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Iterative Reference Learning for Cartesian Impedance Control
of Robot Manipulators

Julian M. Salt Ducaju, Björn Olofsson, Rolf Johansson

Abstract— In this paper, an iterative learning strategy was
developed to improve trajectory tracking for an impedance-
controlled robot manipulator. In this learning strategy, an
update law was proposed to modify the Cartesian reference
of an impedance controller. Also, the conditions that ensure
its convergence considering the dynamics of the robot were
derived. Finally, an experimental evaluation was performed
using a Franka Emika Panda robot in two different robot tasks,
and its results showed that robot task completion was achieved
in a lower number of iterations, while maintaining a smooth
physical interaction between the robot and its surroundings.

I. INTRODUCTION

Recent trends in manufacturing industry to replace mass
production for mass customization could not be ade-
quately addressed in industrial settings characterized by a
fixed-structure workplace [1]. To avoid these limitations
in modern-day industrial environments, manufacturing pro-
cesses should be able to adapt with ease to rapidly changing
requirements. Kinesthetic teaching has been proposed for
this purpose in the last years, since it is a human–robot
collaboration strategy where a human collaborator manually
guides a robot to define or modify a robot trajectory [2], thus
allowing the use of human dexterity and intelligence in robot
task adaptation [3].

In less structured industrial environments, indirect force-
control strategies, such as impedance control [4], [5], are
widely used, since, compared to other force-control strate-
gies, they rely less on an accurate description of the robot
environment [6]. Impedance control regulates the interacting
forces between a robot and its environment by modeling the
external force applied to the robot as a mass-spring-damper
relationship to handle the mismatch between the robot state
and a user-defined reference. By regulating the interaction
force between a robot and its environment, impedance con-
trol allows physical guidance of a robot by human operators,
and provides physical safety to the actors involved. However,
the dynamical relationship imposed by impedance-control
strategies inherently introduces a deviation in the robot
trajectory which might cause a robot not to complete its
designated task, e.g., an insertion task where the peg–hole
tolerance is small.
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Several strategies proposed in the past to improve trajec-
tory tracking in a robotic manipulator might cause unde-
sired effects in collaborative environments. First, position-
feedback control [7] would modify the interaction forces
between the robot and its environment by increasing the
robot stiffness, which might damage the manipulated objects
and pose a safety threat to robots and/or humans involved.
Also, other strategies that consist in trajectory scaling [8],
[9] would inherently slow down the execution of the robot
motion with task completion at stake if the dynamics of the
robot are not fully modeled, e.g., joint elasticity or friction.

Moreover, strategies based on learning the desired robot
behavior could be used in this context. Among these strate-
gies, Reinforcement Learning (RL) has gained popularity
in recent years [10], although it might still be too time-
consuming for these robot applications, since this strategy
often requires a high number of trials to learn a desired robot
behavior [11]. Also, Iterative Learning Control (ILC) [12],
[13] has been used extensively in the past to improve robot
behavior. Nevertheless, in its linear formulation [14], [15],
ILC might not fully allow to exploit the robot dynamics.
Alternatively, model-based adaptive control [16] or adaptive
iterative learning techniques (AILC) [17], [18] can deal with
robot nonlinearities, while relieving the high-stiffness re-
quirements of previously-proposed strategies [19] (which had
the same limitations as position-feedback controllers [7] for
physical interaction). However, the adaptive terms in AILC
would result in real-time modifications of the impedance be-
havior of a robot [20]. Finally, the use of learning techniques
for impedance-controlled robots has been explored in the past
[21], [22], but it was focused on impedance matching, i.e.,
matching a desired physical interaction, instead of reducing
trajectory tracking error.

In this paper, we address the problem of improving
trajectory tracking in robotic applications where impedance
control is used by proposing an iterative learning strategy,
namely, Iterative Reference Learning Controller (IRLC),
that provides a Cartesian reference update. To validate our
proposal, several experiments have been performed using
a real robotic manipulator: a peg-in-hole experiment and a
snap-fit assembly of a switch.

The paper is organized as follows: Sec. II introduces the
dynamics model used for Cartesian impedance control of
robot manipulators. Then, Sec. III presents an iterative refer-
ence learning strategy to improve trajectory tracking, which
was extensively evaluated with a real robot in experiments
presented in Sec. IV. Finally, a discussion is included in
Sec. V and conclusions are drawn in Sec. VI.



