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Abstract. Portal hypertension, a life-threatening complication of cir-
rhosis, is largely triggered by increased intrahepatic vascular resistance.
Fibrosis, regenerative nodule formation, intrahepatic angiogenisis and si-
nusoidal remodelling are classical mechanisms that account for increased
intrahepatic vascular resistance in cirrhosis. Our study leverages high-
resolution 3D synchrotron radiation-based microtomography and a deep
learning-based segmentation approach to investigate these microstruc-
tural changes in the liver. By employing a multi-planar U-Net model,
trained using annotated tomographic slices sourced from our developed
online learning tool, we effectively quantify critical vascular parameters
such as sinusoid proportions, local thickness, and connectivity. These
insights advance our understanding of liver microarchitecture and also
allows correlating vascular parameters to inflammation and fibrosis sever-
ity. Understanding and quantifying these microstructural changes is es-
sential to be able to predict the transition from seemingly benign condi-
tions like steatosis or mild inflammation to severe fibrosis and cirrhosis.

Keywords: Browser-based segmentation tool · 3D synchrotron x-ray
microtomography · Liver sinusoidal network

1 Introduction

Liver disease is a significant global health burden, causing over two million deaths
annually. Advanced fibrosis, a critical phase of liver disease, substantially in-
creases mortality risk and is closely linked with a fourfold increase in cardio-
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vascular events [5]. Nearly 90% of individuals diagnosed with cirrhosis eventu-
ally develop portal hypertension, primarily due to increased vascular resistance
within the liver [9]. This resistance is partly attributed to the remodeling of
sinusoids by hepatic stellate cells, which create a stiff, collagen-rich matrix char-
acteristic of fibrosis [19,21]. Despite significant progress in understanding liver
fibrosis at the molecular level, translating this knowledge into clinical practice
has been challenging. A comprehensive understanding of the evolving patholog-
ical changes and detailed anatomical data on vascular and cellular adaptations
remains elusive.

Traditional 2D histological methods are inadequate for capturing the com-
plex quantitative nuances of cellular and tissue architecture, necessitating ad-
vanced large-field, high-resolution 3D imaging techniques. To address this chal-
lenges, we employed the NIF mouse model that spontaneously develops chronic
liver inflammation and fibrosis [6,7,18], combined with Synchrotron Radiation
x-ray micro-Computed Tomography (SRµCT). SRµCT technique provides su-
perior image quality and submicron resolution [22], allowing us to explore 3D
microstructural changes during fibrosis progression. The technique has proven
its efficacy in 3D visualization, capturing hepatic proliferative bile ductules [13]
microvascular alterations at the sinusoidal and capillary scale [27,28], and dis-
tinguishing pathological tissues [17].

Our study introduces a novel analysis pipeline for liver fibrosis analysis using
deep learning with high-resolution SRµCT, significantly enhancing the visual-
ization and quantification of fibrotic changes.

High-resolution imaging: Our SRµCT images surpass previous works in qual-
ity, providing higher cellular resolution that makes inflammatory cells in the liver
visible which has previously not been done using µCT. This capability allows us
to quantify the 3D structural differences between lesion and unaffected regions
in the same scan and enables the visibility of smaller, more complex structures
within the liver – structures that were unresolvable in previous works [27].

Segmentation tool: We have developed a browser-based annotation tool 10

that utilizes deep learning [23] to facilitate efficient data labeling and image
segmentation, with necessary overlays to allow visual inspection and ensure seg-
mentation quality [23]. The tool utilizes a 2D multi-planar U-Net for image
segmentation, chosen for its faster training speed over a typical 3D U-Net, in
order to get quick feedback during use. U-Net and its many variants (e.g. [12,29])
are widely used for the segmentation of biological data [4,24]. It has become a
standard in microscopy image segmentation as well, where it has been applied
to tasks such as 3D organelle segmentation [10] and synaptic cleft segmenta-
tion [11], among others [2]. Specifically, the multi-planar U-Net [20] has also
previously been shown to be effective for microscopy segmentation with small,
sparsely annotated datasets [15].

