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Stochastic method based on copulas for predicting severe road 
traffic interactions 
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Department of Technology & Society, Lund University, Lund 221 00, Sweden   
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A B S T R A C T   

A major difficulty in assessing road traffic safety is the scarcity of historical accident data. xxThis 
is a common problem in contexts where a certain level of safety has been reached or where 
exposure is low, such as mixed traffic conditions with different levels of transport automation. 
Recent studies have demonstrated how severe interactions between road users and/or road users 
and infrastructure can be a direct measure of safety. However, limiting the investigation to only 
the most extreme events may lead to inconclusive results considering the lack of prediction 
robustness and the possible selection bias. In this context, extreme value theory (EVT) is 
commonly used to extrapolate crashes from road traffic interactions, even combining several 
indicators. The present work extends the EVT paradigm by proposing a method based on copula 
functions and EVT, which enables a more specific and continuous evaluation of interaction 
severity. Compared with pure EVT, this new approach extends the boundary to interactions of all 
severities while implicitly assuming that the relationship between safety-relevant events and road 
casualties is stochastic. This EVT-copula approach was also compared with bivariate peaks over 
threshold (BPOT). It was found that the two approaches yield similar prediction results for crash 
probabilities. Furthermore, the proposed approach applies to events not properly defined in BPOT 
and provides more accurate predictions for severe (and less severe) interactions compared with 
BPOT, when benchmarked against observations.   

1. Introduction & background 

Traffic conflict measures have emerged as an alternative to safety analysis based on historical accident records, either by exploiting 
the statistical association between conflicts and crashes (Wu and Jovanis, 2012) or using conflicts as crash precursors. The latter has 
the advantage of elucidating the development of a crash at a microscopic level and no accident data is required for model development 
(Arun et al., 2021b). 

The reasons why traffic conflicts have become so popular are mainly related to known (by now well-described) issues associated 
with direct safety assessment, including under-reporting, low counts, over-dispersion (and statistical issues related to that), long 
periods for data collection, and lack of descriptive details available in a standard crash report (Lord and Mannering, 2010). Notably, 
traffic conflicts provides quick feedback where the data collection time is relatively short and can be applied to without aggregation of 
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Table 1 
Theoretical comparison between the bivariate POT approach and the proposed copula approach.  

Method Sample Parametrization Probability of interaction 

Copula approach Event Interactions with 
limited  
proximity 

Marginal 
distributions 

Proximity 
1 −

(

1 + γ
x̃ − T(u)

σ

)− 1/γ P(X ≤ x,Y > y) = C
(
1 − FT(X)(x̃),1 − F2(y)

)
⋅ P(Ω0) y can take any value greater 

than 0, hence covering  
all the severity. Severity Depends on the conditional 

distribution 
Probability space on 
which  
the copula is defined 

(Ω0 × Ω,F 0 ⊗ F ,Q) Dependence 
structure 

C(u, v) =

exp
(

−
(
( − ln(u1) )

θ
+ ( − ln(u2) )

θ
)1/θ

)

Bivariate POT 
approach 

Event Interactions with 
limited  
proximity and severity 

Marginal 
distributions 

Proximity 
1 − P(X ≤ u) ⋅

(

1 + γ
x̃ − T(u)

σ

)− 1/γ P(X ≤ x,Y > y) = C
(
1 − FT(X)(x̃),1 − F2(y)

)
y can only  

take value greater than a severity threshold v, hence covering only the severe 
interaction. Severity 

1 − P(Y > v) ⋅
(

1 + γ
y − v

σ

)− 1/γ 

Probability space on 
which  
the copula is defined 

(Ω × Ω,F ⊗ F ,P) Dependence 
structure 

C(u, v) =

exp
(

−
(
( − ln(u1) )

θ
+ ( − ln(u2) )

θ
)1/θ

)
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multiple sites. Furthermore, traffic conflicts reveal how crashes develop, and more importantly, they support a proactive response. 
Two fundamental assumptions are made when modeling traffic conflicts as crash precursors: the continuity assumption and the 

hierarchy assumption (Glauz and Migletz, 1980). The continuity assumption states that traffic conflicts and crashes are governed by 
the same source of randomness, whereas the hierarchy assumption states that the conflicts can be measured numerically, which en-
ables comparisons among different levels of conflict severity. Among the available statistical approaches for exploring the conflict- 
crash relationship, extreme value theory (EVT)-based models have received significant attention owing to their simplicity and flexi-
bility in implementation (Zheng et al., 2021; Ali et al., 2023a). 

The advantages of addressing the conflict-crash relation with EVT are numerous. First, crashes are generally defined in a 
straightforward way, stating that the proximity between two road users becomes zero, which is measured using one (Songchitruksa 
and Tarko, 2006; Zheng et al., 2014; Farah and Azevedo, 2017; Åsljung et al., 2017; Borsos et al., 2020; Ali et al., 2023b) or more crash 
proximal indicators (Jonasson and Rootzén, 2014; Zheng et al., 2018; Wang et al., 2019; Fu and Sayed, 2021). Second, interaction 
severity can be modeled alongside crash proximity to capture the complex dynamics of an interaction, which can be further used to 
evaluate the risk of injury-related accidents (Arun et al., 2021a; Borsos, 2021; Arun et al., 2022; Howlader et al., 2024; Tahir and 
Haque, 2024). Moreover, EVT can be extended to include multisite heterogeneities, such as behavioral and geometric factors (Zheng 
and Sayed, 2019a; Cavadas et al., 2020; Fu et al., 2020; Ali et al., 2022), which help to predict crash risk in real-time. It is also worth 
mentioning that including more indicators using multivariate EVT is conceptually beneficial because more information is aggregated 
in the model, and crash estimates are more aligned with historical accident records (Ali et al., 2023a). 