II. MODELING BACKGROUND

The dynamic behavior of a robot manipulator controlled
by a Cartesian impedance strategy is introduced in this
section.

A. Robot Dynamics

The dynamics of the robot can be written in the joint space
of the robot, q ∈ Rn, as [23]

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + τ ext (1)

where M(q) ∈ Rn×n is the generalized inertia matrix
(which is symmetric positive definite), C(q, q̇) ∈ Rn×n

describes the Coriolis and centripetal forces effects, and
G(q) ∈ Rn captures the gravity-induced torques. Finally,
τ ∈ Rn represents the input torques, n being the number of
joints of the robot, and τ ext ∈ Rn are the external torques.

Moreover, the rigid-body equation of the robot can be
rewritten in terms of its end-effector pose ξ ∈ Rm, which is
composed by the position and orientation of the end-effector
(often, m = 6)

Mξ(q)ξ̈ + Cξ(q, q̇)ξ̇ +Gξ(q) = F + F ext (2)

where F ∈ Rm is the input force, and F ext ∈ Rm the
external Cartesian forces. Additionally, for a fully-actuated
nonredundant robot (n = m), Mξ ∈ Rm×m, Cξ ∈ Rm×m,
and Gξ ∈ Rm are equal to

Mξ = J−T(q)M(q)J−1(q) (3)

Cξ = J−T(q)(C(q, q̇)−M(q)J−1(q)J̇(q))J−1(q) (4)
Gξ = J−T(q)G(q) (5)

assuming that the Jacobian relative to the base frame of the
robot, J(q) ∈ Rm×m, has full rank [24].

Furthermore, it is relevant to highlight two properties of a
robot manipulator [25]:

• The robot inertia matrix Mξ in Eq. (2) is a positive
definite matrix,

xTMξx > 0, ∀x ̸= 0 (6)

• The matrix Ṁξ − 2Cξ is skew symmetric,

xT
(
Ṁξ − 2Cξ

)
x = 0, ∀x ̸= 0 (7)

B. Robot Cartesian Impedance Control

An input force F in Eq. (2) equal to

F = K∆ξ −Dξ̇ +Gξ(q) (8)

would achieve a Cartesian impedance control of the robot
end-effector [4], i.e., a mass-spring-damper relationship
between the Cartesian pose offset from its reference,
∆ξ = ξd − ξ (ξd being the Cartesian reference) and the
external Cartesian force F ext,

F ext = Mξ(q)ξ̈ + (Cξ(q, q̇) +D)ξ̇ −K∆ξ (9)

where K ∈ Sm
++ and D ∈ Sm

++ (S++ denoting symmetric
positive-definiteness) are diagonal matrices that represent the
control-induced stiffness and damping, respectively.

III. ITERATIVE REFERENCE LEARNING CONTROL

An iterative learning strategy to improve the Cartesian tra-
jectory tracking for a Cartesian impedance-controlled robot
is presented in this section.

A. Robot Input Feedforward and Error Dynamics

The input force F in Eq. (2) commanded to the robot
could include an additional feedforward term Fff [17], [19]
computed using iterative learning

F = Ffb + Fff (10)

where Fff = 0 at the first learning iteration, and the input
force feedback term Ffb is given by the desired Cartesian
impedance behavior in Eq. (9). Then, choosing an error
variable e(t) ∈ R6 with respect to a desired Cartesian pose,
ξR ∈ R6, as

e = ξR − ξ (11)

the error dynamics of the system in the absence of external
forces acting on the robot would be equal to

Mξ ë+ (Cξ +D)ė+Ke = −Fff (12)

with ξ̇R = ξ̈R = 0.

B. Learning Update Law

The force input feedforward strategy, Fff in Eq. (10), at
iteration i + 1 could be chosen as:

i+1Fff = iFff + βD iζ (13)

where β > 0 is the iterative learning gain and iζ ∈ R6

is formulated considering the pose error e and its time
derivative ė, similar to [17], [19],

iζ = iė+R ie (14)

with R ∈ R6×6 being a diagonal matrix

R = D−1(K −Υ) > 0 (15)

and Υ ∈ R6×6 also being diagonal.
Then, considering Eqs. (8), (10), and (13), the update

law at iteration i + 1 for the Cartesian impedance controller
reference used in Eq. (9) would be

i+1ξd = iξd + βK−1D
[
R(ξR − iξ)−

i
ξ̇
]

(16)

where 0ξd = ξR.