Quantitative 3D analysis: Unlike previous studies that focused on larger
vessels or used simple thresholding techniques for microvasculature analysis, our
method quantifies the 3D structure of fibrotic lesions. We measure lesion size

10 https://github.com/laprade117/interactive-unet
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and assess adaptive changes in the sinusoid network following injury and fibrosis,
providing a detailed understanding of the microstructural disruptions [15][20].

We segment the SRµCT scans into distinct volumes, differentiating between
sinusoid and non-sinusoidal, vessel and non-vessel, and lesion and unaffected re-
gions. We then visually and quantitatively analyze disrupted sinusoidal networks
and vascular complexities in fibrotic livers, demonstrating significant changes
that potentially contribute to sinusoidal hypertension and liver damage (Fig. 1).
Our study addresses the significant gaps in current liver fibrosis research but
also introduces innovative tools and methodological pipelines that enhance the
understanding and management of this severe condition.

Fig. 1. An overview of our analysis pipeline. We segment our SRµCT scans into three
segmentation volumes: sinusoid and non-sinusoid, vessel and non-vessel, and lesion and
unaffected regions. We then combine the segmentation volumes and compute quantifi-
cation measures and statistics. The table in the data block describes the number of
scans we have of both NIF and control at different stages of disease. Bold indicates the
scans that we investigate in detail in this paper.

2 Data

Mice livers were perfused with PBS via the inferior vena cava, formalin-fixed
and paraffin-embedded [7]. 36 tissue blocks, from 4- to 18-weeks old NIF (fibro-
sis induced) and control mice, were scanned at 2 to 3 randomly selected regions,
for a total of 87 image volumes. We include a table in the data block of Fig. 1
for an overview of the collected scans. Following SRµCT image acquisition, liver
tissue was sectioned and stained with Hematoxylen & Eosin (H&E) and Picro-
Sirius Red (PSR) [7] to differentiate tissue structures and compare with their
corresponding synchrotron images. We use all 87 volumes for segmentation, and
perform an in-depth quantification of the 8-week (8w) NIF (n=11) and con-
trol mice (n=8) volumes. After segmentation, we discard 1 NIF and 1 control
from the quantification due to large vessels occupying the volumes leaving little
information about cellular structure.
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3 Image processing

3.1 Preprocessing

Before training the segmentation models, a series of preprocessing steps were
implemented to normalize for imaging variance and artifacts (Fig. 2). To preserve
memory, and increase processing speed, a center crop is applied to remove border
artifacts followed by 2× binning to achieve a final shape of (800×800×800) with
a resolution of 0.65 µm per voxel (Fig. 2a). The bias field is removed by fitting a
linear regression model to the pixels in the image and subtracting the resulting
prediction. Bright artifacts surrounding the vessels are removed by masking the
volumes with a high threshold value, smoothing the mask using a Gaussian filter,
and then subtracting it from the original volume (Fig. 2b). Finally, all volumes
are mean standardized and squeezed down to the 0-1 range (Fig. 2c,d).

Fig. 2. Data pre-processing steps. 2D presentation of RAW images (a), bias and white
artifact corrected (b), final intensity normalized images (c), and ortho-view of pre-
processed image stack (d).

3.2 Segmentation

Architecture For segmentation, we use a standard 2D U-Net trained in a multi-
planar fashion by utilizing training samples extracted at random positions and
orientations. At inference time, the 2D model predicts along the 3 primary axes
and averages the results together for a final 3D prediction in a multi-planar
fashion [20].
Browser-based segmentation tool: To facilitate efficient annotation and
model training, we utilized an online learning tool that we developed to an-
notate volumes efficiently. The tool is a simple user interface that displays a
randomly oriented and positioned slice to the user. The user then annotates the
slice using a paint brush tool before moving on to another slice. At any point a
model can be trained within the interface and the resulting predictions can be
overlayed on the current slice to guide the user during the annotation process.
A weight map is used to ensure that the models are trained only on the pixels
that the user annotates, allowing quick sparse annotations to be made in each
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slice. Once satisfied with the trained model, the user can then use the model to
segment the entire volume.

