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Abstract

The excursion distribution of stochastic processes is important in many applications
and is an important object in probability theory. The excursion distributions are defined
as the time between a 𝑢-level up-crossing and the following down-crossing of the same
level. While the notion of the excursion distribution might be intuitive, the general
problem of describing it is not. Finding the excursion distribution continues to pose a
problem and has been doing so during the last century. Due to the need to describe
the excursion distribution in applications, several approximation methods have been
developed.

One such method is the independent interval approximation. This method uses a
stationary alternating renewal process to approximate the clipped process. The clipped
process is computed by taking the sign of the process we are interested in. Which is
usually a sufficiently smooth stationary Gaussian process. Then the interval distribu-
tion is found by matching the characteristics of the clipped processes to those of the
stationary alternating renewal process.

In this thesis, a new approximation method is introduced, which is similar to the
independent interval approximation. However, this method is based on the Slepian
process, which models the behavior of a smooth stationary Gaussian process at the
moment of an up-crossing of level 𝑢. The Slepian process is not stationary. Therefore,
a non-stationary alternating renewal process is used to approximate the clipped Slepian
process. This is the main idea behind the Slepian-based independent interval approxi-
mation. Paper ii introduces this for zero-level excursion, and in Paper iv, it is extended
to more general crossing levels. These two papers treat one of the two major topics
within this thesis.

The second major topic of this thesis concerns the characteristics of alternating
renewal processes. In particular, when the interval distributions can be recovered from
characterizing functions such as the covariance or expected value functions. In Paper i,
the symmetric case is treated, and it is shown that this is possible under monotonicity
conditions on the expected value function. If this condition is satisfied, the interval
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distribution will be geometrically divisible. The asymmetric case is treated in Paper iii,
and similar conditions are derived.

The results concerning the recoverability of the interval distribution in Papers i
and iii have practical implications for the Slepian-based independent interval approxi-
mation. They ensure that the obtained approximation of the excursion distribution
is a valid probability distribution, which is not obvious for the ordinary independent
interval approximation.



Popular Science Summary

Suppose that you observe the amount of water that flows through a river over time. In
many situations, it is of interest to know, for example, how long you will observe this
amount of water increasing. This might give time to prepare for extreme events such as
floods. Such a problem can be phrased as a level crossing problem for a random process,
in this case, for the change or derivative of the amount of water flowing in the river.

Similar problems are ubiquitous in many fields, such as engineering, physics, and
economics. Understanding how the random time between two level crossings is there-
fore important. However, describing these mathematically has proven to be a challenge
for almost a century. As a consequence, approximation methods have been developed.

In this thesis, we introduce a new approximation method. This method is based on
shifting the perspective from observing the random times from a distance to observing
the level crossings from where they occur in time. By doing this, some problems that are
in other approximation methods can be addressed in such a way that our approximation
satisfies some mathematical conditions, for it has to be a reasonable approximation.

This is one of two major topics in this thesis. The second topic is the study of
random processes that can only take two values, one and minus one. Two building
blocks are used to construct these random processes. There are functions that describe
these random processes.

Suppose that you only have the functions; in most situations, it is not clear that you
can get back the building blocks. In this thesis, conditions are found such that when
satisfied, allow us to find the building blocks from only these functions. It is important
to find such conditions since they allow us to ensure that the previously mentioned
approximation method gives reasonable approximations of the time between two-level
crossings.
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Introduction

Although our intellect always longs for clarity

and certainty, our nature often finds uncertainty

fascinating.

— Carl von Clausewitz

1 Background

The characterization of the excursion distribution of stochastic processes is a problem
that has fascinated mathematicians and statisticians since the early 1940s. The easiest
way to explain the idea of a level crossing is with an illustration. In Figure 1, a trajectory of
a stationary Gaussian process can be seen, and its crossings of the level 𝑢 The excursion
distribution is defined as the distribution of the length between two level crossings of
the same level. Hence, there are two such distributions associated with each process.
One below and one above the level 𝑢.

These distributions are of interest due to their appearance in many fields, such as
engineering and physics. For example, a heatwave can be defined as the excursion of
temperature above some critical level. A heatwave is generally not a problem unless it
lasts for a long time. Hence, there is an interest in understanding the tail behavior of
the excursion distribution, since it can describe extreme events such as a long heatwave.

While the excursion distribution is an intuitive object, it has proven difficult to
characterize based on the properties of the underlying process. This is why the problem
has received considerable attention since the 1940s and the seminal work by Rice (1944,
1945). In the latter half of the 1980s, a mathematical formula was derived for the density
of the level crossing distribution. This is the Durbin-Rychlik formula.1 However, this
formula is not explicit and is, therefore, difficult to use in practice.

1Named in honor after the works by Durbin (1985) and Rychlik (1987b)

1
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Figure 1: A trajectory of a stationary Gaussian process with the covariance function
𝐶 (𝑡) = 𝑒−𝑡

2/2, and a level 𝑢 = 5/4.

Due to the difficulty and practical importance of the excursion distribution, several
approximation methods have been developed. Such as methods based on Rice series,2
and regression-based methods using the Slepian process.3 However, in this thesis, we
focus on the independent interval approximation, which traces its roots back to the
work by McFadden (1956). This method has also seen a rise in popularity in physics
during the last decades with the works by Majumdar et al. (1996) and Sire (2007, 2008).

This method is based on the clipped process. The clipped process is a binary
stochastic process that takes the value one or minus one, depending on if the process
we want to approximate is above or below 𝑢. The intervals of the clipped process will
be dependent. However, if this dependence is disregarded and the intervals are treated
as independent, the clipped process becomes an alternating renewal process. Hence,
the alternating renewal process with independent intervals is used to approximate the
clipped process. The name of the independent interval approximation is, therefore,
very fitting.

To approximate the clipped process with the alternating renewal process, the two
need to be connected. This is done by matching the covariance function, i.e., imposing
the covariance of the clipped process onto the alternating renewal process. The interval
distribution can then be written as a function of the covariance for the alternating
renewal process. Thus, an approximation of the excursion distribution is found by
using this relation after matching.

The issue with this approach is that there is no intuitive argument as to why this
matching leads to an approximated excursion distribution that is a valid probability
distribution. Not even for smooth stationary Gaussian processes. Addressing this issue

2See Lindgren (2019) for an overview.
3See Lindgren and Rychlik (1991)
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is one of the main topics in this thesis.
The thesis can be divided into two main parts, each covering the main topics.

The first is comprised of Papers ii and iv, which introduce an alternative version of
the independent interval distribution based on the Slepian process. The second part
is comprised of Papers i and iii. These deal with the recoverability of the interval
distribution of the switch process4 from the functions that characterize it, such as the
expected value and covariance functions. This recovery of the interval distribution
shows that the Slepian-based independent interval approximation is valid for a large
class of Gaussian processes.

To provide a background to the subsequent papers, we cover three main topics in
this introduction. We start with stationary Gaussian processes. Then move to renewal
theory and the alternating renewal process. Lastly, we provide a short overview of
geometric divisibility, which plays an important role in Paper i.

2 Stationary Gaussian processes and their excursions

Since we restrict ourselves to the excursion of sufficiently smooth stationary Gaussian
processes, we give a brief introduction to them here. A stochastic process is a family of
random variables indexed by an element belonging to some set, usually representing
time. More formally let (Ω,ℱ,ℙ) be a probability space. A stochastic process can be
expressed as a function 𝑋 : T × Ω → ℝ, such that 𝑋 (𝑡, ·) : Ω → ℝ is a random
variable for every 𝑡 ∈ T . The other argument can also be fixed. By fixing 𝜔 ∈ Ω, we
obtain a function with 𝑡 as an argument. Such a function is called a trajectory, and
the theory for defining a distribution for the trajectories is well established. However,
we limit ourselves to only mentioning the trajectories since they are important when
defining the level crossings.

We are now ready to define a Gaussian process. If for any finite sequence of time
points, 𝑡1, 𝑡2, ..., 𝑡𝑘 ∈ T , the vector (𝑋 (𝑡1), 𝑋 (𝑡2), ..., 𝑋 (𝑡𝑘)) follows a multivariate
normal distribution, we say that the stochastic process 𝑋 (𝑡) is Gaussian.

With the definition of a Gaussian process in place, we define stationarity next.
There are two versions of stationary, weak and strict. A process is strictly stationary if
for all 𝜏 ∈ ℝ and time points 𝑡1, 𝑡2, ..., 𝑡𝑘 ,

𝑋 (𝑡1), 𝑋 (𝑡2), ..., 𝑋 (𝑡𝑘)
𝑑
= 𝑋 (𝑡1 + 𝜏), 𝑋 (𝑡2 + 𝜏), ..., 𝑋 (𝑡𝑘 + 𝜏).

For a stochastic process to be weakly stationary, two conditions need to be satisfied.
The first is that the expected value is constant for all 𝑡 , and the second is that the

4Which is an alternating renewal process with the two states one and minus one.
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covariance between two points in time only depends on their distance in time. This
can be expressed as

(𝑖) 𝐸𝑋 (𝑡) = 𝜇, for all 𝑡 ∈ ℝ

(𝑖 𝑖) 𝐶𝑜𝑣(𝑋 (𝑡), 𝑋 (𝑡 + 𝜏)) = 𝐶 (𝜏), for all 𝑡, 𝜏 ∈ ℝ,

where 𝜇 ∈ ℝ and𝐶 (𝜏) is a positive definite function, which we call the covariance func-
tion. We assume that the covariance function is normalized such that that 𝐶 (0) = 1.
For Gaussian processes, weak and strict stationarity coincide. This follows from the fact
that the multivariate Gaussian distribution is uniquely characterized by its expected
value and covariance matrix.

What remains to define is smoothness. We say that 𝑋 (𝑡) is smooth if it is at least
once quadratic mean differentiable. A stochastic process 𝑋 (𝑡) is quadratic mean
differentiable at a point 𝑡 , if there exist a random variable 𝑋 ′ (𝑡) such that

lim
ℎ→0

𝐸

((
𝑋 (𝑡 + ℎ) − 𝑋 (𝑡)

ℎ
− 𝑋 ′ (𝑡)

)2
)
= 0.

If this holds for all 𝑡 we say that the process 𝑋 (𝑡) is quadratic mean differentiable with
the derivative 𝑋 ′ (𝑡).

The quadratic mean derivative does not exist for all stationary Gaussian processes.
However, Leadbetter et al. (1983) provides a useful condition: 𝑋 (𝑡) is quadratic mean
differentiable if and only if the second spectral moment is finite.5 The second spectral
moments is given by 𝜉2 = −𝐶 ′′ (0). If 𝜉2 is finite, the process 𝑋 ′ (𝑡) is a zero mean
stationary Gaussian process with the covariance function 𝐶𝑋 ′ (𝑡) = −𝐶 ′′

𝑋
(𝑡). It should

also be noted that (𝑋 ′ (𝑡), 𝑋 (𝑡)) are jointly normal and uncorrelated when evaluated
at the same time point. This property will be used later when constructing the Slepian
process.

For the remaining parts of this section, we will assume that the process 𝑋 (𝑡) is
a smooth stationary Gaussian process. We now move to defining some of the main
objects of this thesis, namely level crossings and the excursion distribution.

2.1 Level crossings and excursions

In order to define the excursion distribution, we need to define a level crossing. In
particularly a strict level crossing. Using the definition from Leadbetter et al. (1983),
we say that a trajectory of a stochastic process 𝑋 (𝑡, 𝜔0)6, has an up-crossing of level

5The spectral moments are defined by 𝜉𝑘 =
∫ ∞
−∞ |𝜉 |𝑘𝑑𝐹 (𝜉 ) , where 𝐹 (𝜉 ) is the spectral distribution

function, i.e., 𝐹 (𝜉 ) which satisfies: 𝐶 (𝑡 ) =
∫ ∞
−∞ 𝑒𝑖𝑡 𝜉 𝑑𝐹 (𝜉 ) .

6We write 𝑋 (𝑡, 𝜔0 ) , 𝜔0 ∈ Ω to indicate that we now are considering a trajectory.
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𝑢 in the strict sense at time 𝑡0 if there exist some 𝜀 > 0 such that 𝑋 (𝜏, 𝜔0) ≤ 𝑢 for all
𝜏 ∈ (𝑡0 − 𝜀, 𝑡0) and 𝑋 (𝜏, 𝜔0) > 𝑢 for all 𝜏 ∈ (𝑡0, 𝑡0 + 𝜀). A down-crossing of the level
𝑢 is defined analogously by changing the inequalities.

In Leadbetter et al. (1983), there exists a condition on the expected number of
crossings of a bounded interval to ensure that the level crossings are strict. The level
crossings are strict if the expected number of crossings in a bounded interval is finite.
For a stationary Gaussian process the expected number of 𝑢−level crossings on [0, 1] is
given by

𝐸𝑁𝑢 ( [0, 1]) = 𝑓𝑋 (0) (𝑢)𝐸 ( |𝑋 ′ (0) | |𝑋 (0) = 𝑢)

=

∫ ∞

−∞
|𝜏 | 𝑓𝑋 (0) ,𝑋 ′ (0) (𝑢, 𝜏)𝑑𝜏 .

Where the joint density of 𝑋 (0) and 𝑋 ′ (𝑡) is given by

𝑓(𝑋 (0) ,𝑋 ′ (0) ) (𝑢, 𝜏) =
1

2𝜋
√︁
𝜉2
𝑒
− 𝑢2

2 − 𝜏2
2𝜉2 .

From this, we have

𝐸𝑁𝑢 ( [0, 1]) =
∫ ∞

−∞
|𝜏 | 1

2𝜋
√︁
𝜉2
𝑒
− 𝑢2

2 − 𝜏2
2𝜉2 (𝑢, 𝜏)𝑑𝜏

=
1
𝜋

√︁
𝜉2𝑒

− 𝑢2
2 .

This is the famous Rice formula for stationary Gaussian processes derived in Rice
(1944, 1945). Several proofs of Rice’s formula exist besides Rice’s original proof; see, for
example, Leadbetter et al. (1983) or Lindgren (2012).

The Rice formula holds even if 𝜉2 is not finite. In this case, the process has an
infinite crossing intensity. However, since we assume that 𝑋 (𝑡) is quadratic mean
differentiable, 𝜉2 < ∞, and Theorem 7.3.2 in Leadbetter et al. (1983) states that the level
crossings are strict.

We can now define the excursion distribution using the definition from Lindgren
(1977) as the limit of the empirical distribution.7 Let, 𝜏𝑘 , 𝑘 ∈ ℕ8 be a increasing sequence
of time points where 𝑋 (𝑡), 𝑡 ≥ 0 has 𝑢−level up-crossings, i.e., 0 < 𝜏1 < 𝜏2 < .. and
let

𝜎𝑘 = inf {𝑡 > 0 : 𝑋 (𝜏𝑘 + 𝑡) < 𝑢},
7For this, we need the additional assumption that process 𝑋 (𝑡 ) is ergodic, which is equivalent to the

spectral distribution having no atoms.
8To avoid confusion, letℕ be the set of positive integers {1, 2, 3, ...} andℕ0 = ℕ∪ {0}, i.e {0, 1, 2, 3, ...}.
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i.e., the time from the up-crossing of level 𝑢 at the 𝜏𝑘 to the subsequent down-crossing
of the same level. From this, we define the excursion distribution by

𝑃 (𝜎 < 𝑡) = lim
𝑇→∞

#{𝜏𝑘 ∈ [0, 𝑇 ] : 𝜎𝑘 < 𝑡}
#{𝜏𝑘 ∈ [0, 𝑇 ]} .

The informal interpretation of this is that if we stand at a given up-crossing 𝜏𝑘 and
measure the time until the process goes below the level 𝑢, we obtain the length of one
excursion. By doing this for all the points 𝜏𝑘 , the excursion distribution evaluated at
some 𝑡 is obtained by simply counting the number of excursions with lengths less than
𝑡 . Since we assume the process to be ergodic, we can find the limit of this distribution
from a single trajectory.

The shift in perspective and viewing the process from the mark of an up-crossing is
the essence of Palm theory, which traces its roots to the work by Palm (1943).9 Palm
theory is best associated with point processes, but it is of value when studying other
stochastic processes, as we do here.

Despite the general difficulty of finding the excursion distribution, a mathematical
expression exists for the density of 𝜎 . This is the Durbin-Rychlik10 formula. Which is
given for 𝑡 ≥ 0 by

𝑓𝜎 (𝑡) = 𝑓𝑋 (𝑡 ) (0)𝐸 (I (𝑋 (𝜏) < 0,∀𝜏 ∈ (0, 𝑡)) · max(0, 𝑋 ′ (𝑡)) |𝑋 (𝑡) = 0) ,

where I is the indication function. While giving the exact distribution, there is a
problem with this formula. To evaluate the indicator function in the expected value,
we need to evaluate an uncountably infinite number of random variables. This cannot
be done by using the finite-dimensional distribution of the process, which limits its
usefulness in practice.

In this section, we defined the level crossings. In the next section, we will look how
the process behaves at such a level crossing.

2.2 The Slepian process

The Slepian process was introduced by Slepian (1963) and models the behavior of a
process at the crossing instant of a typical up-crossing. Hence, it is the Palm version of
the stationary Gaussian process when attached to an up-crossing.

We follow a similar construction as in Leadbetter et al. (1983). We start with the
derivative at an up-crossing. Corollary 10.3.3 in Leadbetter et al. (1983) gives us the Palm

9The work by Khinchin (1969) should also be recognized.
10Derived for Gaussian process by Durbin (1985) and then generalized by Rychlik (1987b).
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distribution of the derivative at a typical up-crossing, and this is given by a Rayleigh
distribution, 𝑅, with the density

𝑓𝑅 (𝜏) =
𝜏

𝜉2
𝑒
− 𝜏2

2𝜉2

for 𝜏 ≥ 0. It should also be noted that this does not depend on the level 𝑢.
To derive the distribution of the Slepian process, we need to find its Palm distribu-

tion. This is given by Theorem 10.3.1 in Leadbetter et al. (1983). However, since we are
in a Gaussian setting, the distribution can be found by considering the Gaussian vector
(𝑋 (𝑡1), 𝑋 (𝑡2), 𝑋 (0), 𝑋 ′ (0)) and conditioning on (𝑋 (0) = 𝑢, 𝑋 ′ (0) = 𝜏). From this,
we obtain the following expected value of 𝑋 (𝑡1)

𝐸 (𝑋 (𝑡1) |𝑋 (0) = 𝑢, 𝑋 ′ (0) = 𝜏) = 𝑢𝐶 (𝑡1) − 𝑅
𝐶 ′ (𝑡1)
𝜉2

.

The expected value is of the same form for 𝑋 (𝑡2). The conditional covariance between
𝑋 (𝑡1), 𝑋 (𝑡2) is given by

𝐶𝑜𝑣 (𝑋 (𝑡1), 𝑋 (𝑡2) |𝑋 (0) = 𝑢, 𝑋 ′ (0) = 𝜏) = 𝐶 (𝑡1 − 𝑡2) − 𝐶 (𝑡1)𝐶 (𝑡2) −
𝐶 ′ (𝑡1)𝐶 ′ (𝑡2)

𝜉2
.

From these equations, we can now construct the Slepian process

𝜁𝑢 (𝑡) = 𝑢𝐶 (𝑡) − 𝑅
𝐶 ′ (𝑡)
𝜉2

+ 𝜅 (𝑡), (1)

where 𝜅 (𝑡) is a non-stationary zero mean Gaussian process with the covariance function

𝐶𝜅 (𝑡, 𝑠) = 𝐶 (𝑡 − 𝑠) − 𝐶 (𝑡)𝐶 (𝑠) − 𝐶 ′ (𝑡)𝐶 ′ (𝑠)
𝜉2

.

The Slepian process decomposes the behavior at an up-crossing into two parts, one
that depends on the level 𝑢 and a residual process, 𝜅 (𝑡).

The Slepian process is not stationary due to conditioning on having an up-crossing
at zero. Neither will it be Gaussian due to the Rayleigh random variable 𝑅 and the
non-stationary Gaussian process 𝜅 (𝑡). However, it should be noted that the effect of
having an up-crossing at zero vanishes as time goes to infinity.

It should be remarked, as pointed out in Lindgren (1977), that the excursion dis-
tribution of 𝑋 (𝑡) is the same as the first crossing distribution of 𝜁𝑢 (𝑡). The latter is
defined by

𝜎 = inf {𝑡 > 0 : 𝜁𝑢 (𝑡) < 𝑢}.
This follows from the definition of the excursion distribution and that the Slepian
process is the Palm version of 𝑋 (𝑡). Therefore, it is natural to use the Slepian process
to approximate the excursion distribution of 𝑋 (𝑡).
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2.3 Independent interval approximation

Due to its importance for practical problems, several methods have been developed
to approximate the excursion distribution. This section does not aim to provide an
overarching overview of the existing methods. Instead, we will focus on the independent
interval approximation. The roots of the method can be traced back to the work by
McFadden (1956, 1958), but the methods have gained popularity in physics during
the last decades. Starting with Majumdar et al. (1996), who used it to study Gaussian
diffusion processes. An overview of the method can be found in Bray et al. (2013).
The approximation has also been extended to non-zero-levels by Sire (2007, 2008).
However, in this section, we focus on the independent interval approximation for
zero-level excursions.

The method is based on the clipped process, which is defined for a stochastic process
𝑋 (𝑡) by

𝑌 (𝑡) = sign(𝑋 (𝑡)).

The main idea of the independent interval approximation is to match the covariance
of the clipped process to that of a stationary alternating renewal process. Then, the re-
lation between the covariance function and the interval distribution for the alternating
renewal process can be used to find an approximation of the excursion distribution.
Figure 2 gives a schematic overview of the framework. If the process 𝑋 (𝑡) is a smooth
stationary Gaussian process with the covariance function 𝐶 (𝑡) the covariance function
of𝑌 (𝑡) is given by

𝐶𝑌 (𝑡) =
2
𝜋

arcsin (𝐶𝑋 (𝑡)) .

This is the well-known arcsin relation derived by Van Vleck (1943).11 The covariance can
also be expressed through the probability that an interval (0, 𝑡) contains 𝑛 zero-level
crossings. Let 𝑝(𝑛, 𝑡) that (0, 𝑡) contains precisely 𝑛 crossings. Then the covariance of
the clipped process can also be written as12

𝐶𝑌 (𝑡) = 𝐸𝑌 (𝑡)𝑌 (0) =
∞∑︁
𝑛=0

(−1)𝑛 𝑝(𝑛, 𝑡).

Finding the probability mass function of 𝑝(𝑛, 𝑡) is difficult due to the dependency of
the excursion intervals.

11This technical report was declassified after the war, and for a later more accessible reference, see Van Vleck
and Middleton (1966).

12The covariance only depends on the expected value of𝑌 (𝑡 )𝑌 (0) , which is either one or minus one
depending on if the number of crossings in the interval (0, 𝑡 ) is even or odd.
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𝐶𝑌 (𝑡) 𝐶𝐴𝑃 (𝑡)
Matching

𝐶𝑋 (𝑡)

Gaussian process, 𝑋 (𝑡) Interval distribution,𝑇

Approximation, �̂�

Excursion distribution, 𝜎

Figure 2: A schematic overview of the independent interval approximation for zero-level
excursions. By moving from 𝑋 (𝑡) to the interval distribution 𝑇 through the matching, an
approximation of the excursion distribution is obtained.

However, if we disregard the dependency between the intervals and treat them as
independent, we have a stationary alternating renewal process. The covariance of this
process can be written as a function of its interval distribution in the Laplace domain.
Let𝑇 be the random variable associated with the intervals of the alternating renewal
process, then the Laplace transform13 of the covariance function 𝐶𝐴𝑃 (𝑡) is given by

L(𝐶𝐴𝑃 ) (𝑠) =
1
𝑠
− 2
𝑠2𝜇

1 − 𝜓𝑇 (𝑠)
1 + 𝜓𝑇 (𝑠)

.

whereL(·) denotes the Laplace transform and𝜓𝑇 (𝑠) is the Laplace transform associated

13The Laplace transform is defined by

L(ℎ) ( 𝑠) =
∫ ∞

0
ℎ(𝑡 )𝑒−𝑠𝑡𝑑𝑡,

for 𝑠 ∈ ℂ for a exponentially bounded function ℎ(𝑡 ) , 𝑡 ≥ 0. Let 𝑓𝑋 (𝑡 ) be the density of a non-negative
random variable 𝑋 and 𝜓𝑋 ( 𝑠) = L( 𝑓𝑋 ) ( 𝑠) . For an overview of the Laplace transform, see Widder (1946)
and for its use in probability theory Feller (1971).
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with𝑇 . Solving this for 𝜓𝑇 (𝑠) we obtain,

𝜓𝑇 (𝑠) =
1 − 1

2 𝜇𝑠(1 − 𝑠L(𝐶𝐴𝑃 ) (𝑠))
1 + 1

2 𝜇𝑠(1 − 𝑠L(𝐶𝐴𝑃 ) (𝑠))
.

By substituting 𝐶𝐴𝑃 (𝑡) with 𝐶𝑌 (𝑡) in the equation, i.e. matching the covariance, we
arrive at

𝜓�̂� (𝑠) =
1 − 1

2 𝜇𝑠(1 − 𝑠L(𝐶𝑌 ) (𝑠))
1 + 1

2 𝜇𝑠(1 − 𝑠L(𝐶𝑌 ) (𝑠))
. (2)

which is thus the independent interval approximation of the excursion distribution 𝜎

of the stationary Gaussian process 𝑋 (𝑡).
The dependency between the intervals of the clipped process has been investigated

among others Longuet-Higgins (1962) and Rainal (1962). It was shown by Longuet-
Higgins (1962) that the intervals cannot be independent for stationary Gaussian pro-
cesses. The dependency between excursions has also been studied by Rychlik (1987a),
Podgórski et al. (2000), and Lindgren (2019). However, it is generally difficult to im-
plement this dependency within the independent interval approximation framework.
Having a Markovian type of dependency between the intervals has been explored in Mc-
Fadden (1958). However, it was shown by Rainal (1962) that imposing this dependence
between the intervals is unsuitable for certain Gaussian processes.

An implicit assumption is made in the independent interval approximation by
ignoring the dependency between the intervals of the clipped process. It is assumed that
the covariance function 𝐶𝑌 (𝑡) is a valid covariance function for a stationary alternating
renewal process, i.e., that there exists a stationary alternating renewal process with the
covariance function 𝐶𝑌 (𝑡). There is no intuitive argument why it should be.

It is important to understand that if this assumption is violated, the obtained
approximation �̂� might not even be a valid probability distribution. This follows from
the fact that the covariance function uniquely characterizes the interval distribution
of the alternating renewal process, when the intervals in each state follow the same
distribution. The set of distributions that satisfies the conditions to be an interval
distribution is vast. Hence, having an approximation that does not belong to this class
is problematic when approximating the excursions.

There is another way to ensure that the obtained approximation is a valid probability
distribution. This is to show that for a given covariance function of the clipped process
𝐶𝑌 (𝑡) the right-hand side of Equation (2) is completely monotone.14 This is difficult
from the definition and if it is not, then it cannot be the Laplace transform associated

14A function ℎ( 𝑠) , 𝑠 > 0 is completely monotone if (−1)𝑛ℎ (𝑛) ( 𝑠) ≥ 0, ∀𝑠 > 0, 𝑛 ∈ ℕ0.
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with a probability distribution. This is a consequence of Bernstein’s theorem; see
Feller (1971). In Paper ii, this implicit assumption is shown to be satisfied for a large
class of stationary Gaussian processes. This follows from the equivalence between the
Slepian-based and the ordinary independent interval approximation for the zero-level
excursion distribution.

In physics, the independent interval approximation method has been heavily used
to find the so-called persistency coefficient. This coefficient characterizes the tail of
the excursion distribution. Under some mild conditions, the decay of the covariance
function, see Slepian (1962), the tail of the excursion distribution is of the form 𝑒−𝜃𝑡

where 𝜃 is the persistency coefficient.
These coefficients play an important role in the characterization of physical systems;

see Bray et al. (2013) for an overview. They are also process-specific and generally difficult
to find analytically. For example, the persistency coefficient for Gaussian diffusion in
two dimensions was only derived in 2018 by Poplavskyi and Schehr (2018), and then
only for the zero-level excursion distribution.

Within the independent interval framework, the persistency coefficient has been
found by investigating the largest negative real pole of Equation (2) as mentioned in Sire
(2007). However, for stationary Gaussian processes with oscillating covariance func-
tions, this is unsuitable, as pointed out in Wilson and Hopcraft (2017) and Bengtsson
and Podgórski (2024).

The main focus here is on the independent interval approximation. However, it
should be mentioned that there are other ways to approximate the excursion distri-
bution. For example, using a regression approach based on the Slepian process as in
Lindgren and Rychlik (1991). Rice series has also been used to approximate the excur-
sion, and a good overview of several different methods can be found in Lindgren (2019).
Lastly, it should be mentioned that numerical methods have also been used to find the
persistency coefficient; see Lindgren et al. (2022).

3 Renewal and regenerative processes

Processes that stochastically reset have long been a topic of interest in probability theory.
Early work was done by Erlang (1909), who investigated the arrivals of calls. During
the 1940s and 1950s, substantial contributions were made to the field of renewal theory.
The contribution and impact of the early work done in renewal theory are summarized
Smith (1958) and Cox (1967).

In the mid-1950s Smith (1955) introduced the regenerative process. Many well-
known processes are regenerative, such as Markov chains and the alternating renewal
process. Several more examples are given in the overview by Sigman and Wolff (1993)
and Thorisson (2000). An important property of regenerative processes is that they
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can be split into a sequence of cycles. The length of these are random and at the end of
each cycle, the process stochastically resets.

