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Populärvetenskaplig sammanfattning

Det är allmänt känt att utan åtgärder kommer utsläppen av växthusgaser att leda till ka-
tastrofala konsekvenser i framtiden. Transportsektorn står för en betydande del av dessa
utsläpp. Trots att andelen elektriska fordon ökar, är det inom en överskådlig framtid nästin-
till omöjligt att helt elektrifiera den tunga fordonsflottan. Därför pågår intensiv forskning
kring hur man kan förbättra och minska utsläppen från tunga fordon.

Min forskning syftar till att minska utsläppen av växthusgas från gnistantända lastbilsmoto-
rer genom att utveckla förbättrade verktyg för förbränningsdiagnostik och motorstyrning.
Detta leder i sin tur till minskad bränsleförbrukning tack vare en ökad motorverkningsgrad.
För att uppnå detta använder jag mig av jonström, där tändstiftet fungerar som en sensor
som samlar in information om förbränningen direkt inuti cylindern.

I en förbränningsmotor, under förutsättning att inget annat förändras, påverkas verknings-
graden av när förbränningen sker — även kallad förbränningsfasen. Verkningsgraden mins-
kar om förbränningen avviker från den optimala tidpunkten. Det finns flera orsaker till att
förbränningsfasen kan förskjutas. För naturgasdrivna motorer, som min forskning foku-
serar på, finns en unik utmaning: naturgas består av flera olika komponenter. Även om
metan utgör majoriteten, varierar gassammansättningen beroende på ursprung, vilket på-
verkar förbränningens hastighet.

I den första delen av mitt arbete visar jag att genom att använda jonströmsdata för att
uppskatta förbränningsfasen och justera tändtidpunkten i realtid, kan systemet anpassa sig
till förändringar i gasens sammansättning. På så sätt kan motorns verkningsgrad behållas
istället för att försämras.

Anledningen till att jonströmsmetoden är användbar beror på dess beroende av tryck och
temperatur inuti cylindern. Inom motorforskning och motorutveckling används oftast tryck-
sensorer inne i cylindrarna. Det uppmätta trycket är en viktig referens för att förstå förbrän-
ningen och optimera motorn. Men trycksensorer är dyra och används därför inte i vanliga
fordon. Genom att träna ett artificiellt neuralt nätverk på jonströmsdata har jag visat att
trycket kan uppskattas. Från det uppskattade trycket kan viktiga förbränningsparametrar
beräknas. Med hjälp av jonström kan man alltså få liknande information som annars kräver
trycksensorer, men till en bråkdel av kostnaden.

I den sista delen av mitt arbete undersöks hur jonströmsdata och avancerade datadrivna me-
toder kan komplettera traditionella strategier för knackdetektering. Knack är ett skadligt
fenomen där luft-bränsleblandningen i cylindern antänds för tidigt, vilket är en stor utma-
ning för gnistantända motorer. Om knack inte åtgärdas kan det orsaka motorslitage och
försämrad verkningsgrad. Traditionellt används vibrationssensorer, som fästs på motorbloc-
ket, för att upptäcka knack. Men dessa sensorer är känsliga för störningar från mekaniska

vii



vibrationer, vilket påverkar noggrannheten. Dessutom kan deras prestanda variera mellan
cylindrar beroende på placering.

Genom att kombinera jonströmsdata med traditionella vibrationssensorer visar jag, med
hjälp av maskininlärningsmetoder som logistisk regression och neurala nätverk, att nog-
grannheten i knackdetektering kan förbättras samtidigt som variationen mellan cylindrar
minskar. Dessa modeller gör det möjligt att köra motorn närmare knackgränsen, det vill
säga den punkt där knack börjar uppstå. Genom att ligga så nära denna gräns som möjligt
utan att knack uppstår kan bränsleekonomin förbättras och risken för motorslitage mins-
kas.
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Sensors

They’re funny things, accidents.
You never have them till you’re having them.

— Eeyore
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Introduction

Barely half a century after the inception of the Internal Combustion Engine (ICE) as we
know it today, it came under scrutiny for its impact on the environment. The first observed
problem was the smog in the Los Angeles basin in the 1940s, which was concluded to
be caused by emissions from ICEs [1]. Since then, the scientific community has agreed
that human-made climate change is driven by the excessive release of GreenHouse Gases
(GHGs), and reducing these emissions is of vital importance for mitigating the impact of
climate change. In recent years, with the release of the Intergovernmental Panel on Climate
Change (IPCC) report, the call for action has increased. The IPCC emphasized the urgency
of limiting global warming to 1.5◦C above pre-industrial levels, requiring global efforts to
achieve net-zero emissions by 2050 [2].

Around the world, multiple nations and associations are working towards this goal by in-
troducing initiatives, strategies, and commitments aimed at reducing greenhouse gas emis-
sions. These efforts include broad frameworks, such as the European Green Deal, outlining
a strategy to achieve net-zero GHG emissions by 2050 [3]. Part of the roadmap detailed in
the Green Deal has since been legislated through the “Fit For 55” legislative package, where
the ambitious target to decrease GHG emissions from cars and vans by 55% by 2030 com-
pared to 1990 levels has been explicitly written into EU law, making it a legal obligation [4].
Furthermore, by 2035, the EU aims for all newly registered vehicles to be zero-emission, a
goal aligned with the broader transition towards sustainable energy systems [5].

As evident from the actions of the European Union, reducing emissions from vehicles is a
primary focus. Fossil fuel combustion remains a dominant source of GHG emissions, with
the transportation sector accounting for approximately one-quarter of these emissions in
Europe in 2022, as shown in Figure 1.1. Greenhouse gases are a group of gases in the
Earth’s atmosphere that trap heat, the primary one being carbon dioxide (CO2). CO2 is
particularly relevant to combustion in internal combustion engines, as it is a GHG that
cannot be removed by aftertreatment systems. It is, therefore, an unavoidable byproduct
of the combustion of carbon-based fuels and a key driver for so-called decarbonization.
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Energy supply 27.41% Domestic transport 23.77%

Industry 20.26%

Residential and
commercial 11.85%

Agriculture 10.82%

International
shipping 3.87%

International
aviation 3.25%

Waste 3.25%

Other combustion 2.52%

Figure 1.1: Distribution of greenhouse gas emissions by sector in Europe for the year 2022. Data source: [6].

Among the many solutions to reduce emissions, the adoption of alternative fuels plays a
crucial role during the transition to fully electrified transportation. Natural Gas (NG) and
biogas offer viable alternatives to conventional fossil fuels, contributing to reduced carbon
dioxide emissions [7]. Furthermore, hydrogen can be added to NG and biogas to create
Hythane, which has overall improved emissions characteristics compared to NG [8, 9].

Other technical solutions include enhancing engine control systems to allow the engine
to operate more efficiently. This becomes even more important when using NG, as it is
typically an unrefined fuel. Its composition, and therefore its combustion characteristics,
can vary between refueling. Calibrating the engine control system to adapt to any fuel mix-
ture is nearly impossible. Instead, adopting adaptive control systems that can handle such
variability is necessary to fully harness the potential of these fuels. One feasible approach
is the use of ion current measurements, a technology commonly referred to as ion sensing.
Ion sensing provides direct feedback on the combustion process by utilizing the spark plug
in a Spark-Ignited (SI) engine as a sensor. This technology can also be applied to other
combustion types by using a dedicated ion current sensor.

Direct feedback from the combustion process is a significant step forward in developing
more efficient control systems. However, while ion sensing technology is not new, it has
never gained widespread adoption. This is most likely because of the stochastic nature
of the measurement, which poses challenges for obtaining robust methods. Nonetheless,
robustness remains critical and cannot be compromised.
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In recent years, advances in computational power and the development of sophisticated
Machine Learning (ML) algorithms have enabled significant progress in a variety of fields,
including automotive engineering. Machine learning models, ranging from simpler ap-
proaches like linear regression to complex Artificial Neural Networks (ANNs), are particu-
larly well-suited for analyzing large datasets and identifying patterns that may not be readily
apparent through traditional methods. This capability is especially valuable when dealing
with the stochastic nature of the ion current signal which makes it challenging to derive
robust insights using conventional techniques.

Machine learning can address these challenges by learning patterns within the data and
developing predictive models that are not only robust but also adaptive to variability in
the measurements, provided it is trained on diverse and representative data, including that
from different fuels. By leveraging the strengths of machine learning, it becomes possible
to extract meaningful information from ion current signals, which can, in turn, be used to
optimize engine control systems. This integration of advanced computational tools into en-
gine development marks a step forward in achieving higher efficiency and lower emissions.
It further contributes to the transition toward sustainable transportation.

1.1 Research Scope and Contributions

The initial scope of this PhD project was broad: to develop combustion diagnostics and
control for natural and bio-gas engines using ion current. Subsequently, the project focused
on three main components:

1. Evaluating the benefits of using closed-loop control of the combustion phase by
estimating the combustion phase from the ion current.

2. Developing a virtual pressure sensor using artificial neural networks trained on ion
current data.

3. Investigating knock detection using the ion current as a standalone sensor and in
combination with a vibration sensor.

The research is presented through four published papers. The first paper developed a
closed-loop control system using ion current-based Peak Pressure Location (PPL) estima-
tions. Prior research has demonstrated the successful application of this type of control
scheme [10]. Similarly, [11, 12] investigated controlling the combustion phase by adapt-
ing the spark timing based on CA50 estimations derived from the ion current. However,
in [10,12], the combustion phasing is adjusted by applying an offset to the open-loop spark
timing, which the closed-loop control detects and begins to revert. In contrast, [11] eval-
uates the method by directly enabling closed-loop control without such modifications. In
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our study, the goal was to evaluate the benefits of the closed-loop control scheme under vari-
ations in natural gas composition. To simulate the effect of varying composition, the initial
offset in combustion phasing was achieved by adding Exhaust Gas Recirculation (EGR).
Furthermore, prior research, with the exception of [11], did not report the effects of the
control scheme on engine power or combustion stability. The main novelty of our study
was the quantification of the benefits of the control scheme on produced engine power.
The results demonstrated that the closed-loop control effectively adapted to changes in gas
composition, maintaining combustion phasing and recovering lost engine power caused by
the delayed combustion phase. Additionally, the closed-loop control improved combustion
stability.

The primary attraction of ion sensing lies in the well-established correlation between ion
current, in-cylinder pressure, and temperature. Building on this potential, the second paper
introduced a virtual pressure sensor utilizing ANNs. The primary aim was to demonstrate
the feasibility of replacing in-cylinder pressure sensors with ion sensing by developing an
ANN capable of predicting in-cylinder pressure based on ion current data.

Given the exciting possibilities of such an approach, prior research has explored the use of
ion current to predict in-cylinder pressure, with varying degrees of success. Early methods
relied on parameterized functions to relate the ion current signal to the pressure trace. For
instance, in [13, 14], the models were based on the ionization equilibrium theory. Although
conceptually straightforward, these methods are inherently limited by the significant cycle-
to-cycle variability of the ion current signal.

With advancements in computational power and machine learning, neural network-based
approaches have gained traction [15–17]. For example, [15, 16] used the Adaptive Linear
Neuron (ADALINE) model, a single-layer ANN with a linear activation function (Chap-
ter 4 provides the background necessary to understand this concept). These studies showed
promising results but were limited by small datasets and low sampling rates, with one sam-
ple collected per 2 crank angle degrees (CAD). In contrast, Gao et al. [17] employed a
hybrid model combining a Recurrent Neural Network (RNN) and a Convolutional Neu-
ral Network (CNN). Their model predicted either the peak pressure or pressure changes
with improved performance. Among these studies, only [16] incorporated additional en-
gine operating conditions as inputs, such as throttle position, engine speed, engine load,
air-to-fuel ratio (AFR), ignition timing, and compression ratio.