However, previous reviews and discussions (Wang et al., 2021; Zheng et al., 2021; Ali et al., 2023a) have also pointed out several 
drawbacks concerning the recent advancement in multivariate EVT methodology. The main issues are related to the heavy data re-
quirements and rigid dichotomous classification of events. As a result, cases exceeding the thresholds are regarded as conflicts, but the 
threshold selection is purely mathematical. In multivariate peaks over threshold (POT), these two problems make it difficult to 
maintain the bias-variance balance because less data is used to estimate more parameters. Consequently, lower threshold values are 
typically selected to ensure estimator convergence, but lowering the threshold too much runs the risk of violating the generalized 
Pareto (GP) distribution assumption in the marginal distributions, which introduces further bias in the resulting probability (see 
Table 1). 

The basic assumption of the present work is that extreme values are not required for all the indicators in safety analysis, for 
example, in assessing the crash severity. This assumption is based on the definition of crash severity defined using the human-body 
tolerance of the energy released, which is specific to individual road users (Augenstein et al., 2003; Bahouth et al., 2014). There-
fore, in terms of the energy involved, even non-extreme crashes can result in severe injuries. For example, when vulnerable road users 
are involved, lower energy does not necessarily mean lower severity, and specific interaction angles, even at low speed, can lead to 
severe consequences. However, safety relevant (i.e., have enough energy to potentially cause a severe crash) events are not necessarily 
identified as extremes by the BPOT. Expanding the range of severity levels has the clear advantage of providing a more robust crash 
frequency prediction. 

For the reasons mentioned above, this study proposes an efficient method to simultaneously model crash proximity and interaction 
severity, while the range of interaction severity is extended to include more than just extreme values. The proposed method combines a 
copula function with the extreme-value-distributed margin of crash proximity. This research differs from previous studies that have 
applied copulas to traffic conflict measures (Fu and Sayed, 2021; Arun et al., 2022) because the severity dimension (described by 
interaction severity traffic conflict measures) is not treated as an “extreme value” herein. Meanwhile, the proximal dimension still 
preserves the extreme value-type distribution. Consequently, the full range of severities that occur during critical situations is ob-
tained. This is advantageous because more data is used more efficiently than in bivariate extreme value models, and the whole range of 
severity is included, which overcomes the limitation of only selecting extreme events in multivariate EVT. As a result, it is possible to 
model crashes at any observed (or unobserved but possible) severity. The proposed method based on the copula and EVT has been 
applied to a dataset comprising interactions involving left turn maneuvers at a signalized intersection with a permitted left turn. The 
results have also been compared with a state-of-the-art bivariate threshold excess model using the same dataset. 

2. Theory 

The theory behind the analysis carried out in the paper is based on the following technical tools, which are described in detail later:  

1) The mathematical definition of interaction via traffic conflict measures is the basis for the construction of any probabilistic model.  
2) A dependence structure that associates two or more random variables allows the simultaneous modeling of several traffic conflict 

measures.  
3) A partition of probability space based on the extreme selection method is used to formulate a new probability space restricted to 

only the near interaction. 

2.1. Definitions of interaction 

Random elements in an interaction 
Traffic conflict measures (or indicators) provide different aspects for the quantitative assessments of a road traffic interaction, 

which cannot be measured directly. Let (Ω,F , P) be the probability space in which Ω represents the space of all interactions (outcome 
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space), and (R,B (R) ) is the measurable space on R (state space). Then, a traffic conflict measure X : Ω ↦ I⊂R is a random variable 
that maps an arbitrary interaction to a concrete interval on the real line. 

An arbitrary subset I ∈ B (R) corresponds to an interval of indicator values. The measurability of X yields X− 1(I) ∈ F ,∀I ∈ B (R), 
meaning that the subset of interactions that takes indicator values in I are denoted as X− 1(I). Applying probability measures on X− 1(I)
gives the probability of those events. 

P({ω ∈ Ω : X(ω) ∈ I} ) = P
(
X− 1(I)

)
(1)  

When more than one traffic conflict measures are involved in the definition of interaction, the probability space is expanded 
accordingly. Suppose p indicators X1,⋯,Xp are used, then the previous construction on a single indicator can be extended to the 
random vector 

(
X1,⋯,Xp

)
. 

(
X1,⋯,Xp

)
: (Ωp,F ,P) ↦ (I ⊆ Rp,B (Rp) ),F = F ⊗⋯⊗

⏟̅̅ ⏞⏞̅̅ ⏟
ptimes

F  

Mathematically, applying different conflict indicators to the same interaction is observed as mappings from the same outcome space to 
different intervals on the real line. For an arbitrary subset of interaction Ω := Ω1 × ⋯× Ωp, suppose X1(Ω1) = I1,⋯,Xp

(
Ωp

)
= Ip, then 

Ω can be defined as the intersection of the pre-images of the indicators Ω = ∩n
i=1X− 1

i (Ii). The measurability of 
(
X1,⋯,Xp

)
states that for 

each I :=
∏p

i=1Ii ⊆ Rp, ∩p
i=1X− 1

i (Ii) ∈ F . Hence, interactions measured using multiple indicators can be represented by ∩p
i=1X− 1

i (Ii). 
Applying probability measures to such events results in the following: 

P(Ω) = P
(
∩n

i=1X− 1
i (Ii)

)
= P(X1 ∈ I1,⋯,Xn ∈ In) (2)  

To further generalize the definition of interaction severity, suppose X1 is a crash proximal indicator and X2 is an interaction severity 
indicator, then each interaction is equipped with a coordinate whose first entry and second entry are the values of X1 and X2, 
respectively. An interaction is then defined by the random vector (X1,X2) in probability space (Ω × Ω, F ⊗ F , P). 

2.2. The copula and multivariate extreme value distribution (MEVD) 

A copula is a joint distribution function with uniformly distributed margins. It is a convenient tool for modeling the multivariate 
dependence structure because it accommodates random variables that are characterized by different parametric families of distri-
bution functions (Genest and Favre, 2007). 

