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Stable isotope analysis of plant remains recovered from archaeological sites
is becoming more routine. There remains a lack of consensus, however, on
how to appropriately select archaeological plant remains for isotopic analysis,
how to account for di�erences in preservation and the e�ect of potential
contamination, and how to interpret the measured isotope values in terms
of the conditions in which the plants grew. In this paper, we outline the
main issues to be considered when planning and conducting an isotopic
study of archaeobotanical remains. These include: (1) setting out the research
question(s) that will be answerable using available analytical approaches, (2)
considering the archaeological context from which plant remains derive,
(3) determining appropriate sample size through consideration of estimate
precision, (4) establishing the conditions in which plant remains have been
preserved and potential e�ects on their isotope values, and (5) accounting
for possible contamination during deposition. With these issues in mind, we
propose some recommendations for researchers to consider when planning and
conducting an isotopic study of archaeobotanical remains.
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1 Introduction

Stable isotope values of plants reflect their growing conditions, which can be influenced

by both natural environmental conditions and anthropogenic activities. In the last 10–15

years, there has been an increasing number of studies that have analyzed the stable carbon

and nitrogen isotope values of charred crop remains recovered from archaeological sites

to provide insights into past agricultural practices (e.g., Araus et al., 2014; Bogaard et al.,

2013; Li et al., 2022; Riehl et al., 2008) and serve as an isotopic reference for reconstructing

human and animal diets (e.g., Fraser et al., 2013b; Isaakidou et al., 2022; Knipper et al.,

2020; Styring et al., 2018). Specifically, the stable carbon isotope (δ13C) values of crops can

provide information about their water status (Ehleringer et al., 1993), which can help to

identify watering practices such as irrigation in otherwise dry environments (e.g., Araus

et al., 1997). Stable nitrogen isotope (δ15N) values of crops reflect the source and cycling of

soil nitrogen, so can be affected by the addition of fertilizers such as animal manure, as well

as environmental conditions such as waterlogging and aridity (e.g., Högberg, 1997).
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TABLE 1 Examples of common research questions and case studies that

have employed stable isotope analysis of archaeobotanical remains.

Research question Examples

Comparison of cultivation practices between crop

species and assemblages and their potential variability

over time and space

Araus et al., 2014

Bishop et al., 2022

Kanstrup et al., 2014

Determining a mean crop isotope value for comparison

with human/faunal isotope values to reconstruct dietary

inputs, potentially within an integrated isotopic mixing

model

Knipper et al., 2020

Styring et al., 2018

Tao et al., 2022

Identifying agricultural intensification and

extensification and labor budgets in agro-pastoral

systems at variable scales and periods in different parts

of the world

Bogaard et al., 2013

Styring et al., 2022

Tian et al., 2022

Establishing long-term trajectories of environmental

change and soil health

Gron et al., 2021

When interpreting stable isotope values of archaeological crop

remains in terms of past agricultural practices, it is important

to consider the theory, method and practice underlying the

disciplinary approach. One of the main principles underlying this

approach is the extrapolation of experimental observations of

modern crop experiments to the archaeobotanical record. This is

a key theoretical pillar of experimental archaeology (Coles, 1979),

but it is important to recognize that the modern observations

are based on simulation experiments, not direct replication of

the unknowable combination of soil, climate, plant physiology

and societal factors for any one field or cultivation plot in the

human past (Outram, 2008; Reynolds, 1999). As such, studies

that outline the variability of modern crop isotope values in

different soil and climatic conditions can be used as a quantitative

guide and framework for interpretation, but caution must be used

when directly quantitatively comparing the modern to the ancient

isotopic values, a key theoretical consideration discussed in the

wider experimental archaeology literature (Lin et al., 2018; Outram,

2008).

These theoretical considerations implicitly and explicitly

underpin the types of research questions that are commonly

set when analyzing stable isotope values in archaeological crop

remains. There is a wide range of research establishing the modern

baseline isotopic variability for different crop, climatic and soil

amendment conditions across different parts of the world (e.g.,

Araus et al., 1997; Blanz et al., 2019; Dong et al., 2022; Fraser

et al., 2011; Wallace et al., 2013) and an increasing number of

taphonomic studies addressing issues of isotopic fractionation

through preservation processes, such as carbonization, and how to

identify, record and mitigate for these factors from experimental

and archaeological crop remains (e.g., Nitsch et al., 2015; Stroud

et al., 2023a; Teira-Brión et al., 2024; Varalli et al., 2023).

Examples of common research questions, alongside some case

studies that have addressed these using stable isotope analysis of

archaeobotanical remains, are in Table 1.

Despite the increasing number of studies employing stable

isotope analysis of archaeological crop remains, there remains a

lack of consensus on how best to plan and conduct this type

of research. Complications associated with the effect of charring,

contamination, and post-depositional alteration on plant isotope

values, as well as the interpretation of crop isotope values in

terms of palaeoenvironment, agrarian practices, and geographic

origin were discussed in Fiorentino et al. (2015). But as with

any scientific application, the method reconfigures when research

interests evolve. The last decade has seen considerable development

in new research questions using stable isotope measurements of

plants in an interdisciplinary domain and it is now timely to revisit

and expand upon these methodological issues. Here, we set out

a series of recommendations on how to plan and conduct stable

isotopic investigation of archaeobotanical remains to encourage

synergies among studies in different environmental settings and to

inspire new research questions. In doing so, we reiterate some of the

pressing points made in Vaiglova et al. (2022), which was a broader

guide to best practice in archaeological isotope studies, but we

expand on the issues that are particular to plant remains recovered

from archaeological sites. In this paper we focus on stable isotope

analysis of charred large-grained cereal grains (e.g., wheats and

barley) and pulses using the C3 photosynthetic pathway because

these have been the primary focus of research development so

far, but we consider points relevant to C4 crops, including smaller

grained cereals like millets and sorghum, where pertinent.