Our approach builds on these prior works, particularly [16], by combining ion current
data with additional engine parameters. In our study, we utilized a Feed-Forward Neural
Network (FFNN) and included engine speed and expected torque as input features, chosen
because they map the highest level of the engine calibration. We trained the model on data
collected from all six cylinders, employing a high sampling rate of 10 samples per CAD.
Using the predicted pressure, we further calculated combustion parameters and heat release

6



rates to evaluate model accuracy comprehensively.

In summary, this study demonstrated that combining ion current data with engine speed
and expected torque enables the accurate reconstruction of in-cylinder pressure traces, from
which critical combustion metrics can be estimated. This approach highlights the feasibility
of using ion current measurements alongside machine learning to replace expensive physical
sensors, offering robust and cost-effective solutions for engine diagnostics and control.

The last two papers focused on knock detection using CNN models. During knock events,
the resulting pressure waves also affect the ion current measurements, as explained in more
detail in chapter 5. Several studies have demonstrated the use of ion sensing for knock
detection. The vast majority of these approaches are based on the same methodology as
conventional vibration sensors, namely calculating a metric from the bandpass filtered sig-
nal [18–20]. An alternative approach was proposed by Zhang et al. [21], where knock de-
tection was performed using the wavelet transform of the ion current.

In the third paper, a CNN model was developed to classify knock events into no-knock,
medium-knock, and high-knock categories using ion current measurements. To the best
of our knowledge, no prior research has directly applied CNNs to raw ion current data for
knock detection. The CNN achieved strong classification accuracy, particularly in distin-
guishing between no-knock and heavy-knock events. This work demonstrated the potential
of combining ion current data with deep learning to enhance robustness and precision in
knock detection.

The final paper compared logistic regression and neural networks for knock detection us-
ing both ion current and vibration sensors. This comparison provided insights into the
strengths and limitations of traditional and advanced machine learning models for leverag-
ing data from different sensors. The idea of combining information from ion current and
vibration sensors was inspired by Ängeby et al. [22], who demonstrated improved perfor-
mance by using metrics derived from the bandpass filtered signals of both sensors. Our
findings highlighted the benefits of combining knock indicators from both sensors in a
dual-input CNN model, leading to improved classification accuracy and consistency across
cylinders. This study further demonstrated the effectiveness of integrating traditional and
novel sensing techniques with machine learning to create robust solutions for knock detec-
tion.
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1.2 Thesis Outline

This thesis comprises the following seven chapters.

Chapter 1: Introduction. The first chapter provides the background and motivation for
the research.

Chapter 2: Experimental Facilities and Numerical Tools. Details the experimental setup
and numerical tools used throughout the research. It includes details on the test engine,
instrumentation, numerical tools and pressure post-processing.

Chapter 3: Ion Sensing. Provides an overview of ion sensing technology and its applications
in internal combustion engines.

Chapter 4: Machine Learning Models. Focuses on the machine learning techniques ap-
plied in the research.

Chapter 5: Engine knock. Explores the phenomenon of engine knock, how it is measured,
the signal characteristics, knock classification and typical control strategies.

Chapter 6: Discussion. Synthesizes the findings from the research, expanding on the dis-
cussions included in the papers.

Chapter 7: Conclusion and Future Work. The final chapter summarizes the key contri-
butions of the thesis and discusses their significance. It also outlines potential avenues for
future research.
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Experimental Facilities and Numerical
Tools

2.1 Experimental Facilities

All experimental data for this thesis was gathered using a 13-liter, natural gas-fueled six-
cylinder Heavy-Duty (HD) SI Volvo engine. Table 2.1 outlines the engine specifications.
The engine platform is based on the familiar Volvo D13 engine, adapted for port-fueled
injection of natural gas. The engine is equipped with a production Engine Control Unit
(ECU) provided by Metatron S.p.A., which we have been allowed complete control over
the calibration. Furthermore, the Ignition Control Module (ICM) provided by SEM AB
also measures the ion current.

Table 2.1: Engine Specification

Number of Cylinders 6
Arrangement Inline
Fuel CNG
Injection Type Port injected
AF/Ratio Stoichiometric
Compression Ratio 12.4 : 1
Bore 131 mm
Stroke 158 mm
Displaced Volume 12.8 liters

2.1.1 Instrumentation

This section provides an overview of the instrumentation used for test measurements. As
mentioned earlier, the engine is controlled by a production ECU, which operates with its
own array of sensors that are independent of those discussed here. The sensors integrated
with the ECU will not be covered in this section.
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A table summarizing key information about the sensors is provided in Table 2.2, while a
simplified schematic illustrating the placement of sensors and instrumentation is shown
in Figure 2.1.

The engine was connected to an ABB M3BP 355SMC three-phase electric motor, rated at
355 kW and served as a dynamometer. Brake torque was measured using an HBM T40B
torque sensor that was installed between the engine and the electric motor. In-cylinder
pressure was measured using AVL GU24D transducers connected to AVL microIFEM am-
plifiers. The crankshaft position was determined using a Leine & Linde model 520026011
incremental encoder, which was also utilized to synchronize data logging at 0.1 CADs. Air
and fuel flow measurements were taken using thermal mass flow sensors, specifically the
Bronkhorst F-106DI for air and the Bronkhorst F-106BI for natural gas. Temperatures
were measured with standard K-type thermocouples. Low pressure measurements were
taken using an array of pressure sensors manufactured by Keller. Gaseous emissions were
sampled using an AVL AMA i60 emissions bench. Although this thesis does not evaluate
gaseous emissions, the emissions bench estimates the EGR rate by comparing the CO2 con-
tent in the intake runner and the exhaust. All sensors were connected to a LabVIEW-based
program for logging the test measurements.

Table 2.2: Instrumentation details in the test cell.

Function Sensor Model Measurement Range Accuracy

In-cylinder pressure Transducer: AVL GU24D
Amplifier: AVL microIFEM 0 – 250 bar –

Crankshaft Position Leine & Linde 520026011 – 0.1 CAa
Brake Torque HBM T40B 0 – 10000 Nm ±0.05% FSb
Intake air flow rate Bronkhorst F-106DI 0 – 1800 m3n/h ±0.1% FS
Fuel gas flow rate Bronkhorst F-106BI 0 – 300 kg/h ±0.1% FS
Lambda sensor ETAS LA3 + LSU 4.9 – –

CO/CO2 AVL AMA I60 0 – 1/16 % ±0.1% FS
NOx " 0 – 25 % "
HC " 0 – 10000 ppm "
O2 " 0 – 25 % "

a CA refers to Crank Angle.
b FS refers to Full Scale.
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Figure 2.1: Schematic of the experimental setup.

2.2 Numerical Tools and Calculations

All post-processing of the experimental data for this study was carried out using Python.
The neural network models used in paper II were developed using TensorFlow [23, 24], an
open-source machine learning framework developed by Google. In papers III and Iv, the
models were implemented using PyTorch [25], another open-source framework developed
by Facebook.
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2.2.1 Pressure Pegging

Since the in-cylinder pressure is measured using a piezoelectric pressure transducer, the
recorded signal lacks an absolute reference point. The first step, therefore, is to reference
or “peg” the pressure to a known value to ensure the measurements align with physical
reality. The most common method is to peg the in-cylinder pressure to the intake manifold
pressure at the end of the intake stroke, i.e., when the piston is positioned at the bottom
dead center.

However, when using natural gas, there is an additional challenge regarding calculating the
heat release, specifically concerning the specific heat ratio used in the heat release calcula-
tions. Since the engine operates on natural gas supplied from the municipality’s pipeline,
the gas composition is uncontrolled and subject to variation. This variability affects the
specific heat ratio and other fuel properties, making it unsuitable to use a fixed value, as is
commonly done with refined fuels. To address this, we employ an algorithm that estimates
the polytropic exponent and cylinder pressure offset both before and after combustion. A
linear interpolation of these values is performed, with the interpolated pressure offset used
to peg the pressure and the interpolated polytropic exponent applied to the heat release
calculation. This algorithm, developed by Per Tunestål, the supervisor of this thesis, is de-
tailed in [26]. Below, we provide a brief overview of the method but will not delve into the
details of the estimation algorithm.

The method makes the following assumptions: During the high-pressure phase of the en-
gine cycle, when the valves are closed, it is assumed that any mass transfer through the
combustion chamber boundaries is negligible. This allows the combustion chamber to be
thermodynamically modeled as a closed system. For further simplification, the cylinder
contents are assumed to remain constant. As a result, the enthalpy of formation changes
due to combustion are modeled as heat, as described by Gatowski et al. [27]. It is also
assumed that the only work interaction with the environment is the p dV work exerted on
the piston.

The first law of thermodynamics states the following:

dU = dQ− dW, (2.1)

where dU represents the change in internal energy, dQ is the heat transfer to the system,
and dW is the work performed by the system.

The instantaneous volume of the combustion chamber, V(α), is given as a function of the
crank angle α:

V(α) = Vc +
πB2

4

[
l+ a(1− cos(α))−

√
l2 − a2 sin2(α)

]
, (2.2)
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where Vc is the clearance volume, B is the bore, l is the connecting rod length, and a is the
crank radius.

Using the ideal gas law, the change in internal energy can be related to pressure and volume.
Substituting into the energy equation gives:

dQ =
Cv

R
d(pV) + p dV, (2.3)

where Cv is the specific heat at constant volume, p is the pressure, V is the volume, and R
is the specific gas constant.

When neither heat transfer nor combustion occurs, dQ equals zero. It is also assumed that
any heat transfer can be modeled as a correction to Cv. This correction can be derived by
rewriting (2.3):

0 =
Cv

R
d(pV)− dQ+ p dV =

Cv − R dQ
d(pV)

R
d(pV) + p dV. (2.4)

The corrected Cv can then be identified as follows:

C̃v = Cv − R
dQ

d(pV)
. (2.5)

The algorithm aims to identify the “corrected” Cv prior to and after the combustion, using
these values to perform interpolation throughout the combustion process. By introducing
the specific heat ratio γ =

C̃p

C̃v
and the relation R = C̃p−C̃v, (2.3) can be rewritten assuming

dQ = 0 (no combustion) as:

0 =

(
C̃v

R
+ 1

)
p dV+

C̃v

R
V dp =

γ

γ − 1
p dV+

1
γ − 1

V dp. (2.6)

This equation can be further simplified by eliminating the denominators and combining
the differentials, leading to the polytropic relation:

d(pVγ) = 0. (2.7)

This indicates that when dQ = 0, pVγ remains constant, and identification of Cv before
and after combustion is therefore equivalent to identifying γ before and after combustion.

Now, we will derive the expressions required to estimate the pressure offset needed to prop-
erly peg the pressure. The pressure measurements from the piezoelectric pressure sensor are
offset by a drift term ∆p, so the measured pressure pm is expressed as:

pm = p+ ∆p, (2.8)
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where p is the true cylinder pressure. Substituting this into the polytropic relation (2.7)
yields:

(pm − ∆p)Vκ = (pm0 − ∆p)Vκ
0 , (2.9)

where pm0 and V0 are the pressure and volume at a reference crank angle. Note that γ has
been replaced with κ, as the identified exponent is not necessarily the true thermodynamic
specific heat ratio. This equation is rearranged into a dimensionless form:

pm
pm0
−
(
V0

V

)κ

=

[
1−

(
V0

V

)κ] ∆p
pm0

. (2.10)

This can be expressed as:
y(κ) = ϕ(κ)θ, (2.11)

with
y(κ) =

pm
pm0
−
(
V0

V

)κ

, (2.12)

ϕ(κ) = 1−
(
V0

V

)κ

, (2.13)

θ =
∆p
pm0

. (2.14)

The unknown parameters that need to be estimated are the pressure offset, θ, and the
polytropic exponent, κ. The parameters are estimated using a nonlinear least squares esti-
mation algorithm solved by Newton’s method. However, we direct the interested reader to
the original paper [26] for the details.
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Ion Sensing

Proper engine operation depends on a wide range of sensors, each playing a crucial role
in ensuring optimal performance, efficiency, and emissions control. Despite the advance-
ments in sensor technology, there remains a notable lack of sensors capable of directly mon-
itoring the combustion process inside the engine cylinder. This limitation is particularly
significant because combustion is the heart of engine operation, influencing key parameters
like power output, efficiency, and emissions.

