fs = 24 kHz. In total, the TDOA features therefore have shape [C,M(M −
1)/2, 2τmax + 1] = [16, 6, 13].

During pre­training for TDOA­prediction, the 16 channels are then mapped by a convo­
lutional layer toK = 3 output tracks. Although the maximum polyphony in a single time
frame in the dataset is five, we use K = 3 tracks since the computational complexity of
permutation invariant training scales as O(K!) and more than three simultaneous events
are rare. When more than three events are active, for pre­training we randomly select labels
for three events and discard the rest.

When training the SELD­network, we extract the TDOA input features for longer audio
signals by windowing the NGCC­PHAT computation without overlap. We use an input
duration of 5 second audio inputs, which corresponds to T = 250 TDOA features when
using a window length of 20 ms. Since the TDOA features are designed to be class­agnostic,
we combine them with spectral features for the same time­frame in order to better distin­
guish between different types of event. For this we use log mel­spectograms (MS) with
F = 64 spectral features for each recording.

When merging the spectral features with the TDOA features, we first concatenate the 16
channels for the 6 microphone pairs of the TDOA features, and use a multi­layer perceptron
to map the 13 time­delays to 64 dimensions. The TDOA features are then reshaped and
concatenated with theM spectral features channel­wise, as shown in Figure 2, resulting in
a combined feature size of [CM(M − 1)/2 +M,T, F] = [100, 250, 64].

The combined feature is passed through a small convolutional network with 64 output
channels with pooling over the time and spectral dimensions. Here we use two pooling
variants that determine the size of the input features to the SELD­network: 1) pooling
over 5 time windows and 4 frequencies, which produces features of size [64, 50, 16], or 2)
pooling over 5 time windows and no pooling over frequencies, which results in features of
size [64, 50, 64]. We call the resulting network variants Small and Large for this reason.

For SELD­training, we use a CST­Former [22] network that consists of Transformer blocks,
where each block contains three self­attention modules: temporal attention, spectral atten­
tion and channel attention with unfolded local embedding. We use the default configu­
ration with two blocks, each with eight attention heads, and refer to [22] for more details
about this architecture.

206

TDOA input
features

log-mel
spectrogram

combined input feature

reshape and
concatenate

CST-Former

time-frequency
conv

multi-accdoa
predictions

Figure 2: Illustration of how TDOA features are used together with log mel-spectrograms as input to the CST-Former network.

3.2 Dataset and Model Training

We train all our models on a mixture of real spatial audio recordings and simulated record­
ings. The real recordings are from the STARSS23 [21] audio­only dev­train dataset, which
consists of about 3.5 hours of multi­channel audio recordings. The dataset has up to 5
simultaneous events from 13 different classes. For data augmentation, we use channel­
swapping [24], which expands the dataset by a factor of 8 by swapping the input channels
and corresponding DOA labels in different combinations.

The simulated data is provided as a part of the DCASE 2024 challenge [9] and consists of 20
hours of synthesized recordings, where the audio is taken from the FSD50K [6] dataset. In
addition, we generate an additional 2 hours of synthesized recordings using Spatial Scaper
[18] with impulse responses from the TAU [16] and METU [14] databases. This additional
data contains sounds from classes that occur rarely in STARSS23, namely “bell”, “clapping”,
“doorCupboard”, “footsteps”, “knock” and “telephone”. The total amount of training data
is about 50 hours.

The NGCC­PHAT network was trained for one epoch with a constant learning rate of
0.001, after which the weights were frozen. The CST­Former network was then trained for
300 epochs using the AdamW optimizer [11] with a batch size of 64, a cosine learning rate
schedule starting at 0.001 and weight decay of 0.05. The mean squared error was used as
loss function with labels in the Multi­ACCDOA [20] format, with distances included as
proposed in [10]. In order to penalize errors in predicted distance relative to the proximity
of the sound events, we scale loss­terms for the distance error with the reciprocal of the
ground truth distance.

Evaluations were done using the DCASE 2024 SELD challenge metrics [1, 15]. This in­
cludes the location dependent F­score FLD, the DOA error DOAE and the relative dis­
tance error RDE, which is the distance error divided by the ground truth distance to the
event. Each metric is calculated class­wise and then macro­averaged across all classes. Fur­

207

Paper vI

Table 1: Macro-averaged test results on STARSS23 [21] dev-test.

Input feature FLD ↑ DOAE ↓ RDE ↓ #params

CST­Former Small

GCC + MS 15.7± 1.0 27.7± 2.1 0.78± 0.02 550K
SALSA­Lite 24.6± 2.0 27.0± 1.2 0.41± 0.02 530K
NGCC + MS 26.0± 2.0 25.8± 2.3 0.42± 0.01 663K

CST­Former Large

GCC + MS 14.2± 1.1 28.4± 1.9 0.84± 0.03 1.37M
SALSA­Lite 26.1± 1.0 26.4± 3.6 0.42± 0.02 1.35M
NGCC + MS 28.2± 2.8 23.2± 1.8 0.50± 0.02 1.49M

thermore, the location dependent F­score only counts predicted events as true positives if
they are correctly classified and localized, such that predictions with DOAE larger than
TDOA = 20◦ or RDE larger than TRD = 1 are counted as false positives. We focus on
evaluating the performance of our method compared to that of other commonly used in­
put features with the same SELD­network, and do not compare to other (e.g. FOA­based)
state­of­the­art methods.

4 Results

Our main results are presented in Table 1, where we compare our method to GCC with MS
and to SALSA­Lite. Our method performs better in terms of FLD and DOAE, for both
the Small and Large variant of the network, although SALSA­Lite has the lowestRDE for
the Large variant. When increasing the model size, the results improve for both SALSA­
Lite and NGCC, but not for GCC. Since GCC features are less informative, the increase
in model size results in overfitting. The same can be said for the increase in RDE when
using NGCC + MS, since the TDOA features from both GCC and NGCC mostly contain
angular cues, but less information about spatial distance. Note that GCC + MS and NGCC
+ MS use exactly the same CST­Former architecture, so the extra parameter count when
using NGCC comes from the pre­trained feature extractor. When using SALSA­Lite, the
pooling operations in the convolutional layers were adjusted in order to achieve a similar
model size.

208

Table 2: Ablations of the number input channels used in the TDOA input features for CST-Former Small.

C FLD ↑ DOAE ↓ RDE ↓ #params

1 24.4± 2.3 29.7± 3.3 0.44± 0.08 608K
4 24.2± 0.8 23.2± 2.5 0.46± 0.01 619K
16 26.0± 2.0 25.8± 2.3 0.42± 0.01 663K

25 50 75

0.3

0.4

0.5

0.6

0.7

F
L
D

1 event

K= 1

K= 2

K= 3

25 50 75
TDOA

0.2

0.3

0.4

0.5

0.6
2 events

25 50 75
0.1

0.2

0.3

0.4

0.5

3 events

Figure 3: Micro-averaged F-score as a function of the angular threshold TDOA using different number of output tracks K
during TDOA pre-training. Evaluation was done using CST-Former Small.

In order to verify the importance of using more than one input channel for TDOA features,
we ablate the number of channels C in the NGCC­PHAT network. The results are shown
in Table 2, where it can be seen that increasing the number of channels from 1 to 16 increases
performance in terms of all metrics. This agrees with the intuition that using more than
one input channels enables the pre­training to better separate spatial cues from different
events. Furthermore, the cost for increasing the number channels in terms of the increase
in model parameters is relatively small.

We also ablate the number of tracks K used for TDOA­prediction during pre­training,
and present the location dependent F­score for values of TDOA in Figure 3. Due to the
sensitivity of the macro­averaged F­score to incorrect predictions for rare classes in the test
data, we instead use the micro­averaged statistic. At the default 20◦ threshold, the effect
of increasing the number of tracks is small, but asymptotically it is clear that using K = 3
tracks increases the F­score regardless of how many events are active. Note that the number
of tracks only affects the complexity in the pre­training stage of NGCC­PHAT, and not
the overall parameter count of the final model, since all C channels are used as input to the
network, and the mapping to K tracks can be discarded.