2 Challenges associated with stable
isotope analysis of archaeological
crop remains

There are several issues to be taken into consideration when

planning and conducting isotopic analysis of archaeobotanical

remains. These can influence the sampling protocol, the

preparation method, the instrumental set-up and can ultimately

determine whether the analyses are justified and interpretations

are robust. We provide an overview of these issues as a background

to suggesting steps that can be taken to ensure that studies try to

address these as satisfactorily as possible.

2.1 Analytical di�culties of determining
stable isotope values of plant material

Depending on the sensitivity of the isotope ratio mass

spectrometer (IRMS) used, there is a minimum mass of C

and N required for accurate and precise isotope measurements.

Uncharred and charred cereal grains comprise relatively high %C

and relatively low %N, giving rise to relatively high C:N atomic

ratios (Table 2). This means that it can be difficult to simultaneously

determine the δ
13C and δ

15N values of a cereal grain without either

having too little N or overloading the IRMS with carbon dioxide.

Even in elemental analyser (EA)-IRMS instruments where it is

possible to dilute the carbon dioxide peak relative to the nitrogen

gas peak, there is still a minimum quantity of plant material

required to yield sufficient N for an accurate and precise δ
15N value.

As a result, single grain analysis of small-grained crops such as

millets and pseudocereals is not yet practical due to their low mass.
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TABLE 2 C and N content and C:N atomic ratios of uncharred cereal grains (barley, bread wheat, einkorn, emmer, oat, rye, spelt) and pulses (lentil, pea)

and cereal grains and pulses charred at between 215 and 300◦C for between 4 and 24h (from Stroud et al., 2023b: Dataset_1).

Material %C 95%
confidence
interval (CI)

%N 95% CI C:N atomic
ratio

95% CI Number of
analyses

Uncharred cereal

grains

40.0 (39.9, 40.9) 1.6 (1.5, 1.7) 30.6 (28.3, 33.0) 33

Charred cereal

grains

61.8 (61.0, 62.6) 3.3 (3.1, 3.4) 24.0 (23.2, 24.8) 273

Uncharred pulses 40.9 (40.1, 41.7) 3.7 (3.4, 4.0) 13.0 (12.0, 14.0) 6

Charred pulses 60.2 (58.9, 61.5) 6.2 (6.0, 6.4) 11.5 (11.2, 11.8) 69

2.2 Intra-plant and intra-plot variability in
crop stable isotope values

Most studies that have analyzed crop stable isotope values in

modern experimental and farm plots homogenized multiple grains

randomly sampled from across the growing plot to average out

isotopic variation among plants (e.g., Blanz et al., 2019; Bogaard

et al., 2007; Christensen et al., 2022; Fraser et al., 2011; Kanstrup

et al., 2011; Styring et al., 2019; Treasure et al., 2016; Wallace et al.,

2013). If single archaeological grains are to be analyzed individually,

however, a good grasp of the isotopic variability among individual

grains growing in the same conditions is needed in order to

know whether differences in isotope values are representative of

meaningful differences in growing conditions and not just a result

of isotopic variability within a single plant/plot.

Relatively few studies have determined the isotopic variability

among individual grains/seeds within a single cereal ear/pulse

pod, but those that have been conducted have combined standard

deviations below 0.4‰ (Table 3). The pooled standard deviation

of δ
15N values of 21 individual cereal ears is 0.36‰, while the

pooled standard deviation of δ
13C values of 11 individual cereal

ears is 0.25‰. The pooled standard deviation of δ
15N values of

8 pulse pods is 0.22‰. This variability is similar to the analytical

uncertainty of stable isotope measurements, which is generally

∼0.2‰−0.3‰, and therefore random sampling of grains/pulses

from different parts of a cereal ear or pulse pod is unlikely to

contribute significantly to inter-grain/pulse isotopic variability.

However, more research is needed to expand the taxa investigated

and to consider seasonal variations in flowering and/or grain filling

conditions of a single plant/plot.

Even fewer studies have determined the isotopic variability

among individual grains/pulses within a cultivation plot. Those that

have been conducted show that the pooled standard deviation in

δ
15N from 7 plots is 0.76‰ and the pooled standard deviation in

δ
13C from 11 plots is 0.30‰ (Table 4). There are indications that

there is greater isotopic variability among cereal grains grown in

manured plots because of spatial variability in manure application

(Larsson et al., 2019). For this reason, nitrogen isotopic variability

within plots is likely constrained by the isotopic difference

between the applied soil amendment and endogenous soil nitrogen.

Similarly, the intra-plot variability in plant δ
13C values is likely

constrained by surface water availability and light intensity, which

will vary more in plots with diverse topographies, and presence of

or proximity to water bodies and/or overhanging vegetation. These

values of intra-plot isotopic variability should therefore be treated

as rough guidelines that will likely vary by context.

2.3 Environmental variability in crop stable
isotope values

While the main focus of isotopic studies of archaeological crop

remains has been to provide insights into past agricultural practices

such as watering and soil amendment, there are environmental

and physiological factors which also affect plant δ
13C and δ

15N

values. Stable δ
13C values of plants are influenced by the ratio of

leaf intercellular (ci) to ambient (ca) carbon dioxide concentrations

(Farquhar et al., 1982b). In C3 plants, this ratio is strongly

affected by stomatal conductance and photosynthetic activity,

which are in turn affected by water availability, soil salinity,

and light intensity (Farquhar et al., 1989). When soil moisture

levels decrease, stomatal conductance decreases, decreasing the

ci and resulting in less negative δ
13C values. The δ

13C values of

C3 plants are therefore negatively correlated with mean annual

precipitation (e.g., Kohn, 2010) and water inputs in general—which

could include irrigation—but other factors such as soil texture

and organic matter content can affect soil water retention and

also contribute to variability in crop δ
13C values (Hudson, 1994).

