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Highlights 
 
The Lund Concept to treat a severe traumatic head injury 
was introduced in 1992 
 
The Lund Concept is based on principles for brain volume 
and brain perfusion regulation 
 
Components in the Lund Concept find support in 
experimental and clinical studies 
 
Several small outcome studies give support for the Lund 
concept.  
 
Like other guidelines, the Lund Concept is not tested in a 
large randomised study  
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Abstract 

This review covers the main principles of the Lund concept for treatment of 

severe traumatic brain injury. This is followed by a description of results 

from clinical studies in which this therapy or a modified version of the 

therapy has been used. Unlike other guidelines, which are based on meta-

analytical approaches, important components of the Lund concept are based 

on physiological mechanisms for regulation of brain volume and brain 

perfusion and to reduce transcapillary plasma leakage and the need for 

plasma volume expanders. There have been 8 non-randomised and 2 

randomised outcome studies with the Lund concept or modified versions of 

the concept. The non-randomised studies indicated that the Lund concept is 

beneficial for outcome. The 2 randomised studies were small but showed 

better outcome in the groups of patients treated according to the modified 

principles of the Lund concept than in the groups given a more conventional 

treatment.   
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Introduction 

 

Originally, the Lund concept (LC) for treatment of severe traumatic brain 

injury (sTBI) was a theoretical approach mainly based on the physiological 

and pathophysiological principles of brain volume and brain perfusion 

regulation (Asgeirsson et al., 1994; Grände et al.; 1997; Grände, 2006). The 

concept aimed at counteracting an increase in intracranial pressure (ICP) or 

to reduce an already raised ICP after sTBI, while improving compromised 

perfusion in and around the contusion areas at the same time. It can be 

described as an ICP- and perfusion-guided approach. The main components 

of the LC have found support in experimental and clinical studies, as 

described later in this review. 

 

So far, no TBI guidelines have been tested in a large randomized clinical 

trial and from that point of view there is limited high-level clinical evidence 

for all TBI guidelines presented today (Muzevic and Splavski, 2013). A 

specific therapy therefore must be based on other types of input such as 

smaller clinical outcome studies including metaanalysis, experimental 

studies and basal physiological principles. 

 

Even though different guidelines differ in essential aspects, the Brain 

Trauma Foundation’s guidelines have moved closer to the LC during the 

past 10 years, e.g. concerning cerebral perfusion pressure (CPP) and the use 

of vasopressors (Bullock et al., 1996; Bullock et al., 2000; Brain Trauma 
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Foundation, 2007). In contrast to Brain Trauma Foundation guidelines—in 

which the ICP-reducing therapy should start when ICP is above 20 mmHg 

(Brain Trauma Foundation, 2007)—the LC recommends that the therapy 

should start as early as possible after arrival at the hospital, in an attempt to 

counteract the development of brain oedema and to ensure that there is early 

optimization of the perfusion. To our knowledge, no clear side effects have 

appeared with the LC, which means that it can be given early and to all 

patients independent of severity of the injury and independent of the degree 

of autoregulation. The LC has not changed since its introduction, except that 

dihydroergotamin is no longer used. Dihydroergotamin, which reduces ICP 

via cerebral venous constriction, was used in the initial version of the 

concept in patients with uncontrolled increase in ICP (Asgeirsson et al., 

1994). It was withdrawn because of possible side effects related to 

peripheral vasoconstriction in high doses. For details of the LC guidelines, 

see; Asgeirsson et al. (1994) Grände (2006), Grände (2011), Olivecrona et 

al. (2007), and Olivecrona et al. (2009). A simplified schematic algorithm 

of the LC used in the clinical setting is shown in Fig.ure 1. 

 

Measurement of intracranial pressure and cerebral perfusion 

pressure 

Like in other guidelines, monitoring of ICP is an essential part of the LC, 

and the monitoring should be started as soon as possible after the arrival to 

the hospital. The method of ICP monitoring can either be by external 

ventricular drainage or by an intraparenchymal device. It is also crucial to 
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monitor the arterial pressure and the mean arterial pressure (MAP). 

 

The reference points for MAP and ICP must be identical when calculating 

CPP. For example, a head elevation of 15 degrees with the zero-reference 

point for the ICP at the external meatus and the zero-reference point for the 

MAP at the heart level gives a difference of around 10 mmHg compared to 

treatment of the patient without head elevation. This difference must be 

compensated for in the calculation of CPP.  

 

Treatment of ICP 

Early surgical evacuation of available intracranial mass lesions such as 

haematomas and focal lesions (sometimes in combination with craniotomy, 

see below) is recommended to decrease ICP and to reduce other potential 

adverse effects of the lesions (Gudeman et al., 1982; Hartings et al., 2014). 