Finally, we show examples of TDOA predictions in Figure 4. When the TDOAs of the
events are well­separated, the different tracks yield different peaks at approximately the
correct time delays. However, for the microphone pairs where events are tightly spaced,

209

Paper vI

(i, j) = (1, 2) (i, j) = (1, 3) (i, j) = (1, 4)

p1(τ|xi, xj) p2(τ|xi, xj) p3(τ|xi, xj) τ1
ij τ2

ij

(i, j) = (2, 3) (i, j) = (2, 4) (i, j) = (3, 4)

Figure 4: An example of the TDOA predictions pk(τ |xi,xj) from the pre-trained NGCC-PHAT network using K = 3 output
tracks. Predictions are shown for all six microphone combinations (i, j) at a single time frame with two events and
ground truth TDOAs τ1

ij and τ2
ij .

the predictions fail to separate the different TDOAs.

5 Conclusions

In this work we proposed an input feature based on NGCC­PHAT and showed its useful­
ness as input to a SELD­network. Permutation invariant training for the TDOA estimation
problem enabled NGCC­PHAT to learn TDOA features for multiple overlapping sound
events, and improved SELD performance compared to using GCC­PHAT or SALSA­Lite
input features.

These results indicate that our NGCC­PHAT pre­training for TDOA classification pro­
vides a good feature extractor for the SELD task. Intuitively, better TDOA prediction
in the feature extractor ought to yield better SELD results, but further studies are needed
to validate this. Evaluating TDOA prediction performance would however involve new
methodology, such as heuristics for peak selection from the output tracks, as well as select­
ing useful evaluation metrics. The downstream network could be resilient to some type of
information our current loss function aims to suppress. In addition, a source­wise or class­
wise TDOA format could be beneficial. We therefore anticipate future work to explore
other pre­training options and end­to­end training.

Focusing on the feature extractor, we made minimal effort to address the other challenges
of the dataset. We leave for future work to incorporate known techniques, such as class
balancing, additional data augmentation, temporal filtering and ensemble voting.

References

[1] Audio and Audiovisual Sound Event Localization and Detection with Source Dis­
tance Estimation.
https://dcase.community/challenge2024/task-audio-and-

210

https://dcase.community/challenge2024/task-audio-and-

audiovisual-sound-event-localization-and-detection-with-
source-distance-estimation, 2024. [Accessed 2024­07­03].

[2] A. Berg, M. O’Connor, K. Åström, and M. Oskarsson. Extending GCC­PHAT using
Shift Equivariant Neural Networks. In Proc. Interspeech 2022, pages 1791–1795, 2022.
doi: 10.21437/Interspeech.2022­524.

[3] A. Berg, J. Engman, J. Gulin, K. Åström, and M. Oskarsson. The LU System for
DCASE 2024 Sound Event Localization and Detection Challenge. Technical report,
DCASE2024 Challenge, June 2024.

[4] B. Champagne, S. Bédard, and A. Stéphenne. Performance of time­delay estima­
tion in the presence of room reverberation. IEEE Transactions on Speech and Audio
Processing, 4(2):148–152, 1996.

[5] S. Cheng, J. Du, Q. Wang, Y. Jiang, Z. Nian, S. Niu, C.­H. Lee, Y. Gao, and
W. Zhang. Improving sound event localization and detection with class­dependent
sound separation for real­world scenarios. In 2023 Asia Pacific Signal and Informa­
tion Processing Association Annual Summit and Conference (APSIPA ASC), pages 2068–
2073. IEEE, 2023.

[6] E. Fonseca, X. Favory, J. Pons, F. Font, and X. Serra. FSD50K: An open dataset of
human­labeled sound events. IEEE/ACMTransactions on Audio, Speech, and Language
Processing, 30:829–852, 2021.

[7] Y. HE and A. Markham. SoundDoA: Learn Sound Source Direction of Arrival and
Semantics from Sound Raw Waveforms. In Proc. Interspeech 2022, pages 2408–2412,
2022. doi: 10.21437/Interspeech.2022­378.

[8] C. Knapp and G. Carter. The Generalized Correlation Method for Estimation of
Time Delay. IEEE transactions on acoustics, speech, and signal processing, 24(4):320–
327, 1976.

[9] D. A. Krause and A. Politis. [DCASE2024 Task 3] Synthetic SELD mixtures for base­
line training, Apr. 2024. URL https://doi.org/10.5281/zenodo.10932241.

[10] D. A. Krause, A. Politis, and A. Mesaros. Sound event detection and localization with
distance estimation. arXiv preprint arXiv:2403.11827, 2024.

[11] I. Loshchilov and F. Hutter. Decoupled Weight Decay Regularization. arXiv preprint
arXiv:1711.05101, 2017.

[12] T. N. T. Nguyen, D. L. Jones, K. N. Watcharasupat, H. Phan, and W.­S. Gan.
SALSA­Lite: A Fast and Effective Feature for Polyphonic Sound Event Localization
and Detection with Microphone Arrays. In ICASSP 2022­2022 IEEE International

211

audiovisual-sound-event-localization-and-detection-with-
source-distance-estimation
https://doi.org/10.5281/zenodo.10932241

Paper vI

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 716–720. IEEE,
2022.

[13] T. N. T. Nguyen, D. L. Jones, K. N. Watcharasupat, H. Phan, and W.­S. Gan.
SALSA­Lite: A Fast and Effective Feature for Polyphonic Sound Event Localization
and Detection with Microphone Arrays. In ICASSP 2022­2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 716–720. IEEE,
2022.

[14] O. Olgun and H. Hacihabiboglu. METU SPARG Eigenmike em32 Acoustic Impulse
Response Dataset v0.1.0, Apr. 2019. URL https://doi.org/10.5281/zenodo.
2635758.

[15] A. Politis, A. Mesaros, S. Adavanne, T. Heittola, and T. Virtanen. Overview and
evaluation of sound event localization and detection in dcase 2019. IEEE/ACMTrans­
actions on Audio, Speech, and Language Processing, 29:684–698, 2020.

[16] A. Politis, S. Adavanne, and T. Virtanen. TAU Spatial Room Impulse Response
Database (TAU­SRIR DB), Apr. 2022. URL https://doi.org/10.5281/
zenodo.6408611.

[17] M. Ravanelli and Y. Bengio. Speaker recognition from raw waveform with sincnet.
In 2018 IEEE Spoken Language Technology Workshop (SLT), pages 1021–1028. IEEE,
2018.

[18] I. R. Roman, C. Ick, S. Ding, A. S. Roman, B. McFee, and J. P. Bello. Spatial Sca­
per: a library to simulate and augment soundscapes for sound event localization and
detection in realistic rooms. arXiv preprint arXiv:2401.12238, 2024.

[19] D. Salvati, C. Drioli, and G. L. Foresti. Time Delay Estimation for Speaker Local­
ization Using CNN­Based Parametrized GCC­PHAT Features. In Interspeech, pages
1479–1483, 2021.

[20] K. Shimada, Y. Koyama, S. Takahashi, N. Takahashi, E. Tsunoo, and Y. Mitsufuji.
Multi­ACCDOA: Localizing and detecting overlapping sounds from the same class
with auxiliary duplicating permutation invariant training. In ICASSP 2022­2022
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 316–320. IEEE, 2022.

[21] K. Shimada, A. Politis, P. Sudarsanam, D. A. Krause, K. Uchida, S. Adavanne,
A. Hakala, Y. Koyama, N. Takahashi, S. Takahashi, T. Virtanen, and Y. Mitsu­
fuji. STARSS23: An audio­visual dataset of spatial recordings of real scenes with
spatiotemporal annotations of sound events. In Advances in Neural Information Pro­
cessing Systems, volume 36, pages 72931–72957. Curran Associates, Inc., 2023.