There is no straightforward relationship between water availability

and the δ
13C values of C4 plants (Cernusak et al., 2013), but

a number of studies have observed that the δ
13C values of C4

plants increase slightly with increased water availability (i.e., along

a rainfall gradient; Schulze et al., 1996; Tieszen and Boutton, 1989),

the opposite trend to that observed in C3 plants. High soil salinity

reduces the ability of plants to take up water, thereby increasing the

δ
13C values of plant tissues of both halophytic and non-halophytic

C3 species (Farquhar et al., 1982a), but decreasing the δ
13C values

of C4 plants slightly (Omoto et al., 2012).

Light intensity is an additional factor that has been found to

influence plant δ
13C values, with plants growing in lower light

levels having lower rates of photosynthesis, leading to higher ci
that results in lower δ

13C values (Ehleringer et al., 1986, 1987).

While most crops would be expected to have been cultivated

in open plots and so would have been unaffected by low light

intensity, if plots were situated in woodland clearings, there could

be shading from surrounding vegetation for part of the day. This

effect could be particularly apparent in tropical or semi-tropical
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TABLE 3 Intra-ear/pod variability in δ
13C and δ

15N values of single grains/pulses (full dataset in Supplementary Table 1).

Study Taxon Pooled standard deviation Number of analyses

Bogaard et al. (2007) Triticum aestivum δ
15N: 0.48‰ 4 ears (between 17 and 23

single grains per ear)

Heaton et al. (2009) Triticum aestivum δ
13C: 0.50‰ 2 ears (8 and 10 single grains

per ear)

Larsson et al. (2019) Hordeum vulgare ssp. vulgare δ
15N: 0.44‰ 8 ears (6 single grains per ear)

McKerracher et al. (2023) Triticum aestivum δ
13C: 0.16‰ 9 ears (10 single grains per

hear)

δ
15N: 0.10‰

Combined All cereals δ
13C: 0.25‰ 11 ears

δ
15N: 0.36‰ 21 ears

Fraser et al. (2013a:

Supplementary Table 4)

Vicia faba δ
15N: 0.2‰ 6 pulses from a single pod

Treasure et al. (2016) Vicia faba δ
13C: 0.21‰ 5 pods (between 3 and 4

pulses per pod)

δ
15N: 0.21‰

Szpak et al. (2014) Phaseolus vulgaris δ
15N: 0.27‰ 2 pods (3 pulses per pod)

Combined All pulses δ
15N: 0.22‰ 8 pods

Combined variability is highlighted in bold.

TABLE 4 Intra-plot variability in δ
13C and δ

15N values of single cereal grains (full dataset in Supplementary Table 2).

Study Taxon Pooled standard deviation Number of analyses

Heaton et al. (2009) Triticum aestivum δ
13C: 0.51‰ 6 plots (6 randomly sampled single

grains per plot)

Larsson et al. (2019) Hordeum vulgare ssp. vulgare Plot 1.A0 (manured) δ
15N: 1.64‰ 6 single grains from 4 different

plants per plot

Plot 2.A0 (unmanured) δ
15N: 0.56‰

Combined δ
15N: 1.23‰

McKerracher et al. (2023) Triticum aestivum (low level

manuring)

δ
13C: 0.23‰ 5 quadrants from a large plot (90

randomly sampled single grains

from one quadrant, 10 randomly

sampled single grains from the

remaining 4 quadrants)

δ
15N: 0.49‰

Combined All cereals δ
13C: 0.30‰ 11 plots

δ
15N: 0.76‰ 7 plots

Combined variability is highlighted in bold.

environments with horticultural traditions and where rainforests

can form particularly dense canopies. Furthermore, the grains of

different plant taxa grown in the same environmental conditions

have been observed to have different δ
13C values, which is likely

due to different timing of grain filling resulting in the δ
13C values

reflecting water availability at different times of the year (e.g., Araus

et al., 1997; Wallace et al., 2013).

The δ
15N values of plants are affected by the N isotopic

composition of the soil in which they grow, which is influenced

by the isotopic composition of any N inputs and by the loss of

any N as a result of N cycling processes (e.g., Högberg, 1997).

N can be added in the form of human/animal manure, bird

guano, and/or composted organic matter, all of which tend to

have relatively high δ
15N values but can vary according to their

source (see Szpak, 2014 for a compilation of the d15N values of

different soil amendments). Soil properties may also moderate the

isotopic effect of soil amendments, with an experimental study

finding that similar inputs of biogas residues as fertilizer at two

locations with different soil types resulted in very different δ
15N

values of cereal grains (Larsson et al., 2024). However, any process

that favors the volatilisation of 15N-depleted N also drives an

increase in the δ
15N value of soil and plants (Handley et al., 1999).

Such processes include aridity (e.g., Hartman and Danin, 2010),

waterlogging (Finlay and Kendall, 2008), recent forest clearance

by burning (Ehrmann et al., 2014), and high levels of organic N

relative to plant demand (Craine et al., 2009). The presence and

type of mycorrhizal associations also affect plant δ
15N values (e.g.,

Craine et al., 2009) and plants growing in saline soils tend to have

higher δ
15N values than those growing in non-saline soils (Heaton,

1987). Each of these factors can result in isotopic variability that
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can confound interpretation of plant isotope values in terms of

agricultural practice.