Remark. The impedance-controlled robot behavior resulting
from an iterative strategy where ξd in Eq. (9) is modified at
every iteration step so that the error signal e in Eq. (11) con-
verges to 0, would be stable by design; see [26, Lemma III.2]
for more details of the stability justification.

The structure for the proposed Iterative Reference Learn-
ing Controller (IRLC) is illustrated in Fig. 1. It can be seen
that at every iteration, the Cartesian impedance reference sent
to the controller is calculated considering the robot motion
at the previous iteration, and the desired Cartesian pose.



i+1ξd
iξ,

i
ξ̇

ξRIRLC

Robot with Cartesian
Impedance Controller

Fig. 1. Illustration of the iterative learning controller proposed to reduce
the robot trajectory error.

Moreover, after N > 0 iterations, the update law in
Eq. (16) is equivalent to:

Nξd = ξR + βK−1D
[
R
(
NξR −

N−1∑
j=0

jξ
)
−

N−1∑
j=0

j
ξ̇
]

(17)

C. Convergence Analysis

A convergence analysis of the update law provided in
Sec. III-B is presented in this section. Convergence has been
shown by proving the monotonous decrease of a performance
index, as established in [19]. The differences between the
performance index in [19] and our proposal are highlighted
in Sec. V.

Theorem III.1. The proposed update law in Eq. (16) would
allow ξ to converge to ξR provided that the learning gain
β > 0 of the iterative scheme is chosen so that the following
conditions are fulfilled:

gė ≜ (2− β)λm(D)− 2RλM(Mξ) > 0 (18)
ge ≜ (2− β)λm(D)− 2λM(Cξ)

+2λm(R
−1Υ) > 0 (19)

√
gėge > λM(R−1Υ−RMξ − Cξ) (20)

where λm and λM refer to the minimum and maximum
eigenvalues, for all t ∈ [0, tF], respectively, with tF being
the final time of the robot task execution.

Proof: The monotonous decrease of performance index

iV = β

∫ t

0

(
iζ
)T

D
(

iζ
)
dt > 0 (21)

at each iteration step i can be shown. First, using this
performance index and Eq. (13),

i+1V = β

∫ t

0

(
i+1ζ

)T

D
(

i+1ζ
)
dt =

= β

∫ t

0

(
iζ
)T

D
(

iζ
)
dt

+β

∫ t

0

[(
i∆ζ

)T
D
(
i∆ζ

)
+ 2

(
i∆ζ

)T
D iζ

]
dt (22)

where i+1ζ = iζ + i∆ζ. Then, the error dynamics of the
system in Eq. (12) expressed in terms of the variable ∆ζ

(and assuming that Mξ and Cξ do not vary between the
same sample time of consecutive iterations) is equal to

Mξ
i
∆ζ̇ + (Cξ +D −RMξ)

i∆ζ +

(−RCξ +R2Mξ +Υ) i∆e = −βD iζ (23)

since

i∆ζ = i∆ė+R i∆e (24)
i∆Fff = βD i∆ζ (25)

and it can be obtained that

i∆V = i+1V − iV =

∫ t

0

[
β
(
i∆ζ

)T
D
(
i∆ζ

)
−2

(
i∆ζ

)T
Mξ

i
∆ζ̇

−2
(
i∆ζ

)T
(Cξ −D −RMξ)

i∆ζ

−2
(
i∆ζ

)T
(R2Mξ −RCξ +Υ) i∆e

]
dt (26)

Moreover,

d

dt

((
i∆ζ

)T
Mξ

i∆ζ
)
=

(
i∆ζ

)T
Ṁξ

i∆ζ+2
( i
∆ζ̇

)T
Mξ

i∆ζ

(27)
so Eq. (26) can be rewritten as

i∆V = −
(
i∆ζ

)T
Mξ

(
i∆ζ

)
+

∫ t

0

[(
i∆ζ

)T
Ṁξ

(
i∆ζ

)
+β

(
i∆ζ

)T
D
(
i∆ζ

)
−2

(
i∆ζ

)T
(Cξ +D −RMξ)

(
i∆ζ

)
−2

(
i∆ζ

)T
(R2Mξ −RCξ +Υ)

(
i∆e

)]
dt (28)

