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Abstract

Numerous studies have demonstrated the significant impact of the resolution of solar irradiation data
on the outcomes of hourly production models. Accurate integration of photovoltaic (PV) systems some-
times demands a high-resolution global horizontal irradiance (GHI) time series to capture the rapid
fluctuations in PV power output induced by swift irradiance changes. Most available databases pro-
vide data at hourly resolution, leading to a lack of accuracy in PV simulations. Those existing hourly
averages of global horizontal irradiance in open sources fail to represent this volatility adequately,
especially when PV systems are coupled with fast ramp rate technologies. In the present work, an
easy-to-use algorithm is implemented to synthesize high-resolution GHI time series from hourly aver-
aged and clear sky irradiance datasets. By employing Linear interpolation, a technique that helps to
achieve the desired time resolution and afterward computing critical factors, the algorithm identifies
periods characterized by short-term weather phenomena, thus creating a high-resolution time series
that accurately represents these dynamics. Avoiding the probabilistic components and machine learn-
ing techniques conserves computational power and reduces calculation time, but this comes at the cost
of reduced fidelity in reproducing the results. Improving accuracy in PV simulations is not always
directly related to reproducing real phenomena, but enhancing the amount of information contained
in the data is sufficient. This study’s approach enhances user-friendliness and facilitates seamless in-
tegration into existing energy modeling frameworks, aiming for representation with sub-hourly time
steps. The algorithm’s effectiveness is demonstrated by applying the model to hourly averaged data to
revert them to a one-minute time step, and finally comparing the synthetically produced one-minute
GHI data to the original measured data. The comparative analysis between synthesized and mea-
sured data demonstrated a strong agreement, with normalized mean bias error (MBE) values ranging
between 1.8% and 9.6% and normalized root mean square error (NRMSE) values between 2.7% and
16.1%, depending on weather conditions. Additionally, the coefficient of determination (R²) consis-
tently remained above 0.64. Successful algorithm validation makes our algorithm suitable for use in
meteorological datasets and locations, with similar climatic characteristics.

Keywords Global horizontal irradiance, Solar integration, Downscaling synthesis, Minute time
resolution, Data validation, Solar-to-hydrogen coupling
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1 Introduction

Global annual renewable capacity additions increased by nearly 50% to 510 gigawatts (GW) in 2023,
marking the fastest growth rate in two decades. This is the 22nd consecutive year of record-setting
renewable capacity additions. Europe, the United States, and Brazil reached all-time highs in renewable
capacity, while China’s acceleration was extraordinary. In 2023, China commissioned as much solar
PV as the entire world did in 2022, and its wind power additions grew by 66% year-on-year. Solar
PV alone accounted for three-quarters of global renewable capacity additions [25], underscoring its
importance for advancements in renewable energy. Global module prices fell 22%, reaching a record
low of $0.11/Wdc, while PV manufacturers remained profitable due to increased sales volumes.

The global transition to renewable energy emphasizes the crucial role of photovoltaic (PV) sys-
tems, especially as capital costs continue to fall. Effective deployment of solar PV systems depends
on accurately assessing the solar energy potential at the target location, typically through solar ir-
radiance measurements. However, in many regions, this data is unavailable due to the high costs
and limited accessibility of measurement systems. Solar irradiance data can originate from satellite-
based observations, ground-based measurement networks, numerical weather prediction models, and
reanalysis datasets. While these sources provide accurate data, the first three are often costly and
computationally intensive, making them impractical for many locations. As a result, solar irradiance
must frequently be estimated using reanalysis techniques or synthetic models to overcome these lim-
itations [19]. High-frequency solar radiation data is unavailable for many locations, limiting research
to specific sites where such data exists. Alternatively, computer-simulated data can be used if the
synthetic generation model produces data with statistical characteristics similar to typically measured
data [3]. The requirements for temporal resolution (monthly, daily, hourly, or sub-hourly values) and
accuracy depend strongly on the technology and the purpose of the modeling [28]. High-resolution
data, captured with a high level of detail, plays a critical role in detecting short-term phenomena and
preventing errors in diverse PV system applications.

Last decades, solar radiation data reporting from modern radiometric stations has shifted from
hourly intervals to much shorter time steps, typically 1 to 10-minute intervals, and sometimes even
less. Proper energy simulations for CSP projects also demand time steps shorter than the conventional
hourly interval, due to non-linear and transient effects impacting system performance. An ideal simu-
lation time step would be 10 minutes or less [24]. To meet this need, some commercial satellite-derived
irradiance providers now offer 10–15-minute time series, alongside the standard hourly data. For PV
systems, rapid cloud-induced irradiance fluctuations, or ramping effects, are analyzed with time steps
as short as 3 seconds in [12]. These advancements highlight the increasing demand for GHI data at
sub-hourly intervals.

Various applications of high-resolution data are explored in the literature, including computational
simulations, solar integration in buildings, direct coupling in energy sectors, as well as grid and off-grid
operations. For instance, [38] highlighted the reliability of meteorological datasets in the optimal design
of photovoltaic power systems, noting that optimization based on averaged hourly data underestimates
the levelized cost of electricity by up to 3%, overestimates the inverter sizing ratio by 0.05 on average,
and the tilt angle by up to 5°compared to high-resolution datasets. Similarly, [10] examined the impact
of time resolution on the matching of PV system production and household electric demand, finding
that 1-hour resolution data can be a source of significant error, sometimes resulting in errors of 15%
or higher under scattered cloud conditions compared to 1-minute resolution data. Furthermore, [30]
compared grid-tied systems with off-grid PV system layouts and reliability, concluding that in off-
grid systems, reliability was overestimated, recommending a 30-minute resolution. In more complex
urban locations, [34] proposed that high-resolution data is required to detect the impact of surrounding
buildings, despite the higher costs. [36] illustrated the importance of one-minute data for the simulation
of PV systems, finding that an energy yield loss of 7% was calculated in hourly averaged data compared
to 10% in one-minute power output when the 70% restriction is applied by the inverter.