The models are trained using the Adam optimizer with the batch size and
learning rate chosen within the tool. During most runs, best results are obtained
with batch sizes of 1, 2, and 4 with learning rates 0.001 and 0.0001. To account
for any possible class imbalance introduced by the user during the annotation
process, a loss function based on Matthew’s correlation coefficient [1,3] (MCC)
with a second binary cross-entropy (BCE) term is used to provide smoother
gradients. The loss is computed via,

MCC =
(TP · TN)− (FP · FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

BCE = − 1

N

N∑
i=0

yi log(ŷi) + (1− yi)(1− log(ŷi))

L = MCC+CE

and averaged over each class. In the MCC loss, the true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) counts are normalized
by the number of annotated pixels, and non-annotated pixels are ignored. The
MCC function is bounded between -1 and 1 with 1 being a perfect score, 0 being
random guessing and -1 being perfectly incorrect.
Segmentation process: During annotation, 2-4 volumes are selected and the
interactive segmentation tool is used to annotate slices from these volumes and
train a segmentation model. The model is then used to fully segment those 2-
4 volumes. This is repeated on small groups of volumes to both expedite the
process and enhance segmentation by leveraging knowledge across more than
one volume. A final model is then trained on 40 segmented volumes and used
to segment the entire dataset of 80 volumes. Two models are built during this
process, one for segmentation of the lesion and unaffected regions and one for
segmentation of vessels/sinusoids.

3.3 Postprocessing

Lesion segmentations: To eliminate line artifacts generated by the multi-view
segmentation, Gaussian filtering was applied, followed by a binary dilation. This
produces a smooth segmentation that outlines the lesion regions in the volume
(Fig. 3a-d).
Vessel/sinusoid segmentations: Line artifacts are eliminated via Gaussian
smoothing at a low sigma. Given that the sinusoidal diameters range from 7 µm
in the periportal and 15 µm in the pericentral area [25,26,28], connected com-
ponents were applied to remove all disconnected objects that could fit into a
sphere with a diameter of 6 µm (Fig. 3e-h). Vessels and sinusoids are separated
into two separate masks by viewing the volume from 9 different views. In each
view, the area of the object to which the pixel belongs is calculated, and if it
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Fig. 3. High-quality structural predictions from NIF (a-d) and control (e-h) liver vol-
umes. (a,e) 2D tomographic slice (input image) and predictions for lesions (b-d) or
vasular structures (f-h). U-net raw predictions (b,f) were postprocessed by smoothing
(c,g) and noise removal (d,h).

exceeds a specified area threshold, it is designated as a vessel; otherwise, it is
assigned a sinusoid label. The final decision on whether the pixel is a vessel or a
sinusoid is determined through majority voting.

3.4 Quantification

Proportions: To assess adaptive changes in the sinusoidal network following
injury and fibrosis, changes in the sinusoidal network were quantified within
control and both lesion and unaffected regions of NIF livers. The proportion of
sinusoids in control mice is determined by dividing the number of sinusoid voxels
by the total volume, excluding vessels.