In laboratory settings—such as during research or engine calibration in manufacturing—
combustion is typically monitored using in-cylinder pressure sensors. These sensors are
usually piezoelectric, offering high sensitivity and fast response, which enable precise mea-
surements of in-cylinder pressure. Such measurements are widely regarded as the gold
standard for combustion diagnostics, as they provide direct insights into the combustion
process. However, these sensors are both expensive and fragile, making them unsuitable
for use in most commercial applications outside controlled laboratory settings.

This is where ion current sensing emerges as a promising alternative. By applying a voltage
across the spark gap after the spark, the spark plug in SI engines can be used as a sensor
to measure ion current. These measurements offer a cost-effective solution for directly
monitoring combustion. Moreover, ion current has been shown to correlate strongly with
in-cylinder pressure and temperature [28, 29]. This correlation is so significant that in-
cylinder pressure can be accurately predicted using machine-learning models trained on
ion current data which is demonstrated in paper II [30].

Figure 3.1 illustrates the in-cylinder pressure alongside the corresponding ion current mea-
surement. The ion current signal is typically divided into three distinct phases, each named
after the primary process responsible for generating the signal: the ignition phase, the chem-
ical phase, and the thermal phase.
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Figure 3.1: Comparison between the in-cylinder pressure and ion current for a single cycle. The three distinct phases of the ion
current are marked.

During the ignition phase, the ion current is influenced by the residual electrical charge in
the ignition system, resulting in a highly volatile, rapidly fluctuating and decaying signal.

In the chemical phase, the ion current is primarily driven by chemi-ionization occurring in
the flame front surrounding the spark plug. This phase is characterized by a sharp peak that
rises quickly followed by a rapid decline.

In the thermal phase, the ion current is dominated by thermal ionization processes occurring
after the flame front has moved away from the spark plug. This phase features a broader and
more stable peak that gradually decreases as the combustion chamber cools down. As the
pressure increases, the temperature rises, accelerating the rate of ionization. Consequently,
the thermal phase exhibits a strong correlation with in-cylinder pressure and temperature,
making it the most extensively studied phase in ion current research.

3.1 Ion Current Formation

The phenomenon of electrical conductivity in flames has been recognized and studied for
over two centuries, with the first record from Erman in 1802 [31]. In his experiment, Er-
man observed electrical currents in flames by inserting two wires into the flame. The no-
tion of chemi-ionization was first introduced in 1906, when Tufts proposed that the ions
responsible for this conductivity originated from chemical reactions occurring during the
combustion process [32]. This proposal marked a shift in understanding, as it linked flame
conductivity directly to the underlying chemistry of combustion. What these processes
have in common is the creation of ions, which generate free electrons and enable a current
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to flow across the spark gap, making it possible to measure the ion current (see Section 3.2
for details).

In the following subsections, the processes of chemi-ionization and thermal ionization will
be described.

3.1.1 Chemi-ionization

Chemi-ionization occurs when reactive species, such as radicals or excited molecules, collide
in a high-energy environment and undergo a chemical reaction that leads to the formation
of ions and free electrons. This process is a key mechanism in flames, where the energy
from the collision facilitates ionization by overcoming the activation energy barrier. The
fundamental nature of chemi-ionization can be described by

A+ B→ C+ D+ + e−, (3.1)

which illustrates how the reactants form an ionized product and a free electron.

The chemi-ionization process can be explained using the potential energy curves depicted
in Figure 3.2, adapted from [33]. These curves illustrate the variation in potential energy as
the reaction progresses from the reactants (A+ B) to the products (C+ D) or the ionized
products (C+D+ + e−). The lower curve represents the ground state, which includes the
lowest energy levels of the reactants and products, while the upper curve corresponds to the
potential energy of the ionized products.

For ionization to occur, sufficient energy must be available to overcome the energy barrier
between the reactants and the ionized products. This energy comes from three components:

1. The heat of reaction (∆H), which represents the energy released or absorbed during
the chemical reaction.

2. The activation energy (E), which is the energy required to reach the transition state
from the reactants.

3. The ionization potential (Vi) of the species being ionized, which represents the min-
imum energy required to remove the most loosely bound electron from a neutral
atom or molecule, creating a positively charged ion.

Ionization is possible when the combined energy of ∆H and E is greater than or equal to
the ionization potential Vi,

Vi ≤ ∆H+ E. (3.2)
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If the potential energy curve of the ionized product approaches or crosses the ground-state
energy curve of the reactants, ionization can occur.

This process is more favorable when the reactants are in an excited electronic or vibrational
state, as these states provide additional energy to meet the ionization threshold. The dia-
gram also shows that for successful chemi-ionization, the potential energy surfaces of the
ionized products and reactants must come close enough to allow a transition between them.
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Ionized state

Figure 3.2: Potential energy diagram illustrating the reaction A+ B → C+D+ + e−, showing the energy levels for the ground
state and ionized state as a function of the reaction coordinate. Adapted from [33].

As one can imagine, there is a vast number of reactions that may undergo chemi-ionization,
making it very difficult to identify all of them. However, the literature generally agrees that
the following reactions are the main mechanism [34–41]:

CH+ O→ CHO+ + e−, (3.3)
CHO+ +H2O→ CO+H3O+, (3.4)

H3O+ + e− → H2O+H (recombination). (3.5)

Equations (3.3)–(3.5) represent the primary reactions initially identified as the dominant
mechanisms for chemi-ionization in flames. These reactions involve CH and oxygen species,
leading to the formation of ions such as CHO+ and H3O+, which are key intermediates in
the ionization process. These mechanisms were among the earliest understood and widely
studied pathways of chemi-ionization in hydrocarbon combustion.
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Later research expanded on these findings and revealed additional reactions contributing
to chemi-ionization, particularly in flames containing hydrocarbon impurities. One such
reaction involves the interaction of CH with acetylene (C2H2), resulting in the formation
of C3H+

3 and a free electron,

CH+ C2H2 → C3H+
3 + e−. (3.6)

3.1.2 Thermal Ionization

Thermal ionization is a process in which high temperatures provide sufficient energy to
remove electrons from neutral atoms or molecules, creating positively charged ions. Unlike
chemi-ionization, which relies on chemical reactions and collisions between reactive species,
thermal ionization is purely driven by thermal energy. This process becomes significant in
environments where the temperature is high enough to overcome the ionization potential
of the species involved.

At elevated temperatures, the thermal energy of particles can exceed the ionization potential
(Vi) of an atom or molecule, allowing the most loosely bound electron to be ejected. This
leads to the formation of a positive ion and a free electron, a process that can be expressed
as:

M↔ M+ + e−. (3.7)

Here, M represents the neutral atom or molecule, M+ is the resulting ion, and e− is the
ejected electron. The ↔ arrow indicates that the process is reversible, meaning that ion-
ized species can recombine with free electrons to return to their neutral state. The extent
to which this ionization occurs depends on the temperature, the ionization energy of the
species, and the equilibrium conditions of the system.

Saha Equation

The degree of ionization at a given temperature can be quantitatively described using the
Saha equation (3.8), [42, 43]. This equation relates the ionization fraction to the tempera-
ture, pressure, and ionization energy of the species.

ni+1ne
ni

= 2
(

2πmekT
h2

)3/2 Bi+1

Bi
exp

(
− Vi

kT

)
(3.8)
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In this equation, ni, ni+1, and ne are the number densities of the neutral, ionized species,
and free electrons, respectively. The term me is the mass of an electron, k is the Boltzmann
constant, h is Planck’s constant, and T is the temperature. The partition functions Bi and
Bi+1 account for the statistical weights of the energy levels for the neutral and ionized
states, respectively. Finally, Vi represents the ionization potential of the species, which is
the minimum energy required to remove the most loosely bound electron.

The Saha equation reveals that ionization strongly depends on temperature, with higher
temperatures leading to a greater degree of ionization. This dependency is mathematically

expressed through the term
(

2πmekT
h2

)3/2
, which increases significantly with temperature,

and the exponential term, which decreases the ionization barrier as temperature rises. In
high-temperature environments, such as the post-flame zone in combustion systems, ther-
mal ionization plays a significant role in sustaining ionization after chemi-ionization pro-
cesses in the flame front have subsided.

NO Dependency

As temperature is the main driver for thermal ionization, the composition of the post-flame
gases has a significant impact on determining the degree of ionization, since ionization po-
tential varies across species. Among the various species present, nitric oxide (NO) has been
shown to contribute significantly to the free electrons due to thermal ionization in ICEs. In
the post-flame region, NO is identified as a dominant contributor to the ionization process
due to its low ionization potential of 9.25 eV, compared to other combustion species. This
low energy threshold enables NO to produce free electrons more readily during combus-
tion. Using thermal equilibrium analysis and Saha’s equation (3.8), [13, 14] calculated that
under conditions where NO concentration is approximately 1%, it is responsible for up to
95% of the free electrons.

The formation of NO predominantly occurs through the extended Zeldovich mechanism
(3.9)–(3.11), which is governed by high temperatures and the availability of oxygen in the
combustion gases [44]. In [45], it was suggested to add (3.12)–(3.14) to the extended Zel-
dovich mechanism as possible contributors to NO formation. While NO is primarily
formed in the post-flame region, some contributions arise from overshoots in oxygen (O)
and hydroxyl radical (OH) concentrations near the flame front [14].
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N2 + O↔ NO + N (3.9)
N + O2 ↔ NO + O (3.10)

N + OH↔ NO + H (3.11)
N2O + H↔ N2 + OH (3.12)
N2O + O↔ N2 + O2 (3.13)
N2O + O↔ NO + NO (3.14)

3.2 How to Measure Ion Current

The measurement of ion current in an SI ICE relies on utilizing the spark plug as a sensor
to capture the electrical conductivity of the gas in the combustion chamber. This conduc-
tivity results from the ionization processes during combustion (as described in the previous
section), where ions and free electrons are produced, enabling the gas to conduct electricity
and allowing a current to flow when a voltage is applied across the spark gap.

After the spark has occurred, a bias voltage is applied across the spark gap, typically in the
range of 80–150 volts. This voltage creates an electric field that drives the movement of
free electrons and ions, generating a current. While both ions and electrons contribute to
this current, electrons, due to their much smaller mass, dominate the flow of charge. This
current, referred to as the ion current, is proportional to the ion density, which depends on
various combustion parameters such as temperature, pressure, and air-fuel ratio.

To measure the ion current, a resistor is connected in series with the spark plug. The voltage
drop across this resistor is amplified and is ready to be processed.

3.3 Applications of Ion Sensing

As emissions regulations continue to tighten, the need for a precise control of ICEs has
become increasingly critical. Advancements in modern electronic systems have facilitated
the integration of a growing number of sensors and actuators in vehicles. However, the ad-
dition of new sensors directly increases production costs, ultimately affecting the vehicle’s
price. To address this, reducing the number of sensors through intelligent control strate-
gies, combining sensor inputs, or utilizing existing onboard hardware offers a promising
solution. Ion sensing technology has shown potential in fulfilling the roles traditionally
performed by separate sensors, making it an attractive alternative. The following sections
provide an overview of some of the various applications using ion current.
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Pre-Ignition

Pre-ignition is an abnormal combustion phenomenon where the air-fuel mixture ignites
prematurely, before the spark event. The less harmful results of pre-ignition is simply a
reduction in produced work as the ignition timing will deviate from the calibration. But
pre-ignition is also a precursor for super knock, which results in rapid pressure rises and
potential mechanical damage.

Since the ion current is a local measurement, it may not be inherently suitable for detecting
pre-ignition, which is typically initiated by hot spots located far from the sensor. However,
recent studies have demonstrated promising results in this area. Both [18] and [46] observed
that the ion current signal exhibited an abnormal rise in amplitude before the spark ignition
signal during pre-ignition cycles. Leveraging this characteristic, both studies demonstrated
that analyzing the rising edge of the ion current signal allowed for accurate detection of
pre-ignition events.