Consider, for example, a Markov chain in continuous-time with a predefined
reference state. A cycle, in this case, is the process between exiting the reference state
and reentering it. Upon which it stochastically resets due to the Markov property.

We are now ready for the definition of a regenerative process.15

Definition 3.1. A stochastic process 𝑋 (𝑡), 𝑡 ≥ 0 is called regenerative if there is a
random variable 𝐿1 > 0 such that the following two conditions are satisfied

𝑖) {𝑋 (𝑡 + 𝐿1) : 𝑡 ≥ 0}, is independent of {{𝑋 (𝑡) : 𝑡 < 𝐿1}, 𝐿1}

𝑖 𝑖) {𝑋 (𝑡 + 𝐿1) : 𝑡 ≥ 0}, is stochastically equivalent to {𝑋 (𝑡) : 𝑡 ≥ 0}

As pointed out in Sigman and Wolff (1993), and proven in Sigman et al. (1994), if
there exists a random variable 𝐿1, then there exists an entire sequence 𝐿1, 𝐿2, .. such
that 𝑋 (𝑡) regenerates at these times.

Before moving to the counting process, there are two important observations. The
first is that the process can be delayed. In this case, the process will not have the same
first cycle, but subsequent cycles will be stochastically equivalent. The second is that
for a regenerative process 𝑋 (𝑡), there is an embedded renewal counting process. This
counting process simply counts the number of regenerations.

3.1 The counting process

To construct a renewal counting process, we need a sequence of random variables
representing the times between the arrivals of some events. Let 𝑇𝑛, 𝑛 ∈ ℕ be a se-
quence of independent identically distributed (iid) non-negative random variables
representing times between these events. We will assume, unless otherwise stated, that
𝑇𝑛 are absolutely continuous with respect to the Lebesgue measure with support on
ℝ+, have a finite second moment, and 𝑃 (𝑇𝑛 > 0) = 1, i.e., we have no atom at zero.
These assumptions exclude the cases when the distribution is on a lattice. Under these
assumptions we define the following sum

𝑆𝑛 =

𝑛∑︁
𝑘=1

𝑇𝑘 .

This sum is the random time until the 𝑛th arrival. It is also possible to shift perspective
and count the number of arrivals in some interval, usually (0, 𝑡]. From this, we can

15We use the definition of classical regeneration here, as defined in Sigman and Wolff (1993).
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Figure 3: A trajectory of counting process with𝑇 ∼ 𝐸𝑥 𝑝(4).

define the counting process. Let 𝑆𝑛 be the sum defined above, then the counting process
is defined for 𝑡 ≥ 0 by

𝑁 (𝑡) =
∞∑︁
𝑛=1

𝕀(𝑆𝑛 < 𝑡).

where 𝕀( · ) is the indicator function. A realization of 𝑁 (𝑡) can seen in Figure 3.
For a fixed 𝑡 , 𝑁 (𝑡) is a random variable, and its distribution can be found by

exploiting the following equivalents between the two events

𝑁 (𝑡) < 𝑛 ⇔ 𝑆𝑛 > 𝑡 .

From this, the distribution function of 𝑁 (𝑡) is given by

𝑃 (𝑁 (𝑡) < 𝑛) = 𝑃 (𝑆𝑛 > 𝑡) = 1 − 𝐹𝑆𝑛 (𝑡).

As a result, the probability mass function of 𝑁 (𝑡) can be derived, which gives us

𝑃 (𝑁 (𝑡) = 𝑛) = 𝑃 (𝑁 (𝑡) < 𝑛 + 1) − 𝑃 (𝑁 (𝑡) < 𝑛)
= 𝐹𝑆𝑛 (𝑡) − 𝐹𝑆𝑛+1 (𝑡).

Hence, the distribution of 𝑁 (𝑡) is completely characterized by 𝐹𝑆𝑛 (𝑡).
There are different versions of the counting process that can be constructed by

altering the properties of the sequence 𝑇𝑛. If 𝑇𝑛 is an iid sequence that satisfies the
previously mentioned assumption, we have an ordinary counting process.16

16We follow the naming convention in Cox (1967).
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Besides 𝐹𝑆𝑛 (𝑡), there is another function that describes the ordinary counting
process. This is the renewal function, which is denoted by 𝐻 (𝑡) and defined as

𝐻 (𝑡) = 𝐸𝑁 (𝑡),

and is related to the distribution of 𝑆𝑛 by

𝐻 (𝑡) =
∞∑︁
𝑛=1

𝑃 (𝑆𝑛 < 𝑡) =
∞∑︁
𝑛=1

𝐹𝑆𝑛 (𝑡).

There is an intuitive interpretation of 𝐻 (𝑡) as simply the expected number of arrivals on
the interval (0, 𝑡]. This, however, is the distribution function of the renewal measure,
and it should be noted that 𝐻 (𝑡) is unbounded when 𝑡 goes to infinity. It should also
be noted that if the density of 𝐹𝑇𝑛 exists, then the renewal density 𝐻 ′ (𝑡) exists. This
follows from Proposition 2.7 in Asmussen (2003).

Besides the distribution of the sequence𝑇𝑛, 𝐻 (𝑡) gives an alternative way to char-
acterize the counting process. This is via the renewal function that was introduced by
Feller (1941) during his study of Volterra-type equations on the form

𝑈 (𝑡) = 𝐺 (𝑡) +
∫ 𝑡

0
𝑈 (𝑡 − 𝜏)𝑑𝐹 (𝜏).

where 𝐺 (𝑡) and 𝐹 (𝑡) are non-decreasing functions. Feller (1941) showed that if 𝐹 (𝑡)
and 𝐺 (𝑡) are finite and right continuous, then there exists only one finite and non-
decreasing function 𝑈 (𝑡) for 𝑡 > 0. It turns out that if 𝐹 (𝑡) = 𝐺 (𝑡) = 𝐹𝑇𝑛 (𝑡), then
the Laplace transform of 𝐻 (𝑡) and𝑈 (𝑡) coincide. Hence, the renewal function is a
solution to this integral equation, which can be written as

𝐻 (𝑡) = 𝐹 (𝑡) +
∫ 𝑡

0
𝐻 (𝑡 − 𝜏)𝑑𝐹 (𝜏),

which is now more commonly known as the renewal equation.
In Feller (1941), several asymptotic properties were also derived for 𝐻 (𝑡). We sum-

marize some of the most important properties below for the ordinary counting process
𝑁 (𝑡). For 𝜇 = 𝐸𝑇𝑛 and 𝜏 > 0, we have following three limits

𝑖) lim
𝑡→∞

𝐻 (𝑡)
𝑡

=
1
𝜇
,

𝑖 𝑖) lim
𝑡→∞

𝐻 (𝑡 + 𝜏) − 𝐻 (𝑡) = 𝜏

𝜇
.

𝑖 𝑖 𝑖) 𝑁 (𝑡)
𝑡

𝑝
→ 1

𝜇
, for 𝑡 → ∞,
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where
𝑝
→ denotes convergence in probability. The first limit is the elementary renewal

theorem; see Brémaud (2020) for more details. The second limit is known as Blackwell’s
theorem and was derived by Blackwell (1948). It should be remarked that, besides
Blackwell’s original proof, 𝜀-coupling methods have been used by Thorisson (1987)
to prove a more general version of Blackwell’s theorem. The last limit is a law of large
number type result for 𝑁 (𝑡).

The last of the standard theorems in renewal theory is the Key renewal theorem.
Under the previous assumption and notation, the key renewal theorem states that for
an ordinary counting process 𝑁 (𝑡) and a directly Riemann integrable function 𝑔 (𝑡),
we have

lim
𝑡→∞

∫ 𝑡

0
𝑔 (𝑡 − 𝜏)𝑑𝐻 (𝜏) = 1

𝜇

∫ ∞

0
𝑔 (𝜏)𝑑𝜏 .

The Key renewal theorem and Blackwell’s theorem are equivalent. The interpretation
of both is that the renewals even out when time passes to infinity, and thus, the renewal
measure behaves as the Lebesgue measure scaled by the constant 𝜇−1.

We mentioned previously that other versions of the counting process exist besides
the ordinary one. Such processes can be obtained by altering the properties of the
sequence𝑇𝑛. By letting𝑇1 have a different distribution, an equilibrium version of the
ordinary counting process can be constructed. For this, we need the distribution of the
forward and backward recurrence times. Fix 𝑡 such that 𝑆𝑛 < 𝑡 < 𝑆𝑛+1 and define

𝑈 (𝑡) = 𝑡 − 𝑆𝑛,

𝑉 (𝑡) = 𝑆𝑛+1 − 𝑡 .

The backward recurrence time𝑈 (𝑡) is the time from the last arrival until 𝑡 , and the
forward recurrence time is the time from 𝑡 until the next arrival. The distributions of
𝑈 (𝑡) and𝑉 (𝑡) are well known and are given by

𝑓𝑉 (𝑡) = 𝑓𝑈 (𝑡) = 1 − 𝐹 (𝑡)
𝜇

,

for 𝑡 ≥ 0 and where 𝐹 (𝑡) is the distribution function of𝑇𝑛. The forward and backward
recurrence distributions lead to an important observation. Fixing 𝑡 in some arbitrary
interval, far away from the origin, leads to a bias of the length of the interval which 𝑡 is
in. This is known as the inspection paradox.

The forward recurrence distribution can be used to construct an equilibrium
version of the counting process. Let 𝑇𝑛 be the same iid sequence as previously but
change𝑇1 to have the density for 𝑡 ≥ 0

𝑓𝑇1 (𝑡) =
1 − 𝐹 (𝑡)

𝜇
,
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and denote this altered sequence by 𝑇 (𝑒)
𝑛 , 𝑛 ≥ 1. Then, the equilibrium counting

process 𝑁𝑒 (𝑡) can be constructed in the same way as the ordinary counting process
from the sum 𝑆

(𝑒)
𝑛 by letting

𝑁𝑒 (𝑡) =
∞∑︁
𝑛=1

𝕀(𝑆 (𝑒)
𝑛 < 𝑡)

Altering the distribution of𝑇1 is important since this initializes the counting process
in its equilibrium state. This means that the distribution of the number of arrivals
in a fixed-length interval will not change with 𝑡 , only the size of the interval. This is
generally not the case with the ordinary counting process.

3.2 Alternating renewal processes

The alternating renewal process can be seen as a generalization of a continuous-time
Markov chain with two states. In this section, we let these two states be one and minus
one, making it consistent with the switch processes treated in papers i and iii. It is also
an example of a regenerative process if one of the two states is defined as the reference
state, which we here set to one.

Under the same assumption in the previous subsection, let𝑇+ and𝑇− be two non-
negative mutually independent random variables with the distribution functions 𝐹+ (𝑡)
and 𝐹− (𝑡), representing the time spent in each state. From these, we define

𝑇𝑛
𝑑
=

{
𝑇+, 𝑛 is odd,
𝑇− , 𝑛 is even,

for 𝑛 ∈ ℕ, we will denote the associated Laplace transforms 17 by 𝜓+ (𝑠) and 𝜓− (𝑠). Let
𝑇

(𝑎)
𝑛 be an independent sequence of 𝑇𝑛. From this sequence, we first construct the

sum

𝑆
(𝑎)
𝑘

=

𝑘∑︁
𝑛=1

𝑇
(𝑎)
𝑛 ,

which in turn defines the alternating counting process

𝑁𝑎 (𝑡) =
∞∑︁
𝑘=1

𝕀(𝑆 (𝑎)
𝑘

< 𝑡).

17Recall that we denote the Laplace transform by L(·) and the Laplace transform of a density by 𝜓 ( 𝑠) .
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Figure 4: A trajectory of the alternating renewal process with the states one and minus one.
With𝑇+ ∼ 𝐸𝑥 𝑝(1) and𝑇− ∼ 𝐸𝑥 𝑝(1/2).

The alternating renewal process can be defined by

𝑋 (𝑡) = (−1)𝑁𝑎 (𝑡 ) .

A realization of 𝑋 (𝑡) can be seen in Figure 4. The distribution of 𝑋 (𝑡) is defined by the
probability 𝑃 (𝑋 (𝑡) = 1), and hence, several of its properties can directly be expressed
as some function of this probability. Since 𝑋 (𝑡) = 1 is equivalent to the event, 𝑁𝑎 (𝑡)
is even, 𝑃 (𝑋 (𝑡) = 1) can be found by summing 𝑃 (𝑁𝑎 (𝑡) = 𝑘) over the even indices.
To find 𝑃 (𝑁𝑎 (𝑡) = 𝑘), we follow a similar way as for the ordinary counting process,
and we have

𝑃 (𝑁𝑎 (𝑡) = 𝑘) = 𝐹
𝑆
(𝑎)
𝑘

(𝑡) − 𝐹
𝑆
(𝑎)
𝑘+1

(𝑡).

However, due to the interlacing of𝑇+ and𝑇− the Laplace transform of 𝐹
𝑆
(𝑎)
𝑘+1

(𝑡) is not
as elegant as for the ordinary counting process. However, it is given for 𝑘 ∈ ℕ0 by

L
(
𝐹
𝑆
(𝑎)
𝑘

)
(𝑠) =

{
1
𝑠
𝜓+ (𝑠)

(
𝜓+ (𝑠)𝜓− (𝑠)

) 𝑘−1
2 , 𝑘 is odd

1
𝑠

(
𝜓+ (𝑠)𝜓− (𝑠)

) 𝑘
2 𝑘 is even,

From this the Laplace transform of 𝑃 (𝑁𝑎 (𝑡) = 𝑘) follows

L (𝑃 (𝑁𝑎 (𝑡) = 𝑘)) (𝑠) =


1
𝑠

(
𝜓+ (𝑠)𝜓− (𝑠)

) 𝑘−1
2

(
𝜓+ (𝑠) − 𝜓+ (𝑠)𝜓− (𝑠)

)
, 𝑘 is odd

1
𝑠

(
𝜓+ (𝑠)𝜓− (𝑠)

) 𝑘
2
(
1 − 𝜓+ (𝑠)

)
, 𝑘 is even.
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for 𝑘 ∈ ℕ0.
We have now arrived at the Laplace transform of the probability that characterizes

the process, namely

L(𝑃 (𝑋 (𝑡) = 1)) (𝑠) =
∞∑︁
𝑙=0

L (𝑃 (𝑁𝑎 (𝑡) = 2𝑙)) (𝑠) = 1
𝑠

1 − 𝜓+ (𝑠)
1 − 𝜓+ (𝑠)𝜓− (𝑠)

Due to the start in the state one, 𝑃 (𝑋 (𝑡) = 1) will fluctuate over time. However, this
effect will vanish with time, and we have the following limits that follow from the Key
renewal theorem

lim
𝑡→∞

𝑃 (𝑋 (𝑡) = 1) =
𝜇+

𝜇+ + 𝜇−
, lim

𝑡→∞
𝑃 (𝑋 (𝑡) = −1) =

𝜇−
𝜇+ + 𝜇−

,

where 𝜇+ = 𝐸𝑇+ and 𝜇− = 𝐸𝑇− .
In Papers i and iii, we characterize this process using the expected value function

of 𝑋 (𝑡). This function follows directly in the Laplace domain from the observation
that 𝐸 (𝑡) = 𝐸𝑋 (𝑡) = 2𝑃 (𝑋 (𝑡) = 1) − 1; hence we have

L(𝐸) (𝑠) =
1 − 2𝜓+ (𝑠) + 𝜓+ (𝑠)𝜓− (𝑠)

𝑠(1 − 𝜓+ (𝑠)𝜓− (𝑠))
.

Due to starting in the state, one 𝑋 (𝑡) will not be stationary. This is also evident
from the fact that 𝐸 (𝑡) varies with time. A stationary version can be constructed by
changing the process’s behavior around zero. This is similar to how the equilibrium
version can be found for the ordinary counting process, with the additional complexity
of having two distributions,𝑇+ and𝑇− .

For a fixed time point 𝑡 , we can use the long-run probabilities to find the probability
that the process is in either state. Conditioned on the state, the forward and backward
recurrence times are the same as for the counting process. From this, we have that the
forward and backward recurrence distribution is a mixture distribution of the form for
𝑡 ≥ 0

𝑓𝑉 (𝑡) = 𝑓𝑈 (𝑡) = 𝛿
1 − 𝐹𝑇+ (𝑡)

𝜇+
+ (1 − 𝛿)

1 − 𝐹𝑇− (𝑡)
𝜇−

,

where 𝛿 follows a Bernoulli distribution with 𝑃 (𝛿 = 1) = 𝜇+/(𝜇+ + 𝜇−), independent
of𝑇+ and𝑇− .

The equilibrium alternating renewal process can now be construed. Let 𝑉𝛿 be
the forward distribution conditioned on 𝛿 , and let 𝑋𝛼 (𝑡) be a modified version of
𝑋 (𝑡). Such that 𝑋𝛼 (𝑡) starts from one when 𝛼 = 1 and minus one when 𝛼 = 0 while



Renewal and regenerative processes 19

1 2 3 4 5 6 7

-1

0

1

Figure 5: A trajectory of the stationary alternating renewal process with the states one and
minus one, conditioned on 𝛿 = 1. With𝑇+ ∼ 𝐸𝑥 𝑝(1) and𝑇− ∼ 𝐸𝑥 𝑝(1/2). Since it is delayed,
the density of the first interval is 𝑓𝑉𝛿

(𝑡) = (1 − 𝐹𝑇+ (𝑡))/𝜇+.

retaining the same distribution in each state as 𝑋 (𝑡). From this, we can construct the
equilibrium process for 𝑡 ≥ 0 by

𝑌 (𝑡) =
{

2𝛿 − 1, 𝑡 <𝑉𝛿 ,

𝑋(1−𝛿 ) (𝑡 +𝑉𝛿 ), 𝑡 ≥ 𝑉𝛿 .

A trajectory of the equilibrium alternating renewal process is shown in Figure 5.
An important property of the equilibrium process is that it is stationary. This

follows from the relation between time and cycle stationarity derived in Thorisson
(1995). By construction, the process 𝑋 (𝑡) is cycle stationary, and since the expected
cycle time 𝐸𝑇+ + 𝐸𝑇− < ∞, it is possible to construct a stationary version of 𝑋 (𝑡).
Our construction relies on inserting an interval right after zero instead of shifting the
process as done in Thorisson (1992) and Thorisson (1995). However, this is equivalent
to shifting due to𝑇+ and𝑇− being independent.

The properties of𝑌 (𝑡) can be derived through the counting process in a manner
similar to that for 𝑋 (𝑡). We start with the sum

𝑆 𝛿𝑛 =𝑉𝛿 +
𝑛−1∑︁
𝑘=1

𝑇𝑘+𝛿 .
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From 𝑆 𝛿𝑛 we find the Laplace transform of its distribution function.18

L(𝐹
𝑆 𝛿𝑛
) (𝑠) =


1
𝑠
, 𝑛 = 0,

1−𝜓𝛿 ( 𝑠)
𝑠2𝜇𝛿

(
𝜓+ (𝑠)𝜓− (𝑠)

) 𝑛−1
2 , 𝑛 is odd,

1−𝜓𝛿 ( 𝑠)
𝑠2𝜇𝛿

𝜓(1−𝛿 ) (𝑠)
(
𝜓+ (𝑠)𝜓− (𝑠)

) 𝑛−2
2 , 𝑛 is even.

Which leads directly to the Laplace transform associated with 𝑁 𝛿
𝑎 (𝑡)

L(𝑃 (𝑁 𝛿
𝑎 (𝑡) = 𝑛|𝛿)) (𝑠) =

1
𝑠
− 1−𝜓𝛿 ( 𝑠)

𝑠2𝜇𝛿
, 𝑛 = 0,

1−𝜓𝛿 ( 𝑠)
𝑠2𝜇𝛿

(
𝜓(1−𝛿 ) (𝑠)

(
𝜓+ (𝑠)𝜓− (𝑠)

) 𝑛−2
2 −

(
𝜓+ (𝑠)𝜓− (𝑠)

) 𝑛
2
)
, n is even,

1−𝜓𝛿 ( 𝑠)
𝑠2𝜇𝛿

( (
𝜓− (𝑠)𝜓+ (𝑠)

) 𝑛−1
2 − 𝜓(1−𝛿 ) (𝑠)

(
𝜓− (𝑠)𝜓+ (𝑠)

) 𝑛−1
2

)
, n is odd,

for 𝑛 ∈ ℕ0. By summing 𝑃 (𝑁 𝛿
𝑎 (𝑡) = 𝑛|𝛿) over the even and odd indices, respectively,

we can find the Laplace transform of 𝑃 (𝑌 (𝑡) = 1|𝑌 (0) = 2𝛿 − 1)

L(𝑃 (𝑌 (𝑡) = 1|𝑌 (0) = 2𝛿 − 1)) (𝑠) =


1
𝑠
− (1−𝜓+ ( 𝑠) ) (1−𝜓− ( 𝑠) )

𝑠2𝜇+ (1−𝜓+ ( 𝑠)𝜓− ( 𝑠) )
, 𝛿 = 1,

(1−𝜓+ ( 𝑠) ) (1−𝜓− ( 𝑠) )
𝑠2𝜇− (1−𝜓+ ( 𝑠)𝜓− ( 𝑠) )

, 𝛿 = 0.

We need these probabilities since the covariance function of𝑌 (𝑡) can be written

𝐶 (𝑡) = 2
𝜇+ + 𝜇−

(
𝜇+𝑃 (𝑌 (𝑡) = 1|𝑌 (0) = 1) − 𝜇−𝑃 (𝑌 (𝑡) = 1|𝑌 (0) = −1) +

𝜇+ (𝜇− − 𝜇+)
𝜇+ + 𝜇−

)
Fortunately, this simplifies in the Laplace domain to

L(𝐶) (𝑠) = 4
𝑠(𝜇+ + 𝜇−)

(
𝜇+𝜇−
𝜇+ + 𝜇−

−
(1 − 𝜓+ (𝑠)) (1 − 𝜓− (𝑠))
𝑠(1 − 𝜓+ (𝑠)𝜓− (𝑠))

)
We conclude this section with the following observation. When𝑇+

𝑑
= 𝑇− , knowing

the covariance function is equivalent to knowing the distribution of 𝑇±. When the
distribution coincides, the equation above becomes

L(𝐶) (𝑠) = 1
𝑠
− 2
𝑠2𝜇

1 − 𝜓 (𝑠)
1 + 𝜓 (𝑠) .

18To simplify notation let 𝜓𝛼 ( 𝑠) be 𝜓+ ( 𝑠) if 𝛼 = 1 and 𝜓− ( 𝑠) if 𝛼 = 0.
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Solving this for 𝜓 (𝑠) we have

𝜓 (𝑠) =
1 − 1

2 𝜇𝑠(1 − 𝑠L(𝐶) (𝑠))
1 + 1

2 𝜇𝑠(1 − 𝑠L(𝐶) (𝑠))
.

From these equations, it can be shown that if two alternating renewal processes have
the same distribution, they will also have the same covariance and vice versa.

4 Geometric divisibility

Theorem 1 in Bengtsson (2024) provides conditions for the recovery of the interval
distribution. If these conditions are met, the interval distribution belongs to a particular
class, namely, the geometric divisible distributions. In this section, we will elaborate on
this class and geometric summation. Geometric summation is the summation of 𝜈𝑝
random variables where 𝜈𝑝 follows a geometric distribution. Recall that a geometric
random variable has the probability mass function

𝑃 (𝜈𝑝 = 𝑘) = (1 − 𝑝)𝑘−1 𝑝, 𝑘 ∈ ℕ, 𝑝 ∈ (0, 1),

and the probability-generating function, for |𝑧 | < (1 − 𝑝)−1

𝑔 (𝑧) =
𝑝𝑧

1 − (1 − 𝑝)𝑧 .

Geometric summation is present in several areas of probability theory and its ap-
plication. For example, it is featured heavily in queuing theory. However, it traces its
roots to the study of thinned renewal processes by Gnedenko (1972), Rényi (1956) and
later Yannaros (1987). An early observation of its properties can be found in Feller
(1971), which mentions that the geometric sum of two exponential distributions is
again exponential. This was for a given 𝑝, and Arnold (1973) later showed that this
holds for all 𝑝 ∈ (0, 1).

This notion was generalized in Klebanov et al. (1985) when a problem posed by
Zolotarev was addressed. Zolotarev wondered if, for a random variable𝑌 , there exists a
random variable 𝑋𝑝 independent of𝑌 and 𝜖𝑝, all 𝑝 ∈ (0, 1) such that

𝑌
𝑑
= 𝑋𝑝 + 𝜉𝑝𝑌 ,

where 𝜖𝑝 is a Bernoulli random variable with parameter 𝑝. It was shown by Klebanov
et al. (1985) that this is equivalent to characterizing the distribution𝑌 such that for all
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𝑝 ∈ (0, 1)

𝑌
𝑑
=

𝜈𝑝∑︁
𝑛=1

𝑋𝑛.

where 𝑋𝑛 is an iid sequence of random variables independent of 𝜈𝑝. Random variables
𝑌 that allow for this stochastic representation are said to be geometrically infinitely
divisible. This class is the geometric analog of the class of infinitely divisible distri-
butions.19 There are many well-known examples of these. For example, both the
exponential and Laplace distributions belong to this class. Kozubowski and Podgórski
(2010) have also shown that if the characteristic function can be expressed as the ra-
tio of two second-order polynomials, the corresponding distribution is geometrically
infinitely divisible.

Besides addressing Zolotarev’s problem Klebanov et al. (1985) introduced a geomet-
ric analog of stable distributions.20 We say that a random variable𝑌 is geometrically
stable if there for all 𝑝 ∈ (0, 1) exists a constant 𝛼𝑝 > 0 such that

𝑌
𝑑
= 𝛼𝑝

𝜈𝑝∑︁
𝑛=1

𝑋𝑛

where 𝑋𝑛 is a sequence of iid random variables independent 𝜈𝑝. It is well-known that
stable distributions are also infinitely divisible, and this holds true for their geometric
analogs. There are many interesting distributions that are geometrically stable. For
example, the Mittag-Leffler and Linnik distributions as mentioned in Kozubowski
(2010).21

We will turn to geometric divisibility. Geometrically divisible distributions extend
the class of geometric infinitely divisible distributions by relaxing the condition on 𝑝.

Definition 4.1. Let 𝜈𝑝 be a geometric random variable, and {𝑋𝑘}𝑘≥1 a sequence of iid
random variables independent of 𝜈𝑝. If a random variable𝑌 has a stochastic represen-
tation

𝑌 =

𝜈𝑝∑︁
𝑘=1

𝑋𝑘 ,

19Infinitely divisible distributions are essential to characterize Lévy processes due to the well-known Lévy
Khintchin representation theorem, see Satō (1999).

20Stable distribution received much attention in the 1920s and 1930s from, among others, Lévy, who
introduced them, and Khintchin. For an overview of stable distributions, see Zolotarev (1986).

21This paper provides a more extensive survey of both geometric infinite divisibility and geometrically
stable distributions.
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then𝑌 follows a 𝑝-geometric divisible distribution and is said to belong to the class
𝐺𝐷( 𝑝), 𝑝 ∈ (0, 1), with the divisor 𝑋 and we write 𝐹𝑌 ∈ 𝐺𝐷( 𝑝).

Hence, the stochastic representation only needs to hold for a given 𝑝. In contrast to
geometrically infinitely divisible distribution, where it needs to hold for all 𝑝 ∈ (0, 1).

From the definition of geometrically stable and infinitely divisible distributions,
it is clear that they are also geometrically divisible. This class of distributions is large
because they can easily be constructed by choosing a divisor.

Some elementary properties, such as expected value and variance, follow directly
from Wald’s equations. From Wald’s first equation, we have

𝐸𝑌 = 𝐸𝜈𝑝𝐸𝑋 =
1
𝑝
𝐸𝑋 .

From the second Wald’s equation, we have

𝑉 (𝑌 ) = 𝐸𝜈𝑝𝑉 (𝑋 ) + (𝐸𝑋 )2𝑉 (𝜈𝑝) =
𝑉 (𝑋 )

𝑝
+ (𝐸𝑋 )2 1 − 𝑝

𝑝2 .

Since this class involves random sums, it is easiest to characterize it in the Laplace
domain. The Laplace transform22 associated with𝑌 can be written as the probability
generating function of 𝜈𝑝 with the argument substituted for the Laplace transform of
the divisor23. This leads to

𝜓𝑌 (𝑠) =
𝑝𝜓𝑋 (𝑠)

1 − (1 − 𝑝)𝜓𝑋 (𝑠)
.

This equation can be solved for 𝜓𝑋 (𝑠) to derive a condition for a random variable
𝑌 to be geometrically divisible. If the right-hand side of

𝜓𝑋 (𝑠) =
1
𝑝
𝜓𝑌 (𝑠)

1 − (1 − 1
𝑝
)𝜓𝑌 (𝑠)

is a completely monotone function24 then𝑌 is geometrically divisible of order 𝑝.
This condition can be used to prove that if a random variable is geometrically

divisible of order 𝑝, it is also geometrically divisible of order 𝑞 for 0 < 𝑝 ≤ 𝑞 < 1.

22Recall that we denote the Laplace transform by L(·) and the Laplace transform of a density by 𝜓 ( 𝑠) .
23Similar arguments can be made using the characteristic function instead in this section.
24Recall that a function ℎ is completely monotone if (−1)𝑛ℎ (𝑛) ( 𝑠) ≥ 0, ∀𝑠 > 0, 𝑛 ∈ ℕ0.
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Suppose that𝑌 belongs to 𝐺𝐷( 𝑝) with the divisor 𝑋 . For𝑌 to belong to 𝐺𝐷(𝑞) with
the same divisor 𝑋 , the function

1
𝑞
𝜓𝑌 (𝑠)

1 − (1 − 1
𝑞
)𝜓𝑌 (𝑠)

must be completely monotone, from the condition mentioned above. Substituting the
Laplace transform of𝑌 into the equation above, we have

1
𝑞

𝑝𝜓𝑋 ( 𝑠)
1−(1− 𝑝)𝜓𝑋 ( 𝑠)

1 − (1 − 1
𝑞
) 𝑝𝜓𝑋 ( 𝑠)

1−(1− 𝑝)𝜓𝑋 ( 𝑠)

=

𝑝

𝑞
𝜓𝑋 (𝑠)

1 − (1 − 𝑝

𝑞
)𝜓𝑋 (𝑠)

,

which is completely monotone for 𝑝

𝑞
< 1 or equivalently 𝑝 < 𝑞 because it is the Laplace

transform of a 𝐺𝐷( 𝑝/𝑞) random variable with the divisor 𝑋 . In essence, we can split
a geometrically divisible distribution into fewer parts on average but not more.