2.4 Preservation

The majority of plant remains in temperate contexts are

preserved by charring (Zohary et al., 2012, p. 10). Charring results

in changes to crop seed δ
13C and δ

15N values, the degree of which

varies with the crop species and the temperature and duration

of heating (Aguilera et al., 2008; Fraser et al., 2013a; Hart and

Feranec, 2020; Hartman et al., 2020; Nitsch et al., 2015; Poole

et al., 2002; Stroud et al., 2023a; Styring et al., 2019; Varalli et al.,

2023). While it is not possible to determine the exact conditions in

which crop remains were charred from morphological or chemical

investigation, it has been shown that heating between 230 and

300◦C results in well preserved cereal grains that are identifiable

to species, although grains heated above 260◦C tend to have a

less dense matrix with voids that can become filled with soil

(Stroud et al., 2023a). The average isotopic offset associated with

heating cereal grains (barley, oat, pearl millet, rye, sorghum, wheat)

between 230 and 300◦C has been calculated to be ∼0.2‰ for δ
13C

values and∼0.3‰ for δ
15N values (Nitsch et al., 2015; Stroud et al.,

2023a; Styring et al., 2019; Varalli et al., 2023).

While it has long been posited that the isotope values of

desiccated plant remains are unreliable due to the effect of

diagenesis (DeNiro and Hastorf, 1985), more recent studies

have demonstrated that they can in fact yield reliable isotope

values (Metcalfe and Mead, 2018; Szpak and Chiou, 2019). Szpak

and Chiou (2019) propose plotting the C:N atomic ratios of

archaeological plant remains against their δ
15N values, and if a

strong positive correlation is observed this could indicate the

preferential loss of 14N during degradation. No investigation of

the effect of waterlogging on the isotope values of uncharred plant

remains has yet been carried out.

2.5 Contamination

Plant remains that have been buried in the soil are susceptible

to contamination. The main potential contaminants are carbonates

(with δ
13C values of ∼0‰; Schidlowski, 2001), nitrates (with δ

15N

values that have been found to vary between −2 and +8‰; Rock

et al., 2011), and soil-derived humic acids (with δ
13C and δ

15N

values similar to those of plants because this is what soil organic

matter is derived from; Schnitzer and Khan, 1975). Vaiglova et al.

(2014) used Fourier Transform-Infrared Spectroscopy (FT-IR) to

detect these contaminants in charred plant material down to 10 %

by dry weight of the charred plant material analyzed (down to 5

% for carbonate; Figure 1). Figure 2 shows the change in the δ
13C

and δ
15N values of a powdered sample of charred peas (δ13C =

−22.9‰, δ15N = 6.4‰) from an archaeological site contaminated

with different proportions of carbonate (δ13C = 2.5‰), nitrate

fertilizer (δ13C = 43.8‰, δ
15N = −1.8‰), and a commercially

purchased humic acid sodium salt (δ13C=−25.9‰, δ15N= 2.7‰)

(data from Vaiglova et al., 2014: Table 4). With the exception of

the nitrate fertilizer, 10 % by dry weight contamination of the

archaeological pea sample resulted in changes in its δ
13C or δ

15N

value of < 0.5‰.

3 Ways of addressing the challenges
associated with stable isotope analysis
of archaeological crop remains

3.1 Instrumental analysis of crop remains

Approximately 2mg of charred cereal grain will yield ∼1,200

µg C and 60 µg N (assuming 60% C and 3% N content). This

is at the lower end of most IRMS limits for accurate and precise

δ
15N value measurements. It is therefore useful to analyse reference

materials comprising plant material alongside samples to get a

reasonable idea of the accuracy and precision of the isotopic

measurements carried out. Wheat flour and sorghum flour IRMS

reference materials are available from Elemental Microanalysis and

millet flour (USGS90) and rice flour (USGS91) are available from

the Reston Stable Isotope Laboratory or Arndt Schimmelmann,

Indiana University. These reference materials have a lower N

content (∼1.5% N) than charred cereals, however, meaning that

they are even more challenging to analyse by EA-IRMS and require

2–4mg per analysis, which proves costly when performing a large

number of analyses.

The development of in-house reference materials with isotopic

and elemental compositions approximating those of the measured

samples will likely be necessary for any researchers performing

large quantities of isotopic analyses of plant remains; commercially-

produced flours, similar to the USGS standards mentioned above,

are frequently homogenous enough to produce consistent internal

reference materials with stable isotope values measured over

many years.

The carbon dioxide peak will always need to be diluted relative

to the nitrogen gas peak (or diverted) in plant samples to avoid

carryover to the nitrogen gas peak. If dilution is not possible or can

only be applied to some limited extent, the δ
13C and δ

15N values

could be measured on a small (<1mg) aliquot of the sample. This

analysis will produce a reliable δ
13C value as well as a reliable %N

(but not δ
15N) value. Based on this %N value, the analyst can then

produce a second aliquot weighed specifically to produce precisely

the appropriate amount of nitrogen gas required, while removing

any of the produced CO2. The mass required for accurate and

precise δ
15N value measurements is higher for uncharred material

(which tends to have lower %N) and lower for pulses that have

higher %N (see Table 2). Given that preparation of samples (at

a minimum involving crushing and weighing into tin capsules)

invariably results in loss of material, it is advisable to weigh all

potential samples before proceeding with any further preparative

work to ensure that they are a minimum of 5–10 mg.

3.2 Determining optimal sample sizes using
precision for planning

The method of “precision for planning” (also called Accuracy

in Parameter Estimation, AIPE) is a powerful tool for determining
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FIGURE 1

FTIR spectra of archaeological charred pea contaminated with varying percentages by dry mass of (A) carbonate, (B) nitrate fertilizer, and (C) humic
acid sodium salt. Numbers next to dotted vertical lines refer to the wavelength of contaminant peaks identified by Vaiglova et al. (2014). Data from
Vaiglova et al. (2014).