Misfire Detection

Misfiring engine cycles will naturally result in low temperatures resulting in an environment
with very low levels of ionization if any. It is therefore intuitive that misfire can be easily
detected using ion current. Its success in this application has been demonstrated in multiple
studies across a wide range of engines and various methods for sensing ion current [20,47–
49].

Typical methods for detecting misfire involve comparing the ion current level to a pre-
defined threshold. One of the simplest approaches is to integrate the ion current signal
and compare the resulting value to this threshold. If the integrated value falls below the
threshold, a misfire is detected. However, the threshold must be chosen carefully. When no
combustion occurs, the ion current reading is close to zero, but setting the threshold at zero
is impractical, as noise in the measurements could falsely indicate a misfire. Additionally,
low speeds and loads result in lower temperatures and reduced levels of ionization, which
could easily be misclassified as misfire. A good threshold should therefore be adaptive and
account for variations in speed and load.

Knock Detection

Knock in an ICE occurs when the air-fuel mixture auto-ignites prematurely or uncontrol-
lably, leading to the formation of abnormal high pressure waves within the combustion
chamber. These pressure waves can may result in reduced efficiency, increased emissions,
and, in severe cases, mechanical damage to engine components. Detecting knock accurately
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is critical for maintaining engine performance and preventing long-term damage. Ion cur-
rent has demonstrated reliability as a method for detecting knock, and when combined with
vibration sensors, the accuracy of knock detection is further enhanced. A comprehensive
introduction of knock and the methods used for its detection is presented in Chapter 5.

Air-Fuel Ratio Estimation

The perception of the feasibility of using ion current to estimate the air-fuel ratio has evolved
significantly since the early years of its application. In a paper from 1986 [50], the authors
concluded that, due to the large cycle-to-cycle variation in ion current measurements and
their poor correlation with peak cylinder pressure and the mass fraction burned (90%), ion
current would not be suitable for controlling the air-fuel ratio. The correlation was partic-
ularly weak at lean air-fuel ratios. A decade later, multiple studies demonstrated promising
results by employing neural networks to estimate the air-fuel ratio [20,51,52]. These studies
showed that ion current could be used for AFR estimation with a high degree of accuracy,
however, none of them tested under very lean conditions, focusing instead on the range
0.9 ≤ λ ≤ 1.1.

Peak Pressure Location

As illustrated in Figure 3.1 in the introduction to this chapter, the close alignment between
the peak of the thermal phase of the ion current and the peak cylinder pressure suggests
that estimating the PPL from the thermal phase of the ion current is feasible.

Various methods for estimating PPL have been proposed, most of which involve fitting a
parametric function to the ion current signal and determining the location of the maxi-
mum. For instance, Eriksson et al. [53] presented a method for estimating PPL by fitting
the ion current signal to a parametric model comprising two Gaussian curves. ANNs have
also been utilized for PPL estimation, as demonstrated by Wickström et al. [52].

The ICM used in the experimental work for this thesis employs an algorithm to estimate
the PPL, with the results communicated over the CAN network. This algorithm, which
forms the foundation for the closed-loop control system described in Paper I, also relies on
a parametric-based method. The complete details of this algorithm can be found in [54].

3.4 Ion Current Fuel Dependencies

While fuel is not the focus of this thesis, natural gas presents a unique challenge due to
its inherent variation in composition. Unlike refined fuels, which are produced to meet
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specific standards, natural gas is not chemically uniform. Since ion current is generated by
chemical reactions, its signal is influenced by the composition of the fuel and the air-fuel
mixture. Variations in these parameters can significantly affect the ion current signal as the
concentrations of the ionized species varies.

Another complication stems from the fact that the part of the ion current that is of most
interest for combustion diagnostic, the thermal phase, are mainly a result of thermal ion-
ization which is dependent on the temperature. The temperature is in large depending on
the equivalence ratio, and most research on application of ion current are performed on
engines running with a fuel/air ratio close to stoichiometric or rich, reaching high temper-
atures. However, many of the currently “emerging” fuels of interest are lean-burning, such
as methanol and hydrogen. Lean mixtures typically burn at lower temperatures, which do
not promote ionization as effectively as stoichiometric mixtures that achieve higher com-
bustion temperatures. Especially hydrogen is challenging as it can be used in a very broad
span of air to fuel ratios, allowing for very lean combustion. The resulting reduction in ion-
ization can be to the extent that it becomes impossible to measure any ion current during
the combustion without modification to the typically used hardware. However, while little
publicly available research supports the following, it is suggested that reliable measurements
of ion current from lean hydrogen combustion in ICE can be obtained by modifying the
measurement circuitry by increasing the signal amplification.
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Machine Learning Models

Machine learning has seen remarkable advancements in recent years, fueled by exponential
increases in computational power and the availability of vast datasets. These advancements
have enabled the development of increasingly sophisticated models capable of solving com-
plex problems, including applications like image recognition to autonomous vehicles. The
explosion of machine learning’s popularity among the general public has been catalyzed
by the appearance of large language models which have made AI-driven tools accessible to
millions. These tools are now integral to everyday life, powering features like personalized
social media feeds, recommendation systems, and virtual assistants.

While public attention often gravitates toward highly advanced applications, machine learn-
ing encompasses a wide spectrum of models and techniques. This includes not only cutting-
edge neural networks or large-scale artificial intelligence but also fundamental approaches
like logistic regression. These simpler methods are widely used for their interpretability and
robustness in solving many real-world problems.

The growing interest in machine learning has also influenced research on the application
of ion current in ICEs, with most recent papers focusing on machine learning models.

In this chapter, we will explore specific types of machine learning models used in this thesis,
focusing on feed-forward neural networks and convolutional neural networks. Addition-
ally, we will discuss how data is partitioned to train and evaluate these models, as well as
the role of hyperparameter optimization in improving their performance. Most of the in-
formation presented in this chapter is based on the foundational concepts and explanations
provided in the books: Deep Learning by Goodfellow et al. [55] and Pattern Recognition
and Machine learning by Christopher M. Bishop [56]. This chapter is intended to provide
a clear and accessible explanation of the methodologies used in this research, while avoiding
many excessive technical details.
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4.1 Feed-Forward Neural Networks

Feed-forward neural networks are one of the simplest and most widely used types of artificial
neural networks. They consist of layers of interconnected nodes, where information flows in
a single direction—from the input layer, through one or more hidden layers, to the output
layer. FFNNs are designed to approximate complex functions and are commonly used
for tasks such as regression and classification. Despite their simplicity compared to more
advanced architectures, they form the foundation for many machine learning applications
and remain an important tool.

4.1.1 FFNN Architecture

The FFNN consists of sequential layers of interconnected nodes, organized into three main
types: the input layer, one or more hidden layers, and the output layer. Figure 4.1 illustrates
a fully connected FFNN, meaning that each node in one layer is connected to every node
in the next layer. The input layer receives raw data, with each node representing a specific
feature and passing its values to the subsequent layer. The hidden layers transform the data,
capturing patterns and relationships through computations involving weights, biases, and
activation functions. Finally, the output layer produces the network’s predictions, tailored
to the specific task, such as classification or regression.

... ...
...

...

I1

In−2

In−1

In

H1,1

Hm,1

H1,2

Hj,2

O1

O2

Op−1

Op

Input
layer

First hidden
layer

Second hidden
layer

Output
layer

Figure 4.1: Structure of a feed-forward neural network with an input layer, two hidden layers, and an output layer. Each node
in the input layer (I1 to In) represents an input feature. The hidden layers, containing m nodes (H1,1 to Hm,1) in the
first hidden layer, j nodes in the second (H1,2 to Hj,2), process the input data through weighted connections and
activation functions. The output layer generates the final output of the network.
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Each node in a hidden layer computes its output, or activation, by applying a non-linear
activation function to the weighted sum of its inputs, combined with a bias term. The
input to a layer ℓ is given by:

z(ℓ) = W(ℓ)Ta(ℓ−1) + b(ℓ), (4.1)

whereW(ℓ) is the weight matrix for layer ℓ, a(ℓ−1) is the activation vector from the previous
layer, andb(ℓ) is the bias vector for layer ℓ. The activations of the current layer are computed
as:

a(ℓ) = g(ℓ)(z(ℓ)) = g(ℓ)
(
W(ℓ)Ta(ℓ−1) + b(ℓ)

)
, (4.2)

where g(ℓ)(·) represents the activation function for layer ℓ.

The weight matrixW(ℓ) is structured such that the element wij represents the weight of the
connection between the i-th node in layer ℓ− 1 and the j-th node in layer ℓ. For instance,
the activation of the j-th node in layer ℓ, assuming layer ℓ− 1 has n nodes, is given by:

a(ℓ)j = g(ℓ)
(

n−1∑
i=0

w(ℓ)
ij a(ℓ−1)

i + b(ℓ)j

)
. (4.3)

The input layer does not apply any activation function or perform transformations. Its role
is to pass the raw input data x to the first hidden layer, where the computation begins.
Activations for the first hidden layer are then computed as:

a(1) = g(1)
(
W(1)Tx+ b(1)

)
. (4.4)

The hidden layers process the data in stages, capturing progressively complex patterns as it
moves deeper into the network. As shown in Figure 4.1, the first hidden layer (H1,1 toHm,1)
extracts features from the input and sends its outputs to the second hidden layer (H1,2 to
Hj,2). Arrows connecting nodes between layers indicate both the flow of information and
the associated weights. At the output layer (O1 to Op), this information is combined to
produce the network’s final predictions, such as probabilities for classification or numerical
values for regression tasks.

The FFNN’s capacity to model complex relationships is determined by its architecture,
which includes the depth (number of hidden layers) and the width (number of nodes per
layer). The input layer’s width corresponds to the number of input features, while the
output layer’s structure depends on the specific task. For example, binary classification
typically uses a one-node output layer with a sigmoid activation function, which maps the
output to the range [0, 1]. This enables the prediction of probabilities, from which a binary
decision can be produced by applying a threshold to the predicted probabilities.
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During training, the weights and biases are adjusted iteratively to minimize the error be-
tween the predicted output and the real target.

4.1.2 Activation Functions

Activation functions play a crucial role in feed-forward neural networks by introducing
non-linearity into the model. Without activation functions, the network would be limited
to learning only linear relationships, regardless of the number of hidden layers. By applying
a non-linear transformation to the input of each node, activation functions enable the
network to capture and model complex patterns in the data.

Several activation functions are commonly used in neural networks. During the model
development for the papers in this thesis four activation functions have been used: Rectified
Linear Unit (ReLU), Leaky ReLU, sigmoid, and tanh. Figure 4.2 visualizes these activation
functions, while their mathematical definitions are provided in (4.5)–(4.8).

The rectified linear unit function is defined as:

ReLU(x) = max(0, x), (4.5)

where it outputs the input directly if it is positive and zero otherwise which helps to main-
tain the gradient for positive values. This simplicity makes ReLU efficient and widely used
in hidden layers.

The leaky ReLU function addresses the issue of “dead” nodes that may occur while using the
ReLU function by allowing small gradients for negative inputs. A dead node refers to a node
that outputs zero for all inputs, effectively becoming inactive and no longer contributing
to learning during training. It is defined as:

Leaky ReLU(x) =

{
x if x > 0,
αx if x ≤ 0,

(4.6)

where α is a small constant (e.g., 0.01) that determines the slope for negative values.

The sigmoid function maps inputs to a range between 0 and 1:

sigmoid(x) =
1

1 + e−x . (4.7)

The tanh function maps inputs to a range between −1 and 1, often providing better gra-
dient flow during training compared to sigmoid:

tanh(x) =
ex − e−x

ex + e−x . (4.8)
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The choice of activation function depends on the network’s structure and the task it is
designed to perform. In hidden layers, ReLU and its variant, leaky ReLU, are often effective
starting points, but experimentation during model development is essential to determine
the most suitable option for a given problem. For the output layer, the choice of activation
function is dictated by the task.