The distributional equivalence between a copula and any arbitrary joint probability distribution was established by Sklar (1959). 
Sklar’s result can be described as follows: 

if (X1,⋯,Xd) ∼ F be random vector on probability space (Ω,F ,P), F1,⋯, Fd are marginal distributions of F, then there exists a 
d-dimensional copula: 

C(F1(x1),⋯, Fd(xd) ) = F(x1,⋯, xd) ∀(x1,⋯, xd) in the continuity of F. 
Conversely, if C is a copula and there is a function F(x1,⋯, xd) = C(F1(x1),⋯, Fd(xd) ), then F is a joint distribution function whose margins 

are F1,⋯,Fd. 
Similarly, there exists a copula distribution that equates in distribution to a survival function, such that C(1 − F1(x),1 − F2(y) ) =

P(X > x,Y > y). C is called the survival copula. The relation between survival copula and the copula is (Nelsen, 2006): 

C(u, v) = C(1 − u, 1 − v)+ u+ v − 1 (3)  

Multivariate extreme value distributions (MEVD) with uniform margins are also considered extreme value copulas. It is important to 
note that extreme value copulas refer to marginal distributions being modeled by the extreme value-type distribution rather than the 
inherent dependence structures of the copulas. The dependence structure inherent in extreme value copulas can also be used beyond 
extreme values, as stated by Gudendorf and Segers (2010), they “…not only arise naturally from the extreme values, it is also a convenient 
tool to model data with positive dependence.” 

A bivariate extreme value distribution with uniform margins (i.e., copula) takes the following form: 

C(u, v) = exp
(

log(uv) ⋅ A
(

log(u)
log(uv)

))

,u, v ∈ [0,1] (4)  

Eq. (4) is used to approximate the samples selected through bivariate component-wise block maxima. 

2.3. Multivariate threshold excess model 

The conditional upper-tile distribution is a standard result from Pickands (1975), such that, if X1,⋯,Xn are random samples from a 
distribution function F, 
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lim
u→xF

P(X > x|X > u)→1 − H(x) =
(

1 + γ
x − u

σ

)− 1/γ
, xF = inf{x ∈ R : F(x) = 1} (5)  

H(x) is a generalized pareto (GP) distribution, where u is the pre-specified threshold, and σ, γ are the parameters to be estimated. As an 
immediate consequence of Eq. (5), the unconditional upper-tail distribution P(X ≤ x), when X > u, coincides with: 

H̃(x) = 1 − P(X ≤ u)
(

1 + γ
x − u

σ

)− 1/γ
(6)  

The principles of excess models based on multivariate thresholds were initially explained by section 3 of Smith (1994). First, the 
component-wise exceedances are transformed to the desired marginal distributions using Eq. (6). Second, the method of censored 
likelihood is used to determine the sample contribution to the estimation. It was stated that the joint distribution in the upper-tail 
region coincides with the multivariate extreme value distribution, such that: 

P(X ≤ x, y ≤ y) ≈ C(u, v) if x > u1, y > u2 (7)  

where C(u, v) is given by Eq. (4), u = H̃(x), v = H̃(y) are transformed to uniform margins using Eq. (6), and u1, u2 are the thresholds. 
In the context of modeling traffic conflict, the proximal indicator is first transformed by a decreasing transformation T before 

applying the POT method. Let X̃ := T(X), then the lower tail of the crash proximal indicator is expressed as the upper tail after the 
transformation. 

P(X ≤ x|X < u) = P(T(X) ≥ T(x)|T(X) > T(u) ) ∼ H(T(x) ) =
(

1 + γ
x̃ − T(u)

σ

)− 1/γ

(8)  

2.4. Motivation of the new approach 

The following approach relies on the hierarchical assumption of traffic conflicts; that is, the severe interactions (including crashes) 
are the subset of the near interactions. Near interactions are separated from far interactions by a threshold. Following the definition in 
Section 2.1, let u1 be the separating threshold. 

Near interaction:.Ω0 = X− 1((∞, u] )
Far interactions:.Ω \ Ω0 
The probability of a near interaction can be rewritten as: 

P(X ≤ x,Y > y) = P(X ≤ x,Y > y|Ω0) ⋅ P(Ω0)+P(X ≤ x,Y > y|Ω0) ⋅ P(Ω \Ω0)

P(X ≤ x,Y > y|Ω0) ⋅ P(Ω \Ω0) is equal to 0. 

2.5. Probability of near interactions/crashes of different severity 

We restrict the probability space to only the near interaction (Ω0 × Ω,F 0 ⊗ F ,Q), where Q(A) = P(A|Ω0) is the conditional 
probability. Let F1 be the distribution of crash proximal indicator, F2 be the distribution of interaction severity indicator, and C be the 
joint distribution of two indicators (all with respect to probability measure Q). Then, the probability of an interaction with specified 
severity y can be written as: 

P(X ≤ x,Y > y) = P
(

X̃ > x̃,Y > y
)
= Q

(
X̃ > x̃,Y > y

)
⋅ P(Ω0)

For Q
(

X̃ > x̃,Y > y
)

, the final formula for evaluating interaction at the severity associated with y is then given by Eq. (3): 

P(X ≤ x,Y > y) = C
(
1 − FT(X)(x̃),1 − F2(y)

)
⋅ P(Ω0) (9)  

The formal construction of measure Q is provided in Appendix A. We also note that there is a possibility for inherent negative rank 
correlation in the data. Some copulas (e.g., the Gumbel copula) do not support data with a negative rank correlation. A remedy for this 
is also provided in Appendix A. 

3. Method 

The following sub-sections summarize all the study details: dataset (3.1) – provides a description of the data this study is based on, 
objective measures (3.2) – presents explanations regarding the choice of traffic conflict measures, analysis (3.3) – describes the 
implementation procedure of the novel approach used in this study. 
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3.1. Data-processing 

This study conducts an extended analysis using a dataset from previous research (Laureshyn et al., 2017). The data includes 89 h of 
video recordings from 2010, recorded between 07:00 and 19:00 with a framerate of 21 frames per second and a resolution of 640 × 480 
pixels. The present study focuses only on interactions between cars turning left and cars driving straight through the intersection 
(Fig. 1). 