This result allows us to relate the different classes of geometrically divisible distribu-
tions. Let𝐺𝐷𝑆 denote the geometrically stable distribution and𝐺𝐷∞ the geometrically
infinitely divisible distribution. Then we have

𝐺𝐷𝑆 ⊆ 𝐺𝐷∞ ⊆ 𝐺𝐷( 𝑝) ⊆ 𝐺𝐷(𝑞) ⊆ 𝐺𝐷1,

for 0 < 𝑝 < 𝑞 ≤ 1 and where 𝐺𝐷1 is simply the set of probability distributions.
Exploring the properties of geometrically divisible distribution allows for the ex-

tension results for the distribution of one order to another. For example, the class of
distributions in Theorem 1 in Bengtsson (2024) is of order 1/2. However, if the interval
distribution is of order 3/4, then this switch process will also have a non-negative and
decreasing expected value function.

5 Open problems

While several interesting results are presented within this thesis, there are several more
open problems worthy of mentioning. The first is a question concerning the relation
between the expected value and the covariance function. Theorem 2 in Bengtsson
(2024) gives the following relation between the covariance and expected value for the
stationary and non-stationary switch process

𝐶 ′ (𝑡) = − 2
𝜇
𝐸 (𝑡).
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There is a similar relation between the expected value of the clipped Slepian process
𝐸0 (𝑡) and the covariance of the clipped process, 𝐶 ′

𝑐𝑙 (𝑡 ) (𝑡). For the zero-level case,
Proposition 2 in Bengtsson and Podgórski (2024) states

𝐶 ′
𝑐𝑙 (𝑡 ) (𝑡) = − 2

𝜋
𝐸0 (𝑡)

Lastly, consider the expected value function of the Slepian process 𝜁0 for the zero-level,
which is

𝐸𝜁0 (𝑡) = −
√︂

𝜋

2𝜉2
𝐶 ′ (𝑡)

𝐶 ′ (𝑡) = −2
√

2𝜋
𝜇

𝐸 𝜁0 (𝑡)

where 𝜇 is one over the expected length between up-crossings i.e. 𝜇 = 2𝜋/
√︁
𝜉2. Here,

we have a similar pattern for different processes, all relating their covariances to the
expected value function. We, therefore, wonder if these results are examples of some
more general relation relating to the characterizing function between time- and cycle-
stationary processes.

The second unsolved problem is related to Paper iv. For higher 𝑢, there is a problem
maintaining the monotonicity of both expected value functions. For higher levels, we
are mostly interested in the excursion above and not below the level 𝑢. Therefore, we
wonder if it is possible to recover one distribution while only one of the expected value
functions is monotone.

The third relates to approximating the excursion distribution for stationary pro-
cesses with oscillating covariance functions. As pointed out in Paper ii, the largest
negative real pole is a terrible way to approximate the persistency coefficient for the shift
Gaussian covariance function. However, by finding the pair of complex poles with the
largest real part and multiplying them, a reasonable approximation of the persistency
coefficient can be found. This approximation also seems to be in agreement with the
persistency coefficient obtained by simulating trajectories.

The last open problem is perhaps the simplest to express and the hardest to solve.
That is, to fully characterize the relation between the expected value function and the
interval distribution of the switch process. For example, if the interval distribution
follows a gamma distribution, the expected value function will oscillate for certain
parameter choices. This shows that the relationship between expected value functions
and the interval distributions is not yet fully characterized.
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6 Summary of the Papers

6.1 Paper i

In this paper, we study the relationship between the characterizing functions of the
alternating renewal process and its interval distribution under symmetry. In essence,
this poses the question of whether it is possible to find conditions on the characterizing
functions such that the interval distribution can be recovered from these. This is a
difficult question since this is equivalent to showing the complete monotonicity of a
ratio of two non-standard functions.

Besides being an interesting problem in itself, it is also important since it provided
the probabilistic foundation of the Slepian-based independent approximation, which
is introduced in Paper ii. We call the alternating renewal process with the two unique
states, one and minus one, a switch process. Two versions exist: a stationary and a
non-stationary one, the latter having a switch to one at the origin.

There are two important theorems within this paper. Theorem 1 states that the
interval distribution25 follows a geometric divisible distribution with 𝑝 = 1/2 if and
only if the expected value is non-negative and decreasing. This gives a partial characteri-
zation of when the interval can be recovered. The second result stated in Theorem 2
provides a relation between the covariance function of the stationary switch process
and the non-stationary process on the form

𝐶 ′ (𝑡) = − 2
𝜇
𝐸 (𝑡).

The latter theorem is interesting on its own. However, combined with Theorem 1,
they lead to an alternative proof of the well-known sufficiency conditions for positive
definiteness of a function provided by Pólya (1949). Further, any function satisfying
these conditions is a covariance function of a stationary switch process constructed
from a geometrically divisible distribution of order 1/2.

6.2 Paper ii

This paper introduces a new way of approximating excursion distributions using re-
generative processes. This approximation is based on the Clipped Slepian process. As
described in Section 2, the Slepian process models the behavior of a smooth Gaussian
process at the crossing instance. The expected value of the clipped version of this
process is used for the matching characteristic, similar to how the covariance is used

25Under symmetry, there is only one distribution of interest here since the interval distribution is the
same in both states.
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in the ordinary independent interval approximation by McFadden (1962), Majumdar
et al. (1996) and Sire (2007, 2008).

Using Theorem 1 in Bengtsson (2024), conditions are derived, ensuring that the
approximation is a valid probability distribution for a large class of stationary Gaussian
processes. A somewhat surprising consequence of this is that it also addresses the ques-
tion of the mathematical validity of the ordinary independent interval approximation,
as discussed in Section 2. A consequence of Theorem 2 in Bengtsson (2024) is that
matching the expected value function of the clipped Slepian process is equivalent to
matching the covariance of the clipped process. Hence, the two approaches are equiva-
lent, and for this large class of processes, the ordinary independent interval yields valid
approximations, too.

While the Slepian-based approach approximates the entire excursion distribution, it
also allows us to approximate the persistency coefficient. This coefficient characterizes
the tail of the excursion distribution and is important for describing the properties of
systems in statistical physics. The persistency coefficient is approximated for several
processes and compared to both simulations of trajectories and the approximations
given in Sire (2008).

An important limitation of the independent interval framework is also highlighted.
An oscillating covariance function is considered in Wilson and Hopcraft (2017), and
this is one of the covariances that does not satisfy the monotonicity conditions. Hence,
the question of the mathematical validity of the independent interval approximation
resurfaces.

For this case, both the independent interval approximation and the Slepian-based
method are unsuitable for even approximating the persistency coefficient. The tradi-
tional approximation is the largest negative real pole of the Laplace transform of the
approximated excursion distribution. For the oscillating covariance function consid-
ered by Wilson and Hopcraft (2017), the approximation error from the pole methods
is of such a magnitude that the obtained coefficient is unsuitable even as an approxima-
tion. However, when the monotonicity condition is satisfied, the persistency coefficient
from the Slepian-based method yields approximations that are not too dissimilar to
the ones obtained from simulations.

6.3 Paper iii

This paper builds on the work of Paper i. However, the need for symmetry in the interval
distributions is removed. Hence allowing the intervals to have different distributions.
To recover both distributions, we need to consider two non-stationary processes that
switch to minus one or one at zero. If and only the corresponding expected value
function are monotonic, then the two interval distributions𝑇+ and𝑇− have a stochastic
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representation on the form

𝑇+
𝑑
= 𝑋 +

𝜈𝑝−1∑︁
𝑖=1

𝑌 , 𝑇+
𝑑
= 𝑌 +

𝜈𝑞−1∑︁
𝑖=1

𝑋 .

where 𝜈𝑝 follows a geometric distribution, and the distribution of 𝑋 and𝑌 are related to
the expected value functions of the two non-stationary processes. This representation is
a generalization of Theorem 1 in Paper i. However, under asymmetry, the derivative of
the covariance function can be expressed as the linear combination of the two expected
value functions. The implication of this is that covariance can not solely be used to
recover both𝑇+ and𝑇− .

6.4 Paper iv

Paper iv extends the result of Paper ii to non-zero level crossings using the Clipped
Slepian process. The loss of symmetry leads to additional complexity since there are now
two distributions of interest, the above and below excursion distributions. While only
the excursion above a level 𝑢 is of interest, both are approximated using this approach.

Two clipped processes are needed to approximate the excursion distributions. The
first is a Slepian process, which has an up-crossing at 𝑡 = 0, and the second one has
a down-crossing at 𝑡 = 0. Since we now have two expected value functions, we can
approximate both excursion distributions.

To ensure that the approximations are proper probability distributions, we need
to ensure that some monotonicity conditions are satisfied for the expected value func-
tions. When these conditions are met, the approximated distributions have a stochastic
representation of the same form as the equation above.

To illustrate this method, we again turn to the Gaussian diffusion process in two
dimensions. In particular, the persistency coefficient is approximated since this is not
known for this process except for zero-level excursions. Results are also compared to
simulations of trajectories. By studying this particular case, an important caveat is
found. When higher-level excursions are considered, the monotonicity of the clipped
process coming from the down-crossing is lost. This leads to a problem ensuring that
the approximation is a valid probability distribution for higher levels.
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Abstract

The switch process alternates independently between 1 and −1, with the first switch to 1
occurring at the origin. The expected value function of this process is defined uniquely by
the distribution of switching times. The relation between the two is implicitly described
through the Laplace transform, which is difficult to use for determining if a given func-
tion is the expected value function of some switch process. We derive an explicit relation
under the assumption of monotonicity of the expected value function. It is shown that
geometric divisible switching time distributions correspond to a non-negative decreasing
expected value function. Moreover, an explicit relation between the expected value of a
switch process and the autocovariance function of the switch process stationary coun-
terpart is obtained, leading to a new interpretation of the classical Pólya criterion for
positive-definiteness.

Keywords: Renewal theory; geometric divisibility; binary processes
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1. Introduction

The study of binary stochastic processes has a long-standing tradition in probability theory.
There exist many versions of such processes, for example the telegraph process in continuous
time or the simple discrete-time Markov chain. These processes found applications in many
fields, for example in renewal theory, signal processing [8], and statistical physics [2].

The focus of this paper is the switch process with independent switching times. More specif-
ically, we consider a continuous-time stochastic process taking values in {−1, 1}, starting at
1 at the origin, and then switching according to an independent and identically distributed
(i.i.d.) sequence of non-negative random variables. The switch process always starts from one
and hence is not stationary; however, a convenient stationary counterpart can be defined. This
counterpart will be referred to as the stationary switch process.

The expected value of the switch process is intrinsically connected with the switching
time distribution. This is also the case for the covariance of the stationary switch process.
Formalizing this connection is the main contribution of the paper, among other contributions
such as formulating and deriving the underlying properties of the switch process. The connec-
tion also leads to a class of distributions that constitutes a proper sub-class of geometric infinite
divisible distributions introduced in [6].
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The main results of this paper answer interesting questions related to renewal theory and
signal processing. In the context of renewal theory, finding the original distribution given that
we observe the thinned process was considered in [11]. From that perspective, Theorem 1
provides additional criteria for when such an inverse problem can be solved. In the signal
processing context, Theorem 2 provides a partial solution to the classical difficult problem of
obtaining the covariance function from the statistical properties of the point process used to
construct binary random signals; see [8] for further discussion of such problems.

The structure of the paper is as follows. In Section 2, the basic concepts are defined.
Section 3 contains the first main theorem relating expected value functions to the class of
geometric divisible distributions. The second main theorem connecting the covariance of a
stationary version of the switch process with the expected value of the switch process is pre-
sented in Section 4. In Section 5, a possible application for deriving results that can be used to
approximate level-crossing distributions is elaborated on.

2. Preliminaries

2.1. The switch process and its expected value

Let Tk, k = 1, 2, 3, . . ., be a sequence of i.i.d. non-negative random variables with the dis-
tribution function F, which is assumed to be absolutely continues with respect to the Lebesgue
measure. Additionally, let the corresponding density f associated with F be bounded on any
closed interval of the positive half-line. Define a renewal count process for t ∈ [0, ∞) by

N(t) =
⎧⎨
⎩

sup
{
n ∈N;

∑n
k=1 Tk � t

}
, t � T1,

0, 0 � t < T1.

In other words, N(t) is the number of renewal events up to a time point t.

Definition 1. Let N(t), t � 0, be a count process. Then the switch process is defined by
X(t) = (−1)N(t), t � 0.

The process X(t) switches between the values 1 and −1 at each renewal event, hence the
name.

One of the main objects of interest is the expected value function of the switch process
E(t) =EX(t). The relation between E and the switching time distribution, F, is implicit in
the time domain. There exist some elementary properties of E(t), which are important but
straightforward to derive; see, for example, [3]. First, we have the limiting results for t � 0,
which follow from the key renewal theorem:

lim
t→0+ E(t) = 1, lim

t→∞ E(t) = 0. (1)

The existence of E′(t) is of importance for the main results of the paper. Under the assumptions
stated in this section and assuming supt>0 f (t) < ∞ on F(t), E′(t) exists and is well-defined.
The last assumption can be relaxed. Specifically, there needs to exist l ∈N : supu>0 f ∗l(u) <

∞, which allows for more general switching time distributions, e.g. those with unbounded
densities at zero.

Let L(·) denote the Laplace transform and, in particular, let �F(s) =L(f )(s), where f is the
derivative of F when it exists. The Laplace transform of this probability-generating function is
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well-known and has the following form for s > 0:

L(E)(s) = 1

s

1 − �F(s)

1 + �F(s)
. (2)

This expression is easily solved for the switching time distribution,

�F(s) = 1 − sL(E)(s)

1 + sL(E)(s)
. (3)

Although the above explicit relations tie the distribution of the switch process and its expected
value, they do not provide an explicit condition when a function E is the expected value of a
switch process. Naturally, by Bernstein’s theorem, see [5, Theorem 1, p. 415], we could say
that this is the case whenever the right-hand side of the above equation is a complete monotone
function, but this condition is not easy to check in a concrete case. In Section 3, easy-to-check
conditions for E are presented.

2.2. Geometric divisibility

The concept of geometric infinite divisibility was introduced in [6] and further treated in
[1, 7]. It describes distributions that can be represented as a sum of i.i.d. random variables
where the number of terms in the sum follows a geometric distribution with an arbitrary
parameter p ∈ (0, 1). The main focus here is on a weaker concept, defined next.

Definition 2. Let νp be a geometric random variable with P(νp = k) = (1 − p)k−1p for k =
1, 2, . . ., and {W̃k}k�1 a sequence of i.i.d. non-negative random variables independent of νp.
If the random variable W, with the distribution function F, has the stochastic representation
W = ∑νp

k=1 W̃k, then W follows an r-geometric divisible distribution with r =Eνp and is said
to belong to the class GD(r); we write F ∈ GD(r).

The distribution of W̃ is then called the r-geometric divisor of the distribution of W. There
are two important properties of a GD(r) distribution, which are presented in the following
propositions.

Proposition 1.

(i) The Laplace transform of F ∈ GD(r) is

�F(s) = (1/r)�F̃(s)

1 − (1 − (1/r))�F̃(s)
.

(ii) The function
r�F(s)

1 + (r − 1)�F(s)

is completely monotone if and only if F ∈ GD(r).

The second important property is key to generalizing the main result in Section 3.

Proposition 2. Let u ∈R : 1 < u � r < ∞; then GD(r) ⊆ GD(u).

The proofs of both propositions follow using standard methods. However, it should be noted
that the first result follows from Bernstein’s theorem and the second result follows from the
first by using r/u instead of 1/r in (ii).
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3. Switch processes with monotonic expected value function

In this section we fully characterize switch processes with monotonic expected value func-
tions. For the main result, we recall the assumptions on the switching time distribution: F(t)
has support on (0, ∞) with a density f (t) for which there exists l ∈N : supt>0 f ∗l(t) < ∞ (a
technical requirement for the existence of E′(t)).

Theorem 1. Let X(t) be a switch process with E(t) its expected value function and the switching
time distribution F(t). Then the following conditions are equivalent:

(i) F(t) ∈ GD(2).

(ii) E(t) is non-negative and decreasing.

Proof. (i) ⇒ (ii): Since F(t) ∈ GD(2) it has the following Laplace transform, as described in
Section 2:

�F(s) =
1
2�F̃(s)

1 − 1
2�F̃(s)

.

Substituting this into (2), we have

L(E)(s) = 1

s

1 −
1
2�F̃(s)

1 − 1
2�F̃(s)

1 +
1
2�F̃(s)

1 − 1
2�F̃(s)

= 1

s
(1 − �F̃(s)),

which is equivalent to sL(E)(s) − 1 = −�F̃(s). The existence of E′(t) is needed in order to use
the Laplace transform L(E′)(s) = sL(E)(s) − E(0). It follows from the stated assumptions by
a rather standard although technical argument, see [4, Exercise 4.4.3]. Using the above-stated
property of the Laplace transform and the limits of E(t), L(−E′)(s) = �F̃(s). By taking the
inverse Laplace transform, this implies that −E′(t) is a probability density function. Therefore,
to satisfy the limiting results of (1), E(t) must satisfy the conditions of (ii).

(ii) ⇒ (i): Under the assumptions of (ii) and the limits of (1) we have
∫ ∞

0
E′(t) dt = lim

t→∞ E(t) − lim
t→0

E(t) = −1;

−E′(t) is thus a probability density function. Combining this with the derivative property of
the Laplace transform and the limits in (1), (3) becomes

�F(s) = 1 − sL(E)(s)

1 + sL(E)(s)
= L(−E′)(s)

2 −L(−E′)(s)
=

1
2L(−E′)(s)

1 − 1
2L(−E′)(s)

.

This is the Laplace transform of a GD(2) distribution, as described in Section 2. Therefore,
F(t) ∈ GD(2) with the divisor −E′(t), which yields (i). �
Remark 1. The switch process is a special case of the process αN(t), where α = −1. For any α

not equal to minus one, the process will either diverge or converge to zero. For α ∈ [−1, 0), the
expected value function is positive and decreasing if and only if the switching time distribution
belongs to GD(1 − α). This is shown using an argument similar to the proof of Theorem 1.
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Theorem 1 directly relates functional properties of the expected value of the switch pro-
cess with the switching time distribution for the class of GD(2) distributions. By combining
Theorem 1 and properties of E(t) derived in Section 2, a partial solution can be obtained for
the case when the switching time distribution belongs to GD(2). To highlight this partial char-
acterization we have the following corollary, which follows from the second part of the proof
of Theorem 1.

Corollary 1. Let E(t) be a function for t � 0 such that the following conditions are satisfied:
limt→0+ E(t) = 1, limt→∞ E(t) = 0, E(t) is at least once differentiable on (0, ∞), and E′(t) � 0
for all t � 0; then it is an expected value function of a switch process with a GD(2) switching
time distribution.

Corollary 2 gives an explicit representation of the distribution function and density for the
2-geometric divisor of the switching time distribution in terms of E(t).

Corollary 2. Let the switching time distribution, F(t), belong to GD(2), with the divisor F̃(t);
then, for t � 0,

E(t) = 1 − F̃(t), E′(t) = −f̃ (t).

Proposition 2 can be used to extend the results of Theorem 1.

Corollary 3. Let the switching time distribution be GD(r), for some r � 2; then the corre-
sponding expected value function of the switch process, E(t), is non-negative and decreasing
for t � 0.

However, the opposite is not necessarily true, i.e. a non-negative and decreasing expected
value function does not necessarily imply an r-geometric divisible switching time for
r > 2.

Let us consider a switch process constructed from a count process N(t) and satisfying the
conditions of Theorem 1. Further, let Ñ(t) be a count process with the arrival times distributed
according to the divisor of this switch process. The two count processes are related through
thinning. More specifically, N(t) is a thinning of Ñ(t), with the probability of thinning equal to
1
2 . Thus we have the following result.

Corollary 4. A switch process X(t) is 1
2 -thinned if and only if its expected value is non-negative

and decreasing.

From a given trajectory of N(t), the trajectory of process Ñ(t) cannot be recovered, in
general. However, it follows from Corollary 1 that the distribution of arrival times of Ñ(t)
can be recovered. For further relations between geometric divisibility of the switching time
distribution and the thinned renewal processes, see [11, 12].

4. The autocovariance of the stationary switch process

A stationary version of the switch process can be constructed by addressing the behavior
around zero. Let μ < ∞ be the expected value of the switching time distribution, and ((A, B), δ)
be non-negative random variables, mutually independent and independent of X(t), such that δ

takes values {−1, 1} with equal probability and such that fA,B(a, b) = (1/μ)fT (a + b) so that
the marginals of fA,B are fA(t) = fB(t) = (1 − FT (t))/μ.

https://doi.org/10.1017/jpr.2023.81 Published online by Cambridge University Press

i 41



Switch process and geometric divisibility 807

Definition 3. Let X+(t) and X−(t) be two independent switch processes, and ((A, B), δ) be as
described above. Define

Y(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−δ, −B < t < A,

δX+(t − A), t � A,

−δX−(−(t + B)), t �−B.

Then Y(t) is called a stationary switch process.

The stationarity of Y(t) follows from standard results in renewal theory. In the same way as
the switch process is characterized by its expected value function E(t), the stationary switch
process is characterized by its covariance function C(t). There exists a relation between E(t)
and C(t) presented in the next theorem.

Theorem 2. Let C(t) be the covariance of the stationary switch process, E(t) be the expected
value function of the switch process, and μ be the expected value of the switching time
distribution. Then, for t � 0,

C′(t) = −(2/μ)E(t).

Proof. Starting with the covariance of Y(t), and utilizing symmetry, we have

(−Y(t) | δ = 1)
d= (Y(t) | δ = −1)

and, for t > 0,

C(t) =E(E(Y(t)Y(0) | δ)) = −E(Y(t) | δ = 1)

= −
∫ ∞

0
E(Y(t) | δ = 1, A = x)fA | δ=1(x) dx

= −
( ∫ t

0
E(δX(t − x) | δ = 1, A = x)fA(x) dx +

∫ ∞

t
(−1)fA(x) dx

)
.

Since E(t − x) = 0, for x > t we obtain C(t) = 1 − FA(t) − (E ∗ fA)(t). Using the above expres-
sion and (2),

L(C)(s) = 1

s
−L(fA)(s)

(
1

s
+ 1

s

1 − �F(s)

1 + �F(s)

)
= 1

s
− 1 − �F(s)

μs

(
2

s

1

1 + �F(s)

)

= 1

s

(
1 − 2

μ
L(E)(s)

)
.

Using L(f ′)(s) = sL(f )(s) − f (0) and C(0) = 1,

sL(C)(s) − 1 = − 2

μ
L(E)(s), C′(t) = − 2

μ
E(t). �

Theorem 2 allows us to use functional properties of the expected value of the switch pro-
cess to investigate the covariance of the stationary switch process. In particular, combining
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Theorem 2 with Theorem 1 and Proposition 1 yields a partial characterization of the covariance
functions.

Corollary 5. Let C(t) be a symmetric function around zero, t ∈R, such that the following
conditions are satisfied for all t ∈ [0, ∞): C(t) � 0, C′(t) � 0, C′′(t) � 0, and C(0) = 1. Then
C(t) is the covariance function of a stationary switch process with a GD(2) switching time
distribution.

Remark 2. Interestingly, the conditions of Corollary 5 are essentially equivalent to those in
[9, Theorem 1]. Thus, the above corollary can be viewed as an alternative proof of the Pólya
criterion of positive definiteness and consequently implying that characteristic functions sat-
isfying the conditions in [9] can be characterized as covariance functions of stationary switch
processes with GD(2) switching time distribution.

By combining Theorem 1 and Theorem 2, the divisor’s density and distribution can be
derived from the covariance function.

Corollary 6. Let C(t) be the covariance of the stationary switch process and the switching time
distribution belong to GD(2), with the divisor distribution F̃; then, for t � 0,

1 + μ

2
C′(t) = F̃(t),

μ

2
C′′(t) = f̃ (t),

where μ = −2C′(0+).

The identification of μ does not require geometric divisibility, since it follows from the
limits of E(t) and Theorem 2.

Even if the switching time distribution does not belong to GD(2) Theorem 2 is still
applicable, as illustrated in the next example.

Example 1. Consider a switch process with �(2, 2) switching time distribution. The expected
value of this switch process, E(t) = √

2 sin ((2t + π )/4)e−t/2 is oscillating so that the switch-
ing time distribution does not belong to GD(2). By Theorem 2, C(t) = cos (t/2)e−t/2 is the
covariance of the stationary switch process.

5. Conclusions

To characterize which functions correspond to the expected value of the switch process
is a difficult problem. By exploring the relationship between the functional properties of the
expected value and the class of 2-geometric divisible distributions, a partial answer to the
problem is given.

An explicit relation between the expected value function of the switch process and the
covariance function of the stationary switch process is presented. It leads to corresponding
relations between the 2-geometric divisible switching time distributions and the covariance
of the stationary switch process. It enables the recovery of the switching time distribution
from the covariance function under conditions that are easy to verify. This constitutes a partial
solution to the well-known open problem of obtaining the switching time distribution from
the covariance function of a continuous-time binary process. Complete answers to both the
above-mentioned problems are still unknown.

Finally, it is apposite to mention the connection the presented results have to the persistence
studies that are a long-standing and heavily investigated problem of statistical physics, see [2,
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10]. There, the independent interval approximation (IIA) framework has been used to approx-
imate the tail distribution and its tail index (persistency exponent). The results of this paper
allow us to obtain an explicit IIA representation for many stochastic processes commonly used
in statistical physics. This not only provides information about the tail behavior but also yields
the explicit approximated distribution of excursions above or below zero. Explicit applica-
tions of the obtained results for the independent interval approximations of the level-crossing
distributions is planned in future work.
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THE SLEPIAN MODEL BASED INDEPENDENT INTERVAL
APPROXIMATION OF PERSISTENCY AND ZERO-LEVEL

EXCURSION DISTRIBUTIONS

HENRIK BENGTSSON AND KRZYSZTOF PODGÓRSKI
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Abstract. In physics and engineering literature, the distribution of the excursion time
of a stationary Gaussian process has been approximated through a method based on a
stationary switch process with independently distributed switching times. The approach
matches the covariance of the clipped Gaussian process with that of the stationary switch
process. By expressing the switching time distribution as a function of the covariance,
the so-called independent interval approximation (IIA) is obtained for the excursions of
Gaussian processes. This approach has successfully approximated the persistency coeffi-
cient for many vital processes in physics but left an unanswered question about when such
an approach leads to a mathematically meaningful and proper excursion distribution.
Here, we propose an alternative approximation: the Slepian-based IIA. This approach
matches the expected values of the clipped Slepian process and the corresponding switch
process initiated at the origin. It is shown that these two approaches are equivalent,
and thus, the original question of the mathematical validity of the IIA method can be
rephrased using the Slepian model setup. We show that this approach leads to valid
approximations of the excursion distribution for a large subclass of the Gaussian pro-
cesses with monotonic covariance. Within this class, the approximated excursion time
distribution has a stochastic representation that connects directly to the covariance of
the underlying Gaussian process. This representation is then used to approximate the
persistency coefficient for several important processes to illustrate the Slepian-based IIA
approach. Lastly, we argue that the ordinary IIA is ill-suited in certain situations, such
as for Gaussian processes with a non-monotonic covariance.

1. Introduction

The distribution of excursion times for a stationary Gaussian process constitutes a long-
standing and challenging problem in physics and applied probability theory. In its most
generic form, the problem can be formulated as finding statistical properties of the ex-
cursion set Eu = {t ∈ R : X(t) > u}, where X(t), t ∈ R, is a stochastic process. This
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Date: 27th January 2025.
Key words and phrases. Slepian model, Gaussian process, level crossing distributions, switch process,
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excursion is the exceedance above the level u, and thus, one often uses terms the u-
excursion sets and the excursion distributions when probabilistic properties of such sets
are sought.

While the idea of an excursion distribution is intuitive, the solution to the problem of
fully characterizing it has so far been elusive despite considerable effort. This effort has,
however, resulted in several significant results, such as the famous Rice formula. Due to
the importance of excursion distributions in many fields and the general complexity of the
problem, several approximation methods have been developed. Two methods have been
a frequent topic in physics papers. The first is based on Rice series expansions, which use
the moments of the distribution of the number of crossings. The second method is the
independent interval approximation (IIA).

The basis for the IIA method is the so-called clipped process. This process is obtained
by computing the sign of a stochastic process, and McFadden (1956) noted that the inter-
val lengths of the clipped process correspond to the zero-level excursions of the original
process. However, due to the underlying dependency of the original process, the intervals
of the clipped process will have a non-trivial dependency structure. Therefore, in the IIA
framework, the core assumption is that the dependence between successive intervals is suf-
ficiently small so that they can be treated as independent. Subsequently, the covariance
of the clipped process can be matched with that of a stationary binary renewal process,
for which the relation between covariance and interval distributions is known. Using this
relation, an approximation of the excursion distribution is obtained as a function of the
covariance of the clipped process. While this approach leads to an approximation, the
validity of such a method needs to be investigated.