Global Horizontal Irradiation is the link between PV electrical power output and time-resolution
data. The efficiency of PV modules is primarily dependent on global irradiance, with secondary
factors like module temperature also playing a role. Due to the nonlinear relationship between module
efficiency and irradiance, high temporal resolution simulations are necessary. [39] supports that for
understanding the dynamic interaction of PV generators, storage systems, loads, and grids on a global
scale, high-quality one-minute data series are crucial. Simulating systems with hourly averaged values
neglects significant behavior patterns like short-time power enhancements. Global irradiation time
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series are fundamental inputs for simulating electricity production by PV panels and essential for all
energy modeling frameworks incorporating renewable energy sources. The time resolution requirements
of irradiance time series vary depending on the specific application of the simulation models. [41]
and [17] emphasized the need to use time series with a time step shorter than 1 hour for detailed
performance simulations, suggesting a time resolution of 5 minutes to 15 minutes as a reasonable
compromise between computational cost and accuracy. The power output variability from PV systems
is a concern for grid operators, as unanticipated changes in PV output can strain the grid. Therefore,
it is important to statistically characterize the GHI fluctuations at high temporal resolution. [29]
mentioned that PV power variability can be counteracted by fast-ramping generation sources and
storage systems, but these options are expensive and substantially increase plant costs.

Several commercial providers and free sources offer meteorological data at a resolution of one hour
(e.g., Meteotest, SolarGIS, and TMY), covering nearly the entire earth. However, the availability of
measured irradiance data with a resolution of less than an hour is very limited. This limited availability
necessitates synthesizing high-resolution time series from hourly averaged data. The demand for high-
resolution irradiance data is evident in the growing number of publications presenting models for
generating synthetic solar irradiance data with high temporal resolutions [27, 2]. [14] summarizes
many algorithms used to generate synthetic solar irradiance. [20] were among the first to develop a
stochastic procedure for generating synthetic sets of hourly solar irradiation values, suitable for use
in solar simulation design work. Recent studies have focused on generating high temporal resolution
pairs of GHI and Direct Normal Irradiation (DNI) values, preserving the relationship between them [3].
Many of these models rely primarily on autoregressive moving average (ARMA) or Markov transition
matrix (MTM) techniques, which produce time series with enhanced temporal resolutions, aiding in
modeling the dynamic behavior of solar radiation [23]. [7] introduced a second-order MTM model
incorporating statistical characteristics related to atmospheric conditions (clear, cloudy, overcast),
improving upon the first-order MTM model used by [42] for generating 1-minute values. Additionally,
the combination of wavelets and artificial neural network (ANN) techniques with Markov transition
matrices for generating solar radiation values is mainly applied to forecast applications handling daily or
hourly global irradiance data [1]. Physical spatiotemporal downscaling methods also exist for satellite-
derived datasets. However, in complex multi-objective problems solved by evolutionary algorithms,
the use of higher-resolution data is often impractical due to the long calculation times required [31].
The extended computation time associated with high-resolution datasets can be a significant limiting
factor in many of these applications.

Deterministic studies provide general insights into the effects of increased integration of solar gen-
erators in power systems, especially in distribution systems, but they do not account for the inherent
variability of solar power. Probabilistic studies, on the other hand, capture this variability, offering
more detailed analysis by utilizing solar irradiation as input for simulation programs. While models
based on Markov chain techniques achieve satisfactory results in reproducing the modeled data, they
utilize complex approximate equations of the probability density functions, and the errors introduced
by these approximations are not quantified. Markov chain techniques, as probabilistic models, are
highly influenced by the randomness and stochastic nature of the analyzed environment. These mod-
els also often ignore the dependence of the clearness index on the solar elevation angle. To minimize
computational requirements in downscaling synthesis methods, a non-probabilistic and artificial intel-
ligence approach is essential. Therefore, this paper introduces a straightforward method, a simplified
solar downscaling synthesis algorithm designed to produce high-resolution solar output data without
depending on the stochastic nature of the Markov chain method and machine learning. This algo-
rithm is invaluable for applications focused on understanding fluctuations in solar electricity supply
rather than precise representation. The present work comprehensively examines the significance of
high-resolution data in PV analysis, addressing its profound impact on efficiency, energy matching,
simulation accuracy, and the broader transition towards renewable energy sources, and suggests an
algorithm for high-resolution solar data synthesis.

1.1 Purpose of the study & Structure

Our suggested algorithm is designed to enhance the coupling of photovoltaic (PV) systems with elec-
trolyzers, enabling more accurate simulations of solar renewable electricity production, hydrogen gen-
eration, and overall system optimization. Integrated PV-electrolyzer systems offer a highly efficient
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solution for producing low-cost green hydrogen. This is facilitated by the significant reduction in solar
panel prices and the abundance of sunlight, which supports the distributed production of hydrogen.
In the absence of electrical storage, such as batteries, these systems typically rely on the utility grid
to meet electricity demands and serve as a backup for the electrolyzer balance of the plant.

This energy configuration can generate profit through four key mechanisms. First, the system can
participate in the hydrogen market by selling green hydrogen. Second, the generation of renewable
electricity from PVs avoids reliance on fossil fuels and can lead to the acquisition of carbon credits.
Third, surplus electricity can be sold in day-ahead electricity markets by oversizing PV capacity relative
to the electrolyzers, generating additional revenue during peak hours. Fourth, the system can offer
flexibility in auxiliary markets by adjusting the operation of electrolyzers and hydrogen storage, further
enhancing profitability. High-ramp-rate electrolyzers, such as proton exchange membrane (PEM)
electrolyzers, are especially suited for this.

Hydrogen production in such systems provides several forms of flexibility, including regulation,
balancing, operational reserves, and seasonal energy arbitrage. Regulation addresses minute-to-minute
uncertainties and generator responsiveness while balancing manages variability and uncertainty within
and across hours, typically requiring sub-hourly or hourly data. Operating reserves offer backup for
unexpected events, and seasonal energy arbitrage helps manage energy mismatches across seasons [16].
Sub-hourly solar irradiance datasets are crucial for maximizing this flexibility, especially in regulation
and balancing operations. These datasets enable precise time-matching between solar generation and
system demands, which is critical for optimizing performance and profit.

To support renewable hydrogen production, policies encouraging the sourcing of renewable energy
from the grid must consider factors such as temporal correlation (simultaneity). This ensures that
renewable electricity generation aligns with electrolysis use, ranging from 15-minute intervals to annual
scales [21]. Post-2030, additional power systems will need to follow temporal resolutions of the same
hour or less. This study focuses on simulating the co-location of solar panels and PEM electrolyzers
with precise time matching, exploring its potential impact on future temporal correlation frameworks.