This study used the object detector YOLO8 (Jocher et al., 2023), along with the object tracking algorithm strong-SORT (Du et al., 
2023). These provide the trajectories of classified objects (cars, trucks, buses, etc.) traveling through the camera field of view, with 
coordinates measured in meters (Fig. 2). 

Finally, the trajectories have been smoothed using a Savitzky–Golay filter in MATLAB. This step removes any suspiciously short 
trajectories that appear in the case of a vehicle being detected multiple times, as well as trajectories that appeared outside the roads 
because of detection errors. Altogether, 25,126 encounters were recorded over two weeks from the real-life traffic flow. Based on these 
data, various objective parameters were calculated and extracted for further analysis in this study. Only the interactions that showed 
the collision course were kept for further data analysis. The selection process involves two steps. First, a boxed area is drawn around the 
intersection point of the two trajectories. Second, for each vehicle, a time interval that describes how long the target vehicle remains in 
the boxed area is computed based on motion prediction in every common frame. We say that the collision course exists if the time 
intervals overlap more than once during the common frames. Overall, 4772 interactions have been selected for analysis. 

3.2. Essentials for defining a safety-relevant event (interaction) for EVT application 

There are different definitions of conflicts in the classical framework of traffic conflict (Older and Spicer, 1976; Amundsen and 
Hyden, 1977; Allen et al., 1978; Hydén, 1987; Saunier and Laureshyn, 2021), and they are not consistent (Chin and Quek, 1997; 
Yastremska-Kravchenko et al., 2022). The validity of various traffic conflict measures can differ depending on the types of interactions 
(Johnsson et al., 2021a,b). The definitions can be grouped into four types (Arun et al., 2021b), namely proximity-based (Hayward 
(1972); Cafiso et al., (2018)), severity-based (Hydén (1987); Laureshyn et al., (2010)), evasion-based (Perkins and Harris (1968); 
Tarko (2018)), and counterfactual-probability-based (Davis et al., (2011)). 

Another issue is that the output from EVT models depends on the selection of the conflicts. This is not trivial because different 
indicators are used to evaluate the events at different time instances. An example is the use of post encroachment time and Delta-V; the 
former is measured when the interaction is resolved, and the latter is measured during the culmination phase. Hence, the same event 
can be identified as a conflict or a normal interaction depending on the set of indicators, which often measure values in a different time 
or space position (Zheng and Sayed, 2019b). Unlike conventional statistical models where the parameters depend on the overall 
distribution of a sample, EVT models are governed by outliers. Consequently, if the definition of conflict is flawed, more data may not 
lead to improved model performance (Ali et al., 2023a). 

The main problem that remains unsolved is that some traffic conflict measures are more representative than others and no universal 
indicator exists that is suitable for all situations (Arun et al., 2021c). Therefore, we consider that the measurement within a conflict 
should be elementary and intuitive, particularly regarding the spatial proximity and the energy involved, which are preferably 
measured at the same point in time. The situation-based factors can be pre-specified in the selection of safety-relevant events. 

The adopted definition of conflicts is motivated by the framework postulated by Tarko (2021), who divided the encounters into 
safety-relevant or other events and treated conflicts (in the traditional sense) as subsets of safety-relevant events. Safety-relevant 
events are conceptually involved in the “pre-conflict” stage, where encounters have the potential for being conflict candidates. 
Although it is difficult to identify the sufficient conditions for a failure to occur without insight vehicle information, we can formulate 

Fig. 1. Camera view of the target interaction.  
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the necessary condition(s) using logic. One simple requirement for safety-relevant events is the presence of a collision course when the 
proximity between two vehicles is low. Therefore, we define an event to be safety-relevant if it has a non-zero probability of contact (i. 
e., the crash proximity is low, and the vehicles are on a collision course). The mathematical definition is described in Section 2.2. 
Among the safety-relevant events, severe interactions1 are the ones with sufficient energy to cause injuries or fatalities in a potential 
crash. 

3.2.1. Measure of proximity 
Distance is used to measure the proximity between two vehicles in an interaction. This is chosen to ensure an assumption-free 

indicator, which is unlike the time to collision or other indicators that require the prediction of trajectories and speed after the 
evasive action. The identification of evasive action is still not perfect in video analysis and requires more research, which is outside the 
scope of the present paper. The use of assumption-free indicators is motivated by Fay Patterson (2021) and has been modified to limit 
the analysis to only events where collision courses have been detected. The measurement is extracted when the distance between two 
vehicles is minimized during the interaction (i.e., in the time interval from the beginning to the moment when the interaction is 
resolved). The minimum distance is denoted as MD. 

3.2.2. Measure of severity 
The relationship between speed and critical events in traffic is widely recognized and understood. Speed has often been used as a 

proxy for consequences, for example, in the Swedish traffic conflict technique (Hydén, 1987; Laureshyn and Varhelyi, 2020). Several 
studies have also demonstrated the increasing risk of injuries and fatalities associated with increased impact speed (Wramborg, 2005; 
Rosen et al., 2011; Żuchowski, 2016). However, many factors, including the mass of involved road users or the angle of collision, 
influence the relationship between speed and possible consequences/energy involved in the crash (Shelby, 2011). Instead of actual 
speed, many studies have suggested using the expected change in velocity between the hypothetical pre-collision and post-collision 
trajectories of each road user, represented by the Delta-V (Δv) indicator (Shelby, 2011; Bagdadi, 2013; Laureshyn et al., 2017). 
Delta-V contains the velocity (vector quantity containing direction) and information regarding both the mass of the road users involved 
and their approaching angle (Eq. (10). 