The validity of the IIA approach was further discussed in McFadden (1957, 1958), which
also considered extending the approach to allow for Markovian types of dependency be-
tween intervals. This extension led to a study by Rainal (1962, 1963), which empirically
examined both the IIA and the Markovian approximation. This study concluded that a
Markovian type of dependency structure might not be suitable for approximating some
Gaussian processes. Additionally, in Longuet-Higgins (1962), it was shown that the IIA is
never exactly valid for Gaussian processes. These investigations imply that the indepen-
dence assumptions have to be used with caution. While these problems were highlighted,
it did not mean that the approximation could be adequate for many important models.

The popularity of the IIA has seen a resurgence during the last three decades. This
is due to a greater interest in the tail of the excursion distribution in several areas such
as optics, statistical physics, and more, (Brainina, 2013). To characterize the tail of this
distribution, emphasis has been placed on the so-called persistency coefficient. This coeffi-
cient characterizes the tail of the excursion distribution and thus describes the probability
of large excursions. A comprehensive overview of persistency coefficients and how they
can be approximated from the IIA framework can be found in Bray et al. (2013).

Persistency coefficients are generally process-specific and often very difficult to derive
analytically. Hence, they are only known explicitly for a handful of processes. The
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IIA THROUGH THE SLEPIAN MODEL 3

persistency coefficient for the Ornstein-Uhlenbeck process was shown to be θ = 0.5 by
Bachelier (1900) using the explicit distribution of the Brownian motion excursion above
u < 0, which is the Lévy distribution with the index of stability 0.5. Another process
for which the persistency coefficient is known is the random acceleration process. It
was shown by Sinai (1992) that the persistency coefficient for this process is θ = 0.25.
For fractional Brownian motions, which in its stationary version correspond to fractional
Ornstein-Uhlenbeck processes, Molchan (1999) showed that the persistency coefficient for
this process is θ = 1−H, where H is the Hurst parameter. Another important class of pro-
cesses in statistical physics is diffusion processes. It was only in 2018 that Poplavskyi and
Schehr (2018) derived the persistency coefficient for the two-dimensional diffusion process
(θ = 0.1875). For this process, the IIA framework was used several times to approximate
the persistency coefficient before it was derived. Estimates have been obtained by, among
others Sire (2007, 2008); Schehr and Majumdar (2007); Majumdar et al. (1996), and they
are relatively close to the persistency coefficient derived by Poplavskyi and Schehr (2018).
The importance of the diffusion process and the recency of the result by Poplavskyi and
Schehr (2018) shows that there is still a need for adequate approximation methods. Even
for the zero-level excursions.

For the cases with analytically derived persistency coefficients, the IIA generally seems
to produce reasonable approximations. However, several important questions still remain
that have not been addressed so far. Since the approximated excursion distribution is
given as a function of the covariance of the clipped process in the Laplace domain, this
function needs to be completely monotone for it to correspond to a valid probability
distribution. It is not apparent that the class of covariance functions of the clipped
Gaussian process will always correspond to a probability distribution on a positive real
line. This also raises questions about the validity of using the IIA to approximate the
persistency coefficient.

The main idea of this paper is to base the IIA on the Slepian process, which describes
the behavior at the crossing instance of the process we are interested in. The reasons for
using the clipped Slepian process are twofold; firstly, by matching the clipped Slepian pro-
cess to a non-stationary binary process, the so-called inspection paradox can be avoided
since all intervals of the non-stationary binary process will have the same interval dis-
tribution. Secondly, in a recent paper by Bengtsson (2024), conditions were derived for
when the interval distribution of a non-stationary binary can be uniquely obtained from
the expected value function of this binary process. The latter result will be used to show
that the approximated excursion distribution of the Slepian-based IIA is indeed a valid
probability distribution for a large class of processes. This has direct implications for the
ordinary IIA since it will later be shown that the ordinary IIA and the Slepian-based IIA
are equivalent for zero-level excursions. Before introducing the paper’s notation and out-
line of the paper, it should be noted that only processes with finite crossing intensities are
treated unless otherwise stated. This is the same general assumption on crossing intensity
that Bray et al. (2013) gives for the ordinary IIA.
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Clipped process Binary process

Stationary

Process Dcl(t)
def
= sgn(X(t)) Ds(t)

Covariance Rcl(t)
def
= Cov

(
Dcl(t), Dcl(0)

)
R(t)

def
= Cov

(
Ds(t), Ds(0)

)

Slepian

Process D0(t)
def
= sgn(X0(t)) D(t)

Expectation E0(t)
def
= E

(
D0(t)

)
E(t)

def
= E

(
D(t)

)

Table 1. Notation for the characteristics that are used for the IIA match-
ing clipped processes with switch processes in the stationary and attached
at zero-crossing cases.

The structure of the paper is as follows: we start with an overview of the ordinary IIA
and introduce the switch process in Section 2. Then, the Slepian-based IIA is the topic of
Section 3. These sections focus on the approximate excursion distribution while Section
4 focuses on the persistency coefficient. In Section 5, these methods are used to obtain
approximated persistency coefficients for several stochastic processes. Due to the idea of
matching and clipping different processes, the notation used in the paper is summarized
in Table 1.

2. The independent interval approximation

The instants of zero-level crossings of a smooth process X(t) form an ordered sequence
of points Si, i ∈ Z, leading to two sequences of interlaced intervals of the lengths: T+

i ,
i ∈ Z, for the excursions above the zero-level and T−

i , i ∈ Z, for the excursions below it.
If a new process is constructed from this process such that it takes the value one when
X(t) ⩾ 0 and minus one when X(t) < 0, we obtain the clipped version of X(t). The
clipped version can also be obtained directly from X(t) by computing

Dcl(t) = sign(X(t)).

It is intuitive that the distributions of the intervals that Dcl takes the value one or minus
one encapsulate the excursion behavior of X(t). This has been known for a long time.
See, for example, McFadden (1956).

While the notion of clipping a process X(t) might be straightforward, we illustrate it
with an example, in which we use a double peak spectral model for sea state data that
accounts for dependence between the two sea systems: swell and wind. The model was
developed based on measured spectra for Norwegian waters (Haltenbanken and Statfjord);
see Torsethaugen and Haver (2004). The input to the model is significant wave height, Hs,
for total sea and spectral peak period, Tp, for the primary (highest) peak. In our example,
we have set Hm = 6[m]; Tp = 8[s]; and used WAFO-toolbox (WAFO-group, 2017) to

50 Papers



IIA THROUGH THE SLEPIAN MODEL 5

0 0.5 1 1.5 2 2.5 3 3.5 4

Frequency [rad/s]
0

0.5

1

1.5

2

2.5

3

3.5

4

S
(w

) 
[m

2
 s

 / 
ra

d]

Spectral density

fp = 0.79 [rad/s]

0 5 10 15 20
Lag (sec)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
C

F

Auto Covariance Function (ACF)

Figure 1. The Torsethaugen spectrum (left) and the corresponding correlation
(right) that have been used for generating data that illustrate the introduced
concepts.
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Figure 2. The excursion intervals of a Gaussian process X(t) together with the
corresponding clipped process.

make all computations. In Figure 1, we see the graphs of the two-peaked spectrum and
the corresponding autocovariance. Unless otherwise stated, a covariance is assumed to be
normalized to an autocovariance throughout the rest of the paper. A simulated trajectory
from the model is shown in blue in Figure 2 together with the clipped process in red.
In this example, the intervals will be dependent, which is generally the case for clipped
processes, as mentioned previously. Therefore, the main idea behind the IIA is to overlook
this complex dependency structure and approximate it with a binary process where the
plus and minus interval distributions are independent and identically distributed (iid).
Under this assumption, the relation between the plus and minus distribution directly
and explicitly relates to the characteristics, such as the expected value or covariance.
Therefore, the clipped process’s characteristics can be used to derive an approximation of
the excursion distribution through this simplified relation.

However, the key question is which characteristics of the clipped process should be
used to construct this binary process. For example, the mean length of the intervals
could be used and is given by the well-known formula from Rice (1944). However, since
the expected value does not uniquely determine a distribution, a choice of distribution
must still be made.

ii 51



6 H.BENGTSSON AND K. PODGÓRSKI

Another choice is to match the covariance of a stationary binary process to the one of
the clipped. However, it follows from the inspection paradox that the interval containing
zero of a stationary binary process will not have the same interval distribution as the
other intervals. While the mathematical foundations and details have long been resolved,
see Palm (1943), Khinchin (1955), and Ryll-Nardzewski (1961), these slight differences
need to be accounted for when matching the covariance to a stationary binary process.

A way to address this issue is to use a non-stationary binary process and match ex-
pected value functions instead. This is the main idea of this paper and the topic of
Section 3. Before presenting this approach, we introduce some important properties of
the stationary and non-stationary binary processes used and some problems arising from
using the covariance function in the ordinary IIA approach.

2.1. The switch process. The switch process is a binary process similar to the alter-
nating renewal process but takes the specific values one and minus one. This process is
used to approximate the clipped process. Therefore, we present the two versions and some
properties of the switch process in this section. We start with the non-stationary version.

Consider the positive line and its origin as a starting reference point and define a
random process taking values one and minus one over interlaced intervals of the lengths
T+
i , T−

i , i ∈ N. The distributions of these are referred to as the interval distributions to
distinguish them from the excursion distribution. We put one over the interval (0, T+

1 ],
after which we switch to minus one over the interval (T+

1 , T+
1 +T−

1 ], then we switch again
to one, and so on. More specifically,

D(t) = (−1)N(t),(1)

where N(t) is the renewal process constructed from T+
i and T−

i , i ∈ N. The resulting
one/minus one process is denoted by D(t), t > 0, and is referred to as the non-stationary
switch process. In Figure 3 (left), a trajectory of such a process can be seen.

Since the excursion intervals, above and below zero, for a stationery Gaussian process
are symmetric in distribution, we utilize this symmetry by letting T+

i
d
= T−

i for all i ∈ N.
Further, denote the common cdf of T+

i and T−
i by F for which we assume that the density

function f exists and that the distribution has a finite expectation, i.e., µ = ET±
i < ∞

Properties of D(t), t ≥ 0, can be determined from the distribution F of T+ and T−.
However, it is important to note that the process D(t) is not stationary due to the
special role the origin plays in its definition. For example, the expected value function
E(t) = ED(t) is not constant with time.

Next, we present some key properties of the switch process, which was derived in
Bengtsson (2024). Since there is a wide use of the Laplace transform, denoted with L(·),
some properties of this transform are collected in Appendix A.
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Figure 3. The non-stationary switch process (left) and the stationary version,
(right) with δ = 1. The inspection paradox states that the interval that contains
zero has the distribution A + B, which is not the same as the other interval
distributions.

Proposition 1. Let D(t) be a non-stationary switch process with the expected value func-
tion E(t) = ED(t). Then we have the relations for s > 0

L(E)(s) =
1

s

1−Ψ(s)

1 + Ψ(s)
,(2)

Ψ(s) =
1− sL(E)(s)

1 + sL(E)(s)
.(3)

where Ψ(s) = L(f)(s).

This proposition provides an explicit link between the expected value function and the
distribution of the intervals. This connection will later form the basis for the Slepian-based
IIA.

It’s clear from the expected value function that the process D(t) is not stationary.
However, we can extend the process to the entire real line, use a standard tool from
renewal theory, and delay it forward and backward around zero. Then, these delaying
distributions can be chosen so that the resulting process is stationary. Since the value of
this process at zero will be random, we also need a Bernoulli random variable to determine
the value of the process on the interval that contains zero.

Let A, B be the delays forward and backward and δ a Bernoulli random variable taking
the value one and minus one. Then, we can define the delayed switch process by

Ds(t) =





−δ, −B < t < A,

δD+(t− A), t ⩾ A,

−δD−(−(t+B)), t ⩽ −B,

(4)

where D± are two independent non-stationary switch processes attached at the ends of
the delaying interval [−B,A] with the common interval distribution F . This construction
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8 H.BENGTSSON AND K. PODGÓRSKI

is illustrated in Figure 3 (left). We now need the distribution of A,B, δ such that the
delayed switch process becomes stationary. For this, we have the following proposition,
which follows from applying the key renewal theorem.

Proposition 2. Let D+(t) and D−(t), t > 0 be two independent non-stationary switch
processes with the interval distribution T , with the distribution F and density f , such that
the expected value ET = µ < ∞. If A,B, δ are non-negative, mutually independent and
independent of D± with a distribution is given by

fA,B(a, b) =
f(a+ b)

µ

fA(t) = fB(t) =
1− F (t)

µ

P(δ = 1) = P(δ = −1) =
1

2

Then, the delayed switch process in Equation (4) is stationary. We call a delayed switch
process with this delay for the stationary switch process.

Remark 1. While it is not necessary that T has a density, for the proposition to hold, it
is only necessary that T+

1 + T−
1 is not sitting on a lattice.

From Proposition 2, we observe the so-called inspection paradox. The interval contain-
ing zero will have a different distribution than the regular interval distribution T since it
will have the length A+B. We illustrate this in Figure 3 (left).

The main characteristic of the stationary switch process is the covariance function,
which, for the symmetric case, when T+ = T− uniquely determines and characterizes the
process. In the next proposition, we relate the covariance and the interval distribution.

Proposition 3. For a fixed t ≥ 0, the distribution of Ds(t) is uniquely characterized by
Pδ(t) = P(Ds(t) = 1|Ds(0) = δ), δ = ±1 that have the following Laplace transforms

L(Pδ)(s) =
1

s





1− 1

µs

1−Ψ(s)

1 + Ψ(s)
; δ = 1,

1

µs

1−Ψ(s)

1 + Ψ(s)
; δ = −1,

where Ψ is the Laplace transform of the probability distribution of T±
i ’s. The covariance

function R(t) = Cov(Ds(h), Ds(t+ h)) has the form

R(t) = P1(t)− P−1(t)

with the Laplace transform

L(R)(s) =
2

sµ

(
µ

2
− 1

s

1−Ψ(s)

1 + Ψ(s)

)
.
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This connection between the covariance and the interval distribution allows us to express
the interval distribution as a function of the covariance in the following way

Ψ(s) =
1− µs

2
+ µs2

2
L(R)(s)

1 + µs
2
− µs2

2
L(R)(s)

(5)

This equation agrees with formula (215) of Bray et al. (2013). In the next section, we will
see how this equation is used to obtain an approximation of the excursion distribution in
the ordinary IIA framework.

2.2. The ordinary IIA. In the previous section, we saw how the covariance characterizes
the stationary process through its relation to the interval distribution. The ordinary IIA
uses this relation to approximate this by substituting the covariances function in Equation
(5) with the covariance of a clipped process; this is the essence of matching covariance.

An explicit relation exists between the covariance of a stationary Gaussian process and
its clipped process for the zero level. The two are related by

Rcl(t) =
2

π
arcsin(r(t)).

and then from this, we directly obtain the ordinary IIA approximated excursion distribu-
tion by combining the above equation with Equation (5) in the following way

ΨIIA(s) =
1− µs

2
+ µs2

2
L(Rcl)(s)

1 + µs
2
− µs2

2
L(Rcl)(s)

.(6)

By doing this matching, we overlook the dependency structure and assume that it is
sufficiently small to be ignored. However, two fundamental questions arise from this
approach that have rarely been addressed in the past, see Lindgren et al. (2022).

The first question is: Does L(Rcl)(s) in equation (6) always lead to a valid probability
distribution, i.e., if the IIA is mathematically sound? This question is equivalent to finding
under what conditions a Laplace transform corresponds to probability density functions.
There is Bernstein’s Theorem, which states if ΨIIA(s) is completely monotone, then it’s
the Laplace transform of a probability distribution, see Widder (1946), Theorem 12a,
p.160. To show that a function is completely monotone involves all the derivatives of a
function. This is difficult in practice. In fact, even determining when a rational function is
a Laplace transform of a probability density has been so far an unsolved problem despite
many partial results, see Zemanian (1959, 1961); Sumita and Masuda (1987)

The second question, given an affirmative answer to the first one, is: Is there any effec-
tive and explicit form of this distribution? These questions will be approached, and partial
answers will be obtained after an alternative approach is proposed. In this approach, one
matches a non-stationary switch process with the clipped Slepian process with the origin
attached to a zero-crossing, which is the topic of the next section.

ii 55



10 H.BENGTSSON AND K. PODGÓRSKI

3. The Slepian-based IIA

The Slepian-based IIA approximates the excursion distribution by independent intervals
when the reference point is attached to a level crossing instead of the origin. Conceptually,
it is more natural because the crossing instant is the excursion-relevant event while the
origin is not. It also avoids the origin location bias, also known as the inspection paradox,
as discussed above through the variables (A,B) in the section on the stationary switch
process.

Compared to the ordinary IIA, the Slepian-based IIA uses different characteristics than
the covariance. Instead of matching the covariances of the two stationary processes, it
matches the expected value function of a switch process and the clipped Slepian process.
The Slepian model was introduced by Slepian (1963) and models the statistical behavior
at the instants of u level up-crossing of a stationary Gaussian process. This stationary
Gaussian process needs to be sufficiently smooth to have well-defined level crossings and a
covariance function that is at least twice continuously differentiable. For such a Gaussian
process X(t) with the covariance function r(t) the Slepian process is given by

Xu(t) = u · r(t)−R · r′(t)√
−r′′(0)

+ ∆(t),(7)

where R is a standard Rayleigh variable, with the density fR(s) = se−s2/2 independent of
the non-stationary Gaussian process ∆, with covariance

r∆(t, s) = r(t− s)− r(t)r(s) +
r′(t)r′(s)

r′′(0)
.

Since we focus on the zero-level crossing, this process reduces to

X0(t) = −R · r′(t)√
−r′′(0)

+ ∆(t).(8)

From the above equation, we see the importance of having finite crossing density since
R is scaled by −r′(t)/

√
−r′′(0). For more details on the Slepian process, see Leadbetter

et al. (1983). With the Slepian process defined, we can now introduce the clipped Slepian
process, which is defined by

D0(t) = sgn
(
X0(t)

)
, t ≥ 0,

where X0 is defined in (8). Since the Slepian process models an up-crossing, this equates
to the clipped version starting from one. Hence, matching the clipped Slepian process
with the switch process is a natural choice.

3.1. The approximated excursion distribution. Due to the lack of stationarity of
both the clipped Slepian process and the switch process, it is more appropriate to match
the expected value instead of covariance. The expected value function has an explicit
form and is given in the following proposition.
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Proposition 4. Let E0(t) = ED0(t) be the expectation of a Slepian process clipped at
zero. Then for t ⩾ 0,

E0(t) = − 1√
−r′′(0)

r′(t)√
1− r(t)2

,(9)

where r(t) is the covariance function of the original Gaussian process, for which it is
assumed that r′′(t) is well defined for t ⩾ 0.

Proof. We have

E(D0(t)) = E
(
I(X0(t) > 0)− I(X0(t) ⩽ 0)

)
= 2P(X0(t) > 0)− 1,

the probability of X0(t) being above zero, depends on the sign of r′(t), and we have

P(X0(t) > 0) =





P
(
R < ∆(t)

√
−r′′(0)
r′(t)

)
: r′(t) > 0,

P(∆(t) > 0) : r′(t) = 0,

1− P
(
R ≤ ∆(t)

√
−r′′(0)
r′(t)

)
: r′(t) < 0.

The probability of a Rayleigh random variable being less than a normal random variable
is easy to obtain, and regardless of the sign of r′(t), we have

P(X0(t) > 0) =
1

2

(
1− 1√

−r′′(0)

r′(t)√
1− r(t)2

)
,

which leads to (9). □

From the proposition, it’s clear that the behavior of the expected value function E0 of
the clipped Slepian process is largely determined by the derivative of r(t). This thus serves
as a direct link to the covariance of the process we are interested in and the expected value
function.

However, matching in the time domain is cumbersome, which is why it’s done in the
Laplace domain. This is done by substituting the expected value of the clipped Slepian
process from Proposition 4 into the second equation of Proposition 1. Hence, we directly
obtain an expression for the approximated excursion distribution in the Laplace domain.
We summarize this in the next proposition.

Proposition 5. Let E0 be the expected value of the Clipped Slepian process, then the
Slepian-based IIA approximation of the excursion distribution denoted by T̂ is given in
the Laplace domain by

ΨT̂ (s) =
1− sL(E0)(s)

1 + sL(E0)(s)
.

The approximated excursion distribution can be obtained in the time domain by in-
verting the above Laplace transform. This can be done either analytically or numerically.
However, there are still several important questions that need to be answered. For ex-
ample, what conditions on E0 guarantee that the approximated excursion distribution is
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indeed a valid probability distribution? This is difficult to verify for arbitrary expected
value functions due to Bernstein’s theorem, as previously mentioned. Further, what is
the relation between the Slepian-based IIA and the ordinary IIA for the approximating
zero-level excursions? The next section deals with these questions and properties of the
Slepian-based IIA.

3.2. Properties of the Slepian-based IIA. One of the main advantages of the Slepian-
based IIA is that approximated excursion distribution can be retrieved explicitly for a
large class of stationary Gaussian processes in terms of a stochastic representation. The
following theorem on this representation thus serves as the probabilistic foundation for
the Slepian-based IIA and follows directly from Theorem 1 and Corollary 2 in Bengtsson
(2024).

Theorem 1. If the expected value function E0(t) of the clipped Slepian process is differen-
tiable with a non-positive derivative for t ⩾ 0. Then, the Slepian-based IIA approximation
of the excursion distribution has the following stochastic representation

T̂ =
ν∑

i=1

T̃i.(10)

Where T̃i is an iid sequence of positive random variables having the survival function
equal to E0(t) and ν follows a geometric distribution with the probability mass function
P(ν = k) = (1/2)k, k ∈ N.

A random variable T̂ , and its distribution with the stochastic representation of The-
orem 1 is called 2-geometric divisible, and the distribution of T̃i’s is referred to as a
geometric divisor of the distribution of T̂ . For a brief introduction to this class of distri-
butions, see Bengtsson (2024). The representation of Theorem 1 lacks usefulness unless
there is a way to express T̃ in terms of some characteristic. Luckily, there is such a way,
which we highlight in the next corollary.

Corollary 1. The cdf of the divisor T̃ is given by

FT̃ (t) = 1− E0(t).

The implication of this is that there are several methods to obtain T̂ from T̃ . The
choice of method can, therefore, be tailored depending on the particular properties of T̂
we are interested in. For example, the expected value of T̂ follows directly from Wald’s
equation and is ET̂ = 2ET̃ .

If the distribution of T̂ is sought, the standard method is through the Laplace transform
since we deal with sums of random variables. In the Laplace domain, then we have the
following relation between T̂ and T̃

ΨT̂ =
1
2
ΨT̃

1− 1
2
ΨT̃

.(11)
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If the analytical inverse Laplace transform of Equation (11) is unwieldy, the representation
still allows for numerical methods. It should also be noted that the stochastic representa-
tion in Theorem 1 allows for straightforward sampling of values from T̂ , opening up the
use of Monte Carlo methods to approach this problem.

We have seen how Theorem 1 provides the theoretical foundation for the Slepian-based
IIA and has several practical consequences for obtaining the approximated excursion
distribution. However, one question remains: what is the relation to the ordinary IIA
framework?

The core idea of both the ordinary IIA and Slepian-based IIA are very similar, namely
the idea of matching characteristics of a clipped process to a version of the switch process.
It turns out that the two approaches coincide for the zero level, which we show in the
following Theorem.

Theorem 2. Let R(t) be the covariance of a stationary switch process and E(t) be the
expectation of the corresponding non-stationary switch process. Then

R′(t) = − 2

µ
E(t),

where µ is the first moment of the interval distribution.
Similarly, if Rcl(t) is the covariance of a clipped smooth stationary Gaussian process

and E0(t) is the expected value of the clipped Slepian process for the level u = 0, then

R′
cl(t) = − 2

µ
E0(t),

where µ = π√
−r′′(0)

represents also the average length of the excursion interval.

Proof. Theorem 2 in Bengtsson (2024) establishes the first part of the result. For the
second part we have

R′
cl(t) =

d

dt

(
2

π
arcsin r(t)

)

=
2

π

r′(t)√
1− r(t)2

.

Let µ = π√
−r′′(0)

, then, by Proposition 4,

R′
cl(t) = − 2

µ
E0(t).

Where µ is the average interval length of the excursion intervals is a well-known fact
following from the ergodic theorem. □

Remark 2. In Theorem 2, two seemingly unrelated binary processes have the same relation
between expected value and covariance when the process is attached to a jump. It is an
interesting question if this relation generalizes to all binary processes with finite jump
intensity on any compact set such that the intervals between jumps are well defined.

We obtain the following rather unexpected equivalence between the two IIA approaches.
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Corollary 2. Matching the covariance of the clipped process to the covariance of a sta-
tionary switch process is equivalent to matching the expected value of the clipped Slepian
process with the expected value of a non-stationary switch process.

Additionally, Theorem 2 also has implications for Theorem 1. Since any covariance
function R(t) that leads to the clipped covariance function Rcl(t) having a non-positive
derivative for t > 0 will correspond to an expected value function that satisfies the condi-
tions of Theorem 1, the theorem also provides a foundation for the ordinary IIA framework
for a large class of Gaussian processes.

We end this section with a caveat on when both the Slepian-based and ordinary IIA
approaches encounter technical difficulties. If ET̃i = ∞ this implies that ET̂ = ∞ in (10),
which leads to a limitation for the choice of E0(t) in order to have a sensible IIA.

Corollary 3. If S(t) is a survival function of a distribution such that
∫∞
0

S(t) dt = ∞,
then it cannot be the expected value function of any stationary switch process. In par-
ticular, if a covariance function r(t) of a Gaussian process yields a non-increasing and
non-integrable expected value function

E0(t) = − 1√
−r′′(0)

r′(t)√
1− r2(t)

,

then there is no switch process that can be used for the purpose of matching.

With this caveat in place, we will next treat the general problem of estimating the
persistency coefficients within the IIA framework.

4. Persistency coefficient through the IIA

The persistency coefficient is defined by Bray et al. (2013) as the asymptotic decay of the
first persistence probability. This is the probability that a zero mean process X(t), t ≥ 0

starting at zero does not change the sign between (0, τ). It has been argued in Sire (2008)
that if |r(t)| < C/t, then the tail of this probability decays exponentially.

In physics and engineering, the exponent, or coefficient, is an important characteristic
of stochastic systems since it provides insight into how long a system can stay in a certain
state. The problem is, as pointed out by Bray et al. (2013), that this coefficient is process-
specific and generally hard to find analytically. See Bray et al. (2013) for an overview of
both the persistency coefficient and approximation methods for it.

In the IIA framework, the persistency coefficient can be approximated by investigating
the tail of T̂ . If the conditions of Theorem 1 are satisfied, this can be done through
inverting Equation (11) or the equation in Proposition 5. Since this is the form of a ratio
of two functions, this can present some difficulty.

In physics, this difficulty has been circumvented by instead using the pole of Equation
(5) with the largest negative real part as the approximation for the persistency coeffi-
cient. There are several challenges to such an approach. Firstly, the Laplace transform
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considered needs to correspond to a probability distribution, which is not obvious, as it
has already been discussed in previous sections.

Another challenge is whether finding a pole with the largest negative real value guaran-
tees the corresponding exponential tail behavior. This can be justified if the distribution
can be expressed in terms of a finite mixture of exponential distributions, Sumita and
Masuda (1987), so its Laplace transform is a rational function. Alternatively, one can
assume the rational form of the Laplace transform and determine the behavior by the
partial fraction decomposition. However, for most stationary Gaussian processes used in
physics, the covariance of the clipped process does not lead to a rational function. More-
over, the poles with the largest negative real part do not necessarily lay on the real axis.
In general, the mathematical justification of asymptotic behavior through the poles is not
automatic. Thus, the use of the poles to find the persistency coefficient should be viewed
as a heuristic one. However, when applicable, there is a simple criterion to find the pole
within the Slepian-based IIA, which follows directly from Proposition 5.

Proposition 6. Let ΨT̂ be the Slepian-based IIA approximation from Proposition 5. Then,
the largest negative real pole of ΨT̂ is found as the largest negative real solution to the
equation

sL(E0)(s) + 1 = 0.

Additionally, if the conditions of Theorem 1 are satisfied, then the largest negative real
pole of the ΨT̂ can be found by investigating its divisor. The largest negative real pole
of ΨT̂ corresponds to the largest negative real solution to the equation ΨT̃ (s) = 2. It
is clear that the tail of a geometrically divisible random variable is heavier than that of
its divisor. However, there is no strict relation between the two tails, as the following
example shows. Nevertheless, in the next proposition, we connect the exponential bounds
of the tails.

Example 1. Let T̃i = α, for α > 0, and ν geometric random variable with p = 1/2. Then,
by direct evaluation, T =

∑ν
i=1 T̃i has the rate (persistency) log 2/α.

Proposition 7. Let T have the stochastic representation of Theorem 1 with the divisor
T̃ and assume that there is some β > 0, then we have the two statements.

i) If P(T̃ > τ) ≤ e−βτ , then P(T > τ) ≤ e−βτ/2.
ii) If P(T̃ > τ) ≥ e−βτ , then P(T > τ) ≥ e−βτ/2

Proof. The proof follows by induction, and we will prove i) in full and ii) can be obtained
by changing the direction of the inequalities used in the proof. For k ∈ N independent
copies T̃i, we show that

P(T̃1 + · · ·+ T̃k > τ) ≤ e−bτ

k−1∑

j=0

bjτ j

j!
.
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Assume that the above is valid for a certain k ∈ N, and Fk is the cdf of T̃1+ · · ·+ T̃k, then

P(T̃1 + · · ·+ T̃k+1 > τ) =

∫ τ

0

P(T̃k+1 > τ − s) dFk(s) + P(T̃1 + · · ·+ T̃k > τ)

≤
∫ τ

0

e−b(τ−s) dFk(s) + P(T̃1 + · · ·+ T̃k > τ)

=

((
1− P(T̃1 + · · ·+ T̃k > s)

)
e−b(τ−s)

) ∣∣∣∣∣

τ

s=0

−
∫ τ

0

(
1− P(T̃1 + · · ·+ T̃k > s)

)
be−b(τ−s) ds

+ P(T̃1 + · · ·+ T̃k > τ)

= 1−
∫ τ

0

be−b(τ−s)ds+

∫ τ

0

P(T̃1 + · · ·+ T̃k > s)be−b(τ−s) ds

= e−bτ

(
1 + b

∫ τ

0

P(T̃1 + · · ·+ T̃k > s)ebs ds

)

≤ e−bτ


1 +

k−1∑

j=0

bj+1

j!