Compared to annual time matching, hourly time matching in H2 production under additional-
ity modeling frameworks requires higher capacities of contracted resources, typically resulting in low
or even negative emissions [35]. Reducing the time resolution below one hour offers further advan-
tages, particularly in solar integration, off-grid operation, and sector-coupling scenarios. With PEM
electrolyzers capable of responding to power signals within seconds and startup times of less than a
minute [13], relying on hourly averaged solar power output may cause operational errors and mis-
matches in systems without intermediate storage, such as batteries. Therefore, this study employs
1-minute synthesized global irradiance data, addressing the need for high-resolution datasets. While
most studies focus on electricity generation when downscaling temporal resolution, [41] highlights the
potential for using this approach in the planning and operation of green hydrogen systems.

To highlight the trend towards shorter time steps, this study focuses on 1-minute intervals, utilizing
solar irradiance observations from a high-quality research station in Denmark. The data gathered
from a relatively unstable climatic condition, are intended to ensure robust and general conclusions
for this specific case study. This paper aims to introduce a novel, non-probabilistic downscaling
method for synthesizing 1-minute global irradiance data, using hourly data as inputs. This approach
overcomes the challenges of high computational demand and the complexity of probabilistic models,
enabling efficient and accurate calculations of solar renewable electricity generated by PV systems.
This method enhances the integration and optimization of renewable energy systems, supporting the
continued advancement of renewable energy technologies.

The rest of the paper is organized as follows: In Section 2, an overview of the clear sky approaches
and models utilized in this study are presented. This section aims to provide a comprehensive un-
derstanding of the theoretical and practical aspects of clear sky modeling, which is fundamental for
accurate solar irradiance synthesis. Section 3 delves into the topology of real measured data with the
high-frequency and the methodology of the proposed algorithm, detailing the step-by-step processes,
techniques, and equations employed to synthesize high-resolution solar data. In Section 4, the results
of the proposed algorithm are presented and discussed for specific days. Section 5 describes the valida-
tion techniques used to assess the algorithm’s performance, followed by a thorough presentation of the
validation results across the examined location of Lyngby, Denmark, and period. This section aims
to demonstrate the robustness and reliability of the algorithm through extensive testing and analysis.
Finally, Sections 6 & 7 include the discussion and conclusion, summarizing the key findings of the
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study, addressing potential implications, and suggesting directions for future research. This section
encapsulates the overall contributions of the paper and reflects on the broader impact of the work
within the context of renewable energy integration.

2 Clear sky global horizontal irradiation model

Assessing solar energy potential for technology deployment requires evaluating clear-sky solar irradi-
ance, often estimated through models due to measurement limitations. Clear sky days are generally
characterized by the absence of visible clouds across the entire sky dome. Clouds cause fluctuations
in the GHI by affecting its direct and diffuse components. Clouds are a major unpredictable factor
affecting the amount of irradiance reaching the Earth’s surface. Bright clouds can increase the diffuse
component of global irradiance, resulting in an overall increase in GHI, while clouds obstructing the
sun reduce the GHI [31]. The degree of cloudiness is quantified through various methods, including
human observation, ground-based measurements such as sky cameras and irradiance measurements,
and satellite instruments, each with varying accuracy. The method used to determine a clear sky day
depends on the available measurements at the site, and an inaccurate clear sky detection can lead
to incorrect conclusions. Additionally, even without visible clouds, other atmospheric parameters like
aerosols, precipitable water, or hazy conditions can affect atmospheric transmittance, influencing the
amount of solar irradiance reaching the Earth’s surface [9].

Selecting appropriate clear sky models depends on the models’ accuracy and the availability of
input parameters, which are primarily atmospheric or meteorological. In many developing countries
and other regions, these parameters are often not readily available due to the high cost and maintenance
requirements of necessary measuring equipment. Therefore, when the accuracy is not the focus of the
paper, using simple models based on basic input parameters that provide sufficient accuracy to estimate
localized clear sky global irradiance in areas where such measurements are not available is suggested
[11]. These approaches rely on computing the solar zenith angle, a key parameter determining the
magnitude of solar irradiance at any location and time on typical clear sky days, particularly in regions
where atmospheric parameters such as water vapor show little or no fluctuation.

All clear sky models rely on extraterrestrial radiation. Extraterrestrial radiation (H0) is defined
as short-wave solar radiation in the absence of an atmosphere. It is a well-behaved function of the
day of the year, time of day, latitude, and longitude, providing a baseline measure of solar radiation
unaffected by atmospheric conditions [31]. In many studies, extraterrestrial radiation is identified with
the solar constant (Gsc), but this is not the case when an hourly or sub-hourly analysis is conducted.
In addition, variation of the earth-sun distance does lead to a variation of extraterrestrial radiation flux
in the range of ±3.3%. The dependence of extraterrestrial radiation on earth-sun distance is shown in
Equation 1[26].

Ho =
1

π
·Gsc · dr

(
cos(ϕ) cos(δ) sin(ω) +

π

180
ω sin(ϕ) sin(δ)

)
(1)

where Ho represents the extraterrestrial radiation during the hour (or shorter) period, measured in
MJ m−2 hour−1. It quantifies the solar radiation received from the sun under ideal conditions. Gsc

denotes the solar constant, a fixed value of 1361 W/m². It represents the amount of solar radiation
received at the top of Earth’s atmosphere on a surface perpendicular to the sun’s rays. dr is the inverse
relative distance factor for the earth-sun [unitless]. δ is the solar declination, measured in radians. It
varies throughout the year due to Earth’s axial tilt. ϕ represents the latitude of the location where
solar radiation is being calculated, measured in radians. It influences the angle at which solar radiation
reaches the Earth’s surface. ω is the solar time angle, measured in radians. It is calculated based on
local solar time and longitude. The declination angle can be approximated as [15]:

δ = 23.45 sin

[
360

365
· (n+ 284)

]
(2)

where n represents the day of the year. The hour angle can be approximated as [15]:

ω = [(h− 12) +
m

60
]× 15 (3)

where h are hours and m are minutes in solar time.
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Clear-sky solar radiation (Gclear) represents the amount of global solar horizontal irradiation (GHI)
that would be received at a weather measurement site under clear-sky (cloud-free) conditions. The
value of Gclear depends on the time of the year and latitude, and additionally on the time of day
for hourly calculations. These factors influence the potential incoming solar radiation from the sun.
Several other parameters also impact clear-sky solar radiation. Station elevation affects atmospheric
thickness and transmissivity, while the amount of precipitable water in the atmosphere influences the
absorption of some shortwave radiation. Moreover, the presence of dust or aerosols in the air can
further modify the amount of clear-sky solar radiation reaching the surface. Despite there being many
simplified clear sky models in literature [8], a more complex and accurate procedure is preferable,
considering the effects of sun angle and water vapor on the absorption of short wave radiation and by
separating the components of the beam and diffuse radiation [40]. Equation 4 describes the clear-sky
solar radiation in hours or sub-hours periods:

Gclear = (KB +KD)Ho (4)

where KB is the clearness index for direct beam radiation [unitless], KD the transmissivity index
for diffuse radiation [unitless] and Ho is the extraterrestrial radiation [MJ m−2 h−1]. The following
equation presents the clearness index for direct beam radiation KB , [5]:

KB = 0.98 exp[
−0.00146P

Kt sinβ
− 0.075(

W

sinβ
)0.4] (5)

where, Kt is the turbidity coefficient [unitless], and is recommended to be equal to 1, P is atmospheric
pressure at the site elevation in kPa, β the angle of the sun above the horizon called solar altitude angle
(radians) and W is the precipitable water in the atmosphere [mm]. Precipitable water is predicted as

W = 14.0eaP + 2.1 (6)

where ea is the actual vapor pressure of the air (at approximately 2 m) [kPa]. For hourly or shorter
periods the sun angle ϕ is calculated as :

sinϕ = sinϕ sin δ + cosϕ cos δ cosω (7)

After calculating the clearness index for direct beam radiation KB , the diffuse radiation index is
estimated as:

KD = 0.35− 0.36KB (8)

These models, driven by extraterrestrial radiation and accounting for atmospheric conditions, pro-
vide crucial insights into potential energy generation under ideal conditions. However, their application
across diverse geographical and meteorological settings presents complexities, as factors such as cloud
cover and atmospheric variability pose challenges. The ongoing refinement of clear sky models, incor-
porating advanced techniques and precise input parameters, is essential for enhancing their reliability
and applicability worldwide. For hourly periods, a clear sky calculator, available at [6], can be used
to provide the intermediate variables for the previous equations for each location that needs to be
examined and calculate the estimated shortwave. Table 1 presents the intermediate variables that be
used for the measured location in Lyngby, Denmark for clear sky global horizontal irradiance hourly
estimation, that be in line with the real measurements.

3 Data & Methodology

3.1 Data Used

The data used in this study were recorded from January 2023 to mid-December 2023 at a measurement
site located in Lyngby, Denmark. This location was chosen due to its proximity to Lund, Sweden,
and because Denmark was identified as a key site for technology installation within the framework of
the European project Circular Fuels, to which this work is related. The station is on the Technical
University of Denmark’s Lyngby Campus, at Building 119 (55.79064°S, 12.52505°E, 50 m AMSL).
The measurements included global horizontal irradiance (GHI), direct normal irradiance (DNI), diffuse
horizontal irradiance (DHI), longwave downward radiation (LWD), rain accumulation, air temperature,
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Table 1: Intermediate variables for measured location, Lyngby, Denmark

Variable Symbol Value Set Unit
Solar Constant Gsc 1361 Wm−2

Longitudetz Ltz 345 ◦

Kt Kt 1.0 –
Distance factor for the earth-sun dr 0.99 –
Declination angle δ 12.89 ◦

Solar N N 13.13 –
Solar Z Z 48.1 ◦

Atmospheric pressure P 100.9 kPa
Vapor pressure of the air eA 1.54 kPa
Precipitable water in the atmosphere W 23.9 mm

relative humidity, air pressure, average wind speed, and average wind direction. All data were sampled
at 1-minute intervals [4]. The meteorological data were obtained using high-precision instruments. GHI
and DHI were measured with Kipp and Zonen CMP11 pyranometers, while DNI was measured using
a Kipp and Zonen CHP1 pyrheliometer. A rigorous quality control (QC) process was implemented,
consisting of both automatic flagging of potentially erroneous values and manual inspection to remove
invalid periods. While most QC tests were automated, some involved manual visual inspections by the
evaluators. The applied QC tests are:

• Missing timestamps

• Missing values

• K-Tests ([18]; [22])

• Baseline Surface Radiation Network (BSRN)’s closure tests [32]

• BSRN’s extremely rare limits test [32]

• BSRN’s physically possible limits test [32]

• Tracker-off test, improved from [33]

• Visual inspection, including shading assessment, closure test, AM/PM symmetry check for GHI,
and calibration check using the clear-sky index.

These measures ensured the accuracy and reliability of the irradiance data used in the analysis. Further
details on the quality control methodology can be found in forstinger2021. After receiving the data,
a comprehensive meta-analysis was performed to verify its integrity. This involved detailed visual
inspections and the application of additional quality checks. These steps were critical in ensuring that
only valid and reliable data were used for analysis.

3.2 Methodology

The suggested algorithm is based on real one-minute measured data, which are initially averaged hourly
to simulate the hourly average irradiance available in open sources. This aids in the validation of the
synthesized data by comparing them with the real measured data. The measured data are averaged
to achieve the desired hourly resolution. It is important to note that while the time resolution differs
between the one-minute and hourly datasets, the total daily GHI availability should remain consistent.
This means that when integrated over an entire day, the total energy received by the surface, as
measured by the global horizontal irradiance (GHI), will be the same regardless of whether the data
is collected at one-minute or one-hour intervals. The finer resolution data (1 minute) captures more
detailed fluctuations throughout the day, but when summed over the full day, the total irradiance
should equal that of the hourly averaged data, which does not capture much detail. This ensures that
the daily solar energy input remains unchanged, regardless of the averaging method. For creating
hourly averaged global horizontal irradiance data and other meteorological parameters, it is beneficial
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to use data points from half an hour before and half an hour after the desired hour. This method
provides a more accurate representation of the hourly averaged data and aligns closely with clear sky
models. Consequently, the developed hourly averaged global irradiance time series (Gi) is structured
with 24 timesteps per day.