Δv1 =
m2

m1 + m2
×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

v2
1 + v2

2 − 2v1v2cosα
√

;Δv2 =
m1

m1 + m2
×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

v2
1 + v2

2 − 2v1v2cosα
√

(10)  

where m1 and m2 are vehicle masses, v1 and v2 are their speeds, and α refers to the approach angle. Herein, the masses of the vehicle are 
assigned a fixed value depending on whether the vehicle is a passenger car, minivan, or truck. 

3.3. Implementation procedure 

The data analysis was performed using R software (R Development Core Team, 2023) and several R packages. Namely, “ggplot2” 
(Wickham, 2016) and “plotly” (Sievert, 2020) were used to enhance the aesthetics of the plots, “extRemes” (Eric and Richard, 2016) 
was used for univariate extreme value analysis, and “copula” (Jun Yan et al., 2020) was used for parameter estimation of the copulas, 

Fig. 2. Camera view with the cars being detected and tracked.  

1 In the paper, the terms “conflicts” and “severe interactions” are interchangeable. However, we want to highlight the fact that they may not 
follow the strict conflict definition (e.g., the Swedish or Dutch traffic conflict techniques). 
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computing copula probabilities, and simulating copulas. 
We use the inference for margins and a semi-parametric estimator based on rank correlation to estimate the copula parameters. 

Prior to the analysis, the proximal indicator must be transformed decreasingly. The simplest decreasing transformation (i.e., negation) 

was used in this study. The transformed distance is denoted as 
(

X̃1,⋯, X̃n

)
:= (T1(X1),⋯,T1(Xn) ). The implementation is outlined in 

six steps .  

1. Apply the POT model to the margin of proximity: apply univariate POT to determine the upper-tail distribution of X̃. The upper-tail 
marginal distribution of transformed distance is approximated using Eq. (5). 

2. Transform the marginal distribution into a standard uniform distribution: first, we restrict the outcome space to Ω0 by excluding ob-
servations whose distances do not exceed the chosen threshold. The corresponding Δv values are kept unchanged. The uniform 
observations (u1, v1),⋯, (um, vm) are obtained using (ui, vi) =

(
F1(x̃i), F2

(
yi
) )

, in which m is the number of observations that exceed 
the threshold, and F2 is the distribution function for the interaction severity indicator on Ω0. We use the empirical distribution 
Fn(y) = 1

m
∑m

i=1I{Yi ≤ y}. Accordingly, the uniform observation is equal to (ui, vi) =
(
F1(x̃i), Fn

(
yi
) )

.  
3. Fit the copula to the transformed data: the uniform observations (u1, v1),⋯, (um, vm) are used to fit different copula functions. The rank 

approximate estimator based on Kendall’s τ (See Appendix B) is used here.  
4. Selection of the models: compare the non-parametric and parametric estimates from different models using the goodness of fit.  
5. Compute the probability: the probability of an interaction is evaluated by plugging in different values of x, y into Eq. (9).  
6. Relative validation: the proposed approach is validated against BPOT. In the tail region, where no observations exist, we compare the 

magnitudes of the probabilities obtained from both approaches. In the region where observations exist, we compare the proba-
bilities from the two approaches with the observation. 

A flow chart (Fig. 3) describes the entire procedure, from data selection to the analysis and validation with reference to the Method 
section of the manuscript. 

Fig. 3. Flow chart of the implementation procedure.  
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4. Results 

The near interactions (Ω0) are plotted in Fig. 4. 
The threshold that separates near interactions from the rest is set based on the 0.9 empirical percentile of the MD, which is chosen 

according to the threshold selection criteria from the univariate POT model. The conditional marginal distribution (Eq. (4)) for MD is 
estimated by maximizing the likelihood as follows: 

FT(X)(x̃) = 1 −

(

1 − 0.493 ⋅
x̃ + 4.84

2.60

)1/0.493  

where x̃ = − x is the transformed distance, u = − 4.84 is the threshold, σ = 2.60,andγ = − 0.493. 
The Δv values of the red samples in Fig. 2 were transformed into uniform margins using the empirical distribution. Then, three one- 

parameter copulas (Gumbel, normal, and Clayton) representing different dependence structures were fitted to the uniform data. The 
copula expressions, as well as their estimation results, are presented in Table 2. 

The last two columns of Table 2 display the goodness of fit results based on the Cramer-von Mises statistic (Kojadinovic et al., 
2011). The p-values indicate that the normal copula and Clayton copula should be rejected, and the Gumbel copula is the fittest 
candidate for modeling near interaction in this dataset. 

The results of the proposed model are presented in Table 3, as well as the results estimated using BPOT. The parameters σ, γ 
represent the scale and shape parameters of the GP distributions, and θ is the dependence parameter of the Gumbel copula. In the 
proposed approach, no GP distribution, nor other parametric distribution, was used in fitting the distribution of Δv. Thus, σ2, γ2 were 
not available. The probability space has a different interpretation in the proposed approach; it represents the dependence between the 
lower proximity tail and the whole span of interaction severity, but in BPOT, it represents the dependence between the low proximity 
tail and the high severity tail. In both cases, the dependences were very weak (independence when θ = 1). The last four columns of 
Table 3 show the estimated probabilities for different interactions, and the observed probabilities are included in the parenthesis (if 
possible). The thresholds for defining different interaction severity are consulted based on the logistic model for accident severity 
outcomes reported by Augenstein et al., (2003). When an accident happens, the MAIS3 + injury probability for near-side passengers is 
0.67 (Δv = 16m/s), 0.25 (Δv = 10m/s), and 0.05 (Δv = 3m/s). 

The proposed approach is less biased than the BPOT when the interaction severity is not an extreme value (Figs. 5 and 6). The bias is 
measured by determining the distance between the observations and predictions (Fig. 6). Moreover, the last column of Table 3 rep-
resents a less severe crash (the threshold is derived from the MAIS3 + ); this cannot be predicted by BPOT, but the proposed approach is 
still applicable. Fig. 5 displays the continuous, conditional survival function of Δv when near interactions (MD of less than 1 m) are 
selected. The results show that no interactions with Δv less than 8 m/s can be assessed using BPOT. For interactions with Δv > 8m/s, 
the BPOT prediction contains larger bias than the proposed approach when Δv is less extreme (Figs. 5 and 6), and the biases become 
similar when Δv is more extreme. No conclusions about the biases can be drawn in the regions where the observations are not 
available, but the probabilities of those events were of the same magnitude for the two methods. We conclude that the proposed 
approach is less biased (produces smaller residuals) than BPOT in the analysis of conflicts with non-extreme severity. 