∫ τ

0

sj ds


 = e−bτ


1 +

k−1∑

j=0

bj+1

(j + 1)!
τ j+1


 ,

which concludes the induction proof. The result follows from

P(T ≥ τ) =
∞∑

k=1

1

2k
P(T̃1 + · · ·+ T̃k > τ) ≤ e−bτ

∞∑

k=1

1

2k

k−1∑

j=0

bjτ j

j!
= e−bτ

∞∑

j=0

bjτ j

j!

1

2j
.

□

As stated previously, the relation between the tail of the divisor and the full distribution
does not follow a general structure. This is why simulation-based methods might be
preferable for approximating the persistency coefficient. Regardless if trajectories are
simulated or samples are obtained using Theorem 1, there is still a need to approximate
the persistency coefficient from these samples. This can be easily done under assumptions
on the tail behavior.

Suppose that the tail has an exponential form, i.e., for large t, there is a θ > 0 such
that

P(T̂ > t) ∼ e−θt,(12)

the persistency coefficient can be approximated using the ordinary least squares estimator
for θ on the empirical survival function since

ln(P(T̂ > t)) ≈ a+ θt.(13)

Of course, more elaborate tail estimators could be used in this context, but since reason-
ably large samples are obtainable, striving for efficiency is not essential here. The core
idea of estimating tail coefficients using linearization and least squares on the empirical
distribution function or a QQ plot is well established. Early results of this idea were
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presented by Schultze and Steinebach (1996) (ECDF) and Kratz and Resnick (1996) for
the QQ plot. However, in actual computation P(T̂ > t) is replaced by 1 − F̂ (t), where
F̂ is the empirical CDF of the sample from T̂ . This method alleviates the problems that
follow from estimating persistency coefficients using the poles of the Laplace transform.

We conclude this section with a discussion of cases where the pole method is ill-suited
to approximate the persistency coefficient and where the IIA simply fails to produce
meaningful approximations. Not much is known about persistency coefficients when the
covariance function oscillates. This is also one of the cases where using the pole method
leads to problems. Wilson and Hopcraft (2017) studied processes with the covariance
function

r(t) = cos(αt) e−
t2

2 ,

for which a large discrepancy was found between the largest negative real pole obtained
using the IIA framework and the persistency coefficient obtained from simulations. It
seems that care needs to be taken when applying the IIA framework to processes with
oscillating covariance functions. This has direct consequences for practical application if
one wants to model sea states using the Torsethaugen model, for example.

It is not only processes with oscillating covariance functions that pose a problem for
the IIA. There is an entire class of processes where the IIA approach fails, which we
illustrate with a counterexample. Recall the classical result of Theorem 2 from Newell
and Rosenblatt (1962).

Theorem 3. If X(t) is a Gaussian stationary process with EX(t) = 0 and r(t) < Ct−α

for some α > 0, C > 0 and all t > 0, then for some K > 0:

P
(
X(t) ≥ 0, t ∈ [0, τ ]

)
<





e−Kτ ; 1 < α,

e−Kτ/ log τ ; α = 1,

e−Kτα ; 0 < α < 1.

From this theorem, we obtain the following lemma needed for the counterexample.

Lemma 1. Let X(t), t ∈ R be a stationary Gaussian process with twice differentiable
covariance function, r(t) such that for a certain β > 1

lim
t→∞

r′(t) = O(t−β),

and X0(t), t ≥ 0 be the Slepian process associated with X(t). If the process satisfies also
the assumptions of Theorem 1, then

P(T̂ ≥ τ) ≥ O(τ−β),

and there exists no β′ > 1 such that

P(X0(t) > 0, t ∈ (0, τ)) ≥ O(τ−β′
).
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Proof. We have

P(T̂ ≥ τ) ≥ P(T̃ ≥ τ) = − 1√
r′′(0)

r′(τ)√
1− r2(τ)

= O
(
τ−β
)
.

For the second part, if there is β′ > 1 such that

P(X0(t) > 0, t ∈ (0, τ)) ≥ O(τ−β′
),

then

P
(
X(t) ≥ 0, t ∈ [0, τ ]

)
=

1

2µ

∫ ∞

τ

P
(
X0(t) > 0, t ∈ (0, u)

)
du

≥ O(τ−(β′−1),

which contradicts Theorem 3. □

From the above result, we see that for the processes satisfying Lemma 1, the tail
behavior of T̂ based on the IIA is of the power order, and this cannot be the case for the
actual distribution. Thus, under these circumstances, using the IIA to approximate the
persistency coefficient or the tail behavior is not valid. The next example illustrates this.

Example 2. Consider a stationary Gaussian process with the covariance function

r(t) =

(
1 +

t2

2

)−α

, α > 0.

We note that this is a valid covariance function since it is the characteristic function of
a generalized symmetric Laplace distribution. The corresponding covariance function of
the clipped process is

Rcl(t) =
2

π
arcsin



(
1 +

t2

2

)−α

 .

and thus

E0(t) =

√
αt
(
1 + t2/2

)−(1+α)

√
1−

(
1 + t2/2

)−2α
.

This function satisfies the condition of Theorem 1 and yields a divisor with finite expecta-
tion. Hence, the approximated excursion distribution T̂ will also have finite expectation.
However, we observe that Theorem 3 can be applied, and the tail behavior of T̂ has
nothing to do with the tails of the excursion times.

5. Applications and examples

There are many covariance functions leading to positive and decreasing expected value
functions of the clipped Slepian process. In these cases, Theorem 1 allows for both the
approximation of the persistency coefficient, denoted by θ throughout this section, and
the full approximate excursion distribution. A cautionary example is also presented to
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highlight the danger of naively using the IIA framework to approximate the persistency
coefficient. We summarize the cases considered in this section in Table 2.

Table 2. Processes and their characteristics.

Process X(t) Covariance r(t) Expected value E0(t)

Diffusion in Rd, d ∈ N
1

coshd/2 t/2

1

cosh t/2

√
d

2
· cosh

2 t/2− 1

coshd t/2− 1

Random acceleration
(
3− e−|t|

)
e−|t|/2/2

√
3

4et − 1

Shifted Gaussian, α ∈ R cosαt · e−t2/2 1√
1 + α2

α sinαt+ t cosαt√
1− cos2 αt · e−t2

· e−t2/2

Matérn, ν ≥ 2 Cν · tνKν (t)
√
2(ν − 1)

tνKν−1 (t)√
C−2

ν − t2νK2
ν (t)

, Cν = 21−ν

Γ(ν)
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Figure 4. (right) The logarithm of E0 for d = 1, ..., 10. The steeper curves are
associated with higher dimensions. (left) Logarithm of the empirical cdf from the
approximated excursion distribution for the diffusion process, which is used for
estimating the persistency coefficient.

5.1. The d-dimensional diffusion. The d-dimensional diffusion is often referred to the
scalar field ϕ(x, t), with the location x ∈ Rd and time t > 0 that is the solution to

∂ϕ

∂t
= ∆ϕ(x, t) = ∇2ϕ(x, t),

where the initial condition at τ = 0 is set to the d-dimensional (in argument) Gaussian
noise. Then, for large t, the system is approximately described by a stationary Gaussian
field

X(t) =
ϕ(0, et)√
E(ϕ2(0, et)

,
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Table 3. Approximations of persistency coefficients for diffusions.
For d = 1, 2, the true persistency is 0.1203 and 0.1875, respectively.

Dimension Persistency coefficient RIND2022 NL2001

1 0.1360± 0.0012 0.1206 0.1205
2 0.1858± 0.0017 0.1874 0.1875
3 0.2441± 0.0014 0.2382 0.2382
4 0.2901± 0.0011 0.2805 0.2806
5 0.3286± 0.0016 0.3171 0.3173
6 0.3618± 0.0025 * *
7 0.3915± 0.0033 * *
8 0.4195± 0.0034 * *
9 0.4446± 0.0030 * *

10 0.4668± 0.0034 0.4589 0.4587

with the covariance function

r(t) =
1

coshd/2 (t/2)
.

The corresponding expected value function can be found in Table 2 and it is clear that
E0(t) is a strictly decreasing function in t for each d ∈ N and thus satisfies the condition
of Theorem 1. It is also easy to observe that the tail of E0 is almost exponential, which
is illustrated in Figure 4 (left).

To obtain an approximation for the persistency coefficient, we simulate from the divisor
using the outlined method in Appendix B and the stochastic representation of Theorem
1. The resulting persistency coefficient estimates can be found in Table 3. Each 95%

confidence interval is based on 10 estimates of the persistency coefficient, which are in
turn based on sampling 105 observation from the divisor. The 104 largest of these was
then used for the least squares estimate of the persistency coefficients. In the table, we
also include the results from a large and well-controlled simulation experiment of over
108 realizations of first crossing events reported Newman and Loinaz (2001). The exact
computation method based on the generalized Rice formula and its implementation is
given in the routing RIND and presented in Lindgren et al. (2022).

The conclusion from the simulation study is that the persistency coefficient obtained
using the Slepian-based IIA is reasonable in comparison to the analytically derived values
and the ones obtained by Newman and Loinaz (2001) and from using RIND. However,
the method’s limited accuracy should also be noted.

5.2. Random acceleration process. The random acceleration process models a par-
ticle on the line whose acceleration is subject to a zero mean Gaussian noise force. In
exponential time, i.e., T = et, the process is defined through the following equation of
motion

d2Y

dT 2
= η(T ),
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where η(T ) is a white noise Gaussian process, i.e., the derivative of a Brownian motion
(Wiener process) or a so-called δ-correlated Gaussian white noise process, where δ stands
for the Dirac’s delta. More explicitly, Y (T ) =

∫ T

0
B(u) du, where B is the standard

Brownian motion. It is easy to check that the Gaussian process X(t) =
√

3/2e−3t/2Y (et)

is a stationary Gaussian process with the covariance function

r(t) =
3

2
e−

|t|
2 − 1

2
e−

3|t|
2 .

By elementary computation the first and second derivative of r(t) are well defined with
r′(0) = 0 and r′′(0) = −3/4. However, the third derivative has a discontinuity at zero,
which Sire (2007, 2008) argued leads to a poor approximation of the persistency coefficient.
However, the process is sufficiently smooth since it has finite crossing intensity to construct
a Slepian process. Hence, the expected value function of the clipped Slepian process for
this example becomes

E0(t) =
e−t/2(1− e−t)

√
3√

4− (3− e−t)2e−t
=

√
3

4et − 1
.

This function satisfies the conditions in Theorem 1, and we use this observation to sample
from the approximated excursion distribution through the divisor; see Appendix B.

Taking a similar approach as for the diffusion example, we estimate the persistency
coefficient based on a sample size of 107 out of the 105 largest where used for the least
square estimate. This approach was repeated 10 times which yielded the following 95%

confidence bound

θ̂ = 0.2647± 0.00083.

This approximation is in line with the estimates from Sire (2007) (θapp = 0.2647) using
the pole method and which should be compared to the true value of θ = 0.25 derived by
Sinai (1992).

5.3. Shifted and non-shifted Gaussian covariance. Consider a stochastic process
with the covariance function

r(t) = cos(αt) e−t2/2,

for some α ⩾ 0. This case has been treated extensively by Wilson and Hopcraft (2017),
which serves as a good overview of this case. We consider this example for three main
reasons. The first is that it is the limiting case of the Matérn covariance when the
smoothness parameter goes to infinity. Secondly, the true persistency coefficient is not
known for this process. Thirdly, for any α > 0, the covariance function is oscillating.
Hence, we will first treat the case when α = 0 and then, after this, consider the case
α = 2.

The expected value function E0 can be found in Table 2 and for α = 0, it satisfies the
conditions of Theorem 1 and we use this observation when sampling from the approxi-
mated excursion distribution. The details can be found in Appendix B, and we sample
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107, out of which we use the 2 · 106 largest to estimate the persistency coefficient. This is
repeated 10 times, leading to the following 95% confidence interval

θ̂ = 0.4116± 0.00017.

To compare, we simulate trajectories using the WAFO package (WAFO-group, 2017). The
length of each trajectory is 107, and 103 is simulated. From these, we obtain an estimated
persistency coefficient of θsim = 0.4199± 0.00058. Comparing these two estimates to the
IIA using the pole methods by Sire (2008) (θIIA = 0.4115), we observe that they are all
reasonably close.

Consider the case where α = 2. For this case, E0 oscillates, and hence Theorem 1, can
not be relied on to ensure the validity of the IIA approach. However, if one naively applies
the IIA framework and uses the pole method to approximate the persistency coefficient, an
estimate of θIIA = 2.3522 is obtained. Using the previously mentioned setup for simulating
trajectories, an approximation of θsim = 1.3795±0.0012 is obtained. Hence, it is clear that
the use of the IIA and finding the pole is not suitable for approximating the persistency
coefficient.

We only consider the largest negative real pole here. However, if a numerical search for
the complex poles, a pair of conjugate poles is located at 1.05 ± 0.53 i. While the real
part of this pair is closer to the approximated persistency coefficient using simulation, it is
still not an exact approximation. However, by multiplying this pair of complex conjugate
poles, the value 1.3834 is obtained, which is remarkably close to the value from simulated
trajectories. This seems to hold for several α > 0. We, however, can’t necessarily see the
reason why these values are close to the persistency coefficients obtained by simulating
trajectories. In conclusion, the case when α > 0 shows that care is needed since the IIA
approach might break down for certain classes of covariance functions.

5.4. Matérn covariance. The Matérn covariance

r(t) =
21−ν

Γ(ν)
· tνKν (t) ,

ν > 0 is widely used in spatial statistics. The parameter ν determines the smoothness of
the process. Several well-known covariance functions are special cases of this class such
as the exponential (ν = 1) and the previously treated Gaussian covariance (ν → ∞). In
Figure 5 (Left), the covariances of the underlying Gaussian processes are presented for
selected values of ν.

To ensure that the process has a finite crossing density, we limit ourselves to ν ≥ 2,
thus allowing for the construction of the Slepian process. A key observation is that in
this case, the expected value of the clipped Slepian process E0 will satisfy the conditions
of Theorem 1 and can be found in Table 2. We present the survival functions of the
divisor in Figure 5 (Middle) in which we see that the stronger dependence, as shown in
the covariance r, translates to heavier tails in the divisor.
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Figure 5. The Matérn covariance case. Left: The covariances r for ν =
l/2, l = 4, 5, . . . , 20, the larger ν the stronger dependence. Middle: The
survival functions E0 of the geometric divisor, the larger ν the heavier tail.

Remark 3. A re-parameterized version of the Matérn covariance is often used in spatial
statistics. By letting t =

√
2ν d/ρ, where ρ is an additional parameter and d ⩾ 0 is the

new argument. The link between the persistency coefficients in the two parameterizations
can be derived by observing that if P (T > t) ≈ C e−θt, then P (T >

√
2ν d/ρ) ≈

C e−θ
√
2ν d/ρ. The re-parameterized persistency coefficient can be obtained by simply

scaling the estimate by
√
2ν d/ρ.

Generating random variables from these distributions can be numerically implemented,
although the presence of the modified Bessel function may constitute a numerical chal-
lenge. For the special cases, ν = k + 1/2, k ∈ N, we have the explicit formulas for the
Bessel functions, and this can be utilized in random number generations, as discussed in
Appendix B.

In Figure 5 (Right), the results of simulations in the case of ν = 5/2 are presented.
This value was chosen because the random simulation from the geometric divisor could
be devised by a simple inversion of E0. Simulations for this case lead to the IIA persistency
coefficient θ̂ = 0.2188±0.0011. The methodology of the obtained approximation has been
described in previous sections. This is remarkably close to the persistency coefficient
derived using WAFO. Using the same method for WAFO simulations as before, we obtain
a 95% interval of θsim = 0.2184± 0.00026.

6. Conclusion

The IIA method of obtaining the excursion distributions has been explored, and its bene-
fits and limitations have been determined. Several important questions have been posed,
such as when the IIA framework is mathematically sound and whether explicit expressions
of the approximated excursion distribution exist. By introducing the clipped Slepian pro-
cess and matching its expected value function with that of the switch process, the validity
of the IIA framework is shown for a large class of covariance functions. For this class, an
explicit representation of the approximated excursion distribution exists. This representa-
tion allows additional ways to estimate persistency coefficients using Mote Carlo methods.
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A natural extension of this approach to non-zero level crossings will be investigated in the
future.
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Appendix A. Laplace transform

Here, we establish the notation of the Laplace, which is the main tool used in many of
our arguments. Let us recall that for a positive and bounded function P (t), t > 0, its
Laplace transform L(P )(s), s > 0, is defined through

L(P )(s) =

∫ ∞

0

P (t)e−ts dt.

The Laplace transform can also be extended for s < 0, and since it is a decreasing function
of s, then there exists the smallest number s0 ≥ −∞ for which L(P )(s) is finite for all
s > s0. This value is referred to as the largest negative pole of the respective Laplace
transform. For a distribution on the positive half line given by a cdf F , its Laplace
transform Ψ is given by

Ψ(s) =

∫ ∞

0

e−ts dF (t).

so that if the distribution has a density f , then

L(f)(s) = Ψ(s).

Similarly, we have the Laplace transform of the CDF

L(F )(s) = Ψ(s)/s.

Appendix B. Sampling from the Geometric divisor

Here, we provide details of the simulators of various geometric divisors utilized in the IIA
approximations based on Theorem 1.

B.1. Diffusion. Let us start from the diffusion in d = 2. Since arccosh(x) =

log(x+
√
x2 − 1), x > 1, we have the following generator of the geometric divisor

(14) T̃2 = 2 ln
(
1 +

√
1− U2

)
− 2 lnU.

For the diffusion in dimension d = 1, the survival function can be written as

E0,1(t) =

√
2

2

√
cosh−1(t/2) + cosh−2(t/2),

which has the following survival inverse simulator

T̃1 = 2 ln

(
1 +

√
1 + 8U2 +

√
2

√
1 + 4U2 −

√
1 + 8U2

)
− 4(lnU + ln 2).

For d > 2, we have

E0,d(t) = E0,d−1(t)

√
d(coshd−1(t/2)− 1)

(d− 1)(coshd(t/2)− 1)
.
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It is easy to verify that

Gd(t) =
d(coshd−1(t/2)− 1)

(d− 1)(coshd(t/2)− 1)

is also a survival function; thus if one can obtain its inverse G−1
d , then the recursive

formula for a sampler from E0,d is

T̃d = min
(
T̃d−1, G

−1
d (U2)

)
,

where the uniform variable U is independent of T̃d−1. To find the inverse G−1
d , let us

consider the function bd(a), a > 1, d ≥ 3 that is the inverse to the convex polynomial
function on the positive half-line

ad(b) = 1 + b+ · · ·+ bd−1.

Then

G−1
d (g) = 2 ln


1/bd

(
d

d− g(d− 1)

)
+

√
1/b2d

(
d

d− g(d− 1)

)
− 1


 .

Since ad(b), b > 0 is a convex polynomial function, one can efficiently evaluate its inverse
using, for example, the Newton–Raphson method.

B.2. Random acceleration process. Obtaining a random number from the divisor for
the random acceleration process is straightforward by inverting the survival function given
by E0, leading to

T̃ = ln(2/U2 + 1)− 2 ln 2.

This allows for fast simulation of the divisor and, hence, the full approximated excursion
distribution through the stochastic representation of Theorem 1.

B.3. Shifted Gaussian. We consider only the Gaussian case (α = 0) in this section since
Theorem 1 does not apply to the shifted Gaussian covariance function. Compared to the
two previous examples, the Gaussian case does not allow for easy inversion sampling
for the divisor. However, the target density is explicit and can be evaluated at a low
computational cost. Hence, random numbers can be simulated using rejection sampling.
The target density denoted by f is

− d

dt
E0(t) =

et
2
(t2 − 1) + 1

(et2 − 1)
3
2

.

Proposals are sampled iid from a Rayleigh distribution with the parameter σ = 1.3, which
has the density

g(t) =
t

σ2
e−

t2

2σ2 ,
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for t ⩾ 0. The probability of accepting a proposed sample from g, denoted xp, is

f(xp)

1.18 g(xp)
.

If the proposal is rejected, a new proposal is generated until it is accepted. Then, the sto-
chastic representation of Theorem 1 is used to obtain a sample from the full distribution.

B.4. Matérn covariance. The formula for the survival function E0 is given in Table 2.
One way to simulate is to obtain the inverse of this function E−1

0 and simulate E−1
0 (U),

where U is a uniform random variable on (0, 1). Since the derivative of E0 is readily
available

E ′
0(t) = −

√
2(ν − 1)Cνt

ν−1


 tKν−2(t)−Kν−1(t)(

1− C2
ν t

2νK2
ν (t)

)1/2 +
C2

ν t
2ν+1Kν−1(t)K

2
ν (t)(

1− C2
ν t

2νK2
ν (t)

)3/2


 ,

one can seek an importance sampling bound for the density or invert numerically E0 using
the Newton–Raphson method. One can also observe that for ν = r+1/2, r = 0, 1, 2, 3, . . .

the Bessel functions have explicit form

Kν(u) =

√
π

2u
e−u

r∑

k=0

(r + k)!

(r − k)!k!
(2u)−k

which significantly reduces the computational cost. For illustration, consider ν = 5/2.
Then

Kν−2(u) =

√
π

2u
e−u,

Kν−1(u) =

√
π

2u
e−u

(
1 +

1

u

)
,

Kν(u) =

√
π

2u
e−u

(
1 +

3

u
+

3

u2

)
.

This leads to

E0(t) =
√
3

t2 + t√
9e2t − (t2 + 3t+ 3)2

.

and

E ′
0(t) = E0(t)

(
2t+ 1

t2 + t
+

(t2 + 3t+ 3)(2t+ 3)− 9e2t

9e2t − (t2 + 3t+ 3)2

)
.

Based on this evaluation, the Newton–Raphson method of finding the solution to E0(t) = u

has been implemented. A slight modification was needed to ensure the stability of the in-
version. It has been used to generate the persistency coefficient approximation presented
in Subsection 5.4.
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CHARACTERISTICS OF ASYMMETRIC SWITCH PROCESSES WITH
INDEPENDENT SWITCHING TIMES

HENRIK BENGTSSON AND KRZYSZTOF PODGÓRSKI

Department of Statistics, Lund University,

Abstract. The asymmetric switch process is a binary stochastic process that alternates
between the values one and minus one, where the distributions of the time in these states
may differ. Two versions of the process are considered: a non-stationary version that
starts with a switch at time zero and a stationary one constructed from the non-stationary
one. Characteristics of these two processes, such as the expected values and covariance,
are investigated. The main results show an equivalence between the monotonicity of
the expected value functions and the distribution of the intervals having a stochastic
representation in the form of a sum of random variables, where the number of terms
follows a geometric distribution. This representation has a natural interpretation as a
model in which switching attempts may fail at random. From these results, conditions
are derived when these characteristics lead to valid interval distributions, which is vital
in applications.

1. Introduction

The study of binary stochastic processes has a long and rich history. Throughout this
history, various particular forms have received considerable attention, from elementary
Markov chains to renewal processes. The attention garnered by these processes is un-
derstandable due to their many applications in fields such as queuing theory Erlang
(1909), signal processing (Picinbono, 2016), statistical physics (Bray et al., 2013), and
approximating the excursion distribution for stochastic processes (McFadden, 1956) and
Bengtsson and Podgórski (2024).

To study the excursion of stochastic processes McFadden (1956) introduced the notion
of the clipped process. The clipped process is obtained from a sufficiently smooth pro-
cess W (t) by computing Z(t) = sign(W (t) − u). The process Z(t) is a binary process
taking the values one and minus one, and the time spent in the two states represents the
excursion times of W (t), i.e., the times W (t) is above or below the value u. Connecting
characteristics, such as the covariance function of Z(t) to the excursion distributions of
W (t) is still a notoriously tricky problem, despite having received considerable attention
during the 19th century by, among others, Rice (1944) and McFadden (1956, 1958).

The difficulty stems from the complex dependency structures of the intervals of the
clipped process Z(t). One way to address this difficulty is through approximation meth-
ods. One such method is the independent interval approximation (IIA), and for an
overview of this method, see Sire (2007, 2008) and Bray et al. (2013) for extensive

E-mail address: Henrik.Bengtsson@stat.lu.se, 0000-0002-9280-4430,

krzysztof.podgorski@stat.lu.se, 0000-0003-0043-1532.
Date: January 27, 2025.
Key words and phrases. binary process, asymmetric processes, geometric summation, stationarity,

covariance, expected value, renewal process, renewal theorem.
1
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2 H. BENGTSSON AND K. PODGÓRSKI

overviews of this method in the context of applications in physics. This method uses
a switch process to approximate Z(t) and, through this, approximate the distributions of
the u−level excursions of W (t).

The switch process is a binary process similar to the clipped process. However, the
times the process takes the value one and minus one are independent. This independence
significantly reduces the complexity of linking the process’s characteristics to the distri-
bution of the intervals. Thus, characteristics of Z(t) can be imposed on a switch process,
and then the distributions of the interval lengths are deduced from these. This deduced
distribution then serves as an approximation for the excursion distribution of W (t).

This application motivates the study of the relationship between the switch process’s
characteristics and the distribution of the intervals. A partial characterization was ob-
tained in Bengtsson (2024) for when the interval lengths have the same distribution for
both states. In this paper, we allow these interval lengths to have different distributions.
In this sense, the switch process is called asymmetric, in contrast to the symmetric one
studied in Bengtsson (2024). This extension has implications for the previously mentioned
IIA framework when approximating non-zero-level excursions.

The outline of the paper is as follows. The two versions of the switch process are
introduced in Section 2. The main results are found in Section 3. The paper concludes
with some illustrating examples in Section 4. Some supporting results and proofs have
been collected in the Appendix to keep the paper somewhat self-contained.

2. Switch process

Two versions of the switch process are constructed from two independent switching time
distributions, which are the distributions of the length of the intervals that the process
spends in each state. Let T+ and T− denote the random variables associated with these
distributions. Where T+ is the length of the intervals for which the process takes the
value one, and T− is the length of the intervals for which the process takes the value
minus one. While the details on how they are used for constructing the switch processes
will be discussed later, the two versions are illustrated in Figure 1 and 2.

For the construction of the processes, we need some basic assumptions on the distri-
butions of T+ and T−. Unless otherwise stated, it will be assumed that they are non-
negative, have no atom at zero, are absolutely continuous with support on the entire
non-negative real line, and have finite expectation. Additionally, we assume that there
exists a m ∈ N : supt>0(f+ ∗ f−)∗m(t) < ∞, where f+ and f− are the densities associated
with T+ and T− and ∗ denotes convolution of functions. This condition is necessary for the
existence of the derivatives of some characteristics, such as the expected value functions.

To study these functions, we use the Laplace transform, which is the standard tool in
renewal theory. We denote the Laplace transform by L(·) and in particular the Laplace
we denote the Laplace transform of a probability density by Ψ(s). Some elementary
results and the definition can be found in the appendix. With the notation of the Laplace
transform in place, we are now ready to define the non-stationary switch process.

The non-stationary switch process. The construction of the non-stationary switch
process starts with the binary random variable δ, independent of the switching time
distributions, with P(δ = 1) = p and P(δ = −1) = 1− p. The two values of δ are denoted
by + and − when δ is used as a subscript. This random variable δ determines the
starting value of the process at the origin. We then interlace random intervals of lengths
distributed as T+ and T−, respectively, starting from the origin. Since we now consider
sequences of switching time distributions, we denote these by T+

i , i ∈ N and T−
i , i ∈ N.
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Figure 1. A realization of a non-stationary switch process (blue), D(t),
with exponential switching times and δ = 1. Together with E+(t) (red) and
E−(t) (orange).

If δ = 1, the non-stationary switch process takes the value one over the interval [0, T+
1 ),

and then switches to minus one on the interval [T+
1 , T+

1 + T−
1 ), then it switches back to

one and so forth. If δ = −1, the process takes the value minus one on the interval [0, T−
1 )

and then it switches to one on [T−
1 , T−

1 + T+
1 ) and so on when time passes. The role δ,

T+, and T− play in the construction of the non-stationary switch process is perhaps best
illustrated in Figure 1, which shows a realization of the process.

We have so far not placed any assumptions on the dependency structure of T+
i , i ∈ N,

T−
i , i ∈ N. However, we only consider the simple cases where T+

i and T−
i constitute

two mutually independent sequences of independent identically distributed (iid) random
variables. A binary stochastic process taking the values {−1, 1} and is constructed under
the mentioned assumption by interlacing intervals, as described previously, is called a
non-stationary switch process and is denoted by D(t), t ≥ 0.

By having a switch at zero, the process will not be stationary in the traditional sense;
it will, however, be cycle stationary. This notion of stationarity is defined by the cycles

(T+
i , T−

i ), i ∈ N, having the same distribution, i.e (T+
i , T−

i )
d
= (T+

j , T−
j ) for all i, j ∈ N,

where
d
= denotes equality in distribution. It should be noted that cycle stationery will be

preserved by letting T+
i and T−

i be dependent. However, this case will not be investigated
further in this paper.