 

When CPP is high after the trauma (Simard and Bellefleur, 1989) or 

increased with vasopressors, there is a risk that the pressure-induced better 

perfusion and oxygenation will be transient in the injured brain with 

capillaries passively permeable to small solutes, as the high CPP will induce 

increase in hydrostatic capillary pressure with transcapillary filtration and 

aggravate the vasogenic brain oedema (Trevisani et al., 1994; Kongstad and 

Grände, 2001; Oertel et al., 2002). Vasoconstrictors may also have 

extracranial side effects, such as acute respiratory distress syndrome 
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(ARDS) (Robertson et al., 1999; Contant et al., 2001), and they may cause 

increased general leakage of plasma, resulting in hypovolemia and general 

tissue oedema (Dubniks et al., 2007; Nygren et al., 2010). This type of side 

effect can be reduced by accepting a lower CPP than the initially 

recommended lowest CPP of 70 mmHg (Bullock et al., 1996; Bullock et al., 

2000), and by avoiding or limiting the use of vasopressors. LC therefore 

advocates the use of anti-hypertensive treatment (beta-1 blockade, alpha-2 

agonists, angiotensin II antagonist) (Asgeirsson et al., 1994, 1995, Grände, 

2006).  It has been shown that beta-blockade in sTBI patients is 

independently associated with improved survival (Cotton et al., 2007; Inaba 

et al., 2008) and that alpha-2 agonist effectively reduces blood pressure in 

sTBI patients (Kariya et al., 1999) and is neuroprotective in an in vitro 

model for traumatic brain injury (Schoeler et al., 2012). Beta-blockade has 

also a documented protective effect on the cardiovascular system after a 

sTBI (Cruickshank et al., 1987). Angiotensin II antagonist may also be 

beneficial by counteracting the proinflammatory effects of angiotensin  

(Ruiz-Ortega et al., 2001). It may also be beneficial to avoid 

noradrenaline-induced proinflammatory effects (Miksa et al., 2005). 

 

If CPP is high in spite of the anti-hypertensive therapy, it can be reduced by 

moderate head elevation in cardiovascular stable patients. Head elevation 

will lower hydrostatic capillary pressure in the brain, resulting in a slow 

reduction in ICP, but it may also cause a fast decrease in ICP by passive 

reduction in intracranial blood volume. This reduction in blood volume 

occurs mainly on the arterial side as the brain is protected from venous 
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pressure variations by a variable passive venous outflow resistance (Wolf 

and Forbes, 1928; Kongstad and Grände, 1999). Extensive head elevation (> 

15 - 20º) should be avoided as it may reduce venous return to the heart, 

especially in unconscious and sedated patients with depressed baroreceptor 

reflex response (Ketch et al., 2002). 	  

 

CPP normally stays in the range of 60–70 mmHg in adult patients treated 

according to the LC (Ståhl et al., 2001; Naredi et al., 2001; Grände, 2006; 

Grände 2011; Olivecrona et al., 2007; Olivecrona et al., 2009). If nessesary 

to control ICP, a minimum CPP of 50 mmHg has been accepted in adults 

and 40 mmHg in small children after an individual evaluation, but only if 

the patient is treated towards normovolemia with the fluid therapy 

advocated in the LC. Nowadays, these CPP values are also recommended in 

the US Guidelines for adults and children (Brain Trauma Foundation, 2007; 

Brain Trauma Foundation Pediatric, 2010). A microdialysis study on adult 

patients with severe traumatic brain lesions has shown that CPP may be 

reduced to 50 mmHg without disturbance of oxygenation, provided the 

physiological, the pharmacological and the fluid principles of the LC are 

recognized (Nordström et al., 2003).  

 

Except that it helps to maintain normovolemia, normalisation of plasma 

oncotic pressure with albumin as plasma volume expander may also 

counteract filtration in the injured brain according to the classical Starling 

fluid equilibrium equation. The beneficial absorbing effects of albumin, 
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however, may have been somewhat overestimated. Firstly, at increased 

permeability after the trauma in the whole body, more plasma fluid and 

proteins will leak to the interstitium and the effectiveness of albumin as 

plasma volume expander will be reduced. Secondly, a revision of the 

classical Starling principles incorporating the endothelial glycocalyx layer 

means a reduced absorption effect of the transcapillary oncotic pressure in 

favour of the hydrostatic capillary pressure (Woodcock and Woodcock, 

2012). This hypothesis, however, is highly controversial and has still not 

been confirmed (Rippe, 2008). Finally, a randomised post hoc study (the 

SAFE-TBI study, see below) has shown better outcome with saline than 

with albumin as plasma volume expander to sTBI patients. Thus, while 

saline can be criticised as plasma volume expander by inducing tissue 

oedema (including the injured brain), albumin may be criticised as being 

less effective as plasma volume expander in the traumatized patient than 

previously believed. However, based on arguments given below, albumin is 

still recommended in the LC if used properly. 