212

https://doi.org/10.5281/zenodo.2635758
https://doi.org/10.5281/zenodo.2635758
https://doi.org/10.5281/zenodo.6408611
https://doi.org/10.5281/zenodo.6408611

[22] Y. Shul and J.­W. Choi. CST­Former: Transformer with channel­spectro­temporal
attention for sound event localization and detection. In ICASSP 2024­2024 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
8686–8690. IEEE, 2024.

[23] H. Sundar, W. Wang, M. Sun, and C. Wang. Raw waveform based end­to­end deep
convolutional network for spatial localization of multiple acoustic sources. In ICASSP
2020 ­ 2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 4642–4646, 2020. doi: 10.1109/ICASSP40776.2020.9054090.

[24] Q. Wang, J. Du, H.­X. Wu, J. Pan, F. Ma, and C.­H. Lee. A four­stage data aug­
mentation approach to resnet­conformer based acoustic modeling for sound event
localization and detection. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 31:1251–1264, 2023.

[25] X. Xiao, S. Zhao, X. Zhong, D. L. Jones, E. S. Chng, and H. Li. A learning­
based approach to direction of arrival estimation in noisy and reverberant environ­
ments. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 2814–2818. IEEE, 2015.

[26] W. Xue, Y. Tong, C. Zhang, G. Ding, X. He, and B. Zhou. Sound Event Localiza­
tion and Detection Based on Multiple DOA Beamforming and Multi­Task Learn­
ing. In Proc. Interspeech 2020, pages 5091–5095, 2020. doi: 10.21437/Interspeech.
2020­2759.

213

Paper VII

Reprinted from Proc. 2024 14th International Conference on Indoor Positioning and Indoor Navigation
(IPIN), pp. 1­8, © 2024, with permission from IEEE

wav2pos: Sound Source Localization using Masked Autoencoders

AxEL BERg1,2, JENS GuLIN3, MARk O’CONNOR4, CHuTENg ZHOu2,
KALLE ÅSTRöM1, MAgNuS OSkARSSON1

1Centre for Mathematical Sciences, Lund University, 2Arm, 3Sony, 4Tenstorrent

Abstract: We present a novel approach to the 3D sound source localization task
for distributed ad­hoc microphone arrays by formulating it as a set­to­set regression
problem. By training a multi­modal masked autoencoder model that operates on au­
dio recordings and microphone coordinates, we show that such a formulation allows
for accurate localization of the sound source, by reconstructing coordinates masked
in the input. Our approach is flexible in the sense that a single model can be used
with an arbitrary number of microphones, even when a subset of audio recordings
and microphone coordinates are missing. We test our method on simulated and
real­world recordings of music and speech in indoor environments, and demonstrate
competitive performance compared to both classical and other learning based local­
ization methods.

1 Introduction

Mapping, positioning and localization are key enabling technologies for a wide range of ap­
plications. Thanks to its global coverage and scalability, global navigation satellite systems
(GNSS) have become the de­facto standard for outdoor localization. However, for localiza­
tion in urban areas, indoor environments and underground, as well as in safety­critical ap­
plications, GNSS technology cannot deliver the accuracy, reliability and coverage needed.
Many sensor modalities and setups can be used to address these issues. In this paper we
focus our attention on sound source localization (SSL), which is the task of determining
the location of one or several sound sources using recordings from a microphone array.

Depending on the setup, the sound source position can be estimated in several ways. For
fixed equidistant microphones with small physical spacing, localization is typically per­
formed by estimating the direction of arrival (DOA) using e.g. steered­response power with
phase transform (SRP­PHAT) [10, 7], spectrograms [39, 30] or raw waveforms [19] as input
features.

This work was partially supported by the strategic research project ELLIIT and the Wallenberg AI, Au­
tonomous Systems and Software Program (WASP), funded by the Knut and Alice Wallenberg (KAW) Founda­
tion. Model training was enabled by the Berzelius resource provided by the KAW Foundation at the National
Supercomputer Centre in Sweden. We thank Martin Larsson and Erik Tegler for assistance with data format­
ting. We also thank Malte Larsson and Gabrielle Flood for their feedback on the paper.

217

Paper vII

Figure 1: Method overview: wav2pos can simultaneously localize a moving sound source and several microphones given audio
recordings and microphone coordinates on a frame-by-frame basis. Here, predictions on the music3 recording from
the LuViRa dataset [40] are shown (viewed from above), where a moving median filter has been applied to predictions
for better visualization.

When the microphone positions are distributed around the sound source in an ad­hoc
fashion, it is possible to estimate the 3D location of the sound source with respect to some
coordinate system, given the microphone positions. Depending on whether the sound
source is time­synchronized with the microphones or not this is known as trilateration or
multilateration, respectively.

Classical methods. For trilateration, there is a large body of previous work. The minimal
amount of data needed is when the number of distance measurements equals the spatial di­
mension, and this problem has a closed­form solution [36, 28, 8]. For the over­determined
problem, finding the maximum likelihood (ML) estimate given Gaussian noise in the mea­
surements is a nonlinear, non­smooth and non­convex problem. Unlike the minimal case,
there is no closed­form solution. A number of iterative methods, with various convergence
guaranties, exist [27, 4, 23, 34]. Simplifications to the ML problem, include relaxations by
minimizing the error in the squared distance measurements [25, 41, 3, 6]. Various heuris­
tics can be used to arrive at a linear formulation, see [35] and references therein. For the
multilateration problem, classical methods rely on estimating the time­differences of arrival
(TDOA) between pairs of microphones using pairwise feature extractors, where the most
common one is the generalized cross­correlation with phase transform (GCC­PHAT) [24].
TDOA measurements can then be used to perform multilateration, where the sound source
location is obtained by solving a system of equations using e.g. the least squares method or
a minimal solver [1].

Learning based methods. Learning based methods have been used extensively for TDOA
[32, 5, 31] and DOA [10, 7, 39, 30, 19] estimation. However, there is a lack of research
on learning based methods for localization using distributed microphone arrays. Vera­Diaz

218

et al. [38] used a convolutional neural network to directly regress the source coordinates,
but only for a fixed microphone array. Grinstein et al. [16] proposed a dual­input neural
network for end­to­end SSL with spatial coordinates in 2D, where both audio signals and
microphone coordinates are used as input. This allows the model to be trained in setups
with ad­hoc arrays where the microphone locations are not fixed. However, the network is
limited to using a fixed number of inputs, which prevents the user from adding or remov­
ing microphones to the array at inference time. Similarly, in [15] a graph neural network is
proposed for the same task that works with variable number of microphones by aggregating
over GCC­PHAT features, which are used as inputs to the network. Similar architectures
have also been proposed in [14, 11], where a transformer [37] architecture is used for local­
ization on a 2D grid. However, these methods fail to scale to three dimensions since the
discretization of large spaces becomes infeasible. For further reading about prior work, we
refer the reader to the extensive survey published in [17].

Main contributions. In this work, we present a novel method for single­source 3D SSL
that directly predicts the sound source coordinates using an ad­hoc distributed microphone
array. Inspired by the success of masked autoencoders in natural language processing [9],
computer vision [18], audio processing [21] and combinations thereof [12], we formulate
the SSL problem as a multi­modal set­to­set regression problem, which allows our method
to localize not only the sound source, but also solve a variety of similar problems where
audio or locations are missing for some microphones, as shown in Figure 1.