The lack of stationary in the traditional sense makes the covariance function depend
on two arguments, which is harder to utilize. This leads us to investigate the expected
value function conditioned on the starting value δ. The relation between the expected
value functions and the distributions of T+ and T− in the Laplace domain is given next.

Proposition 1. The Laplace transform of Pδ(t) = P
(
D(t) = 1

∣∣δ
)
, t > 0, is given by

L(Pδ)(s) =
1−Ψ+(s)

s(1−Ψ+(s)Ψ−(s))
·
{
1 ; δ = 1,

Ψ−(s) ; δ = −1,

where Ψ+ and Ψ− are Laplace transformation of probability distributions corresponding
to T+ and T−, respectively. Moreover, for the expected value function Eδ(t) = E(D(t)

∣∣δ),
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t > 0 we have

L(Eδ(s)) =
Ψ−(s)−Ψ+(s) + δ(1−Ψ−(s))(1−Ψ+(s))

s(1−Ψ+(s)Ψ−(s))
.

In addition to this proposition, we have the following corollary on the derivatives of
E+ and E−, which will be important when investigating switch processes with monotone
expected value functions.

Corollary 1. Let E+ and E− be the expected value functions of a non-stationary switch
process with switching time distributions such that there exists a m ∈ N:
supt>0(f+ ∗ f−)∗m(t) < ∞. Then we have the following relations

L(E ′
+)(s) = −2Ψ+(s)

1−Ψ−(s)

1−Ψ+(s)Ψ−(s)
, L(E ′

−)(s) = 2Ψ−(s)
1−Ψ+(s)

1−Ψ+(s)Ψ−(s)
.

This proposition and corollary focuses only on the expected value functions, its deriva-
tives, and Pδ(t). More general distributional properties are difficult to derive. For exam-
ple, obtaining an explicit form for the covariance function is difficult. A more straightfor-
ward function to derive is the variance of D(t). Since E(D(t)2) = 1, we have

V(D)(t) = 1− (ED(t))2 .

From the above equation, it is clear that the variance diminishes closer to zero since the
probability that a switch has occurred is fairly small.

The limiting behavior of the expected value functions is important for describing the
process’s behavior and characterizing the expected value functions. While these limits
follow standard results on alternating renewal processes, we present a rigorous treatment
in Lemma 4, which can be found in the appendix. From this lemma and the observation
that E±(t) = 2P±(t)− 1 we have the following limits

lim
t→0+

E+(t) = 1, lim
t→0+

E−(t) = −1,

lim
t→∞

E+(t) = lim
t→∞

E−(t) =
µ+ − µ−
µ+ + µ−

.
(1)

From these limits, it is clear that the initial effect of the switch placed at zero will diminish
when t goes to infinity.

Until now, we have only considered the non-stationary switch process on the non-
negative part of the real line. However, the process can be extended to the entire real
line, similar to how it was constructed for the non-negative part. Suppose δ = 1 then
the extended process would take the value minus one on the interval [−T−

−1, 0) and then
switch to one on [−(T+

−1 + T−
−1),−T−

−1) and so forth. If δ = −1 the process becomes
one on [−T+

−1, 0) and minus one on [−(T+
−1 + T−

−1),−T+
−1). Hence, for a given sequence

of pairs T = (T−
i , T+

i )i∈±N, and initial choice of the sign δ, can be used to extend the
non-stationary switch process on the entire real line.

The attachment of a switch at zero results in the process not being stationary in the
traditional sense. In the subsequent subsection, a standard technique from renewal theory
is used to construct a stationary version by delaying the process backward and forward
around zero.

The stationary switch process. The stationary switch process is constructed from the
non-stationary switch process. Since this process is cycle stationary, it follows from Tho-
risson (1995) that such a construction is possible. This construction is done by delaying
the process forward and backward so there is no longer a switch at the origin. Hence,
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Figure 2. A realization of a stationary switch process, D̃ with exponen-
tial switching times and δ = 1. A and B are the forward and backward
delays.

the interval containing the origin will follow a different distribution than T+ or T−. In
essence, we reintroduce the well-known inspection paradox for which the mathematical
details have been known since Palm (1943).

For the construction, we follow a similar argument as in Lindgren et al. (2022). Let
[−B,A] be the interval containing the origin, and δ be the value of the process on this
interval. From the ends, −B and A non-stationary switch processes are attached with
the initial values −δ. The process with these delays is called the delayed switch process
and is denoted by D̃(t), t ∈ R. A realization of D̃(t) can be seen in Figure 2, and the
problem now becomes finding the distribution of (A,B, δ) such that the delayed process
becomes stationary. The solution is presented in the next proposition and follows from a
standard application of the key renewal theorem, which can be found in the appendix.

Proposition 2. Let µ+ = ET+, µ− = ET− and f+, f− be the densities of T+ and T−,
respectively. If the distribution of (A,B, δ) is given through

P(δ = 1) =
µ+

µ− + µ+

, P(δ = −1) =
µ−

µ− + µ+

fA,B|δ(a, b|1) =
f+(a+ b)

µ+

, fA,B|δ(a, b| − 1) =
f−(a+ b)

µ−
,

where fA,B|δ stands for the conditional density, then the delayed switch process D̃(t) is
stationary in time, with the expected value (µ+ − µ−)/(µ+ + µ−). Additionally its distri-
bution is uniquely characterized by P̃δ(t) = P(D̃(t) = 1|D̃(0) = δ) that has the Laplace
transform of the following form

LP̃δ(s) =
1

s





1− 1

µ+s

(1−Ψ+(s)) (1−Ψ−(s))

1−Ψ+(s)Ψ−(s)
; δ = 1,

1

µ−s

(1−Ψ+(s)) (1−Ψ−(s))

1−Ψ+(s)Ψ−(s)
; δ = −1,

where Ψ+ and Ψ− are Laplace transformation of probability distributions correspond-
ing to T+ and T−, respectively. The autocovariance function for this process, R(t) =
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Cov(D̃(u), D̃(u+ t)), is on the form

R(t) =
2

µ+ + µ−

(
P̃+(t)µ+ − P̃−(t)µ− + µ+

µ− − µ+

µ+ + µ−

)
.

Lastly, the Laplace transform of R(t), t > 0, is given by

L(R)(s) =
4

s (µ+ + µ−)

(
µ+µ−

µ+ + µ−
− 1

s

(1−Ψ+(s))(1−Ψ−(s))

1−Ψ−(s)Ψ+(s)

)

A delayed switch process with [−B,A] and δ as described in Proposition 2 will, from
this point onwards, be called a stationary switch process and denoted by D̃(t). While we
assume that the densities of T+ and T− exist, this is not a technical necessity, as seen in
the following remark.

Remark 1. We should note from the proof that it is not required for the distribution of
the switching times to have a density. It is sufficient that the distribution of T+

1 + T−
2

is not sitting on a lattice for the key renewal theorem to hold. In fact, the stationary
distribution of (A,B, δ) is given by

P(δ = 1, A ≤ a,B > b) =

∫ a

0
F̄+(u+ b) du

µ+ + µ−

We note two simple consequences of this fact. First, the distributions of the delays A and
B are identical and always continuous with respect to the Lebesgue measure with their
densities conditionally on δ given by

fA|δ(x|δ) = fB|δ(x|δ) =
F̄δ(x)

µδ

,

which in the Laplace domain becomes

ΨA|δ(s) = ΨB|δ(s) =
1− sLFδ(s)

sµδ

=
1−Ψδ(s)

sµδ

.

using Equation (4). Second, we note that the distribution of the interval containing the
origin is given by the density

fA+B|δ(x|δ) =
xfδ(x)

µδ

.

We have now constructed a stationary switch process D̃(t) from the non-stationary
switch process D(t). In the next section, we connect the characterizing function to the
properties of the switching time distributions.

3. Characteristics of the switch process

We have seen how the distributions of T+ and T− give rise to the following functional
characteristics: the expected value functions E+, E−, and P+, P− of the non-stationary
version, and the autocovariance R, P̃+, and P̃− for the stationary counterpart. Now, we
reverse the question: What functional characteristics lead to valid distributions, and what
are their properties? To address these questions, we start with a proposition showing that
the distributions of T+ and T− are identifiable from the expected value functions of the
non-stationary switch process.
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Proposition 3. The distributions T+ and T− are uniquely identifiable from E+ and E−
in the Laplace domain through the equations

Ψ+(s) =
sL(E+)(s)− 1

sL(E−)(s)− 1
,

Ψ−(s) =
sL(E−)(s) + 1

sL(E+)(s) + 1
.

Proposition 3 shows that the distribution of T+ and T− can be uniquely determined
from the expected value functions. The subsequent proposition provides the basis to
examine if this is also possible from the covariance function.

Proposition 4. Using the definitions of Proposition 1 and 2, we have the following rela-
tions between characteristics of the stationary and non-stationary switch process:

L(P̃ ′
+) =

L(P−)− L(P+)

µ+

, L(P̃ ′
−) =

L(P+)− L(P−)

µ−
.

L(R′) = 4
L(P−)− L(P+)

µ+ + µ−
= 2

L(E−)− L(E+)

µ+ + µ−
.

The following remark presents the implications of this proposition for the recoverability
of T+ and T− from the covariance function.

Remark 2. The probabilities P̃+ and P̃− can not be uniquely obtained from P+ and P−.
Subsequently any relationship between P+, P− and T+, T− can not be used to derive
P̃+ and P̃−. This lack of identifiability is shown by considering the following system of
equations, which follows directly from the top equations of Proposition 4

[
L(P̃ ′

+)(s)

L(P̃ ′
−)(s)

]
=

[− 1
µ+

1
µ+

1
µ−

− 1
µ−

] [
L(P ′

+)(s)
L(P ′

−)(s)

]
.

Since the above 2× 2 matrix is singular, there is no unique solution such that L(P ′
+) and

L(P ′
−) can expressed by L(P̃ ′

+) and L(P̃ ′
−).

A consequence of the previous remark is that if one wants to recover T+ and T− from
characteristics of the stationary switch process, it cannot be done purely from R, P̃+

and P̃+. Thus, additional characteristics need to be considered. One might consider the
expected value of the number of switches from one to minus one and vice versa. However,
these will not provide additional information to identify the distributions of T+ and T−
since they are linear in time due to the stationarity of D̃. Therefore, it is a nontrivial
task to retrieve the switching time distributions from the characteristics of the stationary
switch process.

In contrast to the previously mentioned difficulties, Proposition 3 seems to provide a
straightforward way to recover the switching time distributions. However, this is not
the case. For a proposed pair of expected value functions, it has to be verified that the
right-hand side of the two equations of Proposition 3 are completely monotone functions.
Recall that a function ϕ on [0,∞) is completely monotone if it has finite limits, is infinitely
differentiable, and satisfies the condition for all n ∈ N

(−1)nϕ(n)(s) ≥ 0, s > 0.

Hence, to show that the two equations of Proposition 3 are completely monotone is
arduous at best and almost impossible at worst. This difficulty is a consequence of
Bernstein’s theorem (see Theorem 1, page 439 in Feller (1970)), which states that a
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function is the Laplace transform of a probability distribution if and only if it is completely
monotone and one at zero. Therefore, recovering the switching time distributions from
Proposition 3 remains a problem. While the following proposition does not resolve the
issue, it characterizes the properties of the expected value functions.

Proposition 5. The following conditions are necessary and sufficient for differentiable
functions E+ and E− on [0,∞) with values in [−1, 1] to define a valid switch process D(t)
for which they correspond to E (D(t)|D(0) = 1) and E (D(t)|D(0) = −1), respectively,

i) lim
t→0+

E+(t) = 1, lim
t→0+

E−(t) = −1, lim
t→∞

E+(t) = lim
t→∞

E−(t) = γ, for some γ ∈
(−1, 1),

ii) the functions
L(E ′

+)(s)

L(E ′
−)(s)− 2

and
L(E ′

−)(s)

L(E ′
+)(s) + 2

are completely monotone.

For the class of non-stationary switch processes with monotone expected value func-
tions, this problem is solvable, and this will be the focus of the remainder of this section.
The solution has two components: the first is an observation regarding the behavior of
E ′

+ and E ′
− under scaling. The second one is random variables, which have a stochastic

representation in terms of a sum of random variables, where the number of terms follows
a geometric distribution. We start with the first component. Suppose that E ′

+ and E ′
−

exists then we have∫ ∞

0

E ′
+(t) dt = − 2µ−

µ+ + µ−
,

∫ ∞

0

E ′
−(t) dt =

2µ+

µ+ + µ−
.

If we additionally assume that E+ and E− are monotone functions, then the functions

−µ+ + µ−
2µ+

E ′
+(t),

µ+ + µ−
2µ−

E ′
−(t)

are probability density functions.
The second component consists of the class of geometric divisible distributions. This

generalizes the notion of geometric infinitely divisible, which was introduced by Klebanov
et al. (1985). The link between the geometric divisible distribution and non-stationary
switch processes was noted in Bengtsson (2024); this was, however, only for the case where

T+
d
= T−. We provide the following definition for completeness.

Definition 1. Let νp be a geometric random variable with the probability mass function
pνp(k) = (1 − p)k−1p for k = 1, 2... and {Vk}k≥1 a sequence of iid non-negative random
variables independent of νp. If a random variable has a stochastic representation

W =

νp∑

k=1

Vk,

then W follows a r-geometric divisible distribution with r = 1/p and said to belong to the
class GD(r), with the divisor V and we write F ∈ GD(r).

The notion that V is a divisor of W is natural since V divides W into smaller parts.
From this definition, the density of W can be expressed as fW = f

∗νp
V . This form is

unwieldy, and we therefore present the more useful expression in the Laplace domain

ΨW (s) =
1
r
ΨV (s)

1− (1− 1
r
)ΨV (s)

.(2)

The main difference between the concepts of geometric divisibility and geometric infinite
divisibility is for which p ∈ (0, 1) the stochastic representation of Definition 1 needs to

84 Papers



ASYMMETRIC SWITCH PROCESS 9

hold. A random variable is said to be geometric infinitely divisible if this property is
satisfied for all p ∈ (0, 1), while for a random variable to be geometrically divisible, this
property only needs to hold for one specific p ∈ (0, 1). A simple consequence of this is
that any geometric infinitely divisible distribution is also geometrically divisible.

The next theorem connects non-stationary switch processes having monotone expected
value functions with the class of geometrically divisible distributions.

Theorem 1. Let D(t), t ∈ R, be a non-stationary process with expected value functions
such that −E ′

+(t) and E ′
−(t) are non-negative for t > 0. Then, the time from a switch

until it returns to that state has the the stochastic representation.

T− + T+
d
=

νβ∑

k=1

Xk +
να∑

k=1

Yk

where να and νβ are independent and geometrically distributed with the parameters

α =
µ−

µ+ + µ−
, β =

µ+

µ+ + µ−

and the densities of Xi and Yi are given by

fX(t) = − 1

2α
E ′

+(t), fY (t) =
1

2β
E ′

−(t),

respectively. The sequences of Xi and Yi are mutually independent sequences of iid random
variables, which are also independent of να and νβ.

Proof. From Proposition 3, the relation α = 1 − β, and the following property of the
Laplace transform L(h′)(s) = sL(h)− h(0) we have

Ψ+(s)Ψ−(s) =
sL(E+)(s)− 1

sL(E−)(s)− 1

sL(E−)(s) + 1

sL(E+)(s) + 1
,

=
−L(E ′

+)(s)

2 + L(E ′
+)(s)

L(E ′
−)(s)

2− L(E ′
−)(s)

,

=
2αΨX(s)2βΨY (s)

(2− 2αΨX(s))(2− 2βΨY (s))
,

=
βΨX(s)

1− (1− β)ΨX(s)

αΨY (s)

1− (1− α)ΨY (s)
.

The result follows since the equation above is the product of two equations, which are in
the form of Equation (2). □

While Theorem 1 connects the distributions of the cycle length with functional proper-
ties of E+ and E−, it does not allow us to recover the distribution of T+ and T−. However,
the next theorem allows us to recover the distribution of T+ and T− from the expected
value functions of the non-stationary switch process.

Theorem 2. Let D(t), t ∈ R be a non-stationary switch process with the expected value
functions E+ and E−. Then the following conditions are equivalent

i) The functions −E ′
+(t) and E ′

−(t) are non-negative for t > 0,

ii) T+ and T− have the stochastic representations

T+
d
= X +

να−1∑

k=1

Yk, T−
d
= Y +

νβ−1∑

k=1

Xk,
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where να and νβ are independent and geometrically distributed with the parameters

α =
µ−

µ+ + µ−
, β =

µ+

µ+ + µ−
,

and the densities of Xi and Yi are given by

fX(t) = − 1

2α
E ′

+(t), fY (t) =
1

2β
E ′

−(t).

respectively. The sequences of Xi and Yi are mutually independent sequences of iid random
variables, which are also independent of να and νβ

Proof. (i) → (ii): First, we note that if a random variable, Z, has the stochastic repre-

sentation Z
d
= X +

∑να−1
k=1 Yk, then

ΨZ(s) = Ees(X+
∑να−1

k=1 Yk) = ΨX(s)

(
P(να = 1) +

∞∑

n=2

Ees
∑n−1

k=1 YkP(να = n)

)

= ΨX(s)
∞∑

n=1

Ψn−1
Y (s)(1− α)n−1α =

αΨX(s)

1− (1− α)ΨY (s)
.

By Proposition 3, Lemma 4, the property L(h′)(s) = sL(h) − h(0), and α = 1 − β we
have

Ψ+(s) =
sL(E+)(s)− 1

sL(E−)(s)− 1
=

−L(E ′
+)(s)

2− L(E ′
−)(s)

=
αΨX(s)

1− βΨY (s)
=

αΨX(s)

1− (1− α)ΨY (s)
.

The identical argument for Ψ−(s) is omitted.
(ii) → (i): From Lemma 4 and Corollary 1 we have that

L(E ′
+)(s) = −2Ψ+(s)

1−Ψ−(s)

1−Ψ+(s)Ψ−(s)

− 1

2α
L(E ′

+)(s) =
1

α

αΨX(s)

1− βΨY (s)

1− βΨY (s)
1−αΨX(s)

1− αΨX(s)
1−βΨY (s)

βΨY (s)
1−αΨX(s)

= ΨX(s)
1− αΨX(s)− βΨY (s)

(1− αΨX(s))(1− βΨY (s))− αβΨX(s)ΨY (s)

= ΨX(s)
1− αΨX(s)− βΨY (s)

1− αΨX(s)− βΨY (s) + αβΨX(s)ΨY (s)− αβΨX(s)ΨY (s)

= ΨX(s).

Since ΨX(s) is the Laplace transform of a density function, it follows that (−2α)−1E ′
+(t)

will be non-negative and E+(t) will therefore be a monotone function. The identical
argument for E−(t) is omitted for brevity. □

Theorem 2 extend the results of Bengtsson (2024), which showed that monotone ex-

pected values are equivalent to T+ being 2−geometric divisible when T+
d
= T−. There is

a straightforward interpretation for this case, with the geometric random variable being
the number of switching attempts needed to switch, including the successful one. For

the more general case when T+

d

̸= T− there is also a natural interpretation of Theorem 2.
Specifically, one can view the time X (or Y ) as the random time until the first switching
attempt is made. If this attempt is unsuccessful, να (or νβ) represents the number of
failed switching attempts besides the first attempt, with the Y (or X) being the random
time between the attempts.
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We conclude this section with a corollary on the implication of Theorem 2 for the
stationary switch process.

Corollary 2. Let D(t), t ≥ 0, be a non-stationary switch process that satisfies the con-
ditions of Theorem 2. Then the second derivative of the covariance function R(t) of the
stationary version D̃(t), t ∈ R is of the form

R′′(t) =
4

µ+ + µ−
(αfX(t) + (1− α)fY ( t)),(3)

and is proportional to the probability density function of the mixture ξX+(1−ξ)Y . Where
ξ is a Bernoulli variable with the parameter α, independent of X and Y .

From this corollary, it is clear that even if the switching time distribution satisfies the
condition of Theorem 2, they can not be recovered from the covariance function alone.
This follows from the inability to decompose the density into a mixture of X and Y such
that X and Y are unique.

4. Examples

Asymmetry with a common divisor. One of the simplest ways of inducing asymmetry
is to let T+ and T− be geometrically divisible with the same divisor T̃ but of different
orders. The asymmetry is induced by modifying the single parameter, α ∈ (0, 1) in
the geometric summation, since β = 1 − α. Hence, we have the following stochastic
representation

T+
d
=

να∑

k=1

T̃k, T−
d
=

νβ∑

k=1

T̃k.

Since this representation satisfies condition ii) in Theorem 2, the expected value functions
E+ and E− will be monotone. Additionally, we have that E+/E− = −α/β, meaning that
they only differ by scaling. If the common divisor is exponential, this is similar to scaling
T+ and T− with some constant, as demonstrated in the next example.

Asymmetry with a common divisor trough scaling. The asymmetry can be ex-
tended while maintaining the simplicity of having a common divisor, as in the previous
example. The monotonicity property of the expected value functions E+ and E− is pre-
served by considering a scaling of the form

T+
d
= bT̃1 + a

να∑

k=2

T̃k, T−
d
= aT̃1 + b

νβ∑

k=2

T̃k, a, b > 0.

Since β = 1− α this semi-parametric distribution has three numerical parameters a > 0,
b > 0, α ∈ (0, 1) and one functional parameter, which is the density f of T̃ . We observe
that µ+ = (b+ a(1/α− 1))µ and µ− = (a+ b(1/β − 1))µ, where µ = ET̃ . Then the
derivative of the expected value functions becomes

E ′
+(t) = −2

a+ b(1/β − 1)

a/α + b/β
f(t/b)/b, E ′

−(t) = 2
b+ a(1/α− 1)

a/α + b/β
f(t/a)/a.
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Non-monotonic expected value functions. Consider a process with gamma-distributed
switching times, with the scaling parameters θ+ = 2, θ− = 1, and the shape parameters
k+ = 2 and k− = 3. The derivatives of the expected value functions can be evaluated via
the Laplace transform using Corollary 1:

L(E ′
+)(s) = 2

1− (1 + s)3

(1 + 2s)2(1 + s)3 − 1
=

6 + 6s+ 2s2

7 + 19s+ 28s2 + 16s3 + 4s4
,

L(E ′
−)(s) = 2

(1 + 2s)2

(1 + 2s)2(1 + s)3 − 1
=

8 + 8s

7 + 19s+ 28s2 + 16s3 + 4s4
.

The inverse Laplace transforms of these functions oscillate and provide an example where
the conditions of Theorem 2 are not met. A direct consequence is that the covariance
function R(t), of the corresponding stationary process will also oscillate due to the relation
in Proposition 4.

5. Conclusion

At the center of this paper are the characterizing functions of the two versions of the
switch processes and their relationship to the switching time distributions. The main
result shows that the monotonicity of the expected value functions is equivalent to the
switching time distribution having a particular stochastic representation. This represen-
tation has a natural interpretation and allows us to recover the switching time distribution
from the expected value functions. The recovery of the switching time distribution from
the characterizing functions is one of the main motivations for studying these processes.
We also show that the expected value functions should be the preferred characteriza-
tion for this recovery. This is because using the covariance function of the stationary
switch process leads to identifiability problems. These two observations have practical
implications for the independent interval approximation framework, which approximates
the excursions of Gaussian processes with a switch process. Applying these results to
this framework is one of the two directions for future work. The other is to relax the
independence assumptions between two switching time distributions.
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Appendix. Auxiliary results and proofs

In this Appendix, we have collected some of the proofs for the paper along with some
elementary and supporting results. Before these results are presented, it should be noted
that we use ∗ for convolutions of functions and ⋆ for the convolution of probability distri-
butions. Namely, F ⋆ F denotes the distribution function of the sum of two independent
random variables that follow the distribution F . Lastly, the proofs are presented under
the assumptions of Section 2 unless stated otherwise. For convenience, the proofs and
remarks of the appendix are grouped into three sections.

The Laplace transform and supporting results. The Laplace transform is heavily
used within renewal theory and in this paper. We therefore provide a short introduction
of it here. Recall that for a function h(t), t ≥ 0, its Laplace transform L(h)(s), defined
through

L(h)(s) =
∫ ∞

0

h(t)e−ts dt,

for any s such that the integral is finite. Furthermore, we have that for a positive half-line
distribution given by a cdf F ; its Laplace transform Ψ is given by

Ψ(s) =

∫ ∞

0

e−ts dF (t).

Additionally, there exists a well-known relation between the Laplace transform of the
cumulative distribution function, F , and Ψ, namely

L(F )(s) = Ψ(s)/s.(4)

which follows from the fact that F is the convolution between the density f and the
Heaviside step function. Lastly, we want to highlight the following property of the Laplace
transform of derivatives, which sees extensive use in this paper:

L(h′)(s) = sL(h)(s)− h(0).

With this introduction to the Laplace transform and the assumptions in place, we are
now ready to define the non-stationary switch process.

Lemma 1. Let G,H be distribution functions on [0,∞) with corresponding densities g, h.
Then for each t ≥ 0:

(g ∗ h)(t) ≤ min

(
sup
u>0

g(u) ·H(t), sup
u>0

h(u) ·G(t)

)
.

Proof. Since g, h are densities on [0,∞), g(t− x) = 0 for x > t, we have

(g ∗ h)(t) =
∫ ∞

−∞
g(t− x)h(x)dx =

∫ t

0

g(t− x)h(x)dx

≤
∫ t

0

sup
u>0

g(u)h(x)dx = sup
u>0

g(u)H(t).

We obtain the minimum since convolution is commutative, and we can freely choose to
bound g or f with its supremum. □
Corollary 3. Let G be a distribution function on [0,∞), with density function g. Then
for all n,m ∈ N we have

g∗(n+m)(t) ≤ sup
u>0

g(u)∗nG(t)m⋆.
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Lemma 2. Let G,H be distribution functions on [0,∞), then we have

(H ⋆ G)(t) ≤ H(t)G(t)

and for n ∈ N,

H⋆n(t) ≤ Hn(t).

Proof. Since G and H are distribution functions and thus monotone on [0,∞) we have

(H ⋆ G)(t) =

∫ ∞

−∞
H(t− u) dG(u) =

∫ t

0

H(t− u) dG(u) ≤ H(t)

∫ t

0

dG(u) = H(t)G(t).

We obtain the last equation from the associative property of convolutions and repeated
application of the bound. □

Proofs related to the non-stationary switch process. After these supporting re-
sults, we account for the properties of the switch process D(t) used across the paper. We
start with the following result for the counting process N(t) that counts the number of
switches in (0, t] for t > 0 and those with the negative count, in (t, 0] for t < 0. Since we
have

D(t) = (−1)N(t)+(1−δ)/2,

it is clear that the distributional properties of N(t) together with the initial state δ
uniquely define the distribution of the process D(t). The distribution of N(t) on the
positive half-line and conditionally on δ = δ0, δ0 ∈ {−1, 1} is the same as of {−N(−t)−
1, t ≥ 0} conditionally on δ = −δ0, hence it is sufficient to consider only the positive
half-line.

Lemma 3. Assume that T0 = (T−
i , T+

i )i∈N is a sequence of iid pairs of independent
random variables, with the distribution function F− and F+, respectively. The one-
dimensional marginal distributions of N(t) given δ and for t ≥ 0 are given by

P
(
N(t) = k

∣∣δ
)
=

{
(F+ ⋆ F−)

l⋆ (t)− (F+ ⋆ F−)
l⋆ ⋆ Fδ(t); k = 2l,

(F+ ⋆ F−)
l⋆ ⋆ Fδ(t)− (F+ ⋆ F−)

l⋆ (t); k = 2l + 1,
(5)

where l ∈ N ∪ {0}.

Proof. We consider only the case of conditioning on δ = 1 as the opposite case can be
obtained by the symmetry argument. We first note that for a positive t and a non-negative
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integer l:

P
(
N(t) = 0

∣∣δ = 1
)
= P(T+

1 > t) = 1− F+(t),

P
(
N(t) = 1

∣∣δ = 1
)
= P(T+

1 + T−
1 > t ≥ T+

1 )

= 1− F+ ⋆ F−(t)− (1− F+(t)) ,

= F+(t)− F+ ⋆ F−(t),

P
(
N(t) = 2l

∣∣δ = 1
)
= P

(
l+1∑

i=1

T+
i +

l∑

i=1

T−
i > t ≥

l∑

i=1

T+
i +

l∑

i=1

T−
i

)

= 1− F
(l+1)⋆
+ ⋆ F l⋆

− (t)−
(
1− F l⋆

+ ⋆ F l⋆
− (t)

)

= F l⋆
+ ∗ F l⋆

− (t)− F
(l+1)⋆
+ ⋆ F l⋆

− (t),

P
(
N(t) = 2l + 1

∣∣δ = 1
)
= P

(
l+1∑

i=1

T+
i +

l+1∑

i=1

T−
i > t ≥

l+1∑

i=1

T+
i +

l∑

i=1

T−
i

)

= F
(l+1)⋆
+ ⋆ F l⋆

− (t)− F
(l+1)⋆
+ ⋆ F

(l+1)⋆
− (t).

□
With this lemma, we now present the proof of Proposition 1.

Proof of Proposition 1. Let us first consider the case of t > 0 and δ = 1. Then by
Equations (5), (4) and Lemma 3:

P+(t) =
∞∑

l=0

P(N(t) = 2l) =

( ∞∑

l=0

(F+ ⋆ F−)
l⋆

)
(t)−

( ∞∑

l=0

(F+ ∗ F−)
l⋆

)
⋆ F+(t)

= L−1

(
1−Ψ+(s)

s(1−Ψ+(s)Ψ−(s))

)
.