To quantify the proportion of sinusoidal volume in NIF mice within lesion
regions, the volume of sinusoids within the lesion regions is compared to the total
volume of the lesions themselves. A similar approach is applied in unaffected
regions.
Local thickness: The local thickness is computed as, for each voxel within a
3D object, it is assigned the radius of the largest sphere that can fit entirely
within the object while encompassing the voxel [8].
Branching: The branch analysis is used to measure the connectivity and length
of the sinusoidal network. First, the segmented sinusoid is transformed into a
continuous skeleton [16], then a graph-based technique is employed [14] to iden-
tify the branches within the skeleton. Branch types were categorized into three
types: T0 for endpoint-to-endpoint branches (isolated branch), T1 for junction-
to-endpoint branches, and T2 for junction-to-junction branches. Since the types
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refer to branches, not nodes, it is assumed that each T0 branch has 2 nodes, T1

has 1 node, and T2 has 1 node, plus one additional node for the entire branch
it belongs to. To calculate the degree of connectivity, the count of T2 nodes,
increased by one for each branch, is divided by the sum of the T1 and twice the
T0 nodes. This approach aids in understanding of the overall connectivity within
the sinusoidal network, with values close to zero indicating lower connectivity.
Statistical Test: The Mann–Whitney U test, a non-parametric test, is em-
ployed to compare the differences in means between the control and NIF mice,
as well as between lesion and unaffected regions.

4 Results and Discussion

Detection of local structure-specific alterations in the fibrotic liver:
SRµCT can identify microstructural changes in the development of liver fibrosis
while preserving the volumetric architecture (Fig. 4). Employing deep learning
guided by correlative histology, structural features like lesions, vessels, and si-
nusoids were segmented. Lesions, characterized by persistent inflammation and
fibrosis, were confirmed through validation using consecutive histological sections
stained with H&E (Fig. 4a,b) and Picrosirius Red (Fig. 4o,p).

Fig. 4. SRµCT reveals microvascular changes in liver lesions of NIF mice. Representa-
tive SRµCT scans of control and fibrotic NIF livers (c-f), with 3D segmented features
(g-n). Histological sections, stained with H&E (a,b) or PSR (o,p) matched with x-ray
slices (e,f), segmented sinusoid (i,j), and lesion and vessel features (m,n).

Remodulation of the sinusoidal network: To assess adaptive consequences
in the sinusoidal network resulting from injury and fibrosis, we measured lesion
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size and quantified sinusoidal parameters for NIF lesion regions, NIF unaffected
regions, and control volumes. Significantly decreased sinusoid proportions were
observed in NIF lesions compared to healthy controls (p-value = 0.0063) and un-
affected NIF regions (p-value = 0.00001) (Fig. 5d). When comparing the mean
local thickness of both sinusoidal and non-sinusoidal structures within the liver
volumes, it becomes evident that the control volumes show a tight clustering, in-
dicating minimal variation in local thickness. Conversely, the NIF lesions display
a broader spread, implying a lower vascular density in 8w NIF lesions (Fig. 5a-c).
The examination of microvascular changes in liver fibrosis can provide insights

Fig. 5. Fibrotic lesions show disrupted sinusoidal organization and decreased vascular
complexity. (a-c) sinusoid network density expressed as local sinusoid thickness against
non-sinusoids, (d) Sinusoid volume proportions, (e) degree of sinusoid connectivity, (f)
mean branch length per volume, and (i) histogram of branch length. Colour codes in
NIF represent measures from the same NIF scan, lesion vs. unaffected regions. Branch-
ing of sinusoidal network in control (g,h) and NIF mice (j-l), displayed as entire network
(h,k) or detailed zoomed-in illustrations (g,j,l). The color range indicates branch length.

into the mechanisms behind the resistance to blood flow and the direct increase
in portal pressure. Here, we utilize the 3D structure of liver sinusoids to quantify
vascular branching geometric features in fibrotic livers in more detail (Fig. 5e-l).
We found that fibrosis affected the microcirculation in the liver characterized by
a disrupted sinsusoidal network with reduced connectivity (Fig. 5e) and reduced
mean branch length (Fig. 5f,i) compared to healthy controls.

