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Abstract—The anesthetic drug propofol is commonly used
to control hypnotic depth (suppression of awareness) in pa-
tients undergoing surgery or intensive care. In addition to
manual titration, a model-based open-loop feed-forward strategy
called target-controlled infusion (TCI) has attained some clinical
popularity. Research on closed-loop control, with awareness
estimates derived from an electroencephalogram (EEG), has
proven feasible through several extensive clinical studies over the
past decades. While TCI is vulnerable to model imperfections,
closed-loop control is susceptible to corrupt measurements. By
combining Kalman-filter-based state estimation with model pre-
dictive control (MPC), we introduce a novel anesthetic dosing
regimen that can transition seamlessly between TCI and closed-
loop control, thus constituting an adequate trade-off between
model and measurement reliance. We introduce this regimen and
provide a realistic simulation example that highlights its strengths
compared to pure TCI or closed-loop control of propofol infusion.

Index Terms—Biomedical systems, Model Predictive Control,
Kalman filtering

I. INTRODUCTION

Hypnosis is the pharmacologically induced anesthetic com-
ponent utilized to temporarily repeal awareness, as mandated
by certain surgical procedures. Intravenous drugs, such as
propofol, are becoming increasingly popular and are com-
monly administered manually and titrated by an anesthesiolo-
gist based on monitor readings, patient signs, and experience.

Target-controlled infusion (TCI) is a model-based augmen-
tation to manual titration. When TCI is used, the anesthesiol-
ogist enters a desired set point (reference) drug concentration
in the blood plasma [1]. Based on this reference and an
underlying patient model of the assumed pharmacokinetics,
the TCI system computes an optimized infusion trajectory
that is then applied [1]. The patient model is adapted to
covariates such as age, weight, and sex. Several such phar-
macokinetic covariate models have been used as the basis for
TCI systems, e.g., [2, 3]. TCI is a feed-forward open-loop
control strategy, which means that it cannot account for model
errors or disturbances that divert the true plasma concentration
from that assumed by the TCI system model. However, the
anesthesiologist can update the plasma concentration setpoint
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if observations make it plausible that the patient is subjected
to inadequate anesthetic depth, possibly caused by external
disturbances.

When TCI relies solely on a dynamic patient model, closed-
loop controlled anesthesia constitutes a dosing regimen where
the infusion rate is updated based on an online measurement
[4, 5]. This measurement is typically an estimate of the
depth of hypnosis (DoH), calculated from a non-invasive
electroencephalogram (EEG) signal. The anesthesiologist sets
a desired reference anesthetic depth, usually given on the
BIS scale, where a value close to the maximum of 100 BIS
indicates that the patient is fully aware, and the range 40–
60 BIS is adequate for many clinical use cases [6]. Too deep
anesthesia may result in adverse effects, such as post-operative
nausea, while insufficient anesthesia can lead to awareness
during surgery.

While the lack of clinical feedback in TCI makes it vul-
nerable to model error, the presence of clinical feedback
makes closed-loop anesthesia vulnerable to measurement dis-
turbances and sensor noise. This motivates a unified frame-
work that combines TCI and closed-loop control to obtain a
tunable trade-off between the two. This paper presents such a
framework, based on a combination of Kalman filtering state
estimation and model predictive control (MPC). We provide
illustrative and motivating examples and conclude with a
realistic simulated use case.

II. MODELING AND CONTROL

Ordinary TCI is schematically illustrated in Figure 1, and
our novel hybrid approach is illustrated in Figure 2. The patient
is represented by a PKPD model, defined in section II-A. The
measurement y and disturbances d1, d2 are explained in sec-
tion II-B and the Kalman filter state estimator in section II-C.
Finally, the MPC that governs dosing in both the TCI and the
closed-loop case is presented in section II-D.