2 Method

Problem setup. Consider M microphones with ad­hoc coordinates rm ∈ R3, m =
1, . . . ,M and one audio source located at r0 ∈ R3. For a given time slot of N sam­
ples, the source emits a signal s0 ∈ RN and each microphone receives a delayed and noisy
copy sm ∈ RN , m = 1, . . . ,M , of the signal that depends on the impulse response hm
from the source position to each microphone,

sm[n] = (hm ∗ s0)[n] + wm[n], n = 1, . . . , N, (1)

where wm can be approximated as i.i.d. Gaussian noise and (∗) denotes the convolution
operator. The window length N is assumed to be small enough for the sound source to
be modeled as stationary. The SSL task is to recover the audio source location r0, given
the recordings of each microphone and their known locations. In the more general setup,
the task can be extended to predict some unknown microphone locations as well. Note
that we only consider a single sound event for each prediction, and finding the trajectory
of a moving sound source thus amounts to making predictions on a frame­by­frame basis.
In the general, full calibration problem, it is not possible to estimate arbitrary microphone
positions from a single sound event using only distance measurements. However, in our

219

Paper vII

simplified problem there is a limited number of possible microphone positions in the train­
ing data. Furthermore, other spatial cues such as the acoustic features of the environment
can be learnt by the model, which makes the problem setup tractable.

Masked autoencoders for localization. The main idea of our method is to consider the
SSL problem as function approximation over the set {sm, rm}Mm=0 of audio signals and
locations. This allows for exploiting redundancy in the data by masking, where missing
inputs are filled in by the model. In this context, masking can be used both as a training
strategy that enables it to perform localization using different microphone array setups, and
to predict missing microphone coordinates. Note that while masked autoencoders are often
trained in a self­supervised manner, our method is fully supervised, but random masking
is used during training in order to increase robustness to missing inputs.

Let S = {m : sm not masked} and R = {m : rm not masked} denote the set of non­
masked recorded audio signals and coordinates respectively, with set sizes KS = |S| and
KR = |R|. Using the set of non­masked inputs, we seek to learn a function fθ that
outputs predictions ŝm, r̂m for the complete set:

{ŝm, r̂m}Mm=0 = fθ
(
{sms}ms∈S , {rmr}mr∈R

)
. (2)

The function approximation model consists of an encoder, which operates on the non­
masked subset of inputs, and a decoder that forms predictions on the entire set. Both
the encoder and decoder consist of sequential transformer blocks that process audio and
coordinate tokens jointly, as shown in Figure 2. In other words, both audio and coordinate
tokens are treated as elements of the same unordered set by each transformer block.

We train our method using mean squared error loss on the sound source coordinate, the
masked microphone coordinates and the non­masked audio. Reconstructing masked audio
patches requires learning impulse responses across the room, which is out of the scope of this
work, and initial experiments showed poor performance for that task. For audio prediction,
we therefore restrict the loss to the non­masked audio tokens, since this allows the model
to learn to perform audio de­noising. Thus, the total loss becomes

L =
λaudio

KS

∑
m∈S
∥ŝm − sm∥22 + λsource ∥r̂0 − r0∥22 +

λmic

M −KR

∑
m/∈R,m≥1

∥r̂m − rm∥22 ,

(3)
where λaudio, λsource, λmic are hyperparameters that balance the contribution of the source
localization error, microphone localization error and audio reconstrucion error, respectively.
We will now proceed to describe the method in more detail.

220

Encoder

Decoder

Po
in

tw
is

e
M

LP

Li
ne

ar
 p

ro
j.

Po
in

tw
is

e
M

LP

Li
ne

ar
 p

ro
j.

=
co

or
di

na
te

 to
ke

n

 =
 a

ud
io

 to
ke

n

=
m

ic
. c

oo
rd

.

 m
as

k
to

ke
n

M
ax

 p
oo

lin
g

Po
in

tw
is

e
M

LP

M
ax

 p
oo

lin
g

N
G

C
C

-
PH

AT

 =
 a

ud
io

 m
as

k
 to

ke
n

=
so

ur
ce

 c
oo

rd
.

m
as

k
to

ke
n

Fi
g
u
re

2:
H
ig
h-
le
ve
li
llu
st
ra
tio

n
of

th
e
pr
op

os
ed

w
av
2p

os
m
et
ho

d.
M
od

al
ity

em
be

dd
in
g
(a
dd

ed
be

fo
re

en
co
de

r
an

d
de

co
de

r)
an

d
pa

irw
is
e
po

si
tio

na
le

nc
od

in
g
(a
dd

ed
be

fo
re

de
co
de

r)
ar
e

om
itt
ed

fo
r
br
ev
ity
.
Th

e
m
as
k
to
ke
ns

ar
e
no

t
ge

ne
ra
te
d
by

th
e
en

co
de

r,
bu

t
ap

pe
nd

ed
as

le
ar
na

bl
e
to
ke
ns

in
th
e
in
pu

t
se
qu

en
ce

to
th
e
de

co
de

r.

221

Paper vII

Feature embedding. Audio snippets are first processed individually for each microphone
using a linear projection in order to form input tokens xaudio

ms
= Wencsms , where Wenc ∈

Rd×N and d is the embedding dimension. Similarly, the microphone coordinates are pro­
jected to the same embedding space using a point­wise MLP: R3 → Rd with one hidden
layer and batch normalization [22] that computes the coordinate tokens xcoord

mr
. In order

to let the model distinguish between the two modalities of tokens, we follow [12] and add
learnable modality embeddings vaudio

enc ,vcoord
enc ∈ Rd to each token according to its modal­

ity. The audio and coordinate features are then processed jointly by a series ofD sequential
transformer encoder blocks with layer normalization [2] and GELU activations [20].

After the final encoder layer, two types of learnable mask tokens uaudio,ucoord ∈ Rd are
appended to the output set for each input that was masked out from the input. Additionally
a special mask token usource ∈ Rd for the sound source coordinate is appended, and new
modality embeddings for the decoder vaudio

dec ,vcoord
dec ∈ Rd are added to all tokens.

Pairwise positional encoding. Since the source coordinate prediction should be invariant
to permutations of the microphone order (and all other outputs should be equivariant),
we do not add any form of positional encoding in the usual sense that encodes the relative
or absolute ordering of tokens, as is typically done when using transformers for sequence
modeling. However, the decoder still needs to be informed about which audio snippet
corresponds to which microphone location and vice versa, or whether the corresponding
audio/coordinate token was masked. Therefore, we propose a pairwise message­passing em­
bedding that communicates information between tokens originating from the same micro­
phone. The messages are computed using two separate functions γa→c, γc→a : Rd → Rd

that are implemented as MLPs with a single hidden layer. In total, the inputs yaudio
m ,ycoord

m

to the decoder are given by

yaudio
m = taudio

m + vaudio
dec + γc→a(tcoord

m),

ycoord
m = tcoord

m + vcoord
dec + γa→c(taudio

m),
(4)

for m = 0, . . . ,M and where

taudio
m =

{
x̃audio
m , m ∈ S

uaudio, m /∈ S
tcoord
m =


x̃coord
m , m ∈ R

usource, m = 0

ucoord, m /∈ R
, (5)

and x̃audio
m , x̃coord

m are the encoder outputs. The tokens are then passed through the decoder,
which, similarly to the encoder, consists of D sequential transformer layers.

At the output of the decoder, features ỹaudio
m , ỹcoord

m are collected for all audio sequences
and coordinates. Audio reconstructions are formed by using a simple linear projection as
ŝm = Wdecỹ

audio
m for m ∈ S , where Wdec ∈ RN×d.

222

Time delay feature module. For the coordinate predictions, we use additional information
from previous layers by computing a global feature z ∈ Rd by max­pooling over all en­
coder outputs as z = maxms∈S,mr∈R(x̃

audio
ms

, x̃coord
mr

). Similarly to the method proposed
in [15], we also use TDOA features Rij ∈ R2τ+1, which we obtain from a pre­trained
NGCC­PHAT [5] for all non­masked pairs of audio inputs, where τ is determined by the
maximum possible delay between microphones. We then combine each time­delay fea­
ture with coordinate features from the two corresponding microphones, and pool over all
M(M−1) microphone pairs in order to form a global feature which contains information
about all TDOA measurements as

q = max
i,j∈S,i ̸=j

φ
(
Rij , ỹ

coord
i , ỹcoord

j

)
, (6)

where φ : R2(τ+d)+1 → Rd is a single hidden­layer MLP. In order to form the final
predictions, we use two separate MLPs ψsource, ψmic : R3d → R3 that produce coordinate
predictions for the sound source and microphones as

r̂0 = ψsource(ỹ
coord
0 , z,q),

r̂m = ψmic(ỹ
coord
m , z,q), m = 1, . . . ,M.