Having the hourly averaged time series of global irradiance on the surface (Gi) next step is the
calculation of the clear sky irradiance Gclear,i according to the Environmental and Water Resources
Institute of the American Society of Civil Engineers (Environmental and Water Resources Institute of
the American Society of Civil Engineers, 2001) as described in Section 2. Afterward, hourly averaged
time series and clear sky estimations are used in the calculation of clearness index values each hour
ki, the average clearness of the day k̄(i,day), the variability during the day k̃(i,day), and the absolute
ramp rate of the clearness index ri. Clearness index (ki) is a crucial parameter, representing the ratio
of the observed measured global horizontal irradiance at the surface to the irradiance calculated for
cloudless conditions at the measuring site, denoted by clear sky irradiance. It indicates the clarity
of the atmosphere and the extent to which clouds and other atmospheric components attenuate solar
radiation. The clearness index is calculated using the following equation 9, [8]:

ki =
Gi

Gi,clear
(9)

where, Gi is the hourly averaged global irradiance (Wm−2) and Gi,clear are the clear sky irradiance
hourly data (Wm−2). The predominant weather condition on a particular day results in a characteristic
temporal pattern of ki that can be used to categorize the day into one of the three categories (cloudless,
broken, and overcast). The detection algorithm of the weather condition is based on the daily average
of hourly averaged ki values k̄i,day and the variability during a day k̃(t,day). Equations 10 describes the
daily average and the equation 11 the variability during the day, [8]:

k̄(i,day) =
1

d

24∑
d=1

ki (10)

k̃(i,day) =
1

d

24∑
d=1

|ki − ki−1| (11)

where d is the number of hours where global and clear sky irradiance is above 0 Wm−2.
The hourly clearness values and variability during the day are used to characterize the examined

day as cloudless, overcast, or broken according to [36]. Table 2 gives an overview of the three weather
classes and their detection conditions.

Table 2: Overview of the three weather classes and their detection conditions [36]

Weather Class Conditions

Overcast 0.6− k̄i,day ≤ k̃i,day
Cloudless −0.72 + 0.8k̄i,day ≥ k̃i,day
Broken clouds Otherwise

Having characterized the examined day, it is essential to calculate another crucial factor: the
ramp rate of the clearness index throughout the day. The ramp rate refers to the rate of change in
the clearness index (Ki) over time. This parameter is significant as it helps in understanding the
variability and stability of solar irradiance, which is critical for the analysis. Analyzing the ramp rate
can gain insights into the fluctuation patterns of solar radiation, which are influenced by atmospheric
conditions. Equation 12 describes the ramp rate of the clearness index each timestep, [8]:

ri =
ki − ki−1

ki
(12)

Linear interpolation is the next step of the suggested algorithm and is conducted in three hourly
time series (hourly averaged irradiance, hourly clear sky irradiance, and ramp rate) to achieve the
desired time resolution. This analysis decomposes these functions into their oscillatory components,
allowing for the attainment of the desired time resolution. Linear interpolation allows for even finer
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resolutions, such as seconds or intervals of 10 or 15 minutes. However, for this study, a 1-minute
resolution is chosen to obtain more detailed results and to simulate an extreme scenario in anticipation
of future EU regulations on time matching. Following this, the data is resampled to minute intervals
and values are interpolated to further refine the time series. Assuming a one-minute time-resolution
data decided to be synthesized, then from 24 size vector (i) time series, with linear interpolation a
1440 size vector (t) will be created. Linear interpolation is applied to three critical hourly time series:
the hourly averaged global horizontal irradiance Gi, the hourly clear sky global horizontal irradiance
estimation Gclear,i, and the ramp rate of the clearness index ri. The absolute difference between
one-minute resolution total irradiance and clear sky radiation is calculated |Gt,clear −Gt|. Finally,
a proposed linear function f (|Gt,clear −Gt| , |ri|) is used to modify the linear interpolation data and
synthesize the high resolution global horizontal irradiance data. Figure 1 is a graphical representation
of the methodology described in this section. The primary purpose of this algorithm is to evaluate its
ability to downscale it back to a higher time resolution while maintaining minimal errors.

Figure 1: Methodology overview

In minute-level irradiance datasets, variations in solar intensity throughout the day lead to higher
irradiance levels during periods of clear skies or midday, contrasting with lower levels during partial
cloud cover, early morning, or late afternoon. To minimize errors in the time series during these
transitional periods, a small threshold is implemented. Specifically, an irradiance threshold of 35
Wm−2 is set to manage significant differences at the start and end of each day. Additionally, a ramp
rate threshold of 2.5% is applied to moderate extreme changes in irradiance at the beginning or end
of the day, for the same reasons. The introduction of those thresholds would be avoided in case more
constraints in data cleaning were applied in the raw data series of the high or low-frequency GHI. When
the absolute difference or ramp rate exceeds these thresholds, a linear function adjusts the synthesized
data through a random addition or subtraction based on a factor α. This adjustment is performed
at each time step during linear interpolation to emulate short-term weather phenomena captured
by variations in the clearness index. Optimizing the dimensionless factor α is critical, particularly
considering the specific weather conditions of the day. The proposed function is formulated as shown
in Equation 13.
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f(t) =


Linear interpolation(t) if |Gt,clear −Gt| ≤ 35 or |rt| ≤ 0.25

Linear interpolation(t) + α · random(0, 1) · Linear interpolation(t)

− α

3
· Linear interpolation(t)

if |Gt,clear −Gt| > 35 or |rt| > 0.25

(13)
In Equation 13, linear interpolation (t) constructs a vector with 60 parameters from a vector with

1 parameter (ranging from 1 to 60-time steps). The function random(0, 1) utilizes a random number
between -1 and 1 to introduce stochastic variability into the synthesized data and is mathematically
presented as random ∼ U(−1, 1).

3.2.1 Step-wise method description

In this subsection, an analytical description of the methodology is presented as a guidance to the
reader. Beginning with the data set of real measured global horizontal irradiance some preliminary
statistics are presented, in Table ??, to help choose the most representative month-of-the-year data
to implement the suggested algorithm. As a sample, the 1-min measured global horizontal irradiance
data are used in the Lyngby, Denmark location.