A. Patient model

At the core of our approach lies a pharmacokinetic-
pharmacodynamic (PKPD) model. The structure of this model
is well established in the context of closed-loop controlled
anesthesia [7, 8]. The PK part of the model is a mammil-
lary three-compartment system, relating drug infusion rate
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Fig. 1: Schematic illustration of open-loop control with TCI. The
DoH reference rDoH is transformed by ĥ−1 into a plasma concen-
tration which is inverted through (5) to create the reference r for the
MPC, which computes a control signal u based on the state estimate
x̂ from the underlying PKPD model. This transform is in gray, as it
is typically conducted implicitly by the monitoring anesthesiologist,
who sets r directly, in the case of TCI control. The disturbances d1
and d2 act on the DoH and its measurement y, respectively.
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Fig. 2: Schematic illustration of closed-loop control with MPC. The
reference for DoH , rDoH , is inverted through ĥ−1 in (5) to create
the reference for the MPC, which computes a control signal u based
on the state estimates from the Kalman filter. The disturbances d1
and d2 act on the DoH and the measurement y, respectively.

u [mg s−1] to the blood plasma drug concentration x3 =
Cp [mgL−1] [7]. The PD model, connected in series to the
output of the PK model, consists of a linear and a non-linear
part. The linear part is a first-order lag filter relating the blood
plasma concentration x3 = Cp to the effect-site (brain cortex)
concentration x4 = Ce. A zero-order-hold discretization, in
our examples with sampling period Ts = 10 s (sufficient to
resolve the dynamics) can thus be expressed

xk+1 = Axk +Buk, (1a)
(Ce)k = Cxk = (x4)k, (1b)

where
xk =

[
(x1)k, (x2)k, (x3)k, (x4)k

]⊤
, (2)

as detailed in for example [9].
The non-linear part of the PD model relates effect-site

concentration Ce = x4 to DoH via the Hill sigmoid

DoH = h(Ce;E0, Ce50, γ) = E0

(
1− Cγ

e

Cγ
e + Cγ

e50

)
, (3)

Ce50 corresponds to a DoH = 50 BIS, and γ determines the
steepness of the sigmoid.

The variability in the DoH response between individuals
is accounted for using a pharmacometric covariate model. In

this work, we use the Schnider population model [3], which
expresses the parameters of the continuous-time counterpart
of (1) as a function of the covariates age, weight, and sex.
The remaining variability, not explained by these covariates,
is modeled using a log-normal distribution, so that

θ = θ0 exp(ηθ), (4)

where θ0 is the covariate-adjusted parameter value, and the
random effect ηθ is a normal stochastic variable with zero
mean and variance σ2

θ . These random effects thus capture
intra-individual variability and the part of the inter-individual
variability not explained by the covariates.

B. Measurements and disturbances

Disturbances pose a central challenge for both TCI and
closed-loop control. Surgical stimulation is commonly [8]
modeled by an additive disturbance d1, affecting the actual
DoH , as shown in Figure 1.

It is not possible to measure the full patient state or the
true DoH directly. Instead, the only available measurement
is y = DoH + d2, where d2 corrupts measurement noise, as
shown in Figure 1. That is, d1 affects the actual DoH and
consequently also the measurement y, while d2 affects the
measurement y, without influencing the true DoH in the case
of TCI shown in Figure 1. However, in the case of closed-loop
feedback shown in Figure 2, d2 will influence the true DoH
through the controller.

This work considers disturbances in double-steps of mag-
nitude 20 BIS. Step disturbances are commonly used [10], as
they can be considered to be the worst case in the anesthesia
control context.

C. Patient state estimation

Since the full state of (1) is not directly measurable, we use
the Kalman filter to obtain state estimates. It utilizes the system
input u, together with the effect-site concentration estimate

Ĉe = ĥ−1(DoH;E0, Ce50, γ) = Ce50

(
E0 −DoH

DoH

)1/γ

.

(5)
to produce a state estimate x̂.

To begin with, we will, somewhat optimistically, assume
perfect knowledge of the PD dynamics, ĥ = h, resulting in
ĥ−1 constituting a perfectly linearizing transform. However,
in our concluding realistic simulation scenario of section IV,
we use a previously published population average for the
parameters in (5) to obtain a corresponding, but non-perfectly
linearizing ĥ−1. This was also done in [11], where the same
population average resulted in satisfactory results.

The Kalman filter equations are presented below, with the
following notation: x̂k,k−1 denotes the estimate of the state
vector xk, based on data up to and including sample k−1, and
x̂k,k is the updated estimate at sample k. The same notation



is used for the covariance estimate P . The state update is
governed by

Lk = Pk,k−1C
⊤ (

CPk,k−1C
⊤ +Rk

)−1
, (6a)

Pk,k = (I − LkC)Pk,k−1(I − LkC)⊤ + LkRkL
⊤
k , (6b)

x̂k,k = x̂k,k−1 + Lk

(
(C̃e)k − Cx̂k,k−1

)
, (6c)

and the prediction is given by

xk,k+1 = Axk,k +Buk, (7a)

Pk+1,k = APk,kA
⊤ +Qk, (7b)

where A,B,C are the system matrices of (1). Kalman filtering
is a well-understood and documented technique, and we refer
to [12] for further details and insights.