5 Conclusion

Leveraging high quality SRµCT scans and our interactive segmentation and
quantification workflow, our study achieved precise and rapid localization of
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diverse structural features within intact liver tissue. Our 3D analysis, which
includes local thickness, connectivity, and branch length, uncovered significant
differences between fibrotic lesions and unaffected regions. Notably, the remod-
ulation of microvasculature in fibrotic liver regions, characterized by increased
local sinusoid thickness, decreased total sinusoid volume, and a fragmented vas-
cular network, as evidenced by our measurements, suggest a potential mecha-
nism for decreased blood flow and impaired liver function. This study highlights
the advanced capabilities of high-resolution SRµCT imaging in detecting de-
tailed microstructural changes but also underscores the effectiveness of our deep
learning-based approach in enhancing the quantification and understanding of
liver fibrosis progression.
Prospect of application: Our interactive segmentation tool, is broadly appli-
cable and simple enough to use that clinicians and medical researchers without
strong machine learning knowledge can use it effectively. Additionally, the anal-
ysis pipeline used here can be applied in future studies for understanding the
microvascular and structural changes in other organs and diseases.

References

1. Abhishek, K., Hamarneh, G.: Matthews correlation coefficient loss for deep con-
volutional networks: Application to skin lesion segmentation. In: 2021 IEEE 18th
International Symposium on Biomedical Imaging (ISBI). IEEE (2021)

2. Aswath, A., Alsahaf, A., Giepmans, B.N., Azzopardi, G.: Segmentation in large-
scale cellular electron microscopy with deep learning: A literature survey. Medical
Image Analysis 89, 102920 (2023)

3. Chicco, D., Jurman, G.: The advantages of the matthews correlation coefficient
(mcc) over f1 score and accuracy in binary classification evaluation. BMC Genomics
21(1) (2020)

4. Du, G., Cao, X., Liang, J., Chen, X., Zhan, Y.: Medical image segmentation based
on u-net: A review. Journal of Imaging Science and Technology 64(2), 020508–1–
020508–12 (2020)

5. Ekstedt, M., Hagström, H., Nasr, P., Fredrikson, M., St̊al, P., Kechagias, S.,
Hultcrantz, R.: Fibrosis stage is the strongest predictor for disease-specific mortal-
ity in nafld after up to 33 years of follow-up. Hepatology 61(5), 1547–1554 (2015)

6. Fransén Pettersson, N., Deronic, A., Nilsson, J., Hannibal, T.D., Hansen,
L., Schmidt-Christensen, A., Ivars, F., Holmberg, D.: The immunomodulatory
quinoline-3-carboxamide paquinimod reverses established fibrosis in a novel mouse
model for liver fibrosis. PLOS ONE 13(9), e0203228 (2018)

7. Fransén-Pettersson, N., Duarte, N., Nilsson, J., Lundholm, M., Mayans, S., Lare-
falk, A., Hannibal, T.D., Hansen, L., Schmidt-Christensen, A., Ivars, F., Cardell,
S., Palmqvist, R., Rozell, B., Holmberg, D.: A new mouse model that spontaneously
develops chronic liver inflammation and fibrosis. PLOS ONE 11(7), e0159850
(2016)

8. Gostick, J., Khan, Z., Tranter, T., Kok, M., Agnaou, M., Sadeghi, M., Jervis,
R.: Porespy: A python toolkit for quantitative analysis of porous media images.
Journal of Open Source Software 4(37), 1296 (2019)

9. Groszmann, R.J., Abraldes, J.G.: Portal hypertension: From bedside to bench.
Journal of Clinical Gastroenterology 39(4), S125–S130 (2005)



10 W. M. Laprade and B. Pirzamanbein et al.

10. Heinrich, L., Bennett, D., Ackerman, D., Park, W., Bogovic, J., Eckstein, N.,
Petruncio, A., Clements, J., Pang, S., Xu, C.S., Funke, J., Korff, W., Hess, H.F.,
Lippincott-Schwartz, J., Saalfeld, S., Weigel, A.V., Ali, R., Arruda, R., Bahtra,
R., Nguyen, D.: Whole-cell organelle segmentation in volume electron microscopy.
Nature 599(7883), 141–146 (2021)