Fig. 4. Histogram of the negated minimum distance in meters (effectively the MD) when the threshold for near interaction is applied.  
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5. Discussion 

This study contributes to the development of the traffic conflict framework. Specifically, a model is proposed that includes events 
(whether observed or unobserved) across all severities. In the proposed model, a GP distribution was used to approximate the margin 
of crash proximity. Considering the presence of an extreme value-type margin, the distribution of severity conditioned on unobserved 
proximity can be obtained. 

The distribution of severity conditioned on different levels of proximities can be interpreted as the drivers’ behavioral patterns or 
other unknown infrastructural parameters, which are controlled by the copula. The three chosen copulas represent different depen-
dence structures for describing the relationship between the distance and Δv. The Gumbel copula is a member of the extreme value 
copulas, which is used for data that are dependent on the upper tail. The normal copula is equal in distribution to the bivariate normal 
distribution, where the extremal upper and lower tails are independent. The Clayton copula is suitable for modeling the lower tail 
dependence. The interpretation of the copula in the present study is based on the association between distance and Δv. The Gumbel 
copula is a suitable candidate if we assume that high Δv values can be associated with low distance values.2 However, in this study, the 
final copula choice is not motivated by theoretical assumptions; instead, it is data-driven, and we should not generalize the use of 
Gumbel copulas to other data sets. Moreover, the association between proximity and severity may be too complex to be captured using 
a single-parameter copula. This is because the presence of unobserved heterogeneities can cause asymmetry in the dependence 
structure, which is more compatible with multiple-parameter copula. This can be further investigated using more choices of copulas 
when more empirical data are available, or perhaps a breakthrough in theory that explains how other parameters affect safety-relevant 
interactions is required, to establish each copula’s nature and enable the selection based on theoretical assumptions. 

One potential application for the distribution of severity is the site-specific evaluation of crash injury. Previous studies have 
indicated that the boundaries separating exact injury levels based on the values of interaction severity indicator do not exist and even a 
low threshold value can result in a relatively high probability of serious injury in a crash (Augenstein et al., 2003; Bahouth et al., 2014). 
A site-specific injury probability can be evaluated by “averaging the outcome model over the local road users’ behaviors (in terms of Δv 
at crashes)” (See Appendix C). 

P(Injurylevels|crashes) =
∫

y
P(Injurylevels|Δv = y)dFΔv|accidents(y)

This can be seen as a simple mixed logit model with one latent variable Δv. In general, it is possible to carry out site-specific evaluation 
using a mixture model when traffic conflict measures serve as explanatory variables. For instance, Howlader et al., (2024) adopted this 
approach to estimate site-specific and type-specific crash injury probability with dFΔv|accidents(y) derived from a non-stationary bivariate 
extreme value distribution. 

From a traffic conflict point of view, both BPOT and the proposed method rely on the definition of safety-relevant events. As 
postulated by Tarko (2021), the distribution of all road events is a mixture of two distributions, where only one represents safety- 
relevant events. Though the identification of a boundary that completely separates the two distributions is hardly feasible without 
insight information, it was argued that the non-safety-irrelevant events can be ruled out if the interactions are restricted to very near 
interactions because the unawareness of hazards may be presumed if a separation between two road users becomes unacceptably small. The 
proposed approach is suitable for future investigation of this topic. We showed that it is both mathematically and realistically feasible 
to model the whole distribution of observed interaction severity that can be regarded as safety-relevant, given low proximity. 

A significant advantage of the proposed approach is the mitigation of the data-hungry problem associated with BPOT when the data 
size is relatively moderate or low. Among the 4772 valid interactions, the number of near interactions (exceeding only one threshold) 
was 477, and the number of severe interactions (exceeding both thresholds) was even smaller (99 samples). To achieve a similar 
sample size, the requirements imposed on the threshold values must be lowered, and the underlying GP assumption is lost. The 
implication is that the BPOT model suffers from more biases if we are to match its variance with the variance level of the proposed 
approach. Although we did not explicitly compute the variance because the implementation mainly relies on non-parametric methods 

Table 2 
Parameter estimates for different copula models. The estimates in the parenthesis were obtained when the input data was transformed by the 
empirical distribution.  

Copula Model form Estimated parameter (empirical estimation) Test statistics p-value 

Gumbel 
C(u, v) = exp

(

−
(
( − ln(u) )θ

+ ( − ln(v) )θ
)1/θ

) θ = 1.169 0.033 0.248 

Normal C(u, v) = F
(
σ1 ⋅ Φ− 1(u), σ2 ⋅ Φ− 1(v)

)
*  ρ = 0.225 0.047 0.001 

Clayton C(u, v) = max
(
u− θ + v− θ − 1, 0

)− 1/θ  θ = 0.338 0.06 0.002 

*Φ is the c.d.f. of standard Gaussian, F is a bivariate normal distribution with a covariance matrix whose diagonal entries are σ1, σ2 and off-diagonal 
entries are ρ  

2 Owing to the decreasing transformation, the upper tail of the transformed distance corresponds to the lower tail of distance. 
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Table 3 
Comparison between estimation results of the bivariate POT approach and the proposed copula approach.  