(7)

Masking strategy. When training the model, different masking strategies can be used de­
pending on the use case. If the number of microphones is known to be fixed at inference
time, we only mask out the audio and coordinates of the sound source, i.e. R = S =
{1, ...,M}. When the number of microphones available is not fixed, we instead randomly
mask a subset of both the audio snippets and coordinates in order to make the model more
robust to using a variable number of microphones. A unique solution to the multilateration
problem requires four TDOA measurements from five microphones [13], and therefore we
always restrict masking such that |S ∩ R| ≥ 5. We also require that not both audio and
coordinates from the same microphone are masked.

3 Experimental Results

Real indoor recordings. We evaluate our method on the LuViRA [40] audio­only dataset,
which contains eight real­world recordings, about one minute long, of music or speech
in an indoor environment. Each recording is captured by 11 stationary and synchronized
microphones and the speaker location ground truth is given by a motion capture system.
An additional 12:th microphone is placed next to the speaker, and can be used as stand­in
for the source audio s0. We evaluate on the music3 and speech3 recordings, and use
the remaining three music and three speech recordings for training. In order to improve
model generalization to unseen source locations, the dataset is also expanded with simulated

223

Paper vII

Table 1: Model properties and localization performance on the LuViRA [40] music3 and speech3 trajectories using all 11 mi-
crophones. Input types refers to: 1 - GCC-PHAT, 2 - NGCC-PHAT, 3 - raw audio waveforms.

music3 speech3
Setup Method Input var. #mics perm. inv. #params MAE [cm] ↓ acc@30cm ↑ MAE [cm] ↓ acc@30cm ↑

1a Multilat [1] 1 3 3 ­ 38.8± 2.5 72.5± 1.6 72.8± 4.4 55.7± 2.1
Multilat* [1, 5] 2 3 3 0.9M 16.3± 1.6 94.7± 0.8 34.9± 3.2 84.9± 1.6
DI­NN [16] 3 7 7 3.6M 26.0± 0.8 73.0± 0.2 44.7± 1.7 45.9± 2.3
GNN [15] 1 3 7 2.2M 17.0± 0.7 90.7± 1.0 31.9± 1.6 71.2± 2.0
wav2pos 2+3 3 3 10.5M 14.2± 0.5 95.4± 0.7 23.6± 1.2 81.6± 1.7

recordings, where the sound source is randomly sampled in a room of size 7 × 8 × 2 m,
with microphones placed in the same positions as in the real recordings. Simulations are
done using Pyroomacoustics [33], where in each time frame, we randomly sample a source
position and a reverberation time t60 in the range (0, 0.4) and use audio captured from the
12:th microphone as input to the simulation. The total amount of training data is therefore
approximately 2× (3 + 3) = 12 minutes of audio recordings.

We initialize all network layers, as well as mask tokens and modality embeddings, from a
Gaussian distribution N (0, 0.02), then train for 500 epochs using the AdamW optimizer
[26] with a batch size of 256, a learning rate of 0.0005 and weight decay of 0.1. In all
experiments we use λsource = λmic = 1.0 and λaudio = 0.1, an embedding dimension
d = 256, D = 4 transformer layers and a signal length of N = 2048 at a sample rate
of 16 kHz. For TDOA features, we use NGCC­PHAT [5] by pre­training it on the same
dataset. For data augmentation we use additive Gaussian noise and random time shifts
of the audio, uniformly sampled in [­0.05, 0.05] s. The same time shift is applied to all
microphones in order to preserve relative time differences, and the speaker is assumed to
be stationary within this time period. Silent periods are excluded (for both training and
inference) by thresholding the signal power. The audio reconstruction loss is computed on
the non­masked inputs without noise, which enables the model to perform de­noising.

We compare our method to a robust multilateration method [1], where TDOAs are esti­
mated using GCC­PHAT or a pre­trained NGCC­PHAT. We also extend the dual input
neural network (DI­NN) [16] and graph neural network (GNN) [15] methods to 3D lo­
calization, and train them on the same dataset using the MSE loss, but with the hyperpa­
rameters proposed in the corresponding publications. Localization errors are truncated at
3 m, since the traditional multilateration method sometimes yields very large errors or fails
to converge.

The results are shown in Table 1, along with the input type used by each method, whether
they support a variable number of microphones, if they are invariant to permutations of the
microphone order and the number of learnable parameters. Evaluation is done assuming
all microphone locations are known, which we denote Setup 1a. The mean absolute error
(MAE) and accuracy are evaluated using a 95 % confidence interval by bootstrapping. The

224

Table 2: Sound source localization MAE [cm] on the speech3 trajectory using different number of microphones and setups.
Multilat* fails to converge for 5 microphones.

Setup Method M = 5 M = 7 M = 9

1a Multilat 244.9± 4.8 133.1± 5.7 94.3± 5.0
Multilat* N/A 105.6± 6.1 56.7± 4.5
DI­NNM 94.9± 2.6 76.1± 2.0 58.5± 1.6
GNNM 80.5± 2.2 53.1± 1.9 41.1± 1.7
wav2posM 66.8± 2.0 38.8± 1.7 28.4± 1.4

1b wav2posM 42.3± 1.4 26.1± 1.0 20.4± 1.0

2a wav2posM 47.2± 1.8 32.2± 1.4 25.3± 1.2

2b wav2posM 33.0± 1.2 23.3± 1.0 19.6± 1.0

results indicate that our method consistently has the lowest MAE for both music and speech
recordings. Although multilateration with NGCC­PHAT achieves similar accuracy at the
30 cm threshold, our method has a shorter tail in the error distribution and therefore yields
a lower MAE.

Table 3: Microphone localization MAE [cm] over all unknown microphone locations, on the speech3 trajectory using different
numbers of known microphone locations.

Setup Method M = 7 M = 8 M = 9

2a wav2posM 182.8± 1.7 93.1± 1.9 36.8± 1.9

2b wav2posM 181.7± 1.7 90.4± 1.8 34.8± 1.6

Evaluation with missing inputs. In order to test our method in different problem setups,
we also train it using random masking. During training, we randomly leave between 8 and
11 coordinates and audio snippets, such that at least 5 microphones are in both sets. Since
the sound source audio s0 might be known in some scenarios, we mask this token with
50 % probability, and denote our method trained with random masking as wav2posM.
At inference time, unknown microphone locations are masked and, if the corresponding
sound recordings are not masked, the coordinates can be predicted by the decoder.

Since DI­NN does not support a variable number of microphones, we train separate models
DI­NNM for each scenario whereM microphones are used. The masked version of GNN
is trained by randomly sampling a subset containing between 5 and 11 of microphones,
and we denote this method GNNM. However, unlike our proposed method, these models
cannot predict microphone locations, or exploit the sound source audio.

The results using different number of known microphone coordinates are shown in Table
2, where it can be seen that our method is consistently more robust when performing local­
ization using a subset of the microphones. In addition, our method can also be evaluated

225

Paper vII

Table 4: Sound source localization MAE [cm] on the speech3 trajectory using subsets of microphones and network modules.

Setup Method M = 7 M = 11

1a wav2pos baseline 148.8± 2.4 144.3± 3.1
+pairwise pos­enc. 129.7± 2.9 60.1± 2.5
+random masking 96.7± 3.0 81.2± 3.0
+max­pooling 92.8± 2.9 73.4± 3.8
+TDOA feat. (GCC­PHAT) 57.9± 1.8 32.9± 1.3

(NGCC­PHAT) 38.8± 1.7 22.7± 1.1

in the scenario where the sound s0 emitted from the source is given (and hence audio from
the 12:th microphone is not masked), but its location unknown (Setup 1b). Evaluating
the same model in this setup shows that it can exploit the additional data to improve lo­
calization performance. Furthermore, our method can exploit audio from microphones in
unknown locations, denoted as Setup 2a (unknown source audio) and 2b (known source au­
dio), where audio from all microphones are used as input, but their coordinates are masked
(except for the M known). This improves the localization performance and also allows
for localization of the microphones themselves. Table 3 shows that this is possible for a
small number of unknown microphone locations, but the errors become very large when
less than 8 microphone locations are known.