FIGURE 2

The e�ect of contaminating a powdered sample of charred archaeological peas (δ13C = −22.9‰, δ15N = 6.4‰; solid line in plots) with di�ering
percentages by dry weight of carbonate (δ13C = 2.5‰), nitrate fertilizer (δ13C = −43.8‰, δ15N = −1.8‰), and a commercially purchased humic acid
sodium salt (δ13C = −25.9‰, δ15N = 2.7‰) on (A) its δ

13C values and (B) δ
15N values (data from Vaiglova et al., 2014: Table 4).

optimal number of samples by specifying a desired statistical

precision and calculating how many samples it would take

to reach that precision. Tools such as the one provided on

thenewstatistics.com > esci web > precision for planning

(https://esci.thenewstatistics.com/esci-precision.html#tab-1)

enable us to set the target precision on the x-axis and read

the optimal sample size off the y-axis. Here, the margin of

error (MoE)—which is one half of a confidence interval

around a mean (i.e., the distance between the mean and the

lower or upper limits of its confidence interval)—is used to

determine the target precision. MoE can be standardized by

dividing by the standard deviation, which makes it possible

to work with samples that come from populations with

different variabilities.
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Here, we use precision for planning instead of statistical

power because of the strong concerns that have been raised

by the statistical community over null hypothesis significance

testing (e.g., Amrhein et al., 2019; Byrd, 2007; Cohen, 1990;

Cumming, 2014; Fidler et al., 2004; Goodman, 2008; Greenland

et al., 2016; Ioannidis, 2005). In analyzing plant stable isotope

datasets, we recommend the use of estimation science (i.e., focusing

on describing what the actual difference between groups is) over

declaring whether or not a test statistic passes an arbitrary threshold

such as p= 0.01 or p= 0.05. Cumming and Calin-Jagerman (2024)

provide many useful discussions and tools for applying estimation

and inferential statistics in research in place of null hypothesis

significance testing.

A common rule of thumb is to choose a MoE that is half of

the expected effect size (i.e., the difference between the groups

of interest). Let’s consider a hypothetical archaeological scenario

to illustrate how this works. Suppose we have archaeobotanical

remains from a European site dating to three occupation phases:

Neolithic, Bronze Age and Iron Age. The aim of our study is to

determine whether barley was grown in different soil conditions

during the three periods. Based on the differences in cereal grain

δ
15N values between low, medium and high levels of manuring

established by Bogaard et al. (2013), we set our expected effect size

to 3.0‰. In other words, we predict that if there is a true difference

in soil management conditions, the mean δ
15N values would differ

by 3.0‰ or more. This would make the target MoE 1.5‰ (half

of 3.0‰). Using the pooled standard deviation in δ
15N values

of individual grains/pulses from single cultivation plots of 0.76‰

(Section 2.2; Table 4), the standardized MoE would be 1.5/0.76= 2

in standard deviation units.

Figure 3 demonstrates how the online esci web > precision

for planning tool can be used to calculate the optimal number of

samples. Figure 3A shows that setting the MoE to 2 (by toggling the

slider on the x-axis) results in four barley grains required per phase.

However, this precision will be reached only 51% of the times, since

49% of the distribution curve (in orange) lies above MoE = 2.0‰.

To determine sample size at 99% assurance, the corresponding

checkbox can be clicked in the panel on the left-hand side. When

that is done (Figure 3B), the distribution curve (in orange) shifts so

that 99% of the area falls under MoE = 2.0 and the optimal sample

size changes to 6. However, because archaeobotanical grains rarely

come from the same cultivation plot (or even the same temporal

unit within an occupation phase), it should be expected that the

real standard deviation is larger, in which case more conservative

estimates should be made (e.g., MoE = 1.5/1 = 1.5, yielding a

minimum of nine grains per period at 99% assurance).

It is useful during project preparation and grant application to

consider what sample sizes would be required to detect realistic

effect sizes under a range of expected standard deviations. Table 5

shows sample sizes required for capturing an effect size of 1.0‰

(Figure 3A) and an effect size of 3.0‰ (Figure 3B) with expected

standard deviations between 0.2 and 1.0‰. As expected, fewer

samples are needed to identify larger effect sizes. For example, only

seven samples per group are needed to detect a difference of 3.0‰

with 99% assurance when SD = 0.8‰, but 30 samples per group

are needed to detect a difference of 1.0‰ with 99% assurance when

SD = 0.8%. However, even though large target MoE can in theory

be achieved with very small sample sizes, we need to be particularly

careful about using very small n (such as< 4). In replication studies,

when the standard deviation of the underlying population is not

actually known (as is the case in plant stable isotope studies), the

width of the confidence intervals can bounce around substantially,

so distinct sets of four samples can produce very different results,

and the outcomes need to be treated with caution.

When performing precision for planning, it is best to

be conservative about the expected standard deviation,

especially given the difficulties with understanding variability

in archaeological datasets (Section 2.2). If it is underestimated, the

results could risk missing the detection of meaningful differences.

Additionally, it is important to remember that this method only

works under the assumption that the samples in each group come

from the same population. Thus, six samples each of wheat and

barley may detect a 3.0‰ difference in δ
15N values between a plot

of wheat and a plot of barley, but not across several fields from

distinct time periods. If chronological change is of interest, six

samples should be obtained of each species from each period. If

contexts are primary storage deposits (which are often the richest

contexts in terms of crop remains), it may be that all items in that

deposit came from the same population (i.e., same cultivation

plot), but they could alternatively represent grain sourced and

pooled from several fields. If primary contexts are unavailable, and

the optimal sample sizes are unachievable, a 3.0‰ difference might

go undetected. Further details on using precision for planning

using different research designs can be found in Cumming and

Calin-Jagerman (2024: Chapter 10).