Since Mξ is positive definite, Eq. (6), and Ṁξ − 2Cξ is a
skew-symmetric matrix, Eq. (7),

i∆V ≤
∫ t

0

[
β
(
i∆ζ

)T
D
(
i∆ζ

)
−2

(
i∆ζ

)T
(D −RMξ)

(
i∆ζ

)
−2

(
i∆ζ

)T
(R2Mξ −RCξ +Υ)

(
i∆e

)]
dt (29)

which is equivalent to

i∆V ≤
∫ t

0

[(
i∆ζ

)T
((β − 2)D + 2RMξ)

(
i∆ζ

)
−2

(
i∆ζ

)T
(R2Mξ −RCξ +Υ)

(
i∆e

)]
dt (30)

Using Eq. (14) to substitute i∆ζ,∫ t

0

(
i∆ζ

)T
((β − 2)D + 2RMξ)

(
i∆ζ

)
dt =∫ t

0

(
i∆ė

)T
((β − 2)D + 2RMξ)

(
i∆ė

)
dt

+

∫ t

0

(
R i∆e

)T
((β − 2)D + 2RMξ)

(
R i∆e

)
dt

+2

∫ t

0

(
R i∆e

)T
((β − 2)D + 2RMξ)

(
i∆ė

)
dt (31)



and ∫ t

0

−2
(
i∆ζ

)T
(R2Mξ −RCξ +Υ)

(
i∆e

)
dt =

−2R

∫ t

0

(
i∆e

)T
(RMξ − Cξ +R−1Υ)

(
R i∆e

)
dt

−2

∫ t

0

(
i∆ė

)T
(RMξ − Cξ +R−1Υ)

(
R i∆e

)
dt (32)

Therefore,

i∆V ≤
∫ t

0

(
i∆ė

)T
((β − 2)D + 2RMξ)

(
i∆ė

)
dt

+2

∫ t

0

(
i∆ė

)T
((β − 2)D +RMξ + Cξ

−R−1Υ)
(
R i∆e

)
dt+

∫ t

0

(
R i∆e

)T
((β − 2)D

+2Cξ − 2R−1Υ)
(
R i∆e

)
dt (33)

Then, applying integration by parts,

i∆V ≤
∫ t

0

(
i∆ė

)T
((β − 2)D + 2RMξ)

(
i∆ė

)
dt

+2

∫ t

0

(
i∆ė

)T
(RMξ + Cξ −R−1Υ)

(
R i∆e

)
dt

+

∫ t

0

(
R i∆e

)T
((β − 2)− 2R−1Υ+ 2Cξ)

(
R i∆e

)
dt

+
(
i∆e

)T
D((β − 2)D)

(
R i∆e

)
(34)

where
(
i∆e

)T
((β − 2)D)

(
R i∆e

)
≤ 0 for β < 2. This

expression can be rewritten as

i∆V ≤ −
∫ t

0

[
i∆ė

R i∆e

]T
Ω

[
i∆ė

R i∆e

]
dt (35)

for

Ω =

[
gėI6 R−1Υ−RMξ − Cξ

R−1Υ−RMξ − Cξ geI6

]
(36)

where I6 ∈ R6×6 represents an identity matrix. If conditions
(18), (19), (20) are fulfilled, Ω ≥ 0, i.e., all the eigenvalues
of Ω would be nonnegative. Therefore, i∆V ≤ 0, where
i∆V = 0 would only hold for i∆e = i∆ė = 0.

As discussed in [19], where a performance index sim-
ilar to the one in Eq. (21) was used, this would imply
that limi→∞

ie(t) = 0 for all t ∈ [0, tF], assuming that
iė(0) = ie(0) = 0 for all i.

IV. EXPERIMENTS

The IRLC strategy proposed in Sec. III was evaluated for
several robot tasks.

A. Application Scenario

As introduced in Sec. I, kinesthetic teaching [27] allows
a human operator to manually guide a robot manipulator to
define or to correct a robot trajectory, which corresponds to a
certain robot task (Fig. 2). However, a robot controlled with
an impedance controller, such as the Cartesian impedance

controller in Eq. (8) that uses these operator-defined Carte-
sian poses as references might not be able to complete its
task because of the trajectory-tracking deviation introduced
by these controllers (to the advantage of allowing physical
interaction between the robot and its surroundings).