Ablation study. Next, we ablate the different components of our method in Table 4. No­
tably, the pairwise positional encoding is crucial for the method to work, since it allows the
transformers to connect audio and coordinates from the same microphone. The ablation
also shows that our random masking strategy significantly improves robustness to missing
microphones. Providing TDOA features as an additional input drastically reduces the lo­
calization error, and we note that using a pre­trained NGCC­PHAT yields significantly
better results compared to regular GCC­PHAT inputs.

Simulated environment. So far, we have only considered recordings with microphones in
a limited number of possible locations. In order to validate our approach in scenarios with
flexible microphone locations and changes in signal to noise ratio (SNR) and reverberation
times, we perform additional experiments in a controlled simulated environment¹. We use
the same setup 1a as for LuViRA, but microphone locations are randomly sampled across
each of the walls, floor and ceiling, for a total of six microphones. We use recordings from
the LibriSpeech dataset [29] and create a 20 000/2 000 train/test split based on speaker­
ids. Results are shown in Figures 3a­d, where performance is evaluated over a range of
SNRs and reverberation times. Notably, our proposed method outperforms DI­NN and
GNN in all scenarios. GNN, which relies on GCC­PHAT as input, performs poorly as
reverberation increases, which highlights the necessity of using better feature extractors for
good performance in such conditions. In addition, Figure 3e shows the signal de­noising

¹Code: https://github.com/axeber01/wav2pos/

226

https://github.com/axeber01/wav2pos/

0 10 20 30
SNR [dB]

0.6

0.8

1.0

1.2

1.4
M

AE
 [m

]
DI-NN
GNN
wav2pos

(a) MAE vs SNR

0 10 20 30
SNR [dB]

0.4

0.6

0.8

ac
c@

1m

(b) Accuracy vs SNR

0.0 0.2 0.4 0.6
t60 [s]

0.6

0.8

1.0

1.2

1.4

M
AE

 [m
]

(c) MAE vs t60

0.0 0.2 0.4 0.6
t60 [s]

0.6

0.8

ac
c@

1m

(d) Accuracy vs t60

0.0 2.5 5.0 7.5 10.0
SNR [dB]

0

2

4

6

8

10

Ou
tp

ut
 S

NR
 [d

B]
(e) Output vs input SNR

Figure 3: Results on the simulated dataset under varying noise and reverberation conditions.

performance of our method, yielding positive gains roughly in the range of 0 to 7 dB.
However, de­noising performance is limited by the embedding dimension of the encoder
and decoder, making it difficult to reconstruct high­frequency content.

4 Conclusions and Future Work

In this work, we have proposed a general SSL method that can be used in a wide range
of problem scenarios. We conjecture that our method can also be further extended to
localizing multiple sound sources. This is possible due to the flexibility of masked autoen­
coders, where additional inputs or outputs can be added seamlessly. It is also possible to
consider the full self­calibration problem where no microphone locations are known, but
this requires processing longer sequences of moving sound sources. We leave this as future
work and hope that it can inspire the wider research community to create more challenging
localization datasets and tasks.

References

[1] K. Åström, M. Larsson, G. Flood, and M. Oskarsson. Extension of Time­Difference­
of­Arrival Self Calibration Solutions using Robust Multilateration. In 2021 29th Eu­
ropean Signal Processing Conference (EUSIPCO), pages 870–874. IEEE, 2021.

227

Paper vII

[2] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization. arXiv preprint
arXiv:1607.06450, 2016.

[3] A. Beck, P. Stoica, and J. Li. Exact and Approximate Solutions of Source Localization
Problems. IEEE Trans. on Signal Processing, 56(5):1770–1778, May 2008. ISSN 1941­
0476. doi: 10.1109/TSP.2007.909342.

[4] A. Beck, M. Teboulle, and Z. Chikishev. Iterative Minimization Schemes for Solving
the Single Source Localization Problem. SIAM Journal on Optimization, 19(3):1397–
1416, Jan. 2008. ISSN 1052­6234, 1095­7189. doi: 10.1137/070698014.

[5] A. Berg, M. O’Connor, K. Åström, and M. Oskarsson. Extending GCC­PHAT using
Shift Equivariant Neural Networks. In Proc. Interspeech 2022, pages 1791–1795, 2022.
doi: 10.21437/Interspeech.2022­524.

[6] K. W. Cheung, H. C. So, W. Ma, and Y. T. Chan. Least squares algorithms for time­
of­arrival­based mobile location. IEEE Trans. on Signal Processing, 52(4):1121–1130,
Apr. 2004. ISSN 1941­0476. doi: 10.1109/TSP.2004.823465.

[7] J.­H. Cho and J.­H. Chang. SR­SRP: Super­Resolution based SRP­PHAT for Sound
Source Localization and Tracking. In Proc. INTERSPEECH 2023, pages 3769–3773,
2023. doi: 10.21437/Interspeech.2023­2369.

[8] I. D. Coope. Reliable computation of the points of intersection of n spheres in Rn.
ANZIAM Journal, 42:C461–C477, Dec. 2000. ISSN 1445­8810. doi: 10.21914/
anziamj.v42i0.608.

[9] J. Devlin, M.­W. Chang, K. Lee, and K. Toutanova. Bert: Pre­training of Deep Bidi­
rectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805,
2018.

[10] D. Diaz­Guerra, A. Miguel, and J. R. Beltran. Robust Sound Source Tracking using
SRP­PHAT and 3D Convolutional Neural Networks. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 29:300–311, 2020.

[11] L. Feng, Y. Gong, and X.­L. Zhang. Soft Label Coding for end­to­end Sound Source
Localization with ad­hoc Microphone Arrays. In ICASSP 2023­2023 IEEE Interna­
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5. IEEE,
2023.

[12] X. Geng, H. Liu, L. Lee, D. Schuurmans, S. Levine, and P. Abbeel. Multimodal
Masked Autoencoders Learn Transferable Representations. In First Workshop on Pre­
training: Perspectives, Pitfalls, and Paths Forward at ICML 2022, 2022.

228

[13] M. D. Gillette and H. F. Silverman. A Linear Closed­Form Algorithm for Source
Localization from Time­Differences of Arrival. IEEE Signal Processing Letters, 15:1–4,
2008.

[14] Y. Gong, S. Liu, and X.­L. Zhang. End­to­end Two­Dimensional Sound Source Lo­
calization with Ad­Hoc Microphone Arrays. In 2022 Asia­Pacific Signal and Infor­
mation Processing Association Annual Summit and Conference (APSIPA ASC), pages
1944–1949. IEEE, 2022.

[15] E. Grinstein, M. Brookes, and P. A. Naylor. Graph Neural Networks for Sound Source
Localization on Distributed Microphone Networks. In ICASSP 2023­2023 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–
5. IEEE, 2023.

[16] E. Grinstein, V. W. Neo, and P. A. Naylor. Dual Input Neural Networks for Positional
Sound Source Localization. EURASIP Journal on Audio, Speech, and Music Processing,
2023(1):32, 2023.

[17] P.­A. Grumiaux, S. Kitić, L. Girin, and A. Guérin. A Survey of Sound Source Local­
ization with Deep Learning mMthods. The Journal of the Acoustical Society of America,
152(1):107–151, 2022.

[18] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are
Scalable Vision Learners. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 16000–16009, 2022.

[19] Y. HE and A. Markham. SoundDoA: Learn Sound Source Direction of Arrival and
Semantics from Sound Raw Waveforms. In Proc. Interspeech 2022, pages 2408–2412,
2022. doi: 10.21437/Interspeech.2022­378.