The scalar Rk and the matrix Qk quantify measurement
and state uncertainty in the sample k. While they can be
viewed to represent covariances of Gaussian disturbances
within the Kalman filtering framework, we instead consider
them as free tuning parameters that enable a trade-off between
measurement and model reliance.

The Kalman filter state estimate is a weighted sum of its
most recent measurement and the previous state estimate,
where the Kalman gain L is the proportionality constant. When
the measurement uncertainty R is large, the Kalman gain L
will decrease, shifting trust from measurement to model, and
vice versa.

D. MPC formulation
The objective of our MPC– which is to be used both for TCI

and closed-loop controlled infusion– is to produce an optimal
drug infusion trajectory to follow an effect-site concentration
reference. Its roles in each of these use cases are shown in
Figure 1 and Figure 2, respectively.

In TCI, the MPC relies solely on a PKPD patient model,
without utilizing the DoH measurement y. In closed-loop
mode, the MPC instead utilizes Kalman-filter state estimates
based on y, as explained in section II-C.

We denote the effect-site concentration profile across a
horizon of N samples by x4 so that x4 =

[
(x4)1 . . . (x4)N

]⊤
,

and the reference trajectory r =
[
r1 . . . rN

]⊤
. The objective

of our MPC is to find the infusion trajectory u =
[
u1 . . . uN

]⊤
that minimizes the quadratic cost function

J ′
e(x4) =

N∑
k=1

((x4)k − rk)
2
. (8)

To enable minimization over u, we rewrite (8) in terms of
u. With the initial state x0 and the use of (1), we get

Je(u) =
1

2
u⊤F⊤Fu+ (x⊤

0 E
⊤F − r⊤F )u, (9)

where

E =

A1
4

...
AN

4

 , F =


A0

4B4

A1
4B4 A0

4B4

...
...

. . .
AN−1

4 B4 AN−2
4 B4 . . . A0

4B4

 ,

(10)
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Fig. 3: DoH and infusion rate u with (red, α = 0) and without
(blue, α = 0.1) ringing following a negative step disturbance d1 =
−20 BIS in Figure 5. The red and blue DoH curves are not visually
distinguishable.

and where A4 is the fourth row of A, and B4 the fourth
element of B. A complete derivation can be found in [13].

1) Preventing ringing in u: Figure 3 shows the solution
that minimizes (9), following a negative step disturbance d1 =
−20 BIS. It results in undesired ringing in the infusion rate u
(red). To avoid this, we add a cost term that penalizes sample-
to-sample differences in u:

J ′
∆u(u) = α

N∑
k=2

(uk − uk−1)
2 (11)

where α is a tuning parameter for this penalty.
Rewriting (11) as a quadratic form, and using that (11) is

scalar, results in

J∆u(u) =
α

2
u⊤G⊤Gu, (12)

where

G =


−1 1

−1 1
. . . . . .

−1 1

 . (13)

The blue lines in Figure 3 show the effect of introducing
this penalty with α = 0.1. As can be seen, the red (α = 0)
and blue (α = 0.1) DoH are not distinguishable, while there
is no ringing in the blue control signal.

2) Constraints: We introduced constraints to keep the in-
fusion rate nonnegative, uk ≥ 0 for k = 1, . . . , N . That
is, element-wise larger than zero, u ≽ 0N×1, where 0N×1

is a zero vector of size N × 1. Similarly, the infusion rate
is bounded by the maximum possible infusion rate of the
pump, umax = 1200 mLh−1, representative of several clinical
infusion pumps. This corresponds to umax = 6.67 mg s−1 with
a propofol concentration of 20 mgmL−1. The corresponding
constraint can be written as u ≼ umax1N×1. The combined
infusion rate constraints are thus[

−IN×N

IN×N

]
u ≼

[
0N×1

umax1N×1

]
. (14)
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Fig. 4: Disturbance rejection by TCI for two types of disturbances;
d1 affecting the DoH directly (a, in yellow) and d2 affecting the
measurement (b, in red), as introduced in section II-B. The reference
is shown in dashed.