 

Blood volume expanders 

There is a risk that activation of the baroreceptor reflex during hypovolemia 

will cause release of catecholamines into the plasma and adverse 

vasoconstriction in the penumbra zone with aggravation of the hypoxia. 

Even though the penumbra zone most likely lack myogenic response and 

autoregulation it still can response to alpha–stimulation from humoral 

catecholamines (Edvinsson et al., 1976). The LC therefore recommends 
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avoidance of hypovolemia by a combination of albumin and saline as 

plasma volume expanders, and the use of blood transfusions at low 

haemoglobin (Hb) concentration (see below). 

 

By using albumin (preferably 20%) and always isotonic solutions, the 

amount of crystalloids can be reduced. Limitation of crystalloids will result 

in less general tissue oedema, including oedema in the injured brain with a 

disrupted blood-brain barrier, as a crystalloid solution is distributed to the 

whole extracellular space. A study on rats suffering a fluid percussion brain 

trauma also showed that cortical water content was higher if a crystalloid 

solution was used as plasma volume expander than when an isotonic 

albumin solution was used (Jungner et al., 2010). A study on meningitis in 

the cat has shown lower ICP with 20% albumin than with saline as plasma 

volume expander in volumes resulting in the same plasma volume 

expansion (Jungner et al., 2011). A clinical study on sTBI patients using 

albumin as plasma volume expander also showed good outcome (Rodling-

Wahlström et al., 2009). 

 

A subgroup analysis from a larger study of patients in the intensive care (the 

SAFE-TBI study) has, however, shown that large volumes of albumin 

infusion using hypotonic 4% albumin solution gave adverse effects on 

outcome compared with when using saline in sTBI patients (SAFE study 

investigators, 2007). The result of the SAFE-TBI study was most surprising, 

considering that albumin is the natural plasma protein and that leakage of 
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this large protein molecule to the injured brain is very small. This is also 

indicated by the low protein concentration of only 1–2 g/L in cerebrospinal 

fluid in head-injured patients irrespective of whether albumin is given or 

not. Compared to a protein concentration of about 60 g/L in plasma, such 

low values must be insignificant for filtration via altered transcapillary 

oncotic pressure. The reasons for worse outcome with albumin in the SAFE-

TBI study are not clarified. Perhaps the worse outcome observed with 

albumin in the SAFE-TBI study is more a result of extracranial 

considerations than intracranial ones. The frequent use of high doses of 

noradrenaline in that study may also have affected the results in the albumin 

group negatively by increasing the loss of proteins across the capillary 

membrane as will be described below. 

 

Several studies have indicated beneficial effects of albumin to head injury 

(Tomita et al., 1994; Belayev et al.; 1999; Bernard et al., 2008), and the post 

hoc SAFE-TBI study is the only study so far showing adverse effects. Its 

original database, however, was not designed to meet any specific set of 

TBI-related criteria and there was an unclear subgroup selection of TBI 

patients. It has also been criticised for differences in baseline data between 

the 2 groups, and the fact that the albumin used was hypotonic, which may 

increase the risk of brain oedema development (Drummond et al., 2011; Van 

Aken et al., 2012). Possible side effects of albumin, however, may be 

reduced by using isotonic solutions and with measures reducing the need for 

plasma volume expander. Potential measures to reduce the need for plasma 

volume expanders, based on basic physiological principles of transcapillary 
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fluid exchange in tissues outside the brain, are included in the Lund Concept 

and will be described below. 

 

Principles of transcapillary exchange in tissues outside the 

brain  

There is always a continuous loss of plasma fluid to the interstitium, called 

the transcapillary exchange rate (TER). Under normal circumstances, the 

TER for albumin is 5–6% of the total amount of albumin in plasma per 

hour, which can increase by 2–3 times during sepsis/SIRS and after a 

trauma (Fleck et al., 1985). Also, a patient with an isolated head trauma 

suffers from a general increase in plasma leakage. Normally, the 

transcapillary leakage of fluid is transferred back to the circulation via the 

lymphatic system, so that the plasma volume and the interstitial volume are 

maintained at a normal level. After a trauma and during sepsis/SIRS with 

increased transcapillary leakage, the recirculation capacity of the lymphatic 

system may be exceeded and hypovolemia and interstitial oedema will 

develop. This means that supporting the recirculating effect of the lymphatic 

system, e.g. by physiotherapy, may be one step to reduce hypovolemia. 