Therefore, the goal of the experiments presented in this
section is to evaluate if the iterative learning strategy pro-
posed in Sec. III would allow a robot to complete its desired
task by updating a manually-defined Cartesian reference used
in a Cartesian impedance-controlled robot.

The experiments presented in this section were performed
using a Franka Emika Panda [28] robot mounted on a table,
as shown in Fig. 2. Since robot joint redundancy is out of the
scope of this paper, the seventh joint of the robot was locked
at θ7 = π/2 rad, and only the first six joints of the robot
were controlled. The robot was controlled at a sampling rate
equal to 1 kHz.

Fig. 2. A human operator manually guiding a Franka Emika Panda [28]
robot mounted on a table to define the desired robot Cartesian poses, ξR in
Eq. (11), for a peg-in-hole task.

B. Peg-in-Hole Task
In a peg-in-hole robot task, a robot manipulator should

insert a peg (in this experiment, with cylindrical shape)
attached to its end-effector in a hole whose dimensions are
slightly larger than the ones of the peg.

For this experiment, the Cartesian impedance values se-
lected were:

• The virtual stiffness K was chosen as 150 [N/m] for
the translational degrees of freedom and as 15 [N/rad]
for the rotational degrees of freedom.

• The virtual damping D was chosen as 50 [Ns/m] for
the translational degrees of freedom and as 10 [Ns/rad]
for the rotational degrees of freedom.

Moreover, for the learning update law (presented in
Sec. III-B), the Cartesian impedance parameters selected (K
and D), together with the iterative convergence conditions
(18)–(20) of Theorem III.1, allowed to choose β = 0.5,
and R = 2.5 for the translational degrees of freedom and
R = 0.92 for the rotational degrees of freedom.



The results for this experiment are shown in
Figs. 3, 4, and 5. Figure 3 shows the temporal evolution
of the end-effector position of the robot. It can be seen
in Fig. 3 that before using the iterative learning strategy
proposed (No IRLC), the Cartesian impedance controller
deviated from the desired trajectory (ξR), which prevented
the robot to complete its task, i.e., to insert the peg in the
hole. This is also shown in the left image of Fig. 4, which
displays the position of the peg once the robot trajectory
is executed for two different scenarios: before learning
(left) and after learning (right). Finally, Fig. 3 shows
that the deviation with respect to the desired trajectory
decreased at every learning iteration, with the robot being
able to complete its task after only two learning iterations.
Consistent with the tracking-error reduction at each learning
iteration, the performance index i V of Eq. (21) decreased
at each iteration, i.e., the performance index increment,
i∆V of Eq. (26), is negative for all learning iterations, as
shown in Fig. 5, which matches the convergence analysis
of this method presented in Theorem III.1.
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Fig. 3. Temporal evolution of the position of the robot end-effector along
each Cartesian direction x, y, z with respect to its desired values for a peg-
in-hole task.

Fig. 4. Comparison between the final position of the peg before the
proposed iterative learning strategy was used (left) and after six iterations
of the proposed learning controller (right) for a peg-in-hole task.

1) Comparison with an Alternative ILC Method: The
benefits of the iterative reference learning proposal presented
in Sec. III is highlighted by comparing its performance to
one of the methods that have been used extensively in
literature, e.g., [29], [30] for recent examples, namely ILC
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Fig. 5. Performance index (left), i V of Eq. (21), and performance index
increment (right), i∆V of Eq. (26), for each learning iteration i for a peg-
in-hole task.

[14]. An ILC strategy could be defined using an input update
law

i+1
U(z) = Q(z)(

i
U(z) + L(z)

i
E(z)) (37)

with i
E(z) = YR(z)− i

Y (z) being the output error signal,
L(z) representing a learning filter, Q(z) being a low-pass
filter used to improve the robustness of the ILC method, and
z representing the discrete-time operator. Then, m transfer
functions were obtained from the Cartesian impedance be-
havior of the robot in Eq. (9) during the initial execution
of the peg-insertion task. Each output, ym ∈ R, of the
system would be equal to the corresponding component of
ξ and each input, um ∈ R, of the system would be equal to
the corresponding component of ξR. The transfer functions
obtained, in the Laplace domain, are

Gc(s) =
ω2
n

s2 + 2δωns+ ω2
n

(38)

with ωn = 3.78 rad/s and δ = 0.64 for the position DOFs,
and ωn = 2.58 rad/s and δ = 1.44 for the orientation DOFs,
which are then discretized using a zero-order-hold (ZOH)
method at the sample period of the robot, i.e., h = 0.001 s,
to obtain each G(z). The learning gain L(z) in Eq. (37) was
chosen as