3) MPC as a quadratic program: The MPC cost, combin-
ing (9) and (12), is

J(u) = Je(u) + J∆u(u) (15)

=
1

2
u⊤(F⊤F + αG⊤G)u+ (x⊤

0 E
⊤F − r⊤F )u.

Minimizing (15) subject to (14) corresponds to solving a
quadratic program (QP), for which there exist solvers such as
quadprog in MATLAB [14] that were used in our examples.

In the closed-loop MPC case, one such QP is solved at each
sample as a new measurement and the corresponding Kalman-
filter state estimate arrive. In the TCI case, the optimization
problem will only be solved once over a horizon, unless the
anesthesiologist changes the reference and a new trajectory
is computed. In this work, we use a practically sufficient
prediction horizon of 10 min, corresponding to N = 60.

III. DISTURBANCE REJECTION COMPARISON

We evaluated the performance of TCI and closed-loop MPC
subject to disturbances d1 and d2, as introduced in section II-B,
and initially under the assumption of a perfect model, P̂KPD =
PKPD and ĥ−1 = h−1 in Figure 1 and Figure 2.

The patient state is initialized to DoH = 50 BIS, i.e.,
x0 = −A−1Buref, where uref is the corresponding stationary
control signal. At t = 5 min, a double step in d1 or d2
is introduced, with a duration of five minutes. The rejection
of disturbances by TCI and closed-loop MPC is shown in
Figure 4 and Figure 5, respectively.

Since we assume perfect model knowledge and no addi-
tional noise, the Kalman filter is tuned to behave like there
is (almost) no state or measurement noise, i.e., R and Q are
chosen to be (almost) zero (but not exactly zero for numerical
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Fig. 5: Disturbance rejection by MPC for two types of disturbances;
d1 affecting the DoH directly (a, in yellow) and d2 affecting the
measurement (b, in red), as introduced in section II-B. The reference
is shown in dashed.
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Fig. 6: Induction phase DoH and corresponding infusion rate u
with (blue) and without (red) integral action. The reference rDoH =
50 BIS is shown in dashed.

reasons). The chosen values were R = 10−6 mg2/s2 and
Q = 10−6I4 mg2/s2, where I4 is the identity matrix of size
4× 4.

To compare disturbance rejection for open- and closed-
loop control (TCI and closed-loop MPC), we calculate the
mean square error (MSE) from the actual DoH and its
reference rDoH = 50 BIS. These are shown in Table I for
the simulations in Figure 4 and Figure 5. The TCI is expected
to perform well under measurement disturbances (d2) but
worse under disturbances that affect the DoH as it does not
feedback on the measurement signal y. In contrast, the MPC
was able to reduce the impact of disturbances acting on DoH ,
but overdoses when there is a measurement error, unable to
differentiate between the two disturbances.



TABLE I: Mean squared errors (MSE) between actual DoH and
the reference value of rDoH = 50 BIS for each of the disturbance
scenarios in Figure 4 and Figure 5, respectively. The disturbances d1
and d2 are detailed in section II-B.

Method d1 d2

TCI 39.7 0
MPC 28.2 75.9

IV. SIMULATION SCENARIO

While the examples of section III illustrate two extremes,
we also include a more realistic scenario, where we study in-
duction and maintenance for a representative example patient.
The demographic data for this patient are the first patient in
the data set presented in [15].

In this scenario, we assume non-perfect model knowledge
of the PKPD model and corresponding Hill function. The
MPC model P̂KPD and the Kalman filter assume nominal
parameter values (the same as in section III), while the PKPD
model that constitutes the true dynamics of the patient (see the
patient block in Figure 2) is now different. The true patient
model is created by drawing from the log-normal distribution
for volumes and clearances that make up the A matrix, as
explained in section II-A and shown in (4). For the Hill
function, ĥ, we use population averages Ê0 = 95.9 BIS,
Ĉe50 = 4.92 mgL−1, and γ̂ = 2.69, as provided in [16].

The imperfect model would lead to a stationary error that
can be eliminated in the closed-loop case by introducing
integral action. This is done by adding a correction term to
the control signal computed by the MPC, uMPC, so that

uk = (uMPC)k + β(ui)k, (16)

where the correction term is the sum of the integral error

(ui)k =

k−1∑
i=1

((Ce)i − rCe)i, (17)

and β is a tunable parameter determining the amount of
integral action. For this simulation scenario, we use β = 0.2,
which was found to be a suitable value to eliminate the
stationary error. Figure 6 illustrates the need for integral
action with model errors during the induction phase, where
a stationary error is obtained and is not corrected by the MPC
without integral action.