 

The mechanisms of transcapillary fluid exchange can be described with the 

2-pore theory (Rippe and Haraldsson, 1994), which is illustrated 

schematically in Figure 2. According to this theory, the capillary membrane 

consists of small pores covering the whole capillary network that are only 
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permeable to small solutes, and much less common large pores that are also 

permeable to larger molecules such as proteins. The large pores exist only at 

the end of the capillary network and in venules. In sepsis/SIRS and 

following trauma, there is an increase in the number of large pores, which 

explains the increased loss of plasma fluid and proteins to the interstitium 

and that the plasma volume expanding effect of plasma volume expanders is 

reduced. The hydrostatic and oncotic Starling forces control fluid through 

the small pores. The continuous leakage of proteins through a large pore 

means that the transcapillary oncotic pressure across the large pore is close 

to zero and the hydrostatic pressure force is the only force for transcapillary 

fluid exchange through that pore. This means that the hydrostatic capillary 

pressure is the dominant driving force for filtration in the large pores, and 

proteins will follow the fluid stream mainly by convection (Rippe and 

Haraldsson, 1994). According to this theory, an increase in hydrostatic 

capillary pressure—e.g. due to an increase in arterial pressure or a 

postcapillary vasoconstriction by infusion of noradrenaline or 

phenylephrine—will result in an increased loss of plasma fluid through both 

the small and large pores, and an increased loss of plasma proteins via the 

large pores aggravating hypovolemia. The loss of plasma fluid at an 

increased hydrostatic capillary will be still larger at a state of increased 

permeability. This theory has been confirmed both experimentally and 

clinically (Dubniks et al., 2007; Nygren et al., 2010).  

 

Consequently, a fast infusion rate of a plasma volume expander should 

result in a greater loss of plasma volume to the interstitium than a slow 
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infusion rate, as there will be a period of greater increase in arterial pressure 

at a fast rate. These hypotheses have been confirmed in experimental studies 

on the septic rat and guinea pig, which showed greater loss of plasma 

volume when the infusion of albumin was given at a fast rate than when 

given at a slow rate (Bark et al., 2013; Bark and Grände 2014). 

 

By limiting the volumes of infused albumin, possible adverse effects of 

albumin can be reduced and albumin may be more effective as plasma 

volume expander. Suggested measures for reduction of plasma leakage are 

summarized in Table 1. 

 

Blood transfusion 

Patients with a traumatized brain may represent a population of patients 

particularly susceptible to anemia and hypovolemia. Erythrocytes are 

essential not only for oxygenation of the brain, but also for the maintenance 

of normal blood volume, as they contribute to a large proportion of the 

intravascular volume. Several studies have shown improved oxygenation of 

the brain after red blood cell transfusion (Ekelund et al.; 2002, Smith et al.; 

2005, Dani et al., 2010; Sandal et al., 2013). Transcapillary leakage is also 

less at a high Hb concentration than at a low one (Valeri et al., 1986, 

Persson and Grände, 2005). The mechanism may be that there is a larger 

intravascular volume to be replaced by plasma volume expanders to 

maintain normovolemia at a low Hb concentration, also resulting in 
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increased leakage to the interstitium – the more plasma volume expander 

given, relatively more will leak to the interstitium. A post hoc subgroup 

analysis of the Transfusion Requirements in Critical Care (TRICC) trial 

analysed effects of blood transfusion in TBI patients (McIntyre et al., 2006).  

It showed a non-significant improved outcome in the group with liberal 

transfusion strategy (17 vs 13% in 60 days mortality), and this in spite of the 

fact that the blood given was not universally leukocyte-reduced. There is 

strong support from the literature that blood of generally high quality (short 

storage time) and leukocyte-depleted blood should be used to reduce side 

effects from the blood transfusions and improve outcome (Bilgin et al., 

2011; Gauvin et al., 2010; Hébert et al., 2003). The mechanisms behind 

the adverse effects of transfused leukocytes are not fully clarified, but 

they may result in a proinflammatory microvascular effect leading to 

important clinical consequences (Hébert et al., 2003).  

 

It should be mentioned, however, that the outcome results from studies 

of blood transfusion in general are deviating. A study by Hébert et al. 

showed a tendency of worse outcome in patients with critical illness 

with a liberal compared to a more restrictive use of blood (Hébert et al., 

1999). This study, however, also showed that patients with acute 

myocardial infarction and unstable angina showed beneficial effects of 

blood transfusion. This situation may show some similarity with the 

development of a contusion/penumbra zone area for the injured brain. 