Lastly, small sample sizes lead to large confidence intervals

(i.e., low precision) around the estimates of interest. In some cases,

this may result in a meaningful difference being obscured and

undetectable. In other cases, large confidence intervals may make

it impossible to identify the direction of an effect. For example,

if a study aims to identify a linear correlation between δ
15N and

grain width and measures a Pearson’s r of 0.4 using 10 grains,

when a confidence interval (CI) is attached to the correlation

coefficient, the result is r = 0.4, 95% CI (−0.3, 0.8). This means

that the true relationship could be anywhere from weakly negative

(−0.3) to strongly positive (0.8). If the isotopic difference between

wheat (n = 3) and barley (n = 4) is 0.3‰, 95% CI (−1.0,

1.6), it means that the true difference could be anywhere from

−1.0‰ to 1.6‰. When small sample sizes are unavoidable, it

is imperative to restrict interpretations to descriptive statistics,

without making unrealistic predictions about what the trends imply

for the underlying population.

3.3 Accounting for environmental
variability in crop isotope values

It is often not possible to distinguish between the effect(s)

of environmental variability and agricultural practice on crop

isotope values, but the potential of environmental factors to

contribute to any differences or changes in crop isotope values

should be considered and discussed for each case. For this reason,

care must be taken when applying the “manuring bands” and

water availability frameworks established by modern studies in

particular regions (Bogaard et al., 2013; Wallace et al., 2013)
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FIGURE 3

Demonstration of using “precision for planning” to determine optimal sample sizes. The example uses an online tool from thenewstatistics.com >

esci web > precision for planning (https://esci.thenewstatistics.com/esci-precision.html#tab-1) (Cumming and Calin-Jagerman, 2024). (A) Using a
target margin of error of 1.5‰ and a prediction that SD will be 0.76, the optimal number of samples for detecting a di�erence of 3.0‰ (on average) is
4 samples per group. (B) Using a target margin of error of 1.5‰ and a prediction that SD will be 0.76, the optimal number of samples for detecting a
di�erence of 3.0% (at 99% assurance) is 6 samples per group.

to others with very different climate and soil types. Previous

studies comparing crop isotope values from sites located in

areas with differing annual rainfall levels have attempted to

account for the effect of aridity on crop δ
15N values and to

normalize crop δ
15N values between sites using linear regression

in order to avoid incorrect interpretation of high crop δ
15N

values as solely due to manuring (Styring et al., 2016, 2017a,

2022). More experimental studies investigating the interplay of

environmental factors and agricultural practices on crop isotope

values will only improve these attempts at disentangling such

confounding variables.

Another approach has been to estimate a “base-interval” of

isotope values to be expected for unmanaged plants, by subtracting

the mean offset between bone collagen and diet (∼4‰ for δ
15N;

e.g., Steele and Daniel, 1978) from the isotope values of preserved

wild herbivore bone collagen from the same archaeological sites
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TABLE 5 Hypothetical combinations of expected standard deviations and e�ect sizes, and their e�ect on optimal sample sizes calculated using

precision for planning.

Standard deviation
(SD, 1σ)

Target MoE (in
original units,‰)

Target MoE (in
population SD units)

N (on average) N (with 99%
assurance)

Expected e�ect size = 1.0‰

0.30 0.50 1.67 5 8

0.40 0.50 1.25 7 11

0.50 0.50 1.00 9 15

0.60 0.50 0.83 13 20

0.70 0.50 0.71 17 25

0.80 0.50 0.63 21 30

0.90 0.50 0.56 26 37

1.00 0.50 0.50 32 44

Expected e�ect size = 3.0‰

0.80 1.50 1.88 4 7

0.90 1.50 1.67 5 8

1.00 1.50 1.50 5 9

Top: scenario for an expected effect size of 1.0‰ (MoE of 0.5‰). Bottom: scenario for an expected effect size of 3.0‰ (MoE of 1.5‰).

and contexts as crop remains (e.g., Aguilera et al., 2018; Bogaard

et al., 2013; Styring et al., 2017b). This relies, however, on the

presence of wild herbivore bones and on the assumption that

the plants consumed by wild herbivores were growing in similar

environments to crops but that their isotope values were unaffected

by human management. Domestic herbivore bone collagen isotope

values are not used because they are more likely to reflect isotope

values of plants that have been affected by human management.

3.4 Assessing the preservation of
archaeological crop remains

There exists a corpus of images of cereal grains and pulse

seeds experimentally heated for between 215 and 260◦C for 4–

24 h (Stroud et al., 2023b) that can be compared with the external

morphology of archaeological crop remains to identify those that

are likely to have been charred in similar conditions and thus

minimize any isotopic offset due to charring. These are generally

crop remains that can be identified to species and conform to

preservation grades P2 or P3 (after Hubbard and al Azm, 1990). It is

possible that even those crop remains whose external morphology

suggests that they are well-preserved have voids in their cross-

section indicating that they were heated to a higher temperature.

These voids can also have infilling of soil, making contamination

a concern. Cereal grains/pulses can therefore be cut in half using

a scalpel to examine the internal morphology of the cross-section

(also pictured in Stroud et al., 2023a,b) and discarded if large voids

or soil contamination are present.

3.5 Addressing contamination of
archaeological crop remains

Vaiglova et al. (2014) investigated the effectiveness of various

pre-treatment methods in removing the most likely forms of

contamination from soil: carbonates, nitrates and humic acids.

They found that carbonate contamination was removed using

a gentle acid wash (0.5M HCl at 80◦C for 30min), nitrate

was removed with three rinses in deionised water, and humic

acid was removed with a gentle base-acid wash (0.1M NaOH

and 0.5M HCl at 80◦C, 60min base treatment, 30min acid

treatment). This and various other studies have observed relatively

small (<1.0‰ for δ
13C and <1.5‰ for δ

15N in 96% of cases;

Brinkkemper et al., 2018) but variable changes in the isotope values

of charred archaeological plant remains after varying combinations

and concentrations of acid and base washes (Brinkkemper et al.,

2018; Fraser et al., 2013a; Kanstrup et al., 2014; Vaiglova et al.,

2014). It is very difficult to determine whether these changes in

isotopic composition are due to removal of contaminants, or due

to preferential removal of certain parts of the plant material that

have different isotope values. Moreover, multiple washes of plant

material results in its loss, with sample weight losses of 22 ±

9% with acid-only treatment, 37 ± 22% for base-acid treatment

and 50 ± 17% for acid-base-acid treatment having been observed

(Brinkkemper et al., 2018). In samples with low starting mass (such

as single grains/seeds) pre-treatment could result in insufficient

material remaining for isotopic analysis.