For the case of δ = −1, we have

P−(t) =

( ∞∑

l=0

(F+ ⋆ F−)
l⋆

)
⋆ F−(t)−

( ∞∑

l=1

(F+ ⋆ F−)
l⋆

)
(t)

= L−1

(
Ψ−(s) (1−Ψ+(s))

s(1−Ψ+(s)Ψ−(s))

)
.

Moreover, for δ = 1

E+(t) = 2P+(t)− 1

= L−1

(
1− 2Ψ+(s) + Ψ+(s)Ψ−(s)

s(1−Ψ+(s)Ψ−(s))

)
,

while for δ = −1 we obtain

E−(t) = L−1

(
2Ψ−(s)(1−Ψ+(s))− 1 + Ψ+(s)Ψ−(s)

s(1−Ψ+(s)Ψ−(s))

)

= L−1

(−1 + 2Ψ−(s)−Ψ+(s)Ψ−(s)

s(1−Ψ+(s)Ψ−(s))

)
.

□
The differentiability of E+ and E− relies on the differentiability of P+ and P− defined

in Proposition 1. We provide the conditions for differentiability in the following lemma.
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Lemma 4. Assume that both distributions F+ and F− are absolutely continuous with
respect to the Lebesgue measure and have finite expectations, µ+ and µ−, respectively.
The functions P+ and P− satisfy the following conditions

i) lim
t→0+

P+(t) = 1 and lim
t→0+

P−(t) = 0,

ii) lim
t→∞

P+(t) = lim
t→∞

P−(t) =
µ+

µ+ + µ−
,

iii) If there exists L ∈ N for which supt>0(f+ ∗ f−)∗L(t) < ∞, then P+ and P− are
differentiable and

P+ =
(
I[0,∞) − F+

)
⋆

∞∑

l=0

(F+ ⋆ F−)
l⋆ ,

P− = F− +
(
F− − I[0,∞)

)
⋆

∞∑

l=1

(F+ ⋆ F−)
l⋆ ,

P ′
+ =

∞∑

l=0

(
f ∗l
+ ∗ f ∗l

− − f
∗(l+1)
+ ∗ f l⋆

−

)
,

P ′
− = f+ +

∞∑

l=1

(
f ∗l
+ ∗ f ∗(l+1)

− − f ∗l
+ ∗ f l⋆

−

)
.

where the convergence of all series is locally uniform on (0,∞).

Proof. We have seen in the proof of Proposition 1 that

P+ = I[0,∞) − F+ +
∞∑

l=1

(
F l⋆
+ ⋆ F l⋆

− − F
(l+1)⋆
+ ⋆ F l⋆

−

)

=
(
I[0,∞) − F+

)
⋆ U,

where U is the renewal measure defined by the renewal processes of the cycle length

U(A) = δ{0} +
∞∑

l=1

(F+ ⋆ F−)
l⋆ (A).

from Lemma 2 we have,

lim
t→0+

(
I[0,∞) − F+

)
(t) = 1,

lim
t→0+

∣∣∣∣∣
∞∑

l=1

(
F l⋆
+ ⋆ F l⋆

− − F
(l+1)⋆
+ ⋆ F l⋆

−

)∣∣∣∣∣ (t) ≤ lim
t→0+

F+ ⋆ F−(t)

1− F+ ⋆ F−(t)
(1 + F+(t)) = 0,

which establishes i) for P+. The argument for P− is similar.
The line of the argument for ii) utilizes the Key Renewal Theorem, see p.86 in Daley

and Vere-Jones (2003), which states that for an integrable function g that vanishes on
(−∞, 0):

lim
t→∞

g ⋆ U(t) =
1

µ+ + µ−

∫ ∞

0

g(u) du.

For the limit at the infinity for P+, one applies it to g = I[0,∞) − F+ since P+ = g ⋆ U .
The approach is analog for P−
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To prove the differentiability, we use the fact that P+ and P− can be expressed as
a series of differentiable terms; thus, from Theorem 7.17, Rudin (1976), it is sufficient
to show local uniform convergence of the partial sums that would allow the exchange
summation and derivation. Thus for each 0 < t0 < t1, we need to show that, for each
ϵ > 0, there exist an N such that

∣∣∣
∞∑

l=N+1

(
f ∗l
+ ∗ f ∗l

− − f
∗(l+1)
+ ∗ f ∗l

−

)
(t)
∣∣∣ < ϵ

for all t ∈ [t0, t1].
Assume first that the support of f+ ∗ f− is the entire half-line (0,∞). For given t0 and

t1, let t ∈ [t0, t1], and N > L. We note that (F+ ⋆ F−)(t1) < 1. Then for every ϵ > 0, by
applying Corollary 3 and Lemma 2, we have

∣∣∣
∞∑

l=N+1

(
f ∗l
+ ∗ f ∗l

− − f
∗(l+1)
+ ∗ f l⋆

−

)
(t)
∣∣∣

≤ (f+ ∗ f−)∗L ∗
∞∑

n=1

(
(f+ ∗ f−)∗(N−L+n) + (f+ ∗ f−)∗(N−L+n) ∗ f+

)
(t)

≤ sup
u>0

(f+ ∗ f−)∗L (u) ·
∞∑

n=1

(
(F+ ⋆ F−)

(N−L+n)⋆ + (F+ ⋆ F−)
(N−L+n)⋆ ⋆ F+

)
(t)

≤ sup
u>0

(f+ ∗ f−)∗L (u) ·
∞∑

n=1

(F+ ⋆ F−)
(N−L+n) (t1) (1 + F+(t1))

= sup
u>0

(f+ ∗ f−)∗L (u) ·
(F+ ⋆ F−(t1))

(N−L+1)

1− F+ ⋆ F−(t1)
(1 + F+(t1)) ,

where the last term can be made smaller than ϵ by taking N sufficiently large so that

(F+ ⋆ F−(t1))
(N−L+1) is small enough. This proves uniform convergence of P ′

+ and P ′
− on

compact subsets of R+. The proof can be extended for when the support of f+ ∗ f− is
not the entire positive real line; this is technical and, therefore, omitted in this paper.
However, the approach is to note that convolution extends the support. In essence, there is
some k chosen large enough such that our t1 falls within the support and F+⋆F

k⋆
− (t1) < 1.

Then, this is used as the size of the groupings of the subsequent terms in the series. □
Proof of Proposition 3. Form the observation that L(E±)(s) = 2L(P±)(s)− 1/s we have
the following system of equations{

L(E+)(s) +
1
s

= 2L(P+)(s)

L(E−)(s) +
1
s

= 2L(P−)(s).

By using the fact from Proposition 1 that L(P−)(s)/L(P+)(s) = Ψ−(s) and the first
equation of the same proposition we obtain{

L(E+)(s) +
1
s

= 2
s

1−Ψ+(s)
1−Ψ+(s)Ψ−(s)

sL(E−)(s)+1
sL(E+)(s)+1

= Ψ−(s).

Now, we can solve the top equation by substitution, and we have

(sL(E+)(s) + 1)

(
1−Ψ+(s)

sL(E−)(s) + 1

sL(E+)(s) + 1

)
= 2(1−Ψ+(s))

(sL(E+)(s)− 1)−Ψ+(s) (sL(E−)(s)− 1) = 0,
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which leads to

{
sL(E+)(s)−1
sL(E−)(s)−1

= Ψ+(s)
sL(E−)(s)+1
sL(E+)(s)+1

= Ψ−(s).

□

Proofs related to the stationary switch process. Before moving to the results on the
stationary switch process, we need to define some well-known objects in renewal theory
in the context of this paper. Define SL(t) and SR(t) as the instants of the most recent
switch prior to t and the first switch after t, respectively. The residual time since the last
switch is denoted by B(t) = t− SL(t), and the excess time is A(t) = SR(t)− t.

Lemma 5. The joint distribution of A(t), B(t), N(t) is given through the following con-
ditional probabilities for u ∈ [0, t] and v > 0:

P
(
A(t) > v

∣∣B(t) = u,N(t) = k, δ
)
=

{
F̄δ(v + u)/F̄δ(u); k = 2l,

F̄−δ(v + u)/F̄−δ(u); k = 2l + 1,

P
(
SL(t) ≤ u

∣∣N(t) = k, δ
)
=




F l⋆
δ ⋆ F l⋆

−δ(u) ·
(
F l⋆
δ ⋆ F l⋆

−δ

)
u
⋆ Fδ(t); k = 2l;

F
(l+1)⋆
δ ⋆ F l⋆

−δ(u) ·
(
F

(l+1)⋆
δ ⋆ F l⋆

−δ

)
u
⋆ F−δ(t); k = 2l + 1;

A probability measure represented by F which is restricted to [0, u] is denoted by Fu i.e.,
Fu(x) = F (x)/F (u) for x ∈ [0, u] and one for x > u.

Further, the process ∆N(s) = N(s + SR(t)) −N(SR(t)), s > 0, depends on the triplet
(SL(t), SR(t), N(t)) only through δ0 = (−1)N(t)+1. Hence, for a given δ = δ0, it has the
same distribution (as the entire process) as the process N(s), s > 0.

Proof. For B(t) = u,N(t) = k, δ = 1, we have
∑l

i=1 T
+
i +

∑l
i=1 T

−
i = t− u, and t− u +

T+
l+1 > t, i.e. T+

l+1 > u. Given these conditions, A(t) > v is equivalent to t−u+T+
l+1 > t+v,

i.e. T+
l+1 > u+ v. Thus

P
(
A(t) > v

∣∣B(t) = u,N(t) = k, δ = 1
)
=

{
P(T+

l+1 − u > v
∣∣T+

l+1 > u) ; k = 2l,

P(T−
l+1 − u > v

∣∣T−
l+1 > u) ; k = 2l + 1,

=

{
F̄+(u+ v)/F̄+(u) ; k = 2l,

F̄−(u+ v)/F̄−(u) ; k = 2l + 1,

The case of δ = −1 is symmetric.
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Further,

P
(
B(t) > u

∣∣N(t) = 2l, δ = 1
)
= P

(
t− u >

l∑

i=1

T+
i +

l∑

i=1

T−
i > t− T+

i

)
,

=

∫ t−u

0

F̄+(t− p)dF l⋆
+ ⋆ F l⋆

− (p)

= F l⋆
+ ⋆ F l⋆

− (u) ·
(
F l⋆
+ ⋆ F l⋆

−
)
u
⋆ F+(t),

P
(
B(t) ≤ u

∣∣N(t) = 2l + 1, δ = 1
)
= P

(
l+1∑

i=1

T+
i +

l∑

i=1

T−
i ≤ u,

l+1∑

i=1

T+
i +

l+1∑

i=1

T−
i > t

)
,

=

∫ u

0

F̄−(t− p)dF
(l+1)⋆
+ ⋆ F l⋆

− (p)

= F
(l+1)⋆
+ ⋆ F l⋆

− (u) ·
(
F

(l+1)⋆
+ ⋆ F l⋆

−

)
u
⋆ F−(t).

The second part of the result follows from the mutual independence of T+
i ’s and T−

i ’s. □

The following proof uses the key renewal theorem or, more precisely, one of its conse-
quences, the limiting behavior of alternating processes.

The proof of Proposition 2. Let D(t) be the regular switch process starting at time zero.
Since the distribution of N(s) is the same as ∆N(s) in Lemma 5, the stationary distri-
bution can be obtained by finding the distributional limit of the triple (A(t), B(t), D(t)).
The limit of the triple can be obtained from the Key Renewal Theorem.

Consider the renewal process defined via Xn = T+
n + T−

n and let Sn be the cumulative
sum of Xn. By defining Zn = T+

n , we obtain an alternating process that is ON over
[Sn, Sn+T+

n+1), n ∈ N, and OFF, otherwise. Thus, the limiting distribution of probability
that at time t the process is in the ON state is EZ1/EX1, see Theorem 3.4.4 in Ross
(1996). This essentially proves the limiting distribution of D(t).

To show the joint limiting distribution of A(t) and B(t) given D(t) = 1, we note that
for an alternating process defined by Zn = T+

n ∧ (T+
n − b)∧a the system is ON if and only

if D(t) = 1, A(t) ≤ a,B(t) > b. We note that EZn =
∫ a

0
F̄+(u+b) du and thus the limiting

probability for P(δ(t) = 1, A(t) ≤ a,B(t) > b) is equal to
∫ a

0
F̄+(u+b) du/(µ++µ−), which

demonstrates the distributional form of (δ, A,B), see Proposition 3.4.5, Ross (1996).
The expected value of the stationary switch process D̃ is given by Eδ = (µ+−µ−)/(µ++

µ−). To find P(D̃(t) = 1)|D̃(0) = 1), we follow the same path as in the proof of Proposi-
tion 1. If Ñ(t) denotes the number of switches between 0 and t for the stationary switch
process, then its distribution at time t is given by

P
(
Ñ(t) = k

∣∣D̃(0) = δ
)
=

=





1− FA,δ(t); k = 0

(F+ ⋆ F−)
(k/2−1)⋆ ⋆ F−δ ⋆ FA,δ(t)− (F+ ⋆ F−)

(k/2)⋆ ⋆ FA,δ(t); k > 0 is even,

(F+ ⋆ F−)
(k−1)/2⋆ ⋆ FA,δ(t)− (F+ ⋆ F−)

(k−1)/2⋆ ⋆ F−δ ⋆ FA,δ(t); k is odd,

where FA,δ is the cdf of the initial delay given in Remark 1. The proof is a slight modifi-
cation of the one in Theorem 3 in which one needs to account for the delay A distribution
that is different from T+

1 , see Remark 1.
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Since

D̃(t) = (−1)Ns(t)+(1−δ)/2(6)

we can get, in the same way as in the proof of Proposition 1, that

P̃+(t) = P(D̃(t) = 1)|D̃(0) = 1) =
∞∑

l=0

P(Ñ(t) = 2l
∣∣D̃(0) = 1)

= 1− FA,+(t) +
∞∑

l=1

(F+ ⋆ F−)
(l−1)⋆ ⋆ F− ⋆ FA,+(t)−

∞∑

l=1

(F+ ⋆ F−)
l⋆ ⋆ FA,+(t)

= L−1

(
1

s

(
1− 1−ΨA,+(s)

(1−Ψ+(s)Ψ−(s))

))
(t)

and

P̃−(t) = P(D̃(t) = 1)|D̃(0) = −1) = L−1

(
ΨA,−(s) (1−Ψ+(s))

s(1−Ψ+(s)Ψ−(s))

)
.

Then the final formula for the Laplace transform of Pδ(t) follows from the form of ΨA,δ(s)
that is given in Remark 1.

Finally, for the covariance function, we note that

R(t) = E(D̃(0)D̃(t))− (µ+ − µ−)2

(µ+ + µ−)2

=
(
2P̃+(t)− 1

) µ+

µ+ + µ−
−
(
2P̃−(t)− 1

) µ−
µ+ + µ−

− (µ+ − µ−)2

(µ+ + µ−)2

=
2

µ+ + µ−

(
P̃+(t)µ+ − P̃−(t)µ− + µ+

µ− − µ+

µ+ + µ−

)

The Laplace transform of R can now be easily obtained by combining all the above
results. □
Proof of Proposition 4. The first equations we obtain from Proposition 2 and 1

L(P̃ ′
+)(s) = sL(P̃+)(s)− P(X+(0) = 1|X+(0) = 1),

= 1− 1

µ+s

(1−Ψ+(s)) (1−Ψ−(s))

1−Ψ+(s)Ψ−(s)
− 1,

=
1

µ+s

(1−Ψ+(s)) (1−Ψ−(s))

1−Ψ+(s)Ψ−(s)
,

=
1

µ+

(
1−Ψ+(s)

s(1−Ψ+(s)Ψ−(s))
− Ψ−(s)(1−Ψ+(s))

s(1−Ψ+(s)Ψ−(s))

)
,

= −
(L(P+)(s)− L(P−)(s)

µ+

)
.

The proof is very similar for L(P̃ ′
+)(s) and observing that from the construction of P̃ ′

+ if
follows that P(X−(0) = 1|X−(0) = −1) = 0. The second equation follows from substitut-
ing in the first and that E+(t) = 2P(X+(t) = 1)− 1. □
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SLEPIAN MODEL BASED INDEPENDENT INTERVAL
APPROXIMATION FOR THE LEVEL EXCURSION DISTRIBUTIONS

HENRIK BENGTSSON AND KRZYSZTOF PODGÓRSKI

Department of Statistics, Lund University,

Abstract. The independent interval approximation of the excursion time distributions
for Gaussian processes has been used in physics and engineering. A new but related
approach matches the expected value of the clipped Slepian to the expected value of a
non-stationary binary stochastic process. This approach is extended to non-zero crossings
and provides a probabilistic foundation for the validity of the approximations for a large
class of processes. Both the above and below distributions are approximated. While the
Slepian-based method was shown to be equivalent to the classical IIA for the zero-level,
this is not the case for non-zero excursions.

1. Introduction

Excursion distribution has received considerable attention from the mid-1930s until today.
This is not surprising, considering the importance of characterizing the distribution of
excursions in many applications. For example, the length of a drought or a heatwave
are two problems where characterizing the exceedance distributions is important. Here,
classical methods in extreme value theory, such as peaks over threshold or block maxima,
fail since it is the length of the excursion and not the maxima that is of interest.

The formulation of the excursion distribution is both simple and intuitive, but this hides
the true complexity of the problem. The problem of fully characterizing the excursion
distribution from characteristics of the underlying process is still unsolved despite consid-
erable efforts. The study of excursion distributions originates in the study of the number
of real roots of a random polynomial. It was perhaps Littlewood and Offord (1938) who
first formulated the question mathematically, and early work was done by Kac (1943),
Littlewood and Offord (1939), and Erdös and Offord (1956). From this early work Rice
(1944) studied the expected number of roots of a stochastic process, which led to the
famous Rice formula on the expected number of crossing in a unit of time for an ergodic
stationary process. The study of the number of zeros would evolve into investigating
the length between zeros, and hence, the first investigation of excursion times began. A

E-mail address: Henrik.Bengtsson@stat.lu.se, 0000-0002-9280-4430,
Krzysztof.Podgorski@stat.lu.se, 0000-0003-0043-1532.
Date: January 27, 2025.
Key words and phrases. level excursions, Slepian model, Gaussian process, level crossing distributions,
geometric distributions, switch process, clipped process, renewal process.
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discussion of the development is incomplete without mentioning the results of McFadden
(1956).

McFadden (1956) investigated the length of axis crossings and first proposed the notion
of clipping a stochastic process. If X(t) is the process of interest, the clipped process Z(t)
can be constructed by computing Z(t) = sgn(X(t) − u). While Z(t) will be less rich in
terms of information, all the information regarding the excursion behavior of X(t) will be
contained in Z(t).

Due to the lack of results connecting the characteristics of the process of interest to
the excursion distribution, approximation methods have been developed. A method com-
monly used in statistical physics is the so-called independent interval approximation (IIA).
The basis for this is to approximate the clipped process with a stationary binary process
taking values one and minus one, where the time spent in the one and minus one states
are independent. The extensive survey paper by Bray et al. (2013) is a good overview of
the use of the IIA in statistical physics. However, Longuet-Higgins (1962) showed that
this approximation method is never valid for Gaussian processes. Nevertheless, the IIA
has been further developed, and in particular Sire (2007) extended the IIA framework to
non-zero levels. There are, however, questions about the mathematical validity of the IIA
framework due to its lack of criterion on the characteristics used for the approximation.

The IIA has also been used to derive the so-called persistency coefficient. This coeffi-
cient describes the tail behavior of the excursion distribution and is used to characterize
various systems in statistical physics. However, deriving the persistency coefficient is a
difficult problem, and therefore, they are only known for a handful of processes. For
example, Poplavskyi and Schehr (2018) derived the persistency coefficient for zero-level
crossings of the two-dimensional diffusion process.

Recently, another version of the IIA framework was proposed by Bengtsson and Podgórski
(2024b). This version is based on clipping the Slepian process and matching it to a non-
stationary switch process. However, this was only done for zero-level crossings, and this
approach was shown to be equivalent to the ordinary IIA. In this paper, the Slepian-based
IIA framework is extended to non-zero-level excursions. Conditions are also provided for
the mathematical validity of this approach. These conditions are based on recent results
on the properties of the switch process by Bengtsson and Podgórski (2024a).

The paper is organized as follows. Section 2 and 3 introduce the Slepian model and the
Switch processes and thus serve as preliminaries for subsequent sections. In Section 4,
properties of the clipped processes are derived, which are then used when matching charac-
teristics. The latter is done in Section 5, and in this section, we demonstrate the difficulty
of using the Clipped process and stationary switch process for non-zero level IIA. In
Section 6, the Slepian-based IIA is applied to approximate the excursion distribution of
Gaussian diffusion processes in two dimensions. Persistency coefficients are approximated
for this process, and the results are compared to results based on simulating trajectories
of the process.
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2. Slepian process

Recall that the Slepian model at level u corresponding to a smooth stationary Gaussian
process X(t) with the twice continuously differentiable normalized covariance function
r(t) is given through

Xu(t) = u · r(t)−R · r′(t)/
√

−r′′(0) + ∆(t),(1)

where r(t) is the covariance of X, R is a standard Rayleigh variable, i.e. with density
fR(s) = se−s2/2 independent of a (non-stationary) Gaussian process ∆ with covariance

r∆(t, s) = r(t− s)− r(t)r(s) + r′(t)r′(s)/r′′(0).

This process describes the statistical behavior of the original process X at the instants
of an up-crossing of the level u, i.e., the process behaves how a trajectory of a stationary
Gaussian process is seen when observed at the u-level up-crossing instant.

The Slepian process decomposes the behavior at the u−up crossing into three distinct
parts. The first is fully deterministic and only depends on the level u: ru(t) = u r(t).
The second is the deterministic function −r′(t)/

√
r′′(0), scaled by a standard Rayleigh

random variable R. The last component is a non-stationary Gaussian stochastic residual
process

∆(t) = X(t)−X(0) · r(t)−X ′(0) · r′(t)/r′′(0),

independent of R and u. In Figure 1, we present samples from these three components
for Gaussian diffusion processes together with samples from the Slepian models combined
from these components.

We also note that due to the symmetry of Gaussian processes, the Slepian model X̃u

of the process X at a u-down-crossing is given by

(2) X̃u(t)
d
= −X−u(t),

where the relation denotes equality of the distributions of the two processes. Through-
out this paper, unless otherwise stated, we will assume that all covariance functions are
normalized such that r(0) = 1. With the Slepian process introduced, we will move to the
binary processes, which are used in the independent interval approximation method.

3. Stationary and non-stationary switch processes

The key idea of the Slepian-based IIA is to match the expected value of the clipped
Slepian process to the expected value of a switch process. This section provides a short
account of the necessary results for this matching and the results that later give the
probabilistic motivation for why the Slepian-based IIA is valid. For an overview of the
switch process, see Bengtsson (2024) and Bengtsson and Podgórski (2024a). The switch
process is defined by interlacing intervals of random length such that after the end of each
random length, the process switches either from one to minus one or from minus one to
one. The process is defined on the positive half line starting at the origin, and the initial
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Figure 1. The Slepian model for three Gaussian diffusions: 1-dimensional
(top), 2-dimensional (middle), 3-dimensional (bottom). Right: Three components
of the decomposition; Left: Components put together to create ten samples from
the Slepian model at five different levels.

value is determined by a Bernoulli random variable, such that the process starts at one
with some probability p0 and at minus one with 1 − p0. The Bernoulli random variable
is independent of the intervals, which are denoted by T−

i , and T+
i , for i ∈ N for the time

spent in state minus one and one, respectively. Additionally, it’s assumed that T+
i and

T−
i sequences of independent identically distributed (iid) random variables which are also

mutually independent.
The resulting plus-minus process is denoted by D(t), t > 0. However, D(t) can be

extended to the negative real line by attaching another realization at zero that starts
from −δ in the negative direction. In Figure 2, we illustrate a trajectory of such a
process, which starts at minus one. Before presenting some elementary results needed for
this paper, we need to establish the notation used for the Laplace transform since this
is the main mathematical tool used. Let Ψ(s) be the Laplace transform of a probability
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Figure 2. The definition of the switch process attached to the origin, with the
initial state δ = −1.

distribution defined by the cdf F with support on the positive half line. The Laplace
transforms of T+

i , i ∈ N are denoted by Ψ+(s) and Ψ−(s).
In this work, we utilize Proposition 1 from Bengtsson and Podgórski (2024a) on the

Laplace transform of the expected value function of the switch process.

Proposition 1. Let D(t) be a non-stationary switch process then the Laplace transform
of Pδ(t) = P

(
D(t) = 1

∣∣δ
)
, t > 0, is given by

L(Pδ)(s) =
1−Ψ+(s)

s(1−Ψ+(s)Ψ−(s))
·




1 ; δ = 1,

Ψ−(s) ; δ = −1,

Additionally, the Laplace transform of the expected value function Eδ(t) = E(D(t)
∣∣δ),

t > 0 is given by

L(Eδ)(s) =
Ψ−(s)−Ψ+(s) + δ(1−Ψ−(s))(1−Ψ+(s))

s(1−Ψ+(s)Ψ−(s))
.

Focusing on the expected value functions to characterize this process is natural since
D(t) is not stationary. The reason for this lack of stationery is the attachment of the
switch at zero.

In the ordinary IIA, a stationary switch process is used to approximate the clipped
process, and matching is done through the covariance function. A stationary switch pro-
cess can be constructed from the non-stationary version by delaying the process forward
and backward around zero. Hence, the origin will be placed in some interval [−B,A],
and two independent non-stationary switch processes are attached at each end of this
interval. The value of the process on this interval is chosen by a binary random variable
δ, that takes the value one with probability µ+/(µ++µ−) and minus one with probability
µ−/(µ+ + µ−). The main question is now how to find the distributions of A and B such
that the delay results in a stationary process. The answer follows from well-known results
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in renewal theory see, for example, Cox (1962), and the densities, conditional on δ, are
given by

fA|δ(t) = fB|δ(t) =
1− Fδ(t)

µδ

.

Where Fδ is the cdf of T+ or T− depending on if δ takes the value one or minus one,
respectively. Throughout the rest of the paper, we will denote this stationary switch
process by D̃(t), t ∈ R. The characteristic associated with the stationary switch process
is the covariance function. We therefore present a shortened version of Proposition 2 from
Bengtsson and Podgórski (2024a), which gives us the covariance function of D̃(t) in the
Laplace domain.

Proposition 2. Let D̃(t) be a stationary switch process constructed from the interval
distributions T+

i and T−
i for i ∈ N with the expected values µ+ and µ− respectively.

Define P̃δ(t) = P (D̃(t) = 1|D̃(0) = δ), then the process D̃(t) is uniquely characterized by
P̃δ(t) which have the following form in the Laplace domain

L(P̃δ)(s) =
1

s





1− 1

µ+s

(
1−Ψ+(s)

) (
1−Ψ−(s)

)

1−Ψ+(s)Ψ−(s)
; δ = 1,

1

µ−s

(
1−Ψ+(s)

) (
1−Ψ−(s)

)

1−Ψ+(s)Ψ−(s)
; δ = −1.

The covariance of D̃(t), R(t) = Cov(D̃(u), D̃(t+ u)) is given by

R(t) =
2

µ+ + µ−

(
P̃+(t)µ+ − P̃−(t)µ− + µ+

µ− − µ+

µ+ + µ−

)
.(3)

and its Laplace transform is given by

L(R)(s) =
4

s (µ+ + µ−)

(
µ+µ−

µ+ + µ−
− 1

s

(1−Ψ+(s))(1−Ψ−(s))

1−Ψ−(s)Ψ+(s)

)
.(4)

We now have a collection of characteristics in the Laplace domain, Ψ+(s), Ψ−(s),
L(E+)(s), L(E−)(s) and L(R)(s). The main goal now is to retrieve Ψ+(s) and Ψ−(s)

from either the covariance or the expected value functions. It was shown in Bengtsson
and Podgórski (2024a) that Ψ+(s) and Ψ−(s) are obtainable from the derivatives of the
expected value function, and this results in the following expression

Ψ+(s) =
L(E ′

+)(s)

L(E ′
−)(s)− 2

, Ψ−(s) =
L(E ′

−)(s)

L(E ′
+)(s) + 2

.(5)

However, if one wants to use the above relations to match the expected value functions
of the clipped Slepian process with the crossing distributions, one needs to show that the
above functions are completely monotone so that they indeed correspond to the Laplace
transform of probability distributions. This is not easy to demonstrate directly from
the definition. However, Theorem 1 in Bengtsson and Podgórski (2024a) gives sufficient
conditions on the derivatives of E+ and E+, which can be used to solve this problem.
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Theorem 1. Let D(t) be a non-stationary switch process with the expected value functions
E+(t) and E−(t). Then the following conditions are equivalent

i) Functions −E ′
+(t) and E ′

−(t) are non-negative,

ii) T+ and T− have the stochastic representations

T+
d
= X +

να−1∑

k=1

Yk, T−
d
= Y +

νβ−1∑

k=1

Xk,

where the sums are considered zero whenever summing over the empty set. Additionally,
Xi’s and Yi’s mutually independent and iid, with the densities

fX(t) = − 1

2α
E ′

+(t) fY (t) =
1

2β
E ′

−(t),

respectively. να and νβ are geometrically distributed with the parameters

α =
µ−

µ+ + µ−
β =

µ+

µ+ + µ−
,

which also serves as the normalizing coefficients of −E ′
+ and E ′

−.

It should be mentioned that the monotonicity of the expected value functions is often
easy to verify in practice.

4. Clipping Slepian and Gaussian processes

The length of u-level excursions of a smooth stationary process X(t) forms a sequence
of random variables. Additionally, if these excursions are marked with whether they fall
below or above the level u, the process exhibits a structure similar to a switch process.
However, the intervals for this process will not be independent, which is assumed for the
switch process. We denote these interval lengths with T̄+

i and T̄−
i , respectively, i ∈ Z.