According to Table ??, the average GHI per month and the standard deviation follow a similar
pattern throughout the year at this location, whereas the maximum GHI shows slight variations.
Since the focus is on detecting short-term phenomena, the primary factor to consider is the standard
deviation of global horizontal irradiance each month. This metric allows for an understanding of
the fluctuation or variability within each month. Additionally, a month that encompasses all three
categories of days (cloudless, broken, and overcast) is aimed to be selected, which means avoiding
months with the highest or lowest average GHI. Based on these criteria, July is proposed as a good
representation of the year, and the algorithm will be implemented on its days. To obtain a holistic view
and a representative sample of the month, six consecutive days that encompass the three categories of
weather conditions and exhibit short-term phenomena were examined. The days examined were from
July 5th, 2023 to July 10th, 2023. Following this, the 1-minute measured data was hourly averaged to
imitate free open sources of global horizontal irradiance, which are accessible for download. Figure 2
shows the real measured GHI data for the selected days in Lyngby, Denmark.

The second step after finding the sample is to hourly averaged the 1-minute time series and to
calculate the clear sky global horizontal irradiance of each day according to Section 2. Both results
are presented in Figure 3. It’s important to note that while this step in presenting the work is the
second stage in our methodology, it may serve as the first step in other contexts. High-frequency data
is often not available, which is why our methodology is designed to be flexible, allowing users to start
the downscaling algorithm from various points. In cases where high-frequency time series are available,
there are more effective ways to reproduce them by training on hourly datasets after applying linear
interpolation to capture trends, using Fourier analysis, and calibrating the model effectively.

Table 3: Sorted Monthly Maximum Global Horizontal Irradiance for Lyngby, Denmark (2023)

Months Average GHI Standard Deviation of GHI Maximum GHI
June 279.77 299.64 1164.00
May 263.82 287.49 1123.00
July 216.43 242.77 1151.00
April 190.89 238.83 1099.00
August 154.13 195.48 1111.00
September 137.08 190.88 829.00
March 91.42 147.78 975.00
October 50.89 94.31 644.80
February 49.55 93.80 563.30
November 22.05 48.02 470.70
January 15.74 37.41 411.10
December 8.22 20.25
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Figure 2: 1-minute measured global horizontal irradiance in some days in July

The third step, after obtaining the hourly averaged time series, involves calculating the hourly
clearness index, the daily average of them, the variability of the day, and the ramp rate of clearness
indexes for each day using equations 9 - 12, as shown in Figures 4 and 5. Regarding the clearness
index, it is observed that, as expected, high values appear in the early morning and late afternoon on
almost every day. These high values are not connected to short-term phenomena but rather to sunrise
and sunset. On cloudless days, the clearness index remains close to 1 throughout the day, indicating
that the global horizontal irradiance follows the trend of clear sky day irradiance. Conversely, on
broken and overcast days, the clearness index fluctuates significantly, indicating the presence of short-
term phenomena. The ramp rate provides crucial insights into the variability and dynamics of solar
irradiance within each examined hour. By highlighting rapid and significant fluctuations, the ramp rate
is an essential factor for understanding the underlying short-term phenomena affecting solar energy
production. As expected in cloudless days the ramp rate is close to 0, but not in broken and overcast
with short-term phenomena days.

Figure 3: Hourly averaged global horizontal irradiance in July with the estimated clear sky irradiance
based on Methodology presented in Section 2

The fourth step involves the days’ characterization in one of the three clusters as cloudless, broken,
and overcast as presented in Table 4. The focus is on broken and overcast (with short-term phenomena)
days. Cloudless days generally follow clear sky estimations and usually do not present short-term
phenomena, although exceptions can occur, as seen on July 8th. A broken day represents the most
complex type of weather condition and tends to produce the largest errors in electricity production
simulations for PV systems in similar locations like the examined one in Lyngby, Denmark, often bigger
than 10%. Overcast days typically exhibit behavior similar to cloudless days. Still, when they occur
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Figure 4: Clearness index of the example days on July

Figure 5: Ramp rate of clearness index of the days

in summer, such as in July, they can also involve short-term phenomena, like the 5th and 10th of July.
It is emphasized that an exact correspondence between artificial data and minute-level measured data
is not crucial. Instead, the algorithm’s ability to accurately capture behavior patterns is of paramount
importance.

Table 4: Days characterization

Day (k̄(t,day)) (k̃(t,day)) Day Characterization
5-Jul 0.546 0.08 Overcast
6-Jul 0.743 0.06 Broken
7-Jul 0.898 0.05 Broken
8-Jul 1.075 0.01 Cloudless
9-Jul 1.053 0.01 Cloudless
10-Jul 0.269 0.07 Overcast

The categorization of each day and the calculation of the hourly clearness index and its ramp rate
completed, is following the increase of the time resolution from hours to minutes. This is achieved
by implementing linear interpolation on the hourly time series, splitting each hour into 60 points,
corresponding to 60 minutes. Consequently, the new step changes from 24 (hours) to 24 × 60 = 1440
(minutes).

The final step before applying the linear function to detect short-term phenomena is to calculate
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another important factor: the difference between the clear sky global horizontal irradiance and the
hourly averaged global horizontal irradiance values after linear interpolation. This difference is cal-
culated for all 1440 timesteps as |Gt,clear − Gt|. This variable, combined with the ramp rate of the
clearness index already calculated at the desired resolution with linear interpolation, serves as the
independent variable for the final proposed function. Equation 13 incorporates ’noise’ into the lin-
ear interpolation of global horizontal irradiance data to ensure the final time series closely resembles
the original 1-minute measured data. There are two critical factors in this function. The first is the
thresholds that imitate the sharp changes occurring early in the morning and late in the afternoon,
corresponding to sunrise and sunset. The second is the factor α, which varies based on the category
of the day. An optimization technique is employed to find the optimal value of α for each type of
day between the three categories for July. Although this method may not provide the best results for
every single day within each category due to the broad conditions described by [36], it achieves a good
match for the examined days and the entire month of July. The constraints used in the optimization
of the factor α were:

1. Maximum f(t) value is equal to maximum measured 1-min global horizontal irradiance Gm

2. Mean f(t) value is equal to the mean 1-min global horizontal irradiance Gm

The average factor α is calculated for each type of day as presented in Table 5.

Table 5: Factor α optimization

Day Category Factor α
Cloudless −0.4
Broken 1.2
Overcast 1.5
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4 Results

In this section, the are presented results to demonstrate the implementation of the algorithm. The
initial step involves handling the measured 1-minute global horizontal irradiance data. The dataset
spans an entire year. Incomplete and missing data, which constituted approximately 4%, were excluded
from the analysis. These missing data points were primarily concentrated in March and December.
Figures 6-11 display the results of the algorithm applied to synthesized data of the six days selected
in subsection 3.2.1 in comparison with real high-resolution measured global horizontal irradiance data
for the same six days in July.