The use of blood transfusion to severely ill patient was also questioned 

in a metaanalysis (Marik and Corwim, 2008). In a restrospective study 
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on a total of 1150 head injured patients it was concluded that the 

patients given blood had worse outcome (Salim et al., 2008). However, it 

also showed, that anemia per se was a risk factor.  The study can be 

criticised by the fact that the anemic patients given blood were older, 

were more severely injured from start and had a lower Glascow Coma 

Scale. Restrospective and metanalytic studies on blood transfusion, such 

as the study by Maric and Corwin (2008) and Salim et al., (2008) can be 

questioned by the fact that blood transfusion may be a marker of 

degree of illness. It is notable that none of the referred studies, which 

indicated worse effects of blood transfusion, used leukocyte-depleted 

blood. It is reasonable to believe that sTBI patients, in which 

oxygenation of the injured areas of the brain is most important for 

outcome, cannot be compared with general intensive care patients 

regarding effects of blood transfusion.  

 

These results and considerations all taken together give support for the view 

that transfusion with leukocyte-depleted blood with generally high quality to 

sTBI patients is beneficial and transfusion to a relatively normal Hb 

concentration of 15-20 g/L is therefore recommended in the LC. 

 

Treatment to improve perfusion 

A microdialysis study involving 48 severely head-injured patients with a 

raised ICP given treatment according to the LC showed a gradual trend 
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towards normalisation of lactate/pyruvate ratio and of glycerol concentration 

in the penumbra zone from raised levels (Ståhl et al., 2001). The results can 

be interpreted as improved oxygenation and decreased cell destruction, 

which occurred in spite of a reduced CPP. The most reasonable explanation 

is that the LC advocates avoidance of hypovolemia by adequate use of 

plasma volume expanders, by reducing transcapillary leakage, by blood 

transfusions at low Hb concentrations and by avoidance of noradrenaline-

induced vasoconstriction, all measures which should result in improved 

perfusion and oxygenation (see Table 1). If ICP is lowered simultaneously, 

it will also improve the perfusion. This may illustrate the physiological 

principle that perfusion of a tissue cannot only be related to the perfusion 

pressure, but it is also highly dependent on the vascular resistance. While 

LC primarily counteracts the vasogenic brain oedema by its antihypertensive 

therapy and the use of albumin, it may also counteract the cytotoxic oedema 

by improved perfusion and oxygenation. 

 

The use of prostacyclin given intravenously (1-1.5 ng/kg/min) has become 

an option in the LC to improve perfusion (Grände et al., 1997, Grände, 

2006). The option is supported by 2 microdialysis studies showing improved 

oxygenation of the penumbra zone by prostacyclin (Grände et al., 2000, 

Reinstrup and Nordström, 2011). 

 

Avoidance of hypovolemia with a combination of albumin, crystalloids and 

blood transfusion, and avoidance of vasoconstrictors may also improve 
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perfusion in the rest of the body, such as the intestine, the lungs and the 

kidneys (Hinshaw, 1996).  

 

Osmotherapy 

Osmotherapy is not recommended as a general therapy in the LC, due to 

lack of scientific and physiological support and side effects. Its use can be 

followed by a rebound increase in ICP, and is associated with renal failure 

and severe hyperkalaemia (Grände and Romner, 2012). Osmotherapy may 

still have a place in release of a menacing brain stem herniation, e.g. in the 

ambulance or under transportation to the operating room. 

 

Lung function 

The LC includes several lung-protective components. High-dose barbiturate 

therapy is not used as it may trigger pulmonary insufficiency and high fever. 

Avoidance of the proinflammatory substance noradrenaline (Miksa et al., 

2005) may reduce the development of pulmonary failure (Contant et al., 

2001), like inhibition of the proinflammatory substance angiotensin by 

angiotensin II antagonist (Ruiz-Ortega et al., 2001). Atelectasis are reduced 

by inhalation and moderate bagging (under ICP control), and positive 

endexpiratory pressure (PEEP). PEEP is obligatory in the LC (Grände, 

2006). PEEP is safe for the brain, as the venous pressure-increase by PEEP 

is not transferred to the brain as long as ICP is above the extradural venous 

pressure (Kongstad and Grände 1999). Limited use of crystalloids reduces 
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the risk of lung oedema. It has also been reported that ARDS is significantly 

more common in TBI patients treated with vasopressors in order to elevate 

CPP (Robertson et al., 1999, Contant el al., 2001). Hyperventilation is not 

used, as it may aggravate the hypoxia in injured areas of the brain 

(Muizelaar et al., 1991). 

 

Anti-stress therapy  

Head injured patients are severely stressed with a markedly raised 

concentration of catecholamines in plasma (Clifton et al., 1981). To avoid 

stress-induced increase in ICP and release of catecholamines, the patients 

are sedated with midazolam and analgetics in combination with clonidine, 

and stress-induced wake-up tests are not used (Grände, 2006; Olivecrona et 

al.; 2009 Skoglund et al., 2012,). A beneficial side effect of this sedation 

regime is the lack of epileptic seizures, and there is no indication for using 

prophylactic anti-convulsary treatment (Olivecrona et al., 2009). 