[20] D. Hendrycks and K. Gimpel. Gaussian Error Linear Units (GELUs). arXiv preprint
arXiv:1606.08415, 2016.

[21] P.­Y. Huang, H. Xu, J. Li, A. Baevski, M. Auli, W. Galuba, F. Metze, and C. Feicht­
enhofer. Masked Autoencoders that Listen. Advances in Neural Information Processing
Systems, 35:28708–28720, 2022.

[22] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. In International conference on machine learning,
pages 448–456. pmlr, 2015.

[23] R. Jyothi and P. Babu. SOLVIT: A Reference­Free Source Localization Technique
Using Majorization Minimization. IEEE/ACM Trans. on Audio, Speech, and Lan­
guage Processing, 28:2661–2673, 2020. ISSN 2329­9304. doi: 10.1109/TASLP.2020.
3021500.

229

Paper vII

[24] C. Knapp and G. Carter. The Generalized Correlation Method for Estimation of
Time Delay. IEEE transactions on acoustics, speech, and signal processing, 24(4):320–
327, 1976.

[25] M. Larsson, V. Larsson, K. Åström, and M. Oskarsson. Optimal Trilateration Is
an Eigenvalue Problem. In ICASSP 2019 ­ 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5586–5590, May 2019. doi:
10.1109/ICASSP.2019.8683355.

[26] I. Loshchilov and F. Hutter. Decoupled Weight Decay Regularization. arXiv preprint
arXiv:1711.05101, 2017.

[27] D. R. Luke, S. Sabach, M. Teboulle, and K. Zatlawey. A simple globally convergent
algorithm for the nonsmooth nonconvex single source localization problem. Journal
of Global Optimization, 69(4):889–909, Dec. 2017. ISSN 1573­2916. doi: 10.1007/
s10898­017­0545­6.

[28] D. E. Manolakis. Efficient solution and performance analysis of 3­D position estima­
tion by trilateration. IEEETrans. on Aerospace and Electronic Systems, 32(4):1239–1248,
Oct. 1996. ISSN 1557­9603. doi: 10.1109/7.543845.

[29] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. Librispeech: An ASR Corpus
Based on Public Domain Audio Books. In 2015 IEEE international conference on
acoustics, speech and signal processing (ICASSP), pages 5206–5210. IEEE, 2015.

[30] W. Phokhinanan, N. Obin, and S. Argentieri. Binaural Sound Localization in
Noisy Environments Using Frequency­Based Audio Vision Transformer (FAViT). In
Proc. INTERSPEECH 2023, pages 3704–3708, 2023. doi: 10.21437/Interspeech.
2023­2015.

[31] A. Raina and V. Arora. SyncNet: Correlating Objective for Time Delay Estimation
in Audio Signals. In ICASSP 2023­2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 1–5. IEEE, 2023.

[32] D. Salvati, C. Drioli, and G. L. Foresti. Time Delay Estimation for Speaker Local­
ization Using CNN­Based Parametrized GCC­PHAT Features. In Interspeech, pages
1479–1483, 2021.

[33] R. Scheibler, E. Bezzam, and I. Dokmanić. Pyroomacoustics: A Python Package for
Audio Room Simulation and Array Processing Algorithms. In 2018 IEEE international
conference on acoustics, speech and signal processing (ICASSP), pages 351–355. IEEE,
2018.

230

[34] N. Sirola. Closed­form algorithms in mobile positioning: Myths and misconceptions.
In Navigation and Communication 2010 7th Workshop on Positioning, pages 38–44,
Mar. 2010. doi: 10.1109/WPNC.2010.5653789.

[35] P. Stoica and J. Li. Lecture notes­source localization from range­difference measure­
ments. IEEE Signal Processing Magazine, 23(6):63–66, 2006.

[36] F. Thomas and L. Ros. Revisiting trilateration for robot localization. IEEE Trans. on
Robotics, 21(1):93–101, Feb. 2005. ISSN 1941­0468. doi: 10.1109/TRO.2004.833793.

[37] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. Attention is All You Need. Advances in neural information processing
systems, 30, 2017.

[38] J. M. Vera­Diaz, D. Pizarro, and J. Macias­Guarasa. Towards End­to­End Acoustic
Localization using Deep Learning: From Audio Signals to Source Position Coordi­
nates. Sensors, 18(10):3418, 2018.

[39] Y. Wang, B. Yang, and X. Li. FN­SSL: Full­Band and Narrow­Band Fusion for Sound
Source Localization. In Proc. INTERSPEECH 2023, pages 3779–3783, 2023. doi:
10.21437/Interspeech.2023­714.

[40] I. Yaman, G. Tian, M. Larsson, P. Persson, M. Sandra, A. Dürr, E. Tegler, N. Challa,
H. Garde, F. Tufvesson, et al. The LuViRA Dataset: Measurement Description. arXiv
preprint arXiv:2302.05309, 2023.

[41] Y. Zhou. A closed­form algorithm for the least­squares trilateration problem. Robot­
ica, 29(3):375–389, May 2011. ISSN 1469­8668, 0263­5747. doi: 10.1017/
S0263574710000196.

231

Paper vII

Appendix

Details on model training. The implementations of DI­NN² and GNN³ available online
are extended from two to three dimensions. We consider using GNN with spatial likelihood
functions infeasible in large 3D environments, thus we use GNN with GCC­PHAT inputs
only. We also tried pre­trained NGCC­PHAT features as input to GNN, but the training
then failed to converge.

For M microphones GNN uses M(M − 1)/2 TDOA features by only computing Rij

and not Rji, which speeds up computation time, but breaks permutation invariance. In
contrast, wav2pos uses allM(M − 1) features in order to preserve this property. This also
results in slightly better localization performance. Computation time is saved by noting
that Rij [t] = Rji[−t] for any time delay t, a property that holds for both GCC­PHAT
and NGCC­PHAT.

NGCC­PHAT is trained using an available implementation⁴ with slight modifications.
At pre­training time, two random microphones are picked for each training example and
the TDOA is estimated using classification in the range of integers −τ, ..., τ using the
cross­entropy loss. The maximum possible time delay between two microphones can be
calculated by considering the distance between the two most separated microphones. For
the LuViRA dataset, this results in a maximum delay of τ = 314 samples. At inference
time, TDOA estimates are computed for all pairs of microphones.

The multilateration method runs in Matlab using open source code⁵. We modify the code
to not consider the full self­calibration problem, but only the sound source localization
with known microphone positions. This method uses a RANSAC loop that tests each of
the four strongest peaks in the GCC­PHAT feature per microphone pair.. When adopting
the method to use NGCC­PHAT, we only consider a single peak, since NGCC­PHAT is
trained to estimate a single TDOA.

Model training is done in Pytorch on a single NVIDIA A100 GPU. Training and inference
times are shown in Table 5. We do not report time for multilateration, as there is no training
step and the inference code was not optimized for speed. The wav2pos network without
TDOA features corresponds to the Table 1 max­pooling step. We note that computing
TDOA features using NGCC­PHAT increases the execution time of our method consid­
erably, since these are computed sequentially for all 55 pairwise microphone combinations.
This could be parallelized in order to speed up execution time.

²https://github.com/egrinstein/di_nn/
³https://github.com/egrinstein/gnn_ssl/
⁴https://github.com/axeber01/ngcc/
⁵https://github.com/kalleastrom/StructureFromSound2/

232

https://github.com/egrinstein/di_nn/
https://github.com/egrinstein/gnn_ssl/
https://github.com/axeber01/ngcc/
https://github.com/kalleastrom/StructureFromSound2/

Table 5: Training and inference times for setup 1a withM = 11 microphones, measured on a single A100 GPU. Training was
done for 500 epochs on the LuViRA dataset.