Method Parameters Estimated Probability (observed probability) 

Severe interaction P(X ≤ 1,
Y > 16)

Less severe interaction 
(Observed)P(X ≤ 3,Y > 10)

Severe crash P(X ≤ 0,
Y > 16)

Non-severe crash P(X ≤

0,Y > 3)

Proposed copula 
approach 

Threshold σ1 γ1 σ2 γ2 θ 1.18 ⋅ 10− 4 (N/A) 4.3 ⋅ 10− 3 ( 4.2 ⋅ 10− 3) 6.45 ⋅ 10− 5 (N/A) 6.3 ⋅ 10− 4(N/A) 
(− 4.84, N/ 
A) 

2.603 − 0.493 N/A N/A 1.169 

Bivariate POT 
approach 

Threshold σ1 γ1 σ2 γ2 θ 1.23 ⋅ 10− 4 (N/A) 8.34 ⋅ 10− 3 ( 4.2 ⋅ 10− 3) 3.73 ⋅ 10− 5 (N/A) N/A (N/A) 
(− 4.84, 8) 2.593 − 0.477 1.769 0.262 1.075  
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(no covariance structure available), it may be insightful to validate the proposed method against BPOT based on variances. The present 
study did not aim to establish the absolute validity of the copula application. Instead, our objective was to demonstrate that the 
proposed approach not only replicates the capabilities of BPOT but also extends its boundary of defined events. 

6. Conclusions 

We propose a copula-based method for modeling the proximity and severity of an interaction. The proposed approach has been 
compared with the bivariate POT approach, revealing that our approach yields less biased predictions in overall severity and pre-
dictions of the same magnitude in interactions with high/extreme severity. The copula allows for the inclusion of the entire range of 
severities among events with low proximity (and non-zero probability of contact for the cases of potential collision course), even the 
unobserved events. Moreover, the proposed approach is applicable for events that are not properly defined in BPOT, and the prediction 
for less severe interaction is more aligned with observations than BPOT. Among the three dependence structures evaluated herein, the 
Gumbel copula was the fittest candidate for modeling near interactions. 
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Appendix A. Technical steps  

1. The probability measure for near interaction 

P( ⋅ ) is associated with the event space of all interactions. It is also possible to derive the probability measure Q( ⋅ ) for only near 
interactions, namely P(X ≤ x,Y > y|Ω0) can be replaced with Q(X ≤ x,Y > y). This holds if Q is chosen as the conditional probability 
of P. The construction is done for arbitrary outcome space Ω0⊂Ω and its corresponding sigma-algebra F 0⊂F . The notations are 
adopted from Širjaev (2016). 

Consider the probability spaces (Ω,F ,P) and F 0 ⊆ F , where ξ is an F -measurable function. Then, E(ξ|F 0) is called the con-
ditional expectation of ξ with respect to F 0, if.  

i. E(ξ|F 0) is F 0-measurble.  
ii. For every A ∈ F 0, 

∫

AξdP =
∫

AE(ξ|F 0) ⋅ dP 

Define Q(A) :=
∫

AE(ξ|F 0) ⋅ dP and let (Ω0,F 0,Q) be a new probability space. The Radon–Nikodym derivative exists by definition 
and enables the change in probability space. Thus, on (Ω0,F 0,Q), 

∀A ∈ F 0,Q(A) =
∫

A
dQ =

∫

A

dQ
dP

⋅ dP =

∫

A
E(ξ|F 0) ⋅ dP  

⇔
dQ
dP

= E(ξ|F 0)

where E(ξ|F 0) = E(ξ)/P(Ω0) (Theorem 1, chapter II §7, Širjaev, 2016) 
Accordingly, the relation between the two probability spaces (Ω0,F 0,Q) and (Ω,F , P) is established: 

∀A ∈ F 0⊂F , Q(A) =
∫

A
ξdP

/

P(Ω0) (A1)  

Next, we show that Eq. A(1) can be extended to the probability spaces 
(
Ω2,F ⊗ F , P

)
and (Ω0 × Ω,F 0 ⊗ F ). Suppose (X,Y) is a 

random vector on 
(
Ω2,F ⊗ F ,P

)
, we partition the outcome space Ω2 based on the images of either entry of (X,Y) (X is chosen here). 

We partition R into finite intervals. R = ∪m
i=0Di, in which D0 := ( − ∞, d0],Di := (di− 1, di],Dm := (dm,∞]. Set d0 > 0, and then the severe 

interactions are nested in D0. Moreover, the outcome space can be partitioned using the pre-images of Di, 

Ω = ∪iΩi =: ∪iX− 1(Di)

Define a projection π0 :
(
Ω2,F ⊗ F

)
↦ (Ω0 × Ω,F 0 ⊗ F ) such that: 

π0(ω) = ω ⋅ I{(X,Y)(ω) ∈ D0 × R}

Choose ξ(ω) = π0(ω), then ∀A ∈ F 0 ⊗ F . 

Q(A) =
∫

A
π0dP

/

P(Ω0) = P(A)
/

P
(
X− 1(D0)

)
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When A = ( − ∞, x] × [y,∞) and x ≤ d0: 

P(X ≤ x,Y > y) = Q(X ≤ x,Y > y) ⋅ P
(
X− 1(D0)

)

2. Adjustment when the sample correlation (τ) is negative 

Some copula families do not support data where the crash proximal indicator values and interaction severity indicator values have 
non-positive rank correlations. The problem can be solved by transforming Δv decreasingly. The resulting probability is unchanged 

owing to the invariance property of copula under monotone transformation. First, we denote the transformed Δv as 
(

Ỹ1,⋯, Ỹn

)
:=

( − Y1,⋯, − Yn). 
Proposition: Let (X1,X2) be a random vector that has a joint distribution HX(x1, x2) = CX(F1(x1), F2(x2) ) and marginal distribu-

tions F1, F2. Suppose T1,T2 : R ↦ R are monotone decreasing transformations where Y1 = T1(X1), Y2 = T2(X2), andHY(y1, y2) =

CY(FT1 (y1), FT2 (y2) ), then CY(u, v) = C(1 − u, 1 − v). 
proof: See (Nelsen, 2006). 
Using the above proposition, we can establish a connection between the dependence structure when both margins are transformed 

and the dependence structure with the original data set, which is not possible if only one margin is transformed. 
On the probability space (Ω0 × Ω,F 0 ⊗ F ,Q), applying the proposition to FX(x) − C(FX(x), FY(y) ) , we obtain: 