To further increase realism, we superimpose a noise se-
quence presented in [17] onto the measurement y used to drive
the Kalman filter in the closed-loop case. As in [18] second-
order filter with time constant 8 s, being the zero-order-hold
discretization of

F (s) =
1

(8s+ 1)2
(18)

is employed to attenuate this noise.
During the induction phase, the patient goes from fully

awake (DoH ≈ 100 BIS) to a reference rDoH = 50 BIS.
We study a scenario where two disturbances affect the patient
during maintenance. These are introduced at t = 20 min and

t = 40 min and affect DoH and y, respectively, as specified
in section III.

In this scenario, we assume that we have information about
signal quality in terms of a signal quality index of 0-100 SQI .
This index is provided in conjunction with the measurement
by the most commonly used clinical monitors DoH , including
the BIS monitor.

When the second disturbance d2 affects the measurement, it
is reflected as a drop in SQI from 100 (perfect measurement)
to 50 (poor measurement). Then, the signal quality is poor until
the disturbance disappears after five minutes. This simulates
a scenario of using electrocautery devices, where electrical
inference affects the BIS monitor and introduces measurement
errors [19]. Details of how SQI is assumed to affect the
measurement signal can be found in [11].

In [11], we developed a method to adjust R depending on
the signal quality of the BIS signal, SQI , to seamlessly move
between trusting the measurement or the model. Then, R was
varied through an affine relationship between a minimum value
Rmin and a maximum value Rmax, so that

R(SQI) = Rmin + (1− SQI/100) (Rmax −Rmin). (19)

When SQI = 100, the signal quality is perfect, resulting in
a small covariance Rmin. In contrast, a poor signal quality of
SQI = 0 results in a large covariance Rmax.

The tuning of the Kalman filter (Rmin, Rmax, and Q)
was performed by minimizing the mean square error (MSE)
between the Kalman prediction of the DoH ŷ = h(Ĉe) and
the true DoH over the simulation scenario with induction and
the two disturbances. We assume that Rmin and Rmax are
scalar and that Q is a diagonal matrix where the diagonal was
identified in optimization. The MATLAB function fmincon
with the interior-point algorithm was used for the optimization.
The Kalman filter was initialized in P0,0 = I4.

V. RESULTS

Figure 7 shows the full simulation scenario of the induction
and maintenance phase affected by disturbances as outlined in
section IV The DoH , the measurement y, the infusion rate u,
and SQI are presented. The signal quality is perfect (SQI =
100) throughout the time except at the time of the second
disturbance d2, which affects the measurement. The obtained
values of Rmin, Rmax, and Q from optimization were Rmin =
274, Rmax = 19706, and Q = diag(0.85, 0.83, 2.5 · 104, 1.4 ·
103).

As seen in Figure 7, the MPC can control DoH closely
to the reference except when disturbances occur but is im-
mediately able to regulate back. When SQI drops from 100
to 50 at t = 40 min, the MPC can instead run on the
underlying (incorrect) PKPD model in the meantime to prevent
overdosing.

VI. DISCUSSION

TCI performs well when there are measurement errors, but
struggles when errors directly impact the patient’s DoH . This
issue arises particularly in scenarios that involve disturbances
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Fig. 7: Simulation example with induction and maintenance phase,
subjected to noise and two disturbances (yellow, affecting the DoH ,
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in Figure 2 and are detailed in section II-B. At the same time as
the second disturbance takes place, the SQI drops from 100 to 50
(lower plot). A Kalman filter has been optimized and is detailed in
section IV. The reference rDoH = 50 BIS is shown in dashed.

and model-error mismatches. However, the opposite is true for
MPC, which can manage measured changes in hypnotic depth
through feedback, even when these changes are not accounted
for in the model. This capability is beneficial in situations
where disturbances, noise, or patient-model mismatches are
present. In summary, both regimens have strengths and weak-
nesses and are often complementary. In [11], it was shown
that the suggested method was robust to model uncertainties
regarding inter- and intra-patient variability.

In this work we have introduced a control structure that
seamlessly integrates TCI and closed-loop control, allowing
for a continuous re-positioning between the two based on oper-
ating circumstances. This framework utilizes a measurement-
driven state observer in the form of a Kalman filter, that is
re-tuned to rely more or less on model and measurement
respectively, thus moving seamlessly between TCI and closed-
loop MPC behavior.
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