Binary classification typically uses the sigmoid function to map outputs to probabilities
between 0 and 1, while multi-class classification relies on the softmax function, defined as:

softmax(xi) =
exi∑n
j=1 e

xj , i = 1, 2, . . . , n, (4.9)

to convert the outputs of the network into probabilities that sum to 1, ensuring they form
a valid probability distribution across n classes. In regression tasks, a linear activation func-
tion is typically used, enabling the network to produce continuous outputs without bounds.

Non-linearity is essential for solving complex problems, as it allows the network to ap-
proximate any continuous function, given sufficient capacity. This property enables neural
networks to model intricate relationships in data, making them powerful tools for a wide
range of tasks.
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Figure 4.2: Figure 4.2: Plots of common activation functions. (a) ReLU: Outputs the input if positive, otherwise zero. (b) Leaky
ReLU: Allows small gradients for negative inputs. (c) Sigmoid: Maps inputs to [0, 1]. (d) Tanh: Maps inputs to [-1,
1].

4.1.3 Training Process

The training process of a neural network is based on supervised learning, where the net-
work learns from labeled data to make accurate predictions. During training, the network
iteratively updates its parameters to minimize the error between its predictions and the ac-
tual target values. This process consists of several steps that enable the network to learn
effectively.

Forward Propagation

Forward propagation is the first step in the training process, where the input data is passed
through the network layer by layer to calculate the output. At each layer, the data is trans-
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formed using the weights, biases, and activation functions, ultimately producing an output
that represents the network’s prediction. The network can be seen as applying a function
to our input data as:

y = f(x;θ), (4.10)

where y is the predicted output, x represents the input data, and θ encapsulates all train-
able parameters in the network. The function f represents the series of transformations
performed by the network, including linear operations and activation functions, across its
layers.

Loss Function

The loss function measures the difference between the predicted outputs and the actual
target values. This difference, often referred to as the error, provides a quantitative assess-
ment of how well the network is performing. In this thesis, different loss functions were
used depending on the task at hand. Mean squared error (MSE), defined in (4.11), was
used in Paper II for predicting the in-cylinder pressure trace as it is a regression task. The
MSE quantifies the average squared difference between predicted and actual values. For
multi-class classification in Paper III, the categorical cross-entropy loss, shown in (4.12),
was employed. Finally, binary cross-entropy loss, detailed in (4.13), was used in Paper Iv
for binary classification.

MSE Loss =
1
N

N∑
i=1

(yi − ŷi)2 (4.11)

Categorical Cross-Entropy Loss = − 1
N

N∑
i=1

C∑
c=1

yi,c log ŷi,c (4.12)

Binary Cross-Entropy Loss = − 1
N

N∑
i=1

[yi log(̂yi) + (1− yi) log(1− ŷi)] (4.13)

In these equations:

• N represents the number of samples.

• C represents the number of classes in multi-class classification.

• yi is the actual target value or label for sample i, and yi,c is the one-hot encoded label
for class c in multi-class classification.
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• ŷi is the predicted value or probability for sample i, and ŷi,c is the predicted probability
for class c.

Note that the MSE loss (4.11) assumes a single output. This can naturally be generalized to
handle multiple outputs by averaging the squared errors across all output dimensions, but
we refrain from doing so here to simplify the notation.

Backpropagation

Backpropagation is the process of calculating gradients for each parameter in the network
based on the error computed by the loss function. These gradients are determined using
the chain rule of calculus, propagating the error backward through the network. This step
identifies how each weight and bias contributes to the error, allowing the network to adjust
them accordingly.

One of the key advantages of backpropagation is its efficiency in computing gradients for
all parameters simultaneously using the chain rule. This efficiency arises because back-
propagation reuses intermediate computations from the forward pass, avoiding redundant
calculations. As a result, the computational complexity scales linearly with the number of
parameters, making backpropagation feasible for training even large networks with millions
of parameters.

Optimization

Optimization involves updating the network’s weights and biases to minimize the loss func-
tion. This is typically done using algorithms such as Stochastic Gradient Descent (SGD) or
its variants, such as Adam [57], which is the optimization algorithm used to train the mod-
els for the papers in this thesis. Adam is particularly advantageous because it combines the
benefits of momentum and adaptive learning rates. The optimizer uses the gradients calcu-
lated during backpropagation to adjust the parameters, gradually improving the network’s
predictions over successive iterations.

Training neural networks on large datasets involves dividing the data into smaller subsets
called batches. Rather than computing gradients over the entire dataset, which is computa-
tionally expensive, gradients are calculated for each batch, and the network parameters are
updated iteratively based on the gradients computed for each batch. This approach, known
as mini-batch gradient descent, is the most commonly used variant of gradient descent in
modern deep learning.

To keep the terminology correct, SGD updates the parameters using a single data point at
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each iteration, whereas batch gradient descent computes gradients over the entire dataset
before updating the parameters. Mini-batch gradient descent strikes a practical balance by
computing gradients over smaller subsets of the data, offering efficiency without the high
memory demands of batch gradient descent or the noisiness of true SGD.

The iterations during training a machine learning model are typically referred to as epochs.
An epoch corresponds to one complete pass through the entire training dataset, where
the network sees all training samples exactly once. For large datasets, using mini-batches
within each epoch makes training computationally feasible by reducing memory usage and
enabling efficient parallel computation on modern hardware, such as GPUs.

4.1.4 Advantages and Limitations

FFNNs offer a simple yet powerful framework for solving a wide range of tasks, including
regression, classification, and basic time-series prediction. Their main advantage lies in their
simplicity and flexibility, making them easy to implement and often less computationally
demanding compared to more complex architectures.

However, FFNNs also have notable limitations. Their fully connected nature can result in
inefficiency and a tendency to overfit (see Section 4.3.1), particularly when handling high-
dimensional input data such as images or structured signals. Moreover, FFNNs assume
all inputs are independent and do not include any components explicitly designed to cap-
ture relationships between neighboring features, making them less suited for processing
structured inputs.

In contrast, convolutional neural networks are specifically designed to address these short-
comings. By introducing sparsity and weight sharing through convolutional layers, CNNs
efficiently capture local correlations and spatial patterns in the data. This specialization
makes CNNs particularly effective for tasks like image processing and structured data anal-
ysis, where patterns among neighboring features are crucial. Furthermore, the architec-
tural design of CNNs significantly reduces the number of trainable parameters compared
to FFNNs, lowering computational complexity and often improving performance and gen-
eralization for structured data tasks.

Despite these advantages of CNNs, FFNNs remain a valuable tool for problems where
input data does not exhibit clear spatial or sequential structure. For tasks with limited data
or lower computational resources, FFNNs are often preferred due to their simplicity and
efficiency. Furthermore, as shown in [30] (Paper II), FFNNs can still achieve strong results
even when applied to signals with a sequential structure.
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4.2 Convolutional Neural Networks

Convolutional neural networks are a class of deep learning models that excel in capturing
spatial and temporal patterns. The foundational ideas behind CNNs can be traced back to
Fukushima’s neocognitron [58], which introduced the concept of hierarchical feature ex-
traction inspired by the human visual system. However, the neocognitron lacked trainable
parameters and the supervised learning capability that defines modern CNNs. It was Le-
Cun [59] who formalized CNNs as we know them today, introducing convolutional layers
with trainable weights and the use of backpropagation for supervised learning. Although
CNNs were not initially named as such, LeCun’s work laid the groundwork for their de-
velopment into one of the most widely used architectures in machine learning. Subsequent
work by LeCun et al. demonstrated the practical potential of CNNs in document recogni-
tion tasks [60], while the introduction of AlexNet by Krizhevsky et al. [61] revolutionized
the field, showcasing the scalability and efficacy of CNNs in large-scale datasets.

The strength of CNNs lies in their ability to efficiently process structured data, such as im-
ages or time-series signals, by leveraging convolutional layers to detect features like trends,
edges, or periodicities. These features are then distilled through pooling operations, which
reduce dimensionality while preserving essential information, making CNNs particularly
robust to noise and minor variations in the input data.

The details regarding the activation functions (see Section 4.1.2) and the training process
(see Section 4.1.3) discussed in the FFNN section also apply to CNNs, albeit with some
differences due to the convolutional layers. These details will therefore be omitted here for
brevity.

4.2.1 CNN Architecture

CNNs are composed of two main components: feature extraction and classification. The
feature extraction component is responsible for identifying local patterns in the input data
and combining them to form increasingly complex representations as the data propagates
through the network. The classification component utilizes these extracted features to make
predictions, typically through fully connected layers that integrate the learned information
into a final decision.

Feature Extraction

The feature extraction component of a CNN consists of multiple convolutional layers, each
designed to transform the input data by detecting meaningful patterns. A typical convolu-
tional layer, as illustrated in Figure 4.3, is composed of three key operations: a convolution
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operation that applies filters to the input, a detector (activation) layer that introduces non-
linearity, and an optional pooling layer that reduces the dimensionality of the feature maps.

Input to layers

Convolution layer:
Affine transform

Detector layer: Nonlinearity
e.g., ReLU

Pooling layer

Next layer

Figure 4.3: Illustration of a CNN layer pipeline including convolution, detector (activation function), and pooling layers. Adapted
from [55].

The convolution operation applies filters, also referred to as kernels, that slide across the
input data. These filters are meant to detect localized patterns, such as edges, trends, or
periodicities, depending on the data. Each filter has a defined size, typically smaller than
the input data, such as 3 × 3 for images or 3 for one-dimensional signals. The stride
determines the step size by which the filter moves across the input. A stride of 1 ensures
that the filter overlaps adjacent regions, while a larger stride reduces overlap and results in
a smaller output feature map. The output of the convolution operation is a set of feature
maps, to which an activation function is applied to introduce non-linearity, similarly to
FFNNs.

As an example, consider a one-dimensional input signal x convolved with a filter w, as
shown in Figure 4.4. In this example, the input has a length of 6 (x0, x1, . . . , x5), the filter
has a size of 3, and the stride is 1. The filter slides across the input signal, computing
weighted sums of the overlapping regions, which results in an output feature map. The
output values y0, y1, y2, y3 are given by:

y0 = x0w0 + x1w1 + x2w2, (4.14)
y1 = x1w0 + x2w1 + x3w2, (4.15)
y2 = x2w0 + x3w1 + x4w2, (4.16)
y3 = x3w0 + x4w1 + x5w2. (4.17)
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Here, the filter starts at the first position and moves one step at a time (stride 1) until it
reaches the end of the input. With a filter size of 3 and an input length of 6, this produces
an output feature map of length 4 (y0, y1, y2, y3). Note that the activation part is left out
from the example to reduce complexity and focus on the convolution operation itself.

Input Signal x0 x1 x2 x3 x4 x5

Filter (Kernel) w0 w1 w2

Feature Map y0 y1 y2 y3

Sliding Window

Figure 4.4: Illustration of 1D convolution. A 3-element filter slides horizontally over a 1D input signal, computing a weighted
sum of overlapping regions to produce the feature map.

In the previous example only one filter is applied. In practice, multiple filters are applied
simultaneously in each convolutional layer. This allows the network to extract a variety
of features from the input data within the same layer. The resulting set of feature maps
is then passed to the next layer for further transformations. Each filter has its own set of
weights, which are trainable parameters updated during the optimization process. Through
training, the network learns to adjust these weights to detect the most relevant patterns in
the data.

To further reduce the computational cost and make the network more robust to small shifts
or distortions in the data, pooling layers are often applied following the convolution and
activation operations. Pooling summarizes the feature maps by aggregating information
within small regions, typically selecting the maximum (max pooling) or average (average
pooling) value.