 

Temperature 

Therapeutic cooling is neuroprotective, but at the same time it has potential 

side effects in terms of stress and release of catecholamines, which may 

compromise cerebral circulation of the penumbra zone. The stress, seen as 

shivering, is initiated by the difference between body temperature and the 

temperature value set by the thermostat. Active cooling is also associated 

with coagulation disturbances and rebound increase in ICP during 
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rewarming. To date, there is no scientific support for therapeutic 

hypothermia in TBI patients (Sydenham et al., 2009; Sandestig et al., 2014). 

Active cooling is therefore not used in a LC-based treatment, and high fever 

(above 38ºC) is instead treated pharmacologically with paracetamol and 

sometimes one bolus dose of Solumedrol followed by more careful control 

of blood glucose (Grände, 2006; Grände, 2011).  

 

Nutrition 

The LC recommends mainly enteral and low energy nutrition 

corresponding to slightly more than basal metabolism under sedation 

(15 - 20 kcal/kg/24 h for adults, relatively more energy to children) to 

prevent over nutrition with haemophagocytosis and fever (Roth et al., 

1993). 

 

Drainage of cerebrospinal fluid and decompressive surgery 

Drainage of cerebrospinal fluid (CSF) is acceptable, but it should be used 

with caution from a relatively high level, as it may induce transcapillary 

filtration when the reduced tissue pressure increases transcapillary pressure. 

Thus, the loss of CSF volume can be replaced by more oedema, with risk of 

ventricular collapse (Grände, 2006).  

 

Decompressive craniotomy has become relatively common during the last 
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decade to brake a menacing brain stem herniation.  However, it carries the 

risk of herniation and strangulation in the cranial opening when the counter 

pressure is lost. By keeping a relatively low CPP combined with normal 

plasma oncotic pressure, swelling in the cranial opening may be reduced. It 

was shown in a study from 2007 using the LC that outcome was not worse 

in patients with decompressive craniotomy than in those without 

craniotomy, in spite of a higher ICP (Olivecrona et al., 2007). 

Decrompressive craniotomy is a potential life-saving measure to prevent 

brain stem herniation at a therapy resistant to high ICP (Grände, 2006). 

 

Clinical outcome studies 

The Lund concept 

Table 1 summarises clinical outcome data from the referred outcome 

studiespublished papers on clinical outcome. 

The first clinical report (Study I) on the use of a new concept for the 

treatment of patients with severe TBI and refractory high ICP was published 

from Lund University Hospital in 1994 (Asgeirsson et al., 1994). This study 

included patients with refractory ICP and impaired cerebral vasoreactivity to 

hyperventilation, symptoms previously shown to be compatible with poor 

prognosis (Schalén et al., 1991). 

 

From Umeå University Hospital one prospective study using the Lund 

concept is published in two papers, the first on the short term outcome 
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(Olivecrona et al. 2009) and the second on long time clinical outcome 

(Olivecrona et al. 2012). Both these papers show low mortality and a 

favourable outcome (GOS 4 -5) in more than 50% of the treated 

persons. 

 

Two more prospective non-randomised studies are published, one from 

the University Hospital in Lund (Eker et al. 1998) and one from the 

University Hospital in Umeå (Stenberg et al. 2013). The results from the 

Eker et al.  study showed improved outcome results when compared 

with a historical control group from the same intensive care unit 

(Schalén et al., 1992). Both papers describe a low mortality and large 

number of favourable outcomes.  

 

Three retrospective studies, in all including 131 patients with severe 

traumatic TBI treated have been published (Naredi et al. 1998; Naredi 

et al. 2001; Olivecrona et al. 2007). All of the three papers present low 

mortality and a high number of favourable outcome. 

 

One retrospective study on the use of the LC in children with severe 

TBI has been published from the University Hospitals in Umeå and 

Gothenburg (Rodling Wahlstrom et al. 2005). This paper presents a 

mortality of < 10 % and a high number or favourable outcome. 
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Modified Lund concept 

Two randomised studies have compared an ICP-targeted therapy, i.e. a 

modified version of the LC, with a more traditional CPP-targeted treatment. 

 

The first study was performed from 2006 to 2008 at the University of 

Sarajevo, Bosnia, and involved 60 brain-injured patients less than 70 years 

of age (30 per group) after severe TBI or aneurysmal subarachnoid 

haemorrhage (SAH) (Dizdarevic et al., 2012). The authors included 

nimodipin for blood pressure control in the modified LC arm and they also 

allowed the use of hypertonic saline. In the CPP-targeted arm, the CPP goal 

was a CPP above 70–80 mmHg and vasopressors and mannitol were 

frequently used. In both arms, seizure prophylaxis with fenytoin was given. 