More formally, we define the clipped process at level u by

D̃u(t) = sgn(X(t)− u).

It is clear that D̃u(t) will inherit the stationarity property and contain information about
the u-level excursions of X(t) both above and below the level. In Figure 3, the idea of
clipping a process is illustrated for a Gaussian process clipped at u = 0.5. In the ordinary
IIA approach, the covariance of the process X(t), r(t), is matched to the covariance of
the clipped process. For the simplest case, the process is a zero mean Gaussian process
clipped at u = 0; we obtain the well-known and explicit arcsin formula

R0(t) =
2

π
arcsin r(t).

For the non-zero level, greater care is needed. Let FX be the cdf of X(0) and F̄X = 1−FX .
Assuming continuity of the distribution of X(t), the covariance of the clipped stationary
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Figure 3. The excursion intervals of a process X(t) together with the corre-
sponding clipped process (left) and a sample of the switch process under the IIA
(right) with exponential distributions having the means matched those in the top
graph.

process can be written as follows

Ru(t) = P(X(t) > u|X(0) > u)F̄X(u) + P(X(t) ≤ u|X(0) ≤ u)FX(u)

− P(X(t) ≤ u|X(0) > u)F̄X(u)P(X(t) > u|X(0) ≤ u)FX(u)−
(
1− 2FX(u)

)2

= 2
(
P(X(t) > u|X(0) > u)F̄X(u) + P(X(t) ≤ u|X(0) ≤ u)FX(u) + 2FX(u)F̄X(u)

)
.

If we assume that the process X(t), t ∈ R is distributionally symmetric in value, i.e. it
has the same distribution as −X(t), t ∈ R, then for Au(t) = P(X(t) ≤ u,X(0) ≤ u) we
have

Ru(t) = 2
(
A−u(t) + Au(t) + 2FX(u)FX(−u)

)
.

For a zero mean Gaussian process X(t) with the covariance r(t) and if we set ũ = u/
√

r(0)

and ρt = r(t)/r(0):

Au(t) = P(ρtZ +
√

1− ρ2tY < ũ, Z < ũ)

=
1√
2π

∫ ũ

−∞
e−

z2

2 Φ

(
ũ− ρtz√
1− ρ2t

)
dz = B(ũ, ρt),

where Z and Y are independent standard normal variables, and the last equation serves
as a definition of B. Consequently, we obtain the covariance of the clipped processes in
terms of the covariance of the underlying Gaussian process

Ru(t) = 2

(
B

(
u

r(0)
,
r(t)

r(0)

)
+B

( −u

r(0)
,
r(t)

r(0)

)
+ Φ

(
u

r(0)

)
Φ

( −u

r(0)

))
.(6)

Since the clipped process of a stationary process is stationary, it is natural to characterize
the clipped process by its covariance function.

However, in the IIA approach, one has to match two characteristics corresponding to
the distributions of the excursion above and below the level u. For this purpose, the
Slepian process attached at u-crossing (up or down) constitutes a much better alternative
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than the clipped stationary Gaussian process. The reason for this is that we do have two
Slepian processes at a crossing of u. One is for the u-upcrossing and the other for the
u-downcrossing. In our approach, we clip two Slepian processes given in (1) and (2)

D+
u (t) = sgn(Xu(t)− u)(7)

D−
u (t) = sgn(X̃u(t)− u).(8)

We note that by (2), D−
u

d
= −D+

−u.
In the next proposition, the expected value of the clipped process is presented. Later,

this function will be used to obtain the approximated excursion distribution by matching
it with a non-stationary switch process. Hence, this is an important equation for the
Slepian-based IIA.

Proposition 3. Let D+
u (t) be the clipped Slepian process at an u-level up crossing of a

Gaussian process, u ∈ R, with the covariance function r(t) twice continuously differen-
tiable. Then E+

u (t) = E(D+
u (t)) is given by

E+
u (t) = 1− 2Φ


u

1− r(t)√
1− r2(t) + r′2(t)

r′′(0)


− 2

1√
−r′′(0)

r′(t)√
1− r2(t)

exp

(
−u2

2

1− r(t)

1 + r(t)

)

× Φ


 −u√

−r′′(0)

√
1− r(t)

1 + r(t)

r′(t)√
1− r2(t) + r′2(t)

r′′(0)


 .

Let E−
u (t) = E(D−

u (t)), then

E−
u (t) = −E+

−u(t).

Moreover,

lim
t→0+

E+
u (t) = 1, lim

t→0+
E−

u (t) = −1,

lim
t→∞

E+
u (t) = lim

t→∞
E−

u (t) = 1− 2Φ (u) .

The proof requires some technical lemmas, and these, together with the proof, have
been relegated to the Appendix. While the expression of the clipped Slepian process
might appear to be intimidating, it simplifies significantly for the zero level. For u = 0,
it reduces to

E+
0 (t) = − 1√

−r′′(0)

r′(t)√
1− r(t)2

.

In the next section, the characteristics of this section, such as the covariance of the clipped
process and expected value functions of the clipped Slepian process, will be used to obtain
approximations of the excursion distributions.
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5. IIA for a non-zero crossing level

Intuitively, the IIA simply means that the characteristics of a clipped process are matched
to the characteristics of a switch process, either the stationary one as in the ordinary IIA
case or the non-stationary one in the Slepian-based IIA. Both approaches imply that
the dependency between the T̄+

i ’s and T̄−
i ’s of the clipped process is presumed to be

negligible so that independence can, for practical purposes, be assumed. After matching
the characteristics, the relation between the characteristics and the switching times of
the switch processes is utilized to obtain the switching time distributions, which serve
as an approximation of the excursion time distributions. We start with an overview and
treatment of the ordinary IIA and then introduce the Slepian-based IIA, which extends
to non-zero levels of the work done in Bengtsson and Podgórski (2024b).

5.1. The stationary IIA. Initially, when zero-level crossings were considered, the sta-
tionary versions of the processes were matched through their covariance functions, see
Bray et al. (2013). It was shown in Bengtsson and Podgórski (2024a) that the Slepian-
based IIA coincides with the ordinary IIA for zero-level crossings, i.e. that the two ap-
proaches are equivalent. However, the non-zero crossing case is more complicated and has
not been extensively studied. Using characteristics of a clipped process and matching it
to characteristics of a stationary switch process was introduced in Sire (2007) and further
investigated in Sire (2008). Here, we present a more rigorous introduction of the IIA at
the non-zero crossings for the stationary case, which is needed to identify the gaps in the
methodology that will be later addressed through the Slepian-based approach.

Following the previous sections, we have two stationary processes, the switch stationary
one D̃(t), t ∈ R, and the clipped stationary Gaussian one D̃u(t) = sgn(X(t)−u), t ∈ R. It
is clear that the stationary switch process D̃(t) is simpler in structure and can be utilized
for approximate analysis of D̃u(t) if the two are matched in one or the other way. In the
more straightforward, zero-level/symmetric case, the two processes can be matched by
their covariance structure, i.e., we call D̃(t) the independent intervals approximation of
D̃0(t) if the covariances of the two are matched, i.e.

R(t) = R0(t).

For the case of u = 0, it simply means that the (identical) distribution of T+
i and T−

i is
given by the cdf F , the following relation have to be satisfied

L
(
2

π
arcsin ρt

)
(s) =

1

s

(
1− 2

sµ

1−Ψ(s)

1 + Ψ(s)

)
.

Through this relation, the distribution given by Ψ matches the covariance of the original
process. Conversely, if the distribution of the excursion times is specified, then, through
the above relation, we can obtain the covariance of the original process. This one-to-one
correspondence (if such one exists) formally defines the IIA for zero-level crossings. Of
course, it is not obvious that the relation leads to a valid distribution, which has been
discussed in Bengtsson and Podgórski (2024b). In this case, one needs also match also µ,
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which can be done by the reciprocal of the crossing intensity given by the Rice formula

λ0 =
E
(
|X ′(0)|

)
√

2πr(0)
=

1

π

√
−r′′(0)

r(0)
,

so that the matching equality is

µ =
1

λ0

= π

√
r(0)

−r′′(0)
,

We note that for the asymmetric case, i.e., when u ̸= 0, there are two distributions to
be matched, F+ for the excursions above the u-level and F− corresponding to these below
the u-level. Thus, if we consider matching the covariance of the switch process and the
clipped process, one needs one more relation to solve for both distributions. For that,
different strategies could be taken.

Let us consider the matching through the covariance functions. First, the covariance
Ru of the clipped process is given in (6). The relation between the covariance function of
the stationary switch process and the interval distributions is given by Proposition 2. By
computing the derivative of (3) and using and (5) we obtain the following

L(R′′)(s) =
4

µ+ + µ−
· Ψ+(s) + Ψ−(s)− 2Ψ+(s)Ψ−(s)

1−Ψ+(s)Ψ−(s)
.

As it can be seen from this relation, the roles of Ψ+ and Ψ− cannot be distinguished solely
based on the covariance function R of the stationary switch process and thus from the
covariance Ru of the clipped process that matches R. There is a need for an additional
relation.

Before discussing this, let us point out how µ+ and µ− can be matched. First, we have
µ+ + µ− can be matched by the reciprocal of the half of the u-level crossing intensity λu

which is given by the Rice formula

λu =
E
(
|X ′(0)|

)
√

2πr(0)
e−u2/(2r(0)) =

1

π

√
−r′′(0)

r(0)
e−u2/(2r(0))

so

(9) µ+ + µ− = 2π

√
r(0)

−r′′(0)
eu

2/(2r(0)).

It is easy to argue that the ratio of averages of spending above and below the level u must
be equal to the ratio of the probabilities of X(0) being above and below u, yielding the
second matching equation

(10)
µ+

µ−
=

Φ
(
−u2/(2r′(0))

)

1− Φ
(
−u2/(2r′(0))

) ,

where Φ is the cdf of a standard normal distribution.
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In Sire (2007), where non-zero level crossing IIA has been attempted for the first time,
and two matching characteristics have been proposed

R<u(t) = E((u−X(t))+(u−X(0))+),(11)

N<u(t) = E
(
N
(
{0 < s ≤ t;X(s) = u}

)
IX(0)<u

)
,(12)

where x+ is a positive part of a real number x, IA is an indicator function of a set A, and
N(·) is counting measure of a set.

These two characteristics of the clipped process parallel equivalent characteristics of
the switch process. Let us introduce the switch counting process Ñ(t), t > 0 that counts
switches in (0, t] for the stationary switch process D̃. Clearly,

D̃(t) = (−1)Ñ(t)+(1−δ)/2, t ≥ 0.

The quantities corresponding to (11) and (12) are, respectively,

A<(t) = E

(
1− D̃(t)

2

1− D̃(0)

2

)
,

N<(t) = E
(
Ñ(t)|δ = −1

)
.

We have

A<(t) =
R(t)

4
+

µ2
−

(µ+ + µ−)
2 .

Thus, by utilizing Theorem 2 and Proposition 4 given in the Appendix, we obtain the
following Laplace transform relations

L (A<) (s) =
1

s (µ− + µ+)

(
µ− − 1

s

(1−Ψ+(s))(1−Ψ−(s))

1−Ψ−(s)Ψ+(s)

)
,(13)

L (N<) (s) =
1

s2µ−

(
1 + Ψ+(s)

) (
1−Ψ−(s)

)

1−Ψ+(s)Ψ−(s)
.(14)

Given the characteristics A< and N<, these two equations allow the identification of both
Ψ+ and Ψ−.

Remark 1. We note that the formula for the Laplace transform of N< coincides with that
in Sire (2007) and Sire (2008), and the transform of A is also matching presented there if
one accounts matching for µ+ and µ− given in (9) and (10).

In the stationary IIA approach, which is presented above, one challenge is to evaluate
explicitly N<u for the clipped process. Moreover, it is not apparent that matching through
(13) and (14) leads to valid distribution functions given through Ψ+ and Ψ−.

5.2. The Slepian-based IIA. The core idea of the Slepian-based IIA is to use the
Slepian process and Theorem 3 to obtain approximated excursion distributions as the
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distributions T̂+ and T̂− obtained through (5) as follows

ΨT̂+
(s) =

L(E+
u
′
)(s)

L(E−
u
′)(s)− 2

ΨT̂−(s) =
L(E−

u
′
)(s)

L(E+
u
′)(s) + 2

.(15)

For the equations to correspond to valid probability distributions, they need to be
completely monotone. To verify it for a given pair of E+

u
′ and E−

u
′ is difficult at best.

This is where the utility of Theorem 1 becomes apparent. Since it provides easy-to-check
conditions on E+

u
′ and E−

u
′ such that they correspond to valid probability distributions,

the next theorem formulates this in the context of the clipped Slepian process.

Theorem 2. Let X be a stationary Gaussian process with the twice continuous differ-
entiable covariance function r(t) t ∈ R. If for a given level u the functions E+

u and E−
u

from Proposition 3 are monotone, then the approximated excursion distributions above
and below the level u in the Slepian based IIA has the stochastic representation

T̂+
d
= X +

να−1∑

k=1

Yk, T̂−
d
= Y +

νβ−1∑

k=1

Xk,

where sums over the empty set are zero when the sum is empty. να and νβ are geometrically
distributed with parameters

α = Φ(u) β = 1− Φ (u)

respectively, and the variables Xi’s and Yi’s have densities

fX(t) = − 1

2α
E+

u
′
(t) fY (t) =

1

2β
E−

u
′
(t).

The sequences Xi and Yi are iid and independent of να and νβ which are also mutually
independent.

As previously mentioned, for the zero level case, it was shown in Bengtsson and
Podgórski (2024b) that the ordinary IIA and the Slepian-based IIA coincide. This does
not seem to be true for the non-zero level crossings since A<u and N<u of the clipped
process do not seem related to E+

u and E−
u in the same way as A< and N< are related to

E+ and E− for the switch process. We advocate for the Slepian-based IIA given through
(15) since E+

u and E−
u explicitly given in Theorem 3, while A<u, that can be obtained

from (6), involves integration formulas and obtaining a formula for N<u is a nontrivial
open problem, yet to be solved.

6. Non-zero level persistency coefficients for Gaussian diffusion

This section presents an example of the IIA for non-zero level crossing for the Gaussian
diffusion process. We focus on the 2−dimensional diffusion process for two reasons. The
first reason is that it is one of the few processes for which the persistency coefficient is
analytically known for the zero level, see Poplavskyi and Schehr (2018). The non-zero
excursion has also been studied by, among others Sire (2008) using the ordinary IIA. The
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Figure 4. The expected values of the Slepian model based on the diffusion
covariance, for an u up-crossing (left) and an u down-crossing (right), for
u = 0, 1/2, 1, 5/4.

second reason is its wide use in statistical physics, where the diffusion covariances were
used in Majumdar et al. (1996), Bray et al. (2013), and Wong et al. (2001).

In particular, Wong et al. (2001) studied the case where a diffusing field starts from
a random initial configuration. This model is theoretically attractive due to the linear
form of the diffusion equation in any dimension and experimentally because of its natural
physical interpretation in various non-equilibrium systems. For these reasons, the model
constitutes a mathematically convenient and physically important benchmark for any
methodology aiming at a persistency approximation and assessment.

For the sake of this presentation, it is sufficient to know that the covariance of the
d-dimensional diffusion is given by sechd/2(t/2), d ∈ N and that for d = 2 we have
an explicit spectrum sech(πω). While simulating trajectories might seem adequate, it
becomes impractical for higher levels of u where these crossing events occur less frequently,
necessitating the simulation of very long trajectories, which is computationally costly.

The first step in approximating the persistency coefficients in the Slepian-based IIA
framework is to verify that the monotonicity conditions in Theorem 2 are satisfied. This
is verified by inserting the covariance function and its derivatives of the two-dimensional
diffusion processes into the equations of Theorem 3. Following this, the expected value
functions can be turned into cumulative distribution functions (CDFs).

Figure 4 illustrates the normalized expected value functions of the Slepian process for
various levels of u. They correspond to the CDFs of the geometric divisors in the stochas-
tic representation outlined in Theorem 1 for multiple levels of u. It is evident from the
graphs that the conditions of Theorem 2 are satisfied. However, it is important to note
that E− loses its monotonicity properties for u > 5/4. Hence, we focus on the crossing
levels for which the monotonicity conditions in the previous theorem are met. To esti-
mate persistence, we utilize samples from the approximated excursion distribution. These
samples are obtained by numerical inversion sampling from the CDFs of the normalized
expected value functions depicted in Figure 4. The samples are then generated from the
approximate excursion time distribution using the stochastic representation in Theorem 2.
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Figure 5. Normalized histograms of the approximated excursion distri-
bution for the Slepian model based on the diffusion covariance, for an u
up-crossing (left) and an u down-crossing (right), for u = 1/2, 5/4.

However, the problem of estimating the persistency coefficients, θ+ and θ−, from these
generated samples remains.

Suppose that the tails of P (T+ ⩾ t) and P (T− ⩾ t) are of an exponential form, i.e.,
P (T+ ⩾ t) ≈ C · e−θ+t, for some large t, then the natural logarithm of P (T+ ⩾ t) will be
on the linear form ln(C)− θ+t. Hence, the persistency coefficients can be approximated
via ordinary least squares (OLS) on the empirical survival function. While the notion of
utilizing the empirical survival function for tail estimation is not new, having been intro-
duced by Kratz and Resnick (1996) and Schultze and Steinebach (1996), it was employed
in Bengtsson and Podgórski (2024b) for estimating persistence coefficients from generated
samples. We obtain 106 samples from the approximated excursion time distribution to
estimate the persistence coefficients. Only the values below one-half of the survival func-
tion are utilized for the OLS approximation of θ±, as only the tail is of interest. This
approach is repeated to obtain 10 estimates, and approximate 95% confidence intervals
are computed and presented in Table 1.

Table 1. Slepian-based IIA persistency coefficient estimate

Crossing level, u Estimate, θ+ Confidence interval Estimate, θ− Confidence interval

0 0.1862 ±0.000217 0.1861 ±0.000195
1/2 0.2893 ±0.000347 0.1105 ±0.000131
1 0.4225 ±0.000462 0.0591 ±0.000061
5/4 0.5001 ±0.000574 0.0411 ±0.000044

For comparison, trajectories of the 2−dimensional Gaussian diffusion process were sim-
ulated using the WAFO-toolbox (WAFO-group, 2017). A total of 105 trajectories were
simulated, each with a length of 106. The persistence coefficient was estimated in the
same manner as before, using OLS on the extracted crossing intervals. The estimates are
presented in Table 2 along with approximate 95% confidence intervals.

It should be noted that Slepian-based estimates of persistency are remarkably close
to the estimates based on simulating trajectories. Except for the zero level crossings for
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Table 2. Simulation estimates of persistency, based on trajectories

Crossing level, u Estimate, θ+ Confidence interval Estimate, θ− Confidence interval

0 0.1885 ±0.000164 0.1883 ±0.000165
1/2 0.2932 ±0.000271 0.1117 ±0.000104
1 0.4295 ±0.000482 0.0598 ±0.000067
5/4 0.5101 ±0.000661 0.0417 ±0.000054

which the true persistency coefficient was shown to be 0.1875 by Poplavskyi and Schehr
(2018). For the sake of this example, it can be stated that the Slepian-based IIA provides
a good approximation of persistency for Gaussian diffusion processes.

The Slepian IIA not only estimates persistency coefficients but also provides information
about the approximated excursion time distribution. In Figure 5, normalized histograms
are presented such that they correspond to the density of the excursion distribution.
From Figure 5, the exponential nature of the tail is evident, and the long tail of the
down crossing for higher levels is also clear. It also shows how shifting the level from
1/2 to 5/4 alters the tail behavior of the distribution. Since an arbitrary number of
samples can be generated, any characteristics of interest, such as the mean and moments,
are approximately obtainable from these samples. This illustrates the usefulness of the
Slepian-based IIA.

7. Conclusion

Using the Slepian-based IIA to approximate the excursion time, distributions have been
extended to non-zero crossing levels. By utilizing the crossing behavior of the process
of interest and matching the clipped version of this process to a non-stationary switch
process, probabilistic valid approximations are obtained. An application to the Gaussian
diffusion process is presented, and the results are in line with those obtained from simu-
lations. There are several natural directions for future work on this topic. Perhaps the
most natural step is to investigate the asymptotics of the IIA at high crossing levels.
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Appendix: Proofs and auxiliary results

A lemma was needed to derive the expectation of the clipped Slepian process, which is
presented below. Recall that the Rayleigh distribution with the parameter σ2

r is given by
the density fR(s) = se−s/σ2

r/σ2
r , and we shortly write R ∼ Rayleigh(σr) when a random

variable R has this distribution.

Lemma 1. Let R ∼ Rayleigh(σr) and W ∼ N (µ, σ2
w) be independent of each other, then

Ξ(µ̃, σ̃)
def
= P(R < W ) = Φ (µ̃)− σ̃√

1 + σ̃2
Φ

(
µ̃

σ̃√
1 + σ̃2

)
exp

(
− µ̃2

2(1 + σ̃2)

)
,

where (µ̃, σ̃) = (µ, σr)/σw.

Proof. Without loss of generality, we can assume that σr = 1. Under the stated conditions
and FR being the cdf of R:

P(R < W ) = E(FR(W )) = E
(
IW>0(1− e−W 2/2)

)

= P (W > 0)− 1√
2πσ2

w

∫ ∞

0

e
−w2

2
− (w−µ)2

2σ2
w dw.

We have
1√
2πσ2

w

∫ ∞

0

e
− (w−µ)2+σ2

ww2

2σ2
w dw =

1√
2πσ2

w

∫ ∞

0

e
−w2−2wµ/(1+σ2

w)+µ2/(1+σ2
w)

2σ2
w/(1+σ2

w) dw

=
1√
2πσ2

w

∫ ∞

0

e
−(

w−µ/(1+σ2
w))

2
+µ2(1/(1+σ2

w)−1/(1+σ2
w)2)

2σ2
w/(1+σ2

w) dw

=
1√

1 + σ2
w

e
− µ2

2(1+σ2
w)

∫ ∞

0

1√
2π σ2

w

1+σ2
w

e
−(

w−µ/(1+σ2
w))

2

2σ2
w/(1+σ2

w) dw

=
1√

1 + σ2
w

e
− µ2

2(1+σ2
w)Φ

(
µ

σw

/
√

1 + σ2
w

)
,

which yields the result. □

Corollary 1. If in the above result µ = 0, then

P(R < W ) =
1

2


1−

√
σ2
r

σ2
r + σ2

w


 .(16)

Proof of Theorem 3. Let us define a normal variable

W =

√
−r′′(0)

r′(t)

(
∆(t) + u

r(t)− r(0)

r(0)

)
.(17)

The mean and variance of this variable are

µ = u
√

−r′′(0)
r(t)− r(0)

r(0)r′(t)
, σ2

w =
r′′(0)

r(0)

r2(t)− r2(0)

r′2(t)
− 1.(18)
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Using Lemma 1, we get

E+
u (t) = 2P(Xu > u)− 1 = 2P(W > R)− 1 = 2Ξ(µ/σw, 1/σw)− 1.

After some algebra, we get

E+
u (t) = 2Φ


 u√

r(0)

r(t)− r(0)√
r2(0)− r2(t) + r(0)

r′′(0)r
′2(t)


− 1

− 2

√
− r(0)

r′′(0)

r′(t)√
r2(0)− r2(t)

exp

(
− u2

2r(0)

r(0)− r(t)

r(0) + r(t)

)

× Φ


 −u√

−r′′(0)

√
r(0)− r(t)

r(0) + r(t)

r′(t)√
r2(0)− r2(t) + r(0)

r′′(0)r
′2(t)


 .

□

Next, we evaluate the conditional expectation of a clipped Slepian process ( (7)) for a
given value of the Rayleigh variable R.

Lemma 2. Let u > 0 and D+
u be defined as in (7). Then for each s > 0:

E(D+
u (t)|R = s) = 1− 2Φ



u r(0)−r(t)

r(0)
− s r′(t)√

−r′′(0)√
r2(0)−r2(t)

r(0)
+ r′2(t)

r′′(0)


 .

Proof. Since conditionally, on R, the Slepian process is Gaussian, the derivation is straight-
forward

E(Yu(t)|R = s) =E
(
I(X0(t) > u)− I(X0(t) < u)|R = s

)

=P (ur(t)−Rr′(t) + ∆(t) > u|R = s)

− P (ur(t)−Rr′(t) + ∆(t) < u|R = s)

=1− 2P (ur(t)− sr′(t) + ∆(t) < u|R = s)

=1− 2P

(
Z < − u(r(t)− 1)− sr′(t)√

r(0)− r(t)2 − r′(t)2

)

=1− 2Φ

(
− u(r(t)− 1)− sr′(t)√

r(0)− r(t)2 − r′(t)2

)
,

where Z in the above is, as usual, a standard normal variable. □

In the discussion of the IIA, we used the following result to determine the distribution
of the number of switches.
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Lemma 3. Let Ñ(t), t ≥ 0, be the number of switches in [0, t] of a stationary switch
process D̃. Then

P
(
Ñ(t) = k

∣∣D̃(0) = δ
)
=

=





1− FA|δ(t); k = 0

(F+ ⋆ F−)
(k/2−1)⋆ ⋆ F−δ ⋆ FA|δ(t)− (F+ ⋆ F−)

(k/2)⋆ ⋆ FA|δ(t); k > 0 is even,

(F+ ⋆ F−)
(k−1)/2⋆ ⋆ FA|δ(t)− (F+ ⋆ F−)

(k−1)/2⋆ ⋆ F−δ ⋆ FA|δ(t); k is odd,

where ⋆ is used to denote the convolution of probability distributions (i.e., the distribution
function of the sum of random variables), FA|δ is the cdf of the initial delay conditionally
on δ.

Proof. We consider only the case of conditioning on δ = 1 as the opposite case can be
obtained by the symmetry argument. We first note that for a positive t and a non-negative
integer l:

P
(
Ñ(t) = 0

∣∣δ = 1
)
= P

(
A > t|δ = 1

)
= 1− FA|δ=1(t),

P
(
Ñ(t) = 1

∣∣δ = 1
)
= P(A+ T−

1 > t ≥ A|δ = 1)

= P(A+ T−
1 > t|δ = 1)− P(A+ T−

1 > t,A > t|δ = 1)

= 1− FA|δ=1 ⋆ F−(t)−
(
1− FA|δ=1(t)

)
,

P
(
Ñ(t) = 2l

∣∣δ = 1
)
= P


A+

l∑

i=1

T+
i +

l∑

i=1

T−
i > t ≥ A+

l−1∑

i=1

T+
i +

l∑

i=1

T−
i

∣∣∣δ = 1




= 1− F l⋆
+ ⋆ F l⋆

− ⋆ FA|δ=1(t)−
(
1− F

(l−1)⋆
+ ⋆ F l⋆

− ⋆ FA|δ=1(t)
)

= F
(l−1)⋆
+ ∗ F l⋆

− ⋆ FA|δ=1(t)− F l⋆
+ ⋆ F l⋆

− ⋆ FA|δ=1(t),

P
(
Ñ(t) = 2l + 1

∣∣δ = 1
)
= P


A+

l∑

i=1

T+
i +

l+1∑

i=1

T−
i > t ≥ A+

l∑

i=1

T+
i +

l∑

i=1

T−
i




= F l⋆
+ ⋆ F l⋆

− ⋆ FA|δ=1(t)− F l⋆
+ ⋆ F

(l+1)⋆
− ⋆ FA|δ=1(t).

□

For the next proposition, we need the Laplace transform of fA|δ and FA|δ.

ΨA|δ(s) = L(fA|δ)(s) =
1− sL(Fδ)(s)

sµδ

=
1−Ψδ(s)

sµδ

L(FA|δ)(s) =
L(fA|δ)(s)

s
=

1−Ψδ(s)

s2µδ
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Proposition 4. For a stationary switch process, the average number of switches in [0, t],
N<(t) = E(Ñ(t)|δ = −1), N>(t) = E(Ñ(t)|δ = 1) have Laplace transforms

L(N>)(s) =
1

s2µ+

(
1 + Ψ−(s)

) (
1−Ψ+(s)

)

1−Ψ+(s)Ψ−(s)
,

L(N<)(s) =
1

s2µ−

(
1 + Ψ+(s)

) (
1−Ψ−(s)

)

1−Ψ+(s)Ψ−(s)
.

Proof. The result follows from

L(N>)(s) =
∞∑

k=1

k · L
(

P
(
Ñ(·) = k|δ = 1

))
(s)

=
∞∑

l=0

(2l + 1)

(
L
(
(F+ ⋆ F−)

l⋆ ⋆ FA|δ=1

)
(s)− L

(
(F+ ⋆ F−)

l⋆ ⋆ F− ⋆ FA|δ=1

)
(s)

)

+
∞∑

l=1

2l

(
L
(
(F+ ⋆ F−)

(l−1)⋆ ⋆ F− ⋆ FA|δ=1

)
(s)− L

(
(F+ ⋆ F−)

l⋆ ⋆ FA|δ=1

)
(s)

)

=
ΨA|δ=1

s


(1−Ψ−)

∞∑

l=0

(2l + 1) (Ψ+Ψ−)
l + (1−Ψ+)

∞∑

l=1

2l (Ψ+Ψ−)
(l−1)Ψ−




=
1−Ψ+

s2µ+


 1−Ψ−
1−Ψ+Ψ−

+ 2Ψ−

∞∑

l=1

l (Ψ+Ψ−)
l−1 ((1−Ψ−)Ψ+ + 1−Ψ+

)



=
1−Ψ+

s2µ+

(
1−Ψ−

1−Ψ+Ψ−
+

2Ψ− (1−Ψ−Ψ+)

(1−Ψ+Ψ−)
2

)
=

1−Ψ+(s)

s2µ+

1 + Ψ−(s)

1−Ψ+(s)Ψ−(s)
.

□
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