Method Training [h] Inference [ms]

DI­NN 29.5 0.2
GNN 34.7 1.0
wav2pos w/o TDOA feat. 27.8 0.2
wav2pos 64.3 5.9

Dataset details. Figure 4 shows the 3D layout of the microphones in the LuViRA dataset,
which are identical for all eight recordings. In addition, the microphone locations in sim­
ulated dataset are visualized in Figure 5. Table 6 provides the train/test split used for the
simulated dataset.

x [m]

2
0

2

y [
m]

2
0

2
z [

m
]

0.5

1.0

1.5
1

2
3

4

5

6

7
89

10

11

Figure 4: Microphone locations in the LuViRA dataset.

x [m]
2

0
2

y [
m]

2
0

2

z [
m

]

0

1

2

Figure 5: Microphone distribution in the simulated dataset. Each dot shows a microphone for a single training example. The
color shows which of the six faces of the room it belongs to.

233

Paper vII

Table 6: Speaker-ids used in the simulated dataset. Recordings shorter than one second are discarded.

Dataset Test speaker­ids Train speaker­ids

Librispeech test­clean 61, 121, 237 all other 43 speakers

Additional results on LuViRA dataset. We provide additional results for all methods on
several splits of the LuViRA dataset in Table 7. The train/test splits are constructed such
that six tracks are used for training, e.g. music1-3 and speech1-3, and two are used
for testing, e.g. music4 and speech4. Out of the eight tracks, music2 and music4 are
the only ones with significant height variation in the source trajectory. The corresponding
cumulative error distributions are shown in Figure 6 and additional visualizations of model
predictions are shown in Figure 7. It can be seen that although the multilateration methods
are often very accurate, they have a long tail in the error distributions due to outliers,
whereas the learning­based methods do not suffer from this problem.

Table 7: Mean absolute error [cm] on the LuViRA dataset using setup 1a and different test splits.

Method music1 music2 music3 music4 speech1 speech2 speech3 speech4

Multilat 67.2± 3.2 48.6± 2.3 38.8± 2.5 28.1± 1.6 80.9± 3.2 90.4± 3.5 72.8± 4.4 124± 3.8
Multilat* 32.9± 2.3 20.7± 1.5 16.3± 1.6 9.5± 0.8 20.7± 1.7 18.9± 1.6 34.9± 3.2 41.9± 2.5
DI­NN 54.0± 1.9 64.9± 1.5 26.0± 0.8 47.1± 1.2 29.6± 0.9 22.5± 0.6 44.7± 1.7 43.2± 1.5
GNN 42.3± 1.8 74.9± 2.1 17.0± 0.7 33.6± 0.8 21.6± 0.9 19.2± 0.6 31.9± 1.6 35.1± 1.3
wav2pos 22.7± 1.0 28.1± 0.8 14.2± 0.5 19.9± 0.4 13.1± 0.6 11.7± 0.4 23.6± 1.2 24.8± 0.9

234

0
50

10
0

15
0

E
rr

or
[c

m
]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF

m
u
s
i
c
1

M
u

lt
ila

te
ra

ti
on

M
u

lt
ila

te
ra

ti
on

*

D
I-

N
N

G
N

N

w
av

2p
os

0
50

10
0

15
0

E
rr

or
[c

m
]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF

m
u
s
i
c
2

0
50

10
0

15
0

E
rr

or
[c

m
]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF

m
u
s
i
c
3

0
50

10
0

15
0

E
rr

or
[c

m
]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF

m
u
s
i
c
4

0
50

10
0

15
0

E
rr

or
[c

m
]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF

s
p
e
e
c
h
1

0
50

10
0

15
0

E
rr

or
[c

m
]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF

s
p
e
e
c
h
2

0
50

10
0

15
0

E
rr

or
[c

m
]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF

s
p
e
e
c
h
3

0
50

10
0

15
0

E
rr

or
[c

m
]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF

s
p
e
e
c
h
4

Fi
g
u
re

6:
C
um

ul
at
iv
e
er
ro
r
di
st
rib

ut
io
ns

on
th
e
Lu
V
iR
A
da

ta
se
t
us
in
g
se
tu
p
1
a
an

d
di
ff
er
en

t
te
st
sp
lit
s.

235

Paper vII

Fig
u
re

7:
V
isualizations

of
the

predictions
on

the
music3

track,w
here

each
coordinate

prediction
is
show

n
separately

(x
:
blue,

y
:
orange,

z
:
green).

G
round

truth
coordinates

are
traced

in
black

(som
e
tim

estam
ps

are
m
issing

ground
truth).

236

	Abstract
	List of Publications
	Acknowledgements
	Funding
	Popular summary
	Populärvetenskaplig sammanfattning
	List of Abbreviations
	Background and Research Context
	Introduction
	Motivation and Research Objectives
	Outline of the Thesis

	Artificial Neural Networks and Deep Learning
	Supervised Learning
	Training a Neural Network
	Federated Learning
	Number Formats for Neural Network Training and Inference

	Diversity and Ordinal Regression
	Regression Ensembles
	The Bias-Variance Decomposition
	Label Binning
	Regression via Classification
	Ordinal Regression
	Label Diversity

	Neural Network Architectures and Input-Output Symmetries
	Permutation Symmetry and Learning on Sets
	Permutation Invariant Training
	Relation Networks
	Learning on Graphs
	Translational Symmetry and Convolutional Neural Networks
	Self-Attention and Transformers

	Audio Recognition and Sound Source Localization
	Audio Feature Descriptors
	Speech Recognition and Keyword Spotting
	Sound Source Localization

	Summary of Contributions
	Paper Contributions
	Conclusions and Outlook

	References

	Scientific Publications
	Deep Ordinal Regression with Label Diversity
	Introduction
	Related Work
	Methods
	Relevant Applications

	Proposed Method
	Label Diversity by Overlapping Bins
	Backpropagation
	Inference

	An Illustrative Example
	Experiments
	Age Estimation
	Head Pose Estimation
	Historical Image Dating

	Conclusion
	References

	Points to Patches: Enabling the Use of Self-Attention for 3D Shape Recognition
	Introduction
	Related Work
	Method
	Experiments
	Shape Classification
	Ablation Study
	Feature Matching on 3DMatch

	Conclusions
	References

	Keyword Transformer: A Self-Attention Model for Keyword Spotting
	Introduction
	Related Work
	Keyword Spotting
	Self-Attention and the Vision Transformer

	The Keyword Transformer
	Model Architecture
	Knowledge Distillation

	Experiments
	Keyword Spotting on Google Speech Commands
	Ablation Studies
	Attention Visualization
	Latency Measurements

	Conclusion
	References

	Towards Federated Learning with on-device Training and Communication in 8-bit Floating Point
	Introduction
	Related Work
	Federated Learning with Quantized Communication
	FP8 Quantization for Neural Networks

	Method
	Preliminaries
	Floating Point Representation
	On-Device Quantization-Aware Training
	Unbiased Quantized Communication
	Server-Side Optimization (ServerOptimize)
	Overall algorithm

	Convergence analysis and theoretical motivations
	Experiments and Ablation Studies
	Datasets and models
	Mixed Precision Quantization Implementation
	Results
	Ablation studies

	Conclusions and Future Work
	References
	Appendix
	Quantization Function
	Convergence Analysis of Quantization-aware Training (QAT)
	Convergence Analysis of FP8FedAvg-UQ
	Lemmas on the Stochastic Quantization for Model Communication
	Lemma on a Single Communication Round
	Proof of the Main Theorem

	Extending GCC-PHAT using Shift Equivariant Neural Networks
	Introduction
	Method
	Experiments
	Conclusions
	Acknowledgments
	References

	Learning Multi­Target TDOA Features for Sound Event Localization and Detection
	Introduction
	Method
	Background
	Permutation Invariant Training for TDOA Estimation

	Experimental Setup
	Using TDOA Features for SELD
	Dataset and Model Training

	Results
	Conclusions
	References

	wav2pos: Sound Source Localization using Masked Autoencoders
	Introduction
	Method
	Experimental Results
	Conclusions and Future Work
	References
	Appendix