Patients treated with the ICP-targeted therapy had a mortality rate of 20%, 

as opposed to 43% for the patients treated with a more conventional CPP-

targeted therapy based on Brain Trauma Foundation guidelines from 2000 

(p = 0.03). The proportion of children with favourable outcome (GOS 4–5) 

in the ICP-targeted group was 53%, and it was 40% in the CPP-targeted 

group. 

 

The second randomised study was performed in Hangzhou First People’s 

Hospital, Hangzhou, China. It included 68 traumatically brain-injured 

patients with a GCS of < 9 who were divided into 2 groups that did not have 

significantly different baseline data regarding age, initial GCS, and Acute 

Physiology and Chronic Health Evaluation (APACHE II) score. In one 
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group, the treatment followed the main principles of the LC (n = 30, treated 

between 2006 and 2009), and conventional treatment was used in the other 

group (n = 38, treated between 2004 and 2006). A 28-day mortality rate of 

30% was found in the LC group and it was 57% in the conventionally 

treated group (p < 0.05) (Liu et al., 2010). 

 

The Lund concept and meningitis 

Finally, the LC has been used in patients with severe meningitis in 2 studies. 

Twelve patients with a GCS of < 9 and an ICP above 20 mmHg were 

included in one of the studies. Two of the patients died, resulting in a 

mortality rate of 20% (Grände et al., 2002). The remaining 10 patients 

recovered to a GOS of 4-5. Fifteen patients with a GCS score of < 9 were 

included in the other study, and all but one had elevated ICP. Ten patients 

survived, resulting in a mortality rate of 33% (Lindvall et al., 2004). These 

results can be compared with a previously reported mortality rate of 62% in 

a comparable group of meningitis patients (Schutte and van der Meyden, 

1998).  

 

Discussion 

The presented outcome studies in this review reflect outcome results of 

patients treated from 1989 up to 2013; they show favourable outcome in 64–

80% of patients, which are good results compared to those from outcome 

studies with other treatments during the same time period. Two large 
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randomised head-injury trials (Clifton et al., 2001), from the 1990s and 

later, showed mortality rates of around 28% and unfavourable outcomes of 

57%.  

Among the best results reported during the time span of the above-

mentioned LC studies were those from the study by Rosner and co-workers, 

involving 157 patients (Rosner et al., 1995), which showed a mortality rate 

of 29% and a proportion of patients with favourable outcome (GOS 4–5) of 

59%. 

 

The data from one of the studies above (Study VI, Table 1) (Olivecrona et al., 

2009) involving 48 patients were entered into the prognostic calculators of the 

IMPACT study group (Steyerberg et al., 2008) and the CRASH study group 

(MRC CRASH, 2008). Both analyses showed that the patients had a more 

favourable outcome than could have been anticipated from the prognosis 

instruments (Olivecrona and Koskinen, 2012; Olivecrona and Olivecrona, 

2013). The new validation of the IMPACT prognostic calculator was recently 

published, using data from several newer head-injury trials (Roozenbeck et al., 

2012). This validation showed that the prognostic model of the IMPACT group 

is still valid, and one may therefore draw the conclusion that the results for 

patients treated according to the LC were not worse than for patients treated 

according to any other guidelines. 

 

In studies III, IV, V, VI, VII and VIII (Table 1), patients with a GCS of 3 

were included. In the same studies, the only exclusion criterion regarding 
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neurological status of the patients included, was a first-measured CPP of 10 

mmHg or less, i.e. patients with unilaterally or bilaterally dilated and fixed 

pupils were allowed into the study. In many head-injury trials, patients are 

excluded if they have dilated or fixed pupils, deemed to not survive the next 

24 hours—or even a GCS of 3. 

 

A recent study involving patients from the state of New York has shown 

that outcome for severe head trauma has been improved from a 2-week 

mortality of 22% in 2001 down to 13.3% in 2009 using treatments 

according to US Brain Trauma Foundation guidelines (Gerber LM et al., 

2013). The outcome results at the end of the period appear to approach those 

with the LC from 1988 to 2011, as presented in this review. 

 

The aim of this review was to present the principles of the Lund 

Concept as it is today together with all clinical outcome studies 

published with the Lund concept so far. This means that we have 

presented also components, which still lack definite scientific support 

from clinical studies (e.g the use of blood transfusion and albumin 

therapy). The LC was initiated around 1990 as a therapy mainly based 

on basal physiological principles, i.e. for brain volume and brain 

perfusion regulation, and the guidelines were published 4 years later 

(Asgeirsson et al. 1994). The conventional therapy used at that time in 

many aspects was not in agreement with basal physiological principles 

and mortality was very high and around 40-50%. Since then, the 
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principles of the LC guidelines have not changed, except that 