Given the uncertainties associated with the isotopic effect

of pre-treatment methods on uncontaminated charred grains

and seeds, and the relatively small changes that contaminants

(and particularly humic acids) have on crop δ
13C and δ

15N

values (Figure 2), three strategies have been proposed: (1) perform

chemical pre-treatment on all samples, (2) screen a portion of

archaeological crop samples from a range of context types and levels

of preservation/visible dirtiness for potential contamination and

only apply pre-treatment protocols if contamination is observed

to be present, or (3) perform no chemical pre-treatment but

undertake the physical removal of visible sediment, and report

larger isotope value uncertainties to account for the unknown effect

of contamination (cf. Brinkkemper et al., 2018). FT-IR spectroscopy
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is a good screening method as it uses minimal material, is very

quick, and the spectra of contaminated crop material have been

published (see Vaiglova et al., 2014; Figure 1). Researchers could

also use their knowledge of the geology of an archaeological site to

judge the likelihood of carbonate contamination, in particular. The

only sites where carbonates have been detected in archaeological

crop remains thus far are located on limestone geologies (e.g.,

Greece, northern Syria, south-east England, southern France;

Alagich et al., 2018; Stroud, 2022; Styring et al., 2022; Vaiglova

et al., 2020). Ultimately, more experimental studies on samples

with known levels of contamination would be valuable to more

conclusively determine how to effectively remove contamination in

a wider range of situations.

4 Recommendations for planning and
conducting stable isotope analysis of
archaeological crop remains

The aim of this paper is to set out the challenges associated

with crop stable isotope analysis and present potential strategies to

mitigate against them. It is the intention that this format allows

the reader to engage critically with the issues rather than follow

a set protocol, and that this is the start rather than culmination

of a discussion regarding best practice in stable isotope analysis

of archaeological crop remains. In this regard, we propose the

following recommendations for researchers planning to conduct an

isotopic study of archaeological crop remains.

4.1 Set out the research question

The most successful isotopic studies are those that have a

clear hypothesis to test, involving the comparison of two or more

groups of interest or exploring the relationship between isotope

values and an independent variable such as date. In archaeological

studies, we are generally interested in how human actions have

affected the isotope values of plants, to gain insights into the type

and intensity of agricultural management. Given the multitude of

environmental factors (e.g., soil type, climate, topography), aside

from agricultural practices such as watering and fertilization, that

can influence plant δ
13C and δ

15N values, comparisons of plant

isotope values within sites are likely to be most robust because

it can generally be assumed that these environmental factors are

more consistent across the site. The isotope values of different crops

recovered from the same archaeological contexts can be compared

to investigate differences in management practices among crops;

the isotope values of one or more crops can be determined through

time to detect changing agricultural practices; and the isotope

values of crops can be compared between/among discrete periods

of occupation.

When comparing crop isotope values among sites, there is

a greater chance that the isotope values will vary according to

environmental differences rather than management practices per

se. It is therefore useful to have a point of reference unlikely to

be influenced by human management to act as an isotopic “base-

interval” (cf. Vaiglova et al., 2022) for comparison with the crop

isotope values (see Section 3.3).

4.2 Select appropriate samples

If plant remains derive from a secondary context (e.g., floor,

midden), it cannot be assumed that multiple seeds come from the

same growing condition and therefore isotopic analysis of single

seeds will conserve the true variation among contexts. If plant

remains derive from primary storage contexts (e.g., storage bins,

pots), it might be the case that all items came from the same

cultivation plot. In this case, isotopic analysis of a “bulk sample”

of multiple grains will average out the inherent isotopic variability

within the growing condition, providing a more precise estimate of

themean isotope value for that growing condition when budget and

time are limited. Large primary deposits (e.g., large pits, granaries),

however, could comprise grains sourced and pooled from multiple

fields, or even from multiple settlements, meaning that analysis

of single grains is actually more appropriate. Regardless, it is

important that archaeological context is recorded for each sample

(e.g., in Supplementary information) so that the isotope values of

samples (whether individual grains or “bulk samples” of multiple

grains) can be interpreted correctly in terms of expected variability

and context. This information could include the total number of

grains/pulses recovered from an archaeological context (but not

necessarily isotopically analyzed), since this would indicate whether

a deposit was large and therefore more likely to have derived from

multiple sources.

Given the variability in individual cereal grain isotope values

within a cultivation plot (Table 4), it is necessary that sufficient

samples are analyzed in order to robustly identify any meaningful

differences in isotope values among the groups of interest that

cannot be accounted for by this inherent variability. Determining

the number of samples necessary to determine these differences

depends on the research question, the estimated effect size of

a management regime of interest and the expected variability

within a management regime. Although it is notoriously difficult

to estimate effect sizes and variability, the availability of isotope

data from modern experimental farming sites means that we can

make a reasonable attempt at estimating the number of samples

required, following the approach in Section 3.2. Care should be

taken to ensure comparability between the groups of interest, so if,

for example, the research question is whether there is a difference

in manuring practice between the Neolithic and Bronze Age at a

particular site, the crop species sampled should be consistent for

both time periods.