11. Heinrich, L., Funke, J., Pape, C., Nunez-Iglesias, J., Saalfeld, S.: Synaptic Cleft
Segmentation in Non-isotropic Volume Electron Microscopy of the Complete
Drosophila Brain, p. 317–325. Springer International Publishing (2018)

12. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnu-net:
a self-configuring method for deep learning-based biomedical image segmentation.
Nature Methods 18(2), 203–211 (2020)

13. Keegan, A., Martini, R., Batey, R.: Ethanol-related liver injury in the rat: a model
of steatosis, inflammation and pericentral fibrosis. Journal of Hepatology 23(5),
591–600 (1995)

14. Kollmannsberger, P., Kerschnitzki, M., Repp, F., Wagermaier, W., Weinkamer, R.,
Fratzl, P.: The small world of osteocytes: connectomics of the lacuno-canalicular
network in bone. New Journal of Physics 19(7), 073019 (2017)

15. Laprade, W.M., Perslev, M., Sporring, J.: How Few Annotations are Needed for
Segmentation Using a Multi-planar U-Net?, p. 209–216. Springer International
Publishing (2021)

16. Lee, T., Kashyap, R., Chu, C.: Building skeleton models via 3-d medial surface
axis thinning algorithms. CVGIP: Graphical Models and Image Processing 56(6),
462–478 (1994)

17. Lettmann, K.A., Hardtke-Wolenski, M.: The importance of liver microcirculation
in promoting autoimmune hepatitis via maintaining an inflammatory cytokine mi-
lieu – a mathematical model study. Journal of Theoretical Biology 348, 33–46
(2014)

18. Nilsson, J., Hörnberg, M., Schmidt-Christensen, A., Linde, K., Nilsson, M., Carlus,
M., Erttmann, S.F., Mayans, S., Holmberg, D.: Nkt cells promote both type 1 and
type 2 inflammatory responses in a mouse model of liver fibrosis. Scientific Reports
10(1) (2020)

19. Onori, P., Morini, S., Franchitto, A., Sferra, R., Alvaro, D., Gaudio, E.: Hepatic
microvascular features in experimental cirrhosis: a structural and morphometrical
study in ccl4-treated rats. Journal of Hepatology 33(4), 555–563 (2000)

20. Perslev, M., Dam, E.B., Pai, A., Igel, C.: One Network to Segment Them All:
A General, Lightweight System for Accurate 3D Medical Image Segmentation, p.
30–38. Springer International Publishing (2019)

21. Poisson, J., Lemoinne, S., Boulanger, C., Durand, F., Moreau, R., Valla, D.,
Rautou, P.E.: Liver sinusoidal endothelial cells: Physiology and role in liver dis-
eases. Journal of Hepatology 66(1), 212–227 (2017)

22. Rawson, S.D., Maksimcuka, J., Withers, P.J., Cartmell, S.H.: X-ray computed
tomography in life sciences. BMC Biology 18(1) (2020)

23. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015, p. 234–241. Springer International Publishing (2015)

24. Siddique, N., Paheding, S., Elkin, C.P., Devabhaktuni, V.: U-net and its variants
for medical image segmentation: A review of theory and applications. IEEE Access
9, 82031–82057 (2021)

25. Vollmar, B., Menger, M.D.: The hepatic microcirculation: Mechanistic contribu-
tions and therapeutic targets in liver injury and repair. Physiological Reviews
89(4), 1269–1339 (2009)



DL for 3D Liver Fibrosis Analysis 11

26. Wake, K., Sato, T.: “the sinusoid” in the liver: Lessons learned from the origi-
nal definition by charles sedgwick minot (1900). The Anatomical Record 298(12),
2071–2080 (2015)
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