Additional components such as batch normalization are often incorporated to improve
the training process. Batch normalization is commonly applied after convolutional layers
to standardize the output, accelerating convergence and reducing sensitivity to initializa-
tion [62].
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Classification

The classification component of a CNN consists of fully connected layers, which function
exactly like the feed-forward neural network described earlier. The output from the feature
extraction part is flattened into a one-dimensional vector and passed to these layers, where
the extracted features are aggregated and combined to produce the final predictions.

4.2.2 Dual-Input CNN

In the papers comprising this thesis, two versions of the CNN architecture were used.
The first is a single-input model, which corresponds to a typical CNN as described in
the previous section. The second is a dual-input model, which extends the single-input
architecture by incorporating additional information alongside the ion current signal.

The dual-input CNN includes knock indicators (KIv and KIi) alongside the ion current sig-
nal (see Section 5.1 for the definition of KIv and KIi). In this architecture, the ion current
signal is first processed through convolutional layers to extract features. The resulting fea-
ture maps are then flattened and combined with the knock indicators (KIv and KIi) before
being passed into the fully connected layers. By including knock indicators, the network
gains access to additional high-level features that complement the features learned from the
ion current signal.

The conceptual flowchart illustrating the dual-input CNN architecture is provided in Fig-
ure 4.5. This diagram visualizes how knock indicators are integrated into the fully connected
layers, while convolutional features are extracted from the ion current.

Conv
Part

Flattened
Output

Ion current
Input

FC
Part PredictionConcatenate

dual-input

Figure 4.5: Flowchart of the dual-input CNN architecture. Knock indicators (KIv and KIi) are incorporated into the fully connected
layers alongside features extracted from the ion current signal.
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4.3 Generalization and Regularization

The primary goal of any machine learning model is to make accurate predictions or perform
reliable regression on unseen data. This ability is known as generalization. To assess a
model’s generalization capability, it is common to divide the data into separate subsets for
training, validation, and testing. During training, the model learns from the training data,
minimizing the training error, which represents the error the model makes on this subset.
The validation set is used to tune hyperparameters, evaluate different models, and prevent
overfitting by monitoring performance during training. Finally, the generalization error,
also referred to as the test error, is evaluated on the test set. This error quantifies how well
the model performs on unseen data and is typically the final step after identifying the model
that performs best during training and validation.

4.3.1 Underfitting and Overfitting

Goodfellow et al. [55] highlight two primary factors that decides on a network performance:

1. Minimizing the training error.

2. Minimizing the gap between training error and test error.

Low training error can be achieved by increasing the network’s capacity, allowing it to
effectively create a one-to-one mapping between inputs and outputs. However, this will
result in overfitting, where the model performs exceptionally well on the training data but
poorly on the test data due to its inability to generalize.

Conversely, reducing the network’s capacity can prevent overfitting, as the model becomes
less capable of memorizing the training data. However, this might result in underfitting,
where training and test errors remain high because the model fails to capture the underlying
patterns in the data.

Figure 4.6 illustrates the concepts of underfitting and overfitting, along with their impact
on model performance. In the leftmost plot, underfitting occurs when the model is too
simple to capture the underlying pattern of the data. Here, a linear polynomial is fitted
to the samples, resulting in a poor representation of the true distribution (yellow line) and
a high training error. In the center plot, the model has an appropriate capacity, fitting
a quadratic polynomial that closely aligns with the true distribution while generalizing
effectively to unseen data. This scenario represents the ideal balance between bias and
variance. Naturally, in practice, a fit this good is not achievable due to the stochastic nature
of real-world data, where noise and variability make it challenging to capture the underlying
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distribution perfectly. In the rightmost plot, overfitting is demonstrated by fitting a high-
degree polynomial to the samples. While the model perfectly captures the training data, it
fails to generalize to new data, as evidenced by its deviation from the true distribution.

To address these challenges, various techniques collectively referred to as regularization are
employed.
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Figure 4.6: Illustration of underfitting and overfitting. The red dots represent samples drawn from the true distribution (yellow
line), while the blue line shows the resulting polynomial fit after training on the samples. Adapted from [55].

4.3.2 Regularization

Regularization techniques aim to improve generalization by mitigating overfitting while
ensuring that the model has enough capacity to avoid underfitting. Below, several regular-
ization methods are described, which were employed while training the models presented
in the papers included in this thesis.

Norm Penalties

Norm penalties, such as L1 and L2 regularization, are widely used to constrain the model’s
parameters during training. In short, they add penalty terms Ω(w) to the loss function E,
resulting in the modified loss function Ẽ, defined below:

Ẽ(w) = E(w) + λΩ(w). (4.18)
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The primary objective is to restrict the magnitude of the weights, and thus Ω(w) is in-
troduced to prevent them from becoming excessively large. The term λ is a predefined
hyperparameter that controls the trade-off, encouraging the model to favor smaller weights.

L1 Regularization: This adds the sum of the absolute values of the weights to the loss
function,

L1 penalty: Ω(w) =
∑
i

|wi|.

L1 regularization tends to produce sparse models, setting many weights to zero.

L2 Regularization: This adds the sum of the squared weights to the loss function,

L2 penalty: Ω(w) =
∑
i

w2
i .

L2 regularization encourages smaller weights and is often used to prevent large weight values
that could lead to overfitting.

Early Stopping

Early stopping is a simple yet effective technique to prevent overfitting [63]. During train-
ing, the model’s performance is monitored on the validation set, and training is halted
when the validation error ceases to improve. This prevents the model from overfitting the
training data.

However, optimizing a neural network is not a convex problem, and the process is highly
susceptible to getting stuck in local minima. For this reason, it is not always ideal to stop
training immediately when the validation error plateaus. Instead, a predefined number of
epochs, referred to as patience, can be used to allow the model additional time to recover and
continue improving. If the validation error does not improve within this patience window,
training is stopped, and the model state corresponding to the lowest validation error is
restored. This ensures that the final model represents the best-performing state observed
during training.

During the model development for the papers in this thesis, all models were trained using
early stopping with a patience of 10 epochs.
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Dropout

Dropout is conceptually straightforward but was not proposed until 2014 by Srivastava
et al. [64]. After its introduction, it quickly became a default regularization method for
training neural networks. It is a stochastic regularization technique where, during training,
a fraction of the nodes in a network is randomly deactivated. This means their outputs
are set to zero, resulting in a thinned network, as illustrated in Figure 4.7. The random
deactivation prevents the model from relying too heavily on specific nodes. It also reduces
the risk of co-adaptation between nodes. Co-adaptation occurs when multiple nodes learn
to depend on each other in a way that limits their ability to generalize independently.

(a) Complete network (b) Thinned network

Figure 4.7: Illustration of dropout in neural networks. (a) The complete network, where all nodes and connections are active.
(b) The thinned network, where dropout is applied, randomly deactivating certain nodes and connections. Active
nodes are shown in solid colors, while dropped-out nodes and connections are shown as dashed circles and lines.

Dropout has a similar effect to training an ensemble of models. As the dropout is re-
sampled for every mini-batch it effectively evaluate numerous different architectures during
training. However, unlike explicit ensembles, dropout achieves this in a computationally
efficient manner. It avoids the need to train separate models individually.

During training, the gradient for a dropped node is not updated. When the model is used
for inference, dropout is turned off, and all nodes in the network remain active. If a model
is trained with a dropout probability p, only∼ (1−p) of the nodes remain active at a time.
Naturally, when all nodes are active during inference, the expected output from each node
differs from its output during training. To ensure consistency in the expected output, the
weights w for each node are scaled by the probability of the node being retained during
training, i.e., 1− p, as described by the equation below:
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winferens = (1− p)wtrain. (4.19)

Batch Normalization

Batch normalization normalizes the inputs to each layer of a network by adjusting and
scaling them based on the mean and variance computed within mini-batches during train-
ing [62]. For each mini-batch, the input activations are normalized to have zero mean and
unit variance, followed by a learned linear transformation using scale and shift parameters.
Due to its simplicity and elegance, the algorithm for performing batch normalization per
mini-batch is included in Algorithm 1. γ is the scale parameter, controlling the amplitude
of the normalized activations, while β serves as the shift parameter, adjusting their mean.

The primary benefit of applying batch normalization is the reduction of a phenomenon
known as internal covariate shift. Internal covariate shift refers to the change in the distri-
bution of inputs to a layer during training, which can slow down convergence and make
learning less efficient. By stabilizing these input distributions, batch normalization helps
the model learn more effectively.

Additionally, batch normalization serves as a regularizer by introducing noise through the
computation of batch statistics for each mini-batch. This noise reduces the model’s reliance
on specific nodes, similar to the effect of dropout, and improves generalization. During
inference, the mean and variance are replaced with fixed values computed over the entire
training set to ensure consistency.

In this thesis, batch normalization was applied specifically to the convolutional layers in
the CNN models.
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Algorithm 1: Batch normalizing transform, applied to activation
a over a mini-batch. Adapted from [62].
Input: Values of a over a mini-batch: B = {a1, . . . , am}.

Parameters to be learned: γ, β.
Output: {yi = BNγ,β(ai)}

μB ←
1
m

m∑
i=1

ai // mini-batch mean

σ2
B ←

1
m

m∑
i=1

(ai − μB)
2 // mini-batch variance

âi ←
ai − μB√
σ2
B + ϵ

// normalize

yi ← γâi + β ≡ BNγ,β(ai) // scale and shift

4.4 Data Partitioning

As previously mentioned, the end goal of any machine learning model is to generalize,
meaning that it can perform well on data it has not been trained on. To avoid overfitting,
the dataset is divided or partitioned into separate subsets, commonly referred to as the
training set, validation set, and test set. This method of partitioning is typically referred to
as in-sample evaluation, where all subsets are drawn from the same dataset. An illustration
of this process is shown in Figure 4.8.

Dataset

Training set Validation set Test set

Figure 4.8: Illustration of dataset in-sample partitioning into training, validation, and test sets. The dataset is divided into three
subsets: the training set, used to optimize model parameters, the validation set, used for model selection and
hyperparameter tuning, and the test set, used to evaluate the final model performance.

43



The training set is used to optimize the model parameters by minimizing the loss function
during training. Throughout training, the model is continuously evaluated on the valida-
tion set, typically after every epoch, to monitor for overfitting. The validation set acts as
a guide for model selection and hyperparameter tuning, allowing us to assess the model’s
ability to generalize to unseen data. The test set, on the other hand, is a completely inde-
pendent subset used solely to evaluate the final performance of the model after training is
completed.

The best-performing model is often chosen based on its performance on the validation set.
Importantly, the test set remains untouched during the training and validation phases. It
is only used once, after the final model has been selected, to provide an unbiased estimate
of the model’s generalization error.

In an ideal scenario, the test set should be completely out-of-sample, meaning that it must
not only contain data the model has not seen in any form during training or validation
but also come from a different source or context. In engine research, achieving true out-of-
sample testing would preferably involve data collected from a different engine and under
operating conditions that differ from those used during training. By testing on entirely
new conditions, the evaluation can better reflect how well the model generalizes to other
engines or operating scenarios.

Data-Balancing and Stratified Split

Since two of the papers written in this thesis involved the classification of knock events, the
datasets were inherently imbalanced. Even when operating the engine close to the knock
limit, most recorded cycles did not exhibit knock. To address this imbalance, we applied
two techniques: data-balancing and stratified splitting.

First, we performed data-balancing by downsampling the more frequent classes. In pa-
per III, this involved downsampling the no-knock and medium-knock examples to match
the number of occurrences of the heavy-knock examples. For paper Iv, the no-knock class
was downsampled to include the same number of examples as the knock class. Data-
balancing ensures that each class contributes equally during training, preventing the model
from being biased toward the majority class.

An imbalanced dataset can also negatively affect how subsets are created when splitting the
data. Random splitting, in such cases, can lead to subsets that do not reflect the overall
class distribution, resulting in unfair evaluation or poorly trained models.