4.3 Assess the suitability of samples for
isotopic analysis

Well-preserved grains/seeds should be selected for isotopic

analysis to minimize the isotopic offset resulting from charring

and to minimize the risk of internal contamination with soil.

Photographs of the dorsal and lateral views of intact grains provide
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a record of their external morphology that can be used for future

geometric morphometric analysis (e.g., Bonhomme et al., 2017;

Portillo et al., 2019; Wallace et al., 2019), and a photograph of the

cross-section of each grain/pulse provides a record of the internal

morphology which could be used to cross-reference to reference

material charred under different conditions. It is possible that

future research will enable better constraint of the isotopic changes

associated with different preservation conditions and so having a

visual record of the crop remains that have been analyzed (and

ultimately destroyed) could be useful for refining interpretations.

Archaeobotanical remains could be screened for potential

contamination and the spectra reported alongside isotopic data.

FT-IR spectroscopy is a good method for this and we recommend

that at least 10% of samples are screened in this way. This represents

a balance between screening all samples (with the risk of sample

loss that will preclude subsequent isotopic analysis) and screening

enough to capture any potential contamination. If screening a sub-

set of samples, it is advisable to screen samples from a range of

context types and levels of preservation/visible dirtiness so that they

are as representative as possible.

4.4 Prepare samples for isotopic analysis

There is a lack of consensus on whether to pre-treat all samples,

regardless of contamination, pre-treat only those with evidence

of contamination, or not to pre-treat at all. We leave it up to

the reader to judge whether the potential level of contamination

is likely to affect the isotope values more than pre-treatment to

remove any potential contamination. Nevertheless, we recommend

in all cases to scrape any visible dirt from the surface of grains/seeds

using a scalpel under a low-power microscope or magnifying glass

and to rinse grains/seeds in deionised water prior to any analyses

to remove substantial amounts of soil and any surface debris.

Samples should then be dried in a low temperature oven (∼40◦C)

or lyophilised. Samples can then be crushed using an agate mortar

and pestle and the resulting powder stored wrapped in aluminum

foil inside microcentrifuge tubes to reduce the effect of static that

can disperse the sample.

4.5 Conduct isotope measurements on
archaeobotanical remains

Approximately 2mg of charred cereal grain will yield enough C

and N for accurate and precise δ
13C and δ

15N value measurements,

although this depends on the EA-IRMS. The carbon dioxide peak

will likely need to be diluted relative to the nitrogen gas peak if

δ
13C and δ

15N values are to be determined simultaneously on the

same sample. Best practice in terms of two-point normalization

of isotopic data has been covered comprehensively in other

publications (see Szpak et al., 2017). Wheat flour and sorghum

flour IRMS reference materials from Elemental Microanalysis

and millet flour (USGS90) and rice flour (USGS91) from Arndt

Schimmelmann, Indiana University, are useful “check” standards

as they are matrix-matched to plants, but other in-house reference

materials could be used.

4.6 Report isotopic measurements of
archaeobotanical remains

Again, best practice as to the reporting of isotope values has

been discussed in other publications (e.g., Roberts et al., 2018;

Vaiglova et al., 2022), but we recommend that the following

information is published alongside the isotopic data when

analyzing archaeobotanical remains: (1) archaeological context

information for each sample, including the number of grains/pulses

represented by each sample and the total number of that

species recovered from the context, (2) photographs of external

and internal morphology of each grain/seed, (3) FT-IR spectra

where available, (4) detailed information of any pre-treatment of

samples, and (5) elemental and isotopic data for all samples and

reference materials included alongside these, including mass of

plant sample analyzed.

5 Conclusion and future directions

In the last four decades or so, stable isotope analysis in

archaeological research has moved from a technological innovation

to an intellectual revolution. Many new research questions

have been asked and addressed, and new interdisciplinary

collaborations have been forged. Stable isotopic studies are

situated naturally between numerous subfields of modern

archaeology, including zooarchaeology, bioarchaeology,

geoarchaeology, archaeobotany and genetic research, bringing

great synergies to these related communities. The more recent

application of stable isotope analysis to archaeobotanical

macro-remains is one example of such collaboration—between

archaeobotanists and isotope communities—that has enabled

and continues to enable novel research questions to be

addressed, in turn allowing us to develop new, compelling

and relevant narratives.

While initial investigations have focused on large-grained

cereals and pulses that originated in southwest Asia and spread to

Europe, there has been considerable momentum in understanding

ancient farming systems in regions beyond western Eurasia using

these methods. One such example is the recent development in

understanding the carbon and nitrogen isotopic compositions and

the growing conditions of millet crops (e.g., Lightfoot et al., 2016;

Reid et al., 2018; Sanborn et al., 2021; Styring et al., 2019). This

new development has the potential to expand plant isotope research

into regions historically less investigated, such as east, south and

central Asia and sub-Saharan Africa, where more than twenty taxa

of small-grained and ecologically hardy crops collectively known

as millets were domesticated and sustained ancient populations.

Moreover, stable sulfur isotope (δ34S) values of archaeological

plant remains have the potential to track anaerobic conditions

in waterlogged soil (Lamb et al., 2023; Nitsch et al., 2019) and

even identify non-local plants whose δ
34S values don’t align with

baseline δ
34S variability. With such future developments in mind,

this paper outlines the main issues to be considered when planning

and conducting an isotopic study of archaeobotanical remains, in

the hope of facilitating the proliferation of future research efforts in

this field.
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Summary data on intra-ear/pod variability in δ
13C and δ

15N values of single
cereal grains/pulses collated from Bogaard et al. (2007), Heaton et al.
(2009), Larsson et al. (2019), McKerracher et al. (2023), Fraser et al. (2013a),
Treasure et al. (2016) and Szpak et al. (2014). Data was used to calculate
pooled variability shown in Table 3.
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McKerracher et al. (2023). Data was used to calculate pooled variability
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