In each dataset, the first diagram presents the difference between hourly averaged GHI and clear
sky data after linear interpolation, alongside the ramp rate at the same resolution. The second diagram
illustrates the implementation of the function f(t) in the linear interpolation data series. Finally, the
third diagram compares the high-time-resolution synthesized data with the 1-minute real measured
GHI data in Lyngby. The initial assessment of the algorithm’s accuracy focuses on its ability to
detect short-term phenomena, a fact that is proved by the Figures 6-11. However, to draw more
reliable conclusions, a comprehensive performance evaluation is necessary to gauge the fidelity of the
synthesized data.

(a) Difference and ramp rate be-
tween clear sky and linear inter-
polation data

(b) Comparison between sug-
gested algorithm and linear inter-
polation

(c) Synthetic irradiance values
compared to measured ones

Figure 6: Results for 5th July.

(a) Difference and ramp rate be-
tween clear sky and linear inter-
polation data

(b) Comparison between sug-
gested algorithm and linear inter-
polation

(c) Synthetic irradiance values
compared to measured ones

Figure 7: Results for 6th July.
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(a) Difference and ramp rate be-
tween clear sky and linear inter-
polation data

(b) Comparison between sug-
gested algorithm and linear inter-
polation

(c) Synthetic irradiance values
compared to measured ones

Figure 8: Results for 7th July.

(a) Difference and ramp rate be-
tween clear sky and linear inter-
polation data

(b) Comparison between sug-
gested algorithm and linear inter-
polation

(c) Synthetic irradiance values
compared to measured ones

Figure 9: Results for 8th July.

5 Performance Evaluation

The performance of the models was evaluated by computing various statistical error parameters such as
the root mean square error (RMSE), the mean bias error (MBE), and the coefficient of determination
R2 values. The RMSE is defined by the following equation [37]:

RMSE =

[
1

p

p∑
p=1

(Gt −Gt,m)
2

] 1
2

(14)

where Gt and Gt,m are the synthesized and measured global solar irradiance values, respectively, while
p is the number of measurements considered. The RMSE values, in general, demonstrate the overall
accuracy of the model, whereas smaller RMSE values signify a more accurate model. The MBE, which
describes the trend of the models in overestimating or underestimating the measured irradiance, is
given as follows in equation 15, [37]:

MBE =
1

p

p∑
p=1

(Gt −Gt,m) (15)

Negative values of MBE signify an underestimation of the measured values, while positive MBE values
indicate an overestimation. The R2 value, which takes on values between 0 and 1, measures how well
the models fit the measured data and is computed as follows in equation 16, [37]:
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(a) Difference and ramp rate be-
tween clear sky and linear inter-
polation data

(b) Comparison between sug-
gested algorithm and linear inter-
polation

(c) Synthetic irradiance values
compared to measured ones

Figure 10: Results for 9th July.

(a) Difference and ramp rate be-
tween clear sky and linear inter-
polation data

(b) Comparison between sug-
gested algorithm and linear inter-
polation

(c) Synthetic irradiance values
compared to measured ones

Figure 11: Results for 10th July.

R2 = 1−
∑p

p=1 (Gt,m −Gt)
2∑p

p=1

(
Gt,m − 1

p

∑p
p=1 Gt,m

)2 (16)

Generally, the higher the R2 value is, the better the model is at predicting the measured data. For a
better and quicker understanding, NRMSE and NMBE were calculated as normalized percentages of
their corresponding mean values using the following equations, [37]:

NRMSE =

[
1
p

∑p
p=1 (Gt −Gt,m)

2
] 1

2(
1
p

∑p
p=1 Gt,m

) (17)

NMBE =

∑p
p=1 (Gt −Gt,m)∑p

p=1 Gt,m
(18)

Equations 17 and 18 give dimensionless NRMSE and MBE, respectively, which are normally ex-
pressed as percentages. These quantities should be as low as possible for better performing models.
According to [43], in evaluating clear sky GHI, NMBE within ±10% and NRMSE ¡20% would signify
good fitting between modeled results and measured data and is quite often used as a quantitative
measure for model performance. Table 6 compares the error and coefficient of determination values
between the synthesized and measured 1-minute global horizontal irradiance data for the selected days,
and the entire six days period.
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Table 6: Performance Metrics

Day NMBE (%) NRMSE (%) R2

5 July (Overcast) 5.0 9.4 0.64
6 July (Broken) 9.6 16.1 0.67
7 July (Broken) 7.2 12.1 0.75
8 July (Cloudless) 2.2 4.0 0.99
9 July (Cloudless) 1.8 2.7 1.00
10 July (Overcast) 6.5 12.0 0.75
5-10 July 4.6 9.4 0.87

To assess the performance of the proposed algorithm over an extended period, performance metrics
were calculated for the entire period from the 5th to the 10th of July, demonstrating positive results for
algorithmic accuracy. Figure 12 presents the aggregated NRMSE, NMBE, and R2 metrics for all days
combined. The error margin is produced based on the factor α in the suggested function (Equation
13) after linear interpolation of hourly averaged data. This factor introduces the fluctuation of the
synthesized data. The factor α is a result of averaging an optimization solution on each day and
climate condition of the examined period and the only way to mitigate the error is by introducing
more constraints and decreasing or increasing the frequency of adding the randomness in interpolated
data series. Testing more days and different climate conditions can road to the best-optimized factor
α but again a universal solution can have better or worse results depending on the climatic condition
that is tested each time.