After balancing the data, the risk of reintroducing imbalance during the train-validation-
test split is reduced. Nevertheless, a stratified split was employed to further ensure that class
proportions were preserved across the subsets. A stratified split guarantees that each subset
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(training, validation, and test) maintains the same class distribution as the original dataset.

In paper II, a stratified split was also performed to ensure that the subsets contained an
equal number of examples from each of the different operating points that were evaluated.

4.5 Hyperparameter Optimization

Hyperparameter optimization plays a critical role in training machine learning models, as it
directly influences model performance. The process can be formulated as an optimization
problem:

h∗ = argmin
h∈H

f(h), (4.20)

whereh represents the hyperparameters used to define the network, andH is the configura-
tion space of the hyperparameters. The objective f(h) quantifies the model’s performance,
typically evaluated on a validation dataset.

Hyperparameter optimization methods can be categorized into grid search, random search,
and more advanced approaches. Grid search explores the hyperparameter space systemat-
ically by evaluating all possible combinations of the predefined values. Random search
instead samples hyperparameter values randomly within a specified range. Figure 4.9 illus-
trates the differences between grid search and random search. In grid search, the parameter
space is explored in a structured and uniform grid. Random search, on the other hand,
samples points sparsely, making it more efficient for high-dimensional spaces.

While both approaches are widely used, their computational cost becomes prohibitive as
the number of hyperparameters increases. To address this, Bayesian optimization offers
a more efficient alternative by sequentially exploring the hyperparameter space based on
prior evaluations.

For the papers constituting this thesis, hyperparameter tuning is based on Bayesian op-
timization. The Optuna framework is used to tune the hyperparameters of the machine
learning models [65]. Optuna is a powerful and flexible Python library that automates
hyperparameter search through Bayesian methods.
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Figure 4.9: Comparison of uniform grid and random grid sampling. The left figure shows a uniform grid, where sampling
points are evenly distributed across the parameter space. The right figure illustrates a random grid, where sampling
points are distributed randomly. The uniform grid provides structured coverage but may miss critical areas, while
the random grid increases the likelihood of sampling diverse regions in the parameter space.

4.5.1 Bayesian Optimization with Optuna

Bayesian optimization is an iterative, derivative-free approach that automatically identifies
the optimal hyperparameter configuration by minimizing an objective function f(h). It
achieves this by constructing a probabilistic model of the objective function, which guides
the search process. The model is used to select the next set of hyperparameters to evaluate.
The core idea is to balance exploration, which involves sampling areas of uncertainty, and
exploitation, which focuses on sampling areas with promising results. Optuna achieves this
by constructing an acquisition function which directs the search toward optimal hyperpa-
rameters.

In Optuna, the Tree-structured Parzen Estimator (TPE) algorithm [66] is employed to
perform Bayesian optimization. The TPE algorithm models the objective function using
two probability density functions: one for hyperparameter values that yield the best results,
l(h), and another for all other hyperparameter values, g(h). The acquisition function is
constructed as a ratio of these two densities to identify promising regions in the search
space:

EI(h) ∝ l(h)
g(h)

.

Here, EI(h) represents the expected improvement, which quantifies the benefit of evaluat-
ing a particular set of hyperparameters h.

46



The TPE algorithm iteratively samples new hyperparameter values based on this ratio. Re-
gions with higher l(h)/g(h) are prioritized, as they are more likely to improve the model’s
performance.

The TPE algorithm is significantly more efficient than random search, particularly in large
and complex search spaces [67]. By adaptively refining the search based on previous eval-
uations, TPE consistently identifies better-performing configurations in fewer iterations.
In earlier work, Bergstra and Bengio [68] demonstrated that random search itself outper-
forms grid search for hyperparameter optimization, especially when only a subset of the
hyperparameters significantly influences model performance. Unlike grid search, which
allocates resources evenly across all dimensions, random search provide better coverage of
relevant regions in high-dimensional spaces due to its stochastic sampling nature. Build-
ing on this, the TPE algorithm further improves efficiency by prioritizing exploration of
promising regions, making it an attractive choice for optimizing machine learning models
with high-dimensional hyperparameter spaces.
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Engine knock

Engine knock is an abnormal combustion phenomenon that occurs when the end-gas re-
gion of the air-fuel mixture, situated ahead of the propagating flame, autoignites prema-
turely [69]. The bottom sequence in Figure 5.1 illustrates the presence of auto-ignition in
the end-gas region resulting in knocking combustion, and the top sequence a normal com-
bustion. The uncontrolled ignition leads to fast pressure rise followed by intense pressure
waves within the cylinder. The rapid and repetitive nature of these pressure oscillations
places significant stress on engine components, diminishes efficiency, and may cause severe
mechanical damage.

Figure 5.1: Comparison of normal SI combustion (top) and knocking combustion (bottom) [70].

Knock is, in essence, an acoustic event, and the characteristics of the pressure waves are in-
fluenced by the cylinder’s geometry, combustion gas properties, and its associated acoustic
resonant modes [71]. These modes represent distinct wave patterns within the combus-
tion chamber, most commonly described as the circumferential, radial, and axial modes,
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depicted in Figure 5.2. The axial mode frequencies depend on crank angle, while the cir-
cumferential and radial modes do not [72]. Furthermore, as depicted in Figure 5.2, the
frequencies of the pressure waves increase with each successive mode, with the lowest fre-
quency being around 6 kHz in the first circumferential mode [73]. The first circumferen-
tial mode typically dominates the energy distribution and is responsible for the hallmark
“knocking” sound that indicates knocking combustion. The interested reader can find a
detailed visualization of the combustion chamber showing different modes in the work by
He et al. [74].

First circumferential
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Figure 5.2: Visualization of the acoustic modes. Adapted from [71] and [73].

5.1 Knock Measurements

During knock, pressure waves propagate and interact within the engine structure, gener-
ating vibrations that can be measured. In vehicle applications, one or more piezoelectric
accelerometers, often referred to as vibration sensors or knock sensors, are mounted on the
engine body to measure these vibrations. The signals are transmitted to the ECU, where
they are analyzed to evaluate their intensity during the timeframe when knock is expected.

To study knock or develop engine control strategies, it is essential to have a reference sig-
nal that accurately quantifies knock intensity. This is typically achieved using in-cylinder
pressure measurements obtained from a pressure sensor mounted in the cylinder head. A
common approach for estimating knock intensity involves calculating the amplitude of the
pressure oscillations. These oscillations are isolated by applying a band-pass filter to the in-
cylinder pressure signal, centered around the frequency of the first circumferential mode.
In the papers included in this thesis, the Maximum Amplitude of Pressure Oscillations
(MAPO) was used as the reference for knock intensity. MAPO is calculated by taking the
maximum value of the absolute band-pass filtered in-cylinder pressure, as shown below:

MAPO = max(|pbandpass|). (5.1)
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A similar approach can be applied to estimate knock intensity from the vibration sensor.
However, instead of using a single point estimate, an integration, or more precisely a sum-
mation since the signal is discrete, is typically used. In paper Iv, the knock intensity cal-
culated in this manner based on the vibration sensor signal is denoted KIv and is defined
as:

KIv =
∑
|vbandpass|. (5.2)

The rapid increase in pressure and the resulting pressure oscillations during knock lead to
fluctuations in the temperature of the burned gas. Since the ionization process is highly
dependent on temperature, these fluctuations cause variations in the electrical conductivity
of the gas, which, in turn, affect the ion current measurements. Thus, a knock intensity
based on the ion current is also derived and denoted KIi. This knock intensity is defined
in the same fashion as KIv and is defined as:

KIi =
∑
|ibandpass|. (5.3)

5.2 Signal Characteristics

Figure 5.3 illustrates the in-cylinder pressure, ion current, and vibration sensor signals and
their respective band-pass filtered versions during a normal combustion cycle and a knock-
ing cycle for each case. It is important to note that the scaling of the signals has been
adjusted to ensure the figure is informative and does not represent actual magnitudes. Ad-
ditionally, the phasing of all signals is consistent across the figure.

For the in-cylinder pressure, the characteristic oscillations caused by knocking are clearly
visible in the raw signal. These oscillations are even more distinct in the band-pass filtered
version, making it straightforward to identify the knocking cycle.

In contrast, the ringing in the ion current signal during knock is not as apparent in the
raw signal. However, when the band-pass filter is applied, the oscillatory behavior becomes
visible, albeit not as pronounced as in the pressure or vibration sensor signals. Furthermore,
the knocking cycle shows a higher overall amplitude and a more rapid increase in the ion
current signal compared to the normal cycle. This suggests that machine learning could be
a valuable tool for knock detection using ion current signals, as it might be able to leverage
features not directly visible to human observation but embedded in the signal.

Lastly, the vibration sensor signal shows a significantly higher amplitude during the knock-
ing cycle. This difference is clearly visible in both the raw signal and the band-pass filtered
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version, making it an effective indicator for identifying knock events.

It should be noted that the knocking cycle had a MAPO of 3.4, which could be considered
a heavy knock, while the normal combustion cycle had a MAPO of 0.05, which is a very
low value. Despite this, there is still considerable signal amplitude in the band-pass filtered
version of the vibration sensor signal. This highlights one of the drawbacks of these types of
sensors: the susceptibility to mechanical noise. The engine’s many moving parts generate
vibrations, which can interfere with the sensor signals. Depending on the sensor placement,
this mechanical noise can at times degrade the knock detection performance for certain
cylinders, to the point where it is barely better than random guessing, as discussed in [22].
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Figure 5.3: Comparison of signals during normal combustion (black) and knocking combustion (red). The figure shows in-
cylinder pressure, band-pass filtered in-cylinder pressure, ion current, band-pass filtered ion current, vibration sensor
signals, and band-pass filtered vibration sensor signals. The knocking cycle had a MAPO of 3.4, while the normal
combustion cycle had a MAPO of 0.05. Note: The scaling of the signals has been adjusted for visualization purposes
and does not represent actual magnitudes.
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5.3 Knock Classification and Control

The previous sections presented one method to calculate the “true” knock intensity, MAPO,
from the in-cylinder pressure, and two methods to estimate the knock intensity from the
vibration sensor (KIv) and the ion current (KIi). However, the question remains: how do
we go from knock intensities to classifying knock? The process is quite simple: knock is
classified by defining a threshold. Values above the threshold are classified as knocking,
while values below are classified as normal combustion. This approach is used to label
data as either normal or knocking combustion based on the selected metric from the in-
cylinder pressure. It is also employed for online knock classification, typically relying on
the vibration sensor signal and a knock intensity estimation like KIv.

In the experiments conducted for this thesis, the MAPO threshold for labeling the exper-
imental data was set at 0.4. This threshold was determined after inspecting the pressure
traces and identifying an appropriate value where the characteristic pressure oscillations
disappeared. One significant challenge with knock lies in the fact that it is not strictly a
binary phenomenon but rather exists along a spectrum of intensity. For instance, is there
truly a meaningful difference between a MAPO of 0.39 and 0.41?

The most common approach to knock control is to retard the spark timing when knock is
detected. This adjustment shifts the combustion phase later in the cycle, leading to lower
in-cylinder pressure and temperatures, thereby avoiding knock. The spark timing is then
progressively advanced towards the knock limit again, and when knock inevitably occurs,
the process repeats. As a result, every time knock is falsely detected, engine efficiency is
unnecessarily sacrificed because the spark timing adjustment was not required. Conversely,
if a knocking cycle goes undetected, the engine may suffer severe damage.

Thus, choosing the knock detection threshold is a critical but challenging task. More-
over, to address the previously stated question, there are no practical differences between
a MAPO of 0.39 and 0.41, making the chosen threshold inherently arbitrary. As a result,
and because no knock detection algorithm is perfect, the threshold is typically set conser-
vatively to ensure safety. This emphasizes the necessity of developing more accurate and
reliable knock detection methods. Such improvements are essential for reducing unneces-
sary control actions and improving engine efficiency, particularly at high loads where the
engine is more prone to knock.
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Discussion

This chapter builds upon the discussions presented in the included papers. The aim is to
address topics that may not have been fully explored in the papers.