L(z) = G̃−1(z)(1−H(z)) (39)

with G̃−1(z) being an approximation to the inverse of G(z),
where the inverted zeros of G(z) that were close to the unit
circle were replaced with static gains to avoid obtaining
a ringing behavior [15], and H(z) is a first-order high-
pass filter used to determine the convergence rate [14]. The
selection of the learning gain L(z) as in Eq. (39) together
with choosing Q(z) as a first-order low-pass filter with cut-
off frequency ωc = 50 Hz fulfills the convergence criteria
for this formulation [14]

sup
ω∈[−π,π]

∣∣∣∣1−G(eiωh)L(eiωh)
∣∣∣∣ < Q(eiωh)−1 (40)

for all DOFs.
Figures 6 and 7 show a comparison between the proposed

IRLC solution presented in Sec. III and the alternative ILC
method. The differences in the temporal evolution of the
Euclidean norm of the position error between these two
methods are observed in Fig. 6: the ILC method (right)
commanded more aggressive position corrections, yet four-
teen iterations were necessary for robot task completion.



On the contrary, the IRLC solution proposed (left) provided
a smoother convergence for all iterations that allowed a
faster robot task completion (since its second iteration).
Furthermore, Fig. 7 shows a comparison of the absolute
input force, Eq. (8), difference ||∆F || between the proposed
method and the alternative ILC at their respective final
iteration, i.e., the iteration where the peg insertion task was
completed (without the peg impacting the box containing
the hole before its insertion) for each formulation. It can be
observed in Fig. 7 that the aggressive corrections performed
by the alternative ILC method translated into much larger
impedance force variation requirements (21.2 N on average)
compared to the IRLC proposal (4.4 N on average).
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Fig. 6. Temporal evolution of the Euclidean norm of the position error of
the robot end-effector, ξt, for a peg-in-hole task. Comparison between the
proposed IRLC solution (left) and an ILC alternative (right).

0 1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30

35

40

Fig. 7. Comparison of the input force difference ||∆F || between the
proposed IRLC solution (blue) and an ILC alternative (red).

2) Choosing Different Cartesian Impedance Parameters:
The impedance requirements of a robot task might change
over time, which would imply the selection of a different
set of robot impedance parameters, i.e., its virtual stiffness
K and damping D. As a result, the trajectory tracking
behavior of the robot would be modified in this scenario,
thus leading to the possibility that a, previously-successful,
robot task might not be completed when the robot impedance
parameters values are updated.

In this experiment, the translational Cartesian impedance
parameters of the previous experiment were changed from
150 to 200 [N/m] for the virtual stiffness K, and from
50 to 70 [Ns/m] for the virtual damping D. The rotational
impedance parameters were not modified from the previous
experiment. Also, the initial Cartesian reference for this

experiment was chosen as the one used at the last iteration
(i.e., Iteration 6) of the previous experiment.

Figure 8 shows the temporal evolution of the position of
the robot end-effector when varying the Cartesian impedance
values in this peg-in-hole task, zoomed at the proximity of
the inserted-peg position, see Fig. 4 (right). It is observed
in Fig. 8 how the trajectory-tracking difference that occurred
when selecting different robot impedance parameters caused
the robot to not complete its task (Iter. 0). However, using
the iterative reference learning strategy proposed in Sec. III,
peg-in-hole task completion was achieved after only three
additional iterations.
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Fig. 8. Temporal evolution of the position of the robot end-effector along
each Cartesian direction x, y, z with respect to its desired values for a
peg-in-hole task with different Cartesian impedance values (zoom at the
proximity of peg insertion).

C. Snap-Fit Assembly of a Switch

The use of the IRLC strategy proposed in Sec. III to
improve robot trajectory tracking was also evaluated for the
snap-fit assembly of a switch, where the same values for
impedance (K and D) and learning parameters (β and R)
as in the first experiments were selected. The workpieces
involved in this assembly, which were components of an
emergency stop button [31], can be seen in Fig. 9, i.e., the
switch, in a dark grey color and gripped by the robot, and a
light gray piece with slots where the two lateral tabs of the
switch should be inserted.