Figure 12: Performance metrics for the sum of the six examined days

To evaluate the statistical representation of synthetic datasets, Probability Density Function (PDF)
and Cumulative Distribution Function (CDF) analyses were conducted at a 1-minute resolution, cru-
cial for assessing PV performance. The PDF analysis generates frequency diagrams illustrating the
probability distribution of synthesized and measured data across irradiance clusters. This analysis
reveals where the synthesized data either matches or deviates from the measured data within each
cluster. Additionally, the CDF analysis portrays the cumulative probability distribution of GHI, of-
fering insights into the consistency and reliability of solar irradiance synthesis. Comparisons with the
original measured data show that cubic interpolation of hourly values to a 1-minute scale results in
slightly altered frequency distributions, particularly noticeable during partly cloudy conditions (bro-
ken and overcast days) where significant fluctuations occur. In contrast, CDF plots for cloudless days
demonstrate closer alignment between synthesized and measured data. PDF and CDF analysis results
are presented in Figures 13-14.
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6 Discussion

6.1 Practical applications

The primary application of the methodology presented is to improve understanding of rapid fluctuations
in solar power output throughout hours, which directly affects PV usage. The focus is on detecting
short-term phenomena across different types of days and visualizing them, prioritizing the identification
of variability rather than striving for perfect accuracy in representation. The significance of this work
lies in introducing a simple yet effective algorithm for reanalyzing existing hourly averaged GHI data.
Its key advantage is that it does not require additional financial investment or computational resources,
making it accessible for use in locations worldwide that lack high-frequency GHI data, thus eliminating
the need for costly research efforts.

This approach can significantly reduce errors in solar output calculations for computational simula-
tions, solar integration in buildings, and direct coupling of PV systems with electrical loads. Typically,
the error between hourly and minute resolution modeling of PV output is around 10%, and this algo-
rithm offers a practical solution to dramatically decrease that margin. Applications that demand quick
ramp rates, such as coupling PVs with PEMs, stand to benefit significantly. While the focus of this
study is on daily performance, the algorithm has demonstrated its effectiveness over longer periods
such as weeks and months. Though not delivering the highest precision, it achieves accurate results
without unnecessary complexity.

6.2 Future work

Future work will focus on improving the algorithm’s robustness and applicability. First, the algorithm
will be applied to yearly datasets to assess its performance across extended periods. Validation will also
be conducted using a broader range of meteorological data, considering different solar and climatic
conditions and locations. This will help determine how well the algorithm performs under diverse
environmental factors, especially where solar irradiance patterns vary.

Additionally, testing the algorithm with different renewable energy sources, such as wind, and vari-
ous measurement instruments will further improve its versatility and robustness. The effects of altering
the time resolution within the algorithm will also be examined, comparing system-level outcomes like
hydrogen production and overall profitability when using synthesized minute-resolution data versus
hourly averaged data.

Finally, while the algorithm shows promise in addressing the limitations of current downscaling
methods, particularly its non-probabilistic approach and efficient computation of minute-level data,
further optimization is necessary. More research is required to assess the spatial coverage to which this
algorithm can be applied, especially across different geographic locations with varying solar irradiance
patterns. By refining its parameters and validating its performance across a wide range of datasets,
we aim to ensure the algorithm’s effectiveness in diverse contexts and its ability to provide reliable,
high-resolution solar data in different geographical locations and climates.

7 Conclusion

This work presents a simple but efficient procedure to downscale to minute resolution hourly GHI data.
The algorithm suggested in this study effectively synthesizes high-resolution global irradiance time
series from hourly averaged datasets, which are freely available in meteorological sources worldwide.
It successfully captures short-term fluctuations in solar irradiance in every type of sky coverage by
clouds, crucial for accurate simulation and integration of photovoltaic systems in various applications.
It combines the advantages of conventional algorithms and adds new elements while using an accurate
clear sky hourly estimation, the difference between hourly averaged and clear sky irradiance data,
the ramp rate of clearness indexes, and the optimization of factor α that moves the data points from
linear interpolation line. It could be demonstrated that with the proposed algorithm, it is possible
to synthesize minute values of meteorological data with high statistical quality and realistic temporal
variability. For the location Lyngby, Denmark results in the weekly period analysis show promising
accuracy, with a normalized mean bias error of 4.6%, a normalized mean square error of 9.4%, and
a coefficient value of 0.87, demonstrating strong agreement with real measured data. The algorithm
has been tested under conditions with significant fluctuations in GHI, showing its potential for even
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greater accuracy in locations or periods with more stable irradiance patterns. The primary application
of this simple methodology is to improve the modeling of rapid changes in solar power output, without
increasing the complexity and computational time, but improving the accuracy of the simulations.
Future work will focus on increasing the temporal frequency of GHI series in various locations lacking
high-resolution satellite or ground-based measurements.

Nomenclature

Abbreviations

BSRN Baseline Surface Radiation Network
DHI Diffuse Horizontal Irradiation (Wm−2)
DNI Direct Normal Irradiation (Wm−2)
GHI Global Horizontal Irradiance (Wm−2)
MBE Mean Bias Error
NMBE Normalized Mean Bias Error (%)
NRMSE Normalized Root Mean Square Error (%)
PV Photovoltaic
QC Quality Control
RMSE Root Mean Square Error

Symbols

k̄(i,day) Daily average of hourly averaged ki
dr Distance factor for the earth-sun
eA Vapor pressure of the air (Pa)
G Global Horizontal Irradiance (Wm−2)
Gclear Global clear sky horizontal irradiance (Wm−2)
Gi Hourly averaged global horizontal irradiance (Wm−2)
Gm 1-minute measured global horizontal irradiance (Wm−2)
Ho Extraterrestrial solar horizontal irradiance (Wm−2)
Ho,d Daily extraterrestrial solar horizontal irradiance (Wm−2)
i Hours
KB Clearness index for direct beam radiation
ki Clearness index
KD Transmissivity index for diffuse radiation
kday Daily clearness
n Day of the year
P Atmospheric pressure (Pa)
ri Ramp rate of the clearness index during the day
R2 Coefficient of determination
t Time resolution (minutes or group of minutes)

k̃(i,day) Variability of clearness index ki during the day
W Precipitable water in the atmosphere (mm)

Greek Characters

α Optimization factor (dimensionless)
β Solar Altitude Angle (◦)
δ Declination angle (◦)
ϕ Latitude (◦)
ω Hour angle (◦)
z Zenith angle (◦)
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8 Appendix

(a) Frequency plot for 5th July (b) CDF plot for 5th July

(c) Frequency plot for 6th July (d) CDF plot for 6th July

Figure 13: Analysis of frequency and CDF plots for the 5th and 6th of July.
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(a) Frequency plot for 7th July (b) CDF plot for 7th July

(c) Frequency plot for 8th July (d) CDF plot for 8th July

(e) Frequency plot for 9th July (f) CDF plot for 9th July

(g) Frequency plot for 10th July (h) CDF plot for 10th July

Figure 14: Analysis of frequency and CDF plots for the 7th, 8th, 9th, and 10th of July.
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