FX(x) − C(FX(x), FY(y) ) = FX(0) − (C(FX(x), FY(y) )+ FX(x)+ FY(y) − 1 )

= FY(y) − CT(1 − FX(x),1 − FY(y) )

= FT2 (T2(y) ) − CT(FT1 (T1(x) ), FT2 (T2(y) ) )

Then, the probability of an interaction becomes: 

P(X ≤ x,Y > y) = P(X ≤ x,Y ≤ y) − FX(0) − C(FX(0), FY(y) )

=
(
FT2(Y)(T2(y) ) − CT ( FT1(X)(T1(x) ), FT2(Y)(T2(y) )

) )
⋅ P(Ω0)

P(X ≤ x,Y ≤ y) = C(FX(x),FY(y) )

=
(
CT ( FT1(X)(T1(x) ), FT2(Y)(T2(y) )

)
+ 1 − FT1(X)(T1(x) )− FT2(Y)(T2(y)) )

)
⋅ P(Ω0)

where T1,T2 are decreasing transformations for the margins, FT1(X)(x) = 1 −

(

1 + γ T1(x)− T1(u)
σ

)− 1/γ

, FT2(Y)(T2(y) ) can either be an 

empirical distribution or a parametric distribution, and CT is the copula associated with the joint distribution (T1(X), T2(Y) ). 

Appendix B. Rank approximate z (RaZ) estimator of copula 

For one-parameter copulas with parameter θ, the rank correlation τ is defined as 

τ = 4 ⋅ E(Cθ(U,V) ) − 1 = 4
∫ ∫

[0,1]2
Cθ(u, v)dCθ(u, v) − 1 =: g(θ)

g : R ↦ [ − 1,1]. Moreover, if the function g is bijective such that g− 1(τ) is continuously differentiable with respect to τ, then the RaZ 
estimator θ̂n = g− 1(τ̂) is a weakly consistent estimator of θ, where τ̂ is the sample estimate of Kendall’s τ (Theorem 1, Tsukahara, 
2005). 

τ̂ =
2n

n − 1
∑n

i=2

∑n

j=2

(
Cn

(
ui, vj

)
⋅ Cn

(
ui− 1, vj− 1

)
− Cn

(
ui, vj− 1

)
⋅ Cn

(
ui− 1, vj

) )

where Cn(u, v) = n− 1∑n
i=1I

{
U(i) ≤ u,V(i) ≤ v

}
is the empirical copula, and U(i),V(i) are equal to the rank of the i th observation divided 

by n. 

Appendix C. Risk of road crash injury 

The condition distribution of Δv is derived based on the results from Appendix A2, where both the proximal and consequential 
margins are transformed decreasingly. 

P(Y ≤ y|X ≤ x) =
P(X ≤ x,Y ≤ y)

P(X ≤ x)
=

Q(X ≤ x,Y ≤ y)P(Ω0)

Q(X ≤ x) ⋅ P(Ω0)
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=
CT

(
FT1(X)(T1(x) ), FT2(Y)(T2(y) )

)
− FT1(X)(T1(x) )− FT2(Y)(T2(y)) + 1 )

(

1 + γ T1(x)− T(u)
σ

)− 1/γ  

The conditional density is obtained by differentiating the above expression with respect to y, such that: 

d
dy

⎛

⎜
⎜
⎜
⎝

CT
(
FT1(X)(T1(x) ), FT2(Y)(T2(y) )

)
− FT1(X)(T1(x) )− FT2(Y)(T2(y)) + 1 )

(

1 + γ T1(x)− T(u)
σ

)− 1/γ

⎞

⎟
⎟
⎟
⎠

=

dT2
dy

dT− 1
2

d̃y
fY(y) ⋅

(

1 − ∂C
∂v

)

|(FT1 (X) (T1(x) ),FT2 (Y) (T2(y) ) )
(

1 + γ T1(x)− T1(u)
σ

)− 1/γ  

The mixed logit model based on traffic conflict indicators is expressed as: 

P(Injurylevels|crashes) =
∫

y
P(Injurylevels|Δv = y)dFΔv|accidents(y)

where, 

dFΔv|crashes(y) = d

/

ds(P(Y ≤ s|X ≤ 0) ) |y ⋅ dy =

dT2
dy

dT− 1
2

d̃y
fY(y) ⋅

(

1 − ∂C
∂v

)

|(FT1 (X) (T1(x) ),FT2 (Y)(T2(y) ) )
(

1 + γ T1(x)− T1(u)
σ

)− 1/γ ⋅ dy  

In the equation above, fY(y) is a parametric density for Δv (untransformed) associated with measure Q. ∂C/∂v|(FT1 (X)(T1(0) ),FT2 (Y) (T2(y) ) ) =

P(X > 0|Y = y) is the probability of a non-crash interaction conditioned at Δv = y. When the probability is equal to one, no mass is 
used in the computation of injury. The integral can be expressed as the expectation and computed by Monte Carlo integration: 

P(Injurylevels|crashes) = K− 1 ⋅ EQ(h(Y) )

K =

(

1 + γ
T1(0) − T1(u)

σ

)− 1/γ  

h(y) =
1

1 + exp( − β0 − β1 ⋅ y)
•

dT− 1
2

dy
•

(
∂C
∂v

− 1
)

|(FT1 (X) (T1(0) ),FT2 (Y)(T2(y) ) )

1
1+exp(− β0 − β1⋅y) = P(Injurylevels|Δv = y) comes from a logit probability, and the conditional copula distribution 
∂C/∂v|(FT1 (X)(T1(0) ),FT2 (Y) (T2(y) ) ) is evaluated numerically. Finally, the sequential Monte Carlo simulation requires the distribution of Δv at 

near misses Q(Y ≤ y) to be parametric. 
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