Fig. 9. Comparison between the final position of the switch before iterative
learning was used (left) and after eight iterations of the proposed learning
controller (right) for the snap-fit assembly of a switch.



Figure 10 shows the robot end-effector position through-
out the switch snap-fit assembly experiments for different
iterations. It can be seen in Fig. 10 that trajectory tracking
improved at each iteration, which, as in the peg-in-hole
experiment, is consistent with the monotonous decrease of
the performance index i V of Eq. (21), and the negative
performance index increment, i∆V of Eq. (26), shown in
Fig. 11 for all learning iterations. Also, the robot was able
to complete its task after only eight iterations.
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Fig. 10. Temporal evolution of the position of the robot end-effector along
each Cartesian direction x, y, z with respect to its desired values for the
snap-fit assembly of a switch.
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Fig. 11. Performance index (left), i V of Eq. (21), and performance index
increment (right), i∆V of Eq. (26), for each iterative learning iteration i
for the snap-fit assembly of a switch.

The trajectory-tracking requirements of this switch snap-
fit assembly task were more demanding than in the previous
peg-in-hole scenario in terms of the assembly tolerance and
in the greater possibility of the two pieces involved in the
robot task getting stuck, see, e.g., Fig. 9 (left). As compared
to the previously-presented peg-in-hole experiment, these
assembly experiments would also require compensation for
the external force needed to snap-fit the switch. For these
reasons, a few more iterations (eight) than in the peg-in-
hole scenario were needed to obtain an updated Cartesian
reference that allowed robot task completion, even having
already achieved accurate trajectory tracking in Iteration 4,
as seen in Fig. 10.

V. DISCUSSION

In this paper, we have proposed an iterative learning
strategy that modifies the Cartesian reference of a robot
impedance controller to achieve robot task completion. The

proposed strategy has shown to improve the tracking of a
robot Cartesian trajectory defined by human guidance in the
context of kinesthetic teaching.

Moreover, the proposed strategy is compatible with a
selection of robot impedance parameters (virtual stiffness K
and damping D) that allowed a non-damaging interaction
with the environment of the robot, which would have been
a limitation of previously-proposed high-stiffness learning
techniques [19]. A constant ratio between stiffness and
damping parameters was chosen equal for all DOFs in [19].
Contrary to this, we introduced the matrix R in Eq. (15)
to allow a different ratio for each DOF, being particularly
significant since the problem in this paper was formulated in
the Cartesian space instead of the joint space of the robot,
as in [19]. Also, the introduction of Υ in Eq. (15) in our
proposal contributed to relieving the high-stiffness require-
ments of the learning formulation in [19], thus allowing
reference learning for kinesthetic teaching robot applications.
Additionally, contrary to adaptive learning techniques [17],
[18], our proposed selection of impedance parameters did
not require any real-time modification.

Furthermore, the extensive evaluation experiments per-
formed with a real collaborative robot manipulator showed
that our proposal was able to achieve task completion for
several robot tasks in a few iterations, which contrasted
with the high number of iterations often required in other
learning techniques, such as in Reinforcement Learning
[11]. Additionally, as seen in the experimental comparison
performed between the proposed method and an alternative
ILC method [12], the linearity assumptions in the alternative
ILC method [14], [15] allowed convergence guarantees for
aggressive compensations that turned inferior in the experi-
mental task performed, resulting in slower robot task com-
pletion and larger impedance force variation. In comparison,
our proposal considered the nonlinearities of robot dynamics
in its convergence analysis, which translated into a more
conservative trajectory reference update that lead to faster
(i.e., in less iterations) convergence in robot task completion.

Additionally, it should be noted that the convergence
conditions (18)–(20) of Theorem III.1 bounded the learning
parameters (β and R) in our proposal. However, these learn-
ing parameters might be modified according to the robot task
requirements. Therefore, future work aims at incorporating
the impedance-controlled robot dynamics in the selection of
the learning parameters to further improve iterative learning
for bettering robot tracking of human manual demonstra-
tions.

VI. CONCLUSION

Iterative learning can improve trajectory tracking for robot
applications where impedance control is used by providing a
Cartesian reference update. The proposed IRLC strategy was
evaluated in several experiments using a real collaborative
robot. These experiments showed a smooth convergence
toward robot task completion in a small number of learning
iterations, also compared to an alternative ILC method,



which highlighted the suitability of the proposed method for
collaborative human–robot applications.
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