6.1 The Use of EGR in Paper I

The proverbial elephant in the room is the use of EGR in paper I to modify the gas composi-
tion, rather than altering the natural gas composition. This was, in the end, an unfortunate
but necessary decision. The primary reason was that the lab was not equipped to fuel a
fully operational six-cylinder heavy-duty engine of this size at higher loads for extended
periods using gas bottles. For the same reason, it was not possible to obtain accurate fuel
measurements, as the composition of the natural gas supplied by the municipality’s pipeline
varied.

The thermal gas flow meter used to measure the flow of natural gas had to be modified
with an ever-changing conversion factor to account for the varying composition. However,
the results were never reliable enough. This led to forgoing efficiency measurements and
instead presenting the results in terms of indicated mean effective pressure.

While adding EGR was not part of the original plan, it caused a delayed combustion phase
that reduced the engine’s power, ultimately making it effective in demonstrating the concept
we set out to prove. Through closed-loop control of the combustion phase, achieved by
modifying the spark timing based on the peak pressure location estimated from the ion
current, the combustion phase was effectively restored to the nominal phase, recovering a
significant portion of the power lost. Furthermore, enabling the closed loop control also
led to an increased combustion stability.
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6.2 Data Partitioning: ChoosingTrain/Validation/Test SplitsOver
K-Fold Cross-Validation

K-fold cross-validation is a commonly used technique in machine learning to evaluate
model performance. It begins with an initial split of the dataset into a train and test set,
similar to the train/validation/test split. The train set is then further divided into k subsets,
or folds, and the model is iteratively trained on k− 1 folds while validating on the remain-
ing fold. This process is repeated k times, ensuring each fold is used for validation once.
By averaging the results across all folds, this method provides a more robust assessment of
a model’s generalizability.

While K-fold cross-validation offers significant benefits, its importance diminishes as the
size of the dataset increases. With a sufficiently large dataset, the train/validation/test split is
often adequate to capture the variability within the data and provides reliable performance
metrics. The larger the dataset, the less likely it is that splitting the data once will introduce
biases, as the subsets are more likely to represent the overall data distribution. Additionally,
in the work presented, the dataset was balanced, and the train/validation/test split was
performed in a stratified fashion. This further reduced the risk of introducing biases by
preserving the distribution of classes across all subsets.

A train/validation/test split was used instead of K-fold cross-validation, primarily due to
practical considerations. For Papers III and Iv, training the machine learning models was
computationally intensive, requiring significant time and resources. The iterative process
of training and validating models across multiple folds would have been prohibitively time-
consuming, given the complexity of the architectures and the size of the datasets. As the
dataset was sufficiently large to ensure representative splits, the added computational cost
of K-fold cross-validation was deemed unnecessary.

By using a train/validation/test split, the approach balanced computational efficiency with
reliable performance evaluation, aligning with the practical constraints of the included
work.

6.3 Generalizability ofModels to Other Operating Points and En-
gines

The generalizability of the models to other operating points on the same engine remains
an open question that requires further verification. The virtual pressure sensor presented
in Paper II was trained on a very coarse grid of operating points, while the knock detection
models were only trained on data collected from two operating points. Machine learning
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models perform best when trained on as much diverse data as possible to capture the vari-
ability inherent in the system. Fortunately, this is not necessarily a limiting factor, as a vast
amount of data can be recorded from an engine test cell, ensuring sufficient coverage across
different operating conditions. However, the challenge lies in the time and computational
resources required to train models on such large datasets.

Extending the generalizability to different engine models introduces additional complexi-
ties. It is likely that the models would need to be retrained using data specific to the target
engine model, as differences in design, operating characteristics, and sensor configurations
could significantly impact performance. That said, it is not necessary to reinvent the wheel.
Once a suitable model architecture has been developed, its structure can serve as a concep-
tual foundation for further training.

An effective approach to expedite this process is transfer learning, which allows a model
trained on one dataset to be fine-tuned on another. This avoids the need to cold-start
training from scratch and can significantly reduce the computational effort required while
leveraging existing knowledge embedded in the original model. By employing transfer
learning, the adaptability of these models to new engines or operating points can be en-
hanced, ensuring efficient deployment.

6.4 Estimating Knock Intensity Using Machine Learning

This thesis has primarily focused on using machine learning to classify knock events, i.e.,
constructing classification models. While the probability outputs from such classifiers can
be interpreted as a measure of likelihood, they do not inherently capture the physical mag-
nitude of knock intensity. Consequently, extending ML methodologies to estimate knock
intensity as a continuous variable presents an opportunity for providing a richer character-
ization of knocking events.

Estimating knock intensity could offer significant advantages over probability-based classi-
fication by providing a more detailed representation of knocking events. Knock intensity,
often derived from metrics such as MAPO, quantifies the severity of knock rather than its
likelihood. Therefore, estimations of knock intensity would align more closely with the
underlying physics of combustion. Precise intensity estimates would allow for finer con-
trol strategies, enabling parameters such as spark timing to be adjusted proportionally to
the severity of knock. This approach could optimize engine performance by minimizing
unnecessary interventions during light knock events while applying stronger corrective ac-
tions in cases of severe knock. Real-time intensity predictions could further enhance engine
control by enabling dynamic thresholding and adaptive strategies designed to account for
operating conditions.
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6.5 Correlation between Knock Indicators and MAPO

This section discusses the correlation between the two knock indicators, KIv and KIi, and
MAPO, with an emphasis on KIi. Previous research has highlighted that the placement of
pressure or ion current sensors significantly affects the robustness of knock detection. Due
to the characteristics of the acoustic modes of knock, as discussed in chapter 5, placing the
sensor at the center of the cylinder head is particularly disadvantageous. Such a position
is insensitive to all circumferential modes [75] and generally exhibits the lowest sensitivity
to the various acoustic modes [71]. Consequently, a central position typically results in a
lower correlation between KIi and MAPO.

Nonetheless, the study by Daniels et al. [76] reported a high correlation between KIi and
their pressure-based knock indicator, even with a centrally positioned spark plug measuring
the ion current. It should be noted, however, that their spark plug was not truly at the
cylinder head’s center but slightly off-center due to the size differences between the intake
and exhaust valves. Furthermore, their chosen pressure-based knock reference was not
MAPO but rather a method similar to how we calculated KIv and KIi, specifically the sum
of the absolute value of the band-pass filtered in-cylinder pressure. For clarity, we will
refer to this alternative knock reference as KIp. Their results showed that the correlation
between KIi and KIp remained consistently high, around 0.83, regardless of engine speed.
In contrast, the correlation between KIv and KIp decreased significantly at higher engine
speeds due to increased noise levels.

In our case, the correlation between KIi and MAPO is consistently lower than the corre-
lation between KIv and MAPO. Despite this, as shown in Paper Iv, a Logistic Regression
(LR) model based solely on KIi did not always underperform compared to an LR model
based solely on KIv. One plausible explanation is the central positioning of the spark plug
in our setup, which probably contributed to the observed results. Another significant fac-
tor, which we realized after completing Papers III and Iv, is that the secondary coil, through
which the ion current passes, acts as a low-pass filter at approximately 6 kHz. This filtering
substantially impacts the band-pass filtered signal used to calculate KIi, effectively cutting
out half of the frequency band.

58



Conclusion and Future Work

This thesis has demonstrated the potential of ion current measurements and machine learn-
ing to enhance combustion diagnostics and control in spark-ignition engines. By integrat-
ing experimental investigations with machine learning approaches, this work addresses key
challenges in improving engine performance, knock detection, and real-time control, while
reducing reliance on costly in-cylinder pressure sensors.

Ion current measurements have proven to be a reliable and cylinder-agnostic diagnostic
tool, capable of capturing critical combustion parameters. The use of ion current, par-
ticularly in combination with machine learning models, offers a cost-effective alternative
to traditional in-cylinder pressure sensors. This was exemplified by the successful use of
a feed-forward neural network to predict in-cylinder pressure traces from ion current sig-
nals, demonstrating the feasibility of virtual pressure sensing. Such advancements highlight
the potential of ion current-based diagnostics as a compelling choice for real-time engine
monitoring and control.

The application of convolutional neural networks to knock detection illustrates the power
of machine learning in uncovering spatial and temporal patterns within ion current signals.
CNNs trained on ion current data achieved performance levels comparable to traditional
knock detection methods, and the integration of knock indicators derived from both ion
current (KIi) and vibration sensors (KIv) further enhanced detection robustness. Logistic
regression models, while less sophisticated, provided interpretable insights and demon-
strated that simpler models can still play a valuable role in engine diagnostics, particularly
in applications with constrained computational resources.

Additionally, this thesis has demonstrated the feasibility of closed-loop control systems
based on ion current-derived PPL estimates. Such systems successfully mitigated perfor-
mance losses caused by variations in fuel composition, recovering up to 2% of engine power
in scenarios involving increased EGR. This demonstrates how ion current-based systems to
maintain optimal combustion phasing, leading to improved efficiency and reducing emis-
sions in real-world applications.
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Despite these advances, several challenges remain. The sensitivity of vibration-based knock
indicators to mechanical noise limits their reliability in certain cylinders, emphasizing the
need for robust sensor fusion strategies. However, since such strategies also incorporate
data from the vibration sensor, they too would be affected by the noise. A robust sensor
fusion strategy would adapt by lowering the importance of vibration sensor information
for cylinders with significant noise interference. In the context of the dual-input CNN,
this could be achieved by adding information related to which cylinder is being analyzed,
allowing the model to dynamically reduce the weight assigned to the vibration sensor for
cylinders with high noise levels. Furthermore, the computational complexity of CNNs
presents a barrier to their real-time application, though the demonstrated benefits of these
models underscore the importance of developing more efficient architectures.

While this work primarily focuses on spark-ignition engines fueled by natural gas, the find-
ings have broader implications. The methodologies and models presented here are adapt-
able to alternative fuels and other engine types, paving the way for more sustainable and
efficient internal combustion engines. In summary, this thesis establishes a strong founda-
tion for the integration of ion current diagnostics and machine learning in advanced engine
control systems.

Building on the findings of this thesis, there are many interesting avenues for future work.
Some examples include:

• Integration of Additional Sensors: Incorporate data from sensors such as exhaust
gas temperature to enhance model robustness and accuracy.

• Exploration of Alternative Fuels: Extend the study to engines using other fuels to
assess the adaptability of the proposed methods, especially in non-stoichiometric
combustion regimes.

• Optimized Neural Network Architectures: Investigate lighter and more computa-
tionally efficient models tailored for real-time applications. Potential strategies in-
clude downsampling input signals, reducing the number of convolutional layers, or
exploring recurrent neural networks for capturing sequential patterns.

• Validation Across BroaderOperating Conditions: Test the models on larger datasets
encompassing a wider range of engine speeds, loads, and cylinder conditions. Such
validation would provide deeper insights into the generalizability and reliability of
the proposed methods.

• Estimating Knock Intensity: Develop ML models to estimate knock intensity as a
continuous variable instead of probabilities.
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• Development of Real-Time Control Strategies: Implement the knock detection
models in closed-loop engine control systems. This would enable the models to ac-
tively adjust engine parameters in real-time, optimizing performance and mitigating
knock under varying operating conditions.

• Real-Time Model Optimization: Develop a framework that enables continuous
improvement of the model in real-time. While implementing such a system in
a production vehicle presents significant challenges due to limited computational
resources and the lack of in-cylinder pressure sensors, it is feasible in a laboratory
setting. In this approach, a cloud-based model could receive data from the lab in
real-time, enabling continuous training without requiring intermediate storage for
the vast amount of data generated during experiments. This eliminates the need
for local data handling, as the data is directly ingested by the model, significantly
streamlining the overall process. On-road vehicles could then periodically update
their models by downloading the improved version from the cloud. This method
ensures that deployed models remain up-to-date while reducing the logistical bur-
den associated with storing and transferring large datasets.
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