dihydroergotamin is not included any more. At its introduction the LC 

had no other scientific support than its physiological base, but 

thereafter, as discussed in this review, several experimental and clinical 

studies have been performed giving support for the principles of the 

concept. The main disadvantage with the LC is that it has still not been 

compared with other guidelines in well-performed large randomized 

clinical outcome studies. However, in spite of several efforts to perform 

a larger clinical randomised study both in Europe and US, it appeared 

impossible for logistic, practical and ethical reasons. In the middle of 

the 90th and later, other guidelines were introduced such as the Brain 

Trauma foundation guidelines followed by revisions (Bullock et al., 

1996; Bullock et al., 2000; Brain Trauma Foundation, 2007), European 

guidelines (Maas et al., 1997), the Addenbrooke’s guidelines (Menon, 

1999) and the Japanese guidelines (2012). They are more based on a 

metaanalytic approach but, like the Lund Concept, these guidelines 

have not been tested in a randomised clinical trial. This means that 

neither the Lund Concept nor other guidelines regarding outcome can 

be compared from a strict scientific support except than from smaller 

outcome studies. All clinical outcome studies with the Lund concept so 

far are small and each of them alone therefore is of moderate or small 

scientific value. However, if taken all outcome studies together they 

strongly indicate that the Lund concept is a successful therapy. We 

believe that LC may optimise the possibility for the brain to recover 
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after sTBI and thus better utilise the compensating mechanisms 

resulting in acceptable clinical outcome. 

 

Summary 

Several clinical studies have shown that the Lund concept, which is mainly 

based on physiological principles, such as principles for brain volume and 

brain perfusion regulation, works well in the treatment of severe head injury 

and gives results that are not worse than the best results reported for any 

other treatment guideline. 
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Legends	  
	  
Figure	  1.	  A simplified schematic algorithm of the LC used in the clinical 

setting. For doses of the pharmacological substances used and other 

parameters, see Grände, 2006. 	  

 

Figure 2. Schematic illustration of a capillary outside the brain, describing the 

2-pore theory of transcapillary fluid exchange. It shows the frequent small 

pores that are permeable to water and small solutes, and the fewer large pores 

at the end of the capillary network, which are also permeable to proteins. 

Erythrocytes are not shown. Note that there is no oncotic absorbing force 

across the large pores (∆π ≈ 0), which means that the hydrostatic 

transcapillary pressure (∆P) will create a force for convective protein-rich 

volume flow through each large pore. The increase in the number of large 

pores after trauma will increase the loss of proteins. 
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Table 1. Potential measures to reduce transcapillary leakage of albumin in the body outside the 

brain 

  

Avoid high arterial pressures and CPP 

Avoid the use of vasopressors 

Use low infusion rates of albumin 

Use	  higher	  concentrations	  of	  albumin	  (20%)	  

Avoid low haemoglobin concentrations 

Increase the capacity of the lymphatic system by physiotherapy 

	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2 

Study Nr Author Year Study type Inclusion 
criteria 

Number 
of 

Patients 

Follow up 
time 

(months) 

Mortality 
(GOS 1)  

(%) 

Favourable 
outcome 
(GOS 4 – 

5) (%) 
         

I Asgeirsson et al. 1994 Observational 

GCS < 8 
Impaired CO2 
reactivity 
ICP > 20 

11 8 18.1 81.8 

II Eker et al. 1998 Prospective, Non-R GCS <8 
ICP > 25 53 6 7.5 79.2 

III Naredi et al. 1998 Retrospective 
≤ 70 yrs 
GCS ≤ 8 
CPP > 0 

38 12 13.1 71.1 

IV Naredi et al. 2001 Retrospective, 
Consecutive 

15-70 yrs 
GCS ≤ 8 
CPP > 5 

31 > 10 3.2 70.0 

V Olivecrona et al. 2007 Retrospective 
< 75 yrs 
GCS ≤ 8 
CPP > 10 

93* N/A 14.1 63.0 

VI Olivecrona et al. 2009 Randomised, 
Prospective 

15-70 yrs 
GCS ≤ 8 
CPP > 10 

48 3 12.5 52 

VII Olivecrona et al. 2012 Randomised, 
Prospective 

15-70 yrs 
GCS ≤ 8 
CPP > 10 

48# 24  62 

VIII Stenberg et al. 2013 Prospective, 
Observational 

17-64 
GCS ≤ 8   14 N/A† 

IX Rodling Wahlstrom et 
al. 2005 Retrospective < 15 yrs 

GCS ≤ 8 41 N/A┴ 7.5 80.0 



Non-R = Non-Randomised, N/A = Not Available, * =31 of the patients were also included in Study nr IV., # = same patients as in study VI, † = 
GOS 5 (Good outcome) 31 %, ┴ = median 12 months in